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Università Bocconi
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Abstract

We characterize the consistency of a large class of nonexpected utility preferences (including mean-

variance preferences and prospect theory preferences) with stochastic orders (for example, stochastic

dominances of di¤erent degrees). Our characterization rests on a novel decision theoretic result that

provides a behavioral interpretation of the set of all derivatives of the functional representing the decision

maker�s preferences.

As an illustration, we consider in some detail prospect theory and choice-acclimating preferences, two

popular models of reference dependence under risk, and we show the incompatibility of loss aversion with

prudence.

JEL classi�cation: D81

Keywords: Stochastic dominance, integral stochastic orders, nonexpected utility, risk aversion, multi�

utility representation, prospect theory, choice-acclimating personal equilibria

1 Introduction

When decision making under risk is considered, the assumption of expected utility maximization on the part

of a single individual is descriptively controversial and several alternatives have been proposed. When the

decision maker is not a single individual (for example, a �rm) this assumption becomes less palatable also

from a normative viewpoint (Diamond, 1967, Keeney, 1992, and Smith, 2004). At the same time, even if

independence (the crucial behavioral assumption on which expected utility rests) is abandoned, consistency

of the decision maker�s preferences with stochastic dominances of di¤erent degrees remains of interest and

practical relevance in the study of risk attitudes.1 For example, the de�nition of (non-satiation and) risk

aversion in terms of consistency with second degree stochastic dominance is commonly adopted also outside

of the expected utility realm.

In decision analysis, also consistency with stochastic orders that do not belong to the stochastic dominance

family naturally arises, as shown by the next example taken from Smith (2004).

�We thank Jim Smith (the Area Editor), an anonymous Associate Editor, three anonymous Referees, David Dillenberger, Edi
Karni, and Mark Machina for very useful comments and suggestions. Simone Cerreia�Vioglio and Fabio Maccheroni gratefully
acknowledge the �nancial support of MIUR (PRIN grant 20103S5RN3 005). Massimo Marinacci gratefully acknowledges the
�nancial support of the AXA Research Fund. An earlier version of the paper was circulated under the title "A New Look at
Local Expected Utility".

1See Levy (1992), for a survey of the applications of stochastic dominance in management science, operations research, and
decision analysis.
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Example 1 (The loyal �rm �part I) A �rm has to choose among gambles that represent the payo¤s of

the �rm�s entire portfolio of investments, after paying employees, corporate taxes, debt holders, etc. Such

gambles are formally described as probability distributions on an interval [m;M ] of monetary amounts,

including 0. The �rm�s preferences can be represented by a continuous and smooth real-valued function V

such that gamble F is weakly preferred to gamble G, denoted F % G, if and only if V (F ) � V (G).
The n shareholders have expected utility preferences for gambles, that is, for every i = 1; :::; n, there exists

a continuous function vi : [m;M ]! R such that the expected utility

Vi (F ) =

Z
vi (x) dF (x)

represents %i.
If the �rm chooses gamble H, then shareholder i gets the gamble Hi = H

�
s�1i �

�
,2 where si is i�s share,

and his expected utility is

Vi (Hi) =

Z
vi (six) dH (x) :

A necessary requirement for the �rm to make decisions in the best interests of the shareholders is that

whenever every shareholder prefers his share of F to his share of G, the �rm also prefers F to G; this is

equivalent to the consistency condition�Z
u (x) dF (x) �

Z
u (x) dG (x) 8u 2 U

�
=) V (F ) � V (G) (1)

where U = fvi (si�) : i = 1; :::; ng. The relevant stochastic order at play is the unanimous judgment %U of
the shareholders, formally de�ned by the left handside of (1), that is,

F %U G if and only if
�Z

u (x) dF (x) �
Z
u (x) dG (x) 8u 2 U

�
.

With this notation, the consistency condition (1) becomes

F %U G =) V (F ) � V (G) : (2)

In this paper, given any continuous and �smooth�functional V representing a decision maker�s preferences

% and any family U of continuous functions on [m;M ], we show that the consistency condition (2) is satis�ed
if and only if the set V of all derivatives of V , called local utilities, is included in the closed convex cone
generated by U and all the constant functions (Proposition 1).3 Assuming, without loss o¤ generality, that
U contains a strictly positive and a strictly negative constant function, this �closed convex cone condition�
means that every local utility is either a weighted sum of elements of U or a limit of these weighted sums.4

Our di¤erential characterization is made possible by a novel decision theoretic result (Theorem 1) which

yields a behavioral interpretation of the set V of all local utilities by showing that it represents the largest
subrelation %� of % that satis�es the axioms of expected utility with the possible exception of completeness.
Next we elaborate on the two results. The seminal Machina (1982) showed that the global risk aversion

analysis, classically carried out for expected utility preferences, naturally extends to a local risk aversion

2The distribution H(s�1i �) maps each x into H(x=si).
3The name local utilities (introduced by Machina, 1982) is justi�ed by the fact that these derivatives are continuous functions

on [m;M ] such that their expectations can be used to locally approximate V . If v is a derivative of V at F , then

V (G)� V (F ) �
Z
v (x) dG (x)�

Z
v (x) dF (x)

as G approaches F . See Section 2.1 for the formal de�nitions of smooth preference functional, local utilities, and so on.
4The assumption is without loss of generality because

R
u (x) dF (x) �

R
u (x) dG (x) for all u 2 U if and only ifR

u (x) dF (x) �
R
u (x) dG (x) for all u 2 U [ fcg where c is any constant function. Therefore, for example, one can always

replace U with U [ f1g [ f�1g.
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analysis when nonexpected utility preferences % can be represented by a smooth V . In the nonexpected

utility realm the role of the �single global�utility of expected utility is taken by �multiple local�utilities.

For example, they are all increasing and concave if and only if % is non-satiated and risk averse. Machina�s
results stimulated many studies of nonexpected utility preferences that heavily rely on local utilities (see

Wang, 1993 and the references therein). As far as the consistency property (2) is concerned, this literature

culminated with Chew and Nishimura (1992) where a su¢ cient, but obviously not necessary, condition is

given: if the set V of all local utilities is included in U , then property (2) is satis�ed. At the same time,
despite the recognized importance of the local approach, the global role of the set V of all local utilities �
that is, its preferential underpinning �remained unexplained.

Our Theorem 1 explains the global role of the set V of all local utilities by characterizing an observable
subrelation and computable %� of % that is represented by V itself. In other words, the subrelation %� is
the counterpart of the set V in terms of choice behavior in the same way in which the preference % is the

counterpart of V .

In turn, the �conceptual�Theorem 1 opens the way to the �operational�Proposition 1 that fully charac-

terizes, through di¤erential notions, property (2), that is, the consistency of a nonexpected utility preference

with an integral stochastic order. In particular, Proposition 1 improves upon the su¢ ciency result of Chew

and Nishimura by delivering a necessary and su¢ cient condition for consistency to hold.

In the expected utility case, in which V (F ) =
R
v (x) dF (x) for some continuous v, Proposition 1 says

that

F %U G =)
Z
v (x) dF (x) �

Z
v (x) dG (x)

if and only if v belongs to the closed convex cone generated by U and all the constant functions.5 Thus, in
general, Proposition 1 says that the stochastic dominance analysis carried out for expected utility preferences

directly extends to smooth nonexpected utility preferences by replacing the utility function v with the set V
of all local utilities, explaining the title of this paper.

Example 1 (The loyal �rm �part II) The discussed results imply that the �rm makes decisions in the

best interests of the shareholders only if the set V of all derivatives of V is included in the closed convex cone
generated by U = fvi (si�) : i = 1; :::; ng and all the constant functions. The set V can be obtained by calculus
techniques (see Remark 1), while the closed convex cone generated by U and all the constant functions is

hUi = f�1v1 (s1�) + :::+ �nvn (sn�) + c : �1; :::; �n � 0 and c 2 Rg

(Borwein and Moors, 2009). Therefore, the �rm makes decisions in the best interests of the shareholders

only if every local utility has the form

v (x) = �1v1 (s1x) + :::+ �nvn (snx) + c 8x 2 [m;M ]

for some set �1; :::; �n of positive weights and c 2 R. Finally, since local utilities are unique up to an additive
constant, this de facto means that local utilities are weighted sums of the elements of U .

As detailed in the main text, some of our results do not require smoothness of the preference functional V

and some extend to risky situations in which preferences are de�ned over probability distributions on metric

spaces rather than on the interval [m;M ], thus allowing inter alia to deal with multiattribute consequences.

Finally, in order to illustrate the tractability of our approach, in Section 4 we discuss the case of risk

aversion, whereas in Section 5 we use our results to study the relation between loss aversion and prudence in

two popular models of reference dependence. Speci�cally, we compute the local utilities for prospect theory

and we use them to show that the assumption of prudence is incompatible with loss aversion (Proposition 5);

5This is a known result a la Harsanyi (1955), see Fact 1 below.
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moreover, when risk aversion and prudence are both assumed, prospect theory collapses to expected utility

(Corollary 1). Finally, we show that the incompatibility of prudence and loss aversion also extends to the

choice-acclimating personal equilibria of Koszegi and Rabin (2007) (Proposition 6).

2 Preliminaries

2.1 Derivatives and local utilities

Let D = D (I) be the set of all cumulative distribution functions on a closed interval I of R. When I is
required to be bounded, we write I = [m;M ]. We denote by F , G, and H generic elements of D, and by
x, y, and z generic elements of I. Given F 2 D, we denote by E (F ) its expected value and by Var (F ) its
variance (when they exist). Given x 2 I, we denote by Gx the distribution that yields x with probability 1.
We endow D with the topology of weak convergence.6

We denote by Cb (I) the set of all bounded and continuous functions on I. If I is bounded, then Cb (I)

coincides with the set C (I) of all continuous functions on I.

Given a functional V : D ! R, we say that V is Gateaux di¤erentiable at F 2 D if and only if there

exists a function uF 2 Cb (I) such that for each G 2 D

lim
�#0

V ((1� �)F + �G)� V (F )
�

=

Z
I

uF (x) d (G� F ) (x) : (3)

In this case, the Gateaux derivative uF is called local utility for V at F . Notice that if uF satis�es (3), so

does uF + c for each c 2 R, and conversely if also wF satis�es (3), then uF �wF is constant. In other words,
if V is Gateaux di¤erentiable at F and uF is a Gateaux derivative, then the set all Gateaux derivatives for

V at F is rV (F ) = fuF + cgc2R.
The functional V is Gateaux di¤erentiable (informally, smooth) if and only if it is Gateaux di¤erentiable

at each F 2 D, and we denote by rV : D � Cb (I) the derivative correspondence that maps each F into

rV (F ). Finally, we de�ne
rangerV =

[
F2D

rV (F ) = fuF : F 2 Dg :

The set rangerV is the collection of all local utilities of V , that we denoted by V in the introduction.
The next remark shows that although the de�nition of local utilities seems a bit involved, they can

actually be computed as limits of di¤erence quotients, exactly like standard calculus derivatives.

Remark 1 The notion of Gateaux derivative that we use is due to von Mises (1947, p. 323). It has been
widely used in Statistics since Hampel (1974) for the study of robustness (see, e.g., Fernholz, 1983, and

Huber and Ronchetti, 2009). In Decision Theory, it was adopted by Chew, Karni, and Safra (1987).

Speci�cally, Hampel and the subsequent statistical literature call the function ICV;F : I ! R de�ned by

ICV;F (x) = lim
�#0

V ((1� �)F + �Gx)� V (F )
�

8x 2 I (4)

in�uence curve of V at F . Now, if V is Gateaux di¤erentiable at F and uF 2 rV (F ), then vF = uF �R
I
uF (x) dF (x) is the only element of rV (F ) with zero expectation with respect to F and by (3)

lim
�#0

V ((1� �)F + �G)� V (F )
�

=

Z
I

vF (x) dG (x) 8G 2 D (5)

6See Appendix A for a formal de�nition of the topology of weak convergence and other technical details.
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which for G = Gx0 yields ICV;F (x0) = vF (x0) for all x0 2 I. In particular, (4) provides an explicit formula
to compute the local utilities of a smooth functional V . For example, Hampel�s computations show that, if

I = [m;M ], the local utilities of the mean-variance preference functional

V (F ) = E (F )� �
2
Var (F ) 8F 2 D ([m;M ])

of Markowitz (1952) and Tobin (1958), are given by

uF (x) = x�
�

2
(x� E (F ))2 8x 2 [m;M ] :

2.2 Preferences and stochastic orders

The object of our study is a binary relation % de�ned on D and describing the preferences of a decision

maker. A functional V : D ! R is said to represent %, or to be a preference functional for %, if and only if
for every F;G 2 D

F % G() V (F ) � V (G) :

The axiomatic properties of % we discuss and use in this paper are few and classic. We next list them for

completeness.

Preorder The relation % is re�exive and transitive.
Weak Order The relation % is complete and transitive.
Continuity For each pair of convergent sequences fFng and fGng in D,

Fn % Gn 8n =) lim
n
Fn % lim

n
Gn.

Independence For every F;G;H 2 D and for each � 2 (0; 1)

F % G =) �F + (1� �)H % �G+ (1� �)H:

In analogy with the de�nition of linear orders in vector spaces, we call a binary relation %# on D satisfying
Independence a stochastic order. Let us remark that the term �stochastic�here refers to the stochasticity

of the elements of D, the binary relation %# is itself deterministic (not stochastic like the ones arising from
random choice). An important family of stochastic orders is the one of the so called integral stochastic orders,

that is the binary relations %U of the form

F %U G ()
Z
I

u (x) dF (x) �
Z
I

u (x) dG (x) 8u 2 U

where U is a given subset of Cb (I).

Example 2 (Stochastic dominances and risk orders �part I) Let I = [m;M ] and set

U1 =
�
u 2 C1 ([m;M ]) : u0 � 0

	
U2 =

�
u 2 C2 ([m;M ]) : u0 � 0 and u00 � 0

	
U3 =

�
u 2 C3 ([m;M ]) : u0 � 0, u00 � 0, and u000 � 0

	
:::

Un =
n
u 2 Cn ([m;M ]) : u(i) � 0 if i is odd and u(i) � 0 if i is even, for i = 1; :::; n

o
:

The integral stochastic order %U1 is called �rst degree stochastic dominance, %U2 is called second degree sto-
chastic dominance, %U3 is called third degree stochastic dominance, ..., %Un is called n-th degree stochastic
dominance. While the integral stochastic order %Rn induced by

Rn =
n
u 2 Cn ([m;M ]) : (�1)n�1 u(n) � 0

o
5



is called n-th degree risk order, for every n 2 N. The �rst degree risk order coincides with �rst degree
stochastic dominance and consistency with it amounts to non-satiation, the second relates to risk aversion,

the third to prudence, the fourth to temperance (Eeckhoudt, Schlesinger, and Tselin, 2009), the �fth to

edginess (Lajeri-Chaherli, 2004). The relation between stochastic dominances and risk orders resides in the

observation that Un =
Tn
i=1Ri.

The second degree risk order is commonly called concave order.

The following property of integral stochastic orders (which have been rediscovered many times, see, e.g.,

Muller, 1997, Castagnoli and Maccheroni, 1998, Dubra, Maccheroni, and Ok, 2004) will be very useful in

the sequel. As a matter of notation, given a set U � Cb (I), we denote by hUi the C5 hull of U (see Smith
and McCardle, 2002), that is, the weak closure of the smallest convex cone containing U and all the constant
functions.7

Fact 1 Let U ;V � Cb (I). The following statements are equivalent:

(i) %V is consistent with %U , that is, F %U G implies F %V G;

(ii) V � hUi.

In particular, %V coincides with %U if and only if hVi = hUi.

In order to make this fact operational, it is important to be able to explicitly describe hUi. As ob-
served in Example 1, if I = [m;M ] and U = fui : i = 1; :::; ng is �nite, then hUi = f�1u1 + :::+ �nun + c :
�1; :::; �n � 0 and c 2 Rg. Next we provide an explicit description of the cones hUni and hRni that generate
the n-th degree stochastic dominance and the n-th degree risk order for every n 2 N.8

Fact 2 Let I = [m;M ]. Then, under the usual convention that u(0) = u,

hR1i = fu 2 C ([m;M ]) : u is increasingg
hRni =

n
u 2 C ([m;M ]) : u(n�2) exists and is concave on (m;M)

o
if n � 2 is even

hRni =
n
u 2 C ([m;M ]) : u(n�2) exists and is convex on (m;M)

o
if n � 3 is odd

and

hUni =
n\
i=1

hRii

for every n 2 N.

Throughout the paper, we will consider binary relations that can be represented by a continuous prefer-

ence functional V . It is well known (see Debreu, 1964) that, in our setting, this is equivalent to assuming that

% satis�es Weak Order and Continuity. Coupled with our results, Fact 2 will allow us to fully characterize

the consistency of these preferences with stochastic dominances and risk orders of all degrees.

3 Main results

3.1 The expected utility core

In this section, we characterize the part of the decision maker�s preferences that satis�es the expected utility

hypothesis and describe its properties.
7When I is bounded this closure coincides with the supnorm closure.
8Also this fact is essentially folklore, for example, it can be derived from the pioneering works of Popoviciu (1933) and Karlin

and Noviko¤ (1963). A proof is available upon request.

6



De�nition 1 The expected utility core of a binary relation % on D is the binary relation de�ned by

F %� G () �F + (1� �)H % �G+ (1� �)H 8� 2 (0; 1] ;8H 2 D:

Clearly, %� is a subrelation of %. We interpret this derived binary relation as capturing the rankings
for which the decision maker is sure. For, no matter how F and G are mixed with a third prospect H, the

mixture of F with H dominates the one of G with H.

The expected utility core is the risk counterpart of the revealed unambiguous preference relation intro-

duced by Ghirardato, Maccheroni, and Marinacci (2004) in a setting of decision making under ambiguity

and for invariant biseparable preferences % (see also Nehring, 2009).9 In a context of choice under risk, %�
was �rst studied by Cerreia�Vioglio (2009) for convex preferences % in order to reveal the subjective states
of the decision maker a la Kreps (1979). It also plays a central role in Cerreia�Vioglio, Dillenberger, and

Ortoleva (2015) where it characterizes the decision maker�s indecisiveness. The following lemma lists some

relevant properties of the expected utility core.

Lemma 1 Let % be a binary relation represented by a continuous preference functional V . The following

statements are true:

(i) %� is a preorder that satis�es Continuity and Independence;

(ii) % is consistent with %�, that is, F %� G implies F % G;

(iii) % is consistent with a stochastic order %# if and only if %� is consistent with %#;

(iv) if I is bounded, then there exists a set U� � C (I) such that

F %� G ()
Z
I

u (x) dF (x) �
Z
I

u (x) dG (x) 8u 2 U�; (6)

(v) if I is bounded, then % is consistent with an integral stochastic order %U if and only if U� � hUi.

The �rst point shows that %� satis�es all the expected utility axioms with the potential exception of
completeness. The second point shows that %� is a subrelation of %, thus capturing a part of the rankings
expressed by the decision maker. The third point implies that %� is the largest subrelation of % that satis�es
the expected utility axioms with the potential exception of completeness, thus supporting the interpretation

that %� summarizes the rankings for which the decision maker behaves like a standard expected utility agent.
Point (iii) actually yields more, in fact it implies consistency of %� with any subrelation of % that satis�es

just independence. This is important in connection with the mean preserving spread relation (see Section

4). Point (iv) shows that, when I is bounded, %� is an integral stochastic order (con�rming its �expected
utility nature�); also notice that, by Fact 1, both U� and W� represent %� in the sense of (6) if and only if
hU�i = hW�i.
But the most important point is (v) which derives a �rst characterization of the consistency of nonex-

pected utility preferences with integral stochastic orders. Such a characterization does not rely on di¤eren-

tiability properties of the representing functional, but rather on the possibility of identifying the set U�.10

9Cerreia-Vioglio, Ghirardato, Maccheroni, Marinacci, and Siniscalchi (2011) study %� for the more general class of rational
preferences %. Several di¤erential characterizations of %� have been proposed. The �rst one can be found in Ghirardato,
Maccheroni, and Marinacci (2004). A direct extension of this result appears in Ghirardato and Siniscalchi (2012), who develop
in an ambiguity setup a local analysis close to the spirit of Machina (1982). Finally, Cerreia-Vioglio, Maccheroni, Marinacci,
and Montrucchio (2011) provide an alternative di¤erential characterization and, inter alia, derive %� for several ambiguity
averse models.
10The proof of Proposition 6 will be an example of this fact.
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In fact, there are cases in which a direct derivation of U� is possible even when V is not smooth. A very

important and popular case is the betweenness model of Dekel (1986). More recent models are the ones of

Maccheroni (2002) and Cerreia�Vioglio, Dillenberger, and Ortoleva (2015) where preferences are represented

as minima of expected utilities and certainty equivalents, respectively.

Example 2 (Stochastic dominances and risk orders �part II) Let I = [m;M ] and % be a binary

relation represented by a continuous preference functional V . Fact 2 and point (v) of Lemma 1 guarantee

that % is consistent with:

1. �rst degree stochastic dominance (the �rst degree risk order) if and only if all elements of U� are
increasing;

2. second degree stochastic dominance if and only if all elements of U� are increasing and concave;

3. third degree stochastic dominance if and only if all elements of U� are increasing, concave, and have
convex derivative on (m;M);

4. the n-th degree risk order (for n � 2) if and only if all elements of U� have (n� 2)-th derivative on
(m;M) and such derivative is concave/convex if n is even/odd.

The next Theorem 1 will show that, if V is smooth, one can choose U� = rangerV (even when I is

unbounded).

Finally, as illustrated in Example 2 (part I) and Proposition 2 below, consistency with stochastic orders

is a common way to model risk attitudes (see Eeckhoudt and Schlesinger, 2006, and Eeckhoudt, Schlesinger,

and Tsetlin, 2009). Point (iii) of Lemma 1 shows that the expected utility core completely characterizes risk

attitudes modelled through consistency with any stochastic order. In other words, if two preferences have

the same expected utility core, then they must exhibit the same risk attitudes.

3.2 Di¤erential characterizations

In the next theorem, our �rst main result, we show that the set of all local utilities represents the expected

utility core of the decision maker�s preferences.11

Theorem 1 If % is a binary relation represented by a continuous and Gateaux di¤erentiable preference

functional V , then

F %� G ()
Z
I

u (x) dF (x) �
Z
I

u (x) dG (x) 8u 2 rangerV:

Local utilities thus capture both local and global behavior that is consistent with expected utility. In

particular, individually each of these utilities models a local expected utility behavior of %, as Machina
(1982) emphasized; while jointly they characterize a global expected utility feature of %, as our result shows.
Theorem 1 can be restated by saying that the expected utility core is the integral stochastic order

generated by all local utilities, that is,

%�= %rangerV :

Together with the observation that % is consistent with a stochastic order if and only if %� is consistent
with it (Lemma 1), this leads to our second main result:

Proposition 1 Let % be a binary relation represented by a continuous and Gateaux di¤erentiable preference
functional V . Then % is consistent with an integral stochastic order %U if and only if rangerV � hUi.
11Note that in Theorem 1 the interval I is not required to be bounded. Thus, we cannot rely on Dubra, Maccheroni, and Ok

(2004) to represent %�, as shown by Evren (2008).
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In particular, by taking U� = rangerV in Example 2 (part II), we obtain a full di¤erential characteriza-
tion of consistency of % with stochastic dominances and risk orders of all degrees. Therefore this proposition
extends (most of the extensions of) Theorem 1 of Machina (1982) including the very general Lemma 1 of

Chew and Nishimura (1992). The latter essentially shows that if rangerV � U , then % is consistent with

%U . The improvement of Proposition 1 is twofold. Not only our condition rangerV � hUi is weaker, but
more importantly it is both necessary and su¢ cient for consistency.12

4 Risk aversion

In the rest of the paper, to better compare our results with the literature and to avoid technicalities, we

con�ne ourselves to the case I = [m;M ].

Outside the realm of expected utility, where they coincide, we have two competing notions of risk aversion:

weak risk aversion and strong risk aversion (that is, aversion to mean preserving spreads). The second notion

requires the de�nition of mean preserving spread (henceforth, MPS). We start by providing the more general

notion of simple compensated spread, �rst introduced by Machina (1982), for a binary relation % . The

notion of MPS will be a particular case.

Given F and G in D and % on D, we say that G is a simple compensated spread (henceforth, SCS) of F
for % if and only if G � F and there exists z 2 [m;M ] such that(

F (x) � G (x) 8x 2 [m; z)
F (x) � G (x) 8x 2 [z;M ]

: (7)

In particular, G is a MPS of F , written F %MPS G, if and only if E (G) = E (F ) and there exists z 2 [m;M ]
such that (7) holds.

Given a binary relation % on D, we say that % is

1. weakly risk averse if and only if GE(F ) % F for all F 2 D, that is, the decision maker prefers to receive
the expected value of F with certainty to facing risk F .

2. strongly risk averse (or, brie�y, MPS averse) if and only if % is consistent with %MPS , that is, the

decision maker prefers F to all of its mean preserving spreads.

Proposition 2 Let % be a binary relation represented by a continuous preference functional V and let I be

bounded. The following statements are equivalent:

(i) % is consistent with the concave order;

(ii) % is MPS averse;

(iii) %� is MPS averse;

(iv) %� is weakly risk averse;

(v) Each u 2 U� is concave.

If, in addition, V is Gateaux di¤erentiable, then they are also equivalent to:

(vi) Each u 2 rangerV is concave.

12 Indeed, although for concreteness we considered closed intervals, Lemma 1, Theorem 1, and Proposition 1) actually hold
in metric spaces (that must be compact when the intervals are required to be bounded) and cumulative distribution functions
are replaced by Borel probability measures.
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Each of the previous conditions implies that % is weakly risk averse, but the converse is false.

Since it is not transitive, %MPS is not an integral stochastic order, and so Proposition 2 is not an

immediate corollary of our main results. Also observe that Proposition 2 shows how weak risk aversion of

%� is a stronger assumption than weak risk aversion of %. Although this may seem counter-intuitive at �rst,

recall that GE(F ) %� F not only implies GE(F ) % F for all F 2 D, but also

�GE(F ) + (1� �)H % �F + (1� �)H

for all F 2 D, H 2 D, and � 2 (0; 1).
Like Chew, Karni, and Safra (1987), given two binary relations %1 and %2 on D, we say that %1 is more

risk averse than %2 if and only if whenever G is a SCS of F for %2, then F %1 G.

Proposition 3 Let %1 be a binary relation represented by a continuous and Gateaux di¤erentiable preference
functional V , %2 be an expected utility preference with continuous and strictly increasing utility function v,
and I be bounded. The following statements are equivalent:

(i) %1 is more risk averse than %2;

(ii) Each u 2 rangerV is a concave transformation of v.

If, in addition, %1 is consistent with �rst degree stochastic dominance, then they are also equivalent to:

(iii) Each u 2 rangerV is an increasing and concave transformation of v.

Propositions 2 and 3 provide an alternative proof and a generalization of Theorems 3 and 4 of Machina

(1982) that require the stronger notion of Frechet di¤erentiability, Property 2 of Dekel (1986), and Theorem

3 of Chew, Epstein, and Segal (1991), see also Remark 2. The last two results apply to speci�c classes of

nonexpected utility preferences.13 The contribution of our results is both conceptual and technical. From a

conceptual point of view, Proposition 2 provides an additional justi�cation to the choice of MPS aversion

as a de�nition of risk aversion outside the expected utility model. In fact, even without any di¤erentiability

hypothesis, this assumption is equivalent to require weak risk aversion but in terms of the expected utility

core %� of the decision maker�s preference %.
From a technical point of view our results are in terms of Gateaux derivatives rather than Frechet

derivatives, that is, we require weaker and more natural di¤erentiability assumptions. Moreover, we provide

a unifying framework for some of the results in the literature and highlight the strict connection between

integral stochastic orders and local utilities. To see this latter fact, assume%2 is an expected utility preference
with continuous and strictly increasing utility function v (like in Proposition 3). Without loss of generality,

assume that v (m) = m and v (M) =M . If G is a SCS of F for %2, thenZ
[m;M ]

u (v (x)) dF (x) �
Z
[m;M ]

u (v (x)) dG (x) for all concave u 2 C ([m;M ]) : (8)

In particular, if G is a MPS of F , then F and G satisfy (8) with v equal to the identity.14

13See Chew, Karni, and Safra (1987) for similar results concerning rank dependent utility.
14Along the lines of Machina (1982), note that, in view of the assumptions on %2 we are considering, G is a SCS of F for %2

if and only if v�1
�R
I v (x) dG (x)

�
= v�1

�R
I v (x) dF (x)

�
and there exists z 2 [m;M ] such that (7) holds. In the language of

Hardy, Littlewood, and Polya (1952), the �arithmetic mean of H� given by E (H) =
R
I xdH (x) appearing in the de�nition of

MPS is being replaced by the �v-mean of H�given by Ev (H) = v�1
�R
I v (x) dH (x)

�
. Thus one might think of Proposition 3

as a statement about aversion to v-mean preserving spreads.
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5 Loss aversion and prudence

Loss aversion (Kahneman and Tversky, 1979) refers to the intuition that losses loom larger than gains, while

prudence (also known as downside risk aversion) refers to the preference for additional risk on the upside

(gain-side) rather than on the downside (loss-side) of a gamble (Menezes, Geiss, and Tressler, 1980, see also

Eeckhoudt and Schlesinger, 2006, 2013).15

In this section we consider two very popular models of reference dependent preferences: prospect theory

(Kahneman and Tversky, 1979, see Wakker, 2010, for a textbook introduction) and choice-acclimating

preferences (Koszegi and Rabin, 2007, a special case of Chew, Epstein, and Segal, 1991) and, by means of

the tools we developed so far, we show that loss aversion and prudence cannot coexist in these models.

5.1 Prospect theory

In prospect theory the preference functional V : D ! R that represents % is given by

V (F ) =

Z M

0

w (1� F (x)) dv (x)�
Z 0

m

~w (F (x)) dv (x) (9)

where I = [m;M ] with m � 0 � M , v : I ! R is a continuous and strictly increasing function such that
v (0) = 0, and w; ~w : [0; 1]! [0; 1] are strictly increasing and onto functions.

This very popular model has been proposed by Tversky and Kahneman (1992) to extend the scope of

the classic analysis of Kahneman and Tversky (1979). Two special cases are noteworthy:

(i) ~w (p) = w (p) for all p 2 [0; 1], which corresponds to the original speci�cation of Kahneman and Tversky
(1979);

(ii) ~w (p) = 1�w (1� p) for all p 2 [0; 1], which corresponds to rank dependent utility, a la Quiggin, 1982.

Chew, Karni, and Safra (1987) computed the local utilities of rank dependent utility. Next we compute

them for prospect theory.16

Proposition 4 If w; ~w : [0; 1] ! [0; 1] are continuously di¤erentiable, then the preference functional (9) is

Gateaux di¤erentiable, and, for each F 2 D,

uF (x) =

Z
[m;x]

�
w0 (1� F (y)) 1[0;M ] (y) + ~w0 (F (y)) 1[m;0) (y)

�
dv (y) 8x 2 [m;M ] :

In prospect theory it is typically understood that 0 is the reference outcome, and loss aversion is formally

de�ned by

v0� (0) > v
0
+ (0)

under the implicit additional assumptions that 0 2 (m;M) and the left and right derivatives de�ned above
exists. On the other hand, prudence corresponds to consistency with the third degree risk order (see again

the works of Eeckhoudt, Schlesinger, and coauthors). The next proposition shows that the two notions

cannot coexist.
15Although the idea of prudence and precautionary savings dates back to Kimball (1990), the general identi�cation between

the behavioral trait of prudence with consistency with the third degree risk order is due to Eeckhoudt and Schlesinger (2006).
Prudence also implies preference for skewness and the two concepts coincide for some important special cases: see Arditti
(1967), Whitmore (1970), Tsiang (1972), Kraus and Litzenberger (1976), and Chiu (2005).
16Recall that local utilities at a point F are unique only up to an additive constant. In Proposition 4, the local utility uF

has been computed by further imposing that uF (m) = 0.
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Proposition 5 Let w; ~w : [0; 1]! [0; 1] be continuously di¤erentiable and m < 0 < M . If the preference %
represented by (9) is prudent, then v is continuously di¤erentiable on (m;M).

In this case, v0 (0) 6= 0 implies ~w (p) = 1� w (1� p) for all p 2 [0; 1].

Clearly, if % is consistent with third degree stochastic dominance a fortiori it is prudent, and so v

is continuously di¤erentiable on (m;M). But more is true, in this case V reduces to an expected utility

preference functional.

Corollary 1 Let w; ~w : [0; 1] ! [0; 1] be continuously di¤erentiable and m < 0 < M . The following

statements are equivalent for a preference % represented by (9):

(i) % is consistent with third degree stochastic dominance;

(ii) w (p) = p = ~w (p) for all p 2 [0; 1] and v is increasing, concave, and has convex derivative on (m;M).

From a behavioral viewpoint, this means that a prospect theory agent is risk averse and prudent if and

only if he is an expected utility maximizer. See Schmidt and Zank (2008) for a characterization of risk

aversion in prospect theory.

5.2 Choice-acclimating preferences

Chew, Epstein, and Segal (1991), inter alia, study a class of preferences represented by functionals of the

form

V (F ) =

Z
I

Z
I

� (x; y) dF (y) dF (x) (10)

where I = [m;M ] and � : I � I ! R is a symmetric and continuous function.17 They also show that V is

continuous and Gateaux di¤erentiable in the sense of (3) with

uF (x) =

Z
I

2� (x; y) dF (y) 8x 2 I (11)

for all F 2 D.

Remark 2 Although %� can be obtained by (11) and Theorem 1, just by using the de�nition of %�, it is
possible to show that

F %� G ()
Z
I

� (x; y) dF (x) �
Z
I

� (x; y) dG (x) 8y 2 I (12)

(see Appendix B). Together with Fact 1, this means that hrangerV i = h� (�; y) : y 2 Ii, and one can indif-
ferently set U� = rangerV or U� = f� (�; y) : y 2 Ig.

As proved by Masatlioglu and Raymond (2014), Koszegi and Rabin (2007) consider the following speci-

�cation of (10):18

V (F ) =

Z
I

v (x) dF (x) +

Z
I

Z
I

� (v (x)� v (y)) dF (y) dF (x) (13)

where v : I ! R is a continuous, strictly increasing, and continuously di¤erentiable function and � : R! R
is continuous, strictly increasing, twice di¤erentiable on Rn f0g and such that

�0� (0) > �
0
+ (0) :

Again the latter condition captures loss aversion and again it is incompatible with prudence.

Proposition 6 A preference % represented by (13) cannot be prudent.

17For example, the mean-variance preference functional of Remark 1 corresponds to 2� (x; y) = x+ y � �
2
(x� y)2.

18The speci�cation corresponds to 2� (x; y) = v (x) + v (y) + � (v (x)� v (y)) + � (v (y)� v (x)).
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6 Conclusions

In this paper we considered a decision maker choosing among gambles and whose preferences % are repre-

sented by a continuous and smooth real-valued functional V . We proved two main results:

Theorem 1 showing that the largest subrelation %� of % satisfying the axioms of expected utility (called

expected utility core of %), is represented by the set of all derivatives of V (called local utilities), that is,

F %� G ()
Z
u (x) dF (x) �

Z
u (x) dG (x) 8u 2 rangerV:

Proposition 1 showing that % is consistent with an integral stochastic order %U , that is, with the unanimous
judgement of the expected utility maximizers with utility in U , if and only if each local utility is, up to a
constant, either a weighted sum of elements of U or a limit of weighted sums plus constants, formally

rangerV � hUi :

The �rst result is altogether new: it provides a global behavioral interpretation of a mathematical object,

the set rangerV of all local utilities of V , that was known to be important in describing the properties of

the underlying preference %, but had no ordinal counterpart. Theorem 1 shows that this ordinal counterpart
is %�. This �nding also con�rms the interpretation of %� as the �expected utility essence� of % in that

it is represented as a �multi�expected�utility�by the derivatives of V , which locally approximate V with

expected utility functionals.

The second result, completes a strand of the decision theoretic literature ranging from Machina (1982)

to Chew and Nishimura (1992) that studied the relations between risk attitudes (captured by consistency

with stochastic orders) and local utilities. This literature either considered a speci�c form of V and/or a

speci�c integral stochastic order (like Machina, 1982, and Chew, Karni, and Safra, 1987) or gave su¢ cient

conditions rather than full characterizations (like Chew and Nishimura, 1992). In contrast, Proposition 1

provides a necessary and su¢ cient condition that applies to each preference functional V and each integral

stochastic orders. Finally, while the di¤erentiability assumption makes Proposition 1 starker, our results can

be extended by direct characterization of the expected utility core.

As a byproduct of our analysis, we show that two popular loss aversion theories cannot account for

prudence. Indeed, an inspection of the proofs shows that the same incompatibility with loss aversion holds

also for higher orders of risk aversion such as temperance and edginess.

Appendices

A Distributions and integrals

We denote a closed interval by I. Let m;M 2 R be such that M > m. We next formally de�ne the set

D (I). We have four possible cases:

1. D ((�1;1)) =
�
F 2 RR : F is increasing, right continuous, limt!�1 F (t) = 0; limt!+1 F (t) = 1

	
;

2. D ([m;1)) = fF 2 D (�1;1) : F (y) = 0 for all y < mg;

3. D ((�1;M ]) = fF 2 D (�1;1) : F (y) = 1 for all y �Mg;

4. D ([m;M ]) = D ([m;1)) \ D ((�1;M ]).

Next, we de�ne two other important sets:
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1. �I (R), the set of all Borel probability measures with support I;

2. �(I), the set of all Borel probability measures on I.

Given D (I), we endow it with the topology of weak convergence: given fFng � D (I) and F 2 D (I) we
have that limn Fn = F if and only if limn Fn (x) = F (x) for all x 2 (�1;1) which is a continuity point of
F (see Billingsley, 1995, p. 327).

Given I bounded and �(I), we endow the latter set with the weak* topology: given f�ng � �(I) and
� 2 �(I) we have that limn �n = � if and only if limn

R
I
fd�n =

R
I
fd� for all f 2 C (I).

Next, we de�ne two maps T : D (I) ! �I (R) and P : �I (R) ! �(I). T is such that T (F ) is the

unique measure on the real line, denoted by �̂F , such that �̂F ((a; b]) = F (b) � F (a) for all a; b 2 R. By
Theorem 12.4 of Billingsley (1995), T is well de�ned. It is immediate to see that this map is a¢ ne. On the

other hand, P is such that � = P (�̂) is the measure �̂ restricted to I, that is, P (�̂) (B) = �̂ (B \ I) for all
Borel sets B of I. It is immediate to see that P is well de�ned and a¢ ne. Note that P �T : D (I)! �(I) is

a map that associates to each distribution F 2 D (I) a unique probability measure denoted by �F in �(I).
If I is bounded, then P � T is an a¢ ne homeomorphism.
Given u 2 Cb (I), we denote the Lebesgue-Stieltjes integral

R
I
ud�F by

R
I
u (x) dF (x). If I is equal to

[m;M ], then its relation with the Riemann-Stieltjes integral is such that:Z
[m;M ]

u (x) dF (x) =

Z
[m;M ]

ud�F = u (m)F (m) +

Z M

m

u (x) dF (x) ;

where the �rst equality is by de�nition and the second one is a well known fact. Note that the last integral

is a Riemann-Stieltjes integral. Often, to di¤erentiate a Lebesgue-Stieltjes integral from a Riemann-Stieltjes

integral, we will denote the �rst one by
R
[m;M ]

u (x) dF (x) and the second one by
RM
m
u (x) dF (x). Finally,

given u 2 Cb (I), we denote by
R
I
u (x) d (G� F ) (x), or just by

R
I
ud (G� F ), the di¤erence

R
I
u (x) dG (x)�R

I
u (x) dF (x).

We recall that the weak topology on Cb (I) is the weakest topology on it that declares continuous all

functionals of the form u 7!
R
I
u (x) dF (x) where F is any element of D (I); when I is bounded this topology

coincides with the weak topology induced by the supnorm.

B Proofs and related analysis

The proof of Lemma 1 is basically contained in Cerreia�Vioglio (2009), the di¤erence being that here the

setting are distribution functions rather than probability measures. We report it for the sake of completeness.

Proof of Lemma 1. (i) and (ii). Trivially, we have that %� is a preorder. Next, consider fFng ; fGng � D
such that Fn ! F 2 D, Gn ! G 2 D, and Fn %� Gn for all n 2 N. Fix H 2 D and � 2 (0; 1]. It follows that
�Fn+(1� �)H % �Gn+(1� �)H for all n 2 N. Since % satis�es Continuity and �Fn+(1� �)H ! �F +

(1� �)H and �Gn+(1� �)H ! �G+(1� �)H, this implies that �F +(1� �)H % �G+(1� �)H. Since
H 2 D and � 2 (0; 1] were arbitrarily chosen, we can conclude that F %� G. Next, consider F;G;H 2 D.
Assume that F %� G and � 2 (0; 1). It follows that

� (�F + (1� �)H) + (1� �)H 0 = (��)F + (1� ��)
�
� (1� �)
1� �� H +

1� �
1� ��H

0
�

% (��)G+ (1� ��)
�
� (1� �)
1� �� H +

1� �
1� ��H

0
�

= � (�G+ (1� �)H) + (1� �)H 0 8� 2 (0; 1] ;8H 0 2 D;

proving that �F + (1� �)H %� �G+ (1� �)H. Thus, %� satis�es Independence. Finally, by de�nition of
%�, (ii) trivially follows.
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(iii). Let % be consistent with %# and let %# satisfy Independence. Assume that F %# G. Since %#
satis�es Independence, it follows that �F +(1� �)H %# �G+(1� �)H for all � 2 (0; 1] and for all H 2 D.
Since % is consistent with %#, it follows that �F + (1� �)H % �G+ (1� �)H for all � 2 (0; 1] and for all
H 2 D, that is, F %� G. Then %� is consistent with %#.
Conversely, let %� be consistent with %#, then F %# G implies F %� G which by (ii) implies F % G.

That is, % is consistent with %#.
(iv). De�ne S = P � T . De�ne also %� on �(I) by � %� � if and only if S�1 (�) %� S�1 (�). By [17]

and given the properties of S and %�, it follows that there exists a set U� � C (I) such that

� %� � ()
Z
I

ud� �
Z
I

ud� 8u 2 U�:

Thus, we can conclude that

F %� G () S (F ) %� S (G) () �F %� �G ()
Z
I

ud�F �
Z
I

ud�G 8u 2 U�

()
Z
I

u (x) dF (x) �
Z
I

u (x) dG (x) 8u 2 U�:

(v). By point (iii), % is consistent with an integral stochastic order %U if and only if %� is consistent
with %U . By point (iv), %� is consistent with %U if and only if %U� is consistent with %U . By Fact 1, %U�

is consistent with %U if and only if U� � hUi. �
Next, we give a version of the Mean Value Theorem. Given our framework and since the notion of

di¤erentiability we are using is a notion of Gateaux di¤erentiability which involves just one sided derivatives

and a particular domain, this result is not obvious even though the proof is fairly simple.

If F;G 2 D and t 2 R, we set Ft = (1� t)F + tG when no confusion can arise.

Proposition 7 If V : D ! R is continuous and Gateaux di¤erentiable, then for every F;G 2 D there exists

t 2 (0; 1) such that
V (F )� V (G) =

Z
I

uFt (x) dF (x)�
Z
I

uFt (x) dG (x) :

Proof. Consider F;G 2 D. De�ne f : [0; 1] ! R by f (t) = V ((1� t)F + tG) for all t 2 [0; 1]. By routine
arguments, it can be shown that f is continuous on [0; 1]. As for di¤erentiability of f on (0; 1), we follow

Huber and Ronchetti (2009, pages 39-40). Note that Ft+h =
�
1� h

1�t

�
Ft +

h
1�tG hence for each t 2 (0; 1)

f 0+ (t) = lim
h#0

V (Ft+h)� V (Ft)
h

= lim
h#0

V
��
1� h

1�t

�
Ft +

h
1�tG

�
� V (Ft)

h

= lim
h#0

1

1� t
V
��
1� h

1�t

�
Ft +

h
1�tG

�
� V (Ft)

h
1�t

=
1

1� t

Z
I

uFtd (G� Ft) =
Z
I

uFtd (G� F )

(note that as h goes to 0+ eventually Ft+h 2 D) analogously Ft�h =
�
1� h

t

�
Ft +

h
t F and

f 0� (t) = lim
h#0

V (Ft�h)� V (Ft)
�h = lim

h#0

V
��
1� h

t

�
Ft +

h
t F
�
� V (Ft)

�h

= lim
h#0
�1
t

V
��
1� h

t

�
Ft +

h
t F
�
� V (Ft)

h
t

= �1
t

Z
I

uFtd (F � Ft) =
Z
I

uFtd (G� F )

that is, f 0 (t) =
R
uFtdG�

R
uFtdF . By the Mean Value Theorem for functions of a real variable, it follows

that there exists t 2 (0; 1) such thatZ
I

uFtdG�
Z
I

uFtdF = f
0 (t) =

f (1)� f (0)
1� 0 = f (1)� f (0) = V (G)� V (F ) ;
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proving the statement. �
More powerful results of this kind appear in Cerreia�Vioglio, Maccheroni, Marinacci, and Montrucchio

(2014), where von Mises calculus is studied in a very general setting.

Proof of Theorem 1. Setting V = rangerV , next we show that %V coincides with %�. Consider F and

G in D. Assume that F %V G. By Proposition 7 and since F %V G, we have that there exists t 2 (0; 1) such
that

V (F )� V (G) =
Z
I

uFt (x) dF (x)�
Z
I

uFt (x) dG (x) � 0;

yielding that F % G. By Lemma 1 and since %V is a stochastic order, it follows that F %� G. Viceversa,
assume that F %� G. Consider H 2 D. By de�nition of %� and since V represents %, we have that
V ((1� �)H + �F ) � V ((1� �)H + �G) for all � 2 (0; 1]. This implies that

V ((1� �)H + �F )� V (H)
�

� V ((1� �)H + �G)� V (H)
�

8� 2 (0; 1] :

By passing to the limits and since V is Gateaux di¤erentiable, it follows that
R
I
uH (x) dF (x)�

R
I
uH (x) dH (x) �R

I
uH (x) dG (x)�

R
I
uH (x) dH (x). Since H was arbitrarily chosen, we can conclude that F %V G. �

Proof of Proposition 1. By Lemma 1, % is consistent with %U if and only if %� is consistent with %U .
By Theorem 1, %�= %rangerV , then % is consistent with %U if and only if %rangerV is consistent with %U .
By Fact 1, %rangerV is consistent with %U if and only if rangerV � hUi. �
Proof of Proposition 2. (i) implies (ii). It is well known that if F %MPS G, then

R
I
u (x) dF (x) �R

I
u (x) dG (x) for all concave u 2 C (I). Since % is consistent with the concave order, it follows that F % G.
(ii) implies (iii). By de�nition of MPS and since % is MPS averse, note that

F %MPS G =) �F + (1� �)H %MPS �G+ (1� �)H 8� 2 (0; 1] ;8H 2 D
=) �F + (1� �)H % �G+ (1� �)H 8� 2 (0; 1] ;8H 2 D =) F %� G;

proving that %� is MPS averse.
(iii) implies (iv). Since GE(F ) %MPS F for all F 2 D, it follows that GE(F ) %� F for all F 2 D.
(iv) implies (v). Since I is bounded and by Lemma 1, we have that there exists a set U� � C (I)

that represents %� as in (6). Pick x; y 2 I. Consider F = 1
2Gx +

1
2Gy. By assumption, it follows that

G 1
2x+

1
2y
%� F . We can conclude that u

�
1
2x+

1
2y
�
� 1

2u (x) +
1
2u (y) for all u 2 U

�, that is, each u 2 U� is
concave.

(v) implies (i). By Lemma 1 and since each u 2 U� is concave, the statement follows.
We just showed that (i), (ii), (iii), (iv) and (v) are equivalent. Now assume that V is also Gateaux

di¤erentiable. By Theorem 1, it follows that U� can be chosen to be rangerV , making (v) equivalent to
(vi). �
Proof of Proposition 3. Without loss of generality assume that v 2 C ([m;M ]) is normalized, that is,
v (m) = m and v (M) =M . De�ne �V : D ! R by

�V (F ) =

Z
[m;M ]

v (x) dF (x) 8F 2 D:

Consider F and G in D. Assume that G is a SCS of F for %2, we denote it by F %SCS G. Recall that
F %SCS G if and only if �V (F ) = �V (G) and there exists z 2 [m;M ] such that(

F (x) � G (x) 8x 2 [m; z)
F (x) � G (x) 8x 2 [z;M ]

:
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(i) implies (ii). By de�nition of SCS and since %1 is more risk averse than %2 and %2 is Expected Utility,
note that

F %SCS G =) �F + (1� �)H %SCS �G+ (1� �)H 8� 2 (0; 1] ;8H 2 D
=) �F + (1� �)H %1 �G+ (1� �)H 8� 2 (0; 1] ;8H 2 D =) F %�1 G;

proving that %�1 is more risk averse than %2. Consider F 2 D. It is immediate to see that Gv�1( �V (F )) 2 D.
Next, note that Gv�1( �V (F )) %

SCS F for all F 2 D. Consider y1; y2 2 [m;M ] = v ([m;M ]). There exists

x1; x2 2 [m;M ] such that v (xi) = yi for i 2 f1; 2g. De�ne F = 1
2Gx1 +

1
2Gx2 and �y = v�1

�
�V (F )

�
=

v�1
�
1
2v (x1) +

1
2v (x2)

�
. We thus have that G�y %SCS F and so G�y %�1 F . For each u 2 rangerV de�ne

fu = u � v�1 2 C ([m;M ]). By Theorem 1 and since G�y %�1 F , we have that for each u 2 rangerV

fu

�
1

2
y1 +

1

2
y2

�
= u � v�1

�
1

2
y1 +

1

2
y2

�
= u

�
v�1

�
1

2
v (x1) +

1

2
v (x2)

��
= u (�y)

=

Z
[m;M ]

u (x) dG�y (x) �
Z
[m;M ]

u (x) dF (x) =
1

2
u (x1) +

1

2
u (x2)

=
1

2
u
�
v�1 (v (x1))

�
+
1

2
u
�
v�1 (v (x2))

�
=
1

2
u
�
v�1 (y1)

�
+
1

2
u
�
v�1 (y2)

�
=
1

2
fu (y1) +

1

2
fu (y2) ;

proving that fu is concave and u = fu � v.
(ii) implies (i). Consider F;G 2 D and u 2 rangerV . By Theorem 1 and since each u 2 rangerV is a

concave transformation of v, if F %SCS G, then
R
I
u (x) dF (x) �

R
I
u (x) dG (x) for all u 2 rangerV which,

in turn, implies that F % G, proving the statement.
We just showed that (i) and (ii) are equivalent. Now assume that %1 is also consistent with �rst degree

stochastic dominance. By Proposition 1, it follows that each u 2 rangerV is also increasing. By the same

proof of (i) implies (ii), we have that fu is also increasing and this yields that (i) implies (iii). Trivially, (iii)

implies (ii). �
Consider V de�ned as in (9). We �rst report a simple property.

Lemma 2 V : D ! R is continuous.

Proof of Proposition 4. We want to compute the Gateaux derivative of V at F in direction G� F , that
is,

lim
�#0

V ((1� �)F + �G)� V (F )
�

8F;G 2 D: (14)

The computation is simpli�ed by the observation that for each function f : [m;M ]! R of bounded variation,
the Riemann-Stieltjes integral

RM
m
f (x) dv (x) coincides with the Lebesgue-Stieltjes integral

R
[m;M ]

fdv of f

with respect to the Borel measure induced on [m;M ] by any continuous and increasing extension of v to R.
Set H = G� F , and note that, provided the limit in (14) exists, it is equal to

= lim
�#0

V (F + � (G� F ))� V (F )
�

= lim
�#0

R
[0;M ]

w (1� F � �H) dv �
R
[m;0]

~w (F + �H) dv �
R
[0;M ]

w (1� F ) dv +
R
[m;0]

~w (F ) dv

�

= lim
�#0

Z
[0;M ]

w (1� F (x)� �H (x))� w (1� F (x))
�

dv (x)�
Z
[m;0]

~w (F (x) + �H (x))� ~w (F (x))

�
dv (x) :

For each x 2 [m;M ], we have that
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� if x 2 [0;M ] and H (x) 6= 0, then

lim
�#0

w (1� F (x)� �H (x))� w (1� F (x))
�

= lim
�#0

w (1� F (x)� �H (x))� w (1� F (x))
��H (x) (�H (x))

= �w0 (1� F (x))H (x)

and the same holds when H (x) = 0;

� if x 2 [m; 0] and H (x) 6= 0, then

lim
�#0

~w (F (x) + �H (x))� ~w (F (x))

�
= lim

�#0

~w (F (x) + �H (x))� ~w (F (x))

�H (x)
H (x) = ~w0 (F (x))H (x)

and the same holds when H (x) = 0.

Continuous di¤erentiability on [0; 1] of w and ~w implies their Lipschitzianity so that, for each x 2 [m;M ]
and each � 2 (0; 1),����w (1� F (x)� �H (x))� w (1� F (x))�

���� � Lw j1� F (x)� � (G (x)� F (x))� (1� F (x))j
�

� Lw

and ���� ~w (F (x) + �H (x))� ~w (F (x))

�

���� � L ~w jF (x) + � (G (x)� F (x))� F (x)j
�

� L ~w:

Therefore the Dominated Convergence Theorem applied to each sequence �n ! 0+ yields that

lim
�#0

V (F + � (G� F ))� V (F )
�

=

Z
[0;M ]

�w0 (1� F (x)) (G (x)� F (x)) dv (x)

�
Z
[m;0]

~w0 (F (x)) (G (x)� F (x)) dv (x) :

Now de�ne

�F (x) =

(
w0 (1� F (x)) x 2 [0;M ]
~w0 (F (x)) x 2 [m; 0)

(15)

and note that �F is bounded and Borel measurable on [m;M ] with

lim
�#0

V (F + � (G� F ))� V (F )
�

= �
Z
[m;M ]

(G (x)� F (x))�F (x) dv (x) :

Setting �duF = �F dv�, or more precisely uF (x) =
R
[m;x]

�F dv for all x 2 [m;M ], it is not di¢ cult to show
that uF 2 C ([m;M ]) andZ
[m;M ]

(G (x)� F (x))�F (x) dv (x) =
Z M

m

(G� F ) duF

= (G (M)� F (M))uF (M)� (G (m)� F (m))uF (m)�
 Z M

m

uF dG�
Z M

m

uF dF

!

= �
 Z

[m;M ]

uF dG�
Z
[m;M ]

uF dF

!
= �

Z
[m;M ]

uF d (G� F )

where the second equality follows by integration by parts, the third by G (M) = F (M) = 1 and uF (m) = 0,

and the last one by de�nition, proving the statement. �
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Lemma 3 If w; ~w : [0; 1] ! [0; 1] are continuously di¤erentiable, m < 0 < M , and all local utilities uF
of the preference functional (9) are di¤erentiable (resp., continuously di¤erentiable) on (m;M), then v is

di¤erentiable (resp., continuously di¤erentiable) on (m;M).

In this case, v0 (0) 6= 0, implies ~w (p) = 1� w (1� p) for all p 2 [0; 1].

Before entering the proof�s details notice that if the preference % represented by V is consistent with

any risk order or any stochastic dominance of a degree n � 3, then all local utilities uF are continuously

di¤erentiable. In fact, each uF admits n�2 continuous derivatives on (m;M) because its (n� 2)-th derivative
is either convex or concave and so it is continuous; clearly its derivatives of lower order are also continuous

since they are di¤erentiable.

Proof. Recall that, for each F 2 D,

uF (x) =

Z
[m;x]

�
w0 (1� F (y)) 1[0;M ] (y) + ~w0 (F (y)) 1[m;0) (y)

�
dv (y) 8x 2 [m;M ]

and, for all p 2 [0; 1], set Fp = pGm + (1� p)GM .
First we prove that for each p 2 [0; 1],

w0 (1� p) v (z)� v (x)
z � x =

uFp (z)� uFp (x)
z � x 8x; z 2 [0;M) (16)

~w0 (p)
v (z)� v (x)
z � x =

uFp (z)� uFp (x)
z � x 8x; z 2 (m; 0] (17)

provided x 6= z. Since uFp is di¤erentiable, for each p 2 [0; 1],

w0 (1� p) v0+ (x) =
�
uFp
�0
+
(x) 8x 2 [0;M) (18)

w0 (1� p) v0� (x) =
�
uFp
�0
� (x) 8x 2 (0;M) (19)

~w0 (p) v0� (x) =
�
uFp
�0
� (x) 8x 2 (m; 0] (20)

~w0 (p) v0+ (x) =
�
uFp
�0
+
(x) 8x 2 (m; 0) (21)

and all left and right derivatives above are �nite.

Distinguish the following cases

� for x 2 [0;M ],
uF (x) =

Z
[m;0)

~w0 (F (y)) dv (y) +

Z
[0;x]

w0 (1� F (y)) dv (y)

� in particular, for x = 0,
uF (0) =

Z
[m;0)

~w0 (F (y)) dv (y)

� for x 2 [m; 0),
uF (x) =

Z
[m;x]

~w0 (F (y)) dv (y)

and this also holds for x = 0.

For every x; z 2 [0;M), if z > x, then

uF (z)� uF (x) =
Z
(x;z]

w0 (1� F (y)) dv (y)

and if x > z, then uF (x)� uF (z) =
R
(z;x]

w0 (1� F (y)) dv (y), thus

uF (z)� uF (x) =
( R

(x;z]
w0 (1� F (y)) dv (y) z > x

�
R
(z;x]

w0 (1� F (y)) dv (y) z < x
:
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If F = Fp, then Fp = p on (m;M) and so

uFp (z)� uFp (x)
z � x =

(
w0 (1� p) v(z)�v(x)z�x z > x

�w0 (1� p) v(x)�v(z)z�x z < x
= w0 (1� p) v (z)� v (x)

z � x 8x; z 2 [0;M) ;

proving (16).

Analogously, for every x; z 2 (m; 0], if z > x, then

uF (z)� uF (x) =
Z
(x;z]

~w0 (F (y)) dv (y)

and if x > z, then uF (x)� uF (z) =
R
(z;x]

~w0 (F (y)) dv (y), thus

uF (z)� uF (x) =
( R

(x;z]
~w0 (F (y)) dv (y) z > x

�
R
(z;x]

~w0 (F (y)) dv (y) z < x
:

If F = Fp, then Fp = p on (m;M) and so

uFp (z)� uFp (x)
z � x =

(
~w0 (p) v(z)�v(x)z�x z > x

� ~w0 (p) v(x)�v(z)z�x z < x
= ~w0 (p)

v (z)� v (x)
z � x 8x; z 2 (m; 0] ;

proving (17).

Equations (18), (19), (20), (21), and �niteness of all left and right derivatives follow easily (note that

there exist p; q 2 (0; 1) such that ~w0 (p) 6= 0 and w0 (1� q) 6= 0).
The latter equations imply that: since uFp is di¤erentiable (resp., continuously di¤erentiable) on (m;M)

for all p 2 [0; 1], then v is di¤erentiable (resp., continuously di¤erentiable) on (0;M) and (m; 0).
But more is true, choosing x = 0 in (18) and (20), it follows that

~w0 (p) v0� (0) =
�
uFp
�0
� (0) =

�
uFp
�0
+
(0) = w0 (1� p) v0+ (0) 8p 2 [0; 1] ; (22)

then by integrating both sides of (22) over [0; 1],

v0� (0) = v
0
� (0) ~w (1) =

Z 1

0

~w0 (p) v0� (0) dp =

Z 1

0

w0 (1� p) v0+ (0) dp = v0+ (0)

so that v is di¤erentiable also at 0. If uF is continuously di¤erentiable on (m;M) for all F 2 D, then
choosing p such that ~w0 (p) 6= 0, and taking xn ! 0� it follows that

~w0 (p) v0 (xn) =
�
uFp
�0
(xn)!

�
uFp
�0
(0) = ~w0 (p) v0 (0)

and so v0 (xn)! v0 (0). Analogously, choosing q such that w0 (1� q) 6= 0, and taking yn ! 0+ it follows that

w0 (1� q) v0 (yn) =
�
uFq
�0
(yn)!

�
uFq
�0
(0) = w0 (1� q) v0 (0)

and so v0 (yn)! v0 (0), so that v is continuously di¤erentiable also at 0.

Finally, if v0 (0) 6= 0, then (22) becomes

~w0 (p) = w0 (1� p) 8p 2 [0; 1]

so that ~w (q) =
R q
0
~w0 (p) dp =

R q
0
w0 (1� p) dp = 1� w (1� q) for all q 2 [0; 1]. �

Proof of Proposition 5. As observed immediately after the statement of Lemma 3, consistency with
the third degree risk order guarantees that all local utilities uF are continuously di¤erentiable (with convex

derivative), hence the same lemma yields both continuous di¤erentiability of v on (m;M) and the second

part of the statement. �
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Proof of Corollary 1. (i) implies (ii). By Proposition 5 and as observed immediately after the statement
of Lemma 3, note that if % is consistent with third degree stochastic dominance, then v and all local

derivatives are continuously di¤erentiable on (m;M). Moreover, % is consistent with second degree stochastic
dominance, and this implies that uF is concave for all F 2 D. But then v0 is decreasing on (m; 0], by (20),
and on [0;M), by (18), thus it is decreasing on (m;M), so that v is concave. Since it is strictly increasing,

then v0 (0) 6= 0 and, by Lemma 3, ~w (p) = 1� w (1� p) for all p 2 [0; 1].
Arbitrarily choose p < q in (0; 1) and x < t in (m; 0). For each F 2 D,

uF (z)� uF (x) =

Z
(x;z]

~w0 (F (y)) dv (y) 8z 2 (x; 0)

uF (z)� uF (t) =

Z
(t;z]

~w0 (F (y)) dv (y) 8z 2 (t; 0)

hence choosing Hpq 2 D such that Hpq = p in a neighborhood Ux of x and Hpq = q in a neighborhood Ut of
t, then

uHpq
(z)� uHpq

(x)

z � x = ~w0 (p)
v (z)� v (x)
z � x 8z 2 Ux; z > x

uHpq
(z)� uHpq

(t)

z � t = ~w0 (q)
v (z)� v (t)
z � t 8z 2 Ut; z > t

so that

v0 (x) ~w0 (p) = u0Hpq
(x) � u0Hpq

(t) = v0 (t) ~w0 (q)

for all 0 < p < q < 1 and all m < x < t < 0. But then letting t ! x, by continuity of v0, we obtain

v0 (x) ~w0 (p) � v0 (x) ~w0 (q) and v0 (x) > 0 yields ~w0 (p) � ~w0 (q), in turn, this implies that ~w is concave. As a

consequence, w (p) = 1� ~w (1� p) is convex.
Now consider G0 and observe that for every x; z 2 [0;M), with z > x,

uG0
(z)� uG0

(x) =

Z
(x;z]

w0 (1�G0 (y)) dv (y) = w0 (0) (v (z)� v (x))

and so

u0G0
(x) = w0 (0) v0 (x) :

Analogously, for every t; z 2 (m; 0], with z < t, then

uG0
(z)� uG0

(t) = �
Z
(z;t]

~w0 (G0 (y)) dv (y) = �
Z
(z;t]

~w0 (0) dv (y)

because v is continuous at 0 and ~w0 (G0 (y)) = ~w0 (0) on (m; 0), thus

u0G0
(t) = ~w0 (0) v0 (t) :

For x = t = 0, we have w0 (0) v0 (0) = ~w0 (0) v0 (0) and

w0 (0) = ~w0 (0)

but ~w0 (p) = w0 (1� p) for all p 2 (0; 1) and by continuity ~w0 (0) = w0 (1), that is, w0 (0) = w0 (1) and w0

being increasing must be constant on [0; 1]. Therefore w (p) = p = ~w (p) for all p 2 [m;M ].
Finally, this implies

V (F ) =

Z
[m;M ]

v (y) dF (y) 8F 2 D

and consistency with third degree stochastic dominance also implies that v0 is convex.
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(ii) implies (i). It is a well known fact. �
Derivation of Equation 12. De�ne W : D �D ! R by

W (F;G) =

Z
[m;M ]

Z
[m;M ]

� (x; y) dF (x) dG (y) 8 (F;G) 2 D �D:

It is immediate to check that W is a¢ ne in both components, W (F;G) =W (G;F ) for all (F;G) 2 D �D,
and V (F ) =W (F; F ) for all F 2 D. We start by observing two facts:

(a) Fix F;H 2 D. If we de�ne F = F + (1� )H for all  2 (0; 1], then

V (F) =W (F ; F) = W (F; F) + (1� )W (H;F)

= 2W (F; F ) +  (1� )W (F;H) + (1� ) W (H;F ) + (1� )2W (H;H)

= 2W (F; F ) + 2 (1� ) W (F;H) + (1� )2W (H;H) :

(b) Fix F;G 2 D. If
R
[m;M ]

� (x; y) dF (x) �
R
[m;M ]

� (x; y) dG (x) for all y 2 [m;M ], then for each H 2 D

W (F;H) =

Z
[m;M ]

Z
[m;M ]

� (x; y) dF (x) dH (y) �
Z
[m;M ]

Z
[m;M ]

� (x; y) dG (x) dH (y) =W (G;H) :

In particular, since H was arbitrarily chosen, we have that

V (F ) =W (F; F ) �W (G;F ) =W (F;G) �W (G;G) = V (G) :

Next, by facts (a) and (b), observe that

F %� G () �F + (1� �)H % �G+ (1� �)H 8� 2 (0; 1] ;8H 2 D
() V (�F + (1� �)H)� V (�G+ (1� �)H) � 0 8� 2 (0; 1] ;8H 2 D
() �2 (V (F )� V (G)) + 2� (1� �) (W (F;H)�W (G;H)) � 0 8� 2 (0; 1] ;8H 2 D
() � (V (F )� V (G)) + 2 (1� �) (W (F;H)�W (G;H)) � 0 8� 2 (0; 1] ;8H 2 D
() V (F ) � V (G) and W (F;H)�W (G;H) � 0 8H 2 D

() V (F ) � V (G) and
Z
[m;M ]

� (x; y) dF (x) �
Z
[m;M ]

� (x; y) dG (x) 8y 2 [m;M ]

()
Z
[m;M ]

� (x; y) dF (x) �
Z
[m;M ]

� (x; y) dG (x) 8y 2 [m;M ] ;

proving the statement. �
Proof of Proposition 6. Before starting, note that since v is strictly increasing and continuously di¤er-
entiable, we have that there exists �y 2 (m;M) such that v0 (�y) > 0 and v0 (x) � 0 for all x 2 [m;M ]. Wlog,
we can assume that v (�y) = 0. By contradiction, assume that % is prudent. By point (v) of Lemma 1 and

Remark 2, this means that the set U� = f� (�; y)gy2[m;M ] is included in hR3i = fu 2 C ([m;M ]) : u0 exists
and is convex on (m;M)g. Among all the elements of U�, consider � (�; �y) : I ! R. By Masatlioglu and
Raymond (2014), note that

� (x; �y) =
v (x) + v (�y) + � (v (x)� v (�y)) + � (v (�y)� v (x))

2

=
1

2
(v (x) + � (v (x)) + � (�v (x))) 8x 2 I:

Since � (�; �y) is di¤erentiable on (m;M) 3 �y, observe also that

�0� (�y; �y) =
1

2

�
v0 (�y) + �� (0) v

0 (�y)� �� (0) v0 (�y)
�
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and �0+ (�y; �y) = �
0
� (�y; �y). Since v

0 (�y) > 0, this implies that

v0 (�y) + �+ (0) v
0 (�y)� �� (0) v0 (�y) = v0 (�y) + �� (0) v0 (�y)� �+ (0) v0 (�y) ;

that is, �+ (0) = �� (0), a contradiction with �
0
� (0) > �

0
+ (0). �
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