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Hilbert A-Modules*

S. Cerreia-Vioglio, F. Maccheroni, and M. Marinacci

Department of Decision Sciences and IGIER, Universita Bocconi

March 2015

Abstract

We consider real pre-Hilbert modules H on Archimedean f-algebras A with
unit e. We provide conditions on A and H such that a Riesz representation

theorem for bounded/continuous A-linear operators holds.

1 Introduction

Let A be an Archimedean f-algebra with (multiplicative) unit e. It is well known that
Archimedean f-algebras are commutative. We next proceed by defining the objects we

study in this paper.

Definition 1 An abelian group (H,+) is an A-module if and only if an outer product
-1 Ax H — H s well defined with the following properties, for each a,b € A and for
each z,y € H:

(1) a-(x+y)=a-x+a-y;
(2) (a+b)-z=a-x+b-x;
(3) a-(b-x)=(ab) - z;

(1) e x=uz.

An A-module is a pre-Hilbert A-module if and only if an inner product { , ), : H X
H — A is well defined with the following properties, for each a € A and for each
x,y,z € H:

*We thank Lars Hansen for very useful discussions and comments. Simone Cerreia-Vioglio
and Fabio Maccheroni gratefully acknowledge the financial support of MIUR (PRIN grant
20103S5RN3_005). Massimo Marinacci gratefully acknowledges the financial support of the AXA
Research Fund.



(5) (x,2), >0, with equality if and only if © = 0;
(6) (&, 9)y = (Y, ) s

(7) x4y, 2)y = (@, 2) g + Y, 2) s

(8) {a-x,y)y = alz,y)y.

For A = R conditions (1)-(4) define vector spaces, while (5)-(8) define pre-Hilbert
spaces. We will use Latin letters a, b, ¢ to denote elements of A, Latin letters z,y, z to

denote elements of H, and Greek letters «, § to denote elements of R.

It is well known that!
(@) < (.0) g (,9)y Yo,y H.
We can thus conclude that each z € H induces a map [ : H — A, via the formula
f(x)=(z,2)y Vr € H,
with the following properties:

- A-linearity f(a-z+0b-y) =af (x)+bf (y) for all a,b € A and for all z,y € H;

- Boundedness There exists ¢ € A, such that f (z)* < c¢(z,2), for all z € H.

In light of this fact, we give the following definition:

Definition 2 Let A be an Archimedean f-algebra with unit e and H a pre-Hilbert A-
module. We say that H is self-dual if and only if for each f : H — A which is A-linear
and bounded there exists y € H such that

f(x)=(z,y)y Vo € H.

The goal of this paper is to provide conditions on A and H that will allow us to
conclude that a pre-Hilbert A-module H is self-dual. Our initial motivation comes from
Finance. There, Hilbert modules are the extension of the notion of Hilbert spaces that
the analysis of conditional information requires, as first shown by Hansen and Richard
[19]. In particular, self-duality is key to represent price operators through traded
stochastic discount factors. Our results provide the general mathematical framework

where conditional asset pricing can be performed.

!See Huijsmans and de Pagter [23, Theorem 3.4] and also Proposition 4 below.
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Examples Consider a probability space (€2, F, P) and assume that G is a sub-
o-algebra of F. Denote by L°(F) = L°(Q,F, P) and L™ (F) = L>(Q,F,P), re-
spectively, the space of F-measurable functions and the space of F-measurable and
essentially bounded functions. Similarly, define £° (G) and £> (G). Define also

£20(Q,6,F,P) = {f € L"(F) : B (*|6) € £°(9)}

and

£2(Q,6,F,P) = {f € L(F) : E(f]|G) € £(G)}.

The inner product, in both cases, can be defined by (f,g) — E(fg||G). In Section 6,
we show that £2° (Q, G, F, P) is a pre-Hilbert £° (G)-module and £*>* (Q,G, F, P) is a
pre-Hilbert £ (G)-module. Both spaces are of particular interest in Finance. The first
space is the one originally used in the seminal paper of Hansen and Richard [19]. On the
other hand, in Filipovic, Kupper, and Vogelpoth [14] (see also [30]), the second space
has been shown to represent the family of all continuous and £* (G)-linear operators
from L% (F) to £?(G).? In other words, £>* (Q,G,F, P) can be interpreted as the

space of all conditional stochastic discount factors (state price densities).

Related literature The literature on self-dual modules can be roughly divided
in two main streams. The first one introduced the notion of Hilbert A-modules and
considers complex C*-algebras A. In particular, it considers algebras that admit a
concrete representation as a space of continuous functions over a compact space. The
second focuses on a particular algebra of functions, namely, £° (G) = £L° (Q,G, P). The
notion of pre-Hilbert A-modules was introduced by Kaplansky [25]. Kaplansky [25]
considers modules over commutative (complex) AW *-algebras A with unit and shows
that a pre-Hilbert A-module H is self-dual if and only if H satisfies some extra algebraic
property (Definition 9). Paschke [33] investigates the properties of self-dual modules
defined over complex B*-algebras. Two other related papers are Frank [15] and [16]
(see also [29], for a textbook exposition). In both papers, when A is assumed to be a
W* complex algebra, a pre-Hilbert A-module H is shown to be self-dual if and only if
the unit ball (properly defined) of H is complete with respect to some linear topology.
On the other hand, Guo, in [17] and [18], studies pre-Hilbert £° (G)-modules H and
shows that they are self-dual if and only if H is complete with respect to a particular

metrizable topology.?

2L2%(F) = L2 (9, F, P) is the space of F-measurable and square integrable functions.
3In this paper, we focus on Hilbert modules. For the Banach case, we refer to Cerreia-Vioglio,

Kupper, Maccheroni, Marinacci, and Vogelpoth [11] and the references therein. A pioneer work on
the subject is Haydon, Levy, and Raynaud [20].



Our Contributions We provide (topological) conditions on A and H that will
allow us to conclude that a pre-Hilbert A-module H is self-dual. We start by considering
A to be an algebra of £ type (Subsection 2.1). In this case, H can be suitably
topologized with several norm topologies. In particular, two norms stand out: || ||,
and || ||, (Subsection 3.1). When A is of £ type and H is a pre-Hilbert A-module,

in Theorem 3, we show that the following conditions are equivalent:
(i) H is self-dual;
(ii) By is “weakly” compact (where By is the unit ball induced by || || ;);
(iii) H is “weakly” sequentially complete;
(iv) By is complete with respect to || ||,

Conditions (ii) and (iii) are novel conditions. On the other hand, a condition of
completeness, similar to Condition (iv), has been found also in the complex case by
Frank [15] (see the proof of [29, Theorem 3.5.1]). When A = R, it is easy to show that
| || and || ||,, are equivalent (Proposition 9). Thus, in this case, properties (i)-(iv) are
well known to be equivalent and we can conclude that our Theorem 3 is a generalization
of the classical Riesz representation theorem for Hilbert spaces.

We then move to consider A to be an f-algebra of £° type (Subsection 5.3). In this
case, H can be topologized with an invariant metric dz. When A is of £° type and
H is a pre-Hilbert A-module, in Theorem 5, we show that the following conditions are

equivalent:
(") H is self-dual;
(ii’) H is complete with respect to dg.

We are thus able to obtain Guo’s self-duality result ([17] and [18]). The contribution
to the literature of our Theorem 5 is to show the connection with the self-duality result
for modules on algebras of £ type. In fact, we show that each pre-Hilbert £°-module
H contains a dense pre-Hilbert £°°-module H.. Thus, verifying the self-duality of H
amounts to verify the self-duality of H,, which can then be extended to H via a density

argument.

Outline of the paper Section 2 introduces the two kinds of algebras A we
will consider in studying the self-duality problem. Subsection 2.1 deals with Arens

algebras, that is, real Banach algebras which admit a concrete representation as a



space of continuous functions. Algebras of £ type will belong to this class (Definition
5). Instead, Subsection 2.2 deals with f-algebras of L° type (Definition 6).

In Section 3, we show how a pre-Hilbert A-module naturally turns out to be a vector
space that can also be topologized in several different and useful ways. In Subsection
3.2, we study the corresponding topological duals.

Section 4 deals with the study of the dual module, that is, the set H™ of all A-linear
and bounded operators from H to A. The set H™ turns out to be an A-module which
can also be topologized and its study is key in dealing with the self-duality problem.
From a topological point of view, the structure of H™~ differs depending if A is of £
type or of LY type. In Subsection 4.1, we study the first case. In Subsection 4.2, we
study the second case. Finally, in Subsection 4.3, we show that H™ can be identified
with the norm dual of some Banach space when A is of L™ type.

Section 5 contains our results on self-duality. First, we discuss the case when A is
of £L> type. An important subcase is when A is finite dimensional, which we discuss
right after. We conclude the section by discussing the case in which A is an f-algebra
of £° type. In Section 6 we discuss five examples of pre-Hilbert A-modules that, given
our results, turn out to be self-dual. We relegate to the Appendix the proofs of some

ancillary facts.

2 Function algebras

2.1 Arens algebras

Given a commutative real normed algebra A with multiplicative unit e, we denote by
| || 4 the norm of A. We denote by A* the norm dual of A and by ( , ) the dual pairing
of the algebra A, that is, (a,¢) = ¢ (a) for all a € A and ¢ € A*. Unless otherwise
specified, the norm dual A* of A is endowed with the weak* topology and all of its
subsets are endowed with the relative weak™ topology. In the first part of the paper,
we will mostly consider commutative real Banach algebras A that admit a concrete
representation. These real Banach algebras were first studied by Arens [8] and Kelley
and Vaught [26].*

Definition 3 A commutative real Banach algebra A with unit e such that

el , = 1 and ||a| < |a® + b? Ya,b e A

I

is called an Arens algebra.

4For two more recent studies, see also Albiac and Kanton [2] and [3]. Recall that a Banach algebra
is such that |ab|| , < |lall 4 |||l 4 for all a,b € A.



Given an Arens algebra A, define

S={pe A" :|lplls =wp(e) =1}
K={peS:p(ab) =¢(a)p(b) Va,be A}.

The set K is compact and Hausdorff. Denote by C (K) the space of real valued
continuous functions on K. We endow C (K) with the supnorm. It is well known

that A admits a concrete representation, that is, the map 7 : A — C (K), defined by
T(a)(p) =(a,p)  Vpe K, VacA,
is an isometry and an algebra isomorphism (see [26], [2], and [3]).

The cone generated by the squares of A induces a natural order relation on A itself:
a > bif and only if a — b belongs to the norm closure of {c? : ¢ € A}. By using standard
techniques, the above concrete representation of A implies that (A, >) is a Riesz space
with strong order unit e and T is also a lattice isomorphism. In particular, K coincides
with the set of all nonzero lattice homomorphisms and A is an Archimedean f-algebra
with unit e. We also have that each element ¢ € K is positive. Finally, || ||, is a lattice

norm such that
la|| , =min{a >0: |a| < ae} and HaQHA = |lal?, Va € A.

In light of these observations, note that for each a > 0, there exists a unique b > 0

such that b2 = a. From now on, we will denote such an element by a2z or Va.

Note that if A admits a strictly positive linear functional ¢ : A — R, then we could

also renorm A with the norm || ||, : A — [0, 00), defined by ||a||, = ¢ (|a|) for all a € A.

It is immediate to see that |la||; < ||@|| 4 ||la|l4 for all @ € A, and so the || ||, norm

A
topology 74 is finer than the || ||, norm topology 71; i.e., 1 C 74. We will denote the
norm dual of A with respect to || ||, by A’. Finally, we have that A’ C A*. If A admits
a strictly positive linear functional ¢ : A — R, then we could also consider A endowed
with the invariant metric d : Ax A — [0, 00), defined by d (a,b) = @ (|b — a| A e) for all
a,b € A. It is immediate to see that d(a,b) = @ (|[b—a|ANe) < @(|b—al|) =[b—a,
for all a,b € A, and so the || ||; norm topology 7y is finer than the d metric topology

Tq; 1.e., T4 C 7.

The existence of a strictly positive linear functional ¢ : A — R will play a key
role in the rest of the paper.” We conclude the section by exploring the extent of this
assumption and its relation with the existence of a measure m on K whose support

separates the points of A. Before presenting the formal result, we provide a definition:

PWithout loss of generality, ¢ can always be assumed to be such that ||| ,. = 1.
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Definition 4 Let A be an Arens algebra and m a finite measure on the Borel o-algebra
of K. The measure m separates points if and only if the support of m separates the

points of A.

Proposition 1 Let A be an Arens algebra and ¢ € A*. The following statements are

equivalent:

(1) The functional @ is strictly positive and such that ||@|| 4. = 1;

(11) There exists a (unique) probability measure mgz = m on the Borel o-algebra of K

such that suppm = K and
¢ = [ @prine)  Vaea 1)
K

(111) There ezists a probability measure mg = m that separates points and satisfies (1).

Remark 1 From now on, when we will be dealing with an Arens algebra that admits

a strictly positive linear functional @ on A such that ||@|| 4. = 1, the measure m will be
meant to be mg. Viceversa, if A admits a measure that separates points, then ¢ will

be meant to be defined as in (1).

We conclude by defining a particular class of Arens algebras which are isomorphic
to some space L> (2, G, P) (see [1, Corollary 2.2]).

Definition 5 Let A be an Arens algebra. We say that A is of L™ type if and only if A
s Dedekind complete and admits a strictly positive order continuous linear functional

@ on A.

2.2 f-algebras

Assume that A is an Archimedean f-algebra with unit e (see Aliprantis and Burkinshaw
[6, Definition 2.53]). It is well known that e is a weak order unit. If A is Dedekind
complete and a > %e for some n € N, then there exists a unique b € A, such that
ab = e. We denote this element a~*. If @ > 0 is such that there exists a=! and b € A,
then we alternatively denote ba~! by b/a. By [22, Theorem 3.9], if A is also Dedekind
complete, for each a > 0, there exists a unique b > 0 such that > = a. Also in this
case, we will denote such an element by az or va. The principal ideal generated by e
is the set
Ac={a€ A:3Ja>0st. |a| <ae}.



It is immediate to see that A, is a subalgebra of A with unit e. If A is an Arens algebra,
then A, = A. If there exists a linear and strictly positive functional ¢ : A, — R, then
we can define d: A x A — [0,00) by

d(a,b) =@ (|b—a|ANe) Va,b € A.

As in the case of an Arens algebra, d is an invariant metric. As already noted, an
Arens algebra, in particular one of £ type, is an Archimedean f-algebra with unit. In
this paper, other than algebras of £* type, we focus also on another particular class

of f-algebras:

Definition 6 Let A be an Archimedean f-algebra with unit e. We say that A is an f-
algebra of L° type if and only if A. is an Arens algebra of L type and A is Dedekind
complete and d complete.

By [6, Theorems 2.28 and 4.7], if A is an f-algebra of £° type, d is generated by the
Riesz pseudonorm ¢ — @ (|c| A e), then it is easy to prove that the topology generated
by d is linear, locally solid, and Fatou. Moreover, it can be shown that A is universally

complete and such that:
1. If a,, | 0 and b > 0, then a,b | 0 and a,b KR 0;

2. If >0 and a, 4, a, then ba,, 2 ba.

3 The vector space structure of H

In this section, we will first show that a pre-Hilbert A-module has a natural structure
of vector space. Next, we will show that the A valued inner product ( , ), shares most
of the properties of standard real valued inner products. In particular, under mild
assumptions on A, we will show that it also induces a real valued inner product on H,
thus making H into a pre-Hilbert space.

We use the outer product - to define a scalar product:

€. RxH — H

(,2) = (ae) -z
We next show that -¢ makes the abelian group H into a real vector space.

Proposition 2 Let A be an Archimedean f-algebra with unit e and H an A-module.

(H,+,-¢) is a real vector space.

Proof. By assumption, H is an abelian group. For each o, 3 € R and each x,y € H,

we have that



(1) af(xt+y)=ae-(z+y)=(ae) x4+ (ae) - y=a-“z+ay;
(2) (a+p)cx=(a+p)e) - x=(ae+Pe) x=(ae) - x+(fe) - x=a-z+ [ °ux;
(3) a- (8- x) = (ae) - ((Be) - x) = ((ae) (Be)) - x = ((af) e) - w = (af) - z;

4) 1fx=(le)-z=e-x =1 |

From now on, we will often write ax in place of « - x.

Corollary 1 Let A be an Archimedean f-algebra with unit e and H an A-module. If

f:H — A is an A-linear operator, then f is linear.

If A is an Arens algebra, given a finite probability measure m on the Borel o-algebra
of K we can also define (, ), : H x H — R by

(x,5),, = /K (@.9) @) dm(p) Va,y e H.

For each ¢ € K, we also define and study the functionals (, ), : H x H — R defined
by
<$ay>¢: (z,9) ) Vo,y € H.

Note that (, ), = (, )s, forall ¢ € K where 4, is the Dirac measure at . We next

show that ( , ), is a symmetric bilinear form which is positive semidefinite on H x H.

Proposition 3 Let A be an Arens algebra and H a pre-Hilbert A-module. The follow-

1ng statements are true:
1. (, ),, is a positive semidefinite symmetric bilinear form;
2. (x,x), =0 implies x = 0, provided m separates points;
3. (:p,y)?n <A(z,z), (y,y),, forallz,y € H;
4. (z,a-y),, =(a-z,y),, foralaec A and for all z,y € H;

5. (x,y),, =@ (x,y)y) for all x,y € H, provided m separates points.

Proof. We here prove points 2. and 5. and leave the remaining easy ones to the
reader. Assume that m separates points. Define ¢ as in (1). By Proposition 1, it
follows that

7 (a) = /K (a,0)dm(p) VaeA 2)

is a strictly positive and linear functional.



5. By definition of (, ), and (2), observe that for each z,y € H
@t = [ (e dm () = @ ((2.9),).

2. By assumption, (z,z), > 0 for all z € H. By point 5., if (z,z) = 0, then
¢ ((z,x)y) = 0. Since ¢ is strictly positive, we have that (x,z), = 0, proving that
x = 0. |

Corollary 2 Let A be an Arens algebra and H a pre-Hilbert A-module. If A admits a

measure m that separates points, then (H,+,-,( , ),,) is a pre-Hilbert space.

Proposition 4 Let A be an Arens algebra and H a pre-Hilbert A-module. The follow-

1ng Sstatements are true:

1. (x,y)z <Az,z)y (y,y) g for all z,y € H;
1 1
2. o, y) gl < (@ 2)fy (y, ) for all v,y € H;
3 [ |, < W@ @)yl 1y, w) gl o for all z,y € H;

1 1
4o W@ v ulla < e 2) g4 1Ky, ) wlli for allz,y € H.

Proof. By Proposition 2 and Corollary 1 and since A is, in particular, an Archimedean
f-algebra with unit, point 1. is an easy consequence of [23, Theorem 3.4]. Since A is
an Arens algebra, each positive element admits a unique square root and point 2. also
follows. Since A is an Arens algebra and || || , is also a lattice norm, we have that for

each z,y € H

K, ) gl = @ ) Hl L, < @2y @ alla < 1@ 2 gl 1w, ) gl

proving points 3. and 4. ]

Remark 2 If A is a Dedekind complete Archimedean f-algebra with unit e, then points

1. and 2. are still true and their proofs remain the same.

3.1 Topological structure

Since a pre-Hilbert A-module H is also a vector space, we can try to endow H with a
topology induced by either a norm or an invariant metric. In fact, given the structure
of A and H, we have several different competing norms and topologies. The next
subsections are devoted to the study of these norms and metric and their relations.

Before starting, note that if A is an Arens algebra or a Dedekind complete Archimedean
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f-algebra with unit, then (, ), defines a vector-valued norm,° N : H — A, via the

formula )
N (z) = {(z,2)%} Vo e H.

If A were equal to R, then N would be a standard norm and we would say that
def
T, = <~ N(z—1x,) —0.

Since R is always endowed with the usual topology, this definition would be unambigu-
ous. When A # R, such a statement is not true anymore, since we could endow A with
different linear topologies changing the meaning of N (z — z,) — 0. In other words,
by combining the topological structure of A with N we are able to induce different
topologies on H (see point 5. of Proposition 5, point 3. of Proposition 6, equation (5),
and point 2. of Proposition 7).

3.1.1 The | |5 norm
Assume A is an Arens algebra. Define || ||; : H — [0, 00) by
2]l = \/I{z, 2) gl o Vo e H.
For each ¢ € K, define also || ||, : H — [0,00) by
HIH@: <x,x>¢ Ve e H.

Proposition 5 Let A be an Arens algebra and H a pre-Hilbert A-module. The follow-

g statements are true:

1. |1l is a seminorm for all p € K

2. I Iz s a norm;

3. x|y = maxpex ||, = \/maxcpeK (z,2), for allz € H;
4. |la- x|y <llall4||z]|; for alla € A and all x € H;

5. ||zl = |IN (x)|| 4 for allz € H.

6In particular, NV is such that
1. N (z) =0 if and only if 2 = 0;
2. N(a-z)=la] N (z) for all a € A and for all x € H;

3. N(x+y) <N(x)+ N (y) forall z,y € H.

11



Proof. Points 1. and 2. follow from routine arguments.

3. Recall that T': A — C (K) is a linear isometry. Thus, we have that

2 JR— JR— JR— JR—
13, = 12}l = T (o, 2)0) o = mivs 7 (G2 2),) ()] = max (), 0
— _ o 2
= g |{o0), | = max(o.0), = max ol Ve

proving the statement.

4. Given any a € A and x € H, it holds

la-alfy = a- 2,0 2)yll, = [la® (@, 2) |, < [l0®[L4 1€z 2D plly < Nalld I, 2) g

proving the statement.

5. Since A is an Arens algebra, it follows that ||\/a||, = /|lal/, for all a € A,.7
This implies that

ol = /)l = |/

proving the statement. n

=[IN@)ll,  VreH,
A

By Proposition 4, it readily follows that

Kz ) plla < Nzllg lylly Yo,y € H. (3)

Corollary 3 Let A be an Arens algebra and H a pre-Hilbert A-module. For each
y € H, the functional (-,y), : H — A is A-linear, || || — || ||4 continuous, and has

norm [yl -

Proof. Fix y € H. It is immediate to see that the operator induced by y is A-linear,
thus, linear. Continuity easily follows from (3). Since the norm of the linear operator
is given by

sup {[[(, y) gll 4 / zllyr = 2 # 0%,

the statement easily follows from (3) and the definition of || || ;. |
In light of these observations and since || ||; can be defined for any pre-Hilbert

A-module when A is an Arens algebra, we propose the following definition:

Definition 7 Let A be an Arens algebra and H a pre-Hilbert A-module. We say that
H is an Hilbert A-module if and only if H is || || complete.

"Recall that if @ > 0, then az = b is the unique positive element such that b> = a. Since A is an

Arens algebra, it follows that |jal| , = Hb2||A = ||bH?4 = H\/ZLH?47 proving that

H\/aHA = ||a||A Ya € Ay

12



3.1.2 The || Hp norm

Assume A is an Arens algebra that admits a strictly positive linear functional ¢ such
that ||| 4. = 1. Define || [|, : H — [0, 00) by

lall, = ¢ (@.2)i)  VeeH

Proposition 6 Let A be an Arens algebra and H a pre-Hilbert A-module. If A admits
a strictly positive functional ¢ such that ||@|| 4. = 1, then the following statements are

true:

1. |l,, is a norm;

2. la-zll, <llall4 ||lzl[, for alla € A and for all x € H;

3. |lzll, = ¢ (N (2)) = [IN (@)l for allz € H.
Proof. Since ¢ is strictly positive, note that

=0 <= (2,2); =0 < (z,2)} =0 < ¢(<x,x>§q) —0 > 2], =0.
Second, since ¢ is linear, observe that for each o € R and for each x € H

1 1 1
laall, = & ((aw,02)% ) = ¢ (lal (z,2)7) = lal & ({z.2)3) = lal |12l

Third, by Proposition 4, note that for each z,y € H

@yt gy = (@) +2 (@) + vy < (o 2)y + 20 2) % ) E + 1)y
= ()i + wh)

1

1 1 1
We can conclude that (z +y, x4+ y)} < (z,2)} + (y,y) 3 for all z,y € H. Since ¢ is

positive and linear, the triangular inequality for || ||, follows.

2. Given any a € A and x € H, since @ is positive and linear, it holds

la-all, =& ((a w0 2)5) =& (lal @07 ) <@ ((lalle) o))
< Nalla @ (@, 2)3) = llally 21,

proving the statement.

3. The statement follows by definition of || ||, and || |, |

13



3.1.3 The | ||,, norm

Assume A is an Arens algebra that admits a strictly positive linear functional ¢ such
that [|@|
Proposition 1). Define |||, : H — [0,00) by

Izl = +/(z,2), = \//K (w,2),dm () VreH. (@)

By Propositions 1 and 3, (, ), is an inner product on H and it is immediate to see

4+ = 1 or, equivalently, a probability measure m that separates points (see

that || ||, is a norm and

2], = /@ (2, 2)y) = /o (N (2)")  VzeH. (5)

3.1.4 The dy metric

Assume that A is either a Dedekind complete Archimedean f-algebra with unit that
admits a strictly positive linear functional ¢ : A, — R or A is an Arens algebra that
admits a strictly positive linear functional ¢ : A — R. In the second case, assume also
that ||@]| ,» = 1. Define dyy : H x H — [0, 00) by

di (z,y) =@(N (v —y)Ae)  Va,y€ H. (6)

Recall that the hypothesis of Dedekind completeness is needed to define N (z) =

(z,2)% when A is an Archimedean f-algebra with unit.

Proposition 7 Let A be either a Dedekind complete Archimedean f-algebra with unit
e or an Arens algebra and H a pre-Hilbert A-module. If A admits a strictly positive

functional ¢ : A, — R, then the following statements are true:
1. dy 1s an invariant metric;
2. dy (z,y) =d(0,N (z —y)) for all x,y € H.

Proof. 1. Since ¢ is strictly positive, we have that

dy (,y) =0 <= @¢(N(x—y)ANe)=0 <= N(z—y)ANe=0
< Nxz—-—y) =0 <<= z=y.

It is immediate to see that dy (z,y) = dy (y,z) for all x,y € H as well as

dg (x+ 2,y +2) =du (z,y) V,y,z € H.

14



Finally, by [6, Lemma 1.4] and since N (x +y) < N (z) + N (y) for all z,y € H, we

can conclude that

dy (v, y) =0 (N(z—y)ANe) =@ (N((z—2)+ (2 —y)) Ne)
SP((N@—=2)+N(E-y)Ae) <@(N(x—2)Aet+ N(2—y)Ae)
) Vr,y,z € H,

proving the statement.

2. By definition of dg, d, and N, we have that
di (2,y) =@ (N(z—y)Ae) =@ (IN(x—y) —0[Ae)=d(0,N(z—y)) Vr,yeH,

proving the statement. [

3.1.5 Relations among norms

Assume A is an Arens Algebra that admits a strictly positive linear functional ¢ such
that |||

4~ = 1. First, by Propositions 1 and 5 and by equation (4), we have that
Izl < llzlly — Vzed.

We can conclude that

[l I,
T, — 0 = x, 0.

The || || ; norm topology 7 is thus finer than the || ||, norm topology 7,,; i.e., 7,,, C 7.

Similarly, by Proposition 1, we have that

lell, = & (@a)h) = [ {twalhedm(e) = [ @)y 0t am ()

=< \//K (z,2) g, 0)dm (@) = ||zl,,  VreH
We can conclude that N

The || ||,,, norm topology 7, is thus finer than the || ||, norm topology 7,; i.e., 7, C 7.

Summing up, we have that
Jzll, < lzll,, < llzlly; Vo€ H. (8)
Finally, note that

The || ||, norm topology 7, is thus finer than the dy topology 74,; i.e., Ta, C 7.
We next explore the continuity\boundedness properties of A-linear operators: f :
H — A. We then conclude by showing that our three norms are equivalent when A is

finite dimensional.
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Proposition 8 Let A be a Dedekind complete Arens algebra and H a pre-Hilbert A-

module. If A admits a strictly positive linear functional ¢ such that ||@|| .. = 1, the
following statements are true:
1. An A-linear operator f : H — A is bounded if and only if f is || ||z — || |4
continuous;
2. If f + H — A is A-linear and || ||; — || |4 continuous, then f : H — A is
I '{l, = Il I, continuous;
3. If f+ H — A is A-linear and || || — || |4 continuous, then f : H — A is
[l = 1 lly continuous;

4. For each x,y € H,

|2 (@)l < @ () ) = [z 9) glly < Nll, 1yl
5. For each x,y € H,

2 (@) )l < @ (e y)pl) = 1z v) ully < 2l 1yll -

Proof. 1. By Corollary 1 and since f is A-linear, f is linear. If f is bounded, then
there exists ¢ € A, such that

f2(z) <clz,z)y Vo e H.
Since || ||, is a lattice norm and A is an Arens algebra, this implies that

Lf @) = (|72 @) 4 < lledasa)glly < llela @)l Vo€ A,

that is, || f (2)|l, < \/Ilcll 4|zl ; for all z € H. We can conclude that fis || |5 — || Il
continuous. Viceversa, assume that f is || ||,; — || ||, continuous. It follows that there
exists k > 0 such that || f (z)|| 4 < k||z||, forallz € H. Fix x € H. Since f is A-linear,
it follows that for each a € A

[a®f2 @)]| , = laf @)% = If (a- D)3 <K {a- 2,0 2)y]l, = K [0 (2, 2) ],

Since A is a Dedekind complete Arens algebra, this implies that f? (z) < (k%e) (z, z) .}

Since x was arbitrarily chosen, it follows that f is bounded.

8For a Dedekind complete Arens algebra A, it is true that if ¢,d € A are such that
[bcll 4 < llbdll, Vb e Ay,

then ¢ < d. In our case, ¢ = f?(z), d = k* (z,z) 57, and, given Subsection 2.1, it is enough to observe
that Ay = {a®:a € A}.
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2. By point 1. and since A is a Dedekind complete Arens algebra, if f: H — A is

| [l = Il l4 continuous, then there exists ¢ € A, such that
f@|<clenl VreH
Since @ is (strictly) positive, we have that
0<If @l =2 (f @D <@ (ctoni) <@ ((elye) @ 2)7)
—llela @ ({@,2)h) = lellallall, Vo€ f.

3. By the proof of point 2. and (7), the statement follows.

4. By Proposition 4 and since ¢ is (strictly) positive and linear, we have that

)

% ()l < & (e < & (.05 wni) <o (@i (|
=W la? (. 0)) = Il Nzl Vay € H,

proving the statement, since @ (|(z,y)4|) = [[{(%,y) 4|, for all z,y € H.
5. By the proof of point 4. and (8), the statement follows. |

Remark 3 It is important to note that in the proof of point 1. the existence of a
strictly positive functional @ did not play any role. Similarly, in the proof of points 4.

and 5. the assumption of Dedekind completeness was not used.

Proposition 9 Let A be an Arens algebra and H a pre-Hilbert A-module. If A is finite
=1
A*

and the norms || || and || ||, are equivalent.

pr |l

Proof. Since A is finite dimensional, we have that K is finite (see Semadeni [36,
Corollary 6.4.9 and Propositions 6.2.10 and 7.1.4]). Since K is finite, consider m = my
such that m ({gp}) T K‘ for all ¢ € K. By Proposition 1, ¢ is strictly positive, linear,

= 1. Consider now a generic strictly positive linear functional .
By Proposition 1 and since K is finite, it is immediate to see that m ({¢}) > 0 for all
¢ € K. Consider a sequence {,},.y € H. By Proposition 1, Proposition 6, point 3.

of Proposition 5, and since K is finite, it follows that

I, 1
5 B0 =l >0 = [ ({omdh o) dm () -0
K

1l

= |anll, =0 VpeK <= |lzn|ly =0 <= z, — 0,

proving that || [|, and || ||;; are equivalent. By (8), the statement follows. [
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3.2 The norm duals of H

Assume A is an Arens algebra that admits a strictly positive functional ¢ such that
4 = 1. Recall that on H we have at least two competing norms for H: || || and
| Il,,,- We denote by By the closed unit ball with respect to || ||,; and by B,, the closed
unit ball with respect to || ||,,

In this subsection, we study the norm duals these norms induce. We denote them,
respectively, H* and H’'. Since ||z|,, < ||z||, for all z € H, we have that H' C H*
and, given [ € H', that

12l e = sup{[L ()] - ([]l,,, <1} = sup{|I ()] = [|l][ <

(10)

Consider ¢ € A* and y € H. By Corollary 1, note that ¢ o (,y), is a linear
functional. By Corollary 3, the || ||, continuity of po ( ,y), follows, since the operator
(,y)g is || Iz — Il || 4 continuous and ¢ is || ||, continuous. On the other hand, by
Proposition 8 (see also Remark 3), if ¢ € A" C A*, || ||,, continuity of ¢ o ,y), follows

since the operator ( ,y), is || ||,, — || ||; continuous and ¢ is || ||; continuous.

Lemma 1 Let A be an Arens algebra and H a pre-Hilbert A-module. If A admits a
w=1and S:H— H' C H* is defined by

Sw=¢(,v)g)  VyeH,

then:
1. S s well defined and linear;
2. ker S = {0};

3. S is such that ||\S (y)| = llyl|,, for ally € H. In particular, S is || ||, — || |
continuous.

Proof. 1. Note that p € A" C A*. By the arguments preceding the proof, we have
that for each y € H the functional S (y) is linear and || ||;; and || ||,, continuous, so
that, S is well defined. For each aq,as € R and v,y € H, we also have that

S(anyr + aoye) () = @ ((z, a1 + aay2) ) = ¢ ({2, c1yn) g + (T, a2y2) )
(z,(one) - y1) y + (@, (2€) - y2) y)

(are) (z,y1) g + (aze) (z,92) )

a1 (T, 1) + 02 (T, 2) )

(2, y1) gr) + 020 (2, 42) )

(

Y1) (7) + a2 (y2) () Vz € H,

I
Ay

2 (
#(
(
(

2
o

1P
= a5
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proving S is linear.

2. Consider y € H. Assume that S (y) = 0. It follows that
ez, y)y) =5 (x)=0 Vel
By choosing x = y and since ¢ is strictly positive, we have that

ey, py) =0 = (y,y)y =0 = y=0.

This yields that ker S = {0}.

3. By Corollary 2 (see also Proposition 3), recall that H with the inner product
(, ),,is a pre-Hilbert space. It follows that

1S () (@) = le (@, 9) )| = [z, 9) el < Ml lyll,, Yo,y € H.
We can conclude that ||S (y)|l 5 = llyl|,, for all y € H. |

Next proposition shows that S : H — H* is an isometry when H is endowed with

the norm || ||, and H* is endowed with the norm || || ..

Proposition 10 Let A be a Dedekind complete Arens algebra and H a pre-Hilbert A-

module. If A admits a strictly positive linear functional @ such that ||@|
1S @)l = = [lyll,, for ally € H.

4 = 1, then

Proof. Consider | € S(H). It follows that there exists y € H such that [ (z) =
@ ((z,y),) for all x € H and

121

we = sup ¢ ((z,9)p) -

.TGBH

First, consider the problem sup,cp. (7,y)y. If © € By, then |(z,z) ||, < 1 which
1
yields (z,z)% < e. By Proposition 4, this implies that

1 1 1

Since A is Dedekind complete, it follows that A 3 sup,cp, (z,y)y < (y,y)7. Next,

1 .
we show that [lyll, = & ((1.9)) = 5bscs, @ (@.9)) = .. Consider a, —

1 1
(y,y)} +2e > 0 for all n € N. Since (y,y)} € A, it is immediate to see that a,, is
invertible for all n € N. Define y,, = a,,! - y for all n € N.

Claim: For each n € N,
<yn7yn>H = <Cl;1 ' y7a’;zl ' y>H S €.
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|Rip

1 1
Moreover, 0 < (yn,y) iy < (U, y) 5 for all n €N, (yn,y) iy T, and (Yn, )y — Y W)}

Proof of the Claim. See the Appendix. O
We can conclude that [|y,||; < 1 for all n € N. Since ¢ € A* is positive and

1

(W, )5 = sup,ep, (T,y)y = (2,y)y for all z € By, it follows that

o (k) = (s loaa ) 2 ollah) Vo€ B

ﬂfeBH
1
that is, @ ((y,y)}’{) > SUp,cp, P ((7,y)y). Viceversa, since ¢ € A* is positive, note

1
that sup,cp, @ ((2,¥) ) = sUPnen @ ((Yn, ¥) ) = imn @ (Y, ¥) ) = & ((y, y>?{>a prov-
ing the statement.

Remark 4 Observe that, under the assumptions of previous proposition, the comple-
tion of H with respect to || |,, denoted by H,, can be identified with the || |
of S(H) in H*. We will always adopt this identification.

- closure

We conclude the section with an ancillary lemma which will be instrumental in

proving one of our main results on self-duality.

Lemma 2 Let A be a Dedekind complete Arens algebra and H a pre-Hilbert A-module.

A* :17 th6n< ) >m:@o< ) >H
admits a unique bilinear extension from H x H), to R, denoted ( , ), , such that:

If A admits a strictly positive functional ¢ such that ||@|

1. }(x,y);‘ < ||zl 4 ||y||p forallz € H and y € H,;
2. If (x,y), = (z,y), forallz e H, theny =1y .
Proof. Denote the dual pairing of H and H* by (, ) .. Note that for each z,y € H
(@, S W) g =5 W) () = (2,9),,.
Moreover, by Proposition 10, ‘(w,S(y)}HH) < x|z IS (v)]
z,y € H. Since H, can be identified with (clj .. (S (H)),]| ||;-), by defining ( , ), =

(,) m.g+» the main statement and point 1. follow. We next prove uniqueness. Assume

we = lzllg llyll, for all

that (, )7 is a bilinear extension of ( , ) = satisfying 1. Consider y € H, and = € H.

. Il
There exists {y,,}, oy € H such that y, — y. Thus,

< (@, 9)m = (@ yadi| + 12, ynd — (2,900
<$7y>7_n o <x7yn>1;‘ + ‘<$>yn>$n o <5L’,y>$n| - 07

|<l’, y);@ - <J], y):n

proving that (z,y) = (x,y), . Since x and y were arbitrarily chosen, uniqueness

follows. Finally, we have that if y,y’ € H, are such that for each z € H
<.Z’, y>r_n = <$a y/>;1 )
thena <£L', y>H7H* = <xay/>H7H*7 yleldlng y = y,' .
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4 Dual module

Given an Archimedean f-algebra A with unit e and a pre-Hilbert A-module H, we
define
Y= { f e A" . fis A-linear and bounded} .

Proposition 11 If A is a Dedekind complete Archimedean f-algebra with unit e and
H a pre-Hilbert A-module, then H™ is an A-module.

Proof. Define + : H~ x H~ — H"~ to be such that for each f,g € H~

(f+9)(@)=f(z)+g(x) VrecH.

In other words, + is the usual pointwise sum of operators. Define - : A x H~ — H™
to be such that for each a € A and for each f € H™

(a-f)(xz)=af () Vo € H.

It is immediate to verify that H™~ is closed under + and -.° In particular, (H,+) is an
abelian group. Note that for each a,b € A and each f,g € H™:

L (a-(f+9) (@) =al(f+9) (@) =alf(2)+9(x)) =af ()+ag (z) = (a- f) (x)+
(a-g)(z)=(a-f+a-g)(z)forall x € H, thatis,a-(f+g)=a-f+a-g.

2. ((a+b)- ) (@) = (a+0)f(z) = af (x) +bf (x) = (a-f) (@) + (b f)(2) =
(a-f4+0b-f)(z) forallx € H, thatis, (a+0b)- f=a-f+b- f.

3. (a-(b- 1)) (x) = a((b-f) () = a(bf(x)) = (ab) f(z) = ((ab)- [) (x) for all
x € H, thatis, a- (b- f) = (ab) - f.

4. (e- f)(z) =ef (x) = f(x) for all z € H, that is, e- f = f. |
If A is Dedekind complete, then define S~ : H — H™ by

S“()=(y)y VYyeH

Given Remark 2 and the properties of (, ), the map S~ is well defined. We next
study the (topological) properties of this map and its connection to the self-duality
problem. Since the topologies involved are different, we split this study in two cases:
Dedekind complete Arens algebras and f-algebras of £° type. Before starting, we need

one more definition:

9Dedekind completeness yields the existence of the square root for positive elements of A. This

property is used to show that the sum of two bounded A-linear operators is bounded.
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Definition 8 Let Hy and Hy be two A-modules and S~ : Hy — Hy. We say that S™

s a module homomorphism if and only if
SY(a-z+b-y)=a-S"(x)+b-5(y) Va,b € A,Vz,y € Hy.

We say that S~ is a module isomorphism if and only if it is a bijective module homo-

morphism.

4.1 Dual module: Arens algebras

If A is a Dedekind complete Arens algebra (see Proposition 8 and Remark 3), we have
that
H~={fe A" : fis A-linear and | ||, — || ||, continuous}.

In this case, we define || || ;~ : H~ — [0,00) by

1fllg~ = Sup If ()|,  VfeH™.

eB

Recall that if f € H™, then f is linear. Thus, in this case, we have that H~ C B (H, A),
where the latter is the set of all norm bounded linear operators from H to A when H

is endowed with || ||,; and A is endowed with || || ,.

Proposition 12 Let A be a Dedekind complete Arens algebra and H a pre-Hilbert

A-module. The following statements are true:

1. H~ ={f e A" : f is A-linear and | ||z — || ||, continuous}.
2. H> is a || ||z~ complete A-module.

3. 8™ is a well defined module homomorphism and ||S™ (y)||g~ = |yl for all
yeH.

4. If H is self-dual, then S~ is onto and H is || ||, complete.

Proof. 1. It follows from point 1. of Proposition 8 (see also Remark 3).

2. By Proposition 11, H~ is an A-module. In particular, H~ is a vector subspace
of B(H,A). Consider a || ||~ Cauchy sequence {f,},.y € H~ C B(H,A). By [4,

Theorem 6.6], we have that there exists f € B (H, A) such that f, I g~ f. We are left
to show that f is A-linear. First, observe that f : H — A is such that

f(x)= liTIln fn () Ve e H
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where the limit is in || || , norm. We can conclude that for each a,b € A and z,y € H

L@ @), ) ) = afu @) "B ar @), v @) " br )
— afu(2)+bfs () F af (z) 4+ bf (y)

At the same time, af,, (¢)+bf, (y) = fu(a-xz+b-y) L fla-z+b-y)forala,be A
and x,y € H. By the uniqueness of the limit, we can conclude that f(a-x+b-y) =
af () +bf (y) for all a,b € A and x,y € H, proving the statement.

3. Define S~ : H — H™ by
S™(y)(x) =(z,y)y Vo€ H

By Corollary 3, it follows that S~ is well defined and such that [|S™ (y)|| 4~ = |lv|l g
for all y € H. Note also that for each a,b € A and for each y,2 € H

S (a-y+b-2)(x) =(w,a-y+b-2)y =alr,y)y +b(z,2)y
= aS™ (y) (v) + 657 (2) (x)
=(a-57 () (@) + (b-57(2)) (x)  VreH,

in other words, we have that S~ (a-y+b-z) =a-S~ (y) +b-S~ (2), that is, S~ is a

module homomorphism. We can also conclude that

157 (W) =S~ (g~ =157 =2~ =y = 2lla

that is, S™ is an isometry.

4. If H is self-dual, it is immediate to see that S~ is onto. Consider a || ||; Cauchy
sequence {,},.y € H. Since S~ is an isometry, it follows that {S™ (z,)}, oy is a

| ||~ Cauchy sequence in H~. Since H" is || ||~ complete and S™ is onto, it follows

that there exists f € H™ such that S~ (x,,) I g f =957 (z) for some x € H~. Since

S™ is an isometry, we have that z,, I Ve x, proving that H is || ||; complete. |

4.2 Dual module: f-algebras of £° type

In order to discuss the continuity properties of the map S~ we need to endow H~ with
a topology. We saw that if A is an Arens algebra, then the choice of topology for H™
is rather natural: the one induced by the standard operator norm || ||;~. The same
choice cannot be made when A is an f-algebra of £° type. Thus, first we define the

operator vector-valued norm N, : H~ — A, by

N. (f) = sup (sup M) Ve H.

vcH \nen N () + Le

n
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Then, we define the metric dy~ : H~ x H~ — [0, 00)

dHN(fag):d(()?N*(f_g)) Vf,QEHN.

Lemma 3 If A is an f-algebra of L° type and H a pre-Hilbert A-module, then dg~ is

an tmvariant metric.

Proposition 13 Let A be an f-algebra of L° type and H a pre-Hilbert A-module. The

following statements are true:
1. H~ = {f € A : f is A-linear and dy — d continuous}.

2. 5~ is a well defined module homomorphism and dg~ (S™ (z),S™ (y)) = du (z,y)
forall x,y € H.

3. If H 1s self-dual, then S~ is onto and H is dyg complete.
Proof. 1. We first show that
H™ C {f c A" . fis A-linear and dy — d Continuous} :

Consider f € H~. We only need to show that f is dy — d continuous. Since f is
bounded, there exists ¢ € A, such that

|f ()| < eN (x) Vo € H. (11)

By [35, Theorem 1.32] and since f is A-linear, f is linear and we only need to show
continuity at 0. Consider {z,},.y € H such that z, 0, By definition of dg, it
follows that N (z,,) <0, thus cN () 2 0. By (11) and definition of d, it follows
that d (0, [f (zn)[) = @ (If (zn)[ Ae) < @ ((eN (2a)) Ne) = d(0,eN (xn)) — 0, proving
continuity at 0.

As for the opposite inclusion, we consider an A-linear and dy —d continuous function
f and show it is bounded. First, define By, = {z € H: N (z) <e}. Consider a
sequence {7y}, .y € Bp, and {a,}, .y € R such that a,, — 0. It follows that there

exists 7 € N such that |a,,| < 1 for all n > n. This implies that for n > n

drr (0, ) = @ (N (anwn) Ae) =@ ((Jan| N (2,)) Ae)
<@ (lanlene) = |ay|@(e) — 0,

proving that a,x, 20 By [35, Theorem 1.30] and [35, Theorem 1.32], we have that
By, is topologically bounded and so are f(Bg,) and {|f (¥)|},cp, - Consider the
following binary relation on By, :

vy < [f)]=]f )
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It is immediate to see that = is reflexive and transitive. Next, consider z,y € By..
Since A is an f-algebra of £° type, it follows that there exists ci,c; € A, such that

c1Nca =0, c,c0 < e, and

calf (@] +elf @) =|f@)|VI|f ()]0

Define z = ¢;-x+co-y. Note that N (¢1 -z + o - y) < 1N (2)+ N (y) < cre+cge < e,
proving that z € By,. At the same time, since ¢; A ¢y = 0, it follows that cico = 0.

This implies that (¢; |f (z)]) (e2 |f (v)]) = 0, yielding that (ci |f ()|) A (c2 |f (y)]) = 0.
By [4, Theorem 8.12] and since f is A-linear, we can conclude that

[ =1f(er- 2+ ca-y)l = lef (@) +eaf W) = e |f (@)l +e[f W) = |F @)IVIf (W)l

Thus, for each x,y € By, there exists z € By, such that z = x and 2z > y. It
follows that (Bp,, =) is a directed set and {|f (z)|},cp, Iis an increasing net. By
[6, Theorem 7.14 and Theorem 7.50], we can conclude that {|f ()|}, By, 1s order
bounded. Therefore, there exists ¢ € A, such that |f (x)| < ¢ for all x € By, . Next,
consider x € H,.. Define a, = (N (x) + %e)_l and z,, = a, -z for all n € N. It is
immediate to see that =, € By,. By the previous part of the proof, this implies that

|f (an - x)] < cfor all n € N. Since f is A-linear, we can conclude that

[f(z)] <c <N (z) + %e) Vn € N.

By taking the limit and since the topology induced by d is solid and x was arbitrarily
chosen, it follows that

|f (@) <eN(x)  Veed, (12)
proving the statement.

2. For each a,b € A and for each y,z € H

S (a-y+b-2)(x) =(r,a-y+b-2)y = alr,y)y +0(z,2)y
= aS™ (y) (v) + 657 (2) («)
=(a-57(y) (@) +(0-57(2))(z)  VrecH,

in other words, we have that S~ (a-y+b-2)=a-5(y) +b- 5~ (2), that is, S~ is a

module homomorphism. We next show that S™ is an isometry. Consider z € H. By

10Consider by, by € A, . By [11, Lemma 3], there exists ¢; € Asuchthat 0 < c¢; <e,ciA(e—c1) =0,
and ¢1 (by — ba) = (b1 — b2)+. Define c; = e — c;. It follows that

Clb1+62b2:b2+61(b17b2):b2+(b17b2)+:b2+(b17b2)\/():b1\/b2.

It is enough to set by = |f (x)| and ba = | f (v)|-
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Proposition 4 (see also Remark 2), we have that for each x € H and for each n € N

= N(2)N(2) < <N(x)+le)N(z).

n

T

157 (2) (@)] = {2 2) 4l < (.20 (2. 2)

This implies that

157 (2) ()|
mg]\f@) Vo € H,¥n € N,

which yields that

N, (57 (z)) = sup (sup w> <N (z2).

zeH \neN IV ({L‘) + le

Consider now x = z. It follows that

1S~ (2) (2)] N?(z) 1
- 7 = - 7 = N
iﬁg N (2) + %e ffég N (2) + %e (2),

yielding that

N, (8~ (2)) = sup 157 (2) (2)] |S™ (2) (2)]

sup ———————— > su — 2 =N z
e (negmx}ﬁe) 250 Nyl )

and proving that N, (S~ (z)) = N (z). Since z was arbitrarily chosen, we have that for
each z,y € H

dg~ (8™ (z),57 (y)) = d (0, N (87 (z) — S~ (y))) = d (0, N, (S~ (z — y)))
=d(0,N (v —vy)) =dgu (v,y),

proving the statement.

3. If H is self-dual, it is immediate to see that S™ is onto. As for dy completeness

of H, we postpone the proof. It will be the implication "(ii) implies (i)" in Theorem

d. |

"Consider a € A;. Define a, = a+ Le for all n € N. It follows that {a,’ll}neN is a well defined
and increasing sequence, and so is {a;laZ}neN. Note that a < a,,, thus aarjl < e for all n € N. Note
also that

1 1
a2+a:a(a+e>:aan Vn € N,
n n

that is,
e VneN.

S|

It follows that
d(a,'a® a) =¢(la—a,'a®|Ae) < ¢ <ie> —0.

By [4, Theorem 8.43] and since the topology generated by d is locally solid and Hausdorff, we can

conclude that sup,, (a,,'a?) = a. It is enough to set a = N ().
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4.3 Dual module as a congruent space

In this subsection, we consider an Arens algebra of £ type. We show that the dual
module unit ball, Bg~, is compact with respect to a weak topology, thus providing a
sort of Banach-Alaoglu theorem for the dual module. As a corollary, we obtain that

H"™ can be seen as the norm dual of a specific Banach space.

Fix x € H. Define ¢ : H~ — R by

((f)=e(f(x) VfeH" (13)

Note that for each f,g € H~ and o, 5 € R

C(af +Bg) =@ ((af +Bg) (v) = ¢ (af (x) + Bg ()
ap (f () + Bp (g (x)) =l (f) + BL(g),

that is, £ is linear. Similarly, we have that

1L =12 (f @) < N@lla 1f (2)]]4 < 12l

that is, ¢ € (H™)" where (H™)" is the || || ;~ norm dual of H™. Define

Tl g 1l g~ VfeH",

Ax* A*

V ={¢e (H™)" :(is defined as in (13)}
and V' as the || [|;~y- norm closure of V' in (H™)".

Theorem 1 If A is an Arens algebra of L type and H a pre-Hilbert A-module, then
By~ is o (H™, V') compact.

Proof. By definition of V, note that we need to show that for each net {f;},.; C By~
there exists f € By~ and a subnet {fia}jeJ C By~ such that /¢ (fij) — ((f) for all
¢ € V. This is equivalent to show that

¢ (fi, (@) = @(f(2)) VeeH

Before starting, recall that || ||, : A — [0,00) is defined by |lal|; = ¢ (|a|) for all
a € A. Recall also that A’ denotes the || ||, dual of A. It follows that (A, A’) is a
Riesz dual system. Since ¢ is order continuous, it is immediate to verify that || ||,
is indeed a well defined order continuous norm. This implies that o (A, A’) is order
continuous. Moreover, by [6, Theorem 3.57] and since A is Dedekind complete, we
have that order intervals are o (A, A’) compact. We conclude the first part of the proof
by fixing b € A and proving that the map L : A — A, defined by L (a) = ba for all
a€ A iso(AA)— o (A A") continuous. It is immediate to check that L is linear.
Next, we show that L is norm bounded. In fact, ||L (a)||; = @ (|ba]) = @ (|b]]a]) <
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o (|[bll s elal) < ||bll 4@ (la]) < 116l 4 lla]l; for all @ € A. By [4, Theorem 6.17], we can
conclude that L is o (A, A") — o (A, A") continuous.

In this proof, we consider A endowed with the o (A, A’) topology and A¥ with the
product topology.

Consider a net {f;},c; € By~. It follows that {f;},.; € A”. For each « € H define

A, ={a€A:Fielst fi(x)=a}.

Note that || f; (z)|| 4 < || fill g~ ||z||; for alli € I and for all x € H. Since {f;},.; € Bg~,
we can conclude that

A Cl-lellye izl e voem.
Thus, we have that
{fitier € WeenAr C Woer [ 2]l e, |zl €] © AY

where the last by one set is compact by Tychonoff’s theorem. We can thus extract a
a(AA")

subnet { f;. }jej C {fi},er such that f; () = "a, € [ ||z] e, |z e] forallz € H.

Define f : H — Aby f (z) = a, for all z € H. Note that f is well defined and A-linear.

For, consider a,b € A and y,z € H

o(AA o(AA o(AA

) ) o(A,A7) )
) " p ), £ () TS £ ) = af, ) TS af @), b (2) " bf (2)
o(AA")
= afi, (W) +bfi; () = "af(y)+bf(2).

At the same time, af;; (y) + 0fi; (2) = fi, (a-y+b-2) o(44) fla-y+b-z). By the
uniqueness of the limit, we can conclude that f(a-y+0b-2) = af (y) + bf (2). Since
a,b € Aandy, z € H were arbitrarily chosen, it follows that f is A-linear. In particular,
we have that f is linear. We next show that f is norm bounded. In fact, recall that
f(z) e |—|z|lye, ||z| el for all x € H. This implies that

If @)la < lzlly  VoeH, (14)
that is, f is || || — || ||4 continuous and || f||;~ < 1. Thus, f belongs to By~. Since
@ € A', we can conclude that {fij}jej C {fitier

Py @)~ (@) VeeH
and f € By-~. [ |

Next, we show that the norm dual of (V, I ||(HN)*), V*, is congruent to H~. Define
J:H> = V*by f— J(f) where

J()(O)=¢(f) NfeH VeV
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Lemma 4 If A is an Arens algebra of L> type and H a pre-Hilbert A-module, then J

is a well defined onto linear isometry. Moreover, J is o (H™,V)—ao (V*, V') continuous.

Proof. The statement follows by replicating the arguments contained in [32] (see also
[24] or [21, p. 211]). |

5 Self-duality

5.1 Arens algebras of L™ type

Using the results derived in Section 4, we start by observing that a necessary condition
for self-duality is the compactness of By in the o (H,S (H)) topology. In what follows,
we provide the results that will be instrumental in showing that such a condition is
also sufficient. We then move to state our first result on self-duality (Theorem 3). We
conclude by giving a sufficient condition and a different necessary one for self-duality
(Propositions 16 and 17).

Proposition 14 Let A be an Arens algebra of L type and H a pre-Hilbert A-module.
If H is self-dual, then By is o (H,S (H)) compact.

Proof. Since S~ is an isometry and H is self-dual, it follows that S~ (By) = Bpy~.
Consider a net {y;},.; € By and define {f;},.; € Bg~ to be such that f; = 5~ (y;) for
all i € I. By Theorem 1, we have that By~ is o (H™~,V') compact. This implies that
there exists a subnet {fij}jej C {fi};c; and f € By~ such that ¢(f;,) — ¢(f) for
all ¢ € V, that is, ¢ (f;; (x)) — @(f(2)) for all 2 € H. Since S~ (By) = By~,
there exists y € By such that f = S~ (y). We can conclude that ¢ (<yij,m>H) =

o ((2.9i,) ) = 2 (fi, @) = @(f (@) = @ ((2,9) ) = ¢ ({y,2) ) for all w € H, that
. o(H,5(H))

1S, yZJ — Yy S BH u
Corollary 4 Let A be an Arens algebra of L> type and H a pre-Hilbert A-module. If
H is self-dual, then By is o (H, cly . (S (H))) compact. In particular, By iso (H, H')

compact.

Proof. Consider {y;},.; € Bu. By Proposition 14, there exists {y;, }je 5 S {yi}

o(H,S(H))
H

iel iel
and y € By such that y;, y. Since By is || ||; bounded, this implies that
I(y;;) — l(y) for all I € cljy,. (S(H)). By Lemma 1 and since H is a pre-Hilbert
space, cl| ||, (S (H)) = H'. By (10), we can conclude that H' C clj . (S (H)), proving

o (H, H") compactness. [

Proposition 15 Let A be an Arens algebra of L type and H a pre-Hilbert A-module.
If By iso (H,S (H)) compact, then S~ (H)NBy~ iso (H~,V) ando (H™, V) compact.
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Proof. Consider a net {f;},.;
isometry, it follows that there exists {y;},.; € By such that S~ (y;) = f; for all ¢ € 1.
Since By is o (H,S (H)) compact, we have that there exists a subnet {y;} _ and

jeJ
y € By such that

C S~ (H) N By~. By assumption and since S™ is an

¢(<yZJ’Z>H)—>@(<y7Z>H) Vz € H.
Define f = (,y)y € S™(H) N By~. We can conclude that {fij}jeJ C {fitier €
S~ (H)N By~ and f € S~ (H) N By~ are such that
?(fi () = @(f(2))  Vzed,

proving that S~ (H) N By~ is o (H™,V) compact. Next, consider £ € V. It follows
I 1~y
that there exists {/,},.y € V such that /£, 7 ¢, Note that

1CCF) =€ (fi))| S ) = Ca (O] + 6 (F) = Cu (i) + €0 (fi)) — € (f3))]
<= allggrye 1l + 1 (F) = € (i) |+ 1€ = Call gy [ s ]~
<2l Lall gy + [ (F) = u (£iy) ]

By taking the limit in j, we have that

Oglimsup}ﬁ(f)—ﬁ(fijﬂ < 2|16 =Call gy Vn € N.
j
By taking the limit in n, we can conclude that
0< limjinf|€(f) —0(f;;)| <limsup [€(f) —€(fi,)] <0,
j
proving that ¢ (f;,) — ¢ (f). It follows that S~ (H) N By~ is o (H~,V) compact. W

Corollary 5 Let A be an Arens algebra of L™ type and H a pre-Hilbert A-module. If
By is o (H,S (H)) compact, then S~ (H) is o (H™,V) closed.

Proof. By Lemma 4, (H™, || || ;~) can be identified with the dual of <V, | ||(HN)*>. It is

then immediate to see that (H™, || || ;~) can be identified with the dual of (‘_/, [Nl (HN)*> :
By Proposition 15, S~ (H)N By~ is o (H ~, V) closed. By the Krein-Smulian Theorem
(see [31, Corollary 2.7.12]) and since S~ (H) is a vector subspace of H™, it follows that
S~ (H)is o (H™,V) closed. |

Theorem 2 If A is an Arens algebra of L> type and H a pre-Hilbert A-module, then
S~ (H) separates the points of V.
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Proof. We proceed by steps. Before starting, we denote by H, the norm completion
of H with respect to || ||, and A; the norm completion of A with respect to || [|; (see

also Remark 4). We still denote by ¢ the extension of @ from A to A;.

Step 1. If f is an A-linear and || ||z — || |4 continuous operator, then f admits a
unique || ||, — || |, continuous linear extension f:H,— A

Proof of the Step. By Proposition 8 and since f is linear, the statement trivially follows.
0

Step 2. Let {{n}, oy €V and {xn},cy © H such that £, (f) = ¢ (f (z,)) for all

Il ey

feH~. If ¢, — (€ (H™), then z, i x € H,. Moreover, we have that
((f)=¢(f(x)) VfeH".

Proof of the Step. Consider x € H. Define ¢, : H~ — R by £, (f) = ¢ (f (z)) for all
f € H~. By definition of || [|4~- and the proof of Proposition 10, it follows that

1ol g~y = sup |@(f (@)= sup  |o(f ()| = sup [ (z,y)y)| =[],
f€Bu~ fEBu~NS~(H) yEBy

1l ey

Since £, %" ¢, then {Zn},en © H is a || ||, Cauchy sequence which thus converges

Il ey
to an element in the completion. Finally, fix f € H™~. Since ¢, Sy ¢, it follows that

. . I _
At the same time, by Step 1 and since 2, — z € H,, we have that f (z,) = f (x,) i

f (z). This implies that

b (f) = ¢ (f (z2)) = & (f (@) -

Since f was arbitrarily chosen, we can conclude that ¢ (f) = @ (f (z)) for all f € H™.
O

Step 3. For each y € H and v € H,
7 (57 @) = w.2), -

Proof of the Step. Consider y € H and « € H,. There exists {x,},.y € H such that

T Hlp x. It follows that

S (y) (zn) = S~ (y) (xa) = S (y) ().

This implies that

(0,50} = (T = @ (7, 0)) = (57 () () — & (57 ) ().




At the same time, by Lemma 2, (y, z,),. = (y,x,), — (y, ), , proving the statement.
O

We are ready to prove the main statement. Consider ¢,¢ € V. By Step 2, it follows
that there exists =, 2’ € H, such that

((f)=¢(f(2) and O'(f)=¢(f(2)) VfeH (15)

Assume that

It follows that

(@) =2 (SWE))  vyeH
By Step 3, this implies that
(v, @), = (y,2"),,  Vyel.

By Lemma 2, x = 2’. By (15), this proves that ¢ = ¢'. [

We are now ready to state our first result on self-dual modules.

Theorem 3 Let A be an Arens algebra of L™ type and H a pre-Hilbert A-module.
The following statements are equivalent:

(i) H is self-dual;

(ii) By is o (H,S (H)) compact;

(iti) By is o (H,cly,,. (S(H))) compact;

(iv) H iso (H,clyy,. (S(H))) sequentially complete;

(v) By is || ||, complete.
Proof. Before starting recall that H’ (resp., H*) denotes the norm dual of H when
H is endowed with the norm || ||, (vesp., || ||;). We denote by H” the second dual
of H (that is, the norm dual of H' when H’ is endowed with the norm || ||,). Given

Corollary 2, it is well known that H’ is an Hilbert space (see [9] or [10, Exercise pp.
149-150]). By Lemma 1, we have that S: H — H'isa || ||, — || || linear isometry.

(i) implies (ii). It is Proposition 14. (ii) implies (iii). It is Corollary 4.

(iii) implies (i). Since S (H) C ¢l ,,. (S (H)), By is o (H,S (H)) compact. Recall
that (H™,|| ||;~) can be identified with the norm dual of (V, [ H(Hw)*> and S~ (H)
is a vector subspace of H~. By Theorem 2, S~ (H) separates the points of V. By [4,
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Corollary 5.108], it follows that S~ (H) is o (H~,V) dense in H~. By Corollary 5,
S~ (H)is o (H™,V) closed, proving S~ (H) = H™.

Thus, we have showed that (i), (ii), and (iii) are equivalent.

(iii) implies (iv). By point 4. of Proposition 12 and since H is self-dual, (H, || ||;)
is a Banach space. By [24], we have that the Banach space (cl . (S (H)), || [|z-)
has a dual that can be identified with (H, || ||,;). If we consider a o (H, .. (S (H)))
Cauchy sequence in H, then it is a weakly™ Cauchy sequence. By [31, Corollary 2.6.21],

we can conclude that H is o (H, cly,,. (S (H))) sequentially complete.
(iv) implies (v). Consider a || ||, Cauchy sequence {z,},.y € By. It follows that

[ (xn) — U(xe)| < ||l 4 120 — 2k, Vn,k e NVl € H'. (16)

Since S (H) C H’, this implies that {l(xy)},.y € R is a Cauchy sequence for each
l € S(H). Next, consider I € cl|,. (S(H)). Consider ¢ > 0. It follows that there
exists | € S (H) such that ||l — | e < €/4. Since {7, }, .y € By, this implies that for
each n,k € N

3

‘l_(xn—xk)—l(xn—xkﬂ < Hl_—l| SE. (17)

xn—kaHSZHZ_—”

H* H*

At the same time, since {I (z,)},y € R is a Cauchy sequence, there exists n.; € N
such that
1 (20) — 1 (24)] < Z Vi, k > ney. (18)

By (17) and (18), we can conclude that

}Z_((L’n - xk)‘ < ‘Z_<xn - xk) —1 (xn - xk)|+|l (:Cn) =1 (xk>’ < %"‘Z <¢€ Vn, k > Ne -

Since ¢ was arbitrarily chosen, it follows that { (xn)}neN C R is a Cauchy sequence.
Since [ was arbitrarily chosen, it follows that {I (z,)},cy € R is a Cauchy sequence for
alll € clyy,,. (S(H)). Since H is o (H,clj . (S(H))) sequentially complete, we have
that there exists x € H such that [ (z,) — [ (z) for all [ € ¢l ., (S(H)). By (16) and
since {Zn}, oy is a | |, Cauchy sequence, we also have that for each € > 0 and for each

[ € By there exists n. € N such that
1L (z) — 1 (zh)] < % Vn,k > ne.

By taking the limit in k& and since H' C clj ||, (S (H)), this implies that |l (z, — z)| =
[l (xn) —l(x)] <e/2foralll € By and for all n > n.. We thus have that ||z — z,||,, =

Il 1l

supep., |l (x, — )| < € for all n > n.. It follows that x,, —" z. We are left to show
H

that x € By. Note that
P (IN (z) = N (zn)]) S @ (IN (z — z0)|) = |z — 2], < |l = 22ll,,, — O,
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proving that N (x,,) ey (x). Since N (x,,) < e for all n € N and the topology induced
by || ||; is locally solid and Hausdorff, it follows that N (z) < e, proving that x € By.

(v) implies (ii). Since S is a linear isometry, if By is || ||,, complete, then S (Bpy) is
convex and || || closed. It follows that S (Bpy) is o (H', H") closed. Moreover, since
By C By, S(Bpg) turns out to be contained in the unit ball induced by || ||,. Since
H' is an Hilbert space (thus, reflexive), this latter set is o (H’, H”) compact. We can
conclude that S (By) is o (H', H") compact. By definition of S, it is then immediate
to see that this yields the desired compactness of By in the o (H,S (H)) topology. B

We conclude by providing a sufficient condition for the self-duality of H (Proposition

16) and a necessary one (Proposition 17).

Proposition 16 Let A be an Arens algebra of L= type and H a pre-Hilbert A-module.
If By is dyg complete, then H 1is self-dual.

Proof. By Theorem 3, it is sufficient to show that By is || ||,, complete. Consider a
| [,,, Cauchy sequence {2}, .y € Br. By (8) and (9), it follows that {x,},  is a dy
Cauchy sequence. Since By is dy complete, it follows that there exists © € By such that
T 9 1. Define {Un}nen DY Yn = %xn for alln € N and y = %x Since {xn},cn € Bu
and x € By, it follows that 0 < N (y, — y) < e for all n € N. Moreover, y, ay y. Next,

note that

0<lgn =yl =0 (N W —9)°) =N W =) N (o — ) <2 (N (42 — 1))
:@(N(yn_y)/\e):dH(ymy)_>0.

Il Ml

By (5), this implies that 0 = lim,, 2 ||y, — y||,, = lim,, ||z, — z||,,, proving that =, =" x
and that By is || ||,, complete. |

As mentioned in the introduction, Kaplansky [25] first studied self-duality for pre-
Hilbert A-modules H where A was a commutative AW *-algebra.!? In such a context,
he proved that self-duality is equivalent to H satisfying certain algebraic property which
we summarize in the next definition (see also [16]). Proposition 17 shows that these
algebraic conditions are necessary for self-duality also in the real case. It has eluded

us whether they are also sufficient.

Definition 9 Let A be an Arens algebra of L™ type and H a pre-Hilbert A-module.
We say that

1. {ei},c; 1s an orthogonal partition of the unit e if and only if e = sup;c;e; and
e;Nej =0 foralli # j.

12Recall that the the main distinction with the current work is the focus on complex valued algebras

A.
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2. H 1is an Hilbert-Kaplansky module if and only if for each orthogonal partition of
the unit {e;},., C A

iel =
(a) for each x € H, e;-x =0 for all i € I implies x = 0;
(b) for each || ||;; bounded collection {x;},., € H there exists v € H such that

€ Ty —=¢€;-T.

Proposition 17 Let A be an Arens algebra of L* type and H a pre-Hilbert A-module.
If H 1is self-dual, then H is an Hilbert-Kaplansky module.

Proof. Consider {e;},.;, € A such that [le;|, < 1 for all ¢ € I and such that
sup,cye; = e and e; A ey = 0 for all 7 # ¢'. Note that e;e; = 0 for all ¢ # i'. Moreover,
we can also conclude that tg = Zie p € = Viepe; T e where B is a finite subset of I and
this finite subsets are directed by using the inclusion relation. This latter observation
yields that e;e; = e; for all ¢ € I.1? Finally, since ¢ is order continuous, observe that
0<@(e—tp) 0.

We start by providing a construction which will be instrumental in proving the
statement. Assume that {z;},.; C H is || || bounded. Call 2{ the collection of all
finite subsets of I. Direct 2} with the inclusion relation. Define {sz} peat © H by

SB:Z(?Z".YJi VBGQ(I)
i€B
Note that (sg, )y = Y ;ep € (¥4, 2:)  for all B.M Since {x;},.; € H is || ||; bounded,
we have that there exists M > 0 such that ||z;||,; < M for all i € I. By Proposition 5

I3Note that for each i € I and B
|€i — eitB| = |€Z‘€— eitB\ = |61| \e—tB| = €; (e—tB) S (e—tB).

By passing to the order limit, we have that e;tp T e; for all 4 € I. Since e;tp = e; - ¢; for all B such

that {i} C B, the statement follows.
Y First, consider B and i’ ¢ B. Observe that

ei (sp, i)y = € <Z € $1$1> = e Y (e wi )y
H

i€B ic€B
= ey Zei (Tiy@ir) g = Z (eivei) (i, ir) g = 0.
i€B i€B

Thus, we have that:
- if |B| =1, then

(sBySB)y = (€i " Tiy €5 Ti) y = 6? (Tis@i)g = € (Ti, Ti) 3
- if the statement is true for |B’| = m, then consider B such that |B| = m + 1. It follows that

B=BU{i}.
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and since each ¢ in K is an algebra homomorphism, it follows that for each p € K

0<op (<5B75B>H) =@ (Z €; <$w$l>H) = ng (ei <x2>$l>H>

i€B 1€B
= ng(ei) o ({zi2i) ) < 290(61:) ||1‘1:H12H < Z@(ei) M?
i€B i€B i€B
= M?p <Z€i> < M?*p(e) = M? VB € 2}.
i€B

By Proposition 5, this implies that

||SB||H:\/maXSD(<SB7SB>H) <M Vi e 1.
peK

Since By is o (H,S (H)) compact, it follows that there exist a subnet {sp,}._, and
S

jeJ
T € H such that sp, o(H.5(H) T € H, that is,

@(<SBj’y>H) — @ ((Z,9)y) Yy € H.

1. Consider ; = x for all ¢ € I. It is immediate to see that {z;},.; is || ||;; bounded.
Next, we show that + = . Note that for each j € J and for each y € H

| (2, 0) ) — @ ((s8,,9) )| = |@ ((e-

= e ((e—t5,) (& m)u)| < @ ([, 005 (e = t5,)])
=2 (. v)ulle —ts]) <@ (@ v)gllye (e ts,))

By passing to the limit with respect to j, we obtain that @ (<sBj,y>H) — o ((z,y)y)
for all y € H. By the uniqueness of the limit, we obtain that x = . Thus, ife; -2 =0
for all « € I, then sp, = 0 for all j € J, implying that x =z = 0.

We thus have that

(sBySB)yy = (SBr +€ir - Tir, Spr + €5 - Tir) iy
= (spr,Spr + €y Tty + (€ - Tir, Spr + €50 - Tir) gy
= (spr,sp)y +2ei (Spr, i)y + (€ir - Tir, €50 - Tir)
= (spr, ')y + eir (Tir, Tir) g

= Z ei (i, Ti) g + e (Tir, Tir) g = Zei (i @) g

ic€B’ icB

proving that the statement is true for m + 1. The whole statement follows by induction.
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2. Assume that {z;},., € H is || ||, bounded. Consider 7 € I. Consider j € J such

that B; D {i}. It follows that

€ 8B, = €7 E ei-x; | = E (e7€;) -z | = er- a7

iGBj iGBj

We can conclude that, for each y € H, eventually

o (Cez - s8,,) ) = @ (e 27, 9) )

thus, proving that
o(H,S(H))
€7 SBj — €7 - Xz.

At the same time, since @ (<sBj,y>H) — ¢ ((Z,y)y) for all y € H, we have that for
each y € H

lim ¢ ((es-s8,,4) ) = lim ¢ ((sBrer-v)y) =0 (T ey ) = @ (e~ Z,y) )

o(H,S(H))
H

that is, €; - sp; e; - . By the uniqueness of the limit, we can conclude that

e; - 7 = e; - T. Since 7 was arbitrarily chosen, the statement follows. [ |

5.2 Finite dimensional case

In this subsection, we discuss separately the case in which A is a finite dimensional
Arens algebra, that is, A is isomorphic to some R”. It is immediate to see that if A is
finite dimensional, then it is of £ type. At the same time, the finite dimensional case
merits to be discussed separately. First, the result of self-duality can be obtained via
more direct methods. Second, it is the only case in which we can show that Hilbert
A-modules are indeed self-dual. In other words, we can show that || ||;; completeness

is necessary and sufficient for self-duality.

Theorem 4 Let A be a finite dimensional Arens algebra and H a pre-Hilbert A-

module. The following statements are equivalent:

(1) H is || || complete, that is, H is an Hilbert A-module;
(it) H is || ||, complete;

(iii) H is self-dual.

Proof. Before starting, observe that, since A is finite dimensional, it is Dedekind

complete and admits a strictly positive functional @ (see Proposition 9).
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(i) implies (ii). By Proposition 9 and since A is finite dimensional, || ||, and || ||
are equivalent. It follows that H is || ||,, complete.

(ii) implies (iii). By Corollary 2 and since H is || ||,, complete, it follows that H
is an Hilbert space with inner product ( , ), .. Consider f : H — A which is A-linear
and bounded. By Proposition 8, it follows that f : H — A is A-linear and || ||, — || ||,
continuous. Consider the linear functional | = g o f. Since ¢ is || ||; continuous and f
is || ||,, — || |l; continuous, we have that [ is || ||, continuous. By the standard Riesz
representation theorem, there exists (a unique) y € H such that [ (z) = (z,y),, for all
x € H. It follows that

P (f(2) =(z,9)y) = (f () =0 (2, 9)y) = 1(z) = (2,9),, =0 VeeH (19)
Fix z € H. Define a = f (z) — (z,y); € A. By (19), we have that

0

S

(f(a-7) = (a-7,y)y) = P (af () — a(T,y)y)
=2 (a(f (@) = (@y)y) = ¢ (aa) = ¢ (a®).

Il
Yy

~—

Since @ is strictly positive, this implies that a*> = 0. Since A is an Arens algebra, we
can conclude that f (Z) — (Z,y); = a = 0. Since T was arbitrarily chosen, it follows
that f (z) = (z,y) for all x € H, proving that H is self-dual.

(iii) implies (i). By point 4. of Proposition 12, it follows that H is || ||; complete.
|

5.3 f-algebras of L' type

If Ais an f-algebra of £° type and H is a pre-Hilbert A-module, then the inner product
(', )y still satisfies the Cauchy-Schwarz inequality as in points 1. and 2. of Proposition
4 (see also Remark 2). By Proposition 7, we can endow H with the invariant metric
dr. We define

H. = {w €H: (x,x)i € Ae}.

Finally, we define
H={f¢e Afe : fis A.-linear and bounded} .

Observe that f € H. only if there exists 0 < ¢ € A, such that f*(z) < ¢(x,z), for
all x € H,.

Proposition 18 Let A be an f-algebra of L° type and H a pre-Hilbert A-module. The

following statements are true:
1. A, is an Arens algebra of L type;
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2. H, is a pre-Hilbert A.-module;
3. H. is dy dense in H;
4. H> is the dual module of H..

Proof. 1. and 2. By definition, A, is an Arens algebra of £ type. Next, we show
that H. is closed under +. Consider x,y € H.. By the Cauchy-Schwarz inequality, we
have that

(x+y,xc4+y) gy = (r,2)y +2{x,9)y + U, V) g

< (0, 2)y + 2 (@ 2] )i + W)y € Ao

Next, we show that if « € A, and x € H,, then a -z € H,. Since a, (z, :L‘> € A, and
A, is an Arens algebra, it follows that (a-x,a-z), = a*(x,z), € A., proving that
(a-x,a- ZB>%I € A.. The closure of H, with respect to + and - yields that (H,,+) is an
abelian (sub)group and properties (1)-(4) of Definition 1 automatically follow Fma,lly,
note that if =,y € H,, then (z, x>;{,<y y} € A, and [(z,y) 4] < (x, x> (y, y) € A,
proving that (z,y)y € A.. Thus, (, )y is (, )y restricted to H. x H.. Then,
properties (5)-(8) of Definition 1 automatically follow.

3. Since A is an f-algebra of LY type, it follows that for each ¢ € A, there exists
{en}en € Ae such that 0 < e, T e, €2 = e,, and e,c € A, for all n € N. Consider
1

¢ = (x,z)} = N (z) for some x € H. Define x,, = e, - x for all n € N. It follows that
N (z,) = e,N (z) € A, that is, x, € H.. Moreover, note that ((e —e,) N (z)) Ae | 0.

Since ¢ is order continuous, it follows that

dy (z,2,) = @ (N (x —x,) Ne) = @(N(e r—e,-x)Ne)=¢(N((e—e,) - -x)ANe)
=@(((e—en) N(z)) Ne) —

proving that x, M ». Since x was arbitrarily chosen, it follows that H, is dy dense in
H.

4. Tt follows by definition of dual module. |

Our proof of self-duality for a pre-Hilbert A-module H where A is an f-algebra of
L° type hinges on our self-duality result for a pre-Hilbert A-module H where A is an
algebra of £ type. This latter pre-Hilbert module will be H, and the algebra will be
the subalgebra A..

Theorem 5 Let A be an f-algebra of L° type and H a pre-Hilbert A-module. The

following statements are equivalent:
(i) H is dyg complete;
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(ii) H is self-dual.

Proof. (i) implies (ii). By Proposition 18, we have that H., is a pre-Hilbert A.-module
and A, is an Arens algebra of L type. We can thus define || ||, and Bpy,. It follows
that © € By, if and only if (x,x), < e. We proceed by steps.

Step 1. If f € H™, then f is dg — d continuous.

Proof of the Step. By point 1. of Proposition 13, the statement follows. O
Step 2. By, is dg complete.

Proof of the Step. Consider a dy Cauchy sequence {x,} C Bpy,. Since H is dy

complete, it follows that there exists x € H such that x, 1 r. We next show that a €

neN

By, . By one of Birkhoff’s inequalities (see [6, Theorem 1.9]) and since (z,,2,)y < e

for all n € N, we also have that

le—N(z)Ve|l=|N(z,)Ve—N(z)Ve| <|N(z,)— N (z)] <N (z,—2x) YnelN

It follows that
le—N(z)VelANe<N(z,—2x)ANe VYneN.

We have that
0<@(le=N(x)VelAe)<@(N(x,—z)Ne)=dy (x,,z) — 0.
This implies that

o(le=N(z)VelAhe)=0 = le—N(z)Ve|Ne=0 = |e—N(z)Vel=0
= e=N(z)Ve = N (z)<e,

that is, (z,z),; < e and = € By,. O
Step 3. The pre-Hilbert A.-module H. is self-dual, that is, for each f € H there exists
z € H. such that f (x) = (z,z)y for all x € H..

Proof of the Step. By points 1. and 2. of Proposition 18, Step 2, and Proposition 16,

the statement follows. O
Step 4. For each f € H™ there exists z € H such that f (z) = (x,2) for all x € H..

Proof of the Step. Consider f € H~. It follows that there exists ¢ € A, such that
f2(z) < c{x,x), for all z € H. Since A is an f-algebra of £° type, it follows that

there exists a sequence {en}neN C A, such that 0 < e, T e, 6721 = e,, and e,c € A, for

all n € N. Define f,, = ¢, - f for all n € N. Note that for each z € H

d(fn(x), f(2) =@ (f () = fu (@) Ne) = @ (((e—en) |f (x)) Ne) = 0. (20)
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Fix n € N. By Proposition 11, we have that f, is A-linear. In particular, f2(z) <
e2c(x,x)y = ¢, (x,x), for all x € H where ¢, = e,c € A,. Thus, f, restricted to H,
belongs to H". By Step 3, there exists a unique 2, € H, such that

(en- f)(2) = enf (x) = fu(z) = (2, Zn>H Vz € He.

Note that for each n > k and for each x € H,
(= J) @) = (enf (@) = erf ())* = (0 — ) f(2) < (en — 1) c (a,2) .
It follows that
(.20 — 2y < (fo = f) (@) < (ew — )3 (,0)fy Ve €H.  (21)

Since A is an f-algebra of £° type, we have that

Ae > sup <£L’,Zn - Zk>H < (en - ek) C%'
Z‘GBHe

By the claim contained in the proof of Proposition 10, there exists a sequence {z;},.y C

Il 1l 1
By, such that (z,z, — 2zk)y T and (z;, 2, — 25) g e (zn — 2k, 2n — 2i) j- 1t follows

that
N e.

mwh—-

I
(@1, 20 — 21y ANe = (20 — 2k, 20 — 21)

By Theorem [6, Theorem 1.8] and (21), we have that

(@), 20 —2k)y Ne < sup ((@,2, — zp)y N e) = < sup (z,z, —zk)H) Ae
xGBHe $€BH6
g(en—ek)c%/\e vl e N.

We can conclude that

dy (Zn, 21) :@(<zn—zk,zn—zk> ) —l @ ({1, 2n — 2k) gy N €)
<@ ((en —ex) ¢z A e) =d (ekci, enc%> :

It follows that {2,},.y is @ dg Cauchy sequence. Since H is dy complete, it follows
that there exists z € H such that z, 2% z. At the same time, for each z € By, we have
that

d((z, zn) g (@, 2) ) = 6 ({2, 2) g — (T, 2) gl Ae) =@ ([{z, 2 — z) | Ae)
@((Iﬂ?;%{ — Zp, 2 — 2 >I%_1)/\e>_<p<<z—zn,z—zn>%/\e>
dy

(z,2n) — 0.

IA
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It follows that f () = (z, 2), for all * € By,. This implies that f () = (z, z),; for all
r € H,. O

By Step 4, if f € H™, then there exists z € H such that f(z) = (x,2), for all
x € H.. By Proposition 18, H, is dy dense in H. By Step 1, f is dg — d continuous.
This implies that f (z) = (z,2) for all x € H, proving that H is self-dual.

(i) implies (i). Conmsider a dy Cauchy sequence {¥,},cy- Define {f,}, oy as fr =
S~ (yn) for all n € N.

Step 1. There exists f : H. — A such that f, (x) < f (x) for all x € H..
Proof of the Step. By Proposition 4, we have that

|fo () = frn ()] < N (2) N (Yn — Ym) Vn,m e N,Vx € H. (22)
Fix x € By,. We can conclude that
|fn(x)_fm($)|/\6§ (N(ﬁ)N(yn_ym))/\GSN(yn_ym>/\ea

yielding that

d(fo (), frn (7)) = @ (|fu (x) — fr (x)[ A€)
< G(N (Yn — Ym) N€) = dy (Yn,Ym) Vn,m € N.

We thus have that {f, (z)},cy € A is a d Cauchy sequence. Since A is complete, this
yields that f, (z) < a,. Next, note that if = € HA\Bpy,, then T = —— € By,. We

]l £z,

have that f, (Z) 2 . Thus, we can conclude that there exists a, € A such that

.\ d
a, o (T) = |2l 4, a2 = a,.

() = ]

By the uniqueness of the limit and since x was arbitrarily chosen, we can define a map
f: H. — A such that f (z) = a, for all z € H.. O

Step 2. The map f is such that
fla-x+b-y)=af (x)+bf (v) Va,b € A, Vx,y € H,.

Proof of the Step. Consider a,b € A, and z,y € H,. We have that a-x +b-y € H..
By Step 1 and since each f,, is A-linear, this implies that

afo (2) +0fu () = fala-z+b-y) S fla-z+b-y).

At the same time, since f, (x) < ¥ (z) and f, (y) ¥ (y), we have that
afu (x) +bfn (y) > af (@) +bf (1)
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By the uniqueness of the limit, we can conclude that f (a-z+b-y) = af (z) +bf (y),

proving the statement. 0

Step 3. There exists ¢ € A, such that
|f ()] <ceN (x) Vo € H. (23)

In particular, f is uniformly continuous on H..

Proof of the Step. Since N is a vector-valued norm, we have that
IN (yn) = N (ym)| < N (Yn — Ym) Vn,m € N.

It follows that {N (y,)}

follows that there exists ¢ € A, such that N (y,) Lece A, . By Proposition 4, we also
have that

nen © Ay is a d Cauchy sequence. Since A is d complete, it

|fo (@) < N (yo) N (z) Vo€ H,VneN.

By passing to the limit and since the topology induced by d is linear and locally solid,
we can conclude that

|f (z)| < eN (x) Vo € H, (24)

proving the statement. Finally, by [4, Lemma 5.17], it is enough to show continuity at
0. Consider z,, 24 0. Tt follows that N () . 0. This implies that cN () <. 0. By
(24), we have that

d(0, f (zn)) = @ (If (za)| Ne) <@ ((eN (2n)) Ae) = d(0,eN (2n)) =0,

proving continuity at 0. 0

Step 4. f admits a unique extension to H which is A-linear and bounded. In particular,
there exists y € H such that f = 5™ (y).

Proof of the Step. Since f is uniformly continuous and H, is dy dense in H, it is well
known that f admits a unique uniform continuous extension to H. For the moment,
we denote such extension by f. Then, we will simply denote it f. Since f was additive,
it is a routine argument to show that so is f. Next, consider a € A, and € H. There
exists a sequence {z,}, . C H, such that z, 9 1 Tt follows that - T U . 2. Since

f is a continuous extension of f and by Step 2, we can conclude that

af (@)= fla-x)=fla-z,) > Fla-z).

At the same time, we have that f (z,) = f (x,) <, f (z), thus, af (z,) = af (x,) <,
af (z). By the uniqueness of the limit, we can conclude that f (a-z) = af (x). Next,
consider a € A and x € H. There exists {a,}, .y € Ae such that a, % a. We have

dy . 7. .
that a,, - = a - x. Since f is continuous, we can conclude that

anf ()= flan-2) % fla-z).
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At the same time, we have that a,, f (z) < af (x). By the uniqueness of the limit, we can
conclude that f (a-z) = af (v), proving A-linearity. Finally, consider # € H. There
exists a sequence {z,},.y € H. such that z, 4 . In particular, N () 4N (x). By
(23) and since f is a uniform continuous extension of f and the topology induced by d

is locally solid, we have that
[F @) < |F @a)] = If (@a)] < N (20) 5 eN (),

The last part of the statement follows since H is self-dual. O

Step 5. fn du f.
Proof of the Step. By (22), we have that

|fn<x(); m (2)] < N (Y — Ym) Vk,m,n € N,Vo € H.

This yields that

d (07 ’fnjgfx()x;_{n%ix)‘) <dg (Yn,Ym) Vk,m,n € N,Vx € H.

Consider € > 0. Since {y, },,cy is a dg Cauchy sequence, there exists n. € N such that

dQLMJ@—fﬁ@ﬂ>§g Vk € N,Vm,n > n.,Vo € H
N (z) + e

By taking the limit in n, we have that

|f (2) = fm ()]
d(O, N(m)—l—%e >§5 Vk € N,Vm > n., Vo € H.

o)t p

Next, consider the sequence { N(@)+ Le

: : |f (@)~ fm ()] £ ()~ () — ()= fm ()]
increasing. Thus, N@)+te Ae T supgen ( N@)+Te A e) SUDjen ( N(o)+ Le ) A e.
Since ¢ is order continuous, we can conclude that

(0 (V77 m))w(i;lg(ffﬁj@f”;f))“)
(

- (e (e )

e
:sup@(’f(x)_fm( )| >§5 VYm > n.,Vr € H.
keN («'E

} . This sequence is bounded by e and
keN

+

By the proof of point 2 of Proposition 13, we also have that

NS = ) = N 0) =50 = ™ =) = pp e
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We can conclude that

=d (O,ilellN) <|f (y]:[?;)_;nﬁn_i(_y%; ym)|)> <e VYm > ng,

proving the statement. 0

By point 2 of Proposition 13 and Steps 4 and 5, we have that

dH (yvyn) = dHN (fu fn) - 07

proving completeness of H. |

6 Examples

Consider a nonempty set (2, a g-algebra of subsets of {2 denoted by F, a sub-o-algebra
G C F, and a probability measure P : F — [0, 1]. Two F-measurable random variables

are defined to be equivalent if and only if they coincide almost surely. Define:

1. A = L£°(9), that is, A is the space (of equivalence classes) of real valued and

15

G-measurable functions;
2. b > aif and only if b (w) > a (w) almost surely;
3. e = 1g, that is, e is the function that takes constant value 1;

4. Tt follows that A, = £ (G), that is, A, is the space of all essentially bounded

and G-measurable functions;

5. 9 : L2(G) — R as
@(a):/adp Va € L7 (G);

6. d: L°(G) x L°(G) — R as
d(a,b) = 3 (b —a| Ac) :/(|b—a|/\e)dP Va,be £0(G).
Note that the topology induced by d is the one of convergence in probability P.

It is immediate to verify that £ (G) is an Arens algebra of L type and A = £° (G)
is an f-algebra of £° type.

15 As usual, we view the equivalence classes as functions. This convention will apply throughout the
rest of the paper.
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6.1 The module £?°(Q,G, F, P)

We denote by L% (F) = L°(Q, F, P) the space of real valued and F-measurable func-
tions. We call x,y, and z the elements of £°(F). Given an F-measurable function
x : 2 — R such that = > 0, we denote by E (z||G) its conditional expected value with
respect to P given G (see Loeve [27, Section 27]). Denote by

H=1r,*(Q,6,F,P)={zel’(F):E(2*|G) € £L°(G)}
- {x e L°(F) : VE (22|G) € L° (g)}.
We endow H with two operations:
1. +: H x H — H which is the usual pointwise sum operation;

2. -: AX H — H such that a - x = ax where ax is the usual pointwise product.

The space £2°(Q,G, F, P) was introduced by Hansen and Richard [19]. Finally,
we also define an inner product, namely, ( , ), : H x H — L°(G) by

(x,y)y =B (zy||G)  Vr,y € H.

Hansen and Richard [19, p. 592] show that ( , ), is well defined. They also prove the

next result.
Proposition 19 (H,+,-,(, )) is a pre-Hilbert £L° (G)-module.

Note that dg : H x H — R

Theorem 6 H is self-dual.

Proof. By Theorem 5, it is enough to check that H is dy complete. This follows from
[19, Theorem A.1]. |

6.2 The module £>* (Q,G,F, P)

We denote by £2 (F) = L2 (Q, F, P) the space of F-measurable and square integrable

functions. Denote by

H,=L>*(Q,G,F,P)={xe€ L0(F):E(2*|G) € L*(G)}
= {verr(F): VB9 € L= @)} c £2(F).
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Since L (Q,G,F, P) C L*°(Q,G,F,P), we endow H. with the two operations +
and - of Subsection 6.1. We also restrict (f, g) — E(fg||G) to H.. By Proposition 18,
it follows that £ (Q, G, F, P) is a pre-Hilbert £ (G)-module.

Note that || || : H. — R is such that

lell, = \/IB @9l engy Vo € He.

Similarly, we have that

Il = \/ [EG219)dP - \/ [aap=lellese e

Theorem 7 H. is self-dual.

Proof. By Theorem 3, we only need to show that By, is || [|,, = || Il 25, complete. To
this end, it is enough to show that By, is || || ;2() closed. Thus, consider {z,},cy € Ba,

H ||L2(J:)

such that z,,

such that z,, “3 z. By the conditional Fatou’s lemma (see [13, p. 340]), we have that

x € L* (F). This implies that there exists a subsequence {z, },

B (+7/9) = B (liminfa2 |g) < liminf B (a2, ]|9) < 1 < o,

proving that = € By, . |

6.3 The module £*>* (Q,G,F, P; E)

Consider an infinite dimensional separable Hilbert space E (for example, [? (N)).!¢

Define ( , ) to be the inner product of E. Let us denote by d and d’ generic elements

of E. Since F is separable, it admits a countable orthonormal basis: {d,} Given a

neN®
function, = : 0 — E we say that = is weakly measurable if and only if the real valued

function

w = (2 (W), d)g

is F-measurable for all d € E. By [7, Theorems 34.2 and 34.4), if z,y : Q — E are
weakly measurable, then

W (2 @),y (@)p =) (@ W) d)p (Y (@), du)g

n=1

is real valued and F-measurable. In particular, by Perseval’s identity,

W (2 (w),0@)p = Y e w) d)gf  Vwen

n=1

16 A similar analysis can be carried over when F is finite dimensional.
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is real valued and F-measurable. Given this observation, we denote by L% (F) =
L£? (9, F, P; E) the space

L3 (F) = {x € E : x is weakly measurable and /<x7x>E dP < oo} :

As before we identify the elements of £2% (F) whenever they coincide almost surely. At
the same time, as usual, we view the equivalence classes as functions. Thus, x € L% (F)
if and only if x is weakly measurable and w — (z (w) ,x(w)g belongs to L2 (F).
Consider z,y € L3, (F), we showed that w — (z (w),y (w)) is F-measurable, we next

show it is also integrable. Since F is an Hilbert space, observe that

(2 @),y @)l < (@ W),z @NE W),y  Ywel (25)
Since z,y € L% (F), it follows that

/I(x,y>E|dP§/(w,ﬂf)%;(y,y)%dPé \// <:v,1’>EdP/<y,y>EdP<OO- (26)

In this way, for each x,y € L% (F), we can define the G-conditional expectation of
w— (z (w),y (w))g, that is, E ((x,y) 5 ||G). We thus define

H = L>*(Q,G,F,P;E) = {x € Ly (F)  JE({z,2)511G) € L (9>}-

Define A to be the Arens algebra L£>(G) = L>(92,G, P), we endow H with two

operations:

1. +: Hx H — H which is the usual pointwise sum operation, that is, (x + y) (w) =
x(w) +y(w) for all w € Q.

2. -: Ax H — H such that (a-z) (w) = a(w)z (w) for all w € Q.17
Finally, we also define an inner product, namely, ( , ), : H x H — L>(G) by
() =Bz y)glld)  V(z,y)e HxH.
Proposition 20 (H,+,-,(, )) is a pre-Hilbert L> (G)-module.

Proof. Consider x,y € H. It is straightforward to verify that x + y is weakly measur-
able. By (26), it follows that = +y € £% (F). Similarly, by (25) and the conditional

Cauchy-Schwarz inequality, we have that
E((z+9,2+ 1) 16) = B ((2,2) 5 1G) + 2 (2, 5) s 19) + B ({9, 1) 19)

<E((2,2)5116) + 28 ((2,2)} (5, )31IG) + B ((9,9)5 19)

<E (2,25 19) + 24/B ((,2) 1) B (9,9) 19) + E ({3,9) 116

17Observe that for each w € Q, a (w) € R and x (w) € E. Thus, a (w) x (w) is the scalar product of
a (w) with z (w).
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This implies that H is closed under +. It is then easy to prove that (H, +) is an abelian
group. Similarly, if a € A and x € H, then

E (a2 a-2)5]|G) =B (a* (v,2)519) = ¢’E ((z,7)|9) € L= (9),

proving that H is closed under -. Properties (1)-(4) of Definition 1 are then easily
verified. This shows that H is an £ (G)-module.
Next, by (25) and the conditional Cauchy-Schwarz inequality, we have that (, ),

is well defined, and:

5. Consider z € H. Since (z (w),x (w)); > 0 for all w € Q, we have that (z,z), =
E ({(x,z)5]|G) > 0. At the same time, we can conclude that

(x,2) ;=0 <= E((z,2)5||0) =0 <= (z,2), =0 <= z=0.
6. Consider x,y € H. We have that
(@ 9)y =B ((2,9)pl9) =By, 2)gl9) = (v, )5 -
7. Consider z,y, z € H. We have that

({z+y,2)pl9) =B ({2, 2) g + (4, 2) g [|9)
(2, 2)pl19) + B ({y, 2) g [|G) = (&, 2}y + (y, 2}y

(x+y,2)y=E
B

8. Consider a € A and x,y € H. We have that
(a-2,9)y =B(a-2,9)gl9) =BE(a(r,y) [|G) = aB ({2, 9) 5 [|19) = a (2, 9) s
We can conclude that H is a pre-Hilbert £ (G)-module. [

Note that for each x € H

\zl,, =1/? (z,2)y) = \//E(<x,m>E||g)dP: \// (x,2) p dP = ||:13||£2E(f).

Theorem 8 If G is generated by a finite partition where each atom has strict positive
probability, then H s self-dual.

Proof. Since G is generated by a finite partition, £ (G) is finite dimensional. More-
over, we have that H = L%, (F). By Theorem 4, we only need to show that H is || ||,
complete. Since H = L3 (F) and || ||,, = || || r2,(7)> the statement follows by Diestel
and Uhl [12, p. 50]. |
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6.3.1 A Finance illustration

Let 6 € (0,1] and define E = {d € RY : Z(Stdf < oo}. The space E is an infinite
t=1
dimensional separable Hilbert space where

(d.d),=> d'dd; Vdd €E.

t=1
For each t € N, define also m; : £ — R such that 7, (d) = d, for all d € E.

Consider a filtration space (Q, {F;},cy, F, P) where F = o (UjenF). Call G = F;.
Define

H = > (Q, {Fihien s P E) = {3: €L (0,6, F,P;E) moxc L’ (E)} )

In words, H is the space of processes in £L>* (Q, G, F, P; E) that are adapted to the
filtration. Since H is a subset of £>* (9, G, F, P; E), we endow H with the same + and
- operations of Subsection 6.3. Similarly, we consider (z,y) — E ((z,y) ||G) restricted
to H. It is standard to show that H is a pre-Hilbert £ (G)-module. By Theorem 8,
it easily follows that if F; is generated by a finite partition where each atom has strict

positive probability, then H is self-dual.

Remark 5 In Finance, this module can be used to price infinite streams of payoffs.

6.4 The module M?** (G)

Consider a filtration space (Q, {Fihien s Fs P) where F = o (UienFy). Assume that
G is a sub-o-algebra of F. We denote by M? the space of £? bounded martingales.
Recall that z € M? (see, e.g., [28, p. 209]) if and only if there exists a unique (terminal
variable/final value) z,, € £2(F) such that

z; = B (2o0||F) vVt € N.
Define A = L (G) and
H=M"*(G)={ze M :E(z2]|G) € L*(G)}.
We endow H with two operations:
1. +: H X H — H which is the usual pointwise sum operation;
2. -1 AX H — H such that a - x is defined by
(a-z), =E (azs||F) vVt e N. (27)
We also define (, ), : H x H — A as
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Proposition 21 (H,+,-,(, )) is a pre-Hilbert L> (G)-module.

Proof. By the conditional Cauchy-Schwarz inequality, it is immediate to see that
H is closed under + and (H,+) is an abelian group. The outer product - is also
well defined. In fact, by [28, p. 209] and (27), a - z is an element of M?. At the
same time, since the terminal value of @ - = is unique, (a-z) = are € L*(F) and

E((a-7)%]|G) = E(a?22,||G) = a’E (2%,||G) € L= (G). Observe also that:
1. Consider a € A, x,y € H, and a - (z + y). It follows that

(@ (z4y), =EBa(@+y)[|17) =E(a (2 + yoo) [ F)
=E (axoo + ayOOHﬂ) =E (a$w||ﬂ) +E (ayoonf;f)
=(a-x),+ (a-y), vVt € N,

proving that a - (r +y) =a-xz+a-y.
2. Consider a,b € A, x € H, and (a + b) - x. It follows that

((a+b)-z), =E((a +b) 20 || Ft) = E (a200 + bxoo|| F)
=E (axx||F) + E (b || F1) = (a- ), + (b- ), vVt € N,

proving that (a +b)-x =a-z+0b- .
3. Consider a,b € A, x € H, and a - (b- x). It follows that

(@-(b-2)), =B(a(b-2),[[F) =B(a(bre) || F)
= B ((ab) 20| | F1) = ((ab) -2),  VEEN,

proving that a - (b- z) = (ab) - x.
4. Consider e € A and z € H. It follows that
(e-z), =E(ers]|Fr) = B (|| Ft) = 24 vVt € N,
proving that e -z = z.

This shows that H is an £ (G)-module. Next, by the conditional Cauchy-Schwarz

inequality, we have that ( , ), is well defined, and:

5. Consider € H. We have that (x,z), = E(24|G) > 0. At the same time, we
can conclude that

(2,2); =0 <= E(22]|G) =0 <= 2 =0
— 1, =E(z||F) =0 VteN
— =0
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6. Consider x,y € H. We have that
(T, 9) i = B (20YoollG) = E (YooT0||G) = (Y, ) 1 -
7. Consider z,y,z € H. We have that

<x+y,z) E((x“‘y) Zo0||G) = B ((Too + Yoo) 200|G)
=B (T2 + Yoo 2e|1G) = (2, 2) g + (y, 2) g

8. Consider a € A and x,y € H. We have that

(a-2,9) g = B((a-2)y YollG) = B ((a00) Yoo||G) = B (a (2octe0) [|G) = a ()

We can conclude that H is a pre-Hilbert £ (G)-module. |

Note that || ||; : H — R is such that

||$||H = \/H(%@}[”gm(g) = \/HE (ﬂfgng)Hcoo(g) Vo € H.

Similarly, we have that

el = /@ (@, 2)y \// 211G) dP = l|vwll oy Ve € H.

Theorem 9 H is self-dual.

Proof. By Theorem 3, we only need to show that By is || ||,, complete. Consider a
sequence {z, }, .y € By which is || [|,, Cauchy. It follows that {(z,)  },en i@ || || c205)

Cauchy sequence and
E((z,)2]IG)| <e=1q VneN. (28)

Il
It follows that there exists an element z., € £*(F) such that (x,) Sy s- This

implies that there exists also a subsequence {,, }, .y such that (z,,) = Zo. By (28)
and the conditional Fatou’s lemma (see [13, p. 340]), we have that

E (22|G) = E (limkinf (n,)2 ||g> < liminf B ((z,,)2, 16) < 1< oc.
If we define z as the element in M?* (G) such that
= B (2| F) Vt € [0,00),
then z,, I Vg x as well as ¢ € By, proving the statement. |
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Remark 6 An important example of M** (G) is when G is a stopping time o-algebra,
that s,
G={EFeF:En{r=t}eF VteN}

where T :  — N is a (finite valued) stopping time. An important bounded A-linear
operator is the map (see [34, p. 391]) f : H — A such that

f(z) ==, Vo e H.

Remark 7 We could have defined M*> (G) dealing with continuous time. In that case,
we would have needed a filtration space (Q, {ft}te[o,oo) ,F, P) where F = o (Ute[o,oo)}}) .
With this specification, M?* would have been the space of cadlag £* bounded martingales.

Our results would have remained the same.

7 Appendix

Proof of Proposition 1. (i) implies (ii). Define [ = po T~ : C'(K) — R. Since
@ and T~! are both linear and continuous, [ € C* (K). Since ¢ and T~! are positive
and such that ¢ (¢) =1 and T (1x) = e, [ is positive and such that [ (1x) = 1. By
[4, Theorem 14.14], this implies that there exists a (unique) finite regular probability

measure m on the Borel g-algebra of K such that

l(g)z/Kg(so)dm(sO) Vg e C(K).
It follows that
5(a) = 1(T (a) = /K T (a) (i) dm () = /K (@ @)dm(p) VacA  (29)

By [4, Theorem 12.14] and since m is regular (thus, tight), it follows that suppm exists.
By contradiction, assume that suppm # K. Thus, there exists ¢ € K\suppm. By
Urysohn’s Lemma (see [4, Theorem 2.46]) and since K is compact and Hausdorff, there
exists a function 0 < g € C' (K) such that §(¢) =1 and §(¢) = 0 for all ¢ esuppm.
Since T is a lattice isomorphism, there exists @ € A such that T'(a) = g > 0. It follows

that a > 0. Since @ is strictly positive, we can conclude that
0= [ taddn(e) = [ Gehdm(o) = ¢ (@) >0,
suppm K

a contradiction.

(ii) implies (iii). Since it is immediate to see that K separates the points of A, the

statement trivially follows.

53



(iii) implies (i). It is immediate to see that (1) defines a functional ¢ : A — R

which is linear, positive, and || ||, continuous. Since ¢ is positive and m a probability

measure, we have that ||@| ;. = @ (e) = 1. We just need to prove that ¢ is strictly
positive. Consider a € A such that a > 0. Since suppm separates the points of A,
it follows that (a, @) > 0 for some ¢ € suppm C K. This implies that there exists a
nonempty open set V' of K such that (a,p) > 0 for all p € V and m (V) > 0. We can

conclude that

w@w:[jmwdmwaz/km@dmun>a

v
proving the implication. [

1
Proof of the Claim in Proposition 10. Since for each n € N, 0 < (y,9)3 <

(v, Z/);% + %e = a,, it follows that
(y,y)y <al VYneN.

Since y,, = a,;' - y for all n € N, this implies that (oz;l)2 (y,y)y < e, that is,
Yn,yn) g < € Vn € N.

Fix n € N. We have that (y,,vy),; = a,,* (y,y) . First, observe that a, > a,1. This
implies that a,1; > a,' and (y,,y); = a,,* (y,y) 7. Note that

1

n

1

00 < i+ = (G + ) () = -

It follows that )
Yo = a0 (Y. 9) i < (W) -

Also note that
(v, y)

L‘qm\»—t
IN
2
<
,’:N\»—t
+

|

Q]

|

S
3

which yields

Moreover, we can conclude that

1 _ _ 1 1 1
OS@w&—%fme:%f@M%wé—@wM)SE%W%wﬁ

Since || ||, is a lattice norm, it follows that

1 1 1 1
2 < a7t 2l < = .
H(y,y)H <ymy)HHA < llan e wd||, < llells
Since n was arbitrarily chosen, the statement follows. |

Proof of Lemma 3. We first show, by steps, that N, is a vector-valued norm.
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Step 1. N, (f) =0 if and only if f=0.

Proof of the Step. It is immediate to see that if f = 0, then N, (f) = 0. Viceversa,
note that if N, (f) =0, then

|f (@)] ) |f ()]
) <0 = <0 VeeH,
i?B(ﬁ‘éﬁN(mﬁe = Weh N (z) + Le = !
|f(‘”)|1 <0 VYneNVreH,
N (z)+ e

— [f(2)| <0 Vred,
= f(x)=0 Vo € H,

proving that f = 0. U
Step 2. Ny (a- f)=la|N.(f) for all a € A and for all f € H™.
Proof of the Step. Consider a € A and f € H™. It follows that

oy =sup (s L) (g LY

zeH \neN N (l') + %6 z€H neN N ($) + %6

= sup (|a| (sup M)) = |a| sup ((Sup M))
reH neN N (SL’) + n€ xzeH neN N (SL’) -+ e
= |CL| N* (f) 9
proving the statement.! U

Step 8. N (f +9) < N.(f)+ N.(g9) forall f,ge H™.
Proof of the Step. Consider f,g € H™. It follows that

N, (f + g) = sup <Sup M) - <(Sup M))

z€H \neN N(ZE) + %6 z€H neN N (CU) + %6

< sup ((Sup ‘f](\;?' ;L . (x)‘))

~ 2zeH \ \neN z +%e

<o (o) * (o)
| |

= sup <sup Lx)l + sup (sup T
zeH \neN N (z) + e zcH \neN N () + ~€

proving the statement. H

Steps 1-3 prove that N, is a well defined vector-valued norm. Finally, observe that

dg~(f,9) =0 < d(0,Ni(f —9)) =0 < N.(f—g)=0
— [-9g=0<—= [f=yg

18n Step 2, we implicitly used the fact that if a nonempty subset B of A is bounded from above
and ¢ € A, then sup ¢B = csup B (see [11, Footnote 26]).
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It is immediate to see that dy~ (f,g9) = du~ (g, f) for all f,g € H™ as well as
dy~(f+h,g+h) = dg~ (f,g) for all f,g,h € H~. Finally, by definition of d and
[6, Lemma 1.4] and since N, (f +g¢g) < N.(f) + N.(g) for all f,g € H™, we can

conclude that

dH~(fg)—d( N.(f=9)=0(Nu(f—g)Ne) =@ (N ((f —h)+(h—g)) Ne)
(N (f=h)+N.(h—9g)ANe) <@(N.(f—h)Ne+ N, (h—g) Ne)
= dy~ (f,h) +dy~(h,g)  Vf.g,he H,

proving the statement. u
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