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Abstract

This paper proposes a Bayesian estimation framework for a typical multi-factor model with time-

varying risk exposures to macroeconomic risk factors and corresponding premia to price U.S. publicly

traded assets. The model assumes that risk exposures and idiosynchratic volatility follow a break-point

latent process, allowing for changes at any point on time but not restricting them to change at all points.

The empirical application to 40 years of U.S. data and 23 portfolios shows that the approach yields

sensible results compared to previous two-step methods based on naive recursive estimation schemes, as

well as a set of alternative model restrictions. A variance decomposition test shows that although most

of the predictable variation comes from the market risk premium, a number of additional macroeconomic

risks, including real output and inflation shocks, are significantly priced in the cross-section. A Bayes

factor analysis massively favors of the proposed change-point model.
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1 Introduction

Can a selected set of macroeconomic variables explain the cross-sectional behavior of U.S. stock

and bond returns, i.e., why different assets earn different average rates of return? This simple

question lies at the heart of the burgeoning field of macro-finance. Remarkably enough, the an-

swer provided by at least 20 years of research on this crucial question has been predominantly

negative (see e.g., Chan et al. 1998; McCulloch and Roley 1993; Shanken and Weinstein 2006):

although occasional nuances to this fundamentally negative result have been reported (e.g.,

Flannery and Protopapadakis 2002; Kramer 1994), it is common wisdom that macroeconomic

factors can hardly explain the cross-sectional dynamics of asset valuations and returns of U.S.

stock and bond portfolios. Such a disconnect between changes in aggregate variables represent-

ing sources of systematic risk—like in the case of output and inflation growth news—and asset

returns has long represented a puzzle.

In this paper we propose and estimate through Bayesian methods a flexible parametric

multi-factor, stochastic volatility asset pricing model in which both risk exposures (betas) and

the prices of a number of macroeconomic risk factors are time-varying and effectively explain

the cross-section of U.S. stock and bond returns (see Gungor and Luger 2013). Time variation is

modelled as a latent, change-point process. We show that an explicit parameterization of latent

change-points in betas and risk premia plays a dominant role. By comparing our baseline model

with restricted versions of the same, we also provide evidence that both stochastic volatility

and infrequent but possibly large parameter instability are key drivers of the capability of the

model to capture cross-sectional return dynamics.

Drawing a precisely estimated link between time-varying betas on selected macroeconomic

risk factors and stock and bond excess returns also speaks to the very heart of finance theory,

because any evidence uncovered bears on the fundamental issue of the key features of the general

pricing mechanism, called the stochastic discount factor (SDF), underlying observed security

prices. Practically, the SDF depends on the shape of the (aggregate) risk aversion function

of investors and therefore reflects the way in which systematic risk factors are priced in the

aggregate (see e.g., Cochrane 2001; Singleton 2006). In our paper we show that is both possible

and useful to connect such an SDF (assumed to exist and to be unique) and macroeconomic

risks.
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A related question concerns the most appropriate methods available to researchers to learn

about such the SDF. Our paper offers a contribution to an extensive literature on the estimation

of empirical SDFs, specializing to a particular set of linear multi-factor models, offers a novel

statistical framework to implement such models, and shows how this works using an empirically

relevant application. With reference to an application to 40 years of monthly data on excess

returns on 23 key portfolios of securities traded in the U.S., we show that while commonly

used methods to estimate macro-based linear factor models fail to lead to sensible conclusions,

an encompassing Bayesian estimation scheme that allows for both parameter uncertainty and

instability in factor exposures and risk premia delivers encouraging results.

Following the seminal work of Fama and MacBeth (1973), two-step multi-factor asset pricing

models (MFAPMs) have been commonly used to estimate multi-factor models. Fama-MacBeth’s

(henceforth F-MB) approach, first proposed for the plain vanilla CAPM but then extended to

a wider class of linear models, corresponds to a very simple algorithm: the risk premium on

any asset or portfolio is decomposed as the sum of risk exposures to a number of risk factors

multiplied by the associated unit price for each factor. The algorithm uses a first set of rolling

window, time series regressions to obtain estimates of the betas, followed by a second-pass set

of cross-sectional (across assets) regressions that using the first-pass risk exposures as inputs

to derive time-varying estimates of the premia. The limitations of this methodology are now

well-understood: most inferential statements made as a result of the second-pass would be

valid if and only if one could assume that the first-pass betas were fixed in repeated samples,

which contradicts their random nature deriving from their being least squares estimates. Unless

additional assumptions are introduced, this creates a problem with generated regressors being

used in the second-step, which makes most of the inferential statements commonly made when

the resulting error-in-variables problems are ignored invalid (see Pagan 1984). F-MB’s approach

also suffers from another problem: although identifying time-variation in risk exposures and

premia with a rolling window least square estimation is robust because it is nonparametric, the

length of the window is usually chosen in an arbitrary way and this can result in a severe loss

of efficiency (see e.g., Maheu and McCurdy 2009).

To overcome these problems, we introduce a different approach where time variation in

risk exposures and premia is explicitly modelled as a change-point process. Specifically, we

model risk exposures as latent stochastic processes in a mixture innovation framework as in
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Giordani and van Dijk (2007), Giordani and Kohn (2008), Groen et al. (2013), Maheu and

Gordon (2008). The parameters of interest are constant unless a break-point variable takes a

unit value, in which case the parameters are allowed to jump to a new level, as a result of a

normally distributed shock. Furthermore, to consistently overcome the problems with generated

regressors, the model is estimated in a single step by using a Bayesian approach, following the

seminal work by McCulloch and Rossi (1991) and Geweke and Zhou (1996). By construction, our

approach provide a single-step procedure that yields exact inferences on MFAPMs. Moreover,

our approach makes it possible to compute the posterior distribution of virtually any function

of the parameters that can be useful to implement economic tests.

Our main results can be summarized as follows. First, using a variety of metrics—such as

Bayes factors and average pricing error performance—we obtain evidence of the importance of

capturing both instability in betas and in stochastic volatility; additionally, simpler time-varying

parameter models in which betas follow random walk processes appear to be outperformed by

our change-point model. Moreover, a variance decomposition test shows that by considering

model instability, together with parameter uncertainty, the amount of cross-sectional excess

return variation explained by the factor model increases with respect not only to a standard F-

MB, but also with respect to the case in which specific parsimonious restrictions on the model

dynamics are imposed. Second, the Bayesian time-varying betas, stochastic volatility model

leads to economically realistic estimates with reference to an application for which the standard

two-stage approach fails to provide plausible insights and would lead to a MFAPM rejection.

For instance, a two-step F-MB approach leads to display a positive and statistically significant

cross-sectional pricing error. On the contrary, in the Bayesian case, the average value of the

posterior medians of the same parameter often indicate the absence of systematic mis-pricing.

Third, we show that idiosyncratic risks play a significant role, and peaks around the early 2000s

and the end of our sample.

The remainder of the paper is organized as follows. Section 2 outlines the framework for

our MFAPM, which includes a detailed discussion of the underlying Bayesian methodology.

Section 3 describes the dataset and how we operationalize our model by determining prior

hyper-parameters. Section 4 shows the main empirical results. Next, in Section 5 we provide a

further economic assessment of the model performance. Section 6 concludes.
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2 A Bayesian Framework for Linear MFAPMs

Our empirical work is based on a model from the multi-factor linear class introduced by Ferson

and Harvey (1991). Multi-factor asset pricing models (MFAPMs) posit a linear relationship

between asset returns and a set of (macroeconomic, systematic) factors that are assumed to

capture business cycle effects on beliefs and/or preferences (as summarized by a SDF with

time-varying properties, see e.g., Cochrane 2001) and hence on risk premia. The advantage of

MFAPMs consists of the fact that a number of systematic risk factors K << N may efficiently

capture relatively large portions of the variability in the cross-section of returns. If we call

the process for the risk factors Fj,t (j = 1, ...,K) and ri,t the period excess return on asset or

portfolio i = 1, ..., N , computed as ri,t ≡ [(Pi,t − Pi,t−1 +Di,t)/Pi,t−1] − rft where Pi,t denotes

the price of any asset or portfolio, Di,t any dividend or cash flow paid out by the asset, and rft

the one-period interest rate, a typical MFAPM can be written as:

ri,t = βi0,t +
K
∑

j=1

βij,tFj,t + ǫi,t ǫi,t ∼ N(0, σ2i,t), (1)

where E[ǫi,t] = E[ǫi,tFj,t] = 0 for all i = 1, ..., N and j = 1, ...,K. The time-varying processes

for risk factors exposures, βij,t, and idiosyncratic risk, σ2i,t, are left unspecified by asset pricing

theory. Standard approaches in empirical finance posit that betas depend on a pre-specified set

of instruments, which can capture either macroeconomic or firm-specific news on single assets

risk exposures (see e.g. Lettau and Ludvigson 2001 and Nardari and Scruggs 2007). However,

estimates of betas obtained using instrumental variables are by construction very sensitive to

the choice of instruments (e.g. Harvey 2001). Simple GARCH(1,1) or stochastic volatility

represent instead the benchmark to model time variation in idiosyncratic risk. Finally, the βi0,t

coefficients are often interpreted as abnormal returns on asset i “left on the table” after all risks

(Fj,t, j = 1, ...,K) and risk exposures (βij,t, j = 1, ...,K) have been taken into account.

In the Merton (1973) inter-temporal CAPM (ICAPM), the returns generating process in (1)

implies that the SDF,Mt+1, must be linearly dependent on theK-dimensional vector of macroe-

conomic risk factors Mt+1 = at + b′tFt+1. Let F̃t = (1, Ft), under no-arbitrage opportunities,
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the fundamental pricing equation Et [Mt+1 · ri,t+1] = 0 implies that

Et[ri,t+1] =
Covt (Ft+1, ri,t+1)

Covt
(

Ft+1, F ′
t+1

) ×−rft Covt

(

Ft+1, F̃t+1

)

bt = β′i,tλt (2)

namely, the expected excess return on asset i over the interval [t, t+1], Et[ri,t+1], are related to its

“current” betas, βi,t = [βi1,t, βi2,t, ..., βiK,t]
′, and the factors risk premia, λ′t = [λ1,t, λ2,t, ..., λK,t]

(see Cochrane 2001 for more details). By construction, both the betas and the risk premia are

conditional on the information publicly available at time t, that capture any effects of the state

of the economy on unit risk premia (see e.g., Bossaerts and Green 1989). The framework in

(1)-(2) describes a general conditional equilibrium asset pricing framework that is known to

hold under a variety of alternative assumptions.

The standard approach to test the equilibrium asset pricing model shown in (1)-(2), is the

two-stage procedure à la Fama and MacBeth (1973). In the first stage, for each of the assets,

the factor betas are estimated using time-series regressions from historical excess returns on the

assets and economic factors. That is, for month t, (1) is estimated using the previous, say, sixty

months (ranging from t − 61 to t − 1) in order to obtain estimates for the betas, β̂60ij,t. This

time-series regression is updated each month. The choice of a 60-month rolling window scheme

is typical of the literature. In the second stage, the equilibrium restriction (2) is estimated

for each of the periods in our sample a cross-sectional regression using ex-post realized excess

returns:

ri,t = λ0,t +
K
∑

j=1

λj,tβ̂
60
ij,t + ζi,t ζi,t ∼ N(0, τ) (3)

for i = 1, ..., N, t = 61, ..., T . The equilibrium condition (2) makes clear that λ0,t should equal

zero if the model is correctly specified. Indeed, in the absence of arbitrage all zero-beta assets

should command a rate of return that equals the short-term rate, which is null in our case.

Therefore, cross-sectional tests of multi-factor models boil down to evaluate the importance of

the economic risk variables by evaluating whether their risk premiums are priced and whether,

on average, the coefficients λ̂0,t are not significantly different from zero. Clearly, this T cross-

sectional regressions simply test (2) in a nonparametric fashion, in the sense that any resulting

time variation in the λ0,t and λj,t coefficients fails to be explicitly and parametrically related to

any of the instruments assumed by the researcher.
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Although widely used, the two-stage Fama-MacBeth (henceforth F-MB) approach has a

number of statistical drawbacks (see Petersen 2009 for a complete discussion). First, the second

stage multivariate regression used to test for the equilibrium restriction (2) suffers from obvious

generated regressor (error-in-measurement) problems as the estimated first-stage, rolling win-

dow beta estimates β̂60ij,t−1 are used as regressors on the right-hand side. For instance, Ang and

Chen (2007) have stressed that when the cross-sectional estimates of the betas β̂60ij,t−1 co-vary

with the underlying but unknown risk premia, (3) may easily yield biased and inconsistent es-

timates of the risk premia themselves. Unfortunately, this co-variation is extremely likely: for

instance, the asset pricing literature generally presumes that during business cycle downturns

both the quantity of risk (the size of the betas) and the unit risk prices would increase, simply

because recessions are characterized by higher systematic uncertainty as well as by lower “risk

appetite”. Second, for instance as emphasized by Jostova and Philipov (2005) with reference to

a single-factor conditional CAPM, when parameters in linear asset pricing models are estimated

from the data, their uncertainties should be taken into account. Third, the need to perform

the estimation of (1)-(2) in two distinct stages that use rolling windows to capture parameter

instability is not only ad hoc but also inefficient because the lack of more specific parametric

forms makes testing for time-variation very hard and dependent on hard-to-justify choices of

the rolling window length, the updating rules applied to select whether constant or decaying

weights should be applied, etc. (see Maheu and McCurdy 2009).

2.1 Our Change-Point Model

The previous discussion of the standard F-MB two-step procedure implies that for testing the

equilibrium asset pricing model shown above, we need to: (1) avoid using estimates of the

first-stage betas as if these were observed variables that may be constant in repeated samples;

(2) fully account for parameter uncertainty; and (3) sensibly capture parametric instability to

reflect the commonly perceived (and tested) fact that both the relationship between excess

returns and factors, namely risk exposures (βij,t), the risk premia (λj , for i = 1, ..., N and

j = 1, ...,K), and possibly also residual idiosyncratic variances (σ2i,t) change over time.

We therefore develop a new Bayesian estimation approach in which: (1) the error in mea-

surement is avoided following McCulloch and Rossi (1991) and Geweke and Zhou (1996), by

characterizing the joint posterior distribution of the risk exposures and the risk premia such
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that both states and parameters are jointly estimated in a single step; (2) parameter uncer-

tainty is fully addressed by using Bayesian techniques; and (3) model instability is captured by

introducing stochastic breaks in the dynamics of the factor loadings as well as of idiosyncratic

risks.

Specifically, we characterize the relationship between excess returns, factors and risk premia,

as well as the time-varying dynamics in factor loadings and idiosyncratic volatility in a state-

space form where we jointly consider the linear factor model (1) (i.e. observation equation) and

the non-linear no-arbitrage restriction (2);

ri,t = βi0,t +
K
∑

j=1

βij,tFj,t + σitǫi,t ǫi,t ∼ N(0, 1) (4)

ri,t = λ0,t +
K
∑

j=1

λj,tβij,t−1 + ei,t ei,t ∼ N(0, τ2) (5)

where ǫt = (ǫ1,t, ǫ2,t, ..., ǫN,t)
′ ∼ N(0, IN ) and E[ǫi,t] = E[ǫi,tFj,t] = E [ei,tβij,t−1] = 0 for all

i = 1, ..., N and j = 1, ...,K. The error term ei,t is due to the fact that (5) just represents a

statistical approximation of the equilibrium condition (2). Indeed, such no-arbitrage restriction

holds perfectly only if the number of assets/portfolios goes to infinity. In finite samples, and

with a finite number N of assets, this residual term can be arbitrarily large. The time varying

parameters βij,t and σit are described by the state equations

βij,t = βij,t−1 + κij,tηij,t j = 0, ...,K, (6)

ln(σ2i,t) = ln(σ2i,t−1) + κiυ,tυi,t i = 1, ..., N, (7)

where ηi,t = (ηi0,t, ηi1,t, ..., ηiK,t, υi,t)
′ ∼ N(0, q2i ) with q

2
i = diag(q2i0, q

2
i1, ..., q

2
iK , q

2
iυ). Stochastic

variations (breaks) in the level of both the beta coefficients and of the idiosyncratic variance

σ2it are introduced and modeled through a mixture innovation approach as in Ravazzolo et al.

(2007) and Giordani and Kohn (2008). The latent binary random variables κ1ij,t and κ2i,t

are used to capture the presence of random shifts in betas and/or idiosyncratic variance (see

Mitchell and Beauchamp 1988; George and McCulloch 1993; Miazhynskaia et al. 2006). The

random variable κ1ij,t takes then a value equal to one if a structural break for the jth factor in

the equation for the ith asset at time t takes place. We assume that the structural breaks are
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independent of each another (i.e., across assets as well as factors) and over time, with:

Pr [κij,t = 1] = πij Pr [κiυ,t = 1] = πiυ i = 1, ..., N j = 0, ...,K (8)

This specification is very flexible as both risk exposures, βij,t, and idiosyncratic risks, σ2i,t,

are allowed to change on every time period, but they are not imposed to be changing at ev-

ery point in time. In our view, this helps to side-step the difficult (if not impossible) task of

persuading a Reader that the assumed dynamics represents the “right” kind: given our un-

informative priors, if the data need frequent breaks in betas of a small size, the posterior of

the corresponding parameters will provide indications in this direction; similarly, if the data

need a (set of independent) stochastic volatility process(es) with frequent shifts in idiosyncratic

variance, posterior estimates will give appropriate indications, etc. Note that we can interpret

qi as the “size” of the break: a large qij means for instance that whenever βij,t is hit by a break,

i.e. κij,t = 1, such a shift is more likely to be large (in absolute value).

The model presented in (4)-(8) is the most general specification we consider in this paper.

We will call this model B-TVB-SV indicating that we consider a Bayesian (B), Time-Varying

Betas (TVB) and Stochastic Volatility (SV) framework. Here the words time-varying and

stochastic for the betas and the volatility are synonymous of structural breaks. For comparative

purposes, we consider a two alternative restrictions on the model dynamics: (1) the restriction

κiυ,t = 0 ∀i, t in (6) in which case idiosyncratic risk is assumed to be constant. We will call

this model a Bayesian (B) homoskedastic Time-Varying Betas (TVB) model, i.e. B-TVB; and

(2) the restriction κij,t = 1 ∀i, j, t and κiυ,t = 1 ∀i, t, in (6)-(7), in which case the parameters

follow a random walk and structural breaks occur at each time t (see e.g., Koop and Potter

2007; West and Harrison 1997). We call this Bayesian (B) Time-Varying Parameters (TVP)

model, i.e. B-TVP. The constant volatility B-TVB and the random walk B-TVP specifications

are useful to highlight the effects of instabilities in residual variances and to show the benefit of

considering more parsimonious, occasional breaks in (6)-(7) as opposed to frequent (continuous)

breaks (see Giordani and Villani 2010, for a related discussion).
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2.2 Prior Specification

For parameter inference in (5)-(7), we use a Bayesian approach. Such approach allows to

incorporate parameter uncertainty in testing the MFAPM in a natural way. Also, Bayesian

inference allows to characterize the posterior distribution of virtually any function of the model

parameters. For instance, we can characterize the posterior distribution of κij,t and κiυ,t for

i = 1, ..., N , j = 1, ...,K and t = 1, ..., T , which can be used to incorporate uncertainty on the

timing of structural breaks.

For each of the ith asset/portfolio, the parameters of the model (4)-(8), are the structural

break probabilities πi = (πi0, πi1, ..., πiK , πiυ)
′, and the vector of the size of the breaks q2i =

(

q2i0, q
2
i1, ..., q

2
iK , q

2
iυ

)′
. We collect the model parameters in a (2K + 2)-dimensional vector θi =

(

π′i, q
2′

i

)′

. For the Bayesian algorithm to work, we need to specify the prior distributions for

each of the parameters. For the structural break probabilities, we take Beta distributions

πij ∼ Beta(aij , bij) πiυ ∼ Beta(aiυ, biυ) for i = 1, ...N , j = 1, ...K. (9)

The parameters aij , bij and aiυ, biυ represent the shape hyper-parameters and can be set accord-

ing to our prior beliefs about the occurrence of structural breaks. The expected prior probability

of a break in βij,t and ln(σ2i,t) is given by aij/ (aij + bij) and aiυ/ (aiυ + biυ), respectively. For the

conditional variance parameters, which reflect our prior beliefs about the size of the structural

breaks, we assume an inverted Gamma-2 prior,

q2ij ∼ IG− 2(γij , δij) q2iυ ∼ IG− 2(γiυ, δiυ) for i = 1, ...N , j = 1, ...K (10)

where γij = γijδij and γiυ = γiυδiυ. The expected prior break size for the betas (log-volatility)

equals the square root of γijδij/ (δij − 2) for δij > 2 (γiυδiυ/ (δiυ − 2) for δiυ > 2). The density

for the joint prior p(θi) is given by the product of the prior specifications (9)-(10). Note the

priors are independent across assets/portfolios.

The set of risk premia λt in (5) is not dynamic in nature. In fact, time variation is inherited

from the dynamics of the exposures to macroeconomic risk factors βij,t−1. This simplify the

estimate of the no-arbitrage restriction as a simple multi-variate linear regression. We take at
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each time t an independent prior structure of the form

λ ∼MN(λ, V ) τ2 ∼ IG− 2(ψ0,Ψ0) (11)

The parameters λ and V represent the K×1 location vector and the K×K scale matrix, while

ψ0 = ψ0Ψ0 such that the expected prior τ2 equals ψ0Ψ0/ (Ψ0 − 2).

2.3 Posterior Simulation

Posterior results are obtained through the Gibbs sampler algorithm developed in Geman and

Geman (1984) in combination with the data augmentation technique by Tanner and Wong

(1987) and Frühwirth-Schnatter (1994). The latent variables B = {βi,t}
N T
i=1 t=1, with βi,t =

(βi0,t, βi1,t, ..., βiK,t), Σ =
{

σ2it
}N T

i=1 t=1
, Kσ = {κiv,t}

N T
i=1 t=1

, and Kβ = {κi,t}
N T
i=1 t=1

, with κi,t =

(κi0,t, κi1,t, ..., κiK,t) are simulated alongside the model parameters θ = {θi}
N
i=1

and the risk

premia λ = {λt}
T
t=1

, with λt = (λ0,t, λ1,t, ..., λK,t). To apply the Gibbs sampler we need to

write down the complete likelihood function, namely, the joint density of the data and the state

variables.

p(R,B,K,Σ|λ, θ, F )

=
T
∏

t=1

(

N
∏

i=1

p(rit|λt, Ft, βit, βit−1, σ
2
it)p(σ

2
it|σ

2
it−1, κiυ,t, q

2
iυ)π

κiυt

iυ (1− πiυ)
1−κiυt×

×





K
∏

j=0

p(βij,t|βij,t−1, κij,t, q
2
ij)× π

κijt

ij (1− πij)
1−κijt







 , (12)

where K = (Kβ,Kσ) and F = {Ft}
T
t=1

, with Ft = (F1,t, F2,t, ..., FK,t)
′ the factors, and R =

{Rt}
T
t=1

, with Rt = (r1,t, r2,t, ..., rN,t)
′ the excess returns. We specifiy the densities that make up

(12) in Appendix A. The conditional likelihood p(rit|λt, Ft, βit, βit−1, σ
2
it) can be characterized

by combining the no-arbitrage restriction (5) in the observation equation (4). Indeed, for

conditional zero mean factors (i.e. Et−1 [Ft] = 0), the system defined by (4)-(5) implies that

βi0,t ≃ λ0,t +
∑K

j=1
λj,tβij,t−1. By plugging such non-linear restriction in (4) we can obtain

the conditional likelihood. Combining the prior p(θ) with (12), we obtain the posterior density

p(θ,B,K,Σ, λ|R,F ) ∝ p(θ, λ)p(R,B,K,Σ|λ, θ, F ). Our Gibbs sampler is a combination of the

Forward Filtering Backward Sampling of Carter and Kohn (1994) and Kim et al. (1998), and
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the efficient sampling algorithm for the random breaks proposed in Gerlach et al. (2000). At

each iteration of the sampler we sequentially cycle through the following steps:

1. Draw Kβ conditional on Σ,Kσ, θ, R and F .

2. Draw B conditional on Σ,K, θ, R and F .

3. Draw Kσ conditional on B,Kβ , θ, R and F .

4. Draw Σ conditional on B,K, θ, R and F .

5. Draw λ conditional on B and R.

6. Draw θ conditional on B,K, R and F .

A more detailed description if this Gibbs sampling and the corresponding convergence properties

are given in Appendix A and B.

3 Data, Prior Choices and Convergence Results

In this section, we outline how to operationalize the B-TVB-SV model on our dataset for the

U.S. cross-section of financial returns. In Section 3.1, we discuss this data, whereas in Section

3.2, we discuss our choices for prior hyper-parameters, the sensitivity of posterior estimates to

such choices and the convergence results of the algorithm.

3.1 Data

We consider a typical application in the empirical finance literature based on a moderate number

(23) of monthly time series sampled over the period 1972:01 - 2011:12. The starting date is

due to the availability of the complete set of instruments and corporate bond return data. The

series belong to two main categories. The first group, “Portfolio Returns” , includes stocks,

U.S. Treasuries and notes, and corporate bonds, all organized in portfolios to tame the non-

diversifiable risk reflected by excess returns. The stocks are publicly traded firms listed on

the NYSE, AMEX and Nasdaq (from CRSP) and sorted according to two criteria. First, 10

industry portfolios are obtained by sorting firms according to their four-digit SIC code. Second,

10 additional portfolios are derived by sorting (at the end of every year, and recursively updating

this sorting every year) NYSE, AMEX and Nasdaq stocks according to their size, as measured

by the aggregate market value of the company’s equity. Using industry and size-sorting criteria

to form portfolios of stocks to trade-off “spread” and reduction of idiosyncratic risk, is typical
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in the literature (see e.g., Dittmar 2002). Moreover, industry- and size-sorting criteria are

sufficiently unrelated to make it plausible that industry- and size-sorted equity portfolios may

contain non-overlapping information on the underlying factors and risk premia. Data on long-

(10-year) and medium-term (5-year) government bond returns are from Ibbotson and available

from CRSP. Data on 1-month T-bill, 10-year and 5-year government bond yields and returns

are from FREDII at the Federal Reserve Bank of St. Louis and from CRSP. Data on “junk”

bond returns are approximated from Moody’s (10-to-20 year maturity) Baa average corporate

bond yields and converted into return data using Shiller (1979) approximation formula.

The second group collects variables that measure macroeconomic risks. These factors are

used as proxies for the systematic, economy-wide forces potentially priced in asset returns.

We employ nine factors: the excess return on a wide, value-weighted market portfolio (MKT)

that includes all stocks traded on the NYSE, AMEX, and Nasdaq (from CRSP); changes in

the default risk premium (DEF) measured as the difference between Baa Moody’s yields and

yields on 10-year government bonds; the change in the term premium (TERM), the difference

between 10-year and 1-month Treasury yields; the unexpected inflation rate (UI), computed as

the residual of a simple ARMA(1,1) model applied to (seasonally adjusted) CPI inflation rate;

the rate of growth of (seasonally adjusted) industrial production (IP); the rate of growth of

(seasonally adjusted) real personal consumption (PC); the 1-month real T-bill return computed

as the difference between the 1-month T-bill nominal return and realized CPI inflation rate (not

seasonally adjusted); the traded Liquidity factor (LIQ) from Pastor and Stambaugh (2003); the

Bond premium factor (BPF) from Cochrane and Piazzesi (2005). Using a relatively large

number of pre-selected factors is typical of the literature (e.g. Burmeister and McElroy 1988;

Chen et al. 1986). Table 1 reports a detailed set of summary statistics.

3.1.1 Traded vs. Non-Traded Factors

One problem with (1) is the difficulty of interpreting βi0,t (often called the “Jensen’s alpha”)

when some of the risk factors are not traded portfolios. In principle, any E[βi0,t] 6= 0 is referred

to as an “abnormal” (average) return. However, unless all the factors are themselves tradable

portfolios it is impossible to interpret any non-zero βi0 as an abnormal return (see Gungor and

Luger 2013). A factor is tradable if its realizations may be closely replicated (“mimicked” ,

with a high coefficient of determination) by linear combinations (portfolios) of the test assets
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Table 1: Descriptive Statistics

This table reports the descriptive statistics for each of the 23 portfolios used in the empirical analysis as
well as the risk factors and the instrumental variables. Data are monthly and cover the sample period
1972:01 - 2011:12.

Portfolio/Factor Mean Median Std. Dev. Sharpe Ratio

10 Industry Portfolios, Value-Weighted

Non-Durable Goods 1.107 1.135 4.473 0.248

Durable Goods 0.809 0.815 6.649 0.122

Manufacturing 0.988 1.195 5.195 0.190

Energy 1.163 0.990 5.672 0.205

High-Tech 0.924 0.950 6.897 0.134

Telecommunications 0.948 1.175 4.891 0.194

Shops and Retail 0.974 1.060 5.447 0.179

Healthcare 0.990 1.050 5.094 0.194

Utilities 0.933 0.995 4.142 0.225

Other 0.871 1.320 5.439 0.160

10 Size-Sorted Portfolios, Value-Weighted

Decile 1 1.073 1.205 6.347 0.169

Decile 2 1.083 1.390 6.491 0.167

Decile 3 1.125 1.545 6.162 0.182

Decile 4 1.089 1.500 5.952 0.183

Decile 5 1.127 1.680 5.811 0.194

Decile 6 1.081 1.180 5.412 0.200

Decile 7 1.088 1.255 5.382 0.202

Decile 8 1.024 1.275 5.262 0.195

Decile 9 0.986 1.335 4.853 0.203

Decile 10 0.844 1.075 4.473 0.189

Bond Returns

10-Year T-Note 0.679 0.628 2.299 0.295

5-Year T-Note 0.635 0.585 1.629 0.390

Baa Corp. Bond (10-20 years) 0.831 0.863 3.237 0.257

Economic Risk Factors

Excess Value-Weighted Mkt 0.452 0.800 4.681 0.097

Default Premium 0.192 0.461 3.481

Term Spread 0.000 0.000 0.406

Industrial Prod. Growth 0.186 0.256 0.755

Real Per-capita Cons. Growth 0.255 0.262 0.338

Real T-Bill Interest Rate 0.087 0.102 0.357

Unexpected Inflation 0.000 -0.016 0.301

Bond Risk Factor 1.093 0.982 1.944 0.562

Liquidity Factor 0.497 0.232 3.621 0.137

Instrumental Variables

Term Yield Spread 1.715 1.910 1.329

Credit Yield Spread 1.111 0.960 0.488

Dividend Yield 3.029 2.952 1.259
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employed in the analysis. Unless all factors are replicated and replaced by the returns on

traded portfolios, there may be a considerable difference between the theoretical alphas from

an estimated model, and the actual alpha that an investor may harvest from by trading assets

on the basis of a MFAPM.

To eliminate such a possibility, we follow the literature (see e.g., Lamont 2001) and proceed

as follows. When an economic risk factor is already measured in the form of a return (e.g., this

is the case of the U.S. market portfolio, real T-bill rates, the liquidity and bond risk factors,

term structure spreads, and default spread variables), we directly use the associated returns as

a mimicking portfolio. Shanken (1992) has argued that this approach delivers the most efficient

estimates of the risk premiums. When a factor is not itself an (excess) return (e.g., this is the

case of macroeconomic variables such as industrial production growth, unexpected inflation,

and real consumption growth), we construct the corresponding K ′ ≤ K mimicking portfolios

by projecting the non-traded factors onto the space of excess returns of base assets and a set of

control (predictive) variables (j = 1, ..., K ′):

Fj,t = aj + b′jxt + c′jzt−1 + εj,t εj,t ∼ N(0, ω), (13)

where xt is a vector of excess returns on the base assets (in this case, all defined to be zero

investment portfolios) and zt−1 denotes a vector of instruments that have the ability to predict

returns. The resulting returns on the ith factor mimicking portfolio (FMP henceforth) are then

defined as FMPj,t = âj + b̂
′
jxt and collect the fitted component of a factor that is unpredictable

on the basis of past information and that at the same time may be replicated by trading base

assets using weights estimated by b̂j . Note that the coefficients aj and bj do not need to add

up to one because the base assets are zero-investment portfolios (see Lamont 2001). The base

assets include six equity zero net investment portfolios with different book-to-market and size

characteristics as well as the returns on long-term government bonds minus the returns on the

short term government bonds and the return on long-term corporate bonds minus the return

on long-term government bonds. We choose these assets for their well known ability to span

large “portions” of the return space. The set of instruments includes the lagged yield spread of

long-term Treasury bonds minus the T-bill yield, the lagged yield spread of long-term corporate

bonds minus the yield on long-term government bonds, and the lagged real short-term bill rate.
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3.2 Prior Choices and Sensitivity

Realistic values for the different prior distributions obviously depend on the problem at hand.

In testing factor models, priors calibration is particularly important because help to identify the

factor exposures, which is otherwise rather problematic because the well-known indeterminacy

problems upon rotations of factors and risk premia (see e.g., McCulloch and Rossi 1991 and

Geweke and Zhou 1996). Table 2 provides an overview of prior hyper-parameters calibrations.

In general, we use weak priors, excluding the size of the breaks and the break probabilities for

which our priors are quite informative. We set aij = 3.2, bij = 60 and γij = 0.5, δij = 100 which

suggests that we can expected a relatively low probability of having a break with a moderate

expected size. As far as the (log of) idiosyncratic risk is concerned, we assume a low break

probability with aiυ = 1, biυ = 99, while the expected size of the break is γiυ = 0.2, δiυ = 50.

These small prior probabilities makes the modeling dynamics rather parsimonious. The prior

beliefs on the size of the breaks are inverse-gamma distributed. The scale parameters γij , γiυ

and the δij , δiυ degrees of freedom reflect prior belief that shocks to risk exposures are larger

than stochastic breaks in the dynamics of idiosyncratic volatility.

Table 2: Prior Choices for the B-TVB-SV Model

Parameter Values Parameter Values

aij 3.2 for j = 1, ..,K , i = 1, ..., N aiυ 1 for i = 1, ..., N

bij 60 for j = 1, ..,K , i = 1, ..., N biυ 99 for i = 1, ..., N

γij 0.5 for j = 1, ..,K , i = 1, ..., N γiυ 0.2 for i = 1, ..., N

δij 100 for j = 1, ..,K , i = 1, ..., N δiυ 50 for i = 1, ..., N

λ 0 ψ0 0.1

V 1e3 Ψ0 10

The posterior results for our B-TVB-SV model are not very sensitive to the prior settings

for the hyper-parameters that govern the prior break probabilities, as is illustrated in a simple

sensitivity analysis in Appendix C on both a simulated and the original dataset of the paper.

However, Appendix C also shows that a different prior setting for the size of breaks could

potentially impact the different posterior estimates substantially. As a whole, the results suggest

that posterior estimates of break probabilities are hardly affected by the corresponding prior

setting. Furthermore, the prior setting for the expected size of the breaks influence the posterior

results of the timing and size of the breaks. Proper parametrization of the break size prior
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distributions are indeed of crucial importance for our empirical application. In order to mitigate

the impact of prior belief on posterior estimates we used the initial ten years of the sample (i.e.

1972:01-1982:01) to empirically elicit the prior distributions.

Posterior densities for each model are based on 10,000 simulations of the Markov Chain

Monte Carlo (MCMC) sampler outlined in Section 2. Of these, we take as a burn-in sample

2,000 draws storing every other of them to simulate the posterior distribution of parameters

and latent variables. The resulting autocorrelations of the draws are very low. A convergence

analysis in Appendix B shows that this guarantees accurate inference in our factor model.

4 An Empirical Application to the U.S. Cross-Section of Finan-

cial Returns

In this section, we focus on our empirical application: testing a macro-based factor pricing model

both in the time series and in the cross-section of U.S. financial returns. The performance of

our B-TVB-SV model are compared to a benchmark Fama-MacBeth two-steps procedure, as

well as against a set of alternative model restrictions outlined in Section 2.1.

4.1 Time-Varying Betas

As an initial way to assess the plausibility of our results, Figure 1 reports the average (of

posterior medians over time) probabilities over our sample of observing a break in the factor

loadings, in addition to the intercept, across two different specifications, namely the B-TVB-SV

and the homoskedastic B-TVB, for the 23 test assets/portfolios. Clearly the presence of breaks

in the idiosyncratic variance process makes a difference in capturing any instability in portfolio

betas. Under the B-TVP-SV model the average probability of observing a break is around

40% for the intercept (labeled as alpha in the figure) of all portfolios examined, and ranges

from 20% for the credit and term spreads to almost 40% for the bond factor. This shows that

infrequent and large breaks in betas (as well as Jensen’s alphas) are often isolated by the Gibbs

sampling algorithm. Under the B-TVB specification, instead, the degree of instability in the

factor loadings dramatically collapses. The average probability of a break in betas is around

5% across all risk for the industry portfolios, while for both the size-sorted equity portfolios and

bonds, the average break probability over the sample is between 20% and 30% across factors.
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Figure 1: Mean Posterior Probability of Breaks in Factor Loadings Across As-
sets/Portfolios

This figure reports the posterior median estimates if breaks probabilities in betas across portfolios and
factors for both the B-TVB-SV and B-TVB models. The sample period is 1972:01 - 2011:12. The first
ten years of data are used as a training sample in order to calibrate the prior distribution for both latent
states and parameters. The heating map is reported on the right-hand side.
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Figures 2-6 plot a selection of time series medians and 95% Bayesian credibility intervals

computed from the posterior densities of the loadings βij,t, obtained from the B-TVB-SV model.

To save space, we report plots of time series of risk exposures for all the 23 portfolios used in our

estimation, but only for three out of nine specific factors: the U.S. market portfolio, industrial

production growth, and unexpected inflation. Other, similar plots concerning the remaining

risk factors—the credit spread, the term spread, the real T-Bill, the real consumption growth,

the bond and the liquidity factors —are available upon request even though we summarize their

contents and implications below. An overview of the plots immediately reveals that the Bayesian

estimates of the loadings for all but the market portfolio and the bond risk factor, imply a time

path of the factor loadings that is rather smooth over time. This is a first interesting result:

even though (6) formally allows factor exposures to be subject to “jumps” over time, as a result

of the realization of κij,t, the resulting posterior densities are actually smooth. Interestingly,

this smoothness mimics exactly what many earlier papers have imposed by assuming either

random walk or highly persistent stationary processes with small variance of the shocks, but is

derived endogenously and is data-driven, which means that occasional large jumps in exposures

and/or high volatility of the process may be accommodated. Second, with a limited number of

exceptions that will noted below, the 95% confidence bands are relatively tight, which means

that the betas are estimated with a fairly high level of reliability.

In particular, Figure 2, concerning exposures to market risk, collects most of the loadings

for which we have evidence that betas are non-zero. All equity portfolios are characterized

by positive and reliably estimated betas. This is not the case for the bond portfolios which

essentially show zero exposure to the market risk factor. Figure 3 offers an opportunity to com-

pare the B-TVB-SV estimates with market beta exposures under a the classical Fama-MacBeth

approach. The plots of time-varying exposures to real output (industrial production growth)

risk in Figure 4 show occasionally larg(er) 95% credibility regions that tend to widen over the

sample. However, also in this case, for a large sub-set of portfolios, the corresponding betas

are estimated to be negative and significant (nondurables, durables, manufacturing, high-tech,

shops, health, and small- and medium-size equity portfolios), while for other portfolios the ex-

posure is positive and significant (energy and utility stocks). Of course, negative exposures to

output risk are partially surprising, but because in our model, factors have not been orthog-

onalized one vs. the others—that will require selecting and imposing a triangular structure
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Figure 2: B-TVB-SV Factor Loadings: VW Market Portfolio

This figure reports the time series of the posterior median loadings for the market risk factor estimated from a dynamic Bayesian model with time-varying
betas and idiosyncratic risk. The sample period is 1972:01 - 2011:12. The first ten years of data are used as a training sample in order to calibrate the
prior distribution for both latent states and parameters. The solid blue line represents the posterior median. The dot-dashed black lines represents the 95%
credibility interval.
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Figure 3: Factor Loadings Estimated with the Fama-MacBeth Approach: VW Market Portfolio

This figure reports the time series of the of the posterior mean loadings for the market risk factor estimated from a 5-year rolling-window estimation approach.
The sample period is 1972:01 - 2011:12. The solid blue line represents the posterior median. The dot-dashed black lines represents the 95% credibility interval.
Asymptotic standard errors are computed assuming absence of cross-sectional dependence among the betas estimates.
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Figure 4: B-TVB-SV Factor Loadings: Industrial Production

This figure reports the time series of the posterior median loadings for the industrial production growth factor estimated from a dynamic Bayesian model
with time-varying betas and idiosyncratic risk. The sample period is 1972:01 - 2011:12. The first ten years of data are used as a training sample in order
to calibrate the prior distribution for both latent states and parameters. The solid blue line represents the posterior median. The dot-dashed black lines
represents the 95% credibility interval.
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that would prove to be “ad-hoc” —betas only capture partial effects, after other exposures to

business cycle risks are taken into account (see Kramer 1994). An unreported figure concerning

betas vs. the short term real rate shows instead exposures that are small and for which the

95% credibility bands tend to include zero for most of the sample.

Figure 5 shows estimated time-varying exposures to unexpected inflation risks. In the asset

pricing literature, the issue of the exposure of asset returns to inflation risks has often been

debated. The plots show that even though confidence bands tend to be wider for this factor

than for other factors that we have described before, for many portfolios there tends to be

still significant evidence of a significantly positive exposure, i.e., of the fact that these assets

pay out risk premia to compensate for inflation risks. Even if we limit ourselves to global

results that hold throughout our entire sample, this hedging property obtains in the case of

durables, high-tech, retail, and of small and medium-capitalization stocks. On the contrary,

energy, telecommunication, utilities, and especially all kinds of bonds (including corporate junk),

imply negative, significantly estimated exposures throughout the sample. An unreported figure

concerning the exposures on default and real consumption growth risks, all betas imply low

variability and narrow 95% credibility regions, but these also fluctuate steadily around zero for

the all 23 portfolio investigated.

Figure 6 reports posterior medians and 95% credibility intervals for the βi0,ts estimated from

the B-TVB-SV model. In an ICAPM setting, when all factors are traded, βi0,t plays a key role:

with Fj,t = 0 for j = 1, ...,K, then (1) simplifies to ri,t = βi0,t + ǫi,t (with ǫi,t ∼ N(0, σ2i,t)) and

any E[βi0,t] 6= 0 would imply that in the absence of any priced risk factors, the excess return on

asset/portfolio i is not zero, which represents a violation of standard economic principles. Out

of 23 portfolios, in no case the estimated mis-pricing indicators are systematically elevated (in

absolute) value. In fact, apart from occasional fluctuations, separate calculations show that the

95% credibility regions include a zero mis-pricing in more than three-quarters of our sample.

This is an indication that our B-TVB-SV the model is well-specified in an economic sense, as

it does not imply any evidence of a systematic mis-pricing. Of course, in the case of many

portfolios, occasional periods in which the posterior of βi0,t fails to include a zero mis-pricing

can be found. For instance, there is evidence that all bond portfolios implied positive and tight

posteriors for the Jensen’s alphas between 2000 and 2004; high-tech and telecommunication

stocks were all giving large and significant alphas during the early- to mid-1990s.
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Figure 5: B-TVB-SV Factor Loadings: Unexpected Inflation

This figure reports the time series of the posterior median loadings for the unexpected inflation factor estimated from a dynamic Bayesian model with
time-varying betas and idiosyncratic risk. The sample period is 1972:01 - 2011:12. The first ten years of data are used as a training sample in order to
calibrate the prior distribution for both latent states and parameters. The solid blue line represents the posterior median. The dot-dashed black lines
represents the 95% credibility interval.
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Figure 6: B-TVB-SV Jensen’s Alphas

This figure reports the time series of the posterior medians of the Jensen’s alpha from a dynamic Bayesian model with time-varying betas and idiosyncratic
risk. The sample period is 1972:01 - 2011:12. The first ten years of data are used as a training sample in order to calibrate the prior distribution for both
latent states and parameters. The solid blue line represents the posterior median. The dot-dashed black lines represents the 95% credibility interval.

1987 1993 1999 2005 2011
−5

0

5
NonDur

1987 1993 1999 2005 2011
−5

0

5
HiTech

1987 1993 1999 2005 2011
−2

0

2

4

Util

1987 1993 1999 2005 2011
−5

0

5
Cap3

1987 1993 1999 2005 2011
−2

0

2

4
Cap7

1987 1993 1999 2005 2011
−2

0

2

4

10Yrs

1987 1993 1999 2005 2011
−5

0

5

Dur

1987 1993 1999 2005 2011
−2

0

2

4
Telecomm

1987 1993 1999 2005 2011
−4

−2

0

2

Other

1987 1993 1999 2005 2011
−5

0

5

Cap4

1987 1993 1999 2005 2011
−2

0

2

4

Cap8

1987 1993 1999 2005 2011
−2

0

2

4

5Yrs

1987 1993 1999 2005 2011
−2

0

2

4

Manuf

1987 1993 1999 2005 2011
−5

0

5

Shops

1987 1993 1999 2005 2011
−5

0

5

Cap1

1987 1993 1999 2005 2011
−2

0

2

4

Cap5

1987 1993 1999 2005 2011
−2

0

2

4

Cap9

1987 1993 1999 2005 2011
−2

0

2

4

Baa

1987 1993 1999 2005 2011
−2

0

2

4

Enrgy

1987 1993 1999 2005 2011
−5

0

5
Hlth

1987 1993 1999 2005 2011
−5

0

5
Cap2

1987 1993 1999 2005 2011
−2

0

2

4

Cap6

1987 1993 1999 2005 2011
−1

0

1

2
Cap10

25



4.2 The Role of Idiosyncratic Risk

A growing literature (see e.g., Campbell et al. 2001) has stressed that the idiosyncratic vari-

ance of the excess returns on most test portfolios, σ2it, has undergone important shifts and/or

dynamics over the last two decades. Figure 7 plots posterior medians for σ2it estimated from

our B-TVB-SV model, along with 95% credibility intervals. There are evident spikes in idiosyn-

cratic volatility in the early 2000s and weaker signs of a growing trend towards the end of our

sample. The financial crisis of 2008-2009 induces a residual risk increase, but this appears to be

minor compared to 1999-2001, when the model had temporarily lost its ability to fit the U.S.

cross-section. In this respect, the fact that the model is more at trouble with the tech stock

bust than with the U.S. sub-prime and credit crunch crises is intriguing. However, the fact that

idiosyncratic is counter-cyclical was largely expected in the light of the literature (see Campbell

et al. 2001). The B-TVB-SV model explains away almost all the variability in excess returns

in the case of medium and large cap stocks, and to some extent also government bonds. Spikes

in idiosyncratic risk are instead more pronounced for small caps and for a number of industry

portfolios, that are explained much less accurately than size-sorted portfolios are. Yet, no clear

trend is observed, which is consistent with the more recent evidence reported by Bekaert et al.

(2012).

Figure 1 shows that the presence of breaks in the idiosyncratic variance process makes a

difference in capturing any instability in portfolio betas. The question now could be if the

functional form imposed in (7) might indeed sensibly drive the results. A number of studies

in the finance literature have compared alternative models of time-varying volatility of asset

returns (e.g. Hansen and Lunde 2005, Geweke and Amisano 2010, and Clark and Ravazzolo

2014). More recently, Eisenstat and Strachan (2014) discuss estimation of volatility in the

context of inflation, in particular whether it should be modeled as a stationary process or as a

random walk. In our B-TVB-SV model when a break arrives, log-volatility follows a random

walk. While such random walk assumption might be indeed useful for practical reasons, it

can be criticized as inappropriate since it implies that the range of possible values of volatility

is unbounded in probability in the limit, which is obviously something we do not observe in

financial markets. On the other hand, stationary processes, say an AR(1), are bounded in the

limit, even though are close to be non-stationary at monthly frequencies. In Appendix D we

show that by fitting a highly persistent AR(1) instead of our change-point process does not
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Figure 7: B-TVB-SV Idiosyncratic Risk Dynamics

This figure reports the time series of the posterior medians for idiosyncratic risk estimated from a dynamic Bayesian model with time-varying betas and
idiosyncratic risk. The sample period is 1972:01 - 2011:12. The first ten years of data are used as a training sample in order to calibrate the prior distribution
for both latent states and parameters. The solid blue line represents the posterior median. The dot-dashed black lines represents the 95% credibility interval.
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sensibly change the dynamics of estimated idiosyncratic risks. In fact, a simple log-marginal

likelihood model assessment shows that a parsimonious change-point process for σ2it is preferred

in finite samples as opposed to highly persistent, albeit stationary, AR(1) processes.

4.3 Risk Premia

Table 3 reports summary statistics for the sample estimates of the risk premia {λ̂j,t} (j =

1, ...,K) from our B-TVB-SV model as opposed to the benchmark F-MB and the alternative

model restrictions, namely the B-TVP and the B-TVB models. Top panel shows (frequentist)

estimates from the second-pass F-MB approach. Clearly the classical estimation procedure that

non-parametrically tracks time-variation in the parameters using 5-year rolling windows delivers

economically weak implications: only two factors were accurately priced in the cross-section (the

market and bond factors), but the former with a p-value exceeding the standard 0.05 threshold

and the latter with a rather difficult, negative sign; moreover, the time series mean of λ̂0,t turns

out to be large, positive (0.29% per month), and statistically significant (its p-value is 0.034),

which is problematic to our MFAPM because a non-zero average λ0,t implies that omitted risk

factors with non-zero risk premia must be absorbed by the residual mean.

Therefore the background to our dynamic, state-space results is that a simple, ad-hoc rolling

window implementation of the MFAPM in (1)-(2) would yield an embarrassing rejection of the

model, in spite of the fact that we are employing as many as nine factors, some of them coming

with a strong endorsement of cross-sectional explanatory power from the asset pricing literature.

The second panel in Table 3 shows the estimates from the B-TVB-SV model. For the sake of

comparison with the F-MB procedure, we report the sample properties of the median estimates

of risk premia from the B-TVB-SV model. Note, this frequentist-like approach to test the cross-

sectional implication of the model might indeed leave aside some important information on the

posterior distribution of risk premia. However, the idea of Table 3 is to compare our B-TVB-SV

framework and the F-MB approach within the same setting, while keeping at the background the

fact that under the B-TVB-SV lambdas and betas are estimated jointly, fully acknowledging

their unstable and uncertain nature. Table 3 gives evidence of precisely estimated market,

liquidity, and macroeconomic (as capture by IP growth shocks) risk premia, with the correct,

positive signs (0.339, 0.317, and 0.002 percent per month/unit of risk, respectively). Also the

unexpected inflation risk premium is precisely estimated but with a negative sign, similarly to

28



Table 3: Risk Premia

This table reports statistics describing the posterior distribution of the risk premia on each factor across
different model specifications. B-TVB-SV stands for Bayesian time-varying betas, stochastic volatility
model, while B-TVB and B-TVP are the dynamic Bayesian model restricted to have constant conditional
volatility and random-walk betas, respectively. F-MB is the standard two-step procedure. Data are
monthly and cover the sample period 1972:01 - 2011:12. The first ten years of monthly data are used to
calibrate the priors for all the models except for the standard two-step Fama-MacBeth procedure.

Average Std. Error t-stat p-value 2.5% 50% 97.5%

Two-step F-MB

Intercept 0.2909 0.1363 2.1350 0.0336 -3.3346 0.3281 3.3471

Market 0.2593 0.1408 1.8414 0.0665 -8.7553 0.6739 7.9319

Credit Spread 0.2208 0.2706 0.8161 0.4151 -4.5672 0.3022 4.8480

Term spread 0.0042 0.0347 0.1201 0.9045 -1.0198 -0.0018 1.1440

IP Growth -0.0130 0.0092 -1.4086 0.1600 -0.3368 -0.0210 0.3218

Real Consuption Growth 0.0061 0.0039 1.5485 0.1226 -0.1917 -0.0006 0.2309

Real T-bill Rate -0.0264 0.0412 -0.6414 0.5217 -1.4068 0.0145 1.4703

Unexpected Inflation -0.0085 0.0062 -1.3670 0.1727 -0.2079 -0.0134 0.2100

Bond Risk Factor -0.4633 0.1883 -2.4598 0.0145 -6.9685 -0.3831 5.1747

Liquidity Factor 0.4012 0.3471 1.1558 0.2487 -12.4488 0.1301 12.9321

B-TVB-SV

Intercept 0.4125 0.2924 1.4108 0.1593 0.3406 0.4913 0.6432

Market 0.3391 0.1298 2.6119 0.0095 0.1207 0.3482 0.5515

Credit Spread -0.1339 0.1145 -1.1688 0.2434 -0.0471 0.1291 0.3172

Term Spread -0.0149 0.0306 -0.4880 0.6259 -0.0334 0.0144 0.0616

IP Growth 0.0190 0.0076 2.4940 0.0132 0.0031 0.0188 0.0231

Real Consuption Growth 0.0020 0.0044 0.4575 0.6476 -0.0054 0.0018 0.0090

Real T-bill Rate 0.0199 0.0300 0.6616 0.5087 -0.0279 0.0187 0.0682

Unexpected Inflation -0.0206 0.0064 -3.2095 0.0015 -0.0211 -0.0148 -0.0007

Bond Risk Factor -0.0259 0.0719 -0.3605 0.7187 -0.1449 -0.0218 0.0916

Liquidity Factor 0.3172 0.1560 2.0341 0.0428 0.0312 0.3214 0.5719

B-TVP

Intercept 0.5862 0.0787 7.4482 0.0000 0.4575 0.5889 0.7172

Market 0.2197 0.0988 2.2237 0.0269 0.0472 0.2220 0.3786

Credit Spread 0.0139 0.0919 0.1516 0.8796 -0.1381 0.0100 0.1710

Term Spread 0.0030 0.0213 0.1401 0.8887 -0.0312 0.0020 0.0382

IP Growth -0.0079 0.0075 -1.0473 0.2958 -0.0209 -0.0077 0.0036

Real Consuption Growth 0.0047 0.0040 1.1780 0.2397 -0.0013 0.0046 0.0114

Real T-bill Rate 0.0067 0.0216 0.3094 0.7573 -0.0278 0.0055 0.0424

Unexpected Inflation -0.0092 0.0054 -1.6933 0.0914 -0.0183 -0.0090 -0.0001

Bond Risk Factor -0.0126 0.0492 -0.2550 0.7989 -0.0982 -0.0093 0.0666

Liquidity Factor 0.2071 0.1050 1.9726 0.0495 0.0325 0.2066 0.3720

B-TVB

Intercept 0.5550 0.2775 1.9996 0.0464 0.2500 0.5421 0.8540

Market 0.3006 0.1448 2.0758 0.0388 0.0291 0.3028 0.5814

Credit Spread 0.1162 0.1582 0.7346 0.4631 -0.1080 0.0967 0.3963

Term Spread 0.0130 0.0550 0.2368 0.8130 -0.0812 0.0105 0.1120

IP Growth -0.0067 0.0101 -0.6573 0.5115 -0.0218 -0.0060 0.0111

Real Consuption Growth 0.0030 0.0063 0.4788 0.6324 -0.0072 0.0026 0.0141

Real T-bill Rate 0.0191 0.0498 0.3837 0.7014 -0.0620 0.0165 0.1016

Unexpected Inflation -0.0024 0.0080 -0.3066 0.7594 -0.0172 -0.0021 0.0103

Bond Risk Factor 0.0431 0.1119 0.3847 0.7007 -0.1242 0.0313 0.2512

Liquidity Factor 0.0474 0.2419 0.1958 0.8449 -0.3394 0.0229 0.4512
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Chen et al. (1986), Ferson and Harvey (1991), and Lamont (2001). Importantly, the average

posterior median across the sample for λ0,t is significantly different from zero. Figure 8 shows

the whole posterior distribution of λ0,t across the sample. Except for occasional, short-lived

nuances, there is no systematic evidence of a statistically significant λ0,t in our sample.

Figure 8: B-TVB-SV Cross-Sectional Intercept

This figure reports the time series of the posterior medians for the cross-sectional intercept λ0,t estimated
from a dynamic Bayesian model with time-varying betas and idiosyncratic risk. The sample period is
1972:01 - 2011:12. The first ten years of data are used as a training sample in order to calibrate the prior
distribution for both latent states and parameters. The solid blue line represents the posterior median.
The dot-dashed black lines represents the 95% credibility interval.
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All in all, these results illustrate the fact that while in a naive F-MB implementation all

one gets is evidence that a standard multi-factor model—both in terms of its structure and

for what concerns the factor it includes—is rejected with reference to a wide but typical set of

U.S. financial asset portfolios, such finding is replaced by reassuring evidence that not only the

market portfolio (as typical of textbook CAPM) but also a number of macroeconomic factors

carry precisely estimated and economically meaningful risk prices. Such empirical findings are

less comforting when we impose restrictions on the B-TVP-SV model. In both cases, the average

posterior median of λ0,t is significantly positive, with p-values below 0.05. While in the B-TVP

case at least 3 of the 4 factors that commanded positive and significant risk premia in B-TVP-

SV set up, in the homoskedastic B-TVB model only market risks appear to be barely priced
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in the U.S. cross-section of stocks and bonds. This is indicative of the restrictions imposed

by the B-TVP and the homoskedastic B-TVB models being rejected, an aspect that shall be

investigated in more detail in Section 4.4.

4.4 Discriminating Among Models: Marginal Likelihood Evidence

Following McCulloch and Rossi (1991), we use the marginal likelihood of different models to

perform a comparison able to take into account their overall (in-sample) statistical performance,

and not only their asset pricing plausibility as in Sections 4.2-4.4. The marginal likelihood of

a model is known to take into account both the uncertainty about the size and the presence

of structural breaks and the uncertainty concerning the parameters in (4)-(8). The marginal

likelihood of each model is computed as

p(R|F ;Mi) =

∫

...

∫

∑

K

p(R|B,K,Σ, λ, θ, F ;Mi)× p(θ,B,K,Σ, λ|R,F ;Mi)dBdΣdθ, (14)

where Mi identifies the ith model and p(θ,B,K,Σ, λ|R,F ;Mi) the posterior density from

(12). Following Chib (1995), we compute the (log of the) marginal likelihood by replacing the

unobservable breaks and parameters in the likelihood of the data generating process defined by

(4) for each draw.

Table 4 reports the log-marginal likelihoods for each of the model specifications as well as

the Bayes factors, the difference between model-specific (log) likelihoods, used as a model selec-

tion indicator that naturally penalizes for the different size/complexity of different models (see

Kass and Raftery 1995), for each of the alternative frameworks including the two-step F-MB ap-

proach, vs. B-TVB-SV. Bayes factors measure a model ability to explain the entire distribution

(not just first moments) of test asset returns, and therefore permit the simultaneous comparison

of multiple models, regardless of whether the models are nested. To favor interpretations, we

report the log-marginal likelihood contributions by each of the 23 test portfolios under each

of the models. Interestingly, the B-TVB-SV model shows the higher log-marginal likelihood

values across all of the portfolios under consideration. By exceeding 100, all the overall Bayes

factors are highly significant. In particular, the factors vs. the B-TVP and the two-step F-

MB implementations are on average 892 and 5602, respectively, and therefore appear to be

decisively in favor of the complete B-TVB-SV framework. The Bayes factor vs. the B-TVB
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Table 4: Marginal Likelihoods and Bayes Factors Across Alternative Model Specifications

This table reports the values of the log-marginal likelihoods and the relative Bayes Factors for different
model specifications. The values reported are disaggregated by computing the contributions coming from
each of the portfolios under investigation. B-TVB-SV stands for Bayesian time-varying betas, stochastic
volatility model, while B-TVB and B-TVP are the dynamic Bayesian model restricted to have constant
conditional volatility and random-walk betas, respectively. F-MB is the standard two-step procedure.
BF1 is the Bayes Factor for the B-TVB-SV model vs. the no-stochastic volatility restriction. Likewise,
BF2 and BF3 are the Bayes Factors comparing the B-TVB-SV model with the B-TVP and the F-MB
approaches.

B-TVB-SV B-TVB B-TVP F-MB BF1 BF2 BF3

10 Industry Portfolios, Value-Weighted

Non Durable Goods -445.39 -1408.71 -635.40 -3131.83 963.32 190.00 2686.44

Durable Goods -700.77 -1980.33 -832.07 -4412.78 1279.56 131.29 3712.01

Manufacturing -330.98 -1199.96 -522.95 -3851.11 868.98 191.97 3520.13

Energy -789.61 -1793.14 -821.64 -2687.83 1003.53 32.03 1898.22

High Tech -571.53 -1732.31 -717.08 -7269.27 1160.78 145.55 6697.74

Telecommunications -614.18 -1634.38 -734.46 -3353.11 1020.20 120.28 2738.93

Shops and Retail -481.33 -1370.61 -648.98 -4271.70 889.29 167.65 3790.38

Health -613.64 -1591.56 -706.14 -3107.84 977.92 92.50 2494.21

Utilities -572.88 -1684.43 -698.85 -1955.89 1111.55 125.96 1383.01

Other -270.90 -1345.87 -519.80 -6041.50 1074.97 248.90 5770.60

10 Size-Sorted Portfolios, Value-Weighted

Decile 1 -620.66 -1756.62 -725.44 -7211.50 1135.96 104.77 6590.84

Decile 2 -535.44 -1632.89 -678.94 -6578.42 1097.46 143.50 6042.98

Decile 3 -428.11 -1337.08 -616.02 -6506.86 908.96 187.90 6078.74

Decile 4 -392.01 -1262.43 -589.11 -7127.84 870.43 197.11 6735.84

Decile 5 -335.93 -1134.01 -543.20 -7517.14 798.08 207.27 7181.21

Decile 6 -259.32 -932.83 -506.59 -8008.70 673.51 247.27 7749.38

Decile 7 -202.41 -923.42 -468.69 -7121.70 721.01 266.28 6919.29

Decile 8 -149.14 -882.35 -446.04 -8924.98 733.21 296.90 8775.84

Decile 9 -95.261 -601.39 -365.63 -8158.70 506.13 270.37 8063.44

Decile 10 -54.063 -544.78 -329.60 -7820.37 490.72 275.55 7766.31

Bond Returns

10 - Yrs Treasury -188.98 -1052.55 -422.69 -9201.70 863.57 233.70 9012.72

5 - Yrs Treasury -41.972 -549.00 -320.55 -7951.90 507.03 278.58 7909.93

Baa Corporate Bonds (10-20 years) -185.96 -1050.90 -420.63 -5522.90 864.94 234.67 5336.94
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model with stochastic volatility is instead 190 on average and remains favorable to B-TVB-SV.

Surprisingly, the B-TVP model ranks second both in overall terms and for all the test portfo-

lios, thus outperforming the homoskedastic B-TVB alternative. This result emphasizes that by

fully acknowledging instability in idiosyncratic risk plays a key role beyond that of capturing

breaks in the betas. As one would expect, given its ingenious but ad-hoc nature, the classical

two-step F-MB approach ranks last with an overall marginal likelihood around 15 times lower

than under the B-TVB-SV model. The dominance of the B-TVB-SV framework occurs across

all portfolios, but appears to be particularly elevated in the case of bonds and medium and

large caps portfolios of stocks.

5 Economic Assessment

So far our discussion has focused on the statistical performance in terms of whether there was

evidence of either the λ0,ts or the βi0,ts coefficients being different from zero and with emphasis

on the comparison of log-marginal likelihood values. We have concluded that (1)-(2) is rejected

in its two-pass F-MB implementation based on 5-year rolling window estimates. However,

there was some supportive indications that the B-TVB-SV model may be not completely at

odds with the data. The results concerning B-TVP have shown that while there are some

degrees of freedom as to the way one ought to best model time-variation in risk exposures,

capturing instability in stochastic volatility is truly fundamental. Yet, we still know little about

the economic implications of B-TVB-SV. In this section, we report additional evidence on the

economic importance of the estimates uncovered for B-TVB-SV model.

5.1 Variance Ratios and Sources of Risks

With reference to the estimates of (4)-(8), we have computed (posterior distributions of the)

variance ratios, V R1 and V R2 described in Appendix E. Such ratios measure the degree of

mis-specification of a MFAPM. The idea of V R1 and V R2 is that a correctly specified MFAPM

should at least explain most or all of the predictable variation in the excess returns of the test

assets, and therefore leave an unexplained portion that should be as small as possible. Given

their popularity, we just limit ourselves to recall that V R1 should be equal to 1 if the multi-

factor model is correctly specified, which means that all the predictable variation in excess
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returns is captured by variation in macroeconomic risk; at the same time, V R2 should be equal

to zero if the multi-factor model is correctly specified. Note, V R1 = 1 does not imply that

V R2 = 0 and viceversa (see Appendix E). In what follows, the information at time t− 1 (Zt−1)

used to tease out the total predictable variation in excess returns used as a “denominator” in

the variance ratios is proxied by the instrumental variables listed in Table 1, plus a dummy

variable to account for the so-called “January effect” (see Thaler 1987).

Columns 4 and 7 of Table 5 present posterior medians of V R1 and V R2 obtained from the

B-TVB-SV model for each of the 23 portfolios. These variance ratios are compared to the ones

obtained from competing models. Variance ratio results are encouraging. Under a V R1 perspec-

tive, on average approximately 80% of the predictable variation in excess returns is captured

by the B-TVB-SV model. Such a statistic is only 51% in the case of the F-MB implementation

(column 1) and goes as low as 47 and 43% for the B-TVP and homoskedastic B-TVB mod-

els, respectively. Although in the light of the earlier log-marginal likelihood evidence, this is

relatively un-surprising, these results remain economically meaningful. However, the generally

high V R1 ratios from the B-TVB-SV model vary considerably across different test assets. The

ratios are relatively high, also in relation to what is typically reported in the literature (see

Ferson and Harvey 1991), in the case of government bond portfolios (possibly because we have

used Cochrane and Piazzesi’s factor) and for a few industries, such as manufacturing, energy,

and high-tech, for which VR1 exceeds 90%. It is instead below 50% in the case of the smallest

capitalization decile and of non-investment grade corporate bonds, exactly where one would

expect our macroeconomic risk factors to have more trouble at fitting the variation in excess

returns.

Because V R1 + V R2 = 1 does not hold (see Appendix E), the finding of high V R1 ratios

fails to imply that the V R2 ratios are close to zero. Yet, V R2 is on average just above 20%

in the case B-TVB-SV, to be contrasted with averages across test portfolios of 48-54% in the

case of other models. Moreover, in the case of the B-TVB-SV framework, we record V R2 ratios

equal to or inferior to 15% in 9 out of 23 portfolios. All in all, under both the V R1 and V R2,

we find evidence of appreciable performance of the model.

Appendix E reports also further results on the contribution of each risk factor to fitting the

predictable variation in excess stock returns. The highest contribution is given by the market

risk factor: with three exceptions (energy, health, and utility stocks), all the ratios concerning
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Table 5: Variance Decomposition Tests Across Models

This table reports the results of variance decomposition tests across models. The first two columns show the values from the standard two-step Fama-
MacBeth methodology. All rates are in excess of the holding period return on a 1-month T-Bill. VR1 is the ratio of the variance of a model predicted
returns and the variance of expected returns estimated from a projection on a set of instruments Zt. VR2 is the ratio of the variance of the predictable
part of returns not explained by a model and the variance of projected returns. The instrumental variables are the lagged monthly dividend yield on the
NYSE/AMEX, the lagged yield of a Baa corporate bond, and the lagged spread of long- vs. short-term government bond yields. B-TVB-SV stands for
Bayesian time-varying betas, stochastic volatility model, while B-TVB and B-TVP are the dynamic Bayesian model restricted to have constant conditional
volatility and random-walk betas, respectively. F-MB is the standard two-step procedure.

F-MB B-TVB-SV B-TVP B-TVB

VR1 VR2 VR1 VR2 VR1 VR2 VR1 VR2

2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%

10 Industry Portfolios, Value-Weighted

Non Durable Goods 0.368 0.695 0.318 0.454 0.530 0.089 0.144 0.294 0.254 0.320 0.450 0.241 0.328 0.418 0.046 0.217 0.749 0.243 0.719 0.835

Durable Goods 0.499 0.450 0.547 0.833 0.969 0.098 0.131 0.213 0.256 0.376 0.789 0.239 0.678 0.783 0.072 0.464 0.802 0.187 0.519 0.832

Manufacturing 0.717 0.205 0.756 0.916 1.053 0.031 0.173 0.309 0.090 0.453 0.816 0.142 0.418 0.934 0.134 0.492 0.818 0.200 0.569 0.845

Energy 0.698 0.354 0.897 0.987 1.090 0.017 0.056 0.067 0.707 0.832 0.952 0.115 0.221 0.305 0.613 0.865 0.938 0.087 0.148 0.296

High Tech 0.660 0.380 0.869 0.941 1.011 0.108 0.138 0.167 0.345 0.546 0.812 0.256 0.431 0.680 0.337 0.614 0.854 0.105 0.309 0.638

Telecommunications 0.494 0.476 0.730 0.888 0.978 0.109 0.154 0.212 0.117 0.436 0.918 0.073 0.636 0.828 0.176 0.418 0.706 0.326 0.533 0.799

Shops and Retail 0.663 0.336 0.615 0.795 0.913 0.045 0.213 0.378 0.112 0.383 0.901 0.139 0.529 0.922 0.190 0.410 0.832 0.159 0.561 0.790

Health 0.428 0.539 0.612 0.830 0.886 0.003 0.116 0.227 0.202 0.479 0.782 0.247 0.518 0.675 0.134 0.490 0.796 0.144 0.560 0.804

Utilities 0.266 0.705 0.432 0.600 0.690 0.017 0.410 0.760 0.066 0.320 0.869 0.134 0.520 0.910 0.101 0.402 0.708 0.266 0.592 0.871

Other 0.278 0.700 0.431 0.615 0.699 0.152 0.357 0.744 0.231 0.375 0.552 0.428 0.592 0.775 0.240 0.385 0.633 0.311 0.618 0.660

10 Size-Sorted Portfolios, Value-Weighted

Decile 1 0.314 0.677 0.225 0.309 0.364 0.281 0.648 0.797 0.242 0.342 0.450 0.552 0.681 0.704 0.015 0.296 0.622 0.305 0.750 0.901

Decile 2 0.731 0.182 0.723 0.882 0.985 0.067 0.159 0.255 0.141 0.467 0.842 0.190 0.564 0.761 0.278 0.456 0.689 0.218 0.473 0.704

Decile 3 0.629 0.323 0.611 0.906 0.954 0.002 0.163 0.316 0.278 0.569 0.976 0.131 0.409 0.889 0.168 0.442 0.706 0.187 0.389 0.783

Decile 4 0.603 0.380 0.542 0.820 0.961 0.043 0.178 0.408 0.270 0.520 0.886 0.234 0.516 0.814 0.239 0.488 0.906 0.079 0.476 0.847

Decile 5 0.538 0.497 0.633 0.877 0.999 0.060 0.112 0.311 0.089 0.465 0.951 0.080 0.473 0.820 0.061 0.261 0.552 0.471 0.750 0.906

Decile 6 0.262 0.679 0.620 0.864 1.012 0.030 0.166 0.348 0.070 0.418 0.824 0.120 0.500 0.899 0.154 0.354 0.737 0.198 0.635 0.891

Decile 7 0.448 0.515 0.723 0.846 0.993 0.013 0.183 0.270 0.102 0.478 0.858 0.144 0.360 0.813 0.165 0.372 0.763 0.247 0.604 0.882

Decile 8 0.367 0.650 0.777 0.855 0.942 0.050 0.111 0.276 0.277 0.552 0.834 0.153 0.361 0.737 0.266 0.501 0.809 0.154 0.491 0.693

Decile 9 0.614 0.367 0.686 0.922 1.025 0.053 0.164 0.369 0.169 0.338 0.795 0.095 0.334 0.732 0.059 0.277 0.717 0.244 0.660 0.949

Decile 10 0.585 0.415 0.622 0.768 0.843 0.039 0.229 0.401 0.313 0.599 0.818 0.205 0.460 0.816 0.103 0.354 0.821 0.232 0.616 0.814

Bond Returns

10 - Yrs Treasury 0.707 0.249 0.848 0.962 1.099 0.024 0.068 0.112 0.209 0.449 0.837 0.117 0.456 0.759 0.481 0.674 0.808 0.157 0.364 0.482

5 - Yrs Treasury 0.315 0.763 0.819 0.901 1.074 0.047 0.115 0.219 0.307 0.580 0.856 0.199 0.428 0.731 0.282 0.511 0.723 0.246 0.482 0.880

Baa Corp Bonds (10-20 years) 0.443 0.458 0.260 0.376 0.424 0.452 0.563 0.665 0.351 0.467 0.710 0.279 0.512 0.758 0.056 0.245 0.597 0.399 0.675 0.818
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stocks exceed 0.5 with peaks in excess of 1 for a number of industries as well as medium-cap port-

folios. However, the market factor does not explain most of the predictable variation in excess

bond returns, when it is replaced in this leading role by the credit risk factor. As far as stocks

are concerned, the next most important contributions come from unexpected inflation (espe-

cially for bond and selected industry portfolios) and to some extent, real consumption growth

risk, although the heterogeneity across portfolios is pronounced (small capitalization stocks are

particularly well explained by this factor). In the case of bond portfolios, most predictable

variation is explained, after taking into credit risk exposures into account, by unexpected infla-

tion, economy-wide market risks, and Cochrane and Piazzesi’s specific factor; interestingly, the

contribution of yield curve shocks to priced risk is limited.

5.2 Pricing Errors

We follow Geweke and Zhou (1996) and measure the closeness of the pricing approximation

implied by (5), by computing at each time t the average squared recursive pricing error across

all the N test assets/portfolios,

Q2
t,N =

1

N

[

β′0,t

(

IN −Bt

(

B′
tBt

)−1
B′

t

)

β0,t

]

t = 1, ..., T, (15)

where β0,t is the N × 1 vector of intercepts, Bt = (ιN , β1,t, ..., βK,t) is a N ×K matrix collecting

vectors of time t betas of all the assets/portfolios vs. each of the K risk factors, and ιN an N -

dimensional vector of ones. These pricing errors are recursive because at each point in time they

are obtained using only information available up to that point. Because our Gibbs sampling

scheme allows to derive posteriors for all the objects that enter β0,t and Bt, we also compute

the posterior density of the average pricing error statistic, as discussed in Geweke and Zhou

(1996).

Table 6 reports the average monthly pricing errors, Q2
t,N , for each of our models across

different sub-samples. Using sub-samples wants to allow any instability in pricing performance

to emerge and be adequately detected.With reference to the full-sample, the B-TVB-SV model

yields both the lowest average pricing error (0.21% per month) and the lowest median poste-

rior error (0.19%). Such statistics are practically between one-half and two-thirds those that

one would obtain under a B-TVB homoskedastic model (0.41 and 0.35 percent, respectively).
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Table 6: Average Pricing Errors

This table reports the average pricing errors for each of the models under investigation across different
subsamples as well as in the full sample. B-TVB-SV stands for Bayesian time-varying betas, stochastic
volatility model, while B-TVB and B-TVP are the dynamic Bayesian model restricted to have constant
conditional volatility and random-walk betas, respectively. F-MB is the standard two-step procedure.
The table reports the average (over time), the posterior standard deviation as well as the confidence
interval at the 95% level.

Average Pricing Errors

Mean % Std % 2.5 % 50 % 97.5 %

Panel A: Full-Sample

B-TVB-SV 0.2108 0.0623 0.1363 0.1902 0.3231

B-TVB 0.4126 0.1588 0.2512 0.3459 0.7325

B-TVP 0.5401 0.1804 0.3113 0.5061 0.8126

F-MB 0.6303 0.0159 0.6107 0.6258 0.6633

Panel B: 1982:01 - 1999:01

B-TVB-SV 0.1926 0.0431 0.1443 0.1851 0.2574

B-TVB 0.3935 0.0314 0.3511 0.3921 0.4521

B-TVP 0.5233 0.1653 0.3202 0.4759 0.8101

F-MB 0.6278 0.0151 0.6092 0.6238 0.6585

Panel C: 1999:01 - 2011:11

B-TVB-SV 0.2624 0.0672 0.1454 0.2707 0.3525

B-TVB 0.4682 0.119 0.2806 0.4501 0.7068

B-TVP 0.6359 0.1993 0.3544 0.6456 0.9027

F-MB 0.6354 0.0162 0.6168 0.6321 0.6653

Panel D: 2007:01 - 2011:11

B-TVB-SV 0.2891 0.0613 0.1673 0.2977 0.3952

B-TVB 0.5865 0.0906 0.4718 0.5713 0.7559

B-TVP 0.6397 0.1431 0.4029 0.6616 0.8168

F-MB 0.6523 0.0179 0.6164 0.6439 0.6799
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Interestingly, the B-TVP model seems to fit the data well on the basis of the Bayes odds ratio

in Table 4, but fails to price our test portfolios (it gives average and median posterior errors

of 0.54 and 0.51 percent, respectively) as accurately as the homoskedastic B-TVB model does.

The performance of the classical two-step F-MB scheme is poor, yielding average and median

pricing errors of 0.63%. Moreover, B-TVB-SV consistently outperforms all other models in all

sub-samples. Its advantage is always substantial in the sense that B-TVB-SV always cuts the

average error of the second best model by at least 40%. The pricing errors tend to increase over

our sample, especially when one compares the 1982-1998 with the 1999-2011 interval. However,

there is no evidence of the errors during the Great Financial Crisis period (2007-2011) being

systematically higher than in the overall 1999-2011 sub-sample.

Figure 9 plots the time series of average pricing errors Q2
t,N for all the models (top panel) and

only for the B-TVB-SV and the B-TVP cases, rescaling the errors from the former model (on

the right axis) to better emphasize similarities and differences (bottom panel). The top panel

shows that, apart from a short period in early 1993 (when B-TVB became competitive), B-

TVB-SV gave uniformly lower average pricing errors than all other models. The F-MB scheme

gives uniformly high but constant average errors. The B-TVP model gives a highly variable

performance, with enormous spikes of mis-spricing around 1993, in 1999-2000, and during the

financial crisis. The bottom panel of the figure shows that the dynamics of pricing errors under

B-TVB-SV and B-TVP—both models including a stochastic volatility component—are not

that dissimilar, in the sense that also errors from B-TVB-SV spike up in 1993, 1999-2001 and

during 2011. However, the more parsimonious dynamics imposed by infrequent, large structural

breaks under B-TVB-SV reduces the pricing errors also keeping the latter more stable across

our sample.

6 Conclusion

In this paper, we have proposed a new way to parameterize and estimate in state-space form

a typical MFAPM with time-varying risk exposures and premia. This Bayesian state-space

approach is based on a formal modelling of the latent process followed by risk exposures and

idiosyncratic volatility capable to capture structural shifts in parameters. This method can

also be interpreted as a novel way to overcome the two-pass approach advocated by Fama and
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Figure 9: Average Pricing Errors

This figure reports the time series of the average pricing errors. The sample period is 1972:01 - 2011:12.
The first ten years of data are used a training sample in order to calibrate the prior distribution for both
latent states and parameters. Panel A reports the average pricing error across models. Panel B reports
the rescaled values of the average pricing errors for the B-TVB-SV and the B-TVP models, respectively.
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MacBeth (1973) and used in a substantive body of applied work in finance. Given a general

B-TVB-SV framework, we have also considered special cases that are obtained by imposing

restrictions, and in particular a B-TVP-SV model in which betas change continuously but in

small amounts, and a homoskedastic B-TVB model in which volatility is constant.

Our application to monthly, 1972-2011 U.S. stock and bond returns shows that the two-

stage approach yields results that are not always reasonable. For instance, very few risk factors

appear to be priced and, when they are, they carry the wrong sign. Moreover, the fit provided

by the standard two-step approach is poor. On the contrary, the empirical implications of a

Bayesian state-space implementation are plausible and there are indications that the model is

consistent with the data. For instance, most portfolios do not appear to have been grossly

mispriced and a few risk premia are precisely estimated with a plausible sign. Market, liquidity,

and industrial production (real output) growth risks are significantly priced. This confirms the

early evidence in Burmeister and McElroy (1988) that appropriate econometric methods reveal

a strong explanatory power of macroeconomic factors in addition to that provided by the plain

vanilla, CAPM-style market portfolio. Bayes odds ratios and marginal likelihood comparisons

indicate that the B-TVB-SV outperforms both the two-step F-MB and the homoskedastic B-

TVB models. The heteroskedastic B-TVP appears to be closer to the full-scale B-TVB-SV one.

However, an analysis of the average pricing errors shows that large but infrequent breaks in

factor exposures are considerably more successful. Finally, the finding that the heteroskedastic

B-TVB models ranks second below B-TVB-SV is a powerful indication of the importance to

explicitly model stochastic volatility when implementing multi-factor asset pricing models.

Supplementary Material

Online Appendix: In the online appendix, we provide additional detail regarding our method-

ology and some additional results. In this appendix, Appendix A describes in detail the Gibbs

sampler used for estimating the model. Convergence properties for our MCMC approach can

be found in Appendix B, whereas Appendix C reports on a prior sensitivity analysis for our

framework. Appendix D investigates the impact of different specification of stochastic volatility

on in-sample posterior inference. Finally, Appendix E details the variance decomposition test

used to assess the economic performances of the model.
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Frühwirth-Schnatter, S. (1994). Data augmentation and dynamic linear models. Journal of Time Series Analysis,
15:183–202.

41



Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the bayesian restoration of
images. IEEE Transactions, 6:721–741.

George, E. and McCulloch, R. (1993). Variable selection via gibbs sampling. Journal of the American Statistical
Association, (88):881–889.

Gerlach, R., Carter, C., and Kohn, R. (2000). Efficient bayesian inference for dynamic mixture models. Journal
of the American Statistical Association, (95):819–828.

Geweke, J. and Amisano, G. (2010). Comparing and evaluating bayesian predictive distributions of asset returns.
International Journal of Forecasting, 26:216–230.

Geweke, J. and Zhou, G. (1996). Measuring the pricing error of the arbitrage pricing theory. Review of Financial
Studies, 9:557–587.

Giordani, P., K. R. and van Dijk, D. (2007). A unified approach to nonlinearity, outliers and structural breaks.
Journal of Econometrics, 137:112–133.

Giordani, P. and Kohn, R. (2008). Efficient bayesian inference for multiple change-point and mixture innovation
models. Journal of Business and Economic Statistics, 26:66–77.

Giordani, P. and Villani, M. (2010). Forecasting macroeconomic time series with locally adaptive signal extraction.
International Journal of Forecasting, 26:312–325.

Groen, J., Paap, R., and Ravazzolo, F. (2013). Real-time inflation forecasting in a changing world. Journal of
Business and Economic Statistics, 31:29–44.

Gungor, S. and Luger, R. (2013). Testing linear factor pricing models with large cross sections: A distribution-free
approach. Journal of Business and Economic Statistics, (31):66–77.

Hansen, P. and Lunde, A. (2005). A forecast comparison of volatility models: Does anything beat a garch(1,1)?
Journal of Applied Econometrics, 20:873–889.

Harvey, C. (2001). The specification of conditional expectations. Journal of Empricial Finance, (8):573–638.

Jostova, G. and Philipov, A. (2005). Bayesian analysis of stochastic betas. Journal of Financial and Quantitative
Analysis, 40:747–778.

Karolyi, G. and Sanders, A. (1998). The variation of economic risk premiums in real estate returns. Journal of
Real Estate Finance and Economics, 17:245–262.

Kass, R. and Raftery, A. (1995). Bayes factors. Journal of the American Statistical Association, 430:773–795.

Kim, S., Shepard, N., and Chib, S. (1998). Stochastic volatility: likelihood inference and comparison with arch
models. Review of Economic Studies, 65:361–393.

Koop, G. and Potter, S. (2007). Estimation and forecasting in models with multiple breaks. Review of Economic
Studies, 74:763–789.

Kramer, C. (1994). Macroeconomic seasonality and the january effect. Journal of Finance, 49:1883–1891.

Lamont, O. (2001). Economic tracking portfolios. Journal of Econometrics, 105:161–184.

Lettau, M. and Ludvigson, S. (2001). Resurrecting the (c)capm: A cross-sectional test when risk premia are time
varying. Journal of Political Economy, (109):1238–1287.

Maheu, J. and Gordon, S. (2008). Learning, forecasting and structural breaks. Journal of Applied Econometrics,
23:553–583.

Maheu, J. and McCurdy, T. (2009). How useful are historical data for forecasting the long-run equity return
distribution? Journal of Business and Economic Statistics, 27:95–112.

McCulloch, R. and Roley, V. (1993). Stock prices, news, and business conditions. Review of Financial Studies,
6:683–707.

McCulloch, R. and Rossi, P. (1991). Posterior, predictive and utility based approaches to testing arbitrage pricing
theory. Journal of Financial Economics, 28:7–38.

Merton, R. (1973). An intertemporal capital asset pricing model. Econometrica, 41:867–887.
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Appendix

A The Gibbs Sampling Algorithm

In this section we derive the full conditional posterior distributions of the latent variables and the model param-

eters discussed in Section 2 of the main text. Before we describe in detail the different steps of sampler, we need

to define the densities that make up the joint density of the data and the latent variables (12). By considering

the no-arbitrage restriction such that βi0,t ≃ λ0,t +
∑K

j=1 λj,tβij,t−1, the likelihood given states and parameters

can be written from (4)-(5) as

p(rit|Ft, βit, σ
2
it) =

1
√

2πσ2
i,t

exp






−

(

rit − βi0,t −
∑K

j=1 βij,tFj,t

)2

2σ2
i,t







from (6)-(8) the densities of the latent states can be written as

p(βi,t|βi,t−1, κi,t, q
2
i ) =

K
∏

j=0





1
√

2πq2ij

exp

(

−
(βij,t − βij,t−1)

2

2q2ij

)





κij,t

(βij,t − βij,t−1)
1−κij,t

p(lnσ2
it| lnσ

2
it−1, κiυ,t, q

2
iυ) =

(

1
√

2πq2iυ
exp

(

−

(

lnσ2
i,t − lnσ2

i,t−1

)2

2q2iυ

))κiυ,t
(

lnσ2
i,t − lnσ2

i,t−1

)1−κiυ,t (A.1)

The densities for βi,t and lnσ2
it each consist of two parts. First one where breaks occurs and these are drawn from

their corresponding distributions. The second component is the case of no break which results in a degenerate

distribution of either the βij,t or lnσ2
it. Note the latter case my be also represented as a Dirac delta function.

For the ease of exposition we summarize the Gibbs sampler for the ith asset.

A.1 Step 1. SamplingKβ.

The structural breaks in the conditional dynamics of the factor loadings B, measured by the latent binary state

κjt, are drawn using the algorithm of Gerlach et al. (2000). This algorithm increases the efficiency of the

sampling procedure since allows to generate κjt, without conditioning on the relative regression parameters βjt.

The conditional posterior density for κjt, t = 1, ..., T, j = 0, ...,K, is defined as

p
(

κ0t,...,κKt|Kβ[−t],Kσ,Σ, θ, R, F
)

∝ p (R|Kβt,Kσ,Σ, θ, F ) p
(

κ0t,...,κKt|Kβ[−t],Kσ,Σ, θ, F
)

∝ p (rt+1, ..., rT |r1, ..., rt,Kβt,Kσ,Σ, θ, F ) p (rt|r1, ..., rt−1, κ0t,...,κKt,Kσ,Σ, θ, F )

p
(

κ0t,...,κKt|Kβ[−t],Kσ,Σ, θ, F
)

(A.2)

where Kβ[−t] =
{

{κjs}
K

j=0

}T

s=1,s 6=t
. We assume that each of the κjs breaks are independent from each other such

that the joint density is defined is defined as
∏K

j=0π
κjt

ij (1− πij)
1−κjt .

The remaining densities p (rt+1, ..., rT |r1, ..., rt,Kβt,Kσ,Σ, θ, F ) and p (rt|r1, ..., rt−1, κ0t,...,κKt,Kσ,Σ, θ, F )

are evaluated as in Gerlach et al. (2000). Notice that, since κjt is a binary state the integrating constant is easily

evaluated.

A.2 Step 2. Sampling the Factor Loadings B.

The full conditional posterior density for the time-varying factor loadings is computed using a standard forward

filtering backward sampling as in Carter and Kohn (1994). For each of the i = 1, ..., N assets, the prior distribution

of the βi0, ..., βiK loadings is a multivariate normal with the location parameters corresponding to the OLS

parameter estimates and a covariance structure which is diagonal and defined by the variances of the OLS

estimates. The initial prior are sequentially updated via the Kalman Filtering recursion, then the parameters
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are drawn from the posterior distribution which is generated by a standard backward recursion (see Frühwirth-

Schnatter 1994, Carter and Kohn 1994, and West and Harrison 1997).

A.3 Step 3 and 4. Sampling the Breaks and the Values of the Idiosyncratic

Volatility.

In order to draw the structural breaks Kσ and the idiosyncratic volatilities S we follow a similar approach as

above. The stochastic breaks Kσ are drawn by using the Gerlach et al. (2000) algorithm. The conditional

variances lnσ2
it, does not show a linear structure even though still preserving the standard properties of state

space models. The model is rewritten as

ln

(

ri,t − β0t −

K
∑

j=1

βijtFjt

)2

= lnσ2
it + ut

lnσ2
it = lnσ2

it−1 + κνitνit (A.3)

where ut = ln ε2t has a lnχ2(1). Here we follow Omori et al. (2007) and approximate the lnχ2(1) distribution

with a finite mixture of ten normal distributions, such that the density of ut is given by

p(ut) =

10
∑

l=1

ϕl

1
√

̟2
l 2π

exp

(

−
(ut − µl)

2

2̟l

)

(A.4)

with
∑10

l=1 ϕl = 1. The appropriate values for µl, ϕl and ̟
2
l can be found in Omori et al. (2007). Mechanically in

each step of the Gibbs Samplers we simulate at each time t a component of the mixture. Now, given the mixture

component we can apply the standard Kalman filter method, such that Kσ and Σ can be sampled in a similar

way as Kβ and B in the first and second step. The initial prior of the log idiosyncratic volatility lnσ2
0 is normal

with mean -1 and conditional variance equal to 0.1.

A.4 Step 5a. Sampling the Risk Premia at Time t.

The equilibrium restriction in (2) simplify at each time t to a multi-variate linear regression of the N excess

returns r = (r1,t, r2,t, ..., rN,t)
′, onto a constant term and past betas X = (ιN , β1,t−1, β2,t−1, ..., βK,t−1)

r = Xλ+ e with e ∼ N(0, τ2IN ) (A.5)

where βi,t−1 = (β1i,t, β2i,t, ..., βNi,t)
′. Note here we avoid the time t dependence of regressors for the ease of

exposition. We consider independent conjugate priors

λ ∼MN(λ, V ) τ
2 ∼ IG− 2(ψ0,Ψ0) (A.6)

Posterior updating in the Gibbs sampler evolves as

λ|X, r ∼MN(λ, V ) τ
2|X, r ∼ IG− 2(ψ,Ψ) (A.7)

with

λ = V
(

V
−1
λ+ τ

2
X

′
r
)

and V =
(

V
−1 + τ

−2
X

′
X
)

(A.8)

while the posterior hyper-parameters for conditional volatility are defined as

ψ = ψ0 +N and Ψ = Ψ0 + ee
′ (A.9)
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A.5 Step 5b. Sampling the Stochastic Breaks Probabilities.

The full conditional posterior densities for the breaks probabilities π = (πi1,...,πiK) is given by

p
(

π|q2, B,Σ,Kβ , R, F
)

∝
K
∏

j=0

π
aij−1

ij (1− πij)
bij−1

T
∏

t=1

π
κijt

ij (1− πij)
1−κijt (A.10)

and hence the individual πij parameter can be sampled from a Beta distribution with shape parameters aij +
∑T

t=1 κijt and bij +
∑T

t=1(1 − κijt) for j = 0, ...,K. Likewise the full conditional posterior distribution for the

breaks probabilities in the idiosyncratic volatilities πν is given by

p
(

πν |q
2
, B,Σ,Kσ, R, F

)

∝ π
aiν−1
iν (1− πiν)

biν−1
T
∏

t=1

π
κiνt

iν (1− πiν)
1−κiνt

such that the individual πiν can be sampled from a Beta distribution with shape parameters aiν +
∑T

t=1 κiνt and

biν +
∑T

t=1(1− κiνt) for i = 1, ..., N .

A.6 Step 5c. Sampling the Conditional Variance of the States.

The prior distributions for the conditional volatilities of the factor loadings βijt for j = 0, ...,K are inverse-gamma

p
(

q
2
ij |π,B,Σ,Kβ ,Kσ, R, F

)

∝ q
−νij
ij exp

(

−
δij

2q2ij

)

T
∏

t=1

(

1

qij
exp

(

− (βijt−βijt−1)
2

2q2ij

))κijt

(A.11)

hence q2ij is sampled from an inverse-gamma distribution with scale parameter νij +
∑T

t=1 κijt (βijt−βijt−1)
2 and

degrees of freedom equal to νij +
∑T

t=1 κijt. Likewise the full conditional of the variance for the idiosyncratic log

volatility q2iν is defined as

p
(

q
2
iν |π,B,Σ,Kβ ,Kσ, R, F

)

∝ q
−νiν
iν exp

(

−
δiν

2q2iν

)

T
∏

t=1

(

1

qiν
exp

(

−
(

lnσ2
it − lnσ2

it−1

)2

2q2iν

))κiνt

(A.12)

such that q2iν is sampled from an inverted Gamma distribution with scale parameter νiν+
∑T

t=1 κiνt

(

lnσ2
it − lnσ2

it−1

)2

and degrees of freedom equal to νiν +
∑T

t=1 κiνt.

B MCMC Convergence Analysis

We report the results of a convergence analysis of the MCMC sampler for the B-TVB-SV model outlined in

Section 3 and Appendix A. The convergence analysis involves computing a set of inefficiency factors and t-tests

for equality of the means across subsamples of the MCMC chain. (see Geweke 1992, Primiceri 2005 Justiniano

and Primiceri 2008, Clark and Davig 2011 and Groen et al. 2013).

For each individual parameter and latent variable, the inefficiency factor answer the question “How much

information do we actually have about parameters?”, and is measured as (1+2
∑∞

f=1 ρf ), where ρf is the fth order

auto-correlation of the chain of draws. This inefficiency factor equals the variance of the mean of the posterior

draws from the MCMC sampler, divided by the variance of the mean assuming independent draws. Then, if

we require that the variance of the mean of the MCMC posterior draws should be limited to be at most 1% of

the variation due to the data (measured by the posterior variance), the inefficiency factor provides an indication

of the minimum number of MCMC draws to achieve this, see Kim et al. (1998). If there are some correlation

between successive samples, then we might expect that our sample has not revealed as much information of the

posterior distribution of our parameter as we could have gotten if the samples draws were independent. When

estimating these inefficiency factors, we use the Bartlett kernel as in Newey and West (1987), with a bandwidth

set to 4% of the sample of draws. The inefficiency factor is computed for all the model parameters and applied on

a range of choices for the total number of posterior draws as well as burn-in period lengths and thinning for the

B-TVB-SV specification. Based on this comparison we felt most comfortable that with the number of posterior

draws set equal to 10000 with a burn-in period of 2000 draws and thinning value of 2, yielding 10000 retained
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posterior draws, our MCMC sampler would perform satisfactorily.

Tables B.1 provide a summary of the results showing that, for most parameters and latent variables, our

MCMC sampler is very efficient and that it requires far less than 5000 retained posterior draws to be able to do

a reasonably accurate inferential analysis. In case of the time-invariant parameters Q and π, with likely values

in the 2.3-4.2 range, our sampler is less efficient. Nonetheless, the corresponding inefficiency factors suggest on

average a minimum number of draws of less than 4000 to achieve an accurate analysis of these parameters.

Table B.1: Summary of Inefficiency Factors

The table summarizes the inefficiency factors, for the posterior values of the model parameters, estimated
over the sample period 1972:01 - 2011:12. The estimated inefficiency factors are based on the Bartlett
kernel as in Newey and West (1987) with a bandwidth equal to 4% of the 10000 retained draws.

Inefficiency Factor

Parameters Mean Median Min Max 5% 95%

B 82800 2.9081 2.9222 2.6001 3.5031 2.6842 3.2091

Kβ,Kσ 91080 2.7886 2.8157 2.0096 4.0311 2.3567 3.4231

Σ 8280 2.8121 2.8321 2.0897 3.9421 2.4016 3.4072

Q 253 2.9318 2.9118 2.3314 3.8921 2.3414 3.8532

π 253 3.3478 3.3405 2.6652 4.2307 2.6668 4.2209

We also compute the p-value of the Geweke (1992) t-test for the null hypothesis of equality of the means

computed with the first 20 percent and last 40 percent of the sample of retained draws. For this particular

convergence diagnostic test we compute the variances of the respective means using the Newey and West (1987)

heteroskedasticity and autocorrelation robust variance estimator with a bandwidth set to 4% of the utilized

sample sizes. Such convergence statistics is still computed for the complete B-TVB-SV specification estimated

over the sample period 1972:01 - 2011:12. Table B.2 shows the results. The convergence diagnostic tests in Table

Table B.2: Summary of Convergence Diagnostics

The table summarizes the convergence results, for the posterior values of the model parameters, estimated
over the sample period 1972:01 - 2011:12. For each of these, we compute the p-value of the Geweke (1992)
t-test for the null hypothesis of equality of the means computed for the first 20% and the last 40% of
the retained 10000 draws. The variances of the means are estimated with the Newey and West (1987)
variance estimator using a bandwidth of 4% of the respective sample sizes.

Summary of Convergence Diagnostics

Parameters 5% Reject Rate 10% Reject Rate

B 82800 0.0102 0.0347

Kβ,Kσ 91080 0.0133 0.0400

Σ 8280 0.0108 0.0317

Q 253 0.0000 0.0000

π 253 0.0000 0.0000

B.2 confirm the efficiency of the MCMC sampler we propose. For example, in the case of the B parameters
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the null hypothesis of equal means across sub-samples of the retained draws is hardly ever rejected at the 5%

confidence interval. Thus, inference in our factor model appears to be reasonably accurate when we base posterior

inference on 10000 draws with a burn-in of 2000 and thin value of 2. Such a choice of the number of draws keeps

the computational burden relatively low, at the benefit of inference precision as shown in Table B.1 and Table

B.2.

C Prior Sensitivity Analysis

We investigate in this section the influence of different prior specifications on posterior results. In particular we

discuss prior sensitivity for both the expected occurrence probability and expected size of a break for betas and

idiosyncratic risks. First, we run a simulation example and directly test how posterior estimates reacts to different

prior specifications. Second, we estimate the B-TVB-SV model on the original dataset by using different priors

specifications. The goal of both exercises is to assess how the model instability/dynamics implied by posterior

estimates is driven by priors on break sizes and probabilities.

C.1 Simulation Example

The first step of the prior sensitivity analysis is based on a simulation example. We base our results on the

following data generating process [DGP]

yt = β0,t + β1,tx1,t + β2,tx2,t + β3,tx3,t + σtǫt, for t = 1, ..., 200

with ǫt ∼ NID(0, 1) and xj,t ∼ NID(0, 1) for j = 1, ..., 3. We simulate discrete breaks both in the betas and

idiosyncratic risks. The intercept is set to β0,t = 0 for t = 1, ..., 200, meaning we simulate a factor model where

there is no pricing error in the DGP. For the first regressor we take as parameters β1,t = 0.4 for t = 1, ..., 80,

β1,t = 0.9 for t = 81, ..., 160, β1,t = 0.1 and t = 161, ..., 200. For the second regressor we have β2,t = 0.2 for

t = 1, ..., 60, β2,t = 0.5 for t = 61, ..., 120, and β2,t = 0 for t = 121, ..., 200. Furthermore, β3,t = −0.2 for

t = 1, ..., 60, β3,t = −0.5 for t = 61, ..., 150, and β3,t = −0.1 for t = 151, ..., 200. For the (log of) idiosyncratic

volatility we assume that lnσ2
t = −3 for t = 1, ..., 60, lnσ2

t = −1.5 for t = 61, ..., 140, and lnσ2
t = −2 for

t = 141, ..., 200. Hence we allow for breaks in the parameters at different points in time but we also include

breaks which occur at the same time.

We apply our Bayesian estimation framework with structural breaks outlined in Section 3 with M = 10000

posterior draws (burn-in of 2000 draws and thin of 2), and different prior settings to investigate the sensitivity

of posterior results. As a base case we assume the hyper-parameters outlined in the main text. We set aj = 3.2,

bj = 60 and γj = 0.5, δj = 100 for j = 1, 2, 3 which implies a priori a relatively low break probability of having a

break with a moderate expected size. As far as the (log of) idiosyncratic risk is concerned, we assume for the base

case a low probability of having a break with aν = 1, bν = 99 while the size of breaks implies γj = 0.2,δj = 50.

We report in Figure C.1 the posterior estimates of βi,t for i = 1, 2, 3 and lnσ2
t together with the corresponding

true parameters. The results from this figure show that our approach is quite accurate in estimating both the

timing and the size of the breaks, where the estimates of βi,t for i = 1, 2, 3 are more volatile due to our prior

choice for the hyper-parameters of the inverse-gamma distributed size of the breaks. As we would expected,

conditional volatility of the estimates sensibly increases around the occurrence of breaks in the DGP.

In our prior sensitivity assessment, we consider several alternative prior specifications where increase the prior

probability of a break and decrease or increase the expected size of the breaks both across betas and idiosyncratic

volatility. In total we consider 12 different prior specifications. A moderately larger probability of a break than

in the base case means that we divide bj by 5. A more extreme break probability is obtained by dividing bj by

10. Yet, a higher (lower) expected prior break size is obtained by multiplying (dividing) γj and νj by 5. As

far as the conditional volatility is concerned, we increase the probability of a break by dividing bν by 10 and

20, respectively. Table C.3 summarizes the different prior settings. To summarize, by considering bj = 6, 12 we

increase the prior expected probability of observing a break in the betas (idiosyncratic risk) to 20% and 35%

(10% and 17%) respectively.
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Figure C.1: Posterior Estimates of Time-Varying Parameters for the Base case Priors

This figure plots the posterior distributions of the parameters βi,t for i = 1, 2, 3 and lnσ2
t together with the

corresponding values implied by the DGP. The blue dashed line reports the median estimates of the parameters.
The red dashed lines denote the 20th and 80th percentiles of the posterior distribution. The black solid line
displays the values of the data generating process.
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Table C.3: Summary of Prior Settings for Different Cases

The table summarizes the different prior settings we used to run the prior sensitivity analysis.

Break Exp Prior Betas Prior Variance

Probability Size aj bj γj δj aν bν γν δν

Base 3.2 60 0.5 100 1 99 0.2 50

Large Small 3.2 12 0.1 20 1 10 0.04 10

Large Large 3.2 12 2.5 500 1 10 1 250

Higher Small 3.2 6 0.1 20 1 5 0.04 10

Higher Large 3.2 6 2.5 500 1 5 1 250
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Figure C.2 reports the posterior estimates of βi,t for i = 1, 2, 3 and lnσ2
t by increasing the prior probability

of having a break (aj = 3.2, bj = 12, aν = 1 and bν = 10), as well as rising the prior average size of the breaks

(γj = 2.5, δj = 500, γν = 1 and δν = 250). The figure makes it clear that posterior medians of the parameter are

now quite off in terms of the timing of the breaks, with a large uncertainty for the posterior estimates of β1:3,t

as well as lnσ2
t . Interestingly, higher uncertainty is more evident for the betas than for the log of conditional

variance. Indeed, although posterior median estimates of lnσ2
t are fairly off from capturing the second break

point, the corresponding confidence intervals are still relatively tight. As we would expect, by imposing a priori a

higher instability in the parameters of the model, the corresponding credibility intervals tend to increase. Figure

C.3 shows the posterior estimates of the model parameters by assuming an even larger prior break probability

(aj = 3.2, bj = 6, aν = 1 and bν = 5), while still keeping the ex-ante average break size as before (γj = 2.5,

δj = 500, γν = 1 and δν = 250). The Figure shows that a higher expected probability and size of a break may

lead to much more uncertain posterior estimates. From Figure C.3-C.2, however, is hard to say if less precise

estimates comes from a higher expected probability, rather than a higher expected size of a break.

Figure C.2: Posterior Estimates of the Time-Varying Parameters: Large prior-break probabili-
ties and large prior break size

This figure plots the posterior distributions of of the parameters βi,t for i = 1, 2, 3 and lnσ2
t together with the

corresponding values implied by the DGP. The blue dashed line reports the median estimates of the parameters.
The red dashed lines denote the 20th and 80th percentiles of the posterior distributions. The black solid line
displays the values used to define the data generating process. Posterior results are now based on a larger prior-
break probabilities for both betas and the (log of) idiosyncratic volatility (aj = 3.2, bj = 12, aν = 1 and bν = 10),
also assuming a large expected priors break size (γj = 2.5, δj = 500, γν = 1 and δν = 250).
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Figure C.4 shows the posterior estimates of βi,t for i = 1, 2, 3 and lnσ2
t by assuming an higher prior probability

of having a break and a smaller prior expected size of the breaks. The figures makes clear that much of the

posterior medians deterioration showed in figure C.3 and C.2 would likely come from a higher expected size of

the breaks. In particular assuming a priori small sized breaks will result in a less disperse posterior estimate and

that the timing of breaks are mostly precisely estimated. A general pattern we observe is that when the prior

settings correspond to a higher probability of smaller breaks than in the base case, the posterior estimates of

β1:3,t and lnσ2
t are consistent with those implied by the data generating process. However, by imposing ex-ante a

larger size of breaks, the precision of posterior median estimates deteriorates. As a whole, the posterior estimates

seems to be more sensible to prior hyper-parameters on the breaks size rather than to prior probabilities of breaks
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on itself.

Figure C.3: Posterior Estimates of the Time-Varying Parameters: Higher prior-break probabil-
ities and large prior break size

This figure plots the posterior distributions of the parameters βi,t for i = 1, 2, 3 and lnσ2
t together with the

corresponding values implied by the DGP. The blue dashed line reports the median estimates of the parameters.
The red dashed lines denote the 20th and 80th percentiles of the posterior distributions. The black solid line
displays the values used to define the data generating process. Posterior results are now based on a larger prior-
break probabilities for both betas and the (log of) idiosyncratic volatility (aj = 3.2, bj = 6, aν = 1 and bν = 5),
also assuming a large expected priors break size (γj = 2.5, δj = 500, γν = 1 and δν = 250).
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C.2 Empirical Example

The second step of the prior sensitivity analysis is based on an empirical exercise. We base our results on the

full B-TVB-SV model estimated on the original dataset of 23 stock and bond portfolios sorted on size, industry

and maturity, and 9 macroeconomic risk factors (see Table 1 in the main text). The different prior specifications

are those reported in Table C.3. Figure C.5 shows the distribution of posterior break probabilities for each of

the macroeconomic risk factors, and averaged across the 23 stock and bond portfolios. The red dashed line

corresponds to the posterior under the base case prior. The black line corresponds to the posterior under the

“Large” case (aj = 3.2, bj = 12, aν = 1 and bν = 10), while the blue dot-dashed line represents the posterior

distribution under the “Higher” case (aj = 3.2, bj = 6, aν = 1 and bν = 5). Figure C.5 makes clear that by

assuming, a priori a higher probability of having a break does not lead to sensibly different posterior estimates

of the instability of the betas in the full B-TVB-SV model. In fact, posterior estimates tend to largely overlap

across explanatory macroeconomic factors. The same applies by looking at the posterior distribution of break

probabilities for idiosyncratic variances. Figure C.6 reports the average posterior probabilities of having a break

in lnσ2
i,t under different priors. Again, posterior estimates tend to largely overlap under different priors.

As a further assessment we investigate the role of priors on break probabilities for lnσ2
i,t in isolation. Figure

C.7 shows the distribution of posterior break probabilities for each of the macroeconomic risk factors, and

averaged across the 23 stock and bond portfolios. The prior structure for the betas is kept constant to the base

case (aj = 3.2, bj = 60, and γj = 0.5, δj = 100 for j = 1, .., 10). The red dashed line corresponds to the

posterior under the base case prior (aν = 1 and bν = 99). The black line corresponds to the posterior under the
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Figure C.4: Posterior Estimates of the Time-Varying Parameters: Higher prior-break probabil-
ities and small prior break size

This figure plots the posterior distributions of the parameters βi,t for i = 1, 2, 3 and lnσ2
t together with the

corresponding values implied by the DGP. The blue dashed line reports the median estimates of the parameters.
The red dashed lines denote the 20th and 80th percentiles of the posterior distributions. The black solid line
displays the values used to define the data generating process. Posterior results are now based on a higher
prior-break probabilities for both betas and the (log of) idiosyncratic volatility, while assuming a small expected
priors break size.
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Figure C.5: Posterior Distributions of Break Probabilities of the Betas for Fixed Break Sizes

This figure plots the posterior distributions of the break probabilities for the betas averaged across portfolios and
for each of the 9 macroeconomic factors depicted in Table B.1 in the main text. The red dashed line corresponds
to the posterior under the base case prior. The black line corresponds to the posterior under the “Large” case
(aj = 3.2, bj = 12, aν = 1 and bν = 10), while the blue dot-dashed line represents the posterior distribution
under the “Higher” case (aj = 3.2, bj = 6, aν = 1 and bν = 5).
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Figure C.6: Posterior Distributions of Break Probabilities of Idiosyncratic Volatility for Fixed
Break Sizes

This figure plots the posterior distributions of the break probabilities for the (log of) idiosyncratic variances
averaged across the 23 portfolios reported in Table 1 in the main text. The red dashed line corresponds to the
posterior under the base case prior. The black line corresponds to the posterior under the “Large” case (aj = 3.2,
bj = 12, aν = 1 and bν = 10), while the blue dot-dashed line represents the posterior distribution under the
“Higher” case (aj = 3.2, bj = 6, aν = 1 and bν = 5).
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“Large” case (aν = 1 and bν = 10), while the blue dot-dashed line represents the posterior distribution under

the “Higher” case (aν = 1 and bν = 5). Figure C.7 makes clear that posterior estimates are rather robust with

respect to different priors specifications for break probabilities on lnσ2
i,t. Interestingly, the data seem to be rather

informative in defining the amount instability required by the dynamics of betas and idiosyncratic volatility. In

fact, different priors do not lead to dramatically different results.

Figure C.7: Posterior Distributions of Break Probabilities of the Betas by Changing Priors on
Idiosyncratic Volatility, and Keeping Fixed Break Sizes and Betas Prior Structure

This figure plots the posterior distributions of the break probabilities for the betas averaged across portfolios and
for each of the 9 macroeconomic factors depicted in Table 1 in the main text. The prior structure on the betas
is kept constant, while priors on lnσ2

i,t change. The red dashed line corresponds to the posterior under the base
case prior. The black line corresponds to the posterior under the “Large” case (aν = 1 and bν = 10), while the
blue dot-dashed line represents the posterior distribution under the “Higher” case (aν = 1 and bν = 5).
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D In-Sample Posterior Inference on Stochastic Volatility

A number of studies in the finance literature have compared alternative models of time-varying volatility of asset

returns (e.g. Hansen and Lunde 2005, Geweke and Amisano 2010, and Clark and Ravazzolo 2014). More recently

Eisenstat and Strachan (2014) discuss estimation of volatility in the context of inflation, in particular whether it

should be modelled as a stationary process or as a random walk. In our B-TVB-SV model when a break arrives,

log-volatility follows a random walk. While such random walk assumption might be indeed useful for practical

reasons, it can be criticized as inappropriate since it implies that the range of possible values of volatility is

unbounded in probability in the limit, which is obviously something we do not observe in financial markets. On

the other hand, stationary processes, say an AR(1) dynamics for log-volatility, are bounded in the limit, even

though are close to be non-stationary at monthly frequencies, and also substantially increase the parameter space

have to be estimated.

In this section, we report some in-sample properties of different specifications of the stochastic volatility

component of our general model reported in Section 3 in the main text. The purpose is to investigate if the func-

tional for volatility implied by the change-point dynamics sensibly affects the results in comparison of standard

stationary and random walk specifications. For the model in-sample estimation we used the original Dataset of
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23 portfolios of stocks sorted by size and industry, and bond portfolios sorted by maturity. Data are monthly

and cover the sample period 1972:01 - 2011:12. The first ten years of data are used to calibrate the priors for

each model.

For both discussion and estimation, we use a common observation equation specification for each of the

excess returns rt.t on the 23 portfolios. For the sake of simplicity we assume a constant mean model. In general,

we write this as

ri,t = µ+ σitǫi,t i = 1, ..., N,

We restrict the discussion to two specifications, namely our change-point dynamics as in Section 3, and a standard

AR(1) stationary process. The change-point specification for log-volatility, is defined as (see the main text for

more details)

ln(σ2
i,t) = ln(σ2

i,t−1) + κiυ,tυi,t with υi,t ∼ N(0, qi) and κiυ,t =

{

1 πiυ

0 1− πiυ

(D.13)

The alternative stationary specification we consider is a standard AR(1) dynamics

ln(σ2
i,t) = (1− δi) ln(σ2

i ) + δi ln(σ
2
i,t−1) + υi,t with υi,t ∼ N(0, qi) (D.14)

with ln(σ2
i ) the long-run mean, and δi the asset specific persistence parameter of log-volatility. Clearly both the

change-point model and the AR(1) nests a random walks dynamics when πiυ = 1 and δi = 1, respectively. Figure

6 shows the median estimates of ln(σ2
i,t) according to (D.13) and (D.14) respectively. We report the results for

the size-sorted portfolios for the sake of readability. The blue line corresponds to the stationary AR(1), while

the red line is the median estimate under the B-TVB-SV model. This figure makes clear that both of the models

specifications helps to capture spikes in conditional volatility, for instance around the period 2000/2002, across

different assets. In other words, at least in finite samples, there is not clear benefit in using a stationary dynamics

as the AR(1) as opposed to the full B-TVB-SV model. One potential reason is that, indeed, at the monthly

frequency, the AR(1) dynamics of log-volatility is close to be non-stationary, i.e. δi = 1. Figure ?? shows the

posterior distribution of the persistence parameters δi across the same set of size-sorted portfolios reported in

Figure 6. Indeed, shocks to the AR(1) log-volatility turn out to have a largely persistent effect. The average

posterior median estimate of δi is well above 0.9 on a monthly frequency.

A general pattern we observe is that, at least in finite samples, both a highly persistent AR(1) and a change-

point dynamics may help to capture the same dynamic features of log-volatility. The question is now why we argue

the latter might be indeed better to fit the data. We compared the log-marginal likelihoods of the specifications

(D.13)-(D.14) together with a standard random walk dynamics. Table D.4 shows the results. The full B-TVB-SV

model delivers the highest log-marginal likelihood across all the size-sorted portfolios. Interestingly, the data are

clearly in favor of the stationary AR(1) dynamics as opposed to the random walk one.

As a whole, posterior estimates of log-volatility would not radically change by using a more standard station-

ary AR(1) dynamics. The latter however, is strongly rejected by the data in typical set of 40 years of post-war

data on size-sorted stocks. Interestingly, the full B-TVB-SV closely behaves as a highly persistent, stationary,

AR(1) process (of course, this is true in finite samples and not asymptotically).

E Variance Decomposition Tests

We use the posterior densities of the time series of factor loadings and risk premia to perform a number of

tests that allow us to assess whether a posited asset pricing framework may explain an adequate percentage of

excess asset returns. (5) decomposes excess asset returns in a component related to risk, represented by the term
∑K

j=1 λj,tβij,t−1 plus a residual λ0,t+ ei,t. In principle, a multi-factor model is as good as the implied percentage

of total variation in excess returns explained by its first component,
∑K

j=1 λj,tβij,t−1. However, here we should

recall that even though (5) refers to excess returns, it remains a statistical implementation of the framework in

(4). This implies that in practice it may be naive to expect that
∑K

j=1 λj,tβij,t−1 be able to explain much of the
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Figure D.8: Posterior Median Estimates of Log-Volatility Under the Change-Point Dynamics
vs. Stationary AR(1)

This figure plots the posterior median estimates of the log-volatility for a set of size-sorted portfolios across the
period 1972:01 - 2011:01. The blue line corresponds to the stationary AR(1), while the red line is the median
estimate under the B-TVB-SV model. Prior hyper-parameters are trained in both cases by using a pre-sample
period of ten years.
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Figure D.9: Posterior Estimates of the Persistence Parameters for the AR(1) Log-Volatility

This figure plots the posterior distribution estimates of the persistence parameters δi for the log-volatility for
a set of size-sorted portfolios across the period 1972:01 - 2011:01. The blue line corresponds to the stationary
AR(1), while the red line is the median estimate under the B-TVB-SV model. Prior hyper-parameters are trained
in both cases by using a pre-sample period of ten years.
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Table D.4: Log-Marginal Likelihoods Across Alternative Stochastic Volatility Specifications

This table the values of the log-marginal likelihoods for different specifications of stochastic volatility.
The values of log marginal likelihoods are reported for ten stocks portfolios sorted on size. Change-Point
stands for the full model proposed in the main text, while Stationary and Random Walk, respectively
represents a model with a stationary and random walk dynamics for the stochastic volatility process.

10 Size-Sorted Portfolios, Value Weighted

Change-Point Stationary Random Walk

Decile 1 -534.140 -613.760 -805.997

Decile 2 -444.477 -598.132 -776.736

Decile 3 -307.812 -479.321 -734.209

Decile 4 -279.771 -460.944 -733.441

Decile 5 -232.713 -415.034 -717.713

Decile 6 -217.594 -432.015 -719.466

Decile 7 -168.411 -445.438 -705.954

Decile 8 -148.350 -312.585 -704.538

Decile 9 -96.393 -433.774 -691.064

Decile 10 -43.428 -222.075 -683.426
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variability in excess returns. A more sensible goal seems to be that
∑K

j=1 λj,tβij,t−1 ought to at least explain

the predictable variation in excess returns. We therefore follow earlier literature, such as Karolyi and Sanders

(1998), and adopt the following approach. First, the excess return on each asset is regressed onto a set of M

instrumental variables that proxy for available information at time t− 1, Zt−1,

xi,t = θi0 +
M
∑

m=1

θimZm,t−1 + ξi,t, (E.15)

to compute the sample variance of fitted values,

V ar[P (xit|Zt−1)] ≡ V ar

[

θ̂i0 +
M
∑

m=1

θ̂imZm,t−1

]

, (E.16)

where the notation P (xit|Zt−1) means “linear projection” of xit on a set of instruments, Zt−1. Second, for each

asset i = 1, ..., N , a time series of fitted (posterior) risk compensations,
∑K

j=1 λj,tβij,t−1, is regressed onto the

instrumental variables,
K
∑

j=1

λj,tβij,t−1 = θ
′
i0 +

M
∑

m=1

θ
′
imZm,t−1 + ξ

′
i,t (E.17)

to compute the sample variance of fitted risk compensations:

V ar

[

P

(

K
∑

j=1

λj,tβij,t−1|Zt−1

)]

≡ V ar

[

θ̂
′
i0 +

M
∑

m=1

θ̂
′
imZm,t−1

]

. (E.18)

The predictable component of excess returns in (E.15) not captured by the model is then the sample variance of

the fitted values from the regression of the residuals ξ̂i,t on the instruments:

V ar
[

ξ̂i,t

]

= V ar [P (λ0,t + ei,t|Zt−1)] . (E.19)

At this point, it is informative to compute and report two variance ratios, commonly called V R1 and V R2, after

Ferson and Harvey (1991):

V R1 ≡
V ar

[

P
(

∑K

j=1 λj,tβij,t|t−1|Zt−1

)]

V ar[P (xit|Zt−1)]
> 0 (E.20)

V R2 ≡
V ar [P (λ0,t + ei,t|Zt−1)]

V ar[P (xit|Zt−1)]
> 0. (E.21)

VR1 should be equal to 1 if the multi-factor model is correctly specified, which means that all the predictable

variation in excess returns is captured by variation in risk compensations; at the same time, VR2 should be

equal to zero if the multi-factor model is correctly specified. Importantly, when these decomposition tests are

implemented using the estimation outputs obtained from our B-TVB-SV framework, drawing from the joint

posterior densities of the factor loadings βij,t−1 and the implied risk premia λj,t, i = 1, ..., N , j = 1, ...,K, and

t = 1, ..., T , and holding the instruments fixed over time, it is possible to compute VR1 and VR2 in correspondence

to each of such draws and hence obtain their posterior distributions.1

Finally, the predictable variation of returns due to the multi-factor model may be further decomposed

into the components imputed to each of the individual systematic risk factors, by computing the factoring

of V ar[P (
∑K

j=1 λj,tβij,t−1|Zt−1)] as

K
∑

j=1

V ar [P (λj,tβij,t−1|Zt−1)] +
K
∑

j=1

K
∑

k=1

Cov[P (λj,tβij,t−1|Zt−1) , P (λk,tβik,t−1|Zt−1)] (E.22)

1Notice that V R1 = 1 does not imply that V R2 = 0 and viceversa, because

V ar[P (xit|Zt−1)] 6= V ar

[

P

(

K
∑

j=1

λ̂j,tβ̂ij,t−1|Zt−1

)]

+ V ar

[

P

(

ri,t − θ̂i0 −
M
∑

m=1

θ̂imZm,t−1|Zt−1

)]

.
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and tabulating V ar [P (λj,tβij,t−1|Zt−1)] for j = 1, ...,K as well as the residual factor
∑K

j=1

∑K

k=1 Cov[ P (λj,tβij,t−1|Zt−1) ,

P (λk,tβik,t−1|Zt−1)] to pick up any interaction terms. Note that because of the existence of the latter term, the

equality
K
∑

j=1

V ar [P (λj,tβij,t−1|Zt−1)]

V ar
[

P
(

∑K

j=1 λj,tβij,t−1|Zt−1

)] = 1 (E.23)

fails to hold, i.e., the sum of the K risk compensations should not equal the total predictable variation from the

asset pricing model because of the covariance among individual risk compensations. This derives from the fact

that even though in (1) the risk factors are assumed to be orthogonal, this does not imply that their time-varying

total risk compensations (λj,tβij,t−1 for j = 1, ...,K) should be orthogonal.
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