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Abstract

We prove that a subtle but substantial bias exists in a standard measure of the conditional
dependence of present outcomes on streaks of past outcomes in sequential data. The magnitude
of this novel form of selection bias generally decreases as the sequence gets longer, but increases
in streak length, and remains substantial for a range of sequence lengths often used in empirical
work. The bias has important implications for the literature that investigates incorrect beliefs
in sequential decision making—most notably the Hot Hand Fallacy and the Gambler’s Fallacy.
Upon correcting for the bias, the conclusions of prominent studies in the hot hand fallacy
literature are reversed. The bias also provides a novel structural explanation for how belief in
the law of small numbers can persist in the face of experience.
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1 Introduction

Jack takes a coin from his pocket and decides to flip it, say, one hundred times. As he is curious

about what outcome typically follows a heads, whenever he flips a heads he commits to writing

the outcome of the next flip on the scrap of paper next to him. Upon completing the one hundred

flips, Jack of course expects the proportion of heads written on the scrap of paper to be one-half.

Shockingly, Jack is wrong. For a fair coin, the expected proportion of heads is smaller than one-half.

We prove that for any finite sequence of binary data, in which each outcome of “success”

or “failure” is determined by an i.i.d. random variable, the proportion of successes among the

outcomes that immediately follow a streak of consecutive successes is expected to be strictly less

than the underlying (conditional) probability of success.1 While the magnitude of this novel form

of selection bias generally decreases as the sequence gets longer, it increases in streak length, and

remains substantial for a range of sequence lengths often used in empirical work.

We show that the bias has considerable implications for beliefs and decision making in envi-

ronments that involve sequential data. First, we find that prominent studies in the influential hot

hand fallacy literature (see Gilovich, Vallone, and Tversky [1985]; for a brief review see Section 3.3)

have employed a biased estimation procedure analogous to Jack’s.2 Crucially, upon correcting for

the bias we find that the long-standing conclusion of the seminal hot hand fallacy study reverses.

Second, we use the bias to develop a novel structural explanation for how the well-known gam-

bler’s fallacy can persist, even for individuals who have extensive experience.3 These and other

implications are further discussed below.

To see why Jack’s procedure in the opening example leads to a bias, consider the simplest case

in which he flips the coin just three times. While Jack will generate only a single sequence of heads

and tails, there are eight possible sequences. Each of these is listed in column one of Table 1. In

column two are the number of flips that Jack would record (write down) on his scrap of paper for

each sequence (these flips are underlined in column one), and in column three the corresponding

proportion of heads among the flip outcomes recorded on his scrap of paper. Observe that the set

of values the proportion can take is {0, 1/2, 1}, and that the number of sequences that yield each

proportion leads to a skewed probability distribution of (3/6, 1/6, 2/6) over these respective values.

As a result, the expected proportion is 5/12 rather than 1/2. To provide a rough intuition for this

result, we begin with the observation that the number of recorded flips (column 2) varies across

sequences. In general, to have an opportunity to record more flips, more heads must be packed into

the first n − 1 flips of a length n sequence. This forces the heads to run together, which in turn

1This assumes only that the length of the sequence n satisfies n ≥ 3, and that the streak length k satisfies 1 ≤ k < n−1.
2See Miller and Sanjurjo (2014) for a complete review of the literature.
3The gambler’s and hot hand fallacies reflect opposite beliefs about the sign of sequential dependence in a random
process. See Ayton and Fischer (2004) and Rabin (2002) for alternative approaches to reconciling the two.
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Table 1: The proportion of heads on those flips that immediately follow one or more heads, and the number
of flips recorded, for the 8 equally likely sequences that can be generated when Jack flips a coin three times.
In the bottom row the expected value of the proportion is reported under the assumption that the coin is fair.

3-flip # of recorded proportion of Hs
sequence flips on recorded flips

TTT 0 -
TTH 0 -

THT 1 0

HTT 1 0
THH 1 1

HTH 1 0

HHT 2 1
2

HHH 2 1

Expected Proportion (fair coin): 5
12

increases the proportion of heads on the flips that immediately follow heads in these sequences, as

can be seen with HHT and HHH. This implies that sequences that have more recorded flips will

tend to have a higher proportion of heads among these flips. Because sequences that have more

recorded flips are given the same weight as sequences that have fewer, any recorded flip in such a

sequence will be weighted less, which means that the heads are weighted less, resulting in the bias.4

In Section 2 we prove the bias for the general case. The proof uses straightforward Bayesian

reasoning, which is made possible by operationalizing the expected proportion as a conditional

probability. The proof highlights how a researcher who uses this proportion is implicitly following

an estimation procedure that is contingent on the sequence of data that she observes. To derive an

explicit formula for the bias we extend the intuition provided above in the simple three flip example,

i.e. that the proportion is related to the way in which trial outcomes of one kind run together in

finite sequences. While the formula does not appear, in general, to admit a simple representation,

for the special case of streaks of length k = 1 (as in the examples discussed above) we provide one.

For the more general case of k > 1, we use an analogous combinatorial argument to reduce the

4If Jack were instead to control the number of flips he records by flipping the coin until he records the outcomes of
exactly m flips that immediately follow a heads, rather than flipping the coin exactly n times, the proportion would
be unbiased. This method of controlling the effective sample size is known as inverse sampling, which provides an
alternative intuition for the bias in which Jack’s sampling procedure—the criterion he uses for recording flips—can
be viewed as a form of repeated negative binomial sampling (e.g. see Haldane (1945)). Another unbiased method
for estimating the conditional probability, which does not control the effective sample size, involves eliminating the
overlapping nature of the measure. In particular, for a sequence of n flips, take each run of ones, and if it is of even
length 2`, divide it into blocks of two flips; if it is of odd length 2` − 1 include the right adjacent tail and divide it
into blocks of two flips. In each case, the run of ones contributes ` observations.
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dimensionality of the problem, which yields a formula for the bias that is numerically tractable for

sequence lengths commonly used in empirical work.

In Section 2.2 we show that the bias can be decomposed into a form of sampling-without-

replacement and an additional bias that relates to the overlapping words paradox (Guibas and

Odlyzko 1981). In particular, the additional bias results from the overlapping nature of the selection

procedure that selects the trial outcomes used to calculate the proportion. For the simple case of

k = 1, we show that the bias can be understood entirely in terms of sampling-without-replacement,

which we use to reveal its near equivalence to the following known biases and paradoxes: (1) the

Monty-Hall problem (Friedman 1998; Nalebuff 1987; Selvin 1975; Vos Savant 1990), and other classic

probability puzzles, (2) a form of selection bias known in the statistics literature as Berkson’s bias,

or Berkson’s paradox (Berkson 1946; Roberts, Spitzer, Delmore, and Sackett 1978), for which our

approach provides new insights, and (3) a form of finite sample bias that shows up in autoregressive

coefficient estimators (Shaman and Stine 1988; Yule 1926). For the more general case of k > 1, the

bias is typically far stronger than sampling-without-replacement, and has no direct analog.

One implication of the bias is for the analysis of streak effects in binary (or binarized) sequential

data. In Section 3 we revisit the well-known “hot hand fallacy,” which refers to the conclusion of

the seminal work of Gilovich et al. (1985; henceforth GVT), in which the authors found that

despite the near ubiquitous belief among basketball fans and experts in the hot hand, i.e. “streak”

shooting, statistical analyses of shooting data did not support this belief. The result has long been

considered a surprising and stark exhibit of irrational behavior, as professional players and coaches

have consistently rejected the conclusion, and its implications for their decision making. Indeed,

in the years since the seminal paper was published a consensus has emerged that the hot hand is a

“myth,” and the associated belief a “massive and widespread cognitive illusion” (Kahneman 2011;

Thaler and Sunstein 2008).

We find that GVT’s critical test of hot hand shooting is vulnerable to the bias. As a result,

we re-examine the raw data from GVT, using two different approaches to provide de-biased tests.

We find that both approaches yield strong evidence of streak shooting, with considerable effect

sizes. Further, we find similar results when correcting for the bias in other controlled tests of streak

shooting that replicated GVT’s original result using similar statistical tests (Koehler and Conley

2003; Miller and Sanjurjo 2015b). Lastly, we discuss studies in which each player takes sufficiently

many shots to test for streak shooting on the individual level. We find significant and substantial

evidence of the hot hand in each study (Jagacinski, Newell, and Isaac 1979; Miller and Sanjurjo

2014, 2015b).

On the basis of our evidence, we must conclude that the hot hand is not a myth, and that the

associated belief is not a cognitive illusion. In addition, because researchers have: (1) accepted

the null hypothesis that players have a fixed probability of success, and (2) treated the mere belief
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in the hot hand as a cognitive illusion, the hot hand fallacy itself can be viewed as a fallacy.

Nevertheless, evidence that the belief in the hot hand is justified does not imply that peoples’

beliefs are accurate in practice. In fact, GVT provided evidence that players’ beliefs in the hot

hand are not accurate. In particular, GVT conducted a betting task, which was paired with their

shooting task, and found that players’ bets on shot outcomes are no better than what chance

betting would predict. In Section 3.4 we show how GVT have misinterpreted their estimates, and

observe that their tests are underpowered. Then, upon re-analyzing GVT’s betting data, we find

that their players successfully predict shot outcomes at rates significantly (and substantially) better

than what chance would predict. This suggests that players can profitably exploit their beliefs in

the hot hand. Further, we discuss findings from a separate study that show how players are able

to identify which of their teammates have a tendency to get the hot hand (Miller and Sanjurjo

2014). Nevertheless, we observe that while these results are not inconsistent with the possibility

that decision-makers detect the hot hand in real time, and have reasonably well-calibrated beliefs,

they do not guarantee either. We suggest avenues for future research.

In Section 4 we present implications of the bias for the Gambler’s fallacy, i.e. the tendency

to believe that streaks are more likely to end than the underlying probability dictates. While the

existence of the gambler’s fallacy is commonly attributed to a mistaken belief in the law of small

numbers (Rabin 2002; Tversky and Kahneman 1971), there exist no formal accounts for how it could

persist in the face of experience (Nickerson 2002). Given this gap in the literature, we introduce

a simple model in which a decision maker updates her beliefs as she observes finite sequences of

outcomes over time. The model allows for the possibility that sequences are given equal weights, or

variable weights according to sample size (e.g. the number of recorded flips in the Jack example).

If sample size is correctly accounted for, then gambler’s fallacy beliefs disappear with sufficient

experience. However, with sufficient insensitivity to sample size the bias implies that a believer

in the gambler’s fallacy will never abandon his or her incorrect beliefs. The model has testable

implications, as the degree of decision-maker bias will depend on the: (1) length of finite sequences

observed, (2) length of streaks attended to, and (3) sensitivity to sample size.

Finally, because the bias is subtle and (initially) surprising, even for the sophisticated, those

unaware of it may be susceptible to being misled, or exploited.5 On the most basic level, in line

with the discussion of the gambler’s fallacy above, a näıve observer can be convinced that negative

sequential dependence exists in an i.i.d. random process if sample size information is obscured.

More subtly, the bias can also be leveraged to manipulate people into believing that the outcomes

5In informal conversations with researchers, and surveys of students, we have found a near-universal belief that the
sample proportion should be equal to the underlying probability, in expectation. The conviction with which these
beliefs are often held is notable, and reminiscent of the arguments which surrounded the classic Monty Hall Puzzle.
Indeed, as mentioned above, in Section 2.2 (and Appendix D.1) we explain that the Monty Hall problem is essentially
equivalent to the simplest version of the bias, with n = 3 and k = 1.
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of an unpredictable process can be predicted at rates better than chance.6 Aside from manipulation

of beliefs, the bias can be applied in a straightforward way to construct gambling games that appear

actuarially fair, but are not.7

Our identification of the bias in this sample proportion has revealed an underlying truth in

the law of small numbers that intimately links the gambler’s and hot hand fallacies. In particular,

the bias implies that streaks within finite sequences are expected to end more often than continue

(relative to the underlying probability), which can lead both the gambler to think that an i.i.d

process has a tendency towards reversal, and the hot hand researcher to think that a process is

i.i.d. when it actually has a tendency towards momentum. Absent a formal correction for the bias,

the intuitive metric for probability of success on the trials of interest, the sample proportion, is

expected to confirm the respective priors of both the gambler and the researcher.

Section 2 contains our main theoretical results, and Sections 3 and 4 the applications to the hot

hand and gambler’s fallacies, respectively.

2 The Bias

In Section 2.1 we provide a proof of the bias. In Section 2.2 we discuss the two mechanisms behind

the bias, and relate the bias to other known biases and paradoxes. In Section 2.3 we quantify

the bias for empirically relevant parameter values, and graphically depict the bias as a function of

various sequence lengths, streak lengths, and underlying probability of success.

2.1 A proof of the bias in the estimator

Let {Xi}ni=1 be a sequence of binary random variables, with Xi = 1 a “success” and Xi = 0 a

“failure.” A natural procedure for estimating the conditional probability of success on trial t,

given that trial t immediately follows k consecutive successes, is to first select all of the trials t

that immediately follow k consecutive successes (
∏t−1
j=t−kXj = 1), then calculate the proportion of

successes on the selected trials.8 The following theorem establishes that when {Xi}ni=1 is a sequence

6For example, suppose that a predictor observes successive realizations from a binary (or binarized) i.i.d. random
process (e.g. daily stock price movements), and is evaluated according to the success rate of her predictions over, say,
three months. If the predictor is given the freedom of when to predict, then she can exceed chance in her expected
success rate simply by predicting a reversal whenever there is a streak of consecutive outcomes of the same kind.

7A simple example is to sell the following lottery ticket for $5. A fair coin will be flipped 4 times. For each flip the
outcome will be recorded if and only if the previous flip is a heads. If the proportion of recorded heads is strictly
greater than one-half then the ticket pays $10; if the proportion is strictly less than one-half then the ticket pays $0;
if the proportion is exactly equal to one-half, or if no flip is immediately preceded by a heads, then a new sequence
of 4 flips is generated. While, intuitively, it seems that the expected value of the lottery must be $5, it is actually $4.
Curiously, the willingness-to-pay for the lottery ticket may be higher for someone who believes in the independence
of coin flips, as compared to someone with Gambler’s fallacy beliefs.

8In fact, this procedure yields the maximum likelihood estimate for P(Xt = 1 |
∏t−1
j=t−kXj = 1).
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of i.i.d random variables, with probability of success p := P(Xt = 1) ≡ P(Xt = 1 |
∏t−1
j=t−kXj = 1),

this procedure yields a biased estimator of the conditional probability.

Theorem 1 Let {Xi}ni=1, n ≥ 3, be a sequence of independent Bernoulli trials, each with probability

of success 0 < p < 1. Let I1k(X) := {i :
∏i−1
j=i−kXj = 1} ⊆ {k + 1, . . . , n} be the subset of trials

that immediately follow k consecutive successes, and P̂1k(X) the proportion of successes in I1k(X).

For 1 ≤ k ≤ n− 2, P̂1k(x) is a biased estimator of p. In particular,

E
[
P̂1k(X)

∣∣∣ I1k(X) 6= ∅
]
< p (1)

Proof: See Appendix A

The main intuition behind the proof can be illustrated by modifying the opening example from

Section 1 in order to operationalize the expected proportion as a conditional probability. In par-

ticular, suppose that a researcher will generate a predetermined number of i.i.d. Bernoulli trials

{xi}ni=1, with n > 2. For each trial t, the researcher will record the outcome on his scrap of paper

if and only if the previous k outcomes are successes, i.e. for t ∈ I1k(x). Next, if he has recorded

at least one outcome, i.e. I1k(x) 6= ∅, then he will circle one of the outcomes on his scrap of

paper (uniformly at random). If the researcher were to know all of the outcomes from the sequence

x, then the probability of circling a success would be P̂1k(x). However, before generating the

sequence, the probability of circling a success, conditional on recording at least one outcome, is

instead E[ P̂1k(X) | I1k(X) 6= ∅ ]. Now, if the researcher were to circle the outcome corresponding

to trial t < n, then by not having circled trial t + 1’s outcome, the posterior odds in favor of a

sequence in which he could not have done so (because t+1’s outcome had not been written down),9

as opposed to an otherwise identical sequence in which he could have circled trial t+ 1’s outcome

(because the outcome had been written down), will be strictly greater than the prior odds. From

this it follows immediately that the posterior odds in favor of the circled outcome being a failure

will also be greater than the prior odds. On the other hand, if the researcher were to instead

circle the outcome corresponding to trial t = n, then the posterior odds would remain unchanged,

as there would have been no trial t + 1, thus no associated outcome that could have been circled.

Finally, because he does not know which trial’s outcome he will circle, and each of the n−k feasible

trials from k + 1 to n has a nonzero probability of being circled before the sequence is generated,

then if he were to circle the outcome corresponding to trial t, the posterior odds that it is a failure

would be strictly greater than the prior odds. This implies that the probability of the researcher

circling a success is less than the prior probability of success (p), which in turn implies that, in

expectation, the proportion of successes among the flip outcomes recorded on his scrap of paper

will be less than the probability of success, i.e. E[ P̂1k(X) | I1k(X) 6= ∅ ] < p.

9In fact, the number of trials ruled out are typically more than this. If trial t + 1 is not written down, this implies
trial t is a failure, and therefore no trial i ∈ {t+ 1, . . . ,min{t+ k, n}} can be written down.
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2.2 The mechanism behind the bias, sampling-without-replacement, and rela-

tion to known results

Any sequence x ∈ {0, 1}n with I1k(x) 6= ∅ that a researcher encounters will contain a certain

number of successes N1(x) = n1 and failures n0 := n − n1, where n1 ∈ {k, . . . , n}. To estimate

the conditional probability of interest, the researcher will select only the trials in the sequence

that satisfy t ∈ I1k(x), and then compute the proportion of successes on those trials, i.e. P̂1k(X).

Assuming that n1 is known, the prior odds in favor of a success on any given trial in the sequence

are n1/n0 : 1, whereas the odds are strictly less than this for any given trial in I1k(x). An intuition

for why, which also reveals the mechanism behind the bias, can be obtained by considering the

following equation, which we derive in Appendix A.3 (equation 11):

P(xt = 1|τ = t)

P(xt = 0|τ = t)
=
E
[

1
M

∣∣ ∏t−1
t−k xi = 1, xt = 1

]
E
[

1
M

∣∣ ∏t−1
t−k xi = 1, xt = 0

] n1 − k
n1

n1

n0
(2)

Equation 2 gives the posterior odds P(xt=1|τ=t)
P(xt=0|τ=t) in favor of observing xt = 1 (relative to xt = 0),

for a representative trial τ = t drawn at random from I1k(x).10,11 Observe that the prior odds ratio

n1/n0 is multiplied by two separate updating factors. Each of these factors is strictly less than

one when t < n, as we will now discuss. Thus, each acts to attenuate the prior odds, resulting in

posterior odds that are smaller than the prior.

The first updating factor (n1 − k)/n1 < 1 reflects the constraint that the finite number of

available successes places on the procedure for selecting the trials I1k(x). In particular, it can

be thought of as the information provided upon learning that k of the n1 successes are no longer

available, which leads to a sampling-without-replacement effect on the prior odds of n1/n0. This

effect is perhaps easier to see by re-expressing the (intermediate) posterior odds, n1−k
n1

n1
n0

(before

the second updating factor is applied), as n1−k
n−k /

n0
n−k . The numerator of the latter expression is the

probability of drawing a 1 at random from an urn containing n1 1’s and n0 0’s, once k 1’s have

been removed from the urn. The denominator is the probability of drawing a 0 from the same urn,

given that no 0’s have previously been removed. Clearly, the strength of the bias, via this factor,

increases in the streak length k.

The second updating factor
E [ 1

M |
∏t−1
t−k xi=1,xt=1]

E [ 1
M |

∏t−1
t−k xi=1,xt=0]

< 1, for t < n (see Appendix A.3), reflects an

additional constraint that the arrangement of successes and failures in the sequence places on the

procedure for selecting trials into I1k(x). It can be thought of as the additional information gained

by learning that the k successes, which are no longer available, are consecutive and immediately

10This is the same selection procedure that is described with the intuition for the proof of Theorem 1. It operationalizes
the expected proportion of interest as a conditional probability.

11See Appendix A.2 for a derivation of the posterior odds in the case that p̂ = n1/n is unknown.
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precede t. To see why the odds are further attenuated in this case, we begin with the random

variable M , which is defined to be the number of trials in I1k(x). The probability of any particular

trial t ∈ I1k(x) being selected at random is 1/M .12 Now, because the expectation in the numerator

conditions on xt = 1, this means intuitively that 1/M is expected to be smaller in the numerator

than in the denominator, where the expectation instead conditions on xt = 0. The reason why is

that for a sequence in which xt = 1, trial t+ 1 must also be in I1k(x), and trials t+ 2 through t+ k

each may also be in I1k(x). By contrast, for a sequence in which xt = 0, trials t+ 1 through t+ k

cannot possibly be in I1k(x), which leads one to expect the corresponding 1/M to be smaller.13

This last argument provides intuition for why the strength of the bias, via this factor, also increases

in k.14

Interestingly, in the special case that k = 1,
E [ 1

M | xt−1=1,xt=1]
E [ 1

M | xt−1=1,xt=0]
= 1 − 1

(n−1)(n1−1) < 1 when

t < n, and
E [ 1

M | xn−1=1,xn=1]
E [ 1

M | xn−1=1,xn=0]
= n1

n1−1 > 1 when t = n. These contrasting effects combine to yield

the familiar sampling-without-replacement formula:

E
[
P̂11(X)

∣∣∣ I11(X) 6= ∅, N1(X) = n1

]
=
n1 − 1

n− 1
(3)

as demonstrated in Lemma 2, in Appendix B.15 In Appendix D.1 we show that sampling-without-

replacement reasoning alone can be used to demonstrate that when k = 1 the bias is essentially

identical to: (1) a classic form of selection bias known as Berkson’s bias, or Berkson’s paradox

(Berkson 1946; Roberts et al. 1978), (2) classic conditional probability puzzles such as the Monty

Hall problem (Nalebuff 1987; Selvin 1975; Vos Savant 1990), and (3) finite sample bias in autocorre-

lation estimators (Shaman and Stine 1988; Yule 1926).16 In addition to identifying the connections

between these biases—which have not been noted before—we provide a novel insight into Berkson’s

bias by establishing conditions under which it can be expected to be empirically relevant.

On the other hand, when k > 1 the bias is substantially stronger than sampling-without-

12Following the intuition from the Introduction, 1/M represents the implicit weight placed on each trial t ∈ I1k(x) in
the sequence x.

13This is under the assumption that t ≤ n− k. In general, the event xt = 0 excludes the next min{k, n− t} trials from
t+ 1 to min{t+k, n} from being selected, while the event xt = 1 leads trial t+ 1 to be selected, and does not exclude
the next min{k, n− t} − 1 trials from being selected.

14The likelihood ratio does not admit a simple representation; see footnote 79.
15This follows from Equation 14 in the discussion of the alternative proof of Lemma 2 in Appendix B.
16While the overall bias is equal in magnitude to that of sampling-without-replacement in Equation 3, we have seen

that the bias in the procedure used to select trials, I1k(x), is stronger than sampling-without-replacement for t < n,
whereas it is non-existent (thus weaker) for t = n. This disparity is due to the second updating factor, which relates
to the arrangement. It turns out that the determining aspect of the arrangement that influences this updating factor
is whether or not the final trial is a success, as this determines the number of successes in the first n − 1 trials,
where M = n1 − xn. If one were to instead fix M rather than n1, then sampling-without-replacement relative to the
number of successes in the first n− 1 trials would be an accurate description of the mechanism behind the bias, and
it induces a negative dependence between any two trials within the first n− 1 trials of the sequence. Therefore, it is
sampling-without-replacement with respect to M which determines the bias when k = 1.
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replacement (see Figure 4 in Appendix A.3). An intuition that complements the explanation of

the mechanism given above is that the bias is determined not by the number of successes n1 in

a sequence of length n, but by the number of (overlapping) instances of k consecutive successes

within the first n−1 trials, which depends on both the number of successes and their arrangement.

Specifically, in Appendix C we show that the essential feature of the arrangement is how the

successes and failures are grouped into runs. In addition, in Appendix D.2, we explain how this

feature of the bias relates to what is known as the overlapping words paradox (Guibas and Odlyzko

1981).17

Our demonstration of the relationship between the bias and sampling-without-replacement calls

to mind the key behavioral assumption made in Rabin (2002), that believers in the law of small

numbers view signals from an i.i.d. process as if they were instead generated by random draws

without replacement. Indeed, in Section 4 we use the bias to provide a novel structural explanation

for how such a belief can persist in the face of experience.

2.3 Quantifying the bias.

In order to derive an explicit formula for E[ P̂1k(X) | I1k(X) 6= ∅ ], and quantify the magnitude of

the corresponding bias, we first derive a formula for the conditional expectation, given the number

of successes in the sequence, N1(x) :=
∑n

i=1 xi. It then follows from the law of total expectations

that,

E
[
P̂1k(X)

∣∣∣ I1k(X) 6= ∅
]

= E
[
E
[
P̂1k(X)

∣∣∣ I1k(X) 6= ∅, N1(X) = n1

]]
(4)

The value of E[ P̂1k(X) | I1k(X) 6= ∅, N1(X) = n1] can, in principle, be obtained directly by

first computing P̂1k(x) for each sequence that contains n1 successes, then taking the average across

sequences, as performed in Table 1. However, the number of sequences required for the complete

enumeration is typically too large. For example, the GVT basketball data that we analyze in

Section 3 has shot sequences of length n = 100 and a design target of n1 = 50 made shots, resulting

in a computationally unwieldy
(

100
50

)
> 1029 distinguishable sequences. Our solution to this problem

is to derive a numerically tractable formula by identifying, and enumerating, the set of sequences

for which P̂1k(x) is constant, which greatly reduces the dimensionality of the problem. The set of

such sequences is determined both by the number of successes n1 and how many runs of successes

of each length there are. This observation can be used to derive an explicit formula for Equation 4,

by way of combinatorial argument (see Appendix C). While the formula does not admit a simple

representation for k > 1, it is numerically tractable for the sequence and streak lengths that are

empirically relevant. For the special case of k = 1 a simple representation exists, and is presented

17We thank Kurt Smith for suggesting that the work of Guibas and Odlyzko (1981) could be related.
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Figure 1: The expected value of the proportion of successes on trials that immediately follow k consecutive
successes, P̂1k(X), as a function of the total number of trials n, for different values of k and probabilities of
success p (using the formula provided in Theorem 6, combined with Equation 4).

in Appendix B.

2.3.1 The magnitude of the bias in the expected proportion

Figure 1 contains a plot of E[ P̂1k(X) | I1k(X) 6= ∅ ], as a function of the number of trials in the

sequence n, and for different values of k and p.18 The dotted lines in the figure represent the true

probability of success for p = 0.25, 0.50, and 0.75, respectively. The five solid lines immediately

below each dotted line represent the respective expected proportions for each value of k = 1, 2, . . . , 5.

Observe that while the bias, p − E[P̂1k], does generally decrease as n increases, it can remain

substantial even for long sequences. For example, in the case of n = 100, p = 0.5, and k = 5, the

magnitude of the bias is .35 − .50 = −0.15, and in the case of n = 100, p = 0.25, and k = 3, the

magnitude of the bias is .16− .25 = −0.09.

18For k > 1 the figure was produced by combining Equation 4 with the formula provided in Theorem 6 (Appendix C).
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Figure 2: The expected difference in proportions, D̂k := P̂1k − P̂0k, where the proportion of successes P̂1k

is computed for the trials that immediately follow a streak of k or more successes, and the proportion of
successes P̂0k is computed for the trials that immediately follow a streak of k or more failures, as a function
of n, three values of k, and various probabilities of success p (using the formula provided in Theorem 7,
combined with Equation 4).

2.3.2 The magnitude of the bias for the difference in proportions

Let D̂k(x) := P̂1k(x) − P̂0k(x), where P̂0k(x) is the proportion of successes on the trials that

immediately follow k consecutive failures, i.e. I0k(x) := {i :
∏i−i
j=i−k(1− xj) = 1} ⊆ {k + 1, . . . , n}.

This difference is a biased estimator of the true difference in (conditional) probabilities, and is

relevant for statistical tests used in the hot hand fallacy literature, as discussed in Section 3. The

magnitude of the bias in the difference is slightly greater than double the bias in the proportion.

For the simple case in which k = 1 the bias is independent of p, and the expected difference in

proportions admits the simple representation E[ D̂k(X) | I1k(X) 6= ∅, I0k(X) 6= ∅ ] = −1/(n− 1).

We prove this in Appendix B. For the case of k > 1, refer to Appendix C.

Figure 2 contains a plot of E[ D̂k(X) | I1k(X) 6= ∅, I0k(X) 6= ∅ ] as a function of the number of

trials n, and for k = 1, 2, and 3.19 Because the bias is dependent on p when k > 1, the difference is

19While Figure 1 also includes the cases k = 4, 5 in the plot of the expected value of P̂1k(x), these cases are not plotted
in Figure 2 because of the computational requirements arising from the number of terms in the sum.
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plotted for various values of p. These expected differences are obtained by combining Theorem 4

with the results in Appendix C. The magnitude of the bias is obtained by comparing the expected

difference to zero, and as in the case of the proportion, can remain substantial even as n gets large.

3 Application to the Hot Hand Fallacy

This account explains both the formation and maintenance of the erroneous belief in

the hot hand: if random sequences are perceived as streak shooting, then no amount

of exposure to such sequences will convince the player, the coach, or the fan that the

sequences are in fact random. (Gilovich, Vallone, and Tversky 1985)

The hot hand fallacy refers to the mistaken belief that success tends to follow success (hot hand),

when in fact observed patterns of successes and failures are consistent with the typical fluctuations

of an i.i.d. random process. The seminal paper of Gilovich, Vallone, and Tversky (1985; henceforth

GVT) introduced the hot hand fallacy, finding that while basketball players believe that a shooter

has “a better chance of making a shot after having just made his last two or three shots than

he does after having just missed his last two or three shots,” the evidence from their analysis of

shooting data shows that players’ beliefs are wrong.

Because the incorrect beliefs are held by experts who, despite the evidence, continue to make

high-stakes decisions based on these beliefs, the hot hand fallacy has come to be known as a “massive

and widespread cognitive illusion”(Kahneman 2011).20,21 Further, it has had a pronounced influence

on empirical and theoretical work in economics, finance, and psychology.22 This is due, presumably,

to the surprising nature of the original result, the striking irrationality of basketball professionals’

refusal to accept it, and the fact that the perception of patterns in sequential data is relevant in

many domains of decision making.

In the following subsections we explain the bias in GVT’s analysis of data, conduct a de-biased

analysis using two separate approaches, and, in light of our results, re-assess evidence for both the

20GVT’s result has had a notable impact on popular culture (see Gould (1989) [link]). The existence of the fallacy
itself has been highlighted in the popular discourse as a salient example of how statistical analysis can reveal the
flaws of expert intuition (e.g. see Davidson (2013, May 2) [link]).

21For evidence that players continue to make consequential decisions based on their hot hand beliefs see Aharoni and
Sarig (2011); Attali (2013); Avugos, Köppen, Czienskowski, Raab, and Bar-Eli (2013b); Bocskocsky, Ezekowitz, and
Stein (2014); Rao (2009a).

22The hot hand fallacy has been given considerable weight as a candidate explanation for various puzzles and behavioral
anomalies identified in the domains of financial markets, sports wagering, casino gambling, and lotteries (Arkes 2011;
Avery and Chevalier 1999; Barberis and Thaler 2003; Brown and Sauer 1993; Camerer 1989; Croson and Sundali
2005; De Bondt 1993; De Long, Shleifer, Summers, and Waldmann 1991; Durham, Hertzel, and Martin 2005; Galbo-
Jørgensen, Suetens, and Tyran 2015; Guryan and Kearney 2008; Kahneman and Riepe 1998; Lee and Smith 2002; Loh
and Warachka 2012; Malkiel 2011; Narayanan and Manchanda 2012; Paul and Weinbach 2005; Rabin and Vayanos
2010; Sinkey and Logan 2013; Smith, Levere, and Kurtzman 2009; Sundali and Croson 2006; Xu and Harvey 2014;
Yuan, Sun, and Siu 2014).
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hot hand and the hot hand fallacy.

3.1 The bias in GVT

GVT proposed that if the hot hand (or “streak” shooting) exists, then regardless of how it is defined,

player performance records—patterns of hits (successes) and misses (failures)—should “differ from

sequences of heads and tails produced by [weighted] coin tosses”(Gilovich et al. 1985).23 While

this proposal allows one to test for the existence of hot hand shooting, in order to evaluate the

relevance one must estimate the magnitude of the effect, i.e. the associated change in a shooter’s

probability of hitting a shot. GVT (and subsequent studies) operationalize this measure as the

percentage point difference in a player’s field goal percentage (proportion of hits) between shots

taken on a hit streak and shots taken on a miss streak. In particular, a player is on a hit (miss)

streak if the previous k consecutive shot outcomes are identical (Avugos, Bar-Eli, Ritov, and Sher

2013a; Gilovich et al. 1985; Koehler and Conley 2003).24,25

The idea of testing whether a player’s field goal percentage depends on the outcome of the

immediately preceding shots appears to be a sound one: if each shot has the same probability

of success (the null hypothesis), then whether a given shot follows a streak of hits or a streak

of misses is determined by an independent chance event. Therefore, it is natural to treat these

two sets of shot attempts as statistically independent treatments. In particular, for each shot i,

if the preceding k shots i − 1 through i − k are hits, let i be assigned to the “k-hits” treatment,

whereas if the preceding k shots are misses, let i be assigned to the “k-misses” treatment.26 Given

the independence assumption, the null hypothesis for GVT’s associated statistical test is that the

(mean) field goal percentage is equal across treatments. However, the independence assumption,

while intuitive, is incorrect. What it overlooks is that, given a sequence of finite length, the act

of assigning each shot to a treatment based on the outcome of the previous shot(s) happens to

23In particular GVT highlight patterns relating to two types of mechanisms for hot hand shooting: (1) feedback from
preceding shot outcomes into a player’s probability of success (“autocorrelation”), (2) shifts in a player’s probability
of success unrelated to previous outcomes (“non-stationarity”).

24The commonly used cutoff for the definition of a streak is three, which happens to agree with the “rule of three”
for people to perceive consecutive outcomes of the same kind to be a streak (Carlson and Shu 2007). While this
definition is arbitrary, in practice the choice of the cutoff involves a trade-off. The larger the cutoff k, the higher the
probability that the player is actually hot on those shots that are immediately preceded by a streak of hits, which
reduces measurement error. On the other hand, as k gets larger, the bias from Section 2 increases, and fewer shots
are available, which leads to a smaller sample size and reduced statistical power. See Miller and Sanjurjo (2014) for a
more thorough discussion, which investigates statistical power and measurement error for a number of plausible hot
hand models.

25GVT also conduct a runs test, a test of serial correlation, and test if the proportion of hits is influenced by whether
a shot is preceded by a hit or by a miss (conditional probability test). We find that all three of these tests amount to
the same test, and moreover, that they are not powered to identify hot hand shooting. The reason why is that the
act of hitting a single shot is only a weak signal of a change in a player’s underlying probability of success.

26If shot i ≤ k, or if it does not immediately follow a streak of at least k outcomes of the same kind, then it is not
assigned to either treatment.
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increase the likelihood that any given “assigned” shot is different than the previous shot. For

example, as shown in Section 2, if a player has a constant probability p of hitting a shot then the

probability that a randomly chosen (“representative”) shot is a hit, among those “assigned” to the

k-hits treatment, is strictly less than p. This bias has important implications for GVT’s study of

basketball shooting data.

GVT’s study of basketball shooting

GVT analyzed shooting data from three sources: live ball field goal data from the NBA’s Philadel-

phia 76ers (1980-81 season: 9 players, 48 home games), dead ball free throw data from the NBA’s

Boston Celtics (1980-81, 1981-82 seasons: 9 players), and a shooting study that they conducted

with Cornell’s intercollegiate (NCAA) basketball teams (26 players, 100 shots each from a fixed

distance, with varying locations). The Cornell study was designed for the purpose of “eliminating

the effects of shot selection and defensive pressure” and is GVT’s most controlled test of hot hand

shooting, which makes it central to their main conclusions. Therefore, we focus on this data below

when discussing the relevance of the bias on GVT’s results.27,28

Upon calculating the size of the bias that affects GVT’s statistical tests we observe that it is

large enough to make their conclusions hinge on whether it is accounted for, or not. To see why, for

each of the 26 players, the authors first assign each of the 100 shot attempts to either the k-hits or

k-misses treatment, separately for k = 1 then k = 2, then k = 3 (as defined above), discarding any

shots that are not immediately preceded by a streak of k. Next, for each of the players but one they

find the differences in field goal percentages across treatments to be statistically indistinguishable.29

Of course, given the results that we report in Section 2.3, these differences are biased, which makes

the tests based on the differences biased as well. In particular, given the parameters of the study,

and the most commonly considered streak length (k = 3), the expected difference for a consistent

27From the statistical point of view, the 76ers’ in-game field goal data is not ideal for the study of hot hand shooting
for reasons unrelated to the bias (see, e.g. Miller and Sanjurjo (2014)). The most notable concern with in-game
field goal data is that the opposing team has incentive to make costly strategic adjustments to mitigate the impact
of the “hot” player (Dixit and Nalebuff 1991, p. 17). This concern has been emphasized by researchers in the hot
hand literature (Aharoni and Sarig 2011; Green and Zwiebel 2013), and is not merely theoretical, as it has a strong
empirical basis. While GVT observed that a shooter’s field goal percentage is lower after consecutive successes,
subsequent studies have shown that with even partial controls for defensive pressure (and shot location), this effect is
eliminated (Bocskocsky et al. 2014; Rao 2009a). Further, evidence of specific forms of strategic adjustment has been
documented (Aharoni and Sarig 2011; Bocskocsky et al. 2014).

28The Celtics’ in-game free throw data is not ideal, for a number of reasons: (1) hitting the first shot in a pair of isolated
shots is not typically regarded by fans and players as hot hand shooting (Koehler and Conley 2003), presumably due
to the high prior probability of success (≈ .75), (2) hitting a single shot is a weak signal of a player’s underlying state,
which can lead to severe measurement error (Arkes 2013; Stone 2012), (3) there is a potential for omitted variable
bias, as free throw pairs are relatively rare, and shots must be aggregated across games and seasons in order to have
sufficient sample size (Miller and Sanjurjo 2014). In any event, subsequent studies of free throw data have found
evidence inconsistent with the conclusions that GVT drew from the Celtics’ data (Aharoni and Sarig 2011; Arkes
2010; Goldman and Rao 2012; Miller and Sanjurjo 2014; Wardrop 1995; Yaari and Eisenmann 2011).

29The significant effect size GVT found in a single player does not control for multiple comparisons.
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Figure 3: The histogram and kernel density plot of the (exact) discrete probability distribution of D̂3|N1 =
n1, where D̂3 := P̂13−P̂03 is the difference between the proportion of successes on those trials that immediately
follow a streak of 3 or more successes, and the proportion of successes on those trials that immediately follow
a streak of 3 or more failures, for a single player with n = 100 and n1 = 50 (using the formula for the
distribution provided in the proof of Theorem 7, with a bin width of 4 percentage points).31

shooter, i.e. a shooter who hits with constant probability of success p, is not 0, but instead −8

percentage points. Moreover, the distribution of the differences has a pronounced negative skew.

To illustrate, Figure 3 gives the exact distribution of the difference, based on the enumeration used

in Theorem 7 of Appendix C. The distribution is generated using the target parameters of the

original study: sequences of length n = 100, n1 = 50 hits, and streaks of length k = 3, or more.

The skewness in the distribution is pronounced, with 63 percent of observations below 0, and a

median of -.06. To get a sense of how GVT’s results compare with the bias, in their summary

statistics the authors report average field goal percentages of 49 percent in the 3-hits treatment,

and 45 percent in the 3-misses treatment (unweighted, across players).30 However, this difference

of 4 percentage points happens to be 12 percentage points higher than what would be expected

from a consistent shooter with a probability of success equal to .5. This observation reveals that

the bias has long disguised evidence that may well indicate hot hand shooting.

30Gilovich et al. (1985), Table 4, p. 307.
31The values for D̂3 are grouped based on the first 6 decimal digits of precision. For this precision, the more than 1029

distinguishable sequences take on 19,048 distinct values when calculating D̂3. In the computation of the expected
value in Figures 1 and 2, each difference is instead represented with the highest floating point precision available.
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3.2 An unbiased statistical analysis of GVT

We present two approaches to de-biasing GVT’s estimates and conducting unbiased statistical tests.

The first approach modifies GVT’s individual player t-tests, and then extends this analysis to test

for an average effect. The second approach provides an exact test of GVT’s null hypothesis that

each player shoots with a constant probability of success.

Bias-adjusted t-test

A straightforward way to adjust for the bias in GVT’s test statistic is to shift the estimated

difference used in each of GVT’s 26 t-tests by the corresponding bias. In particular, for each

player we compute the bias under the null hypothesis that trials are Bernoulli (i.e. consistent

shooting) with a probability of success equal to the player’s observed field goal percentage. This

bias adjustment is conservative, as the bias becomes much larger if we instead assume that the

underlying data generating process involves hot hand shooting (see Appendix E). Table 2 reproduces

two columns from Table 4 (p. 307) of Gilovich et al. (1985), providing shooting performance records

for each of the 14 male and 12 female Cornell University basketball players who participated in

the controlled shooting experiment. From left to right, the table includes the number of shots

taken (“# shots”), the overall proportion of hits (“p̂(hit)”), the proportion of hits in the 3-hits

treatment (“p̂(hit|3 hits)”), the proportion of hits in the 3-misses treatment (“p̂(hit|3 misses)”),

the observed difference in proportions across the 3-hits and 3-misses treatments (“GVT est.”), and

the bias-adjusted difference (“bias adj.”). The bias adjustment is made by subtracting the expected

difference from each player’s observed difference, which results in 19 of the 25 players directionally

exhibiting hot hand shooting (p < .01, binomial test).

The bias-adjusted version of GVT’s individual t-tests reveals that 5 of the players exhibit

statistically significant evidence of hot hand shooting (p < .05, t-test), which, for a set of 25

independent tests, is itself significant (p < .01, binomial test).32 GVT’s study did not attempt

to estimate an average hot hand effect, or conduct tests regarding whether or not the average is

positive, presumably because beliefs about the hot hand typically pertain to individuals, not groups.

In any case, we conduct such a test despite the possibility that sufficient heterogeneity across

individuals could in principle mask any evidence of hot hand shooting within certain individuals.

We find the across player average (bias adjusted) difference to be 13 percentage points (p < .01,

32This test is robust to how a streak is defined. If we instead define a streak as beginning with 4 consecutive hits, which
is a stronger signal of hot hand shooting four players exhibit statistically significant hot hand shooting (p < .05),
which is itself significant (p < .01, binomial test). On the other hand, if we define a streak as beginning with 2
consecutive hits, which is a weaker signal of hot hand shooting, four players exhibit statistically significant hot hand
shooting (p < .05), which is itself significant (p < .01, binomial test).
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Table 2: Columns 4 and 5 reproduce columns 2 and 8 of Table 4 from Gilovich et al. (1985) (note: 3 hits
(misses) includes streaks of 3, 4, 5, etc.). Column 6 reports the difference between the reported proportions,
and column 7 adjusts for the bias (mean correction), based on each player’s field goal percentage (probability
in this case) and number of shots.

D̂3 := p̂(hit|3 hits)− p̂(hit|3 misses)

Player # shots p̂(hit) p̂(hit|3 hits) p̂(hit|3 misses) GVT est. bias adj.

Males
1 100 .54 .50 .44 .06 .14
2 100 .35 .00 .43 −.43 −.33
3 100 .60 .60 .67 −.07 .02
4 90 .40 .33 .47 −.13 −.03
5 100 .42 .33 .75 −.42 −.33
6 100 .57 .65 .25 .40 .48
7 75 .56 .65 .29 .36 .47
8 50 .50 .57 .50 .07 .24
9 100 .54 .83 .35 .48 .56

10 100 .60 .57 .57 .00 .09
11 100 .58 .62 .57 .05 .14
12 100 .44 .43 .41 .02 .10
13 100 .61 .50 .40 .10 .19
14 100 .59 .60 .50 .10 .19

Females
1 100 .48 .33 .67 −.33 −.25
2 100 .34 .40 .43 −.03 .07
3 100 .39 .50 .36 .14 .23
4 100 .32 .33 .27 .07 .17
5 100 .36 .20 .22 −.02 .08
6 100 .46 .29 .55 −.26 −.18
7 100 .41 .62 .32 .30 .39
8 100 .53 .73 .67 .07 .15
9 100 .45 .50 .46 .04 .12

10 100 .46 .71 .32 .40 .48
11 100 .53 .38 .50 −.12 −.04
12 100 .25 . .32 . .

Average .47 .49 .45 .03 .13
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SE = 4.7pp).33,34 To put this number into perspective, the difference between the median three

point shooter and the top three point shooter in the 2015-2016 NBA season was 12 percentage

points.35,36

Permutation test

As noted in Section 3.1, the idea behind GVT’s analysis is to compare players’ performance over

a sequence of shots to what one would expect from a sequence of Bernoulli trials.37 A procedure

that directly implements this idea, and that is invulnerable to the bias, is a permutation test. The

rationale for using a permutation test is the fact that each arrangement of a player’s observed

sequence of hits and misses is equally likely under the null hypothesis that the player shoots with a

constant probability of success. This yields an exact statistical test, with a null distribution that is

constructed by computing the value of the statistic of interest for each equally likely arrangement.

This approach has the additional advantage of generating a test for any performance pattern that

can be expressed as a function of the observed sequence of hits and misses, including several that

GVT discussed as indicative of hot hand shooting, but could not test for.38

33The standard error is computed based on the assumption of independence across players and trials, i.e. V̂ ar(D̂i
k) =

V̂ ar(P̂ i1k) + V̂ ar(P̂ i0k) for each player i. Simulations reveal that the associated (1 − α) × 100% confidence intervals

with radius zα/2× V̂ ar(D̂k)1/2, have the appropriate coverage—i.e. (1−α/2)×100% of the time the true difference is

greater than D̂i
k−zα/2× V̂ ar(D̂k)1/2, for both Bernoulli trials and the positive feedback model discussed in Section E.

34An alternative approach involves pooling shots from both treatments into a regression framework, with a coefficient
indicating the treatment “3-hits”. If the implementation of GVTs design met the goal of placing each player in a
position in which his or her probability of success is .5, then this approach would be analogous to re-weighting the
under-weighted coin flips in Table 1 of Section 1. With 2515 shots, the bias is minimal and the estimate in this
case is 17 percentage points (p < .01, SE = 3.7). Because GVT’s design goal is difficult to implement in practice,
this approach will introduce an upward bias, due to aggregation, if the probability of success varies across players.
Adding fixed effects in a regression framework will control for this aggregation bias, but strengthens the selection bias
related to streaks. As a result, a bias adjustment is necessary. In this case, the estimated effect is 13.9 percentage
points (p < .01, SE = 5.8), which has larger standard errors because the heteroscedasticity under the assumption
of different player probabilities necessitates the use of robust variants (in this case, Bell and McCaffrey standard
errors, see Imbens and Kolesar (2016)). The magnitude of the estimated effect should be thought of as the hot hand
effect for the average shot rather than the average player, which is a different interpretation than the one given for
the estimate of the average difference across players. This different interpretation arises because pooling shots across
players generates an unbalanced panel and therefore the estimate will place greater weight on players with more shots.
In the extreme, it is possible that the majority of players exhibit a tendency to have fewer streaks than expected by
chance, yet, because they have relatively few observations, their data becomes diluted by many observations from a
single streak shooter.

35ESPN. “NBA Player 3-Point Shooting Statistics - 2015-16.” http://www.espn.com/nba/statistics/player/ /stat/3-
points [accessed September 24, 2016].

36Average estimates are also robust to how a streak is defined. If we instead define a streak as beginning with
4 consecutive hits, which is a stronger signal of hot hand shooting, then the average bias-adjusted difference in
proportions is 10 percentage points (p = .07, SE = 6.9, one-sided test). On the other hand, if we define a streak
as beginning with 2 consecutive hits, which is a weaker signal of hot hand shooting, then the average bias-adjusted
difference in proportions is 5.4 percentage points (p < .05, SE = 3, one-sided test).

37“The player’s performance, then, can be compared to a sequence of hits and misses generated by tossing a coin”
(Gilovich et al. 1985, p. 296).

38When introducing streak shooting, GVT define it in terms of the length of extended runs of hits, and their frequency,
relative to what one would expect from a coin: “Consider a professional basketball player who makes 50% of his
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To conduct the permutation test, upon observing a sequence of n1 hits and n0 misses, first

the difference in proportions, D̂k := p̂(hit|k hits) − p̂(hit|k misses) is computed. Next, for each

equally likely rearrangement of the original sequence, the difference Dk is computed. This yields

the distribution of values Dk across the unique rearrangements of the original sequence, which is

equal to the exact sampling distribution of the difference under the null hypothesis of consistent

shooting. The distribution is negative-skewed, and can be represented by histograms such as the

one presented in Figure 3. Finally, this null-distribution can be used to formally test whether the

observed difference of the shooter constitutes significant evidence of streak shooting.39,40

Using the permutation test to analyze GVT’s shooting data yields results that agree with those

of the bias-adjusted t-tests reported above. In particular, 5 players exhibit significant hot hand

shooting (p < .01, binomial test).41 Further, a Monte-Carlo re-sampling procedure permits one to

stratify the permutation by player and allows for a direct statistical test of the average difference

in proportions across shooters. As with the bias adjusted t-test, the result of this test indicates hot

hand shooting with a similar level of significance (p < .01).42

shots. This player will occasionally hit four or more shots in a row. Such runs can be properly called streak shooting,
however, only if their length or frequency exceeds what is expected on the basis of chance alone” (Gilovich et al. 1985,
p. 296). GVT do not conduct statistical tests for these patterns of hit streaks, presumably because the distributions
for the associated measures are not well-approximated parametrically.

39More precisely, let x ∈ [0, 1]n be a sequence of shot outcomes for which Dk(x) is defined. The hot hand hypothesis
predicts that Dk(x) will be significantly larger than what one would expect by chance. To test the null hypothesis
at the α level, with n1 hits in n trials, one simply checks if Dk(x) ≥ cα,n1 , where the critical value cα,n1 is defined as
the smallest c such that P(Dk(X) ≥ c | H0,

∑n
i=1 Xi = n1) ≤ α, and the distribution P(Dk(X) ≥ c | H0,

∑n
i=1 Xi =

n1) is generated using the enumeration provided in Theorem 7 of Appendix C.2. For the quantity P(Dk(X) ≥
c | H0,

∑n
i=1 Xi = n1) it may be the case that for some c∗, it is strictly greater than α for c ≤ c∗, and equal to

0 for c > c∗. In this case, for any sequence with
∑n
i=1 xi = n1 one cannot reject H0 at an α level of significance.

From the ex ante perspective, a test of the hot hand at the α level of significance consists of a family of such
critical values {cα,n1}. It follows immediately that P(reject|H0) ≤ α because P(reject|H0) =

∑n
n1=1 P(Dk(X) ≥

cα,n1 |H0,
∑n
i=1 Xi = n1)P(

∑n
i=1 Xi = n1|H0) ≤ α. Lastly, for any arbitrary test statistic T (x), the fact that

the distribution of (X|H0,
∑n
i=1 Xi = n1) is exchangeable means that P(T (X) ≥ c | H0,

∑n
i=1 Xi = n1) can be

approximated to appropriate precision with Monte-Carlo permutations of the sequence x.
40Miller and Sanjurjo (2014) use this hypothesis test procedure, and propose three test statistics, along with a composite

statistic, that they show to have greater statistical power than previous measures. These statistics include measures
of streak shooting which GVT discuss, but do not test for: the length of the longest run of hits and the frequency
of extended runs of hits (see footnote 38). Using these statistics, Miller and Sanjurjo (2014) find significant and
substantial evidence of the hot hand across all extant controlled shooting datasets.

41As in footnote 32, the results of the permutation test are robust to varying streak length k.
42Specifically, we conduct a test of the average of the standardized difference, where for each player the dif-

ference is standardized by shifting its mean and scaling its variance under H0. In this case, we have H0:
P(success on trial t for player i) = pi for all t, i. Two observations about this test are in order: (1) While the
hot hand hypothesis predicts that the average difference will be larger than expected, a failure to reject would not
amount to evidence against the hot hand. That is, it is entirely possible for streak shooting to exist for some players,
but for it to be canceled out in the average due to the existence of players exhibiting anti-streaky shooting, (2) While
a rejection is evidence of hot hand shooting, the test cannot distinguish between a few players exhibiting hot hand
shooting (with most of the remaining players having no effect) and most players exhibiting hot hand shooting. GVT’s
dataset is not sufficiently powered to test for heterogeneity in effect size.
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3.3 Evidence of the hot hand in other controlled and semi-controlled studies

While we have shown that there is strong evidence of hot hand shooting in GVT’s seminal study, it

is not the only controlled shooting study to test for the hot hand. In particular, there are four other

controlled (or semi-controlled) basketball shooting studies: Jagacinski et al. (1979), Koehler and

Conley (2003), Avugos et al. (2013a) and Miller and Sanjurjo (2014). We obtain the raw data for

all of these studies but Avugos et al. (2013a).43,44 It is important that we analyze the raw data, as

many of the tests in the original studies exhibit the same methodological problems that are found

in GVT. This in turn means that any meta-analysis that involves the previous results is invalid.45

Among these studies, the most prominent is Koehler and Conley (2003)’s analysis of four years

of data collected from the NBA’s Three Point shooting contest, which has been described as “an

ideal situation in which to study the hot hand” (Thaler and Sunstein 2008). We observe that

Koehler and Conley (2003)’s study is severely underpowered at just 49 shots per-player (median),

and applies a testing procedure that has the same bias found in GVT. Miller and Sanjurjo (2015b)

revisit this setting, and increase power by collecting an additional 24 years of data. Upon applying

the de-biased test procedure from Section 3.2 we find that players’ exhibit an estimated 8 percentage

point average increase in field goal percentage following three consecutive hits (relative to three

consecutive misses), which is substantial and highly significant (p < .01).

The studies of Jagacinski et al. (1979) and Miller and Sanjurjo (2014), on the other hand, allow

for testing on the individual shooter level. This is important because it is commonly believed

that some players are “streak shooters” while others are not, and that the heterogeneity in this

characteristic is decision relevant (Gilovich et al. 1985). While early analyses, including GVT, do

conduct individual-level tests, they do not have sufficient statistical power to identify individual

streak shooters (Gilovich et al. 1985; Larkey, Smith, and Kadane 1989; Tversky and Gilovich

1989b).46 Similarly, the NBA’s Three Point Contest does not provide sufficiently many shots

43For Avugos et al. (2013a), the authors declined to make their data available to us. Avugos et al. (2013a) is a close
replication of GVT, with olympian players. Because they used the same conditional probability test as GVT, but
had fewer shots per session (40), the bias is particularly severe (-20 percentage points).

44There exists a controlled shooting study involving a single shooter Wardrop (1999). After personal communication
with the shooter, who conducted the study herself (recording her own shots), we viewed it as not having sufficient
control to be included in our analysis.

45See Avugos et al. (2013b) for a meta-analysis of the hot hand, which includes sports besides basketball. Tversky
and Gilovich (1989a) argue that evidence for the hot hand in other sports is not relevant to their main conclusion
because so long as the hot hand does not exist in basketball, then the perception of the hot hand by fans, players
and coaches must necessarily be a cognitive illusion (also see Alter and Oppenheimer (2006)). While we do not study
other sports, we do not find this argument convincing. In our view other sports should shed light on the existence of
the hot hand phenomenon in basketball as the known relationships between confidence and performance (Bandura
1982), and the influence of increased focus, attention, and motor control on performance (Churchland, Afshar, and
Shenoy 2006; Csikszentmihalyi 1988; Kahneman 1973) should apply to all sports.

46Gilovich et al. (1985), noted that with just nine players on the 76ers, they may not have included a “real streak
shooter” in their sample. They conducted an informal poll having fans list “streak shooters.” Andrew Toney, who
was included in their 76ers sample, was generally regarded as a streak shooter, but GVT found no evidence to support
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per player (median 148) for an analysis based on the data from a single shooter.47 By contrast,

Jagacinski et al. (1979), which has previously gone uncited in the literature, and Miller and Sanjurjo

(2014), both contain a small sample of players, but have sufficiently many shots per player to detect

the hot hand on the individual player level.48 Upon applying the de-biased testing procedure from

Section 3.2 to this data we find substantial and persistent evidence of hot hand shooting in individual

players. Further, the average effect sizes across shooters are 7 percentage points (6 shooters), and

4 percentage points (8 shooters), respectively.49

Finally, it is important to observe that the magnitudes of these estimated effect sizes are con-

servative for two reasons: (1) if a player’s probability of success is not driven merely by feedback

from previous shots, but also by other time-varying player (and environment) specific factors, then

the act of hitting consecutive shots will serve as only a noisy proxy of the hot state, resulting in

measurement error, and an attenuation bias in the estimate (see Appendix E), and (2) if the ef-

fect of consecutive successes on subsequent success is heterogenous in magnitude (and sign) across

players, then an average measure will underestimate how strong the effect can be in certain players.

3.4 The Belief in the Hot Hand

The combination of GVT’s evidence that: (1) players’ believe in the hot hand, and (2) the hot

hand does not exist in basketball shooting, led them to the stark conclusion that belief in the hot

hand is a cognitive illusion (Gilovich et al. 1985; Tversky and Gilovich 1989a). By contrast, the

result of the present analysis, which uses the same data, leads to the opposite conclusion: belief in

the hot hand is not a cognitive illusion. Nevertheless, it remains possible, perhaps even likely, that

professional players and coaches sometimes infer the presence of a hot hand when it does not exist.

Similarly, even when in the presence of the hot hand, players may overestimate its influence and

this belief. In an early response to GVT, the statisticians Larkey, Smith, and Kadane (1989) analyzed shooting data
from Vinnie “The Microwave” Johnson, a player widely believed to have the tendency to get the hot hand, and
found evidence to support of this belief. However, Tversky and Gilovich (1989b) subsequently found a coding error
in Larkey et. al.’s data, which ended the debate. Neither of these analyses could identify a streak shooter as they do
not control for the strategic adjustments of the opposing defense.

47On the other hand, the NBA’s Three Point Data is suitably powered to detect a subset of shooters with the hot
hand. In particular, Miller and Sanjurjo (2015b) find significant evidence of substantial hot hand shooting (p < .05)
for 8 out of the 33 participants in the history of the NBA’s Three Point contest (that have taken at least 100 shots),
which is itself statistically significant (p < .001, binomial test).

48We thank Tom Gilovich for bringing the study of Jagacinski et al. to our attention
49In Jagacinski et al. (1979), each of six players participated in 9 sessions of 60 shots each. Even before adjusting for

the bias, the difference D̂3 is significant (p < .05) for two out of eight players, which is itself significant (p < .05,
Binomial probability). The average D̂3 is 7 percentage points across the six players. In Miller and Sanjurjo (2014)
eight players participated in multiple sessions spaced across 6 months. One of the eight players exhibited consistent
evidence of hot hand shooting across sessions, with an 11 percentage point difference (D̂3). Moreover, his tendency
to get “hot” was predicted out-of-sample in a survey of teammate opinion (and based on a prior shooting study).
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respond too strongly to it.50,51 An understanding of the extent to which decision makers’ beliefs

and behavior do not correspond to the actual degree of hot hand shooting may have important

implications for decision making more generally.

While GVT’s main conclusion was of a binary nature, i.e. based on the question of whether

belief in the hot hand is either fallacious or not, their study included a survey of player and coach

beliefs. The survey itself is predominantly qualitative, and focuses on questions that relate to

whether players believe that they tend to perform better after recent success, and whether they

make decisions based on these beliefs.52 In contrast with the original conclusion, and in light of the

present findings, we observe that the qualitative beliefs of players (and fans) reported in GVT are

actually consistent with the evidence of hot hand shooting that results from an un-biased analysis

of the data.

GVT also administered quantitative survey questions to fans, which indicate that fans’ beliefs

are not well-calibrated, e.g. fans estimate that a “hypothetical” 50 percent field goal shooter will

hit 61 percent of his field goals after hitting one and 42 percent after missing one (Gilovich et al.

1985).53 Taken at face value, fans’ beliefs are almost certainly too strong. On the other hand, these

unincentivized survey measures of fan beliefs about hypothetical players have limitations. Most

importantly, the questions elicit stated beliefs about a shooter’s numerical field goal percentage

when shooting immediately after a streak of hits, which aside from being potentially unnatural

from the perspective of the responder, may be different from the beliefs that are operational in

decision making.54 These concerns are not merely theoretical, as a relatively recent study finds

survey measures and decision-based measures to differ. In particular, Rao (2009b)’s decision-based

measure consisted of an incentivized prediction task that was designed to study the influence of

prior outcomes on subsequent predictions. He finds that the same people who, when surveyed,

express a belief in the hot hand for a player that hits a single shot, do not reveal this belief when

50Of course, it is also possible that a hot hand goes undetected, or that a detected hot hand is underestimated.
51For instance, there is anecdotal evidence that NBA players believe that a shooter with the hot hand can sometimes

disrupt his team’s offensive flow (Blakely 2016, April 26) [link]
52In Gilovich et al. (1985) there is a five question survey of 76ers players: (1) six out of eight players reported that

they have on occasion felt that after having made a few shots in a row they “know” they are going to make their
next shot, i.e they “almost can’t miss.” (2) Five out of seven players believed that a player “has a better chance of
making a shot after having just made his last two or three shots than he does after having just missed his last two or
three shots.” (3) Seven of the eight players reported that after having made a series of shots in a row, they “tend to
take more shots than they normally would.” (4) All of the players believed that it is important “for the players on
a team to pass the ball to someone who has just made several (two, three, or four) shots in a row.” (5) Five players
and the coach also made numerical estimates, which are further discussed just below in the text. Five of these six
respondents estimated their field goal percentage for shots taken after a hit (mean: 62.5%) to be higher than their
percentage for shots taken after a miss (mean: 49.5%).

53Fans also estimate that a hypothetical 70 percent free throw shooter will hit 74 percent of his free throws after hitting
one and 66 percent after missing one.

54Other limitations include (1) because the shooter in the survey is hypothetical, this does not control for fan background
beliefs regarding the player’s tendency to get the hot hand, and (2) the fact that the questions are unincentivized
may lead to systematic response bias due to demand effects, or anchoring.
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asked to make a prediction; instead, they increase their propensity to predict miss after a player

has hit a single shot, with hot hand beliefs emerging only for longer streaks of hits.55

The above discussion suggests that peoples’ operational beliefs may be better elicited by (incen-

tivized) prediction tasks than by survey responses. Accordingly, when conducting their controlled

shooting task GVT simultaneously conducted a paired betting task. In the betting task both the

shooter and an observer bet on the outcome of each upcoming shot by either placing a “high”

or “low” stakes bet on hit. Under reasonable assumptions, a “high” bet can be viewed as a hit

prediction and a “low” bet can be viewed as a ‘miss” prediction.56 GVT found that while observer

predictions are positively correlated with the outcome of the previous shot (.42 on average), their

predictions are relatively uncorrelated with the outcome of the shot that is bet on (.04 on average).

Further, GVT do not find significant evidence of any exemplary individual predictors. This seems

to suggest that players are generally unable to predict the outcome of shots, which would in turn

imply that they cannot detect the hot hand.57

However, what the above reasoning fails to account for is that the hot hand is, by definition,

an infrequent phenomenon. This means that if a predictor does have the ability to detect the

instances in which a shooter’s probability of success shifts, this ability will be obscured by the

predictions made in the more numerous situations in which the shooter’s probability of success is

relatively stable. To illustrate, imagine a hypothetical shooter who ordinarily hits with probability

.45, but becomes hot on 15 percent of his shots, in which case he hits with probability .55. If a

predictor were to perfectly detect the shooter’s hot hand whenever it occurs, then the expected

correlation between predictions and shots would be .07. Observe that this is not vastly different

than the average correlation of .04 that GVT estimated. This suggests that GVT’s betting data

may contain evidence that players can successfully predict outcomes at rates better than chance—

evidence that has gone undetected because GVT conducted underpowered individual-level tests,

rather than pooling the data.

As such, we perform a re-analysis of the available data from GVT’s betting task, which consists

of all of the bets placed on 22 of the 26 shooters (44 sequences of predictions total).58 We find

55There may be a difference between how fans predict and how players predict, as this contrast between stated beliefs
(survey) and operational beliefs (decisions) has not been found with players in other data sets. Rao (2009a) finds
that players are more likely to take more difficult shots, less likely to pass, and more likely to attempt the next shot if
they made the previous shot. Similar results have been found in subsequent studies (Aharoni and Sarig 2011; Attali
2013; Bocskocsky et al. 2014; Cao 2011; Neiman and Loewenstein 2011). Given the strategic confounds present in
live-ball data, it is not obvious that these responses are systematically wrong.

56The bettors vary their stakes between the “high” condition, in which they earn +$0.05 for a hit and −$0.04 for a
miss, and the “low” condition, in which they earn +$0.02 for a hit and −$0.01 for a miss. A risk neutral bettor
should bet “high” if she believes that the probability of a hit is greater than .5, and “low” otherwise.

57This positive correlation with previous shots contrasts with Rao (2009b)’s finding that subjects predict hit less often
after a single hit, than after a single hit. On the other hand, inline with Rao’s findings, the bettors are significantly
more likely bet on the continuation of the same outcome as the streak length increases.

58We thank Tom Gilovich for providing us with this data. We were informed that the data for the remaining four
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that the average correlation between predictions and shot outcomes is ρ̂ = .07 across predictors,

and highly significant (p < .001, permutation test with predictor/shooter stratification).59 This

correlation is large, which can be illustrated by noting that the correlation is approximately equal

to the (average) percentage point increase in a player’s field goal percentage whenever a predictor

predicts a hit, rather than a miss.60 In fact, the actual (average) increase is 7.7 percentage points

(p < .001, SE = 1.8), which is comparable in magnitude to an NBA shooter going from slightly

above average to elite in three point percentage.61,62

Our finding that shooters and their teammates have the ability to successfully predict shot

outcomes is novel, and contrasts sharply with GVT’s original findings. This ability is consistent

with the possibility that observers (and the shooters themselves) detect the hot hand as it occurs,

and exploit their correct perception of it. On the other hand, it is also possible that players merely

have a default belief in the hot hand that happens to successfully “predict” shot outcomes in GVT’s

betting task because the hot hand exists in GVT’s data.63

Assessing the ability of players, coaches, and fans to detect the hot hand, and respond to it

appropriately, is a challenging problem. Nevertheless, while the evidence that we have presented is

not definitive, it does indicate that decision makers can exploit the hot hand, either by detecting

it in individual shooters as it occurs or by applying generally correct hot-hand heuristics. Further,

Miller and Sanjurjo (2014) present complementary evidence that decision makers are also able to

identify which shooters have more (less) of a tendency to get the hot hand. In particular, semi-

professional players’ rankings of their teammates’ respective increases in field goal percentage when

on a streak of three hits are found to be highly correlated with the actual increase in performance,

yielding an average correlation of -0.60 (p < .0001; where 1 is the rank of the shooter with the

perceived largest percentage increase).64 Given this result, a natural question is how players come

shooters could not be located. We had the 44 sequences of predictions and outcomes entered by two independent
coders, and cross-checked.

59In the case of shooters predicting their own shots, the average correlation is ρ̂ = .07 (p < .01). In the case of the
predictions of an observer, the average correlation is ρ̂ = .066 (p < .01).

60The average correlation is close to the average OLS regression coefficient β̂ ≡ p̂(hit|predict hit)− p̂(hit|predict miss),
because the variance in bets is close to the variance in hits for most bettors.

61The standard errors are computed exactly as in footnote 33. In the case that shooters predict their own shots, they
are 8.7pp more likely to hit a shot immediately after a prediction of hit (p < .001, SE = 2.7). In the case that
predictions are made by an observer, shooters are 6.6pp more likely to hit a shot immediately after a prediction of
hit (p < .01, SE = 2.4).

62ESPN. “NBA Player 3-Point Shooting Statistics - 2015-16.” http://www.espn.com/nba/statistics/player/ /stat/3-
points [accessed September 24, 2016].

63To illustrate how this could occur, suppose that one were to bet “hit” each time a shooter hit three shots in a
row, “miss” each time a shooter missed three shots in a row, and otherwise bet hit (miss) if the shooter’s overall
(unknown) field goal percentage is greater (less) than .5. With this heuristic, as one might anticipate given the results
of Section 3.2, on average, shooters would perform significantly better (5.5 percentage points) after a“hit” bet than
after a “miss” bet.

64Miller and Sanjurjo (2014) also elicited ratings and numerical estimates. The teammates’ ratings (on a scale of -3
to 3) of how much each of their teammates’ shooting percentage tends to increase has a 0.49 correlation with the
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to learn each others’ tendencies. Players could, for example, notice over time how successes and

failures tend to cluster in other players’ aggregate shooting performance. This would be enough to

predict such patterns out of sample. However, players may additionally be able to detect the hot

hand in real-time, when it emerges as a consequence of a shift in a player’s underlying probability

of success. Doing so would require information beyond the outcomes of recent shots, as a few

observations of binary data is simply too weak of a signal to clearly diagnose a shift in a player’s

probability of success.65

Accordingly, if players learn to associate other cues, such as shooting technique, body language,

and eagerness for the ball with subsequent performance, then it may be possible for them to detect

the hot state. This suggests the possibility of conducting experiments in which experienced players

(or coaches) are incentivized to predict the shot outcomes of players that they are familiar with,

but only predict when they feel sufficiently confident about their ability to do so accurately. Such

expert predictions could then be compared to similar predictions made by amateurs who are not

familiar with the shooters.

4 Application to the Gambler’s Fallacy

Why, if the gambler’s fallacy is truly fallacious, does it persist? Why is it not corrected

as a consequence of experience with random events? (Nickerson 2002)

A classic result on the human perception of randomness in sequential data is that people believe

the outcomes of randomly generated sequences to alternate more than they actually do. For

example, if a (fair) coin flip lands heads, then a tails is thought to be more likely on the next

flip (Bar-Hillel and Wagenaar 1991; Nickerson 2002; Oskarsson, Boven, McClelland, and Hastie

2009; Rabin 2002).66 Further, as a streak of identical outcomes (e.g. heads) increases in length,

it is believed that the alternation rate on the outcome that follows becomes even larger, which

is known as the Gambler’s Fallacy (Bar-Hillel and Wagenaar 1991).67 Gambler’s fallacy beliefs

actual increase in performance (p < .0001). On the other hand, the teammates’ numerical estimates of each shooter’s
percentage-point change do not exhibit significant correlation with the ratings, the rankings, or the actual increase
in performance. This may result because providing a numerical estimate is less natural and more difficult for players
than rankings or ratings. This conjecture is consistent with the corresponding responder attrition rates to these
questions that have been observed in both GVT and Miller and Sanjurjo (2014)

65To illustrate, suppose that a player’s hit rate is .6 in the “hot” state and .4 in the “normal” state, and that the player
is in the hot state on 20 percent of his shots. The likelihood of him hitting three in a row is (.6/.4)3 ≈ 3.38 times
higher when a player is in the hot state. Thus, upon observing three hits in a row, the odds in favor of the player
being hot must increase by this factor. Nevertheless, because the prior odds are just 1:4 in favor, the posterior odds
become 3.38:4, indicating slightly less than fair odds of detecting a true hot hand.

66This alternation bias is also sometimes referred to as negative recency bias.
67For simplicity, in the following discussion we assume that a decision maker keeps track of the alternation rate of a

single outcome (e.g. for heads, 1 − p̂(H|H)), which seems especially reasonable for applications in which outcomes
appear qualitatively different (e.g. rainy/sunny days). On the other hand, in the case of flipping a fair coin there
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are widespread among novice gamblers, with adherents that have included at least one historically

eminent mathematician (D’Alembert 1761, pp. 13-14).68 The fallacy has been attributed to the

mistaken belief in the “Law of Small Numbers,” by which large sample properties are incorrectly

thought to also hold within small samples (Tversky and Kahneman 1971), so if, for example, several

heads flips have occurred in a row, then tails is deemed more likely on the next flip to help “balance

things out.”

The opening quote by Nickerson (2002) poses an important question: given that the gambler’s

fallacy is an error, why does experience fail to correct it? One explanation is that there may be

insufficient incentive, or opportunity to learn, given that people are often mere passive observers

of random sequential data, or have little at stake.69 However, this explanation is unsatisfying as it

presupposes no advantage to holding correct beliefs per se, and ignores their option value. Therefore

a potentially more satisfying explanation for the persistence of the gambler’s fallacy is one that is

capable of addressing how it could be robust to experience.

Based on the results from Section 2, we propose a simple model of how a mistaken belief in

the gambler’s fallacy can persist. Consider a decision maker (DM) who repeatedly encounters

finite length sequences of “successes” and “failures.” DM begins with prior beliefs regarding the

conditional probability of “success,” given that an outcome immediately follows k consecutive

successes. Naturally, for each encounter with a finite sequence, DM attends to the outcomes that

immediately follow k consecutive successes, and updates accordingly.

Importantly, when updating his prior, we allow for the possibility that DM focuses on the

strength evidence, i.e. the proportion of successes on the outcomes that follow a streak of successes,

rather than the weight of evidence, i.e. the effective sample size used in the calculation of the

proportion. This feature of the model is consistent with results on how people weight evidence

when updating their beliefs (Griffin and Tversky 1992). In particular, sample size neglect has been

documented extensively (Benjamin, Rabin, and Raymond 2014; Kahneman and Tversky 1972), and

is sometimes attributed to working memory capacity limitations (Kareev 2000).

may be no need to discriminate between an alternation that follows heads, or tails, respectively. In this special
case, the overall alternation rate, (# alternations for streaks of length 1 )/(number of flips − 1), is expected to be
0.5. Nevertheless, it is easy to demonstrate that the overall alternation rate computed for any other streak length
(k > 1) is expected to be strictly greater than 0.5 (the explicit formula can be derived using an argument identical
to that used in Theorem 7).

68In particular, D’Alembert famously argued in favor of his gambler’s fallacy beliefs. In response to the problem:
“When a fair coin is tossed, given that heads have occurred three times in a row, what is the probability that the
next toss is a tail?” D’Alembert argued that the probability of a tail is greater than 1/2 because it is unlikely that a
probable event will never occur in a finite sequence of trials (D’Alembert 1761, pp. 13-14); see Gorroochurn (2012,
p. 124) for a discussion.

69In casino games such as roulette, people make active decisions based on events that are sequentially independent.
While there is typically no additional cost to placing one’s bets on an event that hasn’t occurred for some time, rather
than another event, the fallacy can be costly if it leads one to bet larger amounts (given that expected returns are
negative). See Rabin (2002), Ayton and Fischer (2004), Croson and Sundali (2005), and Chen, Moskowitz, and Shue
(2014) for further discussion.
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More formally, DM has beliefs regarding the conditional probability θ = P(Xi = 1|
∏i−1
j=i−kXj =

1), with a prior µ(θ) over the support [0, 1]. When DM encounters a sequence {Xi}`i=1, he attends

to those trials that immediately follow k (or more) successes, defined as I ′ := {i ∈ {k + 1, . . . , `} :∏i−1
j=i−kXj = 1}. Thus, he effectively observes Y := (Yi)

M
i=1 = (Xi)i∈I′ , where M := |I ′|. Whenever

a sequence contains trials worthy of attending to (i.e. I ′ 6= ∅), DM calculates the proportion of

successes p̂ on those trials, weighting it according to his perception of the sample size w = w(M).

Given w, DM’s posterior distribution for θ follows:

p(θ|Y ) =
θwp̂(1− θ)w(1−p̂)µ(θ)∫
θ′wp̂(1− θ′)w(1−p̂)µ(θ′)

Using this simple setup, we now briefly explore under what conditions gambler’s fallacy beliefs

can persist. Suppose that DM encounters an i.i.d. sequence of Bernoulli random variables {Xi}`i=1

in which each trial has probability of success p. Further, DM is a believer in the law of small

numbers, and holds a strong prior towards gambler’s fallacy beliefs. In the case that he observes

few sequences, experience will have little effect on DM’s beliefs, regardless of whether or not he

accounts for sample size. In the case that DM observes many sequences, the degree to which his

gambler’s fallacy beliefs persist will depend on (1) the extent to which he neglects sample size w(·),
(2) the length of the sequences he is exposed to (`), and (3) the threshold streak length (k) that

leads him to attend to outcomes. To illustrate the role of sample size sensitivity, let w(M) := Mα

for some α ≥ 0. On one extreme, DM does not discriminate between different sample sizes,

weighting all proportions the same with α = 0. In this case, as the number of sequences increases,

DM’s beliefs, µ, approach point mass on the fully biased (unweighted) expected proportion given in

Section 2.70 As in the gambler’s fallacy, these beliefs are strictly less than p, and become more biased

as k increases. On the other extreme DM may fully discriminate between sample sizes, weighting

proportions according to their sample size with α = 1. In this case, there is no asymptotic bias in

the proportion, so his beliefs will be correct in the limit.71,72 Perhaps more plausibly, if DM has

70To see this, first note that DM will observe a sequence of i.i.d. proportions p̂i, with E[p̂i] := θ∗ < p (by Theorem 1).
The strong law of large numbers applies in this case, and p̄n :=

∑n
i=1 p̂i/n will converge to θ∗ almost surely (a.s.).

After the nth sequence, DM’s posterior odds in favor of θ (relative θ∗) become

[(
θ
θ∗

)p̄n ( 1−θ
1−θ∗

)1−p̄n
]n

µ(θ)
µ(θ∗) . The

posterior probability will converge to point mass on θ∗ (a.s.) because the posterior odds in favor of θ converge to

zero (a.s.) for all θ 6= θ∗, which follows because θ 6= θ∗ implies
(
θ
θ∗

)θ∗ ( 1−θ
1−θ∗

)1−θ∗

< 1 .
71The weighted average satisfies

∑n
i=1 Mip̂i/

∑n
i=1 Mi =

∑n
i=1

∑Mi
j=1 xij/

∑n
i=1 Mi, where xij is the jth outcome from

the ith sequence. This weighted average is the maximum likelihood estimator for the transition probability p from the
state “a trial is immediately preceded by k successes” to itself (with

∑n
i=1 Mi total observations), in the associated

irreducible and ergodic 2k-state Markov chain, and converges to the transition probability p almost surely (see e.g.
Grimmett and Stirzaker (2001, p. 358)). Following the argument in footnote 70, we conclude the DM’s step n
posterior odds in favor of θ relative to p converge to 0 (a.s.), which implies the asymptotic posterior probability will
have point mass on p (a.s.).

72There are two alternative statistical approaches that do not require an infinite sample of sequences for the decision
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some degree of sensitivity to sample size then the asymptotic beliefs will be biased, and will lie

somewhere between the two extremes just given, depending on the sensitivity 0 < α < 1.

We are not the first to propose that beliefs may be influenced by the statistical properties of

finite samples. For example, in the psychology literature, it has been proposed that associations

learned via experience may be influenced by the smallness of samples that people are typically

exposed to (Kareev 1995a,b, 2000; Kareev, Lieberman, and Lev 1997).73 More recently, and closely

related, Hahn and Warren (2009) conjecture that the gambler’s fallacy may arise from the small

sample properties of the distribution of finite length strings, which relates to the overlapping words

paradox (Guibas and Odlyzko [1981]; also see Appendix D.2). In particular, the authors note that

in a sequence of length n > 4, the pattern HHHT is more likely to occur than the pattern HHHH,

which may explain why people believe that the probability of tails is greater than 1/2 after three

heads in a row. While this conjecture has sparked some debate, it does not yet appear to have been

empirically tested (Hahn and Warren 2010a,b; Sun, Tweney, and Wang 2010a,b; Sun and Wang

2010).74 In a formal comment based on an earlier version of this paper, Sun and Wang (2015)

relate the bias that we find to this debate, but argue that its implications for human judgement

and decision-making are limited. Instead, the authors emphasize the primacy of the waiting time

distribution of finite length patterns in infinite sequences, rather than the distribution of sample

statistics in finite length sequences.

In our view, this model offers a plausible account for the persistence of the gambler’s fallacy,

which also has testable implications. First, in terms of plausibility, there is ample evidence that

people tend to adapt to the natural statistics in their environment (Atick 1992; Simoncelli and

Olshausen 2001), with the sample proportion being an example of a statistic that humans find

intuitive and tend to assess relatively accurately (Garthwaite, Kadane, and O’Hagan 2005). Second,

in terms of testability, our model predicts that the magnitude of bias in peoples’ beliefs should

depend on the following measurable and experimentally manipulable factors: (1) the length of

sequences (`), (2) the streak lengths (k) that immediately precede the outcomes attended to, and

maker to obtain an unbiased estimate of the conditional probability, see footnote 4 for details.
73In a review article, Kareev (2000) observes that the sampling distribution of the correlation coefficient between any

two variables is strongly skewed for small samples, which implies that measures of central tendency in the sampling
distribution of the correlation can be substantially different than the true correlation, which can influence belief
formation. Interestingly, in earlier work Kareev (1992) observes a finite sample property for the alternation rate in a
sequence. In particular, while the expected overall alternation rate for streaks of length k = 1 is equal to 0.5 (when
not distinguishing between a preceding heads or tails), people’s experience can be made to be consistent with an
alternation rate that is greater than 0.5 if the set of observable sequences that they are exposed to is restricted to
those that are subjectively “typical” (e.g. those with an overall success rate close to 0.5). In fact, for streaks of length
k > 1, this restriction is not necessary, as the expected overall alternation rate across all sequences is greater than 0.5
(the explicit formula that demonstrates this can be derived using an argument identical to that used in Theorem 7).

74The focus on fixed length string patterns has a few limitations with regard to testability: (1) some patterns with lower
associated proportions e.g. HTHT, have much lower probabilities than patterns with high associated proportions, such
as TTHH, (2) for most patterns the difference in the probability is small, even for patterns in which the proportion
associated with the pattern varies considerably.
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(3) sensitivity to sample size w(·).
The explanation provided here can be thought of as complementary to Rabin (2002) and Rabin

and Vayanos (2010). In particular, it provides a structural account for why the central behavioral

primitive of their model—the belief in the law of small numbers—should persist in the face of

experience. Further, our approach relates to Benjamin et al. (2014) in that it illustrates how a

limited sensitivity to sample size can affect inference.

5 Conclusion

We prove that in a finite sequence of data that is generated by repeated realizations of a binary i.i.d.

random variable, the expected proportion of successes, on those realizations that immediately follow

a streak of successes, is strictly less than the underlying probability of success. The mechanism

is a form of selection bias that arises from the sequential structure of the finite data. A direct

implication of the bias is that empirical approaches of the most prominent studies in the hot

hand fallacy literature are incorrect. Upon correcting for the bias we find that the data that had

previously been interpreted as providing substantial evidence that belief in the hot hand is a fallacy,

reverses, instead providing substantial evidence that it is not a fallacy to believe in the hot hand.

Another implication of the bias is a novel structural explanation for the persistence of gambler’s

fallacy beliefs in the face of experience. Finally, we find that the respective errors of the gambler

and hot hand fallacy researcher are analogous: the gambler sees reversal in an i.i.d. process, while

the researcher sees an i.i.d. process when there is momentum.
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A Appendix: Section 2 Proofs

A.1 Proof of Theorem 1 (Section 2.1)

Define F := {x ∈ {0, 1}n : I1k(x) 6= ∅} to be the sample space of sequences for which P̂1k(X) is

well defined. The probability distribution over F is given by P(A|F ) := P(A)/P(F ) for A ⊂ F ,

where P(F ) =
∑
x∈F P(X = x) and P(X = x) = p

∑n
i=1 xi(1− p)n−

∑n
i=1 xi .

Let the random variable Xτ represent the outcome of the randomly “drawn” trial τ , which is

selected as a result of the two-stage procedure that: (1) draws a sequence x at random from F ,

according to the distribution P(X = x|F ), and (2) draws a trial τ at random from {k + 1, . . . , n},
according to the distribution P(τ = t|X = x). Let τ |X be a uniform draw from the trials in

sequence X that immediately follow k consecutive successes, i.e. P(τ = t|X = x) = 1/|I1k(x)|
for t ∈ I1k(x), and P(τ = t|X = x) = 0 for t ∈ I1k(x)C ∩ {k + 1, . . . , n}. It follows that the

unconditional probability distribution of τ over all trials that can possibly follow k consecutive

successes is given by P(τ = t|F ) =
∑
x∈F P(τ = t|X = x)P(X = x|F ), for t ∈ {k + 1, . . . , n}. The

probability that this randomly drawn trial is a success, P(Xτ = 1|F ), must be equal to the expected

proportion of successes in the set of trials I1k(x). The intuition why is explained in Section 2, just

below Theorem 1. Here, for completeness, we provide the following formal derivation.

E
[
P̂1k(X)

∣∣∣ I1k(x) 6= ∅
]

=
∑
x∈F

P̂1k(X)P(X = x | I1k(x) 6= ∅)

=
∑
x∈F

∑
t∈I1k(x)

xt ·
1

|I1k(x)|
P(X = x|F )

=
∑
x∈F

n∑
t=k+1

P(Xt = 1|τ = t,X = x)P(τ = t|X = x)P(X = x|F )

=
∑
x∈F

n∑
t=k+1

P(Xt = 1|τ = t,X = x, F )P(τ = t|X = x, F )P(X = x|F )

=
∑
x∈F

n∑
t=k+1

P(Xt = 1, τ = t,X = x|F )

= P(Xτ = 1|F )

Note that P(Xτ = 1|F ) =
∑n

t=k+1 P(Xt = 1|τ = t, F )P(τ = t|F ), and P(τ = t|F ) > 0 for

t ∈ {k + 1, . . . , n}. Below, we demonstrate that P(Xt = 1|τ = t, F ) < p when t < n, and that

P(Xt = 1|τ = n, F ) = p, which, taken together, guarantee that P(Xτ = 1|F ) < p.

Suppose that t < n. To demonstrate that P(Xt = 1|τ = t, F ) < p it suffices to show

that P(τ = t|Xt = 0, F ) > P(τ = t|Xt = 1, F ). This inequality is established next by ap-

1



plying the law of total probability, conditioning (within F ) on values of the random variable

X−t|
∏t−1
i=t−kXi = 1, whose realizations, x−t ∈ {0, 1}n−1 (with

∏t−1
i=t−k xi = 1), must satisfy

(x−t, xt) := (x1, . . . , xt−1, xt, xt+1, . . . , xn) ∈ F for xt ∈ {0, 1}.

P(τ = t|Xt = 0, F )

=
∑

x−t∈{0,1}n−1:∏t−1
i=t−k xi=1

P (τ = t |Xt = 0,X−t = x−t, F )P
(
X−t = x−t

∣∣∣Xt = 0,
∏t−1
j=i−kXj = 1, F

)

=
∑

x−t∈{0,1}n−1:∏t−1
i=t−k xi=1

P (τ = t |Xt = 0,X−t = x−t )P
(
X−t = x−t

∣∣∣Xt = 0,
∏t−1
j=i−kXj = 1

)
(5)

=
∑

x−t∈{0,1}n−1:∏t−1
i=t−k xi=1

P (τ = t |Xt = 0,X−t = x−t )P
(
X−t = x−t

∣∣∣∏t−1
j=i−kXj = 1

)
(6)

>
∑

x−t∈{0,1}n−1:∏t−1
i=t−k xi=1

P (τ = t |Xt = 1,X−t = x−t )P
(
X−t = x−t

∣∣∣∏t−1
j=i−kXj = 1

)
(7)

=
∑

x−t∈{0,1}n−1:∏t−1
i=t−k xi=1

P (τ = t |Xt = 1,X−t = x−t, F )P
(
X−t = x−t

∣∣∣Xt = 1,
∏t−1
j=i−kXj = 1, F

)

= P(τ = t|Xt = 1, F )

In (5), equality follows for the first term in the sum because for all x−t ∈ {0, 1}n−1 with
∏t−1
i=t−k xi =

1, we have that {x′ ∈ {0, 1}n : x′
−t = x−t} ⊂ F , and for the second term in the sum because for

t ≥ k + 1, we have that {x ∈ {0, 1}n :
∏t−1
j=i−k xi = 1} ⊂ F . In (6), equality follows for the

second term in the sum because Bernoulli trials are independent.75 In (7), the inequality follows

because for each common set of trial outcomes x−t with
∏t−1
i=t−k xi = 1, the likelihood that the

randomly drawn trial τ |X = x is equal to t will be lower when xt = 1 than when xt = 0. This

is because when xt = 1 there is at least one more trial to choose from—trial t + 1—compared

to when xt = 0. As a result, the respective set of trials that are (uniformly) drawn from satisfy

|I1k(x−t, 1)| ≥ |I1k(x−t, 0)|+ 1.

For the case of t = n we can follow the above steps until (6), at which point an equality now

emerges between (6) and (7), as xt = xn = 1 no longer translates into one more trial to choose from,

because nothing can follow trial n. This implies that P(τ = n|Xn = 1, F ) = P(τ = n|Xn = 0, F ).

Taking these two facts together: (1) P(Xt = 1|τ = t) < p, for k + 1 ≤ t < n, and (2)

75If we were to condition on X−t rather than X−t|
∏t−1
i=t−kXi = 1, then in the second term on the first line the

conditioning factors would be Xt = 0 and F , and we would not be able to drop Xt = 0 to reach a version of (6) in
which the second term had just F as a conditioning factor, because {x ∈ {0, 1}n : xt = 0} * F .

2



P(Xn = 1|τ = n) = p, it immediately follows that P(Xτ = 1|F ) < p.76

�

A.2 The mechanism behind the bias in the selection procedure (Section 2.2)

The proof of Theorem 1 in Section A.1 begins with a representative trial τ being drawn at random

from the set of trials selected by the researcher, I1k(X). Learning that τ = t provides three pieces

of information about the sequence from which to update: (1) I1k(X) 6= ∅, (2) t ∈ I1k(X), and (3)∏t−1
t−kXi = 1. Letting M := |I1k(X)|, the posterior odds in favor of Xt = 1 (relative to Xt = 0) are

given by:

P(Xt = 1|τ = t)

P(Xt = 0|τ = t)
(8)

=
P(M ≥ 1,

∏t−1
t−kXi = 1, Xt = 1|τ = t)

P(M ≥ 1,
∏t−1
t−kXi = 1, Xt = 0|τ = t)

=
P(τ = t|

∏t−1
t−kXi = 1, Xt = 1)

P(τ = t|
∏t−1
t−kXi = 1, Xt = 0)

P(M ≥ 1|Xt = 1,
∏t−1
t−kXi = 1)

P(M ≥ 1|Xt = 0,
∏t−1
t−kXi = 1)

P(
∏t−1
t−kXi = 1|Xt = 1)

P(
∏t−1
t−kXi = 1|Xt = 0)

P(Xt = 1)

P(Xt = 0)

=
P(τ = t|

∏t−1
t−kXi = 1, Xt = 1)

P(τ = t|
∏t−1
t−kXi = 1, Xt = 0)

P(Xt = 1)

P(Xt = 0)

=
E
[

1
M

∣∣ ∏t−1
t−kXi = 1, Xt = 1

]
E
[

1
M

∣∣ ∏t−1
t−kXi = 1, Xt = 0

] P(Xt = 1)

P(Xt = 0)
(9)

The event M ≥ 1 in the conditional argument is omitted in the first term of the second equality

because it is implied by the event
∏t−1
t−kXi = 1. For the Bayes updating factor in the second equality,

P(
∏t−1
t−kXi=1|Xt=1)

P(
∏t−1
t−kXi=1|Xt=0)

, if p̂ = n1/n were known, it would operate like sampling-without-replacement and

be equal to (n1 − k)/n1. However, in the present case, with no prior knowledge of the sequence,

the event
∏t−1
t−kXi = 1 cannot provide information regarding the remaining n− k outcomes, which

implies that the likelihood of this event is constant, regardless of the value of xt. The updating

factor that drives the bias is revealed in the final line, which follows from applying the law of total

probability, conditioning on M , and using the fact that P(τI = t|M = m) = 1/m.

To identify whether the updating factor in (9) increases or decreases the odds in favor of Xt = 1,

we apply the results established within the proof of Theorem 1. In particular, it was found that

P(Xt = 1|τ = t) < p for t < n and P(Xt = 1|τ = t) = p for t = n. This implies that the posterior

odds in favor of success are strictly less than the prior odds for t < n, and equal for t = n. Therefore

76Note that the proof did not require that the Bernoulli trials be identically distributed. Instead, we could allow the
probability distribution to vary, with P(Xi = 1) = pi for i = 1, . . . , n, and our result would be that P(Xτ = 1|F ) <
E[pτ |F ].
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the updating factor satisfies,

E
[

1
M

∣∣ ∏t−1
t−kXi = 1, Xt = 1

]
E
[

1
M

∣∣ ∏t−1
t−kXi = 1, Xt = 0

] < 1 for t = k + 1, . . . , n− 1 (10)

with equality for t = n. This factor has a straightforward interpretation for t < n: for a sequence

in which Xt = 1, and
∏t−1
t−kXi = 1 the likelihood of drawing any given trial from I1k(X), including

trial t—given by the reciprocal of the number of selected trials 1/M—is expected to be lower

for a sequence in which Xt = 0 and
∏t−1
t−kXi = 1. In particular, a sequence with Xt = 1 and∏t−1

t−kXi = 1 will typically have more trials selected, i.e. larger M , than a sequence with Xt = 0

and
∏t−1
t−kXi = 1, because the event Xt = 0 excludes the next k trials from t+1 to t+k from being

selected, whereas the event Xt = 1 leads trial t + 1 to be selected, and does not exclude the next

k − 1 trials from being selected.77 This implies that, in expectation, for the sequences in which

there are k consecutive successes from trial t− k to trial t− 1, those in which the next trial t is a

success are given a lower (relative) weight, than the sequences in which the next trial t is a failure,

because the sequences in which trial t is a success are (essentially) expected to have more effective

observations—i.e. trials that immediately follow k consecutive successes.78

A.3 A comparison with sampling-without-replacement (Section 2.2)

Suppose that the researcher knows the overall proportion of successes in the sample, p̂ = n1/n.

Consider the following two ways of learning that trial t immediately follows k consecutive successes:

(1) a trial τN , drawn uniformly at random from {k + 1, . . . , n}, ends up being equal to trial t, and

preceded by k consecutive successes, or (2) a randomly drawn trial τI from I1k(x) ⊆ {k+1, . . . , n} is

trial t. In each case, the prior probability of success is P(xt = 1) = n1/n, which can be represented

as an odds ratio in favor of xt = 1 (relative to xt = 0) equal to P(xt = 1)/P(xt = 0) = n1/n0.

In the first case the probability is given by P(τN = t) = 1/(n− k) for all t ∈ {k+ 1, . . . , n}, and

is independent of x. Upon finding out that τN = t one then learns that
∏t−1
t−k xi = 1. As a result,

the posterior odds yield a sampling-without-replacement formula, via Bayes rule:

77This is under the assumption that t ≤ n − k. In general, the event Xt = 0 excludes the next min{k, n − t} trials
from t+ 1 to min{t+ k, n} from being selected, while the event Xt = 1 leads trial t+ 1 to be selected, and does not
exclude the next min{k, n− t} − 1 trials from being selected.

78More accurately, they are expected to have a lower value for the reciprocal of the number of effective observations.
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P(xt = 1|τN = t)

P(xt = 0|τN = t)
=

P(xt = 1,
∏t−1
t−k xi = 1|τN = t)

P(xt = 0,
∏t−1
t−k xi = 1|τN = t)

=
P(τN = t|xt = 1,

∏t−1
t−k xi = 1)

P(τN = t|xt = 0,
∏t−1
t−k xi = 1)

P(
∏t−1
t−k xi = 1|xt = 1)

P(
∏t−1
t−k xi = 1|xt = 0)

P(xt = 1)

P(xt = 0)

=
P(
∏t−1
t−k xi = 1|xt = 1)

P(
∏t−1
t−k xi = 1|xt = 0)

P(xt = 1)

P(xt = 0)

=
n1−1
n−1 × · · · ×

n1−k
n−k

n1
n−1 × · · · ×

n1−k+1
n−k

n1

n0

=
n1 − k
n1

n1

n0

=
n1 − k
n0

Observe that the prior odds in favor of success are attenuated by the likelihood ratio n1−k
n1

of

producing k consecutive successes given either hypothetical state of the world, xt = 1 or xt = 0,

respectively.

In the second case, the probability that τI = t is drawn from I1k(x) is completely determined

by M := |I1k(x)|, and equal to 1/M . Upon learning that τI = t one can infer the following three

things: (1) I1k(x) 6= ∅, i.e. M ≥ 1, which is informative if n1 ≤ (k − 1)(n − n1) + k, (2) t is

a member of I1k(x), and (3)
∏t−1
t−k xi = 1, as in sampling-without-replacement. As a result, the

posterior odds can be determined via Bayes Rule in the following way:

P(xt = 1|τI = t)

P(xt = 0|τI = t)

=
P(xt = 1,

∏t−1
t−k xi = 1,M ≥ 1|τI = t)

P(xt = 0,
∏t−1
t−k xi = 1,M ≥ 1|τI = t)

=
P(τI = t|xt = 1,

∏t−1
t−k xi = 1)

P(τI = t|xt = 0,
∏t−1
t−k xi = 1)

P(M ≥ 1|xt = 1,
∏t−1
t−k xi = 1)

P(M ≥ 1|xt = 0,
∏t−1
t−k xi = 1)

P(
∏t−1
t−k xi = 1|xt = 1)

P(
∏t−1
t−k xi = 1|xt = 0)

P(xt = 1)

P(xt = 0)

=
E
[

1
M

∣∣ ∏t−1
t−k xi = 1, xt = 1

]
E
[

1
M

∣∣ ∏t−1
t−k xi = 1, xt = 0

] P(
∏t−1
t−k xi = 1|xt = 1)

P(
∏t−1
t−k xi = 1|xt = 0)

P(xt = 1)

P(xt = 0)

=
E
[

1
M

∣∣ ∏t−1
t−k xi = 1, xt = 1

]
E
[

1
M

∣∣ ∏t−1
t−k xi = 1, xt = 0

] n1 − k
n1

n1

n0
(11)

The conditional argument is omitted in the first term of the first equality because the event M ≥ 1

is implied by the event
∏t−1
t−k xi = 1. The formula in the final line indicates that the poste-
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rior odds in favor of xt = 1 can be thought of as arising from the following two-stage Bayesian

updating procedure: (1) updating with the sampling-without-replacement factor n1−k
n1

, and (2) up-

dating with the factor that relates to how the successes and failures are arranged in the sequence:
E[ 1

M
|
∏t−1
t−k xi=1,xt=1]

E[ 1
M
|
∏t−1
t−k xi=1,xt=0]

. This second factor reveals that if the expected probability of choosing any

given trial (including t) is larger in the state of the world in which xt = 0, rather than xt = 1, then

the posterior odds will decrease beyond what sampling-without-replacement alone would suggest.

This is natural to expect in the case that t < n, as xt = 0 makes it impossible for the min{n− t, k}
trials that follow trial t to be members of I1k(x), whereas xt = 1 assures that trial t+1 is a member

of I1k(x), and does not exclude the min{n− t, k}− 1 trials that follow it from also being in I1k(x).

In Section A.2 we proved that this factor is strictly less than 1 in the general case, when t < n and

p̂ = n1/n is unknown. For the case in which p̂ = n1/n is known, and k = 1, we prove this result in

the discussion of the alternate proof to Lemma 2 in Appendix B.79

A quantitative comparison with sampling-without-replacement

For the general case, in which p̂ = n1/n is unknown, juxtaposing the bias with sampling-without-

replacement puts the magnitude of the bias into context. Let the probability of success be given

by p = P(Xt = 1). In Figure 4, the expected empirical probability that a randomly drawn trial

in I1k(X) is a success, which is the expected proportion, E[P̂1k(X) | I1k(X) 6= ∅], is plotted

along with the expected value of the probability that a randomly drawn trial t ∈ {1, . . . , n}\Tk
is a success, given that the k success trials Tk ⊆ {1, . . . , n} have already been drawn from the

sequence (sampling-without-replacement), E
[
N1(X)−k
n−k

∣∣∣N1(X) ≥ k
]
. The plot is generated using

the combinatorial results discussed in Section 2.3. Observe that for k > 1, and n not too small, the

bias in the expected proportion is considerably larger than the corresponding bias from sampling-

without-replacement. In the case of the sampling-without-replacement, the selection criteria for

sequences, N1(X) ≥ k, can be thought of as a generalization of Berkson’s paradox for binary data.

In the case of the bias in the expected proportion, the sequence weight updating factor, analogous

to the likelihood ratio in equation 11, is determined by the number of successes in the sequence,

but not by their arrangement.80

79When k > 1, the computation is combinatorial in nature, and utilizes the dimension reduction arguments in Ap-
pendix C to reach the formula in Lemma 5, which is employed in Theorem 6—note: 1/M = 1/f1k or 1/M = 1/(f1k−1)
depending on the final k trials in the sequence. The calculation of E

[
1
M

∣∣ N1 = n1,M ≥ 1
]

requires the distribu-
tion of M . All known formulations of this distribution appear to be combinatorial in nature. This is evidenced in a
standard reference on runs and scans, Balakrishnan and Koutras (2011, p.188). The authors consider the Type III
binomial distribution of order k, represented by the variable Mn,k, which is the number of (overlapping) instances
of k consecutive successes in n trials conditional on a fixed number of successes. The variable M in our case is the
number of (overlapping) instances of k consecutive success in the first n− 1 trials.

80In particular, the sequence weight that corresponds to 1/M , is 1/
(
N1
k

)
, i.e. the reciprocal of the number of ways to

choose k successes from N1 successes.
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Figure 4: The dotted lines correspond to the bias from sampling-without-replacement. It is the expected
probability of a success, given that k successes are first removed from the sequence (assuming p = .5). The
solid lines correspond to the expected proportion from Figure 1.

B Appendix: Proofs for the special case of k = 1

The following lemma employs a similar approach to that provided in Appendix C for the general

case of E[P̂1k(X) | I1k(X) 6= ∅, N1(X) = n1], an alternative, simpler proof, follows immediately

below.

Lemma 2 For n > 1 and n1 = 1, 2, . . . , n

E
[
P̂11(X)

∣∣∣ I11(X) 6= ∅, N1(X) = n1

]
=
n1 − 1

n− 1
(12)

Proof: For n1 = 1, clearly P̂11(x) = 0 for all x, and the identity is satisfied. For n1 > 1

this quantity cannot be computed directly by calculating its value for each sequence because the

number of admissible sequences is typically too large.81 In order to handle the case of n1 > 1, we

81For example, with n = 100, n1 = 50 and k = 1 there are
(

100
50

)
> 1029 such sequences.
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first define R1(x) as the number of runs of ones, i.e. the number of subsequences of consecutive

ones in sequence x that are flanked by zeros or an end point.82 The key observation is that for

all sequences with R1(x) = r1, P̂11(x) is (i) constant and equal to (n1 − r1)/n1 across all of the

sequences that terminate with a zero, and (ii) constant and equal to (n1 − r1)/(n1 − 1) across all

of the sequences that terminate with a one. The number of sequences in each of these cases can be

counted using a combinatorial argument.

Any sequence with n1 ones can be constructed, first, by building the runs of ones of fixed length

with an ordered partition of the n1 ones into r1 cells (runs), which can be performed in
(
n1−1
r1−1

)
ways

by inserting r1−1 dividers into the n1−1 available positions between ones, and second, by placing

the r1 runs into the available positions to the left or the right of a zero among the n0 zeros to form

the final sequence. For the case in which xn = 0 there are n0 available positions to place the runs,

thus
(
n0

r1

)
possible placements, while in the case in which xn = 1 (which must end in a run of ones)

there are n0 available positions to place the r1−1 remaining runs, thus
(
n0

r1−1

)
possible placements.

Note that for n1 > 1, we have that the proportion is defined for all sequences, and r1 ≤ n1, thus:

E[P11|N1 = n1] =
1(
n
n1

) ∑
xn∈{0,1}

min{n1,n0+xn}∑
r1=1

(
n1 − 1

r1 − 1

)(
n0

r1 − xn

)
n1 − r1

n1 − xn

For the case in which xn = 0, the inner sum satisfies:

min{n1,n0}∑
r1=1

(
n1 − 1

r1 − 1

)(
n0

r1

)
n1 − r1

n1
=

min{n1,n0}∑
r1=1

(
n1 − 1

r1 − 1

)(
n0

r1

)(
1− r1

n1

)

=

(
n− 1

n0 − 1

)
− 1

n1

min{n1,n0}∑
r1=1

(
n1 − 1

r1 − 1

)(
n0

r1

)
r1

=

(
n− 1

n0 − 1

)
− n0

n1

min{n1,n0}∑
r1=1

(
n1 − 1

r1 − 1

)(
n0 − 1

r1 − 1

)

=

(
n− 1

n0 − 1

)
− n0

n1

min{n1−1,n0−1}∑
x=0

(
n1 − 1

x

)(
n0 − 1

x

)
=

(
n− 1

n0 − 1

)
− n0

n1

(
n− 2

n1 − 1

)
The left term of the second line follows because it is the total number of sequences that can be

formed in the first n − 1 positions with n0 − 1 zeros and n1 = n − n0 ones. The final line follows

82 The number of runs of ones can be defined explicitly to be the number of trials in which a one occurs and is
immediately followed by a zero on the next trial or has no following trial, i.e. R1(x) := |{i ∈ {1, . . . , n} : xi =
1 and, if i < n then xi+1 = 0}|
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from an application of Vandermonde’s convolution.83

For the case in which xn = 1, the inner sum can be reduced using similar arguments:

min{n1,n0+1}∑
r1=1

(
n1 − 1

r1 − 1

)(
n0

r1 − 1

)
n1 − r1

n1 − 1
=

n1

n1 − 1

(
n− 1

n0

)
− 1

n1 − 1

min{n1,n0+1}∑
r1=1

(
n1 − 1

r1 − 1

)(
n0

r1 − 1

)
r1

=

(
n− 1

n0

)
− 1

n1 − 1

min{n1,n0+1}∑
r1=1

(
n1 − 1

r1 − 1

)(
n0

r1 − 1

)
(r1 − 1)

=

(
n− 1

n0

)
− n0

n1 − 1

min{n1,n0+1}∑
r1=2

(
n1 − 1

r1 − 1

)(
n0 − 1

r1 − 2

)

=

(
n− 1

n0

)
− n0

n1 − 1

min{n1−2,n0−1}∑
x=0

(
n1 − 1

x+ 1

)(
n0 − 1

x

)
=

(
n− 1

n0

)
− n0

n1 − 1

(
n− 2

n1 − 2

)
Combining both cases we have:

E[P11|N1 = n1] =
1(
n
n1

) [( n− 1

n0 − 1

)
− n0

n1

(
n− 2

n1 − 1

)
+

(
n− 1

n0

)
− n0

n1 − 1

(
n− 2

n1 − 2

)]
=

1(
n
n1

) [( n
n0

)
− n0

n− 1

(
n

n1

)]
=
n1 − 1

n− 1

�

Alterative Proof of Lemma 2:

As discussed in Section 2.2, in the case of knownN1(X) = n1, the expected proportion E[P̂11(X)|N1(X) =

n1, I11(X) 6= ∅] is equal to the probability of success, P(Xτ = 1|N1(X) = n1), for a randomly drawn

trial τ ∈ I11(X). We assume hereafter that all probabilities P(·) are conditional on N1(X) = n1,

83 Vandermonde’s convolution is given as

min{r−m,n}∑
k=max{−m,n−s}

(
r

m+ k

)(
s

n− k

)
=

(
r + s

m+ n

)

from which one can derive the following identity, which we apply

min{`−m,s−n}∑
k=max{−m,−n}

(
`

m+ k

)(
s

n+ k

)
=

min{`−m,s−n}∑
k=max{−m,−n}

(
s

n+ k

)(
`

(`−m)− k

)
=

(
`+ s

`−m+ n

)
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and because the result is trivial for n1 = 1, we start by considering the case in which n1 ≥ 2.

Note that P(Xτ = 1) =
∑n

t=2 P(Xt = 1|τ = t)P(τ = t), and that each posterior is equally likely

to be reached, with P(τ = t) = 1/(n − 1) for all t ∈ {2, 3, . . . , n}.84 To determine each posterior

P(Xt = 1|τ = t) for t = 2, . . . , n, we apply Bayes rule

P(Xt = 1|τ = t) =
P(τ = t|Xt−1 = 1, Xt = 1)P(Xt−1 = 1|Xt = 1)P(Xt = 1)

P(τ = t)

= P(τ = t|Xt−1 = 1, Xt = 1)
n1(n1 − 1)

n
(13)

where P(Xt−1 = 1|Xt = 1) = (n1 − 1)/(n− 1) is the sampling-without-replacement likelihood. For

the likelihood P(τ = t|Xt−1 = 1, Xt = 1), in the case that t < n, it satisfies:

P(τ = t|Xt−1 = 1, Xt = 1) = E

[
1

M

∣∣∣∣ Xt−1 = 1, Xt = 1

]
=

∑
x∈{0,1}

E

[
1

M

∣∣∣∣ Xt−1 = 1, Xt = 1, Xn = x

]
P(Xn = x|Xt−1 = 1, Xt = 1)

=
1

n1

n0

n− 2
+

1

n1 − 1

n1 − 2

n− 2

=
1

n− 2

(
n0

n1
+
n1 − 2

n1 − 1

)
where M := |I11(X)|, with M = n1−Xn. This shows that the value of the likelihood is independent

of t, for t < n. In the case that t = n, clearly P(τ = n|Xn−1 = 1, Xn = 1) = 1
n1−1 .

The posterior probability for each t follows from substituting the likelihood into (13), which

yields (after collecting terms),

P(Xt = 1|τ = t) =


n−1
n−2

(
n1
n −

1
n−1

)
for t = 2, . . . , n− 1

n1
n for t = n

Summing across ex-ante equally likely trial draws, we have

P(Xτ = 1) = P(Xτ = 1|τ < n)P(τ < n) + P(Xn = 1|τ = n)P(τ = n)

=
n− 1

n− 2

(
n1

n
− 1

n− 1

)
n− 2

n− 1
+
n1

n

1

n− 1

=
n1 − 1

n− 1

84Note P(τ = t) =
∑
x:N1(x)=n1

P(τ = t|X = x)P(X = x) =
∑
x:N1(x)=n1,xt−1=1

1
n1−xn

1

( n
n1

)
=

1

( n
n1

)

[(
n−2
n1−1

)
1
n1

+
(
n−2
n1−2

)
1

n1−1

]
= 1

n−1
.
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Discussion of alternative proof of Lemma 2

As discussed in Section 2.2 the updating factor relating to the arrangement of successes and failures,

P(τ = t|Xt−1 = 1, Xt = 1)/P(τ = t|Xt−1 = 1, Xt = 0), is determined by the (expected) reciprocal

of the number of effective observations in the sequence. The equation for the likelihood P(τ =

t|Xt−1 = 1, Xt = 1) = 1
n−2

(
n0
n1

+ n1−2
n1−1

)
derived within in the alternative proof to Lemma 2

can be used to demonstrate that this updating factor shrinks the odds beyond sampling-without-

replacement for t < n and inflates the odds beyond sampling-without-replacement for t = n.

First we note that an analogous argument to the one presented in the alternative proof yields the

likelihood P(τ = t|Xt−1 = 1, Xt = 0) = 1
n−2

(
n0−1
n1

+ n1−1
n1−1

)
. Further, in the case of t = n, it is clear

that P(τ = n|Xn−1 = 1, Xn = 0) = 1
n1

. The likelihood ratio thus becomes (after collecting terms),

P(τ = t|Xt−1 = 1, Xt = 1)

P(τ = t|Xt−1 = 1, Xt = 0)
=

1− 1
(n−1)(n1−1) for t = 2, . . . , n− 1

n1
n1−1 for t = n

(14)

which is clearly strictly less than 1 for t < n, and strictly greater than 1 for t = n. Because the above

likelihood ratio is independent of t for 2 ≤ t ≤ n− 1, the randomly drawn trial that determines the

probability of interest P(Xτ = 1), has a (n − 2)/(n − 1) chance of leading to an updating of the

odds that is stronger than sampling-without-replacement would suggest, and a 1/(n − 1) chance

of leading to an updating of the odds that is weaker than sampling-without-replacement would

suggest. As shown above, in this special case with k = 1, these countervailing forces precisely

balance.

Formulae for expected value of the proportion (and the difference in proportions)

Lemma 2 can be combined with Equation 4 to express the expected proportion in terms of just n

and p.85

Theorem 3 For p > 0

E
[
P̂11(X)

∣∣∣ I1k(X) 6= ∅
]

=

[
p− 1−(1−p)n

n

]
n
n−1

1− (1− p)n−1
< p (15)

85In a comment written about this paper, Rinott and Bar-Hillel (2015) provide an alternative proof for this theorem.
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Proof: First we observe that in light of Lemma 2, Equation 15 can be written as follows:

E
[
P̂11(X)

∣∣∣ I11(X) 6= ∅
]

= E
[
E
[
P̂1k(X)

∣∣∣ I11(X) 6= ∅, N1(X) = n1

]]
= E

[
N1(x)− 1

n− 1

∣∣∣∣ I11(X) 6= ∅
]

Let U11(n, n1) := |{x ∈ {0, 1}n : N1(x) = n1 & I11(X) = ∅}|, i.e. the number of sequences for

which P̂11(x) is undefined, and C be the constant that normalizes the total probability to 1.86 The

expected value can then be computed using the binomial distribution, which yields:

E

[
N1(x)− 1

n− 1

∣∣∣∣ I11(X) 6= ∅
]

= C

n∑
n1=1

pn1(1− p)n−n1

[(
n

n1

)
− U11(n, n1)

]
· n1 − 1

n− 1

=

∑n
n1=2

(
n
n1

)
pn1(1− p)n−n1 n1−1

n−1

1− (1− p)n − p(1− p)n−1

=
1

n−1

[(
np− np(1− p)n−1

)
−
(
1− (1− p)n − np(1− p)n−1

)]
1− (1− p)n − p(1− p)n−1

=

[
p− 1−(1−p)n

n

]
n
n−1

1− (1− p)n−1

where the second line follows because U11(n, n1) = 0 for n1 > 1, U11(n, 0) = U11(n, 1) = 0, and

C = 1/[1− (1− p)n − p(1− p)n−1].87

By letting q := 1− p it is straightforward to show that the bias in P̂11(X) is negative:

E
[
P̂11(X)− p

∣∣∣ I11(X) 6= ∅
]

=

[
p− 1−qn

n

]
n
n−1

1− qn−1
− p

=
(n− 1)(qn−1 − qn)− (q − qn)

(n− 1)(1− qn−1)

< 0

The inequality follows from f(x) = qx being strictly decreasing and convex, which implies that

q − qn > (n− 1)(qn−1 − qn). �

86More precisely, C := 1/
(

1−
∑n
n1=0 U11(n, n1)pn1(1− p)n−n1

)
.

87Recall U11(n, n1) := |{x ∈ {0, 1}n : N1(x) = n1 & I11(X) = ∅}|, i.e. the number of sequences for which P̂11(x) is
undefined
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The expected difference in proportions

For k = 1, we find that the expected difference in proportions is independent of p, and depends

only on n.

Theorem 4 Letting D̂1(x) := P̂11(x)− P̂01(x), then for any 0 < p < 1 and n > 2:

E
[
D̂1(X)

∣∣∣ I11(X) 6= ∅, I01(X) 6= ∅
]

= − 1

n− 1

Proof: We show that for n > 2 and n1 = 1, . . . , n− 1:

E
[
D̂1(X)

∣∣∣ N1(X) = n1, I11(X) 6= ∅, I01(X) 6= ∅
]

= − 1

n− 1

If 1 < n1 < n−1 then D̂1(x) := P̂11(x)− P̂01(x) is defined for all sequences. Therefore, by linearity

of the expectation, and a symmetric application of Lemma 2 to P̂01(X), we have:

E[D̂1(X)|N1(X) = n1] =E[P̂11(X)|N1(X) = n1]− E(P̂01(X)|N1(X) = n1]

=
n1 − 1

n− 1
−
(

1− n0 − 1

n− 1

)
=− 1

n− 1

If n1 = 1 then there are n− 1 possible sequences in which D̂1 is defined (i.e. with 1 not in the final

position). For the sequence in which 1 is in the first position, D̂1 = 0. For the other n−2 sequences,

D̂1 = −1/(n − 2). Therefore, E
[
D̂1(X)

∣∣∣ N1(X) = 1, I11(X) 6= ∅, I01(X) 6= ∅
]

= −1/(n − 1).

The argument for n1 = n− 1 is analogous, with D̂1 undefined for the sequence in which there is a

0 in the last position, equal to 0 for the sequence in which there is 0 in the first position, and equal

to −1/(n− 2) for all other sequences.

That the conditional expectation is independent of N1(x) implies that E[D1(X) | I11(X) 6=
∅, I01(X) 6= ∅ ] is independent of p, yielding the result.

�

C Appendix: A derivation of the formula for the expected pro-

portion, and difference in proportions, for k > 1

In this section, for k > 1, we obtain the expected proportion of 1s for k/1-streak successor trials, and

the expected difference in the proportion of 1s, between k/1-streak successor trials and k/0-streak

successor trials.
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Similar to what was done in the proof of the k = 1 case, representing the proportion in terms

of runs allows us to reduce the dimensionality of the problem by identifying the set of sequences

over which P̂1k(x) is constant. We begin with some basic definitions.

Given the sequence x = (x1, . . . , xn), recall that a run of 1s is a subsequence of consecutive

1s in x that is flanked on each side by a 0 or an endpoint.88 Define runs of 0s analogously to

runs of 1s. Let R1j(x) = r1j be the number of runs of 1s of exactly length j for j = 1, . . . , n1.

Let R0j(x) = r0j be defined similarly. Let S1j(x) = s1k be the number of runs of 1s of length j

or more, i.e. S1j(x) :=
∑n1

i=j R1j(x) for j = 1, . . . , n1, with S0j(x) = s0j defined similarly. Let

R1(x) = r1, be the number of runs of 1s, i.e. R1(x) = S11(x), and R0(x) = r0 be the number of

runs of 0s. Let R(x) = r be the total number of runs, i.e. R(x) := R1(x) + R0(x). Further, let

the k/1-streak frequency statistic F1k(x) = f1k be defined as the number of (overlapping) 1-streaks

of length k, i.e. F1k(x) :=
∑n1

j=k(j − k + 1)R1j(x), with F0k(x) = f0k defined analogously. Notice

that f1k = |I1k(x)| if ∃i > n − k with xi = 0, and f1k = |I1k| + 1 otherwise. Also note that

n1 = f11 =
∑n1

j=1 jr1j and n0 = f01 =
∑n0

j=1 jr0j .

To illustrate the definitions, consider the sequence of 10 trials 1101100111. The number of 1s is

given by n1 = 7. For j = 1, . . . , n1, the number of runs of 1s of exactly length j is given by r11 = 0,

r12 = 2, r13 = 1 and r1j = 0 for j ≥ 4; the number of runs of 1s of length j or more is given by

s11 = 3, s12 = 3, s13 = 1 and s1j = 0 for j ≥ 4. The total number of runs is r = 5. The k/1-streak

frequency statistic satisfies f11 = 7, f12 = 4, f13 = 1, and f1j = 0 for j ≥ 4. Finally, the proportion

satisfies p11 = 4/6, p12 = 1/3, with p1j undefined for j ≥ 3.

C.1 Expected Proportion (k > 1)

In this section we obtain the expected value of the proportion of 1s on k/1-streak successor trials

k > 1. To shorten the expressions in this section we assume that our sample space of sequences are

those in which P̂1k(x) is well defined, and we define P1k = P̂1k(x) as the induced random variable,

with support {p1k ∈ [0, 1] : p1k = P̂1k(x) for x ∈ {0, 1}n, I1k(x) 6= ∅}.
Our first step is to obtain an explicit formula for E[P1k|N1 = n1]. That E[P1k|N1 = n1] was

shown to be equal to (n1 − 1)/(n − 1) for k = 1 in Lemma 2 suggests the possibility that, in the

spirit of sampling-without-replacement, the expression (n1 − k)/(n − k) determines the expected

proportions for k > 1. That this formula does not hold in the case of k > 1 can easily be confirmed

by setting k = 2, n1 = 4, and n = 5.89 As in Section 2, it is not possible to determine P̂1k(x)

directly by computing its value for each sequence, as the number of admissible sequences is typically

88More precisely, it is a subsequence with successive indices j = i1 + 1, i1 + 2, . . . , i1 +k, with i1 >= 0 and i1 +k <= n,
in which xj = 1 for all j, and (1) either i1 = 0 or if i1 > 0 then xi1 = 0 , and (2) either i1 + k = n or if i1 + k < n
then i1 + k + 1 = 0

89If k = 2 then for n1 = 4 and n = 5, E[P1k|N1 = n1] = (0/1+1/1+1/2+2/2+2/3)/5 = 19/30 < 2/3 = (n1−k)/(n−k)
(see Section A.3 for intuition).
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too large.

We observe that the number of k/1-streak successors satisfies |I1k(x)| = F1k(x−n), i.e. it is

equal to the frequency of length k 1-streaks in the sub-sequence that does not include the final term.

Further we note that F1k+1(x) is the number of length k/1-streak successors that are themselves

equal to 1. Therefore the proportion P̂1k(x) can be represented as

P̂1k(x) =
F1k+1(x)

F1k(x−n)
if F1k(x−n) > 0 (16)

where P̂1k(x) is undefined otherwise. Further, because F1k(x−n) = F1k(x)−
∏n
i=n−k+1 xi, it follows

that

P̂1k(x) =
F1k+1(x)

F1k(x)−
∏n
i=n−k+1 xi

if F1k(x) >
∏n
i=n−k+1 xi

A classic reference for non-parametric statistical theory Gibbons and Chakraborti (2010) con-

tains a theorem (Theorem 3.3.2, p.87) for the joint distribution (R11, . . . , R1n1), conditional on N1

and R1, from which, in principle, E[P1k(x)|N1 = n1] can be calculated directly.90 Unfortunately,

the calculation does not appear to be computationally feasible for the sequence lengths of interest

here. As a result, we instead follow an approach similar to that in the proof of Lemma 2, making

the key observation that for all sequences with R1j(x) = r1j for j = 1, . . . , k− 1 and S1k(x) = s1k,

the proportion P̂1k(x) is (i) constant and equal to (f1k− s1k)/f1k for those sequences that have a 0

in one of the final k positions, and (ii) constant and equal to (f1k−s1k)/(f1k−1) for those sequences

that have a 1 in each of the final k positions. This is true because f1k+1 = f1k − s1k, and f1k =

n1−
∑k−1

j=1 jr1j−(k−1)s1k. Notice that for each case P̂1k(x) = G(R11(x), . . . , R1k−1(x), S1k(x)) for

some G, and therefore, by finding the joint distribution of (R11, . . . , R1k−1, S1k), conditional on N1,

it is possible to obtain E[P1k|N1 = n1]. With
(
n
n1

)
sequences x ∈ {0, 1}n that satisfy N1(x) = n1,

the joint distribution of (R11(x), . . . R1k−1(x), S1k(x)) is fully characterized by the number of dis-

tinguishable sequences x that satisfy R11(x) = r11, . . . R1k−1(x) = r1k−1, and S1k(x) = s1k, which

we obtain in the following lemma. In the lemma’s proof we provide a combinatorial argument that

we apply repeatedly in the proof of Theorem 6.

Lemma 5 The number of distinguishable sequences x ∈ {0, 1}n, n ≥ 1, with n1 ≤ n 1s, r1j ≥ 0

90The theorem in Gibbons and Chakraborti (2010) is not quite correct; the distribution presented in the theorem is
for (R11, . . . , R1n1) conditional only on N1 (unconditional on R1). For the distribution conditional on R1 and N1 it
is straightforward to show that

P(R11 = r11, . . . , R1n1 = r1n1 |N1 = n1, R1 = r1) =
r1!(

n1−1
r1−1

)∏n1
j=1 r1j !
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runs of 1s of exactly length j for j = 1, . . . k−1, and s1k ≥ 0 runs of 1s of length k or more satisfies:

C1k =
r1!

s1k!
∏k−1
j=1 r1j !

(
n0 + 1

r1

)(
f1k − 1

s1k − 1

)

where r1 =
∑k−1

j=1 r1j + s1k and f1k = n1 −
∑k−1

j=1 jr1j − (k− 1)s1k. Further, let
(
n
k

)
= n!/k!(n− k)!

if n ≥ k ≥ 0 and
(
n
k

)
= 0 otherwise, except for the special case

(−1
−1

)
= 1.91

Proof:

Any sequence with r11, . . . , r1k−1 runs of 1s of fixed length, and s1k runs of 1s of length k or

more can be constructed in three steps by (1) selecting a distinguishable permutation of the r1 =∑k−1
j=1 r1j +s1k cells that correspond to the r1 runs, which can be done in r1!/(s1k!

∏k−1
j=1 r1j) unique

ways, as for each j, the r1j ! permutations of the r1j identical cells across their fixed positions do

not generate distinguishable sequences (nor for the s1k identical cells), (2) placing the r1 1s into the

available positions to the left or the right of a 0 among the n0 0s; with n0 + 1 available positions,

there are
(
n0+1
r1

)
ways to do this, (3) filling the “empty” run cells, by first filling the r1j run cells

of length j with exactly jr1j 1s for j < k, and then by filling the s1k indistinguishable (ordered)

run cells of length k or more by (a) adding exactly k− 1 1s to each cell, (b) with the remaining f1k

1s (the number of 1s that succeed some streak of k − 1 or more 1s), taking an ordered partition of

these 1s into a separate set of s1k cells, which can be performed in
(
f1k−1
s1k−1

)
ways by inserting s1k−1

dividers into the f1k − 1 available positions between 1s, and finally (c) adjoining each cell of the

separate set of (nonempty and ordered) cells with its corresponding run cell (with exactly k − 1

1s), which guarantees that each s1k cell has at least k 1s.

�

Below we state the main theorem, which provides the formula for the expected value of P̂1k(x),

conditional on the number of 1s:

Theorem 6 For n, n1 and k such that 1 < k ≤ n1 ≤ n

E[P1k|N1 = n1] =
1(

n
n1

)
− U1k

∑
r11,...,r1k−1,s1k∑k−1
j=1 jr1j<n1−k

s1k≥1

C1k

[
s1k

n0 + 1

(
f1k − s1k

f1k − 1

)
+
n0 + 1− s1k

n0 + 1

(
f1k − s1k

f1k

)]

where f1k and C1k depend on n0, n1, r11, . . . , r1k−1, and s1k, and are defined as in Lemma 5.92 U1k

91Note with this definition of
(
n
k

)
, we have C1k = 0 if r1 > n0 + 1, or

∑k−1
j=1 jr1j + ks1k > n1 (the latter occurs if

s1k > b
n1−

∑
j jr1j

k
c, or r1` > b

n1−
∑

j 6=` jr1j−ks1k
`

c for some ` = 1, . . . , k − 1, where b·c is the floor function). Further,
because r1 > n1 implies that latter condition, it also implies C1k = 0.
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is defined as the number of sequences in which P̂1k(x) is undefined, and satisfies

U1k =

min{n1,n0+1}∑
r1=1

(
n0 + 1

r1

) bn1−r1
k−1

c∑
`=0

(−1)`
(
r1

`

)(
n1 − 1− `(k − 1)

r1 − 1

)

+ δn1k +

min{n1−k+1,n0+1}∑
r1=2

(
n0

r1 − 1

) bn1−k−r1+1
k−1

c∑
`=0

(−1)`
(
r1 − 1

`

)(
n1 − k − 1− `(k − 1)

r1 − 2

)

Proof:

For all sequences x ∈ {0, 1}n with n1 1s, we have three possible cases for how P̂1k(x) is determined

by r1j j < k and s1k: (1) P̂1k(x) is not defined, which arises if (i) f1k = 0 or (ii) f1k = 1

and
∑n

i=n−k+1 xi = k, (2) P̂1k(x) is equal to (f1k − s1k)/(f1k − 1), which arises if f1k ≥ 2 and∑n
i=n−k+1 xi = k or (3) P̂1k(x) is equal to (f1k−s1k)/f1k, which arises if f1k ≥ 1 and

∑n
i=n−k+1 xi <

k . In case 1i, with f1k = 0, the number of terms, which we denote U1
1k, satisfies:

U1
1k :=

∑
r11,...,r1k−1,s1k∑k−1

j=1 jr1j=n1

s1k=0

C1k

=
∑

r11,...,r1k−1∑k−1
j=1 jr1j=n1

r1!∏k−1
j=1 r1j !

(
n0 + 1

r1

)

=

min{n1,n0+1}∑
r1=1

(
n0 + 1

r1

) ∑
r11,...,r1k−1∑k−1
j=1 jr1j=n1∑k−1
j=1 r1j=r1

r1!∏k−1
j=1 r1j !

=

min{n1,n0+1}∑
r1=1

(
n0 + 1

r1

) bn1−r1
k−1

c∑
`=0

(−1)`
(
r1

`

)(
n1 − 1− `(k − 1)

r1 − 1

)

where the last line follows by first noting that the inner sum of the third line is the number of

compositions (ordered partitions) of n1 − k into r1 − 1 parts, which has generating function (x +

x2+· · ·xk−1)r1 (Riordan 1958, p. 124). Therefore, the inner sum can be generated as the coefficient

on xn1 in the multinomial expansion of (x+x2 + · · ·xk−1)r1 . The inner sum of binomial coefficients

in the fourth line corresponds to the coefficient on xn1 in the binomial expansion of an equivalent

representation of the generating function xr1(1 − xk−1)r1/(1 − x)r1 = (x + x2 + · · ·xk−1)r1 . The

92Note that
∑k−1
j=1 jr1j < n1 − k implies f1k > s1k ≥ 1, which guarantees f1k ≥ 2.
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coefficient in the binomial expansion must agree with the coefficient in the multinomial expansion.93

In case 1ii, with f1k = 1 and
∑n

i=n−k+1 xi = k, in which case P̂1k(x) is also undefined, all

sequences that satisfy this criteria can be constructed by first forming a distinguishable permutation

of the r1 − 1 runs of 1s not including the final run of k 1s, which can be done in r1!/(
∏k−1
j=1 r1j !)

ways, and second placing these runs to the left or the right of the available n0 0s, not including the

right end point, which can be done in
(
n0

r1−1

)
ways with the n0 positions. Summing over all possible

runs, the number of terms U2
1k satisfies:

U2
1k :=

∑
r11,...,r1k−1,s1k∑k−1
j=1 jr1j=n1−k

s1k=1

s1k

n0 + 1
C1k

=
∑

r11,...,r1k−1,s1k∑k−1
j=1 jr1j=n1−k

s1k=1

(r1 − 1)!∏k−1
j=1 r1j !

(
n0

r1 − 1

)

= δn1k +

min{n1−k+1,n0+1}∑
r1=2

(
n0

r1 − 1

) ∑
r11,...,r1k−1∑k−1
j=1 jr1j=n1−k∑k−1
j=1 r1j=r1−1

(r1 − 1)!∏k−1
j=1 r1j !

= δn1k +

min{n1−k+1,n0+1}∑
r1=2

(
n0

r1 − 1

) bn1−k−r1+1
k−1

c∑
`=0

(−1)`
(
r1 − 1

`

)(
n1 − k − 1− `(k − 1)

r1 − 2

)

and we assume that
∑n

j=m aj = 0 if m > n. The Kronecker delta in the third line appears because

when s1k = 1 and
∑k−1

j=1 jr1j = n1 − k, there is only one sequence for which P̂1k(x) is undefined.

The last line follows because the inner sum of the third line can be generated as the coefficient

on xn1−k in the multinomial expansion of (x + x2 + · · ·xk−1)r1−1, which, as in determining U1
1k,

corresponds to the coefficient on the binomial expansion. Taking case 1i and 2ii together, the total

number of sequences in which P̂1k(x) is undefined is equal to U1k = U1
1k + U2

1k

In case 2, in which P̂1k(x) is defined with
∑n

i=n−k+1 xi = k and f1k ≥ 2, it must be the case

that
∑k−1

j=1 jr1j < n1 − k, and all sequences that satisfy this criteria can be constructed in three

steps analogous to those used in Lemma 5 by (1) selecting a distinguishable permutation of the

r1 − 1 remaining runs, (2) placing the r1 − 1 1s into the n0 available positions to the left or the

93 The binomial expansion is given by:

xr1
(1− xk−1)r1

(1− x)r1
= xr1

[
r1∑
t1=0

(
r1

t1

)
(−1)t1xt1(k−1)

]
·

[
+∞∑
t2=0

(
r1 − 1 + t2
r1 − 1

)
xt2

]

therefore the coefficient on xn1 is
∑

(−1)t1
(
r1
t1

)(
r1−1+t2
r1−1

)
where the sum is taken over all t1, t2 such that r1 + t1(k −

1) + t2 = n1.
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right of a 0, (3) filling the “empty” run cells. For a given (r11, . . . , r1k−1, s1k) the total number of

sequences satisfying this criteria is:

(r1 − 1)!

(s1k − 1)!
∏k−1
j=1 r1j !

(
n0

r1 − 1

)(
f1k − 1

s1k − 1

)
=

s1k

n0 + 1
C1k

In case 3, in which P̂1k(x) is defined with
∑n

i=n−k+1 xi < k and f1k ≥ 1, it must be the case

that
∑k−1

j=1 jr1j ≤ n1 − k, as before all sequences that satisfy this criteria can be constructed in

three steps as before, and we consider two subcases, sequences that terminate in a 1 (i.e. a run of

1s of length less than k) and sequences that terminate in a 0 (i.e. a run of 0s). For those sequence

that terminate in a 1, for a given (r11, . . . , r1k−1, s1k) the total number of sequences satisfying this

criteria is: (
r1!

s1k!
∏k−1
j=1 r1j !

− (r1 − 1)!

(s1k − 1)!
∏k−1
j=1 r1j !

)(
n0

r1 − 1

)(
f1k − 1

s1k − 1

)
=
r1 − s1k

n0 + 1
C1k

with (r1 − 1)!/((s1k − 1)!
∏k−1
j=1 r1j !) being the number of sequences that terminate in a run of 1s

of length k or more. For those sequences that terminate in a 0, for a given (r11, . . . , r1k−1, s1k) the

total number of sequences satisfying this criteria is:

r1!

s1k!
∏k−1
j=1 r1j !

(
n0

r1

)(
f1k − 1

s1k − 1

)
=
n0 + 1− r1

n0 + 1
C1k

therefore, the sum of P̂1k(x) across all sequences for which it is defined satisfies:

E[P1k|N1 = n1]

[(
n

n1

)
− U1k

]
=

∑
r11,...,r1k−1,s1k∑k−1
j=1 jr1j<n1−k

s1k≥1

C1k
s1k

n0 + 1

f1k − s1k

f1k − 1

+
∑

r11,...,r1k−1,s1k∑k−1
j=1 jr1j≤n1−k

s1k≥1

C1k
r1 − s1k

n0 + 1

f1k − s1k

f1k

+
∑

r11,...,r1k−1,s1k∑k−1
j=1 jr1j≤n1−k

s1k≥1

C1k
n0 + 1− r1

n0 + 1

f1k − s1k

f1k

and this reduces to the formula in the theorem because the final two terms can be combined, and

then can be summed over only runs that satisfy
∑k−1

j=1 jr1j < n1−k, and finally combined with the

first term (because f1k − s1k = 0 if
∑k−1

j=1 jr1j = n1 − k).94

94While the first term has the closed form representation
∑
C1k

s1k
n0+1

f1k−s1k
f1k−1

=
(
n1−1
k

)
/
(
n−1
k

)
, this does not appear to
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C.2 Expected Difference in Proportions

The exact formula for the expected difference between the proportion of 1s for k/1-streak successor

trials and the proportion of 1s for k/0-streak successor trials can be obtained with an approach

similar to that of the previous section. The difference satisfies D̂k(x) := P̂1k − P̂0k(x), and there

are three categories of sequences for which Dk is defined: (1) a sequence that ends in a run of 0s

of length k or more, with f0k ≥ 2 and f1k ≥ 1, and the difference equal to D1
k = (f1k − s1k)/f1k −

(s0k − 1)/(f0k − 1), (2) a sequence that ends in a run of 1s of length k or more, with f0k ≥ 1 and

f1k ≥ 2, and the difference equal to D2
k := (f1k − s1k)/(f1k − 1)− s0k/f0k, (3) a sequence that ends

in a run of 0s of length k − 1, or less, or a run of 1s of length k − 1, or less, with f0k ≥ 1 and

f1k ≥ 1, and the difference equal to D3
k := (f1k − s1k)/f1k − s0k/f0k. For all other sequences the

difference is undefined.

Theorem 7 For n, n1, n0 and k such that n0 + n1 = n, and 1 < k ≤ n0, n1 ≤ n, the expected

difference in the proportion of 1s on k/1-streak successor trials and the proportion of 1s on k/0-

streak successor trials, Dk := P1k − (1− P0k), satisfies

E[Dk | N1 = n1] =
1(

n
n1

)
− Uk


∑

r01,...,r0k−1,s0k
r11,...,r1k−1,s1k∑k−1

j=1 jr0j<n0−k,s0k≥1∑k−1
j=1 jr1j≤n1−k,s1k≥1

r0≥r1

Ck

[
s0k

r0
D1
k +

r0 − s0k

r0
D3
k

]

+
∑

r01,...,r0k−1,s0k
r11,...,r1k−1,s1k∑k−1

j=1 jr0j≤n0−k,s0k≥1∑k−1
j=1 jr1j<n1−k,s1k≥1

r1≥r0

Ck

[
s1k

r1
D2
k +

r1 − s1k

r1
D3
k

]


be the case for the other terms. Even if the other terms have a closed form, E[P1k|N1 = n1] cannot, as the term U1k

does not allow one.
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where D1
k = (f1k − s1k)/f1k − (s0k − 1)/(f0k − 1), D2

k := (f1k − s1k)/(f1k − 1) − s0k/f0k, D
3
k :=

(f1k − s1k)/f1k − s0k/f0k, and

Ck :=
r0!

s0k!
∏k−1
i=1 r0i!

r1!

s1k!
∏k−1
i=1 r1i!

(
f0k − 1

s0k − 1

)(
f1k − 1

s1k − 1

)
and Uk (see expression ∗ on page 24) is the number of sequences in which there are either no

k/1-streak successors, or no k/0-streak successors.

Proof:

Note that for the case in which |r1− r0| = 1, Ck is the number of sequences with N1 = n1 in which

the number of runs of 0s, and runs of 1s satisfy run profile (r01, . . . , r0k−1, s0k; r11, . . . , r1k−1, s1k);

for the cases in which r1 = r0, Ck is equal to half the number of these sequences (because each

sequence can end with a run of 1s, or a run of 0s). The combinatorial proof of this formula, which

we omit, is similar to the one used in the proof of Lemma 5.

The sum total of the differences, across all sequences for which the difference is defined and

N1 = n1 is

E[Dk | N1 = n1] ·
[(

n

n1

)
− Uk

]
=

∑
r01,...,r0k−1,s0k
r11,...,r1k−1,s1k∑k−1

j=1 jr0j<n0−k,s0k≥1∑k−1
j=1 jr1j≤n1−k,s1k≥1

r0≥r1

s0k

r0
CkD

1
k +

∑
r01,...,r0k−1,s0k
r11,...,r1k−1,s1k∑k−1

j=1 jr0j≤n0−k,s0k≥1∑k−1
j=1 jr1j<n1−k,s1k≥1

r1≥r0

s1k

r1
CkD

2
k

+
∑

r01,...,r0k−1,s0k
r11,...,r1k−1,s1k∑k−1

j=1 jr0j≤n0−k,s0k≥1∑k−1
j=1 jr1j≤n1−k,s1k≥1

r0≥r1

r0 − s0k

r0
CkD

3
k +

∑
r01,...,r0k−1,s0k
r11,...,r1k−1,s1k∑k−1

j=1 jr0j≤n0−k,s0k≥1∑k−1
j=1 jr1j≤n1−k,s1k≥1

r1≥r0

r1 − s1k

r1
CkD

3
k

where the first sum relates to those sequences that end in a run of 0s of length k or more (whence

r0 ≥ r1, the multiplier s0k/r0 and
∑k−1

j=1 jr0j < n0−k);95 the second sum relates to those sequences

that end in a run of 1s of length k or more (whence r1 ≥ r0, the multiplier s1k/r1 and
∑k−1

j=1 jr1j <

n1−k); the third sum relates to those sequences that end on a run of 0s of length k-1 or less (whence

r0 ≥ r1, the multiplier (r0 − s0k)/r0) and
∑k−1

j=1 jr0j < n0 − k);96 and the fourth sum relates to

those sequences that end on a run of 1s of length k − 1 or less (whence r1 ≥ r0, the multiplier

(r1 − s1k)/r1) and
∑k−1

j=1 jr1j < n1 − k). These four terms can be combined into the following two

95Note
∑k−1
j=1 jr0j < n0 − k ⇐⇒ f0k ≥ 2.

96The multiplier (r0 − s0k)/r0 arises because the number of distinguishable permutations of the 0 runs that end with
a run of length k − 1 or less is equal to the total number of distinguishable permutations of the 0 runs minus the
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terms:

E[Dk | N1 = n1] ·
[(

n

n1

)
− Uk

]
=

∑
r01,...,r0k−1,s0k
r11,...,r1k−1,s1k∑k−1

j=1 jr0j<n0−k,s0k≥1∑k−1
j=1 jr1j≤n1−k,s1k≥1

r0≥r1

Ck

[
s0k

r0
D1
k +

r0 − s0k

r0
D3
k

]

+
∑

r01,...,r0k−1,s0k
r11,...,r1k−1,s1k∑k−1

j=1 jr0j≤n0−k,s0k≥1∑k−1
j=1 jr1j<n1−k,s1k≥1

r1≥r0

Ck

[
s1k

r1
D2
k +

r1 − s1k

r1
D3
k

]

which can readily be implemented numerically for the finite sequences considered here.97 The total

number of sequences for which the difference is undefined, Uk, can be counted in a way that is

analogous to what was done in the proof of Theorem 6, by using an application of the inclusion-

exclusion principle:

Uk :=
∑

r11,...,r1k−1,s1k∑k−1
j=1 jr1j=n1

s1k=0

C1k +
∑

r11,...,r1k−1,s1k∑k−1
j=1 jr1j=n1−k

s1k=1

s1k

n0 + 1
C1k +

∑
r01,...,r0k−1,s0k∑k−1

j=1 jr0j=n1

s0k=0

C0k +
∑

r01,...,r0k−1,s0k∑k−1
j=1 jr0j=n1−k

s0k=1

s0k

n1 + 1
C0k

−
∑

r01,...,r0k−1,s0k
r11,...,r1k−1,s1k∑k−1
j=1 jr0j=n0,s0k=0∑k−1
j=1 jr1j=n1,s1k=0

|r0−r1|≤1

(
2 · 1{r1=r0} + 1{|r1−r0|=1}

)
Ck

−
∑

r01,...,r0k−1,s0k
r11,...,r1k−1,s1k∑k−1

j=1 jr0j=n0−k,s0k=1∑k−1
j=1 jr1j=n1,s1k=0

r0≥r1

s0k

r0
Ck −

∑
r01,...,r0k−1,s0k
r11,...,r1k−1,s1k∑k−1
j=1 jr0j=n0,s0k=0∑k−1

j=1 jr1j=n1−k,s1k=1

r1≥r0

s1k

r1
Ck

where C0k is a function of r01, . . . , r0k−1, s0k;n0, n1 and defined analogously to C1k. We can simplify

number of distinguishable permutations of the 0 runs that end in a run of length k or more, i.e.

r0!

s0k!
∏k−1
i=1 r0i!

− (r0 − 1)!

(s0k − 1)!
∏k−1
i=1 r0i!

=
r0 − s0k

r0

r0!

s0k!
∏k−1
i=1 r0i!

97In the numerical implementation one can consider three sums r0 = r1 + 1, r1 = r0 + 1, and for the case of r1 = r0

the sums can be combined.
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the above expression by first noting that the third term, which corresponds to those sequences in

which there are no k/1-streak successors and no k/0-streak successors, can be reduced to a sum of

binomial coefficients:∑
r01,...,r0k−1,s0k
r11,...,r1k−1,s1k∑k−1
j=1 jr0j=n0,s0k=0∑k−1
j=1 jr1j=n1,s1k=0

|r0−r1|≤1

(
2 · 1{r1=r0} + 1{|r1−r0|=1}

)
Ck

=
∑

r01,...,r0k−1,s0k
r11,...,r1k−1,s1k∑k−1
j=1 jr0j=n0,s0k=0∑k−1
j=1 jr1j=n1,s1k=0

|r0−r1|≤1

(
2 · 1{r1=r0} + 1{|r1−r0|=1}

) r0!

s0k!
∏k−1
i=1 r0i!

r1!

s1k!
∏k−1
i=1 r1i!

=
∑

r01,...,r0k−1
r11,...,r1k−1∑k−1
j=1 jr0j=n0∑k−1
j=1 jr1j=n1

|r0−r1|≤1

(
2 · 1{r1=r0} + 1{|r1−r0|=1}

) r0!∏k−1
i=1 r0i!

r1!∏k−1
i=1 r1i!

=

min{n1,n0+1}∑
r1=1

min{r1+1,n0}∑
r0=max{r1−1,1}

(
2 · 1{r1=r0} + 1{|r1−r0|=1}

) ∑
r01,...,r0k−1
r11,...,r1k−1∑k−1
j=1 jr0j=n0∑k−1
j=1 jr1j=n1∑k−1
j=1 r0j=r0∑k−1
j=1 r1j=r1

r0!∏k−1
i=1 r0i!

r1!∏k−1
i=1 r1i!

=

min{n1,n0+1}∑
r1=1

min{r1+1,n0}∑
r0=max{r1−1,1}

(
2 · 1{r1=r0} + 1{|r1−r0|=1}

) ∑
r01,...,r0k−1∑k−1
j=1 jr0j=n0∑k−1
j=1 r0j=r0

r0!∏k−1
i=1 r0i!

∑
r11,...,r1k−1∑k−1
j=1 jr1j=n1∑k−1
j=1 r1j=r1

r1!∏k−1
i=1 r1i!

=

min{n1,n0+1}∑
r1=1

min{r1+1,n0}∑
r0=max{r1−1,1}

(
2 · 1{r1=r0} + 1{|r1−r0|=1}

) bn0−r0
k−1

c∑
`0=0

(−1)`0
(
r0

`0

)(
n0 − 1− `0(k − 1)

r0 − 1

)

×
bn1−r1
k−1

c∑
`1=0

(−1)`1
(
r1

`1

)(
n1 − 1− `1(k − 1)

r1 − 1

)

For the final two negative terms in the formula for Uk, we can apply a similar argument in order to

represent them as a sum of binomial coefficients. For the first four positive terms we can use the

argument provided in Theorem 6 to represent them as sums of binomial coefficients, and therefore
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Uk reduces to a sum of binomial coefficients:

Uk =

min{n1,n0+1}∑
r1=1

(
n0 + 1

r1

) bn1−r1
k−1

c∑
`=0

(−1)`
(
r1

`

)(
n1 − 1− `(k − 1)

r1 − 1

)
(*)

+ δn1k +

min{n1−k+1,n0+1}∑
r1=2

(
n0

r1 − 1

) bn1−k−r1+1
k−1

c∑
`=0

(−1)`
(
r1 − 1

`

)(
n1 − k − 1− `(k − 1)

r1 − 2

)

+

min{n0,n1+1}∑
r0=1

(
n1 + 1

r0

) bn0−r0
k−1

c∑
`=0

(−1)`
(
r0

`

)(
n0 − 1− `(k − 1)

r0 − 1

)

+ δn0k +

min{n0−k+1,n1+1}∑
r0=2

(
n1

r0 − 1

) bn0−k−r0+1
k−1

c∑
`=0

(−1)`
(
r0 − 1

`

)(
n0 − k − 1− `(k − 1)

r0 − 2

)

−

min{n1,n0+1}∑
r1=1

min{r1+1,n0}∑
r0=max{r1−1,1}

(
2 · 1{r1=r0} + 1{|r1−r0|=1}

)
×

×
bn0−r0
k−1

c∑
`0=0

(−1)`0
(
r0

`0

)(
n0 − 1− `0(k − 1)

r0 − 1

) bn1−r1
k−1

c∑
`1=0

(−1)`1
(
r1

`1

)(
n1 − 1− `1(k − 1)

r1 − 1

)
−

δn0k +

min{n0−k+1,n1+1}∑
r0=2

min{r0,n1}∑
r1=max{r0−1,1}

bn0−k−r0+1
k−1

c∑
`0=0

(−1)`0
(
r0 − 1

`0

)(
n0 − k − 1− `0(k − 1)

r0 − 2

)
×

×
bn1−r1
k−1

c∑
`1=0

(−1)`1
(
r1

`1

)(
n1 − 1− `1(k − 1)

r1 − 1

)
−

δn1k +

min{n1−k+1,n0+1}∑
r1=2

min{r1,n0}∑
r0=max{r1−1,1}

bn1−k−r1+1
k−1

c∑
`1=0

(−1)`1
(
r1 − 1

`1

)(
n1 − k − 1− `1(k − 1)

r1 − 2

)
×

×
bn0−r0
k−1

c∑
`0=0

(−1)`0
(
r0

`0

)(
n0 − 1− `0(k − 1)

r0 − 1

)

�
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D Appendix: The relationship with known biases and paradoxes

D.1 Sampling-without-replacement and the bias for streaks of length k = 1.

A brief inspection of Table 1 in Section 1 reveals how the dependence between the first n−1 flips in

the sequence arises. In particular, when the coin is flipped three times, the number of Hs in the first

2 flips determines the number of observations of flips that immediately follow an H. Because TT

must be excluded, the first two flips will consist of one of three equally likely sequences: HT, TH or

HH. For the two sequences with a single H—HT and TH—if a researcher were to find an H within

the first two flips of the sequence and then select the adjacent flip for inspection, the probability

of heads on the adjacent flip would be 0, which is strictly less than the overall proportion of heads

in the sequence. This can be thought of as a sampling-without-replacement effect. More generally,

across the three sequences, HT, TH, and HH, the expected probability of the adjacent flip being a

heads is (0 + 0 + 1)/3 = 1/3. This probability reveals the (negative) sequential dependence that

exists between the first two flips of the sequence. Further, the same negative dependence holds

for any two flips in the first n − 1 flips of a sequence of length n, regardless of their positions.

Thus, when k = 1 it is neither time’s arrow nor the arrangement of flips within the sequence that

determines the bias.

This same sampling-without-replacement feature also underlies a classic form of selection bias

known as Berkson’s bias (aka Berkson’s paradox). Berkson (1946) presented a hypothetical study of

the relationship between two diseases that, while not associated in the general population, become

negatively associated in the population of hospitalized patients. The cause of the bias is subtle:

patients are hospitalized only if they have at least one of the two particular diseases. To illustrate,

assume that someone from the general population has a given disease (Y=“Yes”) or does not

(N=“No”), with equal chances. Just as in the coin flip example, anyone with neither disease (NN)

is excluded, while a patient within the hospital population must have one of the three equally likely

profiles: YN, NY, or YY. Thus, just as with the coin flips, the probability of a patient having

another disease, given that he already has one disease, is 1/3.

The same sampling-without replacement feature again arises in several classic conditional prob-

ability paradoxes. For example, in the Monty Hall problem the game show host inspects two

doors, which can together be represented as one of three equally likely sequences GC, CG, or GG

(G=“Goat”, C=“Car”), then opens one of the G doors from the realized sequence. Thus, the host

effectively samples G without replacement (Nalebuff 1987; Selvin 1975; Vos Savant 1990).98

Sampling-without-replacement also underlies a well-known finite sample bias that arises in stan-

98The same structure also appears in what is known as the boy-or-girl paradox (Miller and Sanjurjo 2015a). A slight
modification of the Monty-Hall problem makes it identical to the coin flip bias presented in Table 1 (see Miller and
Sanjurjo [2015a]).
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dard estimates of autocorrelation in time series data (Shaman and Stine 1988; Yule 1926). This

interpretation of finite sample bias, which does not appear to have been previously noted, allows

one to see how this bias is closely related to those above. To illustrate, let x be a randomly

generated sequence consisting of n trials, each of which is an i.i.d. draw from some continuous

distribution with finite mean and variance. For a researcher to compute the autocorrelation she

must first determine its sample mean x̄ and variance σ̂(x), then calculate the autocorrelation

ρ̂t,t+1(x) = ˆcovt,t+1(x)/σ̂(x), where ˆcovt,t+1(x) is the autocovariance.99 The total sum of values

nx̄ in a sequence serves as the analogue to the number of Hs (or Gs/Ys) in a sequence in the

examples given above. Given nx̄, the autocovariance can be represented as the expected outcome

from a procedure in which one draws (at random) one of the n trial outcomes xi, and then takes

the product of its difference from the mean (xi − x̄), and another trial outcome j’s difference from

the mean. Because the outcome’s value xi is essentially drawn from nx̄, without replacement,

the available sum total (nx̄ − xi) is averaged across the remaining n − 1 outcomes, which im-

plies that the expected value of another outcome j’s (j 6= i) difference from the mean is given by

E[xj |xi, x̄] − x̄ = (nx̄ − xi)/(n − 1) − x̄ = (x̄ − xi)/(n − 1). Therefore, given xi − x̄, the expected

value of the product (xi − x̄)(xj − x̄) must equal (xi − x̄)(x̄ − xi)/(n − 1) = −(xi − x̄)2/(n − 1),

which is independent of j. Because xi and j were selected at random, this implies that the ex-

pected autocorrelation, given x̄ and σ̂(x), is equal to −1/(n − 1) for all x̄ and σ̂(x). This result

accords with known results on the O(1/n) bias in discrete-time autoregressive processes (Shaman

and Stine 1988), and happens to be identical to the result in Theorem 4 for the expected difference

in proportions (see Appendix B).100,101

While drawing connections between these biases is useful for understanding their common un-

derlying source, it also yields further insights. In particular we find that the comparison with the

biases here leads to a natural generalization of Berkson’s bias that provides conditions under which

one should expect the bias to be empirically relevant. Suppose that for disease i ∈ {1, 2, . . . , n},
an individual either has it (xi = 1), or does not (xi = 0), where xi are i.i.d with probability of

99The autocovariance is given by ˆcovt,t+1(x) := 1
n−1

∑n−1
i=1 (xi − x̄)(xi+1 − x̄).

100In Appendix D.3, we also find that the least squares estimators for the linear probability model for P(Xi =
1|
∏i−1
j=i−kXj = 1), xi = β0 + β1

∏i−1
j=i−k xj , satisfy P̂1k(x) = β̂0(x) + β̂1(x), and in the special case of k = 1,

β̂1(x) = D̂1(x).
101In a comment on this paper, Rinott and Bar-Hillel (2015) assert that the work of Bai (1975) (and references therein)

demonstrate that the bias in the proportion of success on trials that immediately follow a streak of k or more
successes follows directly from known results on the finite sample bias of Maximum Likelihood estimators of transition
probabilities in Markov chains, as independent Bernoulli trials can be represented by a Markov chain with each state
defined by the sequence of outcomes in the previous k trials. While it is true that the MLE of the corresponding
transition matrix is biased, and correct to note the relationship in this sense, the cited theorems do not indicate the
direction of the bias, and in any event do not directly apply in the present case because they require that transition
probabilities in different rows of the transition matrix not be functions of each other, and not be equal to zero, a
requirement which does not hold in the corresponding transition matrix. Instead, an unbiased estimator of each
transition probability will exist, and will be a function of the overall proportion.
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success p. The patient is admitted to the hospital if he or she has at least one disease, i.e. if

N1(x) ≥ 1. This selection criterion for sequences is nearly identical to that used when calculat-

ing the proportion of successes after success, where it is required that N1(x1, . . . , xn−1) ≥ 1. For

both criteria, the outcomes xi and xj become negatively associated for i 6= j; in Berkson’s bias

the negative association is for all i, while in the case of the bias presented in Section 2.1 it was

shown that the negative association is for i, j ≤ n− 1. Because the bias in the proportion becomes

negligible as n gets arbitrarily large, Berkson’s bias must also become negligible as the number of

potential diseases increases, just as with the finite sample bias in autocorrelation. This asymptotic

unbiasedness can explain the elusiveness of evidence to date in support of the empirical relevance

of Berkson’s bias, and why when evidence has been discovered, the bias has been found to be small

in magnitude (Roberts et al. 1978; Sackett 1979).

D.2 Pattern overlap and the bias for streaks of length k > 1.

In Figure 4 of Appendix A.3 we compare the magnitude of the bias in the (conditional) expected

proportion to the pure sampling-without-replacement bias, in a sequence of length n. As can be

seen, the magnitude of the bias in the expected proportion is nearly identical to that of sampling-

without-replacement for k = 1. However, for the bias in the expected proportion, the relatively

stronger sampling-without-replacement effect that operates within the first n − 1 terms of the

sequence is balanced by the absence of bias for the final term.102 On the other hand, for k >

1 the bias in the expected proportion is considerably stronger than the pure sampling-without-

replacement bias. One intuition for this is provided in the discussion of the updating factor in

Section 2.2. Here we discuss another intuition, which has to do with the overlapping nature of the

selection criterion when k > 1, which is related to what is known as the overlapping words paradox

(Guibas and Odlyzko 1981).

For simplicity, assume that a sequence is generated by n = 5 flips of a fair coin. For the simple

case in which streaks have length k = 1, the number of flips that immediately follow a heads is equal

to the number of instances of H in the first n− 1 = 4 flips. For any given number of Hs in the first

four flips, say three, if one were to sample an H from the sequence and then examine an adjacent

flip (within the first four flips), then because any H could have been sampled, across all sequences

with three Hs in the first four flips, any H appearing within the first four flips is given equal weight

regardless of the sequence in which it appears. The exchangeability of outcomes across equally

weighted sequences with an H in the sampled position (and three Hs overall) therefore implies

that for any other flip in the first four flips of the sequence, the probability of an H is equal to
3−1
4−1 = 2

3 , regardless of whether or not it is an adjacent flip. On the other hand, for the case of

streaks of length k = 2, the number of opportunities to observe a flip that immediately follows two

102The reason for this is provided in the alternative proof of Lemma 2 in Appendix B
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consecutive heads is equal to the number of instances of HH in the first 4 flips. Because the pattern

HH can overlap with itself, whereas the pattern H cannot, then for a sequence with three Hs, if

one were to sample an HH from the sequence and examine an adjacent flip within the first 4 flips,

it is not the case that any two of the Hs from the sequence can be sampled. For example, in the

sequence HHTH only the first two Hs can be sampled. Because the sequences HHTH and HTHH

each generate just one opportunity to sample, this implies that the single instance of HH within

each of these sequences is weighted twice as much as any of the two (overlapping) instances of HH

within the two sequences HHHT and THHH that each allow two opportunities to sample, despite

the fact that each sequence has three heads in the first four flips. This implies that, unlike in the

case of k = 1, when sampling an instance of HH from a sequence with three heads in the first four

flips, the remaining outcomes H and T are no longer exchangeable, as the arrangements HHTH

and HTHH, in which every adjacent flip within the first four flips is a tails, must be given greater

weight than the arrangements HHHT and THHH, in which half of the adjacent flips are heads.

This consequence of pattern overlap is closely related to the overlapping words paradox, which

states that for a sequence (string) of finite length n, the probability that a pattern (word) appears,

e.g. HTTHH , depends not only on the length of the pattern relative to the length of the sequence,

but also on how the pattern overlaps with itself (Guibas and Odlyzko 1981).103 For example, while

the expected number of (potentially overlapping) occurrences of a particular two flip pattern—

TT, HT,TH or HH—in a sequence of four flips of a fair coin does not depend on the pattern,

it’s probability of occurrence does.104 The pattern HH can overlap with itself, so can have up to

three occurrences in a single sequence (HHHH), whereas the pattern HT cannot overlap with itself,

so can have at most two occurrences (HTHT). Because the expected number of occurrences of

each pattern must be equal, this implies that the pattern HT is distributed across more sequences,

meaning that any given sequence is more likely to contain this pattern.105

D.3 More on the relationship to finite sample bias in a least-squares linear

probability model of time series data

For x ∈ {0, 1}n, xi = β0 + β1
∏i−1
j=i−k xj is the linear probability model for P(Xi = 1|

∏i−1
j=i−kXj =

1), which is the conditional probability of success on trial i, given that it immediately follows

k consecutive successes. The theorem below establishes that the least squares estimators satisfy

103For a simpler treatment which studies a manifestation of the paradox in the non-transitive game known as “Penney’s”
game, see Konold (1995) and Nickerson (2007).

104That all fixed length patterns are equally likely ex-ante is straightforward to demonstrate. For a given pat-
tern of heads and tails of length `, (y1, . . . , y`), the expected number of occurrences of this pattern satisfies
E[
∑n
i=` 1[(Xi−`+1,...,Xi)=(y1,...,y`)]] =

∑n
i=`E[1[(Xi−`+1,...,Xi)=(y1,...,y`)]] =

∑n
i=` 1/2` = (n− `+ 1)/2`.

105Note that the proportion of heads on flips that immediately follow two consecutive heads can be written as the
number of (overlapping) HHH instances in n flips, divided by the number of (overlapping) HH instances in the first
n− 1 flips (see equation 16 in Appendix C).
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β̂0(x) + β̂1(x) = P̂1k(x). When trials are independent, with P(Xt = 1) = p for all t, the formula

for the bias from Section 2.3 can be applied directly to these estimators. In the special case of

k = 1, D̂1(x) = β̂1(x) and it follows from Theorem 4 that the expected value of β̂1(x) is equal

to −1/(n − 1), as found in Section D.1, which accords with known results on the O(1/n) bias in

discrete-time autoregressive processes (Shaman and Stine 1988).106

Theorem 8 Let x ∈ {0, 1}n with I1k(x) 6= ∅. If βk(x) = (β0k(x), β1k(x)) is defined to be the

solution to the least squares problem, βk(x) ∈ argminβ∈R2 ‖x − [1 d]ᵀβ‖2 where d ∈ {0, 1}n is

defined so that di :=
∏i−1
j=i−k xi for i = 1, . . . , n, then107

P̂1k(x) = β0k(x) + β1k(x)

Proof:

If βk(x) minimizes that sum of squares then β1k(x) =
∑n

i=1(xi − x̄)(di − d̄)/
∑n

i=1(di − d̄)2. First,

working with the numerator, letting I1k ≡ I1k(x) we have

n∑
i=1

(xi − x̄)(di − d̄) =
∑
i∈I1k

(xi − x̄)(di − d̄) +
∑
i∈IC1k

(xi − x̄)(di − d̄)

=

(
1− |I1k|

n

) ∑
i∈I1k

(xi − x̄)− |I1k|
n

∑
i∈IC1k

(xi − x̄)

=

(
1− |I1k|

n

) ∑
i∈I1k

xi −
|I1k|
n

∑
i∈IC1k

xi −
(

1− |I1k|
n

)
|I1k|x̄+

|I1k|
n

(n− |I1k|)x̄

= |I1k|
(

1− |I1k|
n

)(∑
i∈I1k xi

|I1k|
−
∑

i∈IC1k
xi

n− |I1k|

)
106We are not aware of existing results that quantify the bias for higher-order autoregressive processes with interactions.
107When I1k(x) = ∅ the solution set of the least squares problem is infinite, i.e. argminβ∈R2 ‖x − β0‖2 = {(β0, β1) ∈

R2 : β0 = (1/n)
∑n
i=1 xi}. If we treat βk(x) as undefined in this case, then the bias from using the proportion of

success restricted to trials that immediately follow a success is equal to the finite sample bias in the coefficients of the
associated linear probability model. If instead we define β1k(x) = 0, then the bias in the coefficients of the associated
linear probability model will be less than the bias in the in this proportion.
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second, with the denominator of β1k(x) we have

n∑
i=1

(di − d̄)2 =
∑
i∈I1k

(
1− |I1k|

n

)2

+
∑
i∈IC1k

(
|I1k|
n

)2

= |I1k|
(

1− |I1k|
n

)2

+ (n− |I1k|)
(
|I1k|
n

)2

= |I1k|
(

1− |I1k|
n

)
therefore we have

β1k(x) =

∑
i∈I1k xi

|I1k|
−
∑

i∈IC1k
xi

n− |I1k|
now

nβ0k(x) = n(x̄− β1(x)d̄)

=

n∑
i=1

xi −

(∑
i∈I1k xi

|I1k|
−
∑

i∈IC1k
xi

n− |I1k|

)
|I1k|

=
∑
i∈IC1k

xi +
|I1k|

∑
i∈IC1k

xi

n− |I1k|

=
n
∑

i∈IC1k
xi

n− |I1k|

and the result follows from summing both coefficients.

�

Note that the bias in the coefficients follows from the bias in the estimate of the conditional

probability, i.e. E[P̂1k(x)] < p implies that E[β1k(x)] < 0 and E[β0k(x)] > p.108

E Appendix: Quantifying the bias for hot hand/steak shooting

DGPs

In Section 3.2 the adjustment to GVT’s estimate of the hot hand effect (and test statistic) is based

on the magnitude of the bias under the assumption that the shooter has a fixed probability of

success (Bernoulli process). The bias when the underlying data generating process (DGP) reflects

hot hand or streak shooting differs. While there are many DGPs which may produce hot hand

shooting, the most natural ones to consider are those discussed in Gilovich et al. (1985), as they

reflect lay conceptions of the hot hand and streak shooting. While GVT take no particular stand

108Note that p = E
[
(1/n)

∑n
i=1 xi

]
, and the sum can be broken up and re-arranged as in the theorem.
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on which lay definition is most appropriate, they identify hot hand and streak shooting with (1)

“non-stationarity” (the zone, flow, in the groove, in rhythm), (2) “positive association” (success

breeds success). We label (1) as a regime shift model, and interpret it as capturing the idea that a

player’s probability of success may increase due to some factor unrelated to previous outcomes, and

is therefore not observable to the econometrician. This can be most simply modeled as a hidden

markov chain over the player’s (hidden) ability state. We label (2) as positive feedback model, and

interpret it as capturing the idea that there may be positive feedback from previous shot outcomes

into a player’s subsequent probability of success. This can be modeled as an autoregressive process,

which is equivalent to a markov chain over shot outcomes.109

In Figure 5 we plot the bias in the estimate of the change in field goal percentage due to the

hot hand, D̂3, for three alternative DGPs, each of which admits the Bernoulli process as a special

case.110 The first panel corresponds to the “regime shift” DGP in which the difference in the

probability of success between the “hot” state and the “normal” state is given by d (where d = 0

represents Bernoulli shooting),111 the second panel corresponds to the “positive feedback” DGP in

which hitting (missing) 3 shots in a row increases (decreases) the probability of success by d/2, and

the third panel corresponds to the “positive feedback (for hits)” DGP in which positive feedback

operates for hits only, and hitting 3 shots in a row increases the probability of success by d. Within

each panel of the figure, the bias, which is the expected difference between D̂3, the estimate of the

shift in the probability of success, and d, the true shift in the probability of success, is depicted as

a function of the expected overall field goal percentages (from 40 percent to 60 percent), for four

true shifts in the underlying probability (d ∈ {.1, .2, .3, .4}).
Observe that when the true DGP is a player with a hot hand, the bias is typically more severe,

or far more severe, than the bias with a Bernoulli DGP. In particular, the bias in the “regime shift”

model is particularly severe, which arises from two sources: (1) the bias discussed in Section 2,

and (2) an attenuation bias, due to measurement error, as hitting 3 shots in a row is an imperfect

proxy for the “hot state.”112 The bias in the positive feedback DGP is uniformly below the bias

109A positive feedback model need not be stationary.
110Each point is the output of a simulation with 10,000 repetitions of 100 trials from the DGP.
111In particular,let Q be the hidden markov chain over the “normal” state (n) and the “hot” state (h), where the

probability of success in the normal state is given by pn, and the probability of success in the hot state is given by
ph, with the shift in probability of success given by d := ph − pn

Q :=

(
qnn qnh
qhn qhh

)
Where qnn represents the probability of staying in the “normal” state, and qnh represents the probability of transi-
tioning from the “normal” to the “hot” state, etc. Letting π = (πn, πh) be the stationary distribution, we find that
the magnitude of the bias is not very sensitive to variation in the stationary distribution and transition probabilities
within a plausible range (i.e. πh ∈ [.05, .2] and qhh ∈ (.8, .98)), while it varies greatly based on the difference in
probabilities d and the overall expected field goal percentage p = pn + πhd. In the graph, for each d and p (FG%),
we average across values for the stationary distribution (πh) and transition probability (qhh).

112In practice observers may have more information than the econometrician (e.g. shooting mechanics, perceived confi-
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Figure 5: The bias for three types of hot hand and streak shooting data generating processes (DGPs), where
FG% is the expected overall field goal percentage from the DGP, and d represents the change in the player’s
underlying probability of success. When d = 0 each model reduces to a Bernoulli process, and therefore the
black line represents the bias in a Bernoulli proccess (n = 100 trials, k = 3).

for a Bernoulli shooter. For the DGP in which positive feedback operates only for hits, the bias is

stronger than that of Bernoulli shooters for expected field goal percentages below 50 percent (as in

GVTs data), and slightly less strong for field goal percentage above 50 percent. As the true DGP is

likely some combination of a regime shift and positive feedback, it is reasonable to conclude that the

empirical approach in Section 3.2 should be expected to (greatly) understate the true magnitude

of any underlying hot hand.

dence,or lack thereof, etc.), and may be subject to less measurement error.
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