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Abstract

We study decision problems in which consequences of the various alternative actions depend
on states determined by a generative mechanism representing some natural or social phenom-
enon. Model uncertainty arises because decision makers may not know this mechanism. Two
types of uncertainty result, a state uncertainty within models and a model uncertainty across
them. We discuss some two-stage static decision criteria proposed in the literature that address
state uncertainty in the first stage and model uncertainty in the second (by considering subjec-
tive probabilities over models). We consider two approaches to the Ellsberg-type phenomena
characteristic of such decision problems: a Bayesian approach based on the distinction between
subjective attitudes toward the two kinds of uncertainty; and a non-Bayesian approach that per-
mits multiple subjective probabilities. Several applications are used to illustrate concepts as they
are introduced.

Kirk: do you think Harry Mudd is down there, Spock?
Spock: the probability of his presence on Motherlode is 81%± .53

1 Introduction

In this section we briefly discuss several important notions — in particular, uncertainty (including
model uncertainty), probabilities, and decisions. We then outline how the paper proceeds before
making a few remarks on methodology.

Uncertainty Uncertainty has increasingly taken center stage in academic and public debates, and
there is a growing awareness and concern about its role in human domains such as environmental
uncertainty (climate change, natural hazards), demographic uncertainty (longevity and mortality
risk), economic uncertainty (economic and financial crises), risk management (operational risks, Basel
accords), and technological uncertainty (Fukushima).
Uncertainty affects decision making directly by making contingent the payoffs of a course of action

(e.g., harvest and weather), as well as indirectly by generating private information. The latter point
is key in strategic interactions, where uncertainty and private information are essentially two sides
of the same coin: uncertainty generates private information when different agents have access to
different information about the uncertain phenomenon; vice versa, private information per se can
generate uncertainty if agents are contemplating it (moral hazard and adverse selection issues).

∗This paper was delivered as the Schumpeter lecture at the 29th Congress of the European Economic Association
in Toulouse in August 2014. It is dedicated, with admiration and affection, to David Schmeidler on the occasion of
his 75th birthday. I thank Pierpaolo Battigalli, Loic Berger, Emanuele Borgonovo, Veronica Cappelli, Simone Cerreia-
Vioglio, Fabio Maccheroni, Nicola Rosaia, and Juuso Valimaki as well as an anonymous referee for many comments
and suggestions on preliminary versions of the paper. The material is based on extensive collaboration with Pierpaolo
Battigalli, Simone Cerreia-Vioglio, Fabio Maccheroni, and Luigi Montrucchio; it is supported by the AXA Research
Fund and the European Research Council (advanced grant BRSCDP-TEA).

1



In the real world, uncertainty is a primary source of competitive advantage (and so of business
opportunities that may favor entrepreneurship). In the theoretical world, uncertainty makes the study
of agents’ decisions and strategic interactions a beautiful and intellectually sophisticated exercise
(altogether different from the study of physical particles’actions and interactions). In both worlds,
uncertainty plays a major role.

Probabilities Uncertainty and private information are thus twin notions. Uncertainty is indeed a
form of partial knowledge (information) about the possible realizations of some contingencies that
are relevant for agents’decisions (e.g., betting on a die: What face will come up?). As such, the
nature of uncertainty is epistemic.1 Intuitively, agents deal with uncertain contingencies by forming
beliefs (expectations) about them. Yet how can the problem be properly framed? The notion of
probability was the first key breakthrough: You can assign numbers to contingencies that quantify
their relative likelihoods (and then manipulate those numbers according to the rules of probability
calculus). Probability and its calculus emerged in the 16th—17th centuries with the works of Cardano,
Huygens, and Pascal, with a consolidation phase in the 18th—19th centuries with the works of the
Bernoullis, Gauss, and Laplace. In particular, the Laplace (1812) canon emerged, based on equally
likely cases (alternatives): the probability of an event is equal to the number of “favorable” cases
divided by their total number.
Departing from the original epistemic stance of Laplace, over time the “equally likely”notion came

to be viewed as a purely objective or physical feature (faces of a die, sides of a fair coin). Probability
was no longer studied within decision problems, like the games of chance that originally motivated its
first studies in 16th—17th centuries, but rather as a physical notion unrelated to decisions and therefore
independent of any subjective information and beliefs. All this changed in the 1920s when de Finetti
and Ramsey freed probability of physics,2 put its study back in decision problems (probability “is a
measurement of belief qua basis for action,” in Ramsey’s words), and rendered “equally likely” an
epistemic —and thus subjective —evaluation. They did so by identifying the probability that agents
attach to some (decision relevant) event with their willingness to bet on it, which is a measurable
quantity. As Ramsey remarked, the “old-established way of measuring a person’s belief is to propose
a bet, and see what are the lowest odds which he will accept.”
Epistemic probabilities a la de Finetti-Ramsey (often called subjective) quantify decision makers’

degree of belief and can be ascribed to any event, repeatable or not, such as “tomorrow it will rain”
or “left-wing parties will increase their votes in the next elections.” In this way, all uncertainty can
be probabilized; this is the main tenet of Bayesianism.

Model uncertainty In this paper we consider decision makers (DMs) who are evaluating courses
of actions the consequences of which depend on states of the environment that —like rates of inflation,
peak ground accelerations, and draws from urns —can be seen as realizations of underlying random
variables that are part of a generative (or data generating) mechanism that represents some natural
or social phenomenon.
Each such mechanism induces a probability model (or law) over states that describes the regular

features of their variability. The uncertainty about the outcomes of the mechanism, and so about
the inherent randomness of the phenomenon it represents, is called physical. Probability models thus
quantify this kind of uncertainty, using analogies with canonical mechanisms (dice, urns, roulette
wheels, and the like) that serve as benchmarks.3 As any kind of uncertainty that DMs deem relevant
for their decision problems, physical uncertainty is relative to their ex ante (i.e., prior to the decision)
information and its subjective elaboration —for instance, the analogy judgment just mentioned. Thus

1From the Greek word for knowledge, episteme (επιστηµη). In the paper we use the terms “information” and
“knowledge” interchangeably.

2See Ramsey (1926) and de Finetti (1931, 1937).
3 In the words of Schmeidler (1989, p. 572), “the concept of objective probability is considered here as a physical

concept like acceleration, momentum or temperature; to construct a lottery with given objective probabilities (a roulette
lottery) is a technical problem conceptually not different from building a thermometer.”
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physical uncertainty (often referred as risk in the literature) is an epistemic notion that accounts
for DMs’views on the inherent randomness of phenomena. To paraphrase Protagoras: in decision
problems, “DMs are the measure of all things.”
Probability models describe such DMs’ views by combining a structural component, which is

based on theoretical knowledge (e.g., economic, physical), with a random component which accounts
for measurement issues and for minor (and so omitted) explanatory variables.4 We assume that
DMs’ex ante information allows them to posit a set of possible generative mechanisms, and so of
possible probability models over states. Following a key tenet of classical statistics, we take such
set as a datum of the decision problem. This set is generally nonsingleton (and so probabilities
are “unknown”) because the ex ante information is not enough to pin down a single mechanism.
Model uncertainty (or model ambiguity) therefore emerges since DMs are uncertain about the true
mechanism.5

The often-made modeling assumption that a true generative mechanism exists is unverifiable in
general and so of a metaphysical nature. It amounts to assuming that, among all probability models
that DMs conceive, the model that best describes the variability in the states is the one that actually
generates (and so causes / explains) them probabilistically. In any event, the assumption underlies a
fruitful causal approach that facilitates the integration of empirical and theoretical methods —required
for a genuine scientific understanding.6

Priors and decisions We assume that the DMs’ex ante information also enables them to address
model uncertainty through a subjective prior probability over models; in this we follow a key tenet
of the Bayesian paradigm. Prior probabilities quantify DMs’beliefs by using analogies with betting
behavior (Section 3.1).
The result is two layers of analysis: a first, classical layer featuring probability models on states

that quantify physical uncertainty; and a second, Bayesian layer characterized by a prior probabil-
ity on models that quantifies model uncertainty. As is well known, both layers involve nontrivial
methodological aspects. The second layer is ignored by classical statistics; the first layer is indirectly
considered within the Bayesian paradigm through arguments of de Finetti representation theorem
type.7

However, our motivation is pragmatic: we expect that the uncertainty characterizing many de-
cision problems that arise in applications can be fruitfully analyzed by distinguishing physical and
model uncertainty within DMs’ex ante information.8

4As Marschak (1953, p. 12) writes, they are “separately insignificant variables that we are unable and unwilling to
specify.”Similar remarks can be found in Koopmans (1947, p. 169); for a discussion, see Pratt and Schlaifer (1984, p.
12).

5See Wald (1950), Fisher (1957), and Neyman (1957) as well as Haavelmo (1944, pp. 48-49). We will use “model
uncertainty”throughout even though “model ambiguity”is a more specific and hence more informative terminology (cf.
Hansen, 2014). In any case, at the level of generality of our analysis, model uncertainty is an all-encompassing notion.
We abstract from any finer distinction, say between nonparametric (model) and parametric (estimation) uncertainty,
that is, between models that differ either in substance (e.g., Keynesian or New Classical specifications in monetary
economics) or in detail (e.g., different coeffi cient values within a theoretical model). See Hansen (2014, p. 974) and
Hansen and Sargent (2014, p. 1) for a related point. For finer distinctions, see for example Draper et al. (1987), Draper
(1995), the references therein (these authors call predictive uncertainty a notion similar to physical uncertainty) as well
as Brock, Durlauf, and West (2003).

6For a critique of this approach, with a purely descriptive, acausal, interpretation of models, see Akaike (1985),
Breiman (2001), and Rissanen (2007) as well as Barron, Rissanen, and Yu (1998), Hansen and Yu (2001), and Konoshi
and Kitagawa (2008). Descriptive approaches now play an important role in information technology thanks to the large
data sources currently available, the so-called big data (see e.g. Halevy, Norvig, and Pereira 2009).

7Cerreia-Vioglio et al. (2013a) provide a decision theoretic derivation of the two layers within a de Finetti perspec-
tive. However, such asymptotic perspective (based on exchangeability and related large sample properties) may be a
straightjacket when DMs have enough information to directly specify a set of probability models. It is typical in these
cases for models to be identified by parameters that have some concrete meaning beyond their role as indexes (urns’
compositions being a prototypical example). See Section 3.2.

8As Winkler (1996) note, this distinction can be seen as an instance of the “divide et impera” precept, a most
pragmatic principle. A related point is eloquently made by Ekeland (1993, pp. 139-146). It is interesting that de
Finetti (1971, p. 89) acknowledge that “... it may be convenient to use the ‘probability of a law (or theory)’as a useful
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The two layers of analysis motivated by such a distinction naturally lead to two-stage decision
criteria: actions are first evaluated with respect to each possible probability model, and then such
evaluations are combined by means of the prior distribution. In other words, in this hierarchical
approach we first assess actions in terms of physical uncertainty and then in terms of epistemic
uncertainty.9

Outline Our paper is an overview of both traditional and more recent elaborations of this basic
insight. In fact, the failure to distinguish these two kinds of uncertainty —in particular, the specific
role of model uncertainty —may have significant economic consequences. Both behavioral paradoxes
(of which Ellsberg is the most famous) and empirical puzzles (e.g., in asset pricing) can be seen as
the outcome of a too limited account of uncertainty in standard economic modeling. To emphasize
their relevance, we will illustrate concepts with several applications; these include structural reliability
(Section 4.4.2), monetary policy (Section 4.8.3), asset pricing (Section 4.9), and public policy (Section
4.10).10 We begin in Section 2 by presenting classical decision problems, the two-stage static decision
framework of the paper; a few examples from different fields are given to illustrate its scope. In
Section 3 we introduce a two-stage expected utility criterion that reduces epistemic uncertainty to
physical uncertainty (“uncertainty to risk” as it is often put), and so ignores the distinction. Yet
given that experimental and empirical evidence indicate that this distinction is relevant and may
affect valuation, in Sections 4 and 5 the criterion is modified in two different ways, Bayesian (Section
4) and not (Section 5), in order to deal more properly with model uncertainty. In these sections we
discuss how optimal behavior is affected by model uncertainty as well as the extent to which such
behavior reflects a desire for robustness that, in turn, may favor action diversification, lead to no trade
results, and result in market prices for assets that —by incorporating premia for model uncertainty —
may explain some empirical puzzles (Sections 4.8—4.10 and 5.3).
A final important remark: although some important results have already been established for

dynamic choice models under ambiguity, we consider only static choice models.11

Methodological post scriptum In a philosophy of probability perspective, the two layers of
our analysis rely on different meanings of the notion of probability. In particular, a distinction
is often made, mostly after Carnap (1945, 1950),12 between epistemic and physical uncertainties,
which are quantified (respectively) by epistemic and physical probabilities.13 In this dual view,
model uncertainty is regarded as a main example of epistemic uncertainty, with prior probabilities
representing DMs’degrees of beliefs about models.14 Yet for decision problems this distinction is
questionable at an ontological level because, as mentioned previously, all uncertainty that is relevant
to decision problems is, ultimately, epistemic (i.e., relative to the state of DMs’ information). In
this paper we regard physical probability as the DMs modeling of the variability in the states of

mental intermediary to evaluate the probability of some fact of interest” (emphasis in the original).
9With all the relevant caveats, for brevity we will often refer to model uncertainty as epistemic uncertainty, which is

short for “epistemic uncertainty about models” (and where by models we mean probability distributions over states).
10Though our focus is economics, we discuss applications in other disciplines to place concepts in perspective.
11We refer to Miao (2014) for a recent textbook exposition; for different perspectives on the topic and on the literature,

see Hanany and Klibanoff (2009), Siniscalchi (2011), and Strzalecki (2013).
12See Good (1959, 1965), Hacking (1975), Shafer (1978), von Plato (1994), and Cox (2006) for discussions on this

distinction. More applied perspectives can be found in Apostolakis (1990), Paté-Cornell (1996), Walker et al. (2003),
Ang and Tang (2007), Der Kiureghian and Ditlevsen (2009), and Marzocchi, Newhall, and Woo (2012) as well as in
the 2009 report of the National Research Council. This distinction between the two notions of probability traces back
to Cournot and Poisson, around the year 1840 (see, e.g., Zabell 2011); Keynes (1921, p. 312) credits Hume for an early
dual view of probability. LeRoy and Singell (1987) discuss a related distinction made in Knight (1921).
13Terminology varies: in place of “physical” the terms aleatory and objective are often used, as are the terms

phenomenological (Cox 2006) and statistical (Carnap 1945); in place of “epistemic” the term subjective is often used,
as is (though less frequently) personal (Savage 1954). Finally, physical probabilities are sometimes called chances,
with the term probability being reserved for epistemic probabilities (Anscombe and Aumann 1963, Singpurwalla 2006,
Lindley 2013).
14 In the logical approaches of Carnap and Keynes, they actually represent degrees of confirmation (see e.g. Carnap

1945, p. 517). The subjectivist approach, most forcefully proposed by de Finetti, is today more widely adopted.
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the environment, which they can carry out through analogies —“as if” arguments —with canonical
mechanisms (e.g., states may be viewed to obtain as if they were colors drawn from urns).15 For,
our probabilistic understanding is shaped, nolens volens, by such mechanisms, and it was their role
in games of chance that actually gave rise to probability in the 16th and 17th centuries.16 In turn,
probabilities in canonical mechanisms —and then, by analogy, in general settings —can be interpreted
as physical concepts in potential terms (dispositions, say a la Popper, 1959) or in actual terms
(frequencies, say a la von Mises, 1939).17 That being said, in stationary environments these two
interpretations can be reconciled via ergodic arguments.18

2 Setup

2.1 Notation and terminology

Probability measures Let (S,Σ) be a measurable space, where Σ is an algebra of events of S
(events are always understood to be in Σ). For instance, Σ could be the power set 2S of S, that
is, the collection of all subsets of S. In particular, when S is finite we assume that Σ = 2S unless
otherwise stated.
Let ∆ (S) be the collection of all (countably additive) probability measures m : Σ→ [0, 1]. If S is

a finite set with n elements and Σ is the power set of S, then ∆ (S) can be identified with the simplex
∆n−1 =

{
x ∈ Rn+ :

∑n
i=1 xi = 1

}
of Rn.

We will consider probability measures µ defined on the power set of ∆ (S); for simplicity, we
assume that they have finite nonempty support. In other words, we assume that there exists a finite
subset of ∆ (S), denoted by suppµ, such that µ (m) > 0 if and only if m ∈ suppµ. Given any subset
M ⊆ ∆ (S), we denote by ∆ (M) the collection of all probability measures µ with suppµ ⊆M .

Integrals and sums Given a measurable space (X,X ), we often use the shorthand notation Epf
to denote the (Lebesgue) integral

∫
X
f (x) dp (x) of a X -measurable function f : X → R with respect

15Le Cam (1977, p. 154) writes “... most models or theories of nature which are encountered in statistical practice
are probabilistic or stochastic. The probability measures entering in these models are ... used to indicate a certain
structure which can, in final analysis, be reduced to this ’Everything is as if one were drawing balls from a well-mixed
bag.’”Much earlier, Borel (1909, p. 167) had written “we can now for formulate the general problem of mathematical
statistics as follows: determine a system of drawing made of urns having a fixed composition, so that the results of a
series of drawings, interpreted with the aid of coeffi cients conveniently selected, lead with a great likelihood to a table
which is identical with the table of observations” (p. 138 of the 1965 English translation). More recently, Gilboa,
Lieberman, and Schmeidler (2010) propose a view of probability based on a formal notion of similarity.
16Hacking (1975) is a well known account of early probability thinking (for a discussion, see Gilboa and Marinacci

2013). On infants and urns, see Xu and Garcia (2008) and Xu and Kushnir (2013); possible neurological bases of
probabilistic reasoning are discussed by Kording (2007), and its importance, as a part of unconscious cognitive abilities,
is discussed by Tenenbaum et al. (2011). They contrast conscious and unconscious manipulations of probabilities and
explain the former’s problems by noting that numerical probabilities are “a recent cultural invention that few people
become fluent with, and only then after sophisticated training.” These remarks are reminiscent of the expert billiard
player example famously used by Friedman and Savage (1948) and Friedman (1953) to illustrate the “as if”methodology
(which, as they write on p. 298, “... does not assert that individuals explicitly or consciously calculate and compare
expected utilities... but behave as if they ... [did] ...” emphasis in the original).
17Popper (1959, p. 37) mentions these Aristotelian categories, though he claims that “propensities ... cannot ... be

inherent in the die, or in the penny, but in something a little more abstract, even though physically real: they are
relations properties of the experimental arrangement —of the conditions we intend to keep constant during repetition.”
Earlier in the article, on p. 34, he writes that “The frequency interpretation always takes probability as relative to a
sequence .... is a property of some given sequence. But with our modification, the sequence in its turn is defined by its
set of generating conditions ; and in such a way that probability may now be said to be a property of the generating
conditions”(emphasis in the original)
18 In the terminology of Section 3.2, let p be a probability on Σ. Given any event Bk ⊆ ×ki=1Z, define the empirical

measure by p̂T (Bk) (s) = (1/T )
∑T
i=1 1((z̃i,...,z̃i+k)∈Bk) (s). If process {z̃t} is stationary and ergodic, a well known

consequence of the individual ergodic theorem is that, p-almost everywhere, limT p̂T (Bk) = p (Bk). So in this case
the probability p can be interpreted as the limit empirical frequency with which states occur. Von Plato (1988, 1989)
emphasize this “time average”view of frequentism, which can be reconciled with propensities when p (Bk) is interpreted
as a propensity (a similar remark is made in an i.i.d. setting by Giere 1975, p. 219).
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to a probability measure p : X → [0, 1]. In particular, if the space X itself is finite, then∫
X

f (x) dp (x) =
∑
x∈X

f (x) p (x)

that is, integrals reduce to sums. Throughout the paper, the reader can always assume that spaces
are finite and so integrals can be interpreted as sums (an exception are the examples that involve
normal distributions, which require infinite spaces). In this regard, note that sums actually arise
even in infinite spaces when the support of the probability is finite (and measurable), i.e., supp p =
{x ∈ X : p (x) > 0}. In this case,

∫
X
f (x) dp (x) =

∑
x∈supp p f (x) p (x).

Differentiability The presentation will require us to consider differentiability on sets that are not
necessarily open. To ease matters, throughout the paper we say that a (convex) function f : C ⊆
Rn → R is differentiable on a (convex) set C if it can be extended to a (convex) differentiable function
on some open (convex) set containing C. If the set C is open, such set is C itself.

Equivalent and orthogonal measures Two probability measures m and m̃ in ∆ are orthogonal,
written m ⊥ m̃, if there exists E ∈ Σ such that m (E) = 0 = m̃ (Ec); here Ec denotes the complement
of E. In words, two orthogonal probabilities assign zero probability to complementary events. A
finite collection of measures M = {m1, ...,mn} ⊆ ∆ is (pairwise) orthogonal if all its elements are
pairwise orthogonal, that is, there exists a measurable partition {Ei}ni=1 of events such that, for each
i, mi (Ei) = 1 and mi (Ej) = 0 if j 6= i.

We say that m is absolutely continuous with respect to m̃, written m � m̃, if m̃ (E) = 0 im-
plies m (E) = 0 for all events E. The two measures are equivalent if they are mutually absolutely
continuous, that is, if they assign zero probability to the same events.

2.2 Decision form

Following Wald (1950), a decision problem under uncertainty consists of a decision maker (DM) who
must choose among a set of alternative actions whose consequences depend on uncertain factors that
are beyond his control. Formally, there is a set A of available actions a that can result in different
material consequences c, within a set C, depending on which state of the environment s obtains in a
state space S. As discussed in the Introduction, states are viewed as realizations of some underlying
random variables. Often we consider monetary consequences; in such cases, C is assumed to be an
interval of the real line.

The dependence of consequences on actions and states is described by a consequence function
ρ : A× S → C that details the consequence

c = ρ (a, s) (1)

of action a in state s. The quartet (A,S,C, ρ) is a decision form under uncertainty. It is a static
problem that consists of an ex ante stage (up to the time of decision) and an ex post stage (after the
decision). Ex ante, DMs know all elements of the quartet (A,S,C, ρ) and, ex post, they will observe
the consequence ρ (a, s) that results. However, we do not assume that DMs will necessarily observe
the state that, ex post, obtains.19

We illustrate decision forms with a few examples from different fields. Some of them will also be
used later in the paper to illustrate various concepts as they are introduced.

19 If DMs do observe the state then, in a temporal setting, both consequences and states (past and current) may
become data available for future decisions. In order to address that possibility we augment the problem’s structure with
a feedback function that specifies what is observed ex post. In dynamic setups —where today’s ex post is tomorrow’s
ex ante —feedback plays a key role (see Battigalli et al. 2015a).
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Betting Gamblers have to decide which bets to make on the colors of balls drawn from a given urn.
The consequence function is ρ (a, s) = w (s, a)− c (a), where w (a, s) is the amount of money that bet
a pays if color s is drawn and c (a) is the price of the bet. States (i.e., balls’colors) are observed ex
post.

Monetary policy Monetary authorities have to decide on the target level of inflation that will
best control the economy’s unemployment and inflation (Sargent, 2008). More specifically, consider
a class θ ∈ Θ of linear model economies in which unemployment and inflation outcomes (u, π) are
related to shocks (w, ε) and to the government policy a as follows:

u = θ0 + θ1ππ + θ1aa+ θ2w

π = a+ θ3ε

The vector parameter θ = (θ0, θ1π, θ1a, θ2, θ3) ∈ R5 specifies the relevant structural coeffi cients.
Coeffi cients θ1π and θ1a are slope responses of unemployment to actual and planned inflation, while the
coeffi cients θ2 and θ3 quantify shock volatilities. Finally, the intercept θ0 is the rate of unemployment
that would (systematically) prevail in the absence of policy interventions.20

States have random and structural components s = (w, ε, θ) ∈ W × E × Θ. Consequences are
the unemployment and inflation pairs c = (u, π) ∈ R+ × R. Since the reduced form of each model
economy is

u = θ0 + (θ1π + θ1a) a+ θ1πθ3ε+ θ2w

π = a+ θ3ε

it follows that the consequence function has the form

ρ (a,w, ε, θ) =

[
θ0

0

]
+ a

[
θ1π + θ1a

1

]
+

[
θ2 θ1πθ3

0 θ3

] [
w
ε

]
(2)

The policy multiplier is θ1π + θ1a. For instance, a zero multiplier (i.e., θ1a = −θ1π) characterizes a
Lucas-Sargent model economy in which monetary policies are ineffective, whereas θ1a = 0 character-
izes a Samuelson-Solow model economy in which such policies may be effective.
Finally, states — that is, shocks’realizations and the true model economy —are not necessarily

observed ex post.

Production Firms have to decide on the level of production for some output even when they
are uncertain about the price that will prevail. The consequence function is the profit ρ (a, s) =
r (s, a) − c (a), where r (s, a) is the revenue generated by a units of output under price s and c (a)
is the cost of producing a units of output. In this case, states — that is, the price of output —are
observed ex post.

Inventory Retailers have to decide which quantity of some product to buy wholesale, while uncer-
tain about how much they can sell.21 A retailer can buy any quantity a of the product at a cost c (a).
An unknown quantity s of the product will be demanded at a unit price p. Here the consequence
function is the profit ρ (a, s) = pmin {a, s} − c (a), where min {a, s} is the amount that retailers will
actually be able to sell. States —the demand for the product —are observed ex post.

20See Battigalli et al. (2015b), who interpret this atemporal setup as a stochastic steady state.
21This decision problem is often called the newsvendor problem (see e.g. Porteus 2002).
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Financial investments Investors have to decide how to allocate their wealth among some financial
assets traded in a frictionless financial market. Suppose there are n such assets at the time of the
decision, each featuring an uncertain gross return ri after one period. Denote by a ∈ ∆n−1 the vector
of portfolio weights, where ai indicates the fraction of wealth invested in asset i = 1, ..., n. Given an
initial wealth w, the consequence function ρ (a, s) = (a · s)w is the end-of-period wealth determined
by a choice a when the vector s = (r1, ..., rn) ∈ Rn of returns obtains. States —here, the returns on
assets —are again observed ex post.

Climate change mitigation Environmental policy makers have to decide on the abatement level
of gas emissions in attempting to mitigate climate change (see e.g. Gollier 2013; Millner, Dietz, and
Heal 2013; Berger, Emmerling, and Tavoni 2014). The state space S consists of the possible climate
states, which may consist of structural and random components about the cause-effect chains from
emissions to temperatures (Meinshausen et al. 2009). For instance, states may be represented by
(equilibrium) climate sensitivity, a quantity that measures the equilibrium global average surface
warming that follows a doubling of atmospheric carbon dioxide (CO2) concentrations (Solomon et al.
2007).
The action space A consists of all possible abatement level policies. The consequence function

ρ (a, s) = d (s, a)− c (a) describes the overall monetary consequence of abatement policy a when s is
the climate state, as determined by the monetary damage d (s, a) and by the abatement cost c (a).

Natural hazards Civic offi cials have to decide whether or not to evacuate an area because of a
possible natural hazard (see e.g. Marzocchi, Newhall, and Woo 2012). In the case of earthquakes,
for instance, the state space S may consist of all possible peak ground accelerations (PGAs) that
describe ground motion, the action space A consists of the two actions a0 (no evacuation) and a1

(evacuation), and the consequence function ρ (a, s) describes the consequence (in monetary terms) of
action a when s is the PGA that obtains.22 We distinguish different components in such consequence:
(i) the damage to infrastructures db(s) and the human casualties dh(s) that a PGA s determines,
(ii) the evacuation cost δ.23 Since evacuation can, essentially, only reduce the number of human
casualties, we can write the function ρ : A× S → R as follows:

ρ(a, s) =

 db (s) + dh (s) if a = a0

db (s) + δ if a = a1

As to the damage functions db : S → R and dh : S → R, note that:

• their argument s is a physical magnitude, the PGA, related to a Richter-type scale;

• their images db(s) and dh(s) are a socio-economic magnitude, related to a Mercalli-type scale;

• their graphs Gr db = {(s, c) : c = db (s)} and Gr dh = {(s, c) : c = dh (s)} represent both aspects.

Finally, states —the PGAs —are observed ex post.

22 If s = 0, no ground motion occurred. The civic offi cials may rely on seismologists to identify the relevant state space,
and to structural engineers and economists to assess the consequence function (in this evacuation decision structures
are a given; a design decision problem will be considered next).
23 In Marzocchi, Newhall and Woo (2012), C corresponds to −δ and L to a constant damage function dh, i.e.,

dh(s) = −L for each s. In their words “the principal protection cost C is the economic dislocation which may last for
weeks or even months”and “for a non-evacuation decision, the principal loss incurred is that of human life [...] usually
measured using the economic concept of Willingness to Pay for Life Saved.”On dh see also Porter, Shoaf, and Seligson
(2006).
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Structural reliability Structural engineers have to decide what design of a structure will make it
most reliable (Ditlevsen and Madsen 2007). Consider for example the design of a cantilever beam of
some fixed length (Field and Grigoriu 2007). The action —in other words, the design variable that the
engineer must choose —is the square cross section of that beam. The stiffness s of the beam, which
is unknown because of the physical uncertainty affecting material properties (Guo and Du 2007, p.
2337), determines the tip deflection τ (a, s) of the beam resulting from the choice of the square cross
section a. The beam breaks (and so a structural failure occurs) if τ (a, s) > d, where d ≥ 0 is the
maximum tip displacement. Hence Fa = {s ∈ S : τ (a, s) > d} and F ca = {s ∈ S : τ (a, s) ≤ d} are,
respectively, the failure event and the safe event determined by action a. The consequence function
is given by

ρ (a, s) =

{
δ + c (a) if s ∈ Fa
c (a) else

where δ is the damage cost of failure and c (a) is the cost of the square cross section a. States —the
beam’s stiffness —might not be observed ex post.

Quality control Managers have to decide whether to accept or reject the shipment of some parts
from a supplier — say, integrated circuits from an electrical company (see e.g. Raiffa and Schlaifer
1961; Berger 1993). The state space S consists of the proportion s of defective circuits in the shipment.
Only the whole shipment can be rejected, not individual parts. Thus the action space A consists of
the two actions, a0 (reject the shipment) and a1 (accept the shipment). The consequence function
is given by ρ (a0, s) = 0 and ρ (a1, s) = r (s) − c (s) − p; here r (s) is the revenue from the sales of
the output produced when s is the proportion of defective circuits, c (s) is the cost they entail when
entering the production line (Deming 1986, ch. 15), and p is the price of the shipment once accepted.
In other words: if the shipment is rejected, then there is no output and so no revenues; if the shipment
is accepted, the consequence depends on its cost and on the revenues and costs that it determines
given the proportion of defective circuits that it features. States —here, the proportion of defective
circuits —are observed ex post unless defects are latent (Deming 1986, p. 409).

Public policy Public offi cials have to decide which treatment — for example, which type of vac-
cination —should be administered to individuals who belong to a heterogenous population that, for
policy purposes, is classified in terms of some observable characteristic (covariate), such as age or
gender.
Let X and T be, respectively, the (finite) collections of covariates and of possible alternative

treatments. If only aggregate (and not individual) outcomes matter for policy making, then we can
regard actions as functions a : X → ∆ (T ) that associate probability distributions over treatments to
covariates.24 Here a (x) (t) ∈ [0, 1] is the fraction of the population with covariate x that has been
assigned treatment t.25 Treatment actions are fractional if they do not assign the same treatment to
all individuals with the same covariate (cf. Manski 2009).
When state s obtains, cx (t, s) denotes the (scalar) outcome for individuals with covariate x who

have been assigned treatment t.26 If public offi cials care about the average of such individual out-
comes, then the consequence function is ρ (a, s) =

∑
x

(∑
t∈T cx (t, s) a (x) (t)

)
p (x), where p (x) is the

fraction of the population with covariate x. The existence of various states explains why individuals
with the same covariate may respond differently to the same treatment.

24This simple distributional formulation abstract from the individual choice problems that may affect treatment
effects, which is a key issue in actual policy analysis (see Heckman 2008, p. 7).
25The treatment allocation can be implemented through an anonymous random mechanism (a form of the “equal

treatment of equals” ethical principle; see Manski 2009). If the population is large, then under standard assumptions
a (x) (t) can be regarded as the fraction of the population with covariate x under treatment t and also as the probability
with which the random mechanism assigns the treatment to every individual with that covariate.
26The outcome can be material (say, monetary) or, from a utilitarian perspective, can be stated in terms of welfare

(say, in utils). Our specification presumes that the relevant policy information is about individuals with given covariates
(say, the effect of vaccination on elderly white males) and not about particular individuals.
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Epistemology Scientists have to decide whether to adopt a new theory or retain an old one. We
can follow Giere (1985, pp. 351-352) and consider earth scientists who in the 1960s were faced with
deciding whether to accept the new drift hypotheses or retain the old static ones. Abstracting from
peer concerns, there are two relevant states, “the tectonic structure of the world is more similar to
drift models than to static models”and the reverse, as well as two actions, “adopt drift models”and
“retain static models.”As Giere argues, status quo biases determine the consequence function that
characterizes the decision problem, which can be described by the following table

Drift models approximately correct Static models approximately correct
Adopt Satisfactory Terrible
Retain Bad Excellent

Interactive situations Players have to decide which actions to play in a static interactive situation.
For instance, in the previous production example suppose there is a set I = {1, ..., n} of firms (an
oligopoly) and that the price depends on their aggregate production

∑
i∈I ai according to a (commonly

known) inverse demand function D−1
(∑

i∈I ai
)
. In the decision problem of each firm i, the state

is no longer the price but rather the production profile a−i = (aj)j 6=i of the other firms; that is,
S = A−i ≡ ×j 6=iAj . In fact, for firm i that profile determines the monetary consequence ρi (ai, a−i) =
ri
(
ai, D

−1
(∑

i∈I ai
))
− ci (ai). The firm’s decision problem is thus (Ai, A−i, Ci, ρi), where Ci ⊆ R.

In general, a static game form G =
(
I, (Ci)i∈I , (Ai)i∈I , (gi)i∈I

)
among selfish players27 consists

of a set I = {1, ..., n} of players and, for each player i, a set Ci of consequences, a set Ai of actions,
and an outcome function gi : A1 × · · · ×An → Ci that associates the material outcome gi (a1, ..., an)
to action profile (a1, ..., an).
When player i ∈ I evaluates action ai, the relevant states s are the action profiles a−i of his

opponents. As a result, the state space S = A−i is the collection of all action profiles of his opponents
and the consequence function is his individual outcome function gi : Ai × A−i → Ci. The decision
form for player i is thus (Ai, A−i, Ci, gi). States (i.e., opponents’actions) may be observed ex post.

2.3 Decision problem

Decision making is the outcome of DMs’mental elaboration of their desires and beliefs. We thus
assume that DMs have a preference % over actions, a binary relation that describes how they rank
alternatives. In particular, we write a % b if the DM either strictly prefers action a to action b or is
indifferent between the two. As usual, ∼ denotes indifference and � strict preference. The quintet
(A,S,C, ρ,%) is a decision problem under uncertainty. The aim of DMs is to select actions that are
optimal with respect to their preference — that is, actions â ∈ A such that â % a for all actions
a ∈ A.28

For each action a ∈ A, the section ρa : S → C of ρ at a defined by

ρa (s) = ρ (a, s)

27That is to say, players who (like the firms just described) care only about their own material outcomes. In this
paper we do not consider other regarding preferences (for a generalization of standard preferences to such case, see
Maccheroni, Marinacci, and Rustichini 2012).
28Preferences are here viewed as mental constructs, with a cognitive appeal and meaning (Skinner 1985, pp. 295-

296, sketches a behaviorism interpretation of some basic decision theory notions, without cognitive notions). Though
disciplined by them (the more, the better, obviously), they are not just ways to organize behavioral data. Preferences
thus have here a more substantive interpretation than the one envisioned by Pareto (1900), in the article that started
the ordinalist revolution, and often adopted by the revealed preference literature that followed the seminal (1938) work
of Samuelson. According to Pareto, p. 222, “If a dog ... leaves the soup and takes the meat...[this behavior] can be
expressed in the phrase that this dog prefers the meat to the soup... But the intention is to express only the fact
observed: the word prefer should not be taken as implying any judgement on the part of the animal or any comparison
between two kinds of pleasure” (emphasis in the original).
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associates to each s ∈ S the consequence resulting from the choice of a if s obtains. From the
consequentialist perspective, what matters about actions is not their label/name but instead the
consequences that they determine under different states. This viewpoint motivates the following
classical principle.

Consequentialism Two actions that are realization equivalent (i.e., that generate the same conse-
quence in every state) are indifferent. Formally:

ρ (a, s) = ρ (b, s) ∀s ∈ S =⇒ a ∼ b

or, equivalently, ρa = ρb =⇒ a ∼ b.

Consequentialism is trivially satisfied when the consequence function is such that a = b whenever
ρ (a, s) = ρ (b, s) for each s ∈ S. For example, this is the case for the consequence function (2) of the
monetary policy example.

Assume that, given any consequence c, there is a “sure”action ac that delivers this consequence
in all states; that is, ρ (ac, s) = c for all s ∈ S. In that case, we can define a derived preference %C
among consequences as c %C c′ if and only if ac % ac′ . By Consequentialism, this definition is well
posed. To ease notation, we will more simply write c % c′.29

2.4 Savage acts

Under Consequentialism, we can define a preference on sections as follows:

ρa % ρb ⇐⇒ a % b (3)

That is, the ranking on actions can be translated into a ranking of sections. This possibility suggests a
more radical approach, adopted by Savage (1954), whereby actions are identified if they are realization
equivalent. Thus, any two actions that deliver the same consequences in the various states are
identified —no matter how different such actions might be in other regards. For instance, if different
production levels result in the same profits in all states, we identify them: they can be regarded as
equivalent from a decision theoretic standpoint.30

In most of what follows we adopt Savage’s approach. As a result, in place of actions we consider
the maps a : S → C that they induce via their sections, that is,

a (s) = ρa (s) ∀s ∈ S

Such maps, which can be seen as state contingent consequences, are called (Savage) acts. Denote by
A the collection of all of them. By (3), we can directly consider the preference % on A by setting
a % b if and only if a % b. The quartet (A, S, C,%) represents the Savage decision problem, which
can be viewed as a reduced form of the problem (A,S,C, ρ,%).

Although effective at a theoretical level, Savage acts may be somewhat artificial objects. As
Marschak and Radner (1972, p. 13) remark, the notions in the quintet (A,S,C, ρ,%) “correspond
more closely to the everyday connotations of the words”than do their Savage reduction (A, S, C,%).

29Although the preference between consequences has been derived from the primitive preference among actions, at
a conceptual level the opposite might well be true: DMs may actually have “basic preferences” among consequences,
which in turn determine how they rank actions. Yet actions are the objects of choice and so we take as a primitive the
DMs’ranking of them, which subsumes their ranking of consequences. In any case, Consequentialism ensures that our
modeling choice is consistent with such an alternative view.
30As Savage (1954, p. 14) remarked, “If two different acts had the same consequences in every state of the world,

there would from the present point of view be no point in considering them two different acts at all. An act is therefore
identified with its possible consequences. Or, more formally, an act is a function attaching a consequence to each state
of the world.”
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For this reason, in applications it may be more natural to consider actions rather than acts (see e.g.
Section 4.8).

Among acts, bets play a special role because they elicit subjective probabilities, an insight due to
de Finetti and Ramsey.31 In particular, given any two consequences c � c′, we denote by cEc′ the
bet on event E ⊆ S that pays the best consequence c if E obtains and pays c′ otherwise. Given any
two events E and F , a preference cFc′ % cEc′ reveals that the DM considers F (weakly) more likely
than E.

2.5 Classical decision problems

As discussed in the Introduction, we suppose that the DM knows —because of his ex ante structural
information —that states are generated by a probability model m ∈ ∆ (S) belonging to a given (finite)
subset M of ∆ (S).32 Each m describes a possible generative mechanism. As such, it represents
physical uncertainty, that is, the inherent randomness that states feature. In other words, the DM
posits a model space M in addition to the state space S.33 In so doing, he satisfies a central tenet of
classical statistics a la Neyman-Pearson-Wald.34 The model space might well be based on experts’
advice, and its nonsingleton nature may reflect different advice.
Following Cerreia-Vioglio et al. (2013b), we take the “physical” information M as a primitive

and enrich the standard Savage framework with this datum: the DM knows that the true model m
generating the states belongs to the posited collection M . In terms of the basic preference %, this
translates into the requirement that betting behavior be consistent with datum M :

m (F ) ≥ m (E) ∀m ∈M =⇒ cFc′ % cEc′ (4)

where cFc′ and cEc′ are bets on events F and E, with c � c′. If all models in M deem event F more
likely than E, then the DM accordingly prefers betting on F to betting on E, that is, he deems F
more likely than E.
The quintet (A, S, C,M,%) forms a Savage classical decision problem. In particular: for gamblers,

models can be the (possible) composition of urns; for monetary authorities, the exogenous factors
affecting the Phillips curve and the shocks’ distributions; for firms, the prices’ distributions; for
investors, the returns’distributions; for civic offi cials, the peak ground accelerations’distributions;
for engineers, the stiffness’distributions; for environmental policy makers, the distributions of climate
sensitivity; and so on.

Urns In a betting decision problem, suppose DMs know that the urn contains 90 balls, which can be
either black or green or red. The state space is S = {B,G,R} and so, without any further information,
M = ∆ ({B,G,R}). If DMs are told that 30 balls are red, thenM = {m ∈ ∆ ({B,G,R}) : m (R) = 1/3}.
If instead they are told that half the balls are red, then M = {m ∈ ∆ ({B,G,R}) : m (R) = 1/2};
in this case, condition (4) implies that DMs are, for example, indifferent between bets on R and on
B ∪ G. Finally, if DMs are told the exact composition —say, with an equal number of each color —
then M = {m} is the singleton such that m (B) = m (G) = m (R) = 1/3.

Football Consider a DM who has to bet on whether the local team will win a football match (cf.
de Finetti 1977). If ties are not allowed, the state space is S = {W,L}. Suppose that, because of his
31See Ramsey (1926) and de Finetti (1931, 1937). We refer to Gilboa and Marinacci (2013) for a discussion.
32We call probability models the single probability measures m in the collection M . In statistics they are often called

hypotheses, while the collection M itself is called a statistical model. Note that by assuming that the true model
belongs to M , we abstract from misspecification issues.
33For instance, a specification of M consists of all probabilities that belong to a suitable neighborhood of a posited

benchmark model (Hansen and Sargent 2008, 2014).
34See, for example, Wald (1950) and Neyman (1957); for a discussion, see Arrow (1951, p. 418). Stoye (2011) is a

recent contribution to statistical decision theory from an axiomatic standpoint.
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ex ante information (e.g., the two teams played this match many times), the DM is able to assign the
following probabilities that the local team will win under the different terrain conditions determined
by the weather:

Rainy Cloudy Sunny
Prob of W 1/5 1/2 7/10
Prob of L 4/5 1/2 3/10

Three models result, namely, M = {mrainy ,mcloudy ,msunny} ⊆ ∆ ({W,L}).

Health insurance As in Gilboa and Marinacci (2013), consider two DMs, John and Lisa, who have
to decide whether to buy insurance against the risk of a heart disease. They are each 70 years old,
are smokers, have no blood pressure problems, have a total cholesterol level of 310 mg/dL, with 45
mg/dL HDL-C (good cholesterol), and have systolic blood pressure of 130. What is the probability
of a heart attack in the next 10 years? John and Lisa consult a few web experts: using a “heart
disease risk calculator”available on the websites of several major hospitals, they obtain the following
results:

Experts John Lisa
Mayo Clinic 25% 11%
National Cholesterol Education Program 27% 21%
American Heart Association 25% 11%
Medical College of Wisconsin 53% 27%
University of Maryland Heart Center 50% 27%

Thus the different experts, based on their data and medical models, provide quite different probability
models for the event “heart attack in the next 10 years”for each of the two DMs. In this case, John and
Lisa end up with a setM consisting of four elements and three elements, respectively. Formally, if we
set s1 =“heart attack in the next 10 years”and s2 =“no heart attack in the next 10 years”, the state
space is S = {s1, s2} and every probability model m ∈ ∆ (S) is parameterized by the probability
m (s1) that it assigns to s1. Hence, we can write MJohn = {25/100, 27/100, 53/100, 50/100} and
MLisa = {11/100, 21/100, 27/100}.

Environmental issues In environmental policy problems, probability distributions of climate sen-
sitivity vary across different climate models proposed by different experts (see e.g. Meinshausen et
al. 2009; Rogelj, Meinshausen and Knutti 2012). The set M then consists of the collection of such
distributions, as discussed by Millner, Dietz, and Heal (2013) and Heal and Millner (2014).

Population games Suppose that a static game is played recurrently in a stable environment by
agents who, at each round, are drawn at random from large populations, with one population for
each player role (Weibull 1996). In the game form G =

(
I, (Ci)i∈I , (Ai)i∈I , (gi)i∈I

)
the symbol I

now denotes the set of player roles and i ∈ I is the role of the agent drawn from population i. In
that role the agent selects an action ai ∈ Ai which yields consequence ci = g (ai, a−i) provided the
other agents (the opponents) select actions a−i in their roles.
For agents in role i the probability α−i ∈ ∆ (A−i) describes a possible distribution of opponents’

actions, with α−i (a−i) being the fraction of opponents who select profile a−i when drawn. The set
Mi ⊆ ∆ (A−i) is the collection of all these distributions that agents in role i posit.

Mixed strategies In an interactive situation among players who can commit to play actions se-
lected by random devices, the probability α−i ∈ ∆ (A−i) can be interpreted as a mixed strategy
of the opponents of player i. If so, α−i (a−i) becomes the probability that opponents’random de-
vices select profile a−i (in general, such devices are assumed to be independent across players). Here
Mi ⊆ ∆ (A−i) can be interpreted as the set of opponents’mixed strategies that player i considers.
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3 Classical subjective expected utility

3.1 Representation

Consider a Savage decision problem (A, S, C,M,%). Cerreia-Vioglio et al. (2013b) show that a
preference % satisfying Savage’s axioms35 and the consistency condition (4) is represented by the
criterion V : A→ R given by

V (a) =

∫
M

(∫
S

u (a (s)) dm (s)

)
dµ (m) (5)

That is, the acts a and b are ranked as follows:

a % b⇐⇒ V (a) ≥ V (b)

Here u : C → R is a von Neumann-Morgenstern utility function36 that captures risk attitudes (i.e.,
attitudes toward physical uncertainty) and µ : 2M → [0, 1] is a subjective prior probability that
quantifies the epistemic uncertainty about models, with support included in M . The subjective prior
µ reflects some personal information on models that DMs may have, in addition to the structural
information that allowed them to posit the collection M .37 In particular, when that collection is
based on the advice of different experts, the prior may reflect the different weight (reliability) that
DMs attach to each of them.
The quintet (A, S, C,M,%) can therefore be represented in the form (A, S, C,M, u). Representa-

tion (5) may be called classical subjective expected utility because of the classical statistics tenet on
which it relies. If we set

U (a,m) =

∫
S

u (a (s)) dm (s)

we can then write the criterion as

V (a) =

∫
M

U (a,m) dµ (m)

In words, the criterion considers the expected utility U (a,m) of each possible generative mechanism
m and then averages them according to the prior µ. In some applications it is useful to write V (a, µ)
to emphasize the role of beliefs in an action’s value.
This two-stage criterion can be seen as a decision theoretic form of hierarchical Bayesian model-

ing.38 As emphasized in the Introduction, all its probabilistic components are, ultimately, epistemic
(and hence subjective) because they depend on some unmodeled background information known to
DMs. If we denote such information by I, we can informally account for this key feature by writing
criterion (5) in the following heuristic form:

V (a |I ) =

∫
M

(∫
S

u (a (s)) dm (s |I )

)
dµ (m |I )

Although we omit them for brevity, similar “information augmented” versions hold for the other
criteria studied in this paper.39

35See, for example, Gilboa (2009, pp. 97-105).
36That is, c % c′ if and only if u (c) ≥ u (c′).
37Here we do not adopt the evidentialist view, known in economics as the Harsanyi doctrine (see e.g. Aumann 1987;

Morris 1995), that subjects with the same information should have the same subjective probabilities (for discussions,
see Jaynes 2003, ch. 12, Kelly 2008).
38See, for example, Bernardo and Smith (1994) and Berger (1993). For, m and s can be seen as realizations of two

random variables —say, m and s —with m (s) a realization of the distribution of s conditional on m (cf. Picci 1977).
39 In these heuristic versions, conditioning on I is purely suggestive, without any formal meaning (to give useful

content to I can be, indeed, a quite elusive problem) and without adopting, as just remarked, any evidentialist view.
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Optimal acts solve the optimization problem maxa∈A V (a). They thus depend on the preference
% via the utility function u and the prior µ. To facilitate the presentation, hereafter we assume
that optimal acts, if exist, are unique (because, say, of suitable strict concavity assumptions on the
objective function). We denote by â the optimal act; to ease notation, we do not mark its dependence
on u and µ (or on the set A of available acts).

Each prior µ induces a predictive probability µ̄ ∈ ∆ (S) through reduction:

µ̄ (E) =

∫
M

m (E) dµ (m) ∀E ∈ Σ (6)

In turn, the predictive probability allows us to rewrite the representation (5) as

V (a) = U (a, µ̄) =

∫
S

u (a (s)) dµ̄ (s) (7)

This reduced form of V is the original Savage subjective expected utility (SEU) representation.40

The predictive µ̄ is Savage’s subjective probability, elicitable a la de Finetti-Ramsey via betting
behavior on events. For, let c, c′ ∈ C be any two consequences, with c � c′. Without loss of generality,
we can normalize u so that u (c′) = 0 and u (c) = 1. If so, cFc′ % cEc′ if and only if µ̄ (F ) ≥ µ̄ (E).
Building on this simple remark, allows one to show that the probability µ̄ may, in principle, be elicited
(see e.g. Gilboa 2009).
We remark that in the reduction operation that generates predictive probabilities, some important

probabilistic features may disappear. For instance, in a binary state space S = {s1, s2} consider the
two collections M = {(0, 1) , (1, 0)} and M ′ = {( 1

2 − δ,
1
2 + δ) : 0 ≤ δ ≤ ε}, where 0 < ε < 1/2 is an

arbitrarily small quantity. Taking a uniform prior on each collection yields, in each case, the uniform
predictive probability on S that assigns probability 1/2 to each state. However, the collection M
consists of two very different models whereas the collection M ′ consists of many almost identical
models. Thus very different probabilistic scenarios are reduced to the same predictive probability.

Some special cases are important.

(i) If the support of µ is a singleton {m} (i.e., µ = δm), then DMs believe, perhaps wrongly,
that m is the true model. In this case the predictive probability trivially coincides with m
and so criterion (5) reduces to the Savage expected utility criterion U (a,m). As a predictive
probability, m is here a subjective probability (albeit a dogmatic one).

(ii) If M is a singleton {m}, then DMs have a maximal structural information and, consequently,
know that m is the true model. There is no epistemic uncertainty, but only physical uncer-
tainty (quantified by m).41 Criterion (5) again reduces to the expected utility representation
U (a,m), but now interpreted as a von Neumann-Morgenstern criterion since, absent epistemic
uncertainty, subjective probabilities have no role to play. When combined with (7), this shows
that classical SEU encompasses both the Savage and the von Neumann-Morgenstern represen-
tations.42

40A further reduction, equation (20), will be discussed in Section 4.1. Note that probability measures in ∆ (S) can
play two different roles: predictive probabilities and probability models.
41Knowledge of the true model (“known”probabilities) is a basic tenet of the rational expectations literature. Lucas

(1977, p. 15) writes that “Muth (1961) ... [identifies] ... agents subjective probabilities ... with ‘true’probabilities,
calling the assumed coincidence of subjective and ‘true’probabilities rational expectations”(emphasis in the original).
42Though the expected utility criterion was first proposed by Bernoulli (1738), the von Neumann and Morgenstern

(1947) representation theorem marks the beginning of modern decision theory owing to its reliance on behavioral and
so, in principle, testable axioms. But, there were some important earlier results on means and utilities (see Muliere
and Parmigiani 1993).
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(iii) If M ⊆ {δs : s ∈ S}, then there is no physical uncertainty but only epistemic uncertainty
(quantified by µ). We can identify prior and predictive probabilities: with a slight abuse of
notation, we write µ ∈ ∆ (S) so that criterion (5) takes the form

V (a) =

∫
S

u (a (s)) dµ (s) (8)

This is the form of the criterion that is relevant for decision problems without physical uncer-
tainty.

(iv) If an act a is such that U (a,m) = U (a,m′) for all m,m′ ∈ suppµ, we say that a is crisp
(Ghirardato, Maccheroni, and Marinacci 2004). It is intuitive that crisp acts are not sensitive
to epistemic uncertainty and that they feature the same physical uncertainty with respect to
all models; hence, crisp acts can be regarded as purely risky acts.

Urns In the previous urn example, suppose DMs are told that 30 balls are red, and so M =
{m ∈ ∆ ({B,G,R}) : m (R) = 1/3}. This is the three-color problem of Ellsberg (1961). In order to
parameterize M with the possible number θ ∈ Θ = {0, ..., 60} of green balls, we denote by mθ the
element of M such that mθ (G) = θ/90. Let A = {aB ,aG,aR} be the 1 euro bets on the different
colors. Suppose the prior µ is uniform —say, because DMs possess symmetric information about all
possible compositions. If we normalize the utility function u by setting u (1) = 1 and u (0) = 0, then
the following equalities hold:

V (aR) =

60∑
θ=0

mθ (R)µ (θ) = µ̄ (R) =
1

3

V (aG) =

60∑
θ=0

mθ (G)µ (θ) = µ̄ (G) =
1

61

60∑
θ=0

θ

90
=

1

3

V (aB) =

60∑
θ=0

mθ (B)µ (θ) = µ̄ (B) = 1− µ̄ (R ∪G) =
1

3

Therefore, aR ∼ aB ∼ aG. DMs are indifferent among the bets.
Now suppose that the DMs are instead given full information about the composition of the urn

—say, that the colors are in equal proportion. Then M = {m} is the singleton such that m (G) =
m (R) = m (B) = 1/3 and we are back to the von Neumann-Morgenstern expected utility. Since
V (aR) = V (aG) = V (aB) = 1/3, DMs are again indifferent among the bets. Despite the great
difference in the quality of information, classical SEU leads to a similar preference pattern. In
Section 4.4.1 we cast some doubts on the plausibility of this conclusion.

Football In the previous football example, let a and b be the 1 euro bets on the victory of,
respectively, the local and guest teams. If we normalize the utility function u by setting u (1) = 1
and u (0) = 0, then

U (a,mrainy) = mrainy (W )u (a (W )) +mrainy (L)u (a (L)) =
1

5
u (1) +

4

5
u (0) =

1

5

U (a,mcloudy) = mcloudy (W )u (a (W )) +mcloudy (L)u (a (L)) =
1

2
u (1) +

1

2
u (0) =

1

2

U (a,msunny) = msunny (W )u (a (W )) +msunny (L)u (a (L)) =
7

10
u (1) +

3

10
u (0) =

7

10

Consequently,

V (a) =
1

5
µ (rainy) +

1

2
µ (cloudy) +

7

10
µ (sunny)

V (b) =
4

5
µ (rainy) +

1

2
µ (cloudy) +

3

10
µ (sunny)
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Hence a % b if and only if µ (rainy) ≤ (2/3)µ (sunny).

Monetary policy In the monetary policy decision problem, within a state s = (w, ε, θ) the pair
(w, ε) represents random shocks and θ parameterizes a model economy. As in Battigalli et al. (2015a),
we factor the probability models m ∈M ⊆ ∆ (W × E ×Θ) as follows:

m (w, ε, θ) = q (w, ε)× δθ̄ (θ) (9)

where q ∈ ∆ (W × E) is a shock distribution and δθ̄ ∈ ∆ (Θ) is a (Dirac) probability measure con-
centrated on a given economic model θ̄ ∈ Θ. Each model m thus corresponds to a shock distribution
q and to a model economy θ.
Suppose that the distribution q of shocks is known, a common assumption in the rational expec-

tations literature, so that there is epistemic uncertainty only about the structural component θ. In
view of the factorization (9), we can then regard M as a subset of Θ and therefore define the prior µ
directly on θ.43 As a result, criterion (5) here becomes

V (a) =

∫
M

(∫
W×E×Θ

u (a (w, ε, θ)) dq (w, ε)× δθ̄ (θ)

)
dµ
(
θ̄
)

=

∫
M

(∫
W×E

u (a (w, ε, θ)) dq (w, ε)

)
dµ (θ)

The inner and outer integrals take care of, respectively, shocks’ physical uncertainty and model
economies’epistemic uncertainty.

Natural hazards In the natural hazard evacuation decision problem, suppose that offi cials posit
M based on the advice of experts —say, seismologists’assessments of the PGA distribution (see e.g.
Baker, 2008). If experts have different but dogmatic views, then M ⊆ {δs : s ∈ S}. Experts disagree
but each of them has no doubts about the PGA caused by the upcoming earthquake. In this case
there is no physical uncertainty, but only epistemic uncertainty.

Population games As we remarked, in some applications it is more natural to consider actions
rather than acts, that is, to consider the original decision problem (A,S,C, ρ,%). If so, criterion (5)
takes the form V (a) =

∫
M

(∫
S
u (ρ (a, s)) dm (s)

)
dµ (m). For instance, if in a population game we

denote by µi the prior on Mi ⊆ ∆ (A−i) held by agents in player role i, then we can write

V (ai) =

∫
Mi

(∫
A−i

u (gi (ai, a−i)) dα−i (a−i)

)
dµ (α−i)

for each action ai ∈ Ai (Battigalli et al. 2015a). Here the special case (iii) discussed previously
becomes Mi ⊆

{
δa−i : a−i ∈ A−i

}
; that is, the distributions of opponents’actions are degenerate.

Agents drawn from a population then play the same action, so the population behaves as a single
player. We are thus back to an interactive situation among standard players, in which the mass
action interpretation is actually not relevant (e.g., an oligopoly problem). In this case we can write
V (ai) =

∫
A−i

u (gi (ai, a−i)) dµ (a−i).

Financial investment The financial investment (or portfolio) decision problem is

max
a∈∆n−1

∫
M

(∫
S

u (a · s) dm (s)

)
dµ (m)

43Otherwise, µ should be defined on pairs (q, θ); that is, µ ∈ ∆ (∆ (W × E)×Θ).
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if, to ease notation, we assume w = 1.44 Its predictive form is maxa∈∆n−1

∫
S
u (a · s) dµ̄ (s). Suppose

that there are two assets, a risk free one with certain return rf and a risky one with uncertain
return r. In this case, the state space is the set R of all possible returns of the risky asset. If we
denote by a ∈ [0, 1] the fraction of wealth invested in the risky asset, then the problem becomes
maxa∈[0,1]

∫
M

(∫
R
u ((1− a) rf + ar) dm (r)

)
dµ (m).

Suppose r − rf = βx + (1− β) ε, with β ∈ [0, 1]. The scalar x can be interpreted as a predictor
for the excess return, while ε is a random shock with distribution q. The higher is β, the more
predictable is the excess return. Now, the state is s = (ε, β), where ε and β are, respectively,
its random and structural components. We assume, as in the previous monetary example, that
m (ε, β) = q (ε) × δβ̄ (β), that is, M ⊆ ∆ (∆ (E)× [0, 1]). Each model thus corresponds to a shock
distribution and to a predictability structure. If the shock distribution q is known, the only unknown
element is the predictability coeffi cient β: the investor is only uncertain about the predictability of
the risky asset. The investment problem becomes

max
a∈[0,1]

∫
[0,1]

(∫
E

u (rf + a (βx+ (1− β) ε)) dq (ε)

)
dµ (β) (10)

In contrast, if the shock distribution and the predictability coeffi cient are both unknown, the problem
is

max
a∈[0,1]

∫
∆(E)×[0,1]

(∫
E

u (rf + a (βx+ (1− β) ε)) dq (ε)

)
dµ (q, β) (11)

In the terminology of Barberis (2000), problem (10) features only predictability uncertainty, while in
problem (11) we have both parametric and predictability uncertainty.

A final remark. Models are often parameterized via a set Θ and a one-to-one map θ 7−→ mθ,
so that we can write M = {mθ : θ ∈ Θ} and V (a) =

∫
Θ

(∫
S
u (a (s)) dmθ (s)

)
dµ (θ). The need for

analytical tractability often leads researchers to use parametrizations that depend on specifying only
a few coeffi cients (e.g., two for normal distributions). Yet some collections M of models admit a
natural parameterization in which parameters have a concrete meaning, possibly in terms of (at least
in principle) observables. So in the urn example we parameterized M with the possible number
of green balls, i.e., Θ = {0, ..., 60}, and in the football example with the weather conditions, i.e.,
Θ = {cloudy, rainy, sunny}. In these cases, model uncertainty can be seen as uncertainty about
such parameters, which in turn can be regarded as the (mutually exclusive and jointly exhaustive)
contingencies that determine the variability of states (cf. de Finetti 1977; Pearl 1988, pp. 357-
372). Different models in M thus account for different ways in which contingencies may affect this
variability.45

3.2 Uniqueness

The support of the prior µ consists of probability models that are, in general, unobservable. For
this reason, µ can be elicited only through hypothetical betting behavior (an “assisted form of intro-
spection”according to Le Cam 1977). However, when in (5) the prior µ is unique, it can be elicited
from the predictive µ̄ that it induces, which in turn is elicitable through bets on events. These
considerations motivate our study in this section of µ uniqueness.

Linear independence The linear independence ofM —not just its affi ne independence —underlies
the desired uniqueness property. In particular, assume for simplicity that M and S are finite sets,

44Versions of this problem have been studied by, for example, Bawa, Brown, and Klein (1979), Kandel and Stambaugh
(1996), Barberis (2000), and Pastor (2000).
45The link between parameters and states can be formalized via conditioning if we introduce random variables that

have s and θ as realizations (cf. footnote 38).
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with M = {m1, ...,mn}; linear independence means that, given any collection of scalars {αi}ni=1,

n∑
i=1

αimi (s) = 0 ∀s ∈ S =⇒ α1 = · · · = αn = 0.

This is a condition of linear independence of the n vectors (m (s) : s ∈ S) ∈ R|S|.
Cerreia-Vioglio et al. (2013b) elaborate on Teicher (1963) to show that µ is unique if M is linear

independent. Hence, the reduction map µ 7→ µ̄ which through (6) relates predictive probabilities on
the sample space to prior probabilities on space of models, is invertible on ∆ (M). That is, distinct
predictive probabilities µ̄ and µ̄′ correspond to distinct prior probabilities µ and µ′ and since the
Savagean predictive probability µ̄ can be elicited from betting behavior on events, it follows that any
outside observer who is aware of M would then be able to infer the prior µ.

Orthogonality Orthogonality is a simple but important suffi cient condition for linear indepen-
dence. Recall from Section 2.1 that, for a finite collection M = {m1, ...,mn}, this condition amounts
to requiring the existence of a measurable partition {Ei}ni=1 of events such that, for each i,mi (Ei) = 1
and mi (Ej) = 0 if j 6= i. In words: for each model mi, there is an element of the partition Ei that
has probability 1 under that model and probability 0 under every other model.
In an intertemporal setup, this condition is satisfied by some fundamental classes of time series.

Specifically, consider an intertemporal decision problem in which environment states are generated
by a sequence of random variables {z̃t} defined on some (possibly unverifiable, except by Laplace’s
demon) underlying space and taking values on spaces Zt that, for ease of exposition, we assume to
be finite. For example, the sequence {z̃t} can model subsequent draws of balls from a sequence of
(possibly identical) urns; here Zt would consist of the possible colors of the balls that can be drawn
from urn t.
Suppose, for convenience, that all spaces Zt are finite and identical — each denoted by Z and

endowed with the σ-algebra B = 2Z —and that the relevant state space S for the decision problem
is the overall space Z∞ = ×∞t=1Zt = ×∞t=1Z. Its points s = (z1, ..., zt, ...) are the possible paths
generated by the sequence {z̃t}. Without loss of generality, we identify {z̃t} with the coordinate
process such that z̃t (s) = zt.
Endow Z∞ with the product σ-algebra B∞ generated by the elementary cylinders sets defined

by zt = {s ∈ Z∞ : s1 = z1, ..., st = zt}. The elementary cylinder sets are the basic events in this
intertemporal setting. In particular, the sequence {Bt}, called filtration —where B0 ≡ {S, ∅} and Bt
is the algebra generated by the cylinders zt —records the building up of environment states. Clearly,
B∞ is the σ-algebra generated by the filtration {Bt}.
In this intertemporal setup, then, the pair (S,Σ) is given by (Z∞,B∞). The set M of generative

models consists of probability measures m : B∞ → [0, 1]. Acts are adapted outcome processes
a = {at} : Z∞ → C, often called plans. The consequence space C also has a product structure
C = C∞, where C is a common instant outcome space. More specifically, at (s) ∈ C is the consequence
at time t if state s obtains.

Criterion (5) here takes the form

V (a) =

∫
M

(∫
Z∞

u (a (s)) dm (s)

)
dµ (m) (12)

Under standard conditions, the intertemporal utility function u : C∞ → R has a classic discounted
form u (c1, ..., ct, ...) =

∑∞
τ=1 β

τ−1υ (cτ ), with subjective discount factor β ∈ [0, 1] and (bounded)
instantaneous utility function υ : C → R.

As is well known (see e.g. Billingsley 1965, p. 39), models are orthogonal in the stationary and
ergodic case, which includes the standard independent and identically distributed (i.i.d.) setup as a
special case. Formally:

Proposition 1 A finite collection M of models that make the process {z̃t} stationary and ergodic is
orthogonal.
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So in this fundamental case, (12) features a cardinally unique utility function u and a unique prior
µ, with suppµ ⊆M . Since a version of Proposition 1 holds also for collections of homogenous Markov
chains, we can conclude that time series models widely used in applications satisfy the orthogonality
conditions that ensure the uniqueness of prior µ. Classical SEU thus provides a framework for
empirical work that relies on such time series (as it is often the case in the finance and macroeconomics
literatures).
Finally, note that the Savage reduced form V (a) =

∫
Z∞

u (a (s)) dµ̄ (s) of the representation (12)
features a predictive probability µ̄ that makes the process {z̃t} stationary when, as in the previous
result, models are stationary and ergodic (exchangeable, in the special i.i.d. case). The ergodic
theorem (and the de Finetti representation theorem) can be seen as providing conditions when a
converse holds.

Asymptotic contingencies In the asymptotic setting of this section, parameters may be given
a concrete interpretation, in the spirit of the discussion at the end of the previous section. For,
given a collection of models M = {mθ}θ∈Θ in parametric form, under some probabilistic invari-
ance conditions on the process {z̃t} (see e.g. Diaconis and Freedman 1987) there exists a se-
quence of Bt-measurable functions ϕt : Z∞ → Θ such that mθ (Eθ) = 1 for every θ, where
Eθ = {(z1, ..., zt, ...) ∈ Z∞ : limt→+∞ ϕt (zt) = θ}. For instance, if models make exchangeable a

process {z̃t} of 0s and 1s, then mθ (zt) =

t∏
τ=1

θzτ (1− θ)(1−zτ ) and ϕn (zt) =
∑t
τ=1 zτ/t. The events

Eθ are the contingencies that determine the models mθ in terms of the asymptotic behavior of the
functions ϕt. Model uncertainty is thus uncertainty about the events Eθ — that is, about the as-
ymptotic behavior of the functions ϕt.

46 This interpretation of parameters in terms of “asymptotic”
contingencies is sometimes called predictive because it originates with the de Finetti representation
theorem and the predictive approach it pioneered (see Cifarelli and Regazzini 1996).

3.3 Stochastic consequences

In some applications, actions are assumed to deliver consequences that are stochastic and not (as we
have assumed so far) deterministic.47 Lotteries on consequences, rather than “pure” consequences,
thus become the outcomes of actions when states obtain.
To see how to accommodate stochastic consequences in our setting, we must temporarily abandon

the Savage setting and consider an action based classical decision problem (A,S,C, ρ,M,%). Assume
that the state space has the Cartesian structure S = S1×S2 and that all posited models m ∈M can
be factored as

m (s1, s2) = m̃ (s1) γ (s2) (13)

where γ ∈ ∆ (S2) is a distribution on S2 that is known to the DM and so is common across all posited
models. The stochastic consequence function ρ̃ : A× S1 → ∆ (C) defined by

ρ̃ (a, s1) (c) = γ (s2 : ρ (a, s1, s2) = c) (14)

associates a lottery ρ̃ (a, s1) ∈ ∆ (C) on consequences to each pair (a, s1). By a simple change of
variable, for each action a we have

V (a) =

∫
M

(∫
S

u (ρ (a, s)) dm (s)

)
dµ (m) =

∫
M

(∫
S1

(∫
S2

u (ρ (a, s1, s2)) dγ (s2)

)
dm̃ (s1)

)
dµ (m̃)

=

∫
M

(∫
S1

(∫
C

u (c) ρ̃ (a, s1) (c)

)
dm̃ (s1)

)
dµ (m̃)

46Since mθ (Eθ) = 1 for every θ, the existence of the functions {ϕt} requires that models {mθ}θ∈Θ be orthogonal (the
relations between these functions and orthogonal models are studied by Mauldin et al. 1983). In turn (paraphrasing
Ornstein and Weiss 1990) this ensures that with probability 1 a single sampling of process {z̃t} suffi ces to determine
the process exactly (of course, such a sampling is an idealized notion that involves an actual infinity of observations).
47This section was written in collaboration with Pierpaolo Battigalli.
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where
∫
C
u (c) ρ̃ (a, s1) (c) is the expected utility of lottery ρ̃ (a, s1) ∈ ∆ (C). Hence, under the factor-

ization (13) we can equivalently rank actions through either the deterministic consequence function
ρ on the full state space S or the stochastic consequence function ρ̃ on the partially specified state
space S1, where models differ.
The previous argument provides a simple foundation in our setting for classical decision problems

(A, S̃,∆ (C) , ρ̃, M̃ ,%) featuring stochastic consequence functions ρ̃ and partially specified state spaces
S̃ that do not exhaust all payoff relevant uncertainty.48 Yet because the specification of an exhaustive
state space is often diffi cult, it may be convenient in some applications to work directly with stochastic
consequence functions, viewing them as a purely distributional modeling of the residual uncertainty
not accounted for in the state space at hand. If so, a converse of the previous derivation shows
that there is an underlying augmented state space, with the same Cartesian structure, on which an
equivalent deterministic consequence function can be defined. Specifically, set S1 = S̃, S2 = CA×S

(i.e., S2 is the collection of all maps s2 : A × S → C), and ρ (a, s1, s2) = s2 (a, s1). Finally, if we
define γ (s2) = ×(a,s)∈A×S ρ̃ (a, s) (s2 (a, s)), then M is the collection of all m on S1 × S2 defined via
(13). Condition (14) is easily seen to hold and so actions can be equivalently ranked through either
ρ̃ or ρ.49 However, this augmented state space is just a formal construction. Stochastic consequence
functions are a more parsimonious and direct modeling tool.
Under a stochastic version of Consequentialism, stochastic consequence functions ρ̃ induce maps

a : S → ∆ (C) from states to lotteries defined by a (s) = ρ̃a (s), which are called Anscombe-Aumann
acts. Given any consequence set C, the set ∆ (C) is always convex. So, unlike Savage acts, Anscombe-
Aumann acts have a natural convex structure — an analytical feature most useful in establishing
axiomatic foundations of decision criteria (see Gilboa and Marinacci 2013).
That said, in what follows we continue to study deterministic consequence functions. Our analysis

does still apply also to stochastic consequence function, but we omit details for brevity.

4 Within the Bayesian paradigm: Smooth ambiguity

4.1 Representation

Monetary case Suppose that acts are monetary, that is, the consequence space C is an interval of
the real line.50 Representation (5) can then be equivalently written as51

V (a) =

∫
M

(
u ◦ u−1

)
(U (a,m)) dµ (m) (15)

=

∫
M

u (c (a,m)) dµ (m)

where c (a,m) is the certainty equivalent

c (a,m) = u−1 (U (a,m)) (16)

of act a under modelm. The profile {c (a,m) : m ∈ suppµ} represents the scope of model uncertainty,
that is, the epistemic uncertainty that the DM experiences when dealing with alternative possible
probabilistic models m that may generate states. In particular,

V (a) =

∫
M

u (c (a,m)) dµ (m)

48Cf. Fishburn (1981). Machina (2004) introduces a state space in the real line that, by building on some insights of
Poincaré, permits to define almost-objective events. Mutatis mutandis, along with the Lebesgue measure they provide
a counterpart of the common γ measure.
49We can regard ρ̃, s2 ∈ CA×S and γ as, respectively, the behavioral, pure and mixed strategies of a chance player

that plays after observing (a, s). Then, the construction of the augmented state space is an application of the realization
equivalence theorem of Kuhn (1953).
50 In what follows, whenever we consider monetary acts we tacitly assume that C is an interval of the real line and

that u : C → R is strictly increasing and continuous.
51Note that Imu is an interval in the real line because u is strictly increasing and continuous.
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is the decision criterion that the DM uses to address that epistemic uncertainty, while

U (a,m) =

∫
S

u (a (s)) dm (s)

is how the DM addresses the physical uncertainty that each model m features.
Implicitly, the representation (5) thus assumes identical attitudes toward physical and epistemic

uncertainty, both modeled by the same function u. But, there is no reason to expect that this
is generally the case; for instance, DMs might well be more averse to epistemic than to physical
uncertainty. In the next section, the celebrated Ellsberg paradox will starkly illustrate this issue.
It is therefore important to generalize the classical SEU representation (5) by distinguishing such

attitudes. Toward that end, we adapt the smooth ambiguity model of Klibanoff, Marinacci, and
Mukerji (2005, hereafter KMM) to the present setup.52 Specifically, acts are ranked according to the
criterion

V (a) =

∫
M

(
v ◦ u−1

)
(U (a,m)) dµ (m) (17)

=

∫
M

v (c (a,m)) dµ (m) (18)

Here c (a,m) is the certainty equivalent (16) of act a under modelm, and both u and µ are interpreted
as in the classical SEU representation. Moreover, in light of (18), the strictly increasing and continuous
function v : C → R represents attitudes toward model uncertainty, that is, toward the epistemic
uncertainty that DMs experience when dealing with alternative possible probabilistic models m that
may generate states. A negative attitude toward model uncertainty is modeled by a concave v, which
can be interpreted as aversion to (mean preserving) spreads in the certainty equivalents c (a,m). Note
that u and v share the same monetary domain C.

General case Set φ = v ◦ u−1 : Imu ⊆ R→ R,53 so that we can rewrite (17) as

V (a) =

∫
M

φ (U (a,m)) dµ (m) (19)

or, in shorthand notation,
V (a) = Eµφ (Emu (a))

This is the original formulation of KMM, who show that a notion of ambiguity aversion is captured
by the concavity of φ (KMM, p. 1862). Because the domain Imu of φ is denominated in utils, such
concavity can be interpreted as aversion to (mean preserving) spreads in expected utilities (KMM, p.
1851). By standard results in risk theory, the concavity of φ amounts to v being more concave than
u, that is, to the existence of a strictly increasing and concave function g such that v = g ◦ u. Hence
ambiguity aversion in the present two-stage setup amounts to a higher degree of aversion toward
epistemic than toward physical uncertainty.
Ambiguity neutrality corresponds to a linear φ, that is, to equal attitudes toward physical and

epistemic uncertainty. If so, u = v and we return to the classical SEU representation (5).
We close with an important observation: representation (19) continues to hold even when C is

not an interval of the real line, but just any set. Hence, (19) can be seen as the extension of the
certainty equivalent representation (17) to general settings.

52Related, yet distinct, models have been proposed by Segal (1987), Davis and Paté-Cornell (1994), Nau (2006),
Ergin and Gul (2009), and Seo (2009).
53See KMM p. 1859. Since u is strictly increasing, the inverse u−1 exists; since u is continuous, the image Imu =
{u (c) : c ∈ C} is an interval of the real line. Note that φ inherits from u and v the properties of being continuous and
strictly increasing.
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Portability Representation (19) is “portable” across decision problems because it parameterizes
personality traits: risk attitudes given by the function u and ambiguity attitudes given by the function
φ. Such traits can be assumed to be constant across decision problems (with monetary consequences);
in contrast, state spaces and beliefs change according to the situation. Therefore, once u and φ are
elicited or calibrated (say, in the laboratory), the representation can be used for different problems.
As in traditional expected utility analysis, u can be elicited through lotteries; φ can be elicited through
uncertain prospects based on some canonical mechanism (like urns) that simulates model uncertainty.

Sources matter At a methodological level, the smooth ambiguity model drops a basic feature of
Savage’s original approach, a feature that is often described by saying that his approach was able “to
reduce uncertainty to risk.”To see why this is the case, assume for simplicity that the consequence
space C is finite. Then the SEU criterion (7) can be equivalently written as

V (a) =
∑
c∈C

u (c) µ̄a (c) (20)

where µ̄a, the probability that act a induces on consequences, is defined by

µ̄a (c) = µ̄
(
s ∈ S : s ∈ a−1 (c)

)
∀c ∈ C

The expected utility representation (20) is a “risk reduction”of the SEU criterion (7), that is often
used in applications. The probability µ̄a is a lottery in the jargon of risk theory, and (20) shows that
SEU relies, in the final analysis, on the lotteries induced by acts. These lotteries are evaluated per
se, a la von Neumann-Morgenstern, independently of acts and of their underlying state spaces and
subjective probabilities. In fact, consider acts a : S → C and a′ : S′ → C defined on different state
spaces: as long as the subjective probabilities µ̄ and µ̄′ on such spaces induce the same lottery (i.e.,
µ̄a = µ̄′a′), the SEU criterion (7) treats the two acts identically despite the altogether different kind
of uncertainty that they might feature. This invariance across decision problems featuring different
sources of uncertainty is a remarkable property of SEU.
The smooth representation partly abandons this property. We distinguished two sources of uncer-

tainty, physical and epistemic. The former is featured by each model m ∈M , each of which induces
a lottery on consequences defined by ma (c) = m

(
s ∈ S : s ∈ a−1 (c)

)
. The latter is characterized by

a prior µ on M that induces a lottery on consequences defined by µa (c) = µ (m ∈M : c (a,m) = c).
Risk reductionism would require these lotteries to be treated per se, a la von Neumann-Morgenstern,
independently of their underlying sources of uncertainty. Accordingly, if u is the relevant von
Neumann-Morgenstern utility, then we should use it for all these lotteries and consider the expected
utilities

∑
c∈C u (c)ma (c) and

∑
c∈C u (c)µa (c). This is, indeed, what the SEU criterion (15) does.

In contrast, the smooth ambiguity criterion (17) permits different attitudes toward the two uncer-
tainty sources via their respective von Neumann-Morgenstern utility functions u and v and expected
utilities

∑
c∈C u (c)ma (c) and

∑
c∈C v (c)µa (c). In this sense, (17) is a source dependent criterion.

Within each source, however, it keeps the invariance principle of SEU (inter alia, this helps make the
criterion analytically tractable and portable, as remarked previously).
Thus, in this setup we maintain a Bayesian approach by using a single probability measure to

quantify probabilistic judgements within each source of uncertainty. However, different confidence
in such judgements (whatever feature of a source causes it) translate as different degrees of aversion
to uncertainty across sources, and so in different von Neumann-Morgenstern utility functions.54 The
next example illustrates this key point.

A coin illustration Betting on coins is, intuitively, greatly affected by whether or not the coins
are well tested. Heads and tails are judged to be equally likely when betting on a well tested coin

54See Chew and Sagi (2008), Abdellaoui et al. (2011), and Gul and Pesendorfer (forthcoming) for recent decision
models that explicitly consider sources of uncertainty. Smith (1969) is an early paper that drops source independence
and considers different uncertainty attitudes for different sources of uncertainty.
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that has been flipped a number of times with approximately equal instances of heads and tails. There
is only physical uncertainty, no model uncertainty. When dealing with an untested coin, however, we
have both physical and model uncertainty; here the different models correspond to different possible
biases of the coin. Suppose that DMs consider (if only for symmetry) a uniform prior over such
models; then once again heads and tails are judged to be equally likely by the resulting predictive
probability, as will be seen momentarily. Yet the evidence behind such judgements —and thus the
confidence in them —is dramatically different. Hence, DMs may well prefer, ceteris paribus, betting
on tested coins rather than betting on untested ones.55

This preference naturally emerges in our setting by taking into account the negative attitude of
DMs toward model uncertainty. Specifically, call I the tested coin and II the untested one. Actions
aI and aII are, respectively, bets of 1 euro on coin I and on coin II. The state space is

S = {H,T} × {H,T} = {HH,HT, TH, TT}

Here state HH obtains when both coins land heads, state HT obtains when coin I lands heads and
coin II lands tails, and so forth. The consequence function is

ρ (aI , s) =

{
1 if s ∈ HH ∪HT
0 if s ∈ TH ∪ TT ; ρ (aII , s) =

{
1 if s ∈ HH ∪ TH
0 if s ∈ HT ∪ TT

The next table summarizes the decision problem in terms of acts.

HH HT TH TT
aI 1 1 0 0
aII 1 0 1 0

Given the available information, it is natural to set

M =

{
m ∈ ∆ (S) : m (HH ∪HT ) = m (TH ∪ TT ) =

1

2

}
In words, M consists of all models that assign probability 1/2 to either outcome for the tested coin
I. No specific probability is, instead, assigned to the outcome of the untested coin. As a result, act
aI is unaffected by model uncertainty, while aII is heavily affected.
If we normalize the utility function by setting u (1) = 1 and u (0) = 0, then

V (aI) =

∫
M

φ (m (HH ∪HT )) dµ (m) = φ

(
1

2

)
and

V (aII) =

∫
M

φ (m (HH ∪ TH)) dµ (m)

Because the prior µ is unaffected by model uncertainty, it turns out to be irrelevant for the value
of act aI . It matters, instead, for act aII . Suppose µ is uniform, so that all models are equally
weighted. If so, the value of act aII is given by the Riemann integral V (aII) =

∫ 1

0
φ (x) dx. If φ is

strictly concave, then it follows from the Jensen inequality that

V (aII) =

∫ 1

0

φ (x) dx < φ

(∫ 1

0

xdx

)
= φ

(
1

2

)
= V (aI)

This ranking captures the desired preference for betting on the tested coin. It emerges through the
explicit modeling of model uncertainty (and its aversion) that the smooth criterion permits.

55 In the jargon of epistemology, the evidence has the same balance but different weight (see Kelly, 2008; it is well
known that the “weight of evidence” notion traces back to Keynes 1921). Gilboa (2009) discusses the importance of
this coin example in the genesis of David Schmeidler’s approach to ambiguity (see Section 5). An insightful discussion
can be found in Jaynes (1959, pp. 184-185).
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We close by observing that for the predictive probability we have µ̄ (HH ∪HT ) = µ̄ (TH ∪ TT ) =
1/2 as well as

µ̄ (HH ∪ TH) =

∫
M

m (HH ∪ TH) dµ (m) =

∫ 1

0

xdx =
1

2

µ̄ (HH ∪ TH) =

∫
M

m (HH ∪ TH) dµ (m) =

∫ 1

0

(1− x) dx =
1

2

The predictive probabilities are thus not able to distinguish the different weights that characterize
the evidence about the two coins. This result confirms our remark in Section 3.1: in the reduction
operation that generates predictive probabilities, some important information may be lost.

A final twist For decision problems in which physical uncertainty is not relevant,M ⊆ {δs : s ∈ S}
and so suppµ ⊆ {δs : s ∈ S}. Representation (17) then takes the form V (a) =

∫
S
v (a (s)) dµ (s).

When v = u (identical attitudes toward physical and epistemic uncertainty), we are back in the
situation of (8). Otherwise, when v 6= u (attitudes differ), it is the function v that matters.56

4.2 Analytical examples

The two-stage representations that we have seen are very general. Some standard specifications of
its components would be helpful if we seek to compare findings across different applications. Hence
we next consider a few specifications of utility functions.57

(i) Suppose that both utility functions u and v are CARA,58 with u (x) = −e−αx and v (x) =

−e−βx for all x ∈ R. Then φ : (−∞, 0) → R is given by φ (y) =
(
v ◦ u−1

)
(y) = − (−y)

β
α for each

y < 0, and so, in shorthand notation,

V (a) = −Eµ
(
Eme

−αa) βα
In particular, φ is concave provided that α ≤ β. If α = β, we return to the SEU criterion V (a) =
−Eµ̄e

−αa. If u (x) = x (i.e., if u is risk neutral), then φ = v and so

V (a) = −Eµe
−βEma (21)

(ii) Suppose that both utility functions u and v are CRRA,59 with u (x) = xα and v (x) = xβ

for all x > 0. Then φ : (0,+∞)→ R is given by φ (y) =
(
v ◦ u−1

)
(y) = y

β
α for each y > 0, so

V (a) = Eµ (Ema
α)

β
α

In particular, φ is concave provided that α ≥ β (in which case φ as well is CRRA). If α = β, we return
to the SEU criterion V (a) = Eµ̄a

α. If v (x) = log x, then φ = α−1v and so V (a) = α−1Eµ log (Ema
α).

56 If we consider stochastic consequences (Section 3.3) with Anscombe-Aumann acts a : S → ∆ (C), the special case∫
S φ (u (a (s))) dµ (s) of representation (19) when suppµ ⊆ {δs : s ∈ S} is sometimes called second order (or recursive)
expected utility (see Neilson 2010).
57As to probabilities, normality is often assumed on models (though there is an increasing emphasis on non normal

models); priors can be standardized through objective Bayesian methods, which often rely on noninformative priors
(see e.g. Kass and Wasserman 1996; Berger 2006).
58A utility function u is CARA (constant absolute risk aversion) if, for all x ∈ R, either u (x) = x or u (x) = −e−αx

for some α > 0.
59A utility function u is CRRA (constant relative risk aversion) if, for all x > 0, either u (x) = log x or u (x) = xα

for some 0 < α < 1.
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(iii) A CARA φ, say φ (x) = −e−λx, exhibits constant absolute ambiguity aversion (see KMM
p. 1866). In this case,

V (a) = −Eµe
−λEmu(a) (22)

Since v = φ ◦ u, we have v (x) = −e−λu(x); that is, the function v is “CARA in utils” as opposed
to the previous “CARA in money”case v (x) = −e−βx. In the risk neutral case u (x) = x, the two
notions coincide; in particular, (21) and (22) are equal.

As KMM p. 1886 argues, a constant Arrow-Pratt index −φ′′/φ′ captures a form of constant
(absolute) ambiguity aversion (CAAA), characterized by an exponential φ. In a similar vein, the
notions of DAAA and IAAA can be introduced. Finally, a power φ can be viewed as capturing a
form of CRAA.60

4.3 Certainty equivalents

In the smooth ambiguity model, monetary acts a have two certainty equivalents

c (a, µ) = v−1

(∫
M

(
v ◦ u−1

)
(U (a,m)) dµ (m)

)
and

c (a, µ) = φ−1

(∫
M

φ (U (a,m)) dµ (m)

)
The former expression is measured in money but the latter uses utils — the only kind of certainty
equivalent that is well defined for general (i.e., not only monetary) acts. Since c (a, µ) = u (c (a, µ)),
it follows that the two expressions are related by a simple change of scale. In any case, it is the
monetary certainty equivalent c (a, µ) that corresponds to the standard notion of certainty equivalent
and that generalizes the certainty equivalent c (a,m). It features some noteworthy properties.

Proposition 2 For each monetary act a and each prior µ, the following statements hold:61

(i) c (k, µ) = k for each k ∈ R;

(ii) c (a+ k, µ) = c (a, µ) + k for each k ∈ R, provided u and v are CARA;

(iii) c (αa, µ) = αc (a, µ) for each α ∈ [0, 1], provided u and v are CRRA;

(iv) c (·, µ) is concave provided φ is concave and u and v are either both CARA or both CRRA.

Since c (a, µ̄) = u−1 (U (a, µ̄)), the Jensen inequality implies that for each act a and each prior
µ the inequality c (a, µ̄) ≥ c (a, µ) holds provided φ is concave. Ambiguity aversion thus lowers the
value of acts (in Section 4.8 we discuss whether this results in a more cautious choice behavior).

We close the section by computing the certainty equivalents for the examples given in the previous
section.
60Grant and Polak (2013) discuss constant ambiguity attitudes in terms of the weak certainty independence axiom of

Maccheroni, Marinacci, and Rustichini (2006). Their analysis has been extended to DAAA by Xue (2012), who suitably
weakens that independence axiom and axiomatizes a constant superadditive DAAA version of variational preferences.
Relative attitudes are instead related to the multiplicative version of the weak certainty independence axiom studied
by Chateauneuf and Faro (2009).
61With a slight abuse of notation, k denotes both a scalar and a constant act (e.g., (a+ k) (s) = a (s) + k for each

s ∈ S).
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Example 3 (i) In the CARA example of Section 4.2-(i), we have v−1 (x) = − (1/β) log (−x) and
φ−1 (x) = − (−x)

α
β . Hence, in shorthand notation,

c (a, µ) = − 1

β
log Eµ

(
Eme

−αa) βα and c (a, µ) = −
(

Eµ
(
Eme

−αa) βα)α
β

Under risk neutrality,

c (a, µ) = c (a, µ) = − 1

β
log Eµe

−βEma (23)

(ii) In the CRRA example of Section 4.2-(ii), we have v−1 (x) = x
1
β and φ−1 (x) = x

α
β . Hence

c (a, µ) =
(

Eµ (Ema
α)

β
α

) 1
β

and c (a, µ) =
(

Eµ (Ema
α)

β
α

)α
β

(iii) In the CARA φ example of Section 4.2-(iii), we have v−1 (x) = u−1 (− (1/λ) log (−x)) and
φ−1 (x) = − (1/λ) log (−x). Therefore

c (a, µ) = u−1

(
− 1

λ
log Eµe

−λEmu(a)

)
and c (a, µ) = − 1

λ
log Eµe

−λEmu(a)

N

The last utility certainty equivalent c (a, µ) can be seen as a version of the multiplier preferences
of Hansen and Sargent (2001, 2008); under risk neutrality, it coincides with (23). We will return to
this important case in Section 5.2.

4.4 Illustrations

4.4.1 Ellsberg paradoxes

The classic paradoxes presented by Ellsberg (1961) starkly illustrate the importance of distinguishing
between attitudes toward physical and epistemic uncertainty. The first paradox involves two colors in
two urns, the second paradox (which we have already encountered) involves three colors in one urn.

Two urns Consider two urns, I and II, with 100 balls in each.

1. The DM is told that:

(i) in both urns, balls are either white or black;

(ii) in urn I, there are 50 black and 50 white balls.

2. The DM is given no information on the proportion of white and black balls in urn II.

Thus urn I features only physical uncertainty whereas urn II features both physical and epistemic
uncertainties. The DM must choose from the following 1 euro bets on the colors of a ball drawn from
each urn:

1. bets aI and bI , which pay 1 euro if the ball drawn from urn I is, respectively, black or white;

2. bets aII and bII , which pay 1 euro if the ball drawn from urn II is, respectively, black or white.
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We can easily model such choices in a Savage framework. The state space is

S = {B,W} × {B,W} = {BB,BW,WB,WW}

where state BB obtains when a black ball is drawn from both urns, state BW obtains when a black
ball is drawn from urn I and a white ball is drawn from urn II, and so forth. The decision problem
is summarized by the following table.

BB BW WB WW
aI 1 1 0 0
bI 0 0 1 1
aII 1 0 1 0
bII 0 1 0 1

Given the available information, it is natural to set

M =

{
m ∈ ∆ (S) : m (BB ∪BW ) = m (WW ∪WB) =

1

2

}
In words, M consists of all models that give probability 1/2 to the drawing of either color from
the “physical” urn I. In contrast, the models in M do not assign any specific probability to the
drawing of either color from the “epistemic”urn II. As a result, M consists of 101 elements. We can
parameterize them with the possible number θ ∈ Θ = {0, ..., 100} of black balls in urn II denoting by
mθ the element of M such that mθ (BB ∪WB) = 1−mθ (BW ∪WW ) = θ/100.
Suppose the DM ranks these bets according to the classical SEU criterion. First of all, normalize

the utility function by setting u (1) = 1 and u (0) = 0. Then

U (aI) = U(bI) =
1

2

Now suppose, given the symmetry of information about urn II, that the prior µ is uniform. Then62

U (aII) =
∑
θ∈Θ

mθ (BB ∪WB)µ (θ) =
1

101

100∑
θ=0

θ

100
=

1

2

and a similar argument shows that U(bII) = 1/2. We conclude that, according to the classical SEU
model, the DM should be indifferent among all bets; that is, aI ∼ bI ∼ aII ∼ bII . It is, however,
plausible that the DM would rather bet on the physical urn I than on the epistemic urn II:

aI ∼ bI � aII ∼ bII (24)

Besides introspection, overwhelming experimental evidence confirms this preference pattern. Remark-
ably, the pattern emerges as soon as we distinguish —via the smooth ambiguity model —between
attitudes toward physical and epistemic uncertainty. To this end, we normalize also the utility func-
tion v by setting v (1) = 1 and v (0) = 0, and we assume that φ = v ◦ u−1 is strictly concave, so
that the DM is strictly ambiguity averse (i.e., he is strictly more averse to epistemic than to physical
uncertainty). We still have V (aI) = V (bI) = 1/2, but now

V (aII) =
∑
θ∈Θ

φ (mθ (BB ∪WB))µ (θ) =
1

101

100∑
θ=0

φ

(
θ

100

)

< φ

(
1

101

100∑
θ=0

θ

100

)
= φ

(
1

2

)
A similar argument shows that V (bII) = V (aII). Hence the Ellsberg pattern (24) emerges as soon
as we distinguish the different attitudes by considering a higher aversion to epistemic than to physical
uncertainty.
62An early version of the calculations presented here can be found in Boole (1854, pp. 370-375).
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Three colors We return now to Section 3.1’s urn example in which DMs were told that 30 balls
are red, so that M = {m ∈ ∆ ({B,G,R}) : m (R) = 1/3}. We observed that classical SEU implies
that aR ∼ aB ∼ aG —that is, the DMs are indifferent among betting on any of the three colors —
when a uniform prior µ is assumed. Such a prior results from the symmetric information about all
possible compositions of green and blue balls.
Given the available information, it is plausible that DMs prefer betting on red to betting on either

green or blue; that is,
aR � aB ∼ aG (25)

In fact, all posited models agree on the probability of R, but they differ substantially on that of the
other two colors.
We adopt the normalizations of the two urns paradox, that is, u (1) = v (1) = 1 and u (0) =

v (0) = 0. Under the uniform prior of Section 3.1, we have V (aR) = φ (1/3) and

V (aG) =

60∑
θ=0

φ (mθ (G))µ (θ) =
1

61

60∑
θ=0

φ

(
θ

90

)
< φ

(
1

61

60∑
θ=0

θ

90

)
= φ

(
1

3

)
A similar argument shows that V (aG) = V (aB). Hence pattern (25) is easily justified once we
account for differences in attitudes.

4.4.2 Structural reliability (and mean preserving spreads)

Consider a general structural reliability problem that generalizes the cantilever beam example of
Section 2.2.63 An engineer has to select the design of a structure within a set A of possible alternative
designs. The reliability of each design depends on an exogenous state s ∈ S, which can be seen as the
realization of an underlying random variable. A limit state function g : A×S → R identifies, for each
design a, the failure event Fa = {s ∈ S : g (a, s) < 0} and the safe event F ca = {s ∈ S : g (a, s) ≥ 0}.64
In the cantilever beam example, g (a, s) = d− τ (a, s). As in that example, the consequence function
ρ : A× S → R is given by

ρ (a, s) =

{
δ + c (a) if s ∈ Fa
c (a) if s ∈ F ca

where δ is the damage cost of failure and c (a) is the cost of design a.65 The induced act a is thus
binary:

a (s) =

{
δ + c (a) if s ∈ Fa
c (a) if s ∈ F ca

Since c (a) > c (a) + δ, act a can be viewed as a bet on the safe event F ca . Hence, the preference for
design a over design b can be seen as a preference to bet on the safe event F ca rather than on the safe
event F cb .

Given a model m ∈ ∆ (S), the failure probability ma of design a is ma = m (Fa). The engineer
does not know the true model, but he is able to posit a set M of possible models.66 He has prior

63This section was written in collaboration with Veronica Cappelli. Borgonovo et al. (2015) show how some well
known models of risk analysis (e.g., Kaplan and Garrick 1981; Kaplan, Perla, and Bley 1983) that deal with technological
uncertainty can be embedded in the setup of this paper.
64The failure event is often described as Fa = {s ∈ S : g (a, s) ≤ 0}. For our purposes, however, it does not matter

whether the event is identified by a weak or a strict inequality. Moreover, for simplicity we assume that g is scalar and
not vector valued (because of multiple components that the structure might have) and that there is a single threshold,
zero, and not multiple ones (because of different possible damage levels).
65To ease notation, we assume that costs δ and c (a) are negative scalars.
66For simplicity, we assume that the limit state function g is known.
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probability µ over such models and ranks designs through the smooth ambiguity criterion

V (a) =

∫
M

φ

(∫
S

u(a(s))dm (s)

)
dµ (m)

=

∫
M

φ ((u(δ + c (a))− u (c (a)))ma + u (c (a))) dµ (m)

If φ is linear, we obtain the classical SEU criterion (cf. (7))

U(a,µ̄a) = (u(δ + c (a))− u (c (a))) µ̄a + u (c (a))

where µ̄a is the mean failure probability of design a which is given by µ̄a =
∫
M
m (Fa) dµ (m).

Under the classical SEU criterion, an engineer should indifferent between two designs that share
the same mean failure probability and the same costs. Yet, as Der Kiureghian (2008, p. 354) re-
marks:67 “This result appears somewhat counter-intuitive, as with identical costs and mean failure
probabilities, one would expect a preference for the case with smaller uncertainty in the failure prob-
ability estimate. But simple derivations [...] show that aversion to uncertainty in failure probability
is not logical.”
We show that such counterintuitive indifference is not so much a logical necessity as a consequence

of the failure to distinguish attitudes toward physical and toward epistemic uncertainty. Once this
distinction is made and a nonlinear φ is considered, the counterintuitive indifference no longer holds.
To see why this is the case, consider a decision problem (A, S, C,%) in which the preference % is
represented by the smooth ambiguity criterion (19), i.e., V (a) =

∫
M
φ (U (a,m)) dµ (m) where we

assume (for simplicity) that suppµ is a finite set.68 In particular, by (7) the equality V (a) = U (a, µ̄)
holds when φ is linear.
We say that act b is a (subjective) mean preserving spread69 of act a if U (a, µ̄) = U(b, µ̄) and,

given that |M | > 2, there are models m′,m′′ ∈ suppµ such that

U(b,m′′) ≤ U (a,m′′) ≤ U (a,m′) ≤ U(b,m′) (26)

and
U (a,m) = U(b,m) ∀m 6= m′,m′′ (27)

By conditions (26) and (27), the two acts share the same expected utilities for all models except m′

and m′′, where act b features expected utilities that are more spread out than those of a. As a result,
b exhibits a variability in expected utility that is no less than the corresponding variability of a.
The condition U (a, µ̄) = U(b, µ̄) disciplines such a comparison of variability by restricting it to

pairs of acts that share the same expected utility under the predictive probability µ̄. This condition
amounts to requiring acts a and b to be indifferent when φ is linear (i.e., when acts are ranked
according to classical SEU). However, the greater variability of act b might well reduce its appeal
relative to act a. The next general result shows that this is indeed the case as long as φ is concave, that
is, provided the DM is more averse toward epistemic than toward physical uncertainty or, equivalently,
if he is ambiguity averse.

Proposition 4 If the DM is ambiguity averse, then V (b) ≤ V (a) whenever act b is a mean pre-
serving spread of act a.

In short, the indifference prescribed by classical SEU between acts a and b fails to hold as soon
as the distinction between the attitudes toward epistemic and toward physical uncertainty is made.70

67Der Kiureghian assumes linear utility, but doing so is not essential for his argument.
68Recall from Section 4.1 that U (a,m) =

∫
S u (a (s)) dm (s).

69This notion adapts a definition of Ghirardato and Marinacci (2001), which was in turn based on the classic work
of Rothschild and Stiglitz (1970).
70We will refrain (for the sake of brevity) from further analysis, but all these considerations hold also for the case of

acts that —though not directly comparable through a mean preserving spread —can be connected via a finite sequence
of intermediate acts that are, instead, comparable in that sense (see Rothschild and Stiglitz 1970, p. 231).
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Returning now to the design choice, consider two designs a and b that share the same costs. Since
U (a,m) = (u(δ + c (a))− u (c (a)))ma+u (c (a)), it easily follows that b is a mean preserving spread
of a if and only if µ̄a = µ̄b and there are m

′,m′′ ∈ suppµ such that

m′′b ≤ m′′a ≤ m′a ≤ m′b
and ma = mb for all m 6= m′,m′′. By Proposition 4, ambiguity averse engineers prefer design a over
design b even though the two designs share the same mean failure probability and the same costs.
In other words, engineers who are more averse toward epistemic than toward physical uncertainty
exhibit the “preference for the case with smaller uncertainty in the failure probability estimate”that
Der Kiureghian (2008), previously quoted, claims is intuitive.

4.5 Extreme ambiguity aversion: Maxmin

Wald Under extreme ambiguity aversion — that is, when ambiguity aversion “goes to infinity”—
the smooth ambiguity criterion (17) reduces in the limit (under finiteness of M) to the classic Wald
(1950) maxmin criterion71

V (a) = min
m∈M

∫
S

u (a (s)) dm (s) (28)

Under this very cautious criterion, the DM “maxminimizes”over all possible probability models in
M . Prior probabilities do not play any role.
We illustrate this limit result in an important special case. Mathematically, increasing ambiguity

aversion corresponds to increasing concavity of the function φ : Imu→ R. When this function is twice
differentiable, its Arrow-Pratt index of concavity is λφ = −φ′′/φ′. In the CARA case φλ (x) = −e−λx,
for instance, the parameter λ > 0 is the constant Arrow-Pratt index, and so φλ features constant
absolute ambiguity aversion (Section 4.2-(iii)). Consider the utility certainty equivalent (Example 3)

cλ (a, µ) = − 1

λ
log

∫
M

e−λ
∫
S
u(a(s))dm(s)dµ (m) (29)

with λ > 0. Here ambiguity aversion goes to infinity or to zero provided that λ → +∞ or λ → 0,
respectively. In particular, since vλ = φλ ◦u, it is the aversion to epistemic uncertainty that underlies
these limit cases.
It can be easily shown that, if suppµ = M , then

lim
λ→0

cλ (a, µ) =

∫
S

u(a(s))dµ̄ (s) and lim
λ→+∞

cλ (a, µ) = min
m∈M

∫
S

u(a(s))dm (s)

In other words, as aversion to ambiguity (and so to epistemic uncertainty) goes either to infinity or
to zero, we return either to the classical SEU criterion or to the Wald maxmin criterion.
The latter case is especially interesting: the Wald criterion emerges as the result of extreme

aversion to epistemic uncertainty. This finding sheds further light on the extremity of such criterion.

A grain of subjectivity More generally, when it only holds the inclusion suppµ ⊆M , we have

lim
λ→+∞

cλ (a, µ) = min
m∈suppµ

∫
S

u(a(s))dm (s)

In this case, a grain of genuine subjectivity remains: the prior µ plays the role of selecting which
models in M are relevant, and so must be included in the minimization. The prior simply classifies
models as “in” and “out” and makes no further, finer, assessment on their likelihood. The limit
criterion

V (a) = min
m∈suppµ

∫
S

u(a(s))dm (s) (30)

can be interpreted as a Waldean version of the classic Gilboa-Schmeidler decision model (to be
discussed in Section 5). In applications, this is often the version of the model that is used.
71See KMM p. 1867. This section was written in collaboration with Simone Cerreia-Vioglio.
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Statewise maxmin Suppose that the support of µ coincides with the collection of all probability
measures on some event E; that is, suppµ = ∆ (E). Then

V (a) = min
m∈suppµ

∫
S

u(a(s))dm (s) = min
s∈E

u(a(s)) (31)

In words: when the support consists of all models conceivable on some event, then the maxmin
criterion takes a statewise form (on the event). DMs consider only the utilities that they can achieve
state by state, probabilities (of any sort) play no role.72

A no trade illustration In a frictionless financial market, consider a primary asset y : S → R
that pays out y (s) if state s ∈ S obtains. The market price of each unit of the asset is p. Investors
have to decide how many units x ∈ R of the asset to trade. If x > 0, investors buy the asset; if x < 0,
they sell it; if x = 0, there is no trade.
In any case, a portfolio with x units of the asset has a, state contingent, payoff yx − px.73 The

associated act x : S → R is given by x (s) = y (s)x − px. There is no trade on asset y when
V (x) < V (0) for all x 6= 0, that is, when investors do not benefit from either buying or from selling
the asset. Assume risk neutrality. The next result, which adapts to the present setup a classic result
of Dow and Werlang (1992), shows that with maxmin behavior there might be no trade (unless the
asset is crisp74).

Proposition 5 Under maxmin behavior (30), there is no trade in asset y if and only if its price
satisfies

min
m∈suppµ

Em (y) < p < max
m∈suppµ

Em (y) (32)

Condition (32) requires suppµ to be nonsingleton; thus model uncertainty is essential for the
result. In particular: the larger is the support of µ (and so the perceived model uncertainty), the
larger the inequality and hence the set of prices that result in no trade.
Extreme ambiguity aversion may thus freeze market transactions — an important insight that

has been often discussed in the literature.75 This suggests that suffi ciently high ambiguity aversion
may arbitrarily reduce trade volumes. To see why this is the case, suppose investors rank these
acts through the utility certainty equivalent (29). Under risk neutrality, we then have, in shorthand
notation,

cλ (x, µ) = − 1

λ
log Eµe

−λEmx (33)

The next simple property will be useful.

Lemma 6 cλ (x, µ) ≤ c−λ (x, µ) for all x ∈ R, with equality if x is crisp.

We say that there is at most ε-trade volume on asset y if cλ (x, µ) < 0 for all x /∈ (−ε, ε); in words,
investors may benefit only from transactions involving quantities smaller than ε. Next we show that
suffi ciently high ambiguity aversion can explain any arbitrarily low trade volume (unless the asset is
crisp).

Proposition 7 Let ε > 0. There is at most ε-trade volume in asset y if

cελ (y, µ) < p < c−ελ (y, µ) (34)

72This nonprobabilistic criterion may be relevant in what are known as decision problems under ignorance, in which
information is too limited for any kind of probabilistic representation. Milnor (1954), Arrow and Hurwicz (1972), and
Cohen and Jaffray (1980) study this important class of decision problems.
73We abstract from any intertemporal issue (cf. Section 4.9).
74That is, Emx =Em′x for all m,m′ ∈ suppµ.
75See, for example, Guidolin and Rinaldi (2013).
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In particular, the inequality holds when ελ is large enough (something that requires a higher λ
if ε is smaller) provided the previous no trade inequality (32) holds.76 So whenever the price of an
asset precludes its being traded under maxmin behavior, a higher ambiguity aversion corresponds to
lower trade volume on the asset under criterion (33).

Extreme risk aversion So far we have regarded maxmin behavior as the result of extreme am-
biguity aversion — that is, of a much higher aversion to model uncertainty than to risk. Formally,
however, the outcome statewise maxmin criterion a la Leontief V (a) = mins∈S a(s) can be seen as a
limit version of the classic SEU criterion (5) as risk aversion becomes increasingly larger (cf. Laffont
1989). In other words, the Leontief criterion can correspond either to extreme risk aversion or to
risk neutrality with extreme model uncertainty aversion. The latter interpretation is consistent with
presuming that DMs are more averse to model uncertainty than to risk. Nonetheless, variations of
the previous no trade (resp., low trade) results hold under extreme (resp., high enough) levels of risk
aversion. It remains an empirical and experimental issue to determine which is the more plausible
behavioral hypothesis: high risk aversion or normal risk aversion and high model uncertainty aversion.

4.6 Quadratic approximation: Mean-variance

For monetary acts, the smooth ambiguity criterion admits a simple quadratic approximation that
generalizes the well known quadratic approximation of expected utility. To show this we take a
consequence w and an act b,77 and we consider the certainty equivalent

c(w + b, µ) = v−1 (Eµv (c(w + b,m))) ≡ v−1

(∫
M

v (c(w + b,m)) dµ (m)

)
Maccheroni, Marinacci, and Ruffi no (2013) show that, under standard differentiability assumptions
on the functions u and v, the quadratic approximation of this certainty equivalent is given by78

c(w + b, µ) ≈ w + Eµ̄b−
1

2
λu (w)σ2

µ̄(b)− 1

2
(λv (w)− λu (w))σ2

µ (E(b)) (35)

where E(b) : M → R is the random variable

m 7→ Emb ≡
∫
S

b (s) dm (s)

that associates the expected value of act b under each possible modelm, and σ2
µ (E(b)) is its variance.

The quadratic approximation (35) extends the classic Arrow-Pratt version

c(w + b, µ) ≈ w + Eµ̄b−
1

2
λu (w)σ2

µ̄(b) (36)

of the SEU criterion (7). Relative to the Arrow-Pratt approximation, (35) features the novel term

1

2
(λv (w)− λu (w))σ2

µ (E(b))

This term is an ambiguity premium jointly determined by the variance σ2
µ (E(b)), an information

trait that captures the scope of model uncertainty that the DM perceives, and by the difference
λv (w) − λu (w), a taste trait that captures the DM’s differences in attitudes toward physical and

76Since limα→+∞ cα (y, µ) = minm∈suppµ Em (y) and limα→+∞ c−α (y, µ) = maxm∈suppµ Em (y).
77With a slight abuse of notation, we denote by w the consequence and also the constant act equal to w in all states.

In the financial applications that originally motivated quadratic approximations, w is interpreted as initial wealth and
b̃ as an investment.
78 In (35) and thereafter, λu = −u′′/u′ and λv = −v′′/v′ are the classic Arrow-Pratt coeffi cients of risk aversion.
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toward epistemic uncertainty.79 In this regard, note that λv ≥ λu when v is more concave than
u , that is, when the DM is more averse to epistemic than to physical uncertainty.

The approximation (35) leads to a natural generalization of the classic mean-variance model in
which DMs rank acts a in terms of the robust mean-variance functional given by

Eµ̄a−
λ

2
σ2
µ̄ (a)− θ

2
σ2
µ (E (a)) (37)

where λ and θ are positive coeffi cients. This criterion is determined by the three parameters λ, θ,
and µ. In particular, when θ = 0 we return to the usual mean-variance functional. In light of (35),
criterion (37) can be viewed as a local quadratic approximation of a smooth ambiguity criterion at a
constant w such that λ = λu (w) and θ = λv (w)−λu (w). Thus, the taste parameters λ and θ model
the DM’s attitudes toward physical and epistemic uncertainty, respectively. Higher values of these
parameters correspond to stronger negative attitudes.
The information parameter µ determines the variances σ2

µ̄ (a) and σ2
µ (E (a)) that measure, respec-

tively, the physical and epistemic uncertainties that the DM perceives when evaluating act a. Higher
values of these variances correspond to a DM’s poorer information regarding such uncertainties.

Since the variance σ2
µ̄(b) can be decomposed by the law of total variance,80 the approximation

(35) can be rearranged according to the Arrow-Pratt coeffi cients of u and v:

c(w + b, µ) ≈ w + Eµ̄b−
λu (w)

2
Eµσ

2(b)− λv (w)

2
σ2
µ (E(b)) (38)

This formulation suggests the conditions under which such an approximation is exact. It is well
known that, if u is CARA and b has a normal distribution with mean k and variance σ2, then the
Arrow-Pratt approximation (36) takes the following exact form:

c(w + b, µ) = w + k − 1

2
λu (w)σ2

This result easily generalizes to the quadratic approximation (38): if both u and v are CARA utility
functions with respective constant Arrow-Pratt coeffi cients α and β, and if b has a normal distribution
with unknown mean k and known variance σ2, then (38) takes the exact form

c(w + b, µ) = w + k̄ − 1

2
ασ2 − 1

2
βσ2

µ (39)

as long as the prior on the unknown mean k is given by a normal distribution with parameters k̄ and
σ2
µ.
81

Finally, the quadratic approximation may be part of an exact series expansion of the certainty
equivalent. For example, consider the risk neutral case c (a, µ) = −β−1 log Eµe

−βEma in which u (x) =
x and v (x) = −e−βx (Example 3). Its quadratic approximation (35) is c(w + b, µ) ≈ w + Eµ̄b −
(β/2)σ2

µ (E(b)). At the same time, under standard regularity conditions we have, for β 6= 0 small
enough, the expansion (see Appendix)

c (w + b, µ) = w + Eµ̄b−
1

2
βσ2

µ (E (b)) +

∞∑
n=3

(−1)
n+1

n!
βn−1cn (E (b)) (40)

Here cn (E (b)) is the n-th cumulant of the random variable E (b) : M → R, which can be expressed
in terms of higher moments (with the third and fourth cumulants related to skewness and kurtosis,
respectively; see e.g. Kendall 1946, ch. 3).

79See Jewitt and Mukerji (2011) and Lang (2015) for related notions of ambiguity premium.
80That is, σ2

µ̄(b) = Eµ(σ2(b)) + σ2
µ(E(b)).

81The normality of the prior implies that k̄ is the mean of the unknown means k and that σ2
µ is their variance.
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When the prior is such that the random variable E (b) has a normal distribution with parameters
k and σ2

µ, the cumulants n ≥ 3 are zero and so the expansion (40) takes the quadratic form (39);
that is, c (w + b, µ) = w+ k− (β/2)σ2

µ. However, unlike (39) this quadratic expansion does not rely
on any normality assumption on b itself.

4.7 Behavioral foundation

The smooth ambiguity representation admits a simple behavioral foundation in a classical decision
problem (A, S, C,M,%) when M is a finite orthogonal set and acts are monetary (Section 3.2).82

Specifically, denote by E = {Em}m∈M the event partition such that m (Em) = 1 and m (Em′) = 0
if m′ 6= m (Section 3.2). We make a few assumptions, most of which rely on that partition. We begin
with a basic requirement on the preference.

Assumption A The preference % is both complete and transitive.

Next we assume that subjective expected utility applies to acts that are E-measurable.

Assumption B There exists a continuous and strictly increasing function v : R→ R and a probability
measure P on E such that a ∼ v−1

(∫
S
v (a (s)) dP (s)

)
for each E-measurable act a ∈ A.

Next we assume a famous Savage axiom, but on a restricted class of acts. Given any two acts
a,b ∈ A and any event E, set

aEb =

 a (s) if s ∈ E

b (s) if s /∈ E
In words, aEb is the act that “mixes”acts a and b via event E.

Assumption C (Conditional Sure Thing Principle) If a,b, c,d ∈ A and E ∈ E , then

aEc % bEc⇐⇒ aEd % bEd

According to this separability requirement, the ranking of acts is independent of common parts
that depend on events, such as Ec, belonging to the algebra generated by E . This assumption allows
us to define, for each E ∈ E , the conditional preference %E by

a %E b ⇐⇒ aEc % bEc ∀c ∈ A

Next we assume that each such conditional preference has an expected utility representation.

Assumption D There exists a continuous and strictly increasing function u : R→ R such that, for
each m ∈M , we have a ∼Em u−1

(∫
S
u (a (s)) dm (s)

)
for all a ∈ A.

We can now establish the desired behavioral foundation for smooth ambiguity.83

Proposition 8 A preference % on A satisfies Assumptions A-D if and only if there exists a probabil-
ity measure µ onM such that representation (17) holds, that is, V (a) = v−1

(∫
M
v (U (a,m)) dµ (m)

)
.

In particular, µ̄ = P on E.
82This section was written in collaboration with Fabio Maccheroni. For a related axiomatization, in an intertemporal

setting, see Cerreia-Vioglio et al. (2013a).
83Unlike Assumption B, Assumptions A and C are not in behavioral terms; it is, however, a routine exercise to

translate them into such terms through existing behavioral foundations of subjective expected utility in finite and
infinite state spaces.
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The probability P in Assumption B is nothing but the restriction on the partition E of the
predictive probability µ̄.

To understand this result, note that orthogonality entails that each model m identifies a single
atom Em of the partition E . In fact, conditional on event Em, only the physical risk described
by m matters, that is, µ̄ (E |Em ) = m (E |Em ). The relative likelihood of different models thus
corresponds to the relative likelihood of the different atoms. In other words, model uncertainty
reduces to uncertainty over these atoms. Assumption B thus amounts to assuming expected utility
for this kind of uncertainty. Given any atom, physical uncertainty emerges through the conditional
preference %Em ; as a result, Assumption D assumes expected utility also for this other kind of
uncertainty. The proof of Proposition 8 (see Appendix) shows how to combine the two separate
expected utility assumptions into the representation (17).

4.8 Optima

Here we consider optimization problems of the form maxa∈A V (a), which play a key role in applica-
tions.

4.8.1 Back to actions

Until now we have considered a few decision criteria within Savage’s framework (A, S, C,%), with
acts rather than actions as the objects of choice. Although this framework is the one best suited
for theoretical analysis, in applications it is often more convenient to deal with actions than with
acts, and so to consider the action based classical decision problem (A,S,C, ρ,M,%). Actions can be
easier to interpret, as remarked in Section 2.4, and can be represented as vectors; hence they can be
easier to handle analytically than acts, which are functions.
Be that as it may, we refer to r = u ◦ ρ : A × S → R as the payoff (or reward) function. The

expected payoff R (a,m) =
∫
S
r (a, s) dm (s) of action a is simply the expected utility U (a,m) of

the associated act a. The smooth criterion can then be written, in shorthand notation, as V (a) =
Eµφ (R (a,m)) ≡

∫
M
φ (R (a,m)) dµ (m).

4.8.2 Optima

We are now in a position to deal with the previous optimization problem, which can be written in
terms of actions as

max
a∈A

V (a) = max
a∈A

Eµφ (R (a,m)) (41)

The following proposition, which extends a portfolio result of Taboga (2005) and Gollier (2011), shows
how this problem is equivalent to an expected utility problem when the original prior µ is replaced
by a tilted version µ̂, whose form depends on all elements of the decision problem at hand, including
ambiguity attitudes.

Proposition 9 Suppose that φ : ImR→ R is twice differentiable, with φ′ > 0 and φ′′ < 0. For each
s ∈ S, let r (·, s) : A ⊆ Rn → R be continuously differentiable and strictly concave on the convex set
A. Then there exists a probability measure µ̂ ∈ ∆ (M), equivalent to µ, such that problems

max
a∈A

Eµφ (R (a,m)) and max
a∈A

Eµ̂R (a,m) (42)

share the same solution â. In particular, µ̂ (m) = ζ (m)µ (m) where ζ : M → R is the Radon-Nikodym
function

ζ (m) =
φ′ (R (â,m))

Eµφ
′ (R (â,m))

(43)
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Since φ′ is decreasing, the tilted prior µ̂ alters, through ζ, the original prior µ by shifting weight to
modelsm with a lower expected utility R (â,m), thus magnifying their relative importance. Formally,

ζ (m′) < ζ (m)⇐⇒ R (â,m) < R (â,m′)

In sum, action â solves problem maxa∈A Eµ̂R (a,m) even though µ̂ handicaps â by overweighting
its cons —at the expense of its pros —relative to the original prior µ. In this sense, â is a robust solu-
tion when compared to the solution of the expected utility problem maxa∈A EµR (a,m). Ambiguity
aversion can thus be seen as a desire for robustness on the problem solutions.84

Example 10 In the CARA case φ (x) = −e−λx, we have the exponential tilt ζ (m) ∝ e−λR(â,m). In
the CRRA case φ (x) = xλ, we have the power tilt ζ (m) ∝ R (â,m)

λ−1. N

An action a ∈ A is crisp for a smooth preference % if R (a,m) = R (a,m′) for all m,m′ ∈ suppµ
(cf. Section 3.1). Crisp actions are not sensitive to model uncertainty and so for them ζ = 1; this
equality implies the following corollary.

Corollary 11 Under the hypotheses of Proposition 9, the two problems in (42) share the same solu-
tion if it is crisp.

In short, ambiguity attitudes may matter only for decision problems that do not have crisp
solutions.
We close by observing that the tilted prior can be also regarded as a mixture, with weight deter-

mined by ξ, of the original prior and of another prior. Tilting can be thus seen as a convexification
of priors.

Lemma 12 There exist α ∈ (0, 1] and ν ∈ ∆ (M) such that µ̂ = αµ + (1− α) ν if and only if
α ≤ minm∈suppµ ζ (m).85

4.8.3 Monetary policy illustration

To illustrate the previous result, we continue our study of the monetary policy problem (Section 3.1).
For that purpose we define a bivariate random variable (u,π) by

u (a,w, ε, θ) = θ0 + (θ1π + θ1a) a+ θ1πθ3ε+ θ2w

π (a,w, ε, θ) = a+ θ3ε

This allows us to rewrite the outcome function as ρ (a,w, ε, θ) = (u (a,w, ε, θ) ,π (a,w, ε, θ)). We
make two assumptions:

(i) shocks ε and w are uncorrelated and have zero mean and unit variance with respect to the
known distribution q;

(ii) the policy multiplier is negative, that is, θ1π + θ1a ≤ 0.

Consider the quadratic payoff case r = −u2 − π2. That puts us in the classic linear quadratic
policy framework a la Tinbergen (1952) and Theil (1961), with objective function

V (a) = Eµφ
(
Eq
(
−u2 − π2

))
≡

∫
Θ

φ

(
−
∫
u2 (a,w, ε, θ) dq −

∫
π2 (a,w, ε, θ) dq

)
dµ (θ)

=

∫
Θ

φ
(
− (θ0 + (θ1π + θ1a) a)

2 − a2 − θ2
2 − θ2

3θ
2
1π − θ2

3

)
dµ (θ)

84For instance, in environmental policy making this feature of ambiguity aversion can provide a rationale for some
forms of the precautionary principle (Stern 2007). The more stringent the principle, the higher the underlying ambiguity
aversion (till the limit maxmin criteria of Section 4.5).
85When M is not finite, the lemma requires the (almost everywhere) boundedness of ζ.
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Let θ∗ be the true model economy. To ease the analysis, assume that the monetary authority knows
the true values θ∗1π, θ

∗
2 and θ

∗
3, that is, the shocks’coeffi cients and the slope of the Phillips curve.

86

The objective function can then be written as

V (a) = Eµφ
(
− (θ0 + (θ1π + θ1a) a)

2 − a2 + cost.
)

where now θ = (θ0, θ1a) ∈ Θ. When the monetary authority knows the true model economy, and
therefore faces only the physical risk of shocks, the (objectively) optimal policy is

ao = B (θ∗) = − θ∗0 (θ∗1π + θ∗1a)

1 + (θ∗1π + θ∗1a)
2

where B : Θ→ A is the best reply function. In contrast, when the true model economy is unknown,
some simple algebra shows that the optimal policy becomes

â = B (µ̂) = −Eµ̂ (θ0) (θ∗1π + Eµ̂ (θ1a)) + Covµ̂ (θ0, θ1a)

1 + (θ∗1π + Eµ̂ (θ1a))
2

+ Vµ̂ (θ1a)

where B : ∆ (Θ) → A is the expected utility best reply function with respect to the tilted prior µ̂
(which reduces to µ when φ is linear).

Action B (µ̂) is the robust version of action B (µ) that takes ambiguity aversion into account.
More robust does not necessarily mean more prudent, that is, B (µ̂) ≤ B (µ). For instance, suppose
the monetary authority has a dogmatic prior about the coeffi cient θ1a, that is, there is some value θ̄1a

such that µ
(
θ̄1a

)
= 1. For example, θ̄1a = 0 when the authority believes that the true model economy

is of the Lucas-Sargent type (with a zero policy multiplier), while θ̄1a = −θ∗1π when the authority
believes that the true model is of the Samuelson-Solow type (with a non zero policy multiplier). In
any case, being the prior equivalent to its tilted version, we also have µ̂

(
θ̄1a

)
= 1. Therefore,87

B (µ̂) ≤ B (µ)⇐⇒ Eµ̂ (θ0) ≤ Eµ (θ0)

The robust policy is less aggressive as long as the tilted expected value of coeffi cient θ0 is lower than
the original one. Note that for the monetary authority that believes in the Lucas-Sargent model
economy we have B (µ) = B (µ̂) = 0; in this case, a zero-target-inflation policy is optimal irrespective
of the uncertainty about the coeffi cient θ0.

4.9 Illustration: Static asset pricing

We consider a two-period economy populated by agents who play the dual role of consumers and
investors.88 As consumers, they allocate consumption across the two periods; as investors they fund
such allocation by trading assets in a financial market. Our purpose here is examining how market
asset prices relate to agents’ individual consumption allocations when those agents are ambiguity
averse.

4.9.1 Market forces

Financial market In a two-period frictionless financial market, at date 0 (today) investors trade n
primary assets —in any quantity and without any kind of impediment (transaction costs, short sales
constraints, etc.) —that pay out at date 1 (tomorrow) contingent on which state s ∈ S = {s1, ..., sk}
obtains. The true probability model on S is m∗, that is, m∗ (s) is the probability that state s obtains.

86Battigalli et al. (2015b) show that this assumption holds in steady state.
87 In fact, Vµ (θ1a) = Covµ (θ0, θ1a) = Vµ̂ (θ1a) = Covµ̂ (θ0, θ1a) = 0. Note that under dogmatic beliefs on θ1a

the certainty equivalence principle holds for B (µ). Actually, under the condition Eµ (θ0) (θ∗1π + Eµ (θ1a))Vµ (θ1a) 6=
Covµ (θ0, θ1a) + (θ∗1π + Eµ (θ1a))2, this is the only case when this holds.
88This section was written in collaboration with Nicola Rosaia.
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To ease matters, we assume that: (i) there is a single consumption good in the economy (potatoes)
and the assets payoffs are in terms of this good; (ii) all states are essential, that is, m∗ (s) > 0 for
each s ∈ S.
Let L = {y1, ..., yn} ⊆ Rk be the collection of primary assets and let p = (p1, p2, . . . , pn) ∈ Rn be

the vector of their market prices (in terms of potatoes). The triple (L, p,m∗) describes the financial
market.

Portfolios and contingent claims A primary asset j = 1, ..., n is denoted by yj = (y1j , ..., ykj) ∈
Rk, where yij represents its payoff if state si obtains. Portfolios of primary assets can be formed in the
market, each identified by a vector x = (x1, ..., xn) ∈ Rn where xj is the traded quantity of primary
asset yj .89 In particular, the primary asset y1 is identified by the portfolio e1 = (1, 0, ..., 0) ∈ Rn, the
primary asset y2 by e2 = (0, 1, 0...., 0) ∈ Rn, and so on. The linear combination x · y =

∑n

j=1
xjyj ∈

Rk is the state contingent payoff that, tomorrow, portfolio x ensures.
We call any state contingent payoff w ∈ Rk a contingent claim. A claim w is replicable (in the

market) if there exists a portfolio x such that w =
∑n

j=1
xjyj . In words, replicable contingent claims

are the state contingent payoffs that, tomorrow, can be attained by trading, today, primary assets.
The market W is the vector subspace of Rk consisting of all replicable contingent claims; that is,
W = spanL.
The market is complete if W = Rk: if so, all contingent claims are replicable. Otherwise, the

market is incomplete. By a basic linear algebra result, completeness of the market amounts to the
replicability of the k Arrow (or pure) contingent claims ei ∈ Rk that pay out 1 euro if state si obtains
and 0 otherwise. These important claims uniquely identify states.

Market value We can represent the collection L of primary assets by the payoff matrix

Y = (yij) =


y11 y12 · · · y1n

y21 y22 · · · y2n

· · · · · ·
yk1 yk2 · · · ykn


which has k rows (states) and n columns (assets); entry yij represents the payoff of primary asset
yj in state si. The linear operator R : Rn → Rk given by R (x) = Y x describes the contingent
claim determined by portfolio x. In other words, Ri (x) is the payoff of portfolio x if state si obtains.
Clearly, W = ImR and so the rank of the payoff matrix Y is the dimension of the market W .
In a frictionless market, the (market) value p · x =

∑n

j=1
pjxj of a portfolio x is the cost of the

market operations it requires. The (market) value function v : Rn → R is the linear function that
assigns to each portfolio x its value v (x). Note that it is the market’s frictionless nature that ensures
the value function’s linearity.
The value of primary assets is their price. For, recalling that the primary asset yj is identified by

the portfolio ej , we have
v
(
ej
)

= p · ej = pj (44)

Law of one price The law of one price (LOP) is a fundamental property of a financial market
(L, p,m∗): for all portfolios x, x′ ∈ Rn,

R (x) = R (x′) =⇒ v (x) = v (x′) (45)

89 If xj ≥ 0 (resp., xj ≤ 0) the portfolio is long (resp., short) on asset yj , that is, it buys (resp., sells) xj units of the
asset.
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In words, portfolios that induce the same contingent claims must share the same market value.90 In
fact, the contingent claims that they determine is all that matters in portfolios, which are simply
instruments to achieve those claims. If two portfolios inducing the same contingent claim had different
market values, then a (sure) saving opportunity would be missed in the market. The LOP requires
the financial market to take advantage of any such opportunity.
The financial market satisfies the LOP if and only if the set

{
v (x) : x ∈ R−1 (w)

}
is a singleton

for each w ∈ W .91 So, under the LOP all portfolios x that replicate a contingent claim w share the
same value v (x). It is natural to regard such common value as the price of the claim: we define the
price pw of a replicable contingent claim w ∈ W to be the value of a replicating portfolio x; that is,
pw = v (x) where w = R (x). In words, pw is the market cost v (x) incurred today to form a portfolio
x that tomorrow will ensure the contingent claim w, that is, w = R (x). For primary assets we are
back to (44), with pj = v

(
ej
)
.

Stochastic discount factors The pricing rule f : W → R associates to each replicable contingent
claim w ∈ W its price pw, that is, f (w) = pw. It is easy to check that f inherits the linearity of the
market value function v.92 Thanks to the LOP, the pricing rule is thus a well defined linear function.
This simple but key observation is part of the so-called fundamental theorem of asset pricing.
Since f is linear, by a basic linear algebra result there exists a unique vector ρ ∈W , the stochastic

discount factor, such that
f (w) = Em∗ (ρw) ∀w ∈W (46)

Since it belongs to W , the stochastic discount factor itself can be regarded as a contingent claim (cf.
Hansen and Richard 1987).
Two brief remarks may shed light on the nature of the stochastic discount factor. First, in a

complete market we have ρi = pei/m
∗
i , where pei is the price of the Arrow contingent claim ei;

in words, the stochastic discount factor is the vector price of the Arrow securities, normalized by
the state probabilities. Second, if the constant (and so risk free) contingent claim 1 = (1, ..., 1) is
replicable, as when the market is complete, then Em∗ (ρ) = p1. The expected value of the stochastic
discount factor is the price of such risk free claim. Equivalently, rf = 1/Em∗ (ρ) where rf is the
(gross) return of the risk free asset, that is, the reciprocal of its price.

4.9.2 Agents

Consumers In our two-period economy, agents in their role of consumers have to decide how
much to consume today, c0, and tomorrow, c1, of the economy single consumption good (potatoes).
Today’s consumption c0 is a positive scalar, whereas tomorrow’s consumption is state contingent and
therefore a vector c1 ∈ Rk+. As a consumer, the agent’s object of choice is thus a contingent good
c = (c0, c1) ∈ R+ × Rk+.
As “classical” DMs (Section 2.5), agents posit a collection M of models that contain the true

model m∗. To facilitate the analysis we assume that for, all posited models m ∈ M , the inequality
m (s) > 0 holds for all s ∈ S. That is, all models classify all states as essential.93
Agents rank contingent goods according to the smooth objective function

V (c) = Eµφ (Emu (c0, c1)) (47)

90 If not all states were essential, the equality R (x) = R (x′) would be required only to hold m∗-almost everywhere
(i.e., only for essential states).
91Note that x ∈ R−1 (w) if x replicates w.
92Nonlinearities of the market value function, due to market imperfections, would translate into nonlinearities of the

pricing rule — regardless of whether or not the market is complete (see Cerreia-Vioglio, Maccheroni, and Marinacci
2015, and references therein).
93What matters in this assumption is that it makes all models equivalent, that is, they agree on which events have

probability 0 or 1. Hence, all equalities that, like (45) and (48), involve state contingent quantities can be required to
hold almost everywhere with respect to any model. The analysis would still hold under this equivalence assumption
on models, which is a weaker assumption than the essentialness of all states.
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where u is a von Neumann-Morgenstern intertemporal utility function (monotone increasing in its
arguments), φ models ambiguity attitudes, and µ is a prior probability.

Budget set Agents have endowment profiles I = (I0, I1) ∈ R+×Rk+, where I0 is today’s endowment
and I1 is tomorrow’s state contingent endowment. They can fund their consumption by using their
endowment and, in their investor role, by trading assets. Since u is monotone, their (relevant) budget
set is

B (p, I) =

(c0, c1, x) : c0 + p · x = I0 and c1i = I1i +

n∑
j=1

xjyij ∀i


In the language of contingent claims, we can equivalently write

B (p, I) = {(c0, c1, w) : c0 + pw = I0 and c1i = I1i + wi ∀i}

where w ∈W is any replicable contingent claim, with price pw. Under the LOP, by (46) we can then
write

B (p, I) = {(c0, c1, w) : c0 + Em∗ (ρw) = I0 and c1i = I1i + wi ∀i} (48)

where ρ is the stochastic discount factor.

Consumption/investment problem Because agents in the economy are both consumers and
investors, they must decide both their consumption and asset allocations. Given the LOP, they solve
the optimization problem

max
c,w

V (c) sub (c, w) ∈ B (p, I) (49)

where the objective function is given by (47) and the budget constraint by (48).

4.9.3 Valuation

Next we state a simple necessary condition for the previous optimization problem.

Proposition 13 Suppose that the function φ is twice differentiable, with φ′ > 0 and φ′′ < 0. Let
u be strictly concave and differentiable, with strictly positive gradient and ∂u/∂c0 independent of c1.
Then there exists at most an interior solution ĉ ∈ Rk+1

+ of problem (49), and it satisfies the condition

pw = Eµ

(
φ′ (Emu (ĉ))

Eµφ
′ (Emu (ĉ))

Em

(
∂u
∂c1

(ĉ)
∂u
∂c0

(ĉ)
w

))
∀w ∈W (50)

This formula relates market prices of assets and agents’individual consumption decisions in the
two-period economy. It shows that both ambiguity and risk attitudes affect asset pricing. If the
market is complete, it implies

ρi =
∂u
∂c1i

(ĉ)
∂u
∂c0

(ĉ)

Eµ

(
φ′ (Emu (ĉ)) mim∗i

)
Eµφ

′ (Emu (ĉ))
∀i = 1, ..., k (51)

When the true model m∗ is known, (50) reduces to the usual (see e.g. Cochrane and Hansen 1992;
Cochrane 2005) pricing formula

pw = Em∗

(
∂u
∂c1

(ĉ)
∂u
∂c0

(ĉ)
w

)
(52)
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which is based on the intertemporal rate of substitution in consumption. In general, (50) implies that
prices can be decomposed as

pw = Eµ̄

(
∂u
∂c1i

(ĉ)
∂u
∂c0

(ĉ)
w

)
+ Covµ

(
φ′ (Emu (ĉ))

Eµφ
′ (Emu (ĉ))

,Em

(
∂u
∂c1

(ĉ)
∂u
∂c0

(ĉ)
w

))
≡ qw + Covµ (ζ (m) , pmw )

Here qw is the ambiguity neutral price of claim w that corresponds to ĉ and pmw is the rational
expectations price of claim w that corresponds to ĉ under model m, that is, the price of the claim if
that model is known to be true (or, at least, if µ̄ = m∗).

The difference pw − qw can be viewed as an ambiguity adjustment. Let mg be a model that, if
known to be true, has a higher subjective value than mb, that is, Emgu (ĉ) > Embu (ĉ). This amounts
to ζ (mg) < ζ (mb). We have Covµ (ζ (m) , pmw ) ≤ 0 if this implies that mg has a higher rational
expectations market value than does mb, that is, p

mg
w > pmbw . Thus, the price of a claim incorporates

a negative ambiguity adjustment when models that, if known to be true, have a higher subjective
value give the claim a higher rational expectations price.

Example 14 In the time separable case u (c0, c1) = v (c0) + βv (c1), we have

pw = βEµ

(
φ′ (v (c0) + βEmv (ĉ1))

Eµ
(
φ′ (v (c0) + βEmv (ĉ1))

)Em

(
∂v
∂c1

(ĉ1)
∂v
∂c0

(ĉ0)
w

))
In the CRRA case v (x) = xγ , for CRRA and CARA forms for φ (see Section 4.2) we have:

(i) if φ (x) = xθ, then

pw = βEµ

(
(ĉγ0 + βEmĉ

γ
1)
θ−1

Eµ (ĉγ0 + βEmĉ
γ
1)
θ−1

Em

((
ĉ1
ĉ0

)γ−1

w

))

(ii) if φ (x) = −e−θx, then

pw = βEµ

(
e−βθEmĉ

γ
1

Eµe−βθEmĉ
γ
1

Em

((
ĉ1
ĉ0

)γ−1

w

))
N

As remarked previously, the connection established by formula (50) has been the focus of this
section. Similar pricing formulas can be found in a series of papers by Lars Peter Hansen and
Thomas Sargent (e.g., Hansen 2007; Hansen and Sargent 2007, 2008, 2010, 2014), which also study
their empirical relevance in explaining some asset pricing phenomena that the standard formula (52)
is unable to explain (unless contrived risk aversion assumptions are made on the function u). Related
formulas are investigated by Hayashi and Miao (2011), Collard et al. (2012), Ju and Miao (2012),
Jahan-Parvar and Liu (2014), Backus, Ferriere, and Zin (2015), and Guerdjikova and Sciubba (2015).

4.9.4 Neutral valuation

Under physical uncertainty, risk neutral probabilities play a key role in asset pricing. In our two-
stage setup, with both physical and model uncertainty, we can establish an expected value form —
neutral with respect to uncertainty attitudes —of the asset pricing formula (50). To this end, define
m̂ ∈ ∆ (S) by

m̂i = ξmi mi ∀i = 1, ..., k

and, as in Proposition 9, µ̂ ∈ ∆ (M) by µ̂ (m) = ζ (m)µ (m) for every m ∈M , where ξm : S → R and
ζ : M → R are, respectively, the Radon-Nikodym functions given by ξmi = ∂u

∂c1i
(ĉ) /Em

∂u
∂c1

(ĉ) and
ζ (m) = φ′ (Emu (ĉ)) /Eµφ

′ (Emu (ĉ)).94 The tilted model m̂ is the (equivalent) risk neutral version
94Vectors in Rk can be equivalently seen as real valued functions on S; hence, we interchangeably use (according to

convenience) the vector and function notations ξm ∈ Rk and ξm : S → R.
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of the model m, and the tilted prior µ̂ is the (equivalent) ambiguity neutral version of the prior µ. In
particular, m̂ = m under risk neutrality (u linear) and µ̂ = µ under ambiguity neutrality (φ linear).
Next, define µ̃ ∈ ∆ (M) by

µ̃ (m) = χ (m) µ̂ (m) ∀m ∈M
where χ : M → R is the Radon-Nikodym function given by χ (m) = Em

∂u
∂c1

(ĉ) /Eµ̂Em
∂u
∂c1

(ĉ). The
tilted prior µ̃ is the crisp version of prior µ. In particular, µ̃ = µ if χ is crisp: χ (m) = χ (m′)
for all m,m′ ∈ suppµ, that is, the expected marginal utility of tomorrow consumption Em

∂u
∂c1

(ĉ) is
unaffected by model uncertainty.95 If so, we actually have µ̃ = µ̂ = µ as ambiguity aversion becomes
irrelevant when χ is crisp. In contrast, under ambiguity neutrality we may well have µ̃ 6= µ̂ = µ if χ
is not crisp, that is, if model uncertainty matters.

Proposition 15 Suppose the risk free claim 1 is replicable. Under the hypotheses of Proposition 13,

pw =
1

rf
Eµ̃ (Em̂w) ∀w ∈W (53)

The pricing formula (53) is the expected value version of (50). The tilted predictive probability
µ̃ ∈ ∆ (S) given by µ̃ = Eµ̃m̂ allows us to write it more compactly as

pw =
1

rf
Eµ̃ (w) (54)

We can thus regard µ̃ as the uncertainty neutral measure that asset pricing with model uncertainty
features. When the true model m∗ is known, (54) reduces to the usual (see e.g. Ross 2005, p. 8) risk
neutral valuation pw = Em̂∗ (w) /rf .

4.10 Diversification

Preference for action diversification is a basic economic principle. In choice under certainty, it reflects
DMs’desire for variety. In choice under uncertainty, it reflects their desire to hedge against uncertainty
in order “not to put all eggs in one basket.” Ambiguity aversion, with its desire for robustness,
magnifies such preference.
To illustrate this important issue in the present two-stage setting, we consider the policy problem

of public offi cials needing to decide which treatment should be administered to a population (Section
2.2). Owing to the treatment diversification that they permit, fractional treatment actions may be
a relevant option because, under state uncertainty, individuals with the same covariate may respond
differently to the same treatment. As emphasized by Manski (2009), standard expected utility is
unable to give fractional treatments the relevance that, intuitively, they seem to deserve. For this
reason, he replaced expected utility with maxmin regret, a criterion due to Savage (1951) that,
however, violates the independence of irrelevant alternatives, a basic rationality tenet.96 A proper
account of model uncertainty may, however, justify fractional treatment without having to invoke a
departure from expected utility as radical as maxmin regret.
To see why this is the case, for simplicity we assume that the population is homogeneous (with

all individuals sharing the same covariate). In this case, a treatment action is a probability dis-
tribution a ∈ A = ∆ (T ) over the finite collection T of alternative treatments, where a (t) is
the fraction of the population that has been assigned treatment t. The consequence function is
ρ (a, s) =

∑
t∈T c (t, s) a (t). Denote by c̄m (t) =

∑
s∈S c (t, s)m (s) the expected outcome of treat-

ment t under model m. Then criterion (19) takes the form

V (a) =
∑
m∈M

φ

(∑
s∈S

ρ (a, s)m (s)

)
dµ (m) =

∑
m∈M

φ

(∑
t∈T

c̄m (t) a (t)

)
dµ (m)

95Consumption data can be used to estimate ζ, χ and ξm (if agents are assumed to act optimally; cf. Cochrane and
Hansen 1992).
96See Chernoff (1954, pp. 425-426). Klibanoff (2013) presents a treatment choice example that illustrates such a

failure.
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This expression is a utilitarian social welfare criterion when c (t, s) is interpreted in welfare terms;
when c (t, s) is interpreted in material terms, it assumes that public offi cials are risk neutral.
Consider binary treatment problems T = {t0, t1}, so that we can identify actions with points of

the unit interval; i.e., a ∈ [0, 1]. In particular, a is the fraction of the population under treatment t1.
A treatment action is fractional when a ∈ (0, 1), that is, when it does not assign the same treatment
to all individuals. The policy problem is maxa V (a) = maxa Eµφ ((1− a) c̄m (t0) + ac̄m (t1)). When
φ is linear, fractional treatment is not optimal unless c̄µ̄ (t0) = c̄µ̄ (t1). In fact, if c̄µ̄ (t1) 6= c̄µ̄ (t0),
then all individuals are assigned to the treatment with the highest c̄µ̄ value.97 As a result, in general
there is no treatment diversification when φ is linear; this is the counterintuitive feature of standard
expected utility just discussed.

Lemma 16 Suppose that φ is concave. Fractional treatment is suboptimal if and only if V is strictly
monotone on [0, 1].

Fractional treatment is thus suboptimal only if V is either steadily increasing or steadily decreasing
in a, as when φ is linear and c̄µ̄ (t1) 6= c̄µ̄ (t0). The next example shows that, in our setting, fractional
treatment may be optimal.

Example 17 Suppose that the outcome of interest is c (t, s) = o (t, s) −maxs o (t, s), where o (t, s)
is an underlying outcome that enters the objective function via the anticipated ex post regret caused
by treatment t. Since c ≤ 0, we can consider a quadratic φ (x) = −x2. Let dm = c̄m (t0) − c̄m (t1).
Simple algebra shows that

â =
EµEmc̄m (t0) dm

Eµd2
m

Thus fractional treatment is optimal —that is, â ∈ (0, 1) —if and only if |V (0)− V (1)| < Eµd
2
m. N

In sum, fractional treatment may emerge under ambiguity aversion, as already remarked by
Klibanoff (2013) with a related example. In general, under ambiguity aversion (φ concave), hedging
against model uncertainty provides a further motif for action diversification, on top of the standard
hedging motif against state uncertainty that risk aversion (u concave) features. In fact, suppose that
A is a convex subset of some vector space.98 To see in its purest form the diversification effect of
ambiguity aversion, assume that r is linear and φ concave. Consider the preference % on A repre-
sented by the criterion V (a) =

∑
m φ (R (a,m))µ (m). This criterion is clearly concave on A (strictly

concave if φ is) and so, for each α ∈ (0, 1), we have

a ∼ b =⇒ αa+ (1− α) b % a (55)

with strict preference when φ is strictly concave. In words, if the DM is indifferent between two
actions a and b, he prefers to diversify through actions that combine them. Ambiguity aversion
thus features a preference for hedging, as first remarked by Schmeidler (1989), who referred to this
property as uncertainty aversion.
Note that the abstract notion of diversification may take different meanings in different appli-

cations. For instance, consider convex sets of the form A = ∆ (X). In some applications, X is a
collection of “pure”actions and a (x) is the probability with which a random device selects the pure
action x; diversification thus amounts to randomization. In other applications, X is a collection of
basic alternatives (assets, contingent goods, treatments, etc.) and a (x) is the proportion of alter-
native x that action a features; here diversification amounts to fractional allocation (i.e., allocation
expressed in proportional terms).

97When c̄µ̄ (t0) = c̄µ̄ (t1), all actions (fractional or not) are optimal.
98For instance, A may be a convex subset of Rn or it may have the form ∆ (X) for some set X. In the latter case,

X is embedded in A by identifying each x ∈ X with the degenerate Dirac probability δx ∈ ∆ (X).
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5 Beyond the Bayesian paradigm: Multiple priors

5.1 Representation

The smooth ambiguity model drops the source independence assumption of SEU and builds on the
distinction between physical and epistemic uncertainties within a Bayesian framework, in which both
kinds of uncertainties are modeled via standard probability measures. But different degrees of aversion
to such uncertainties are permitted, and so tastes take care of the distinction. A different, belief-
based, approach that departs from the Bayesian framework originates in the seminal work of Gilboa
and Schmeidler (1989) and Schmeidler (1989). Here we focus on the celebrated multiple priors model
axiomatized by Gilboa and Schmeidler (1989).99

In the two-stage setup of our paper, the multiple priors model relaxes the Bayesian tenet that the
DM’s information about epistemic uncertainty must be quantified by a single probability measure
µ and allows, instead, that it may be quantified by a set C of probability measures. Specifically, in
our statistical decision theory setup based on datum M , we consider a compact set C ⊆ ∆ (M) of
prior probabilities µ : 2M → [0, 1]; this set is possibly nonsingleton because the DM may not have
enough information to specify a single prior, a factor that becomes especially relevant when subjective
probabilities’domains (M for µ and S for µ̄) are complex. The DM uses the criterion

W (a) = min
µ∈C

∫
M

(∫
S

u (a (s)) dm (s)

)
dµ(m) (56)

= min
µ∈C

∫
S

u (a (s)) dµ̄(s) (57)

where he cautiously considers the least among all the classical SEU functionals determined by each
prior µ in C. The predictive form (57) is the original version proposed by Gilboa and Schmei-
dler (1989), whereas (56) is the version studied by Cerreia-Vioglio et al. (2013a); both have been
adapted to our setup. Behaviorally, the representation is based on a complete, transitive and state-
wise monotone preference % that satisfies the uncertainty aversion property (55) and a weak form
of independence, as discussed in Gilboa and Marinacci (2013). In particular, the cautious attitude
of this maxmin criterion is based on uncertainty aversion.100 Omitting this property yields a more
general α-maxmin criterion a la Hurwicz (1951) that combines maxmin and maxmax behavior, as
shown by Ghirardato, Maccheroni, and Marinacci (2004).

The uncertainty aversion property that underlies criterion (56) captures an attitude toward un-
certainty that is negative but not extremely so. Criterion (56) is, indeed, less extreme than it may
appear at a first sight (see Gilboa and Marinacci 2013). In fact, the set C incorporates both the
attitude toward ambiguity, a taste component, and its perception, an information component. A
smaller set C may reflect better information (i.e., less perceived ambiguity) and/or less aversion to
uncertainty. In other words, the size of C does not reflect just information, but taste as well.101

In this regard, note that with singletons C = {µ} we return to the classical SEU criterion (5). In
contrast, when C = ∆ (M) —that is, when all prior probabilities on M belong to C —we have

min
µ∈∆(M)

∫
M

(∫
S

u (a (s)) dm (s)

)
dµ(m) = min

m∈M

∫
S

u (a (s)) dm (s) (58)

99This important strand of research, pioneered by David Schmeidler, is recently discussed in detail by Gilboa and
Marinacci (2013). For this reason, here we just outline its basic features (for a different but closely related literature,
see Wakker 2010). The relevant version of the multiple priors model for the two-stage setup that we employ is discussed
by Marinacci (2002) and developed and axiomatized by Cerreia-Vioglio et al. (2013a), who relate it to robust Bayesian
analysis (see Berger 1990, 1993). Other two-stage perspectives have been offered by Amarante (2009) and Giraud
(2014).
100 In the case of a DM who seeks uncertainty, % replaces - in (55) and the representation would feature a max instead
of a min.
101See Gajdos et al. (2008) and Eichberger and Guerdjikova (2013) for models that explicitly relate C with some
underlying objective information (the latter paper within the case-based framework of Gilboa and Schmeidler 2001).
Jaffray (1989) and Dominiak and Lefort (2015) are early and recent works that discuss this kind of information.

45



that is, we return to the Waldean criterion (28). Therefore, in our setup the multiple priors criterion
(56) should not be confused with the Wald maxmin criterion (28); in fact, the former provides a
different perspective on the latter’s extremity in terms of a maximal set C of priors.

The Ellsberg paradox is easily accommodated by the multiple priors model, once a suitable set C
of priors is chosen. We have

W (aII) = min
µ∈C

∑
θ∈Θ

mθ (BB ∪WB)µ (θ) =
1

100
min
µ∈C

100∑
θ=0

θµ (θ)

and

W (bII) = min
µ∈C

∑
θ∈Θ

mθ (BW ∪WW )µ (θ) = 1− 1

100
max
µ∈C

100∑
θ=0

θµ (θ)

Suppose there are priors µ, µ′ ∈ C with expected number of black balls such that
∑100
θ=0 θµ (θ) < 50 <∑100

θ=0 θµ
′ (θ). Then both W (aII) < 1/2 and W (bII) < 1/2,102 so the DM prefers to bet on the

physical urn. For instance, suppose C consists of all possible priors; that is, let C = ∆ (M). By (58),
we have

W (aII) = min
θ∈Θ

mθ (BB ∪WB) = 0 = min
θ∈Θ

mθ (BW ∪WW ) = W (bII)

and so in this case we actually obtain the classical Ellsberg pattern (24).

5.2 Two-stage multiplier and variational preferences

We observed in Section 4.3 that, when φ (x) = −e−λx, we have

cλ (a, µ) = − 1

λ
log

∫
M

e−λU(a,m)dµ (m)

which is a form of the multiplier preferences of Hansen and Sargent (2001, 2008).103 As is well known
(e.g., Cerreia-Vioglio et al. 2011),

− 1

λ
log

∫
M

e−λU(a,m)dµ (m) = inf
ν�µ

(∑
m∈M

U (a,m) ν (m) + αR (ν||µ)

)
(59)

where R is the relative entropy. At the same time, we can write the maxmin criterion (56) as

W (a) = min
µ∈C

∫
M

U (a,m) dµ(m)

= inf
µ∈∆(M)

(∫
M

U (a,m) dµ(m) + δC (µ)

)
where δC : ∆ (M)→ [0,+∞) is the indicator function of C in the sense of convex analysis, that is,

δC (µ) =

{
0 if µ ∈ C
+∞ else

(60)

This observation suggests that we consider the general two-stage representation

W (a) = inf
µ∈∆(M)

(∫
M

U (a,m) dµ(m) + c (µ)

)
102Note that W (aII) = W (bII) requires minµ∈C

∑100
θ=0 θµ (θ) + maxµ∈C

∑100
θ=0 θµ (θ) = 100.

103Recall from Section 4.1 that U (a,m) =
∫
S u (a (s)) dm (s).
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where c : ∆ (M) → [0,+∞) is any convex function with infµ∈M c (µ) = 0. Maccheroni, Marinacci,
and Rustichini (2006) call variational the preferences that admit such a representation. Variational
preferences extend both the maxmin and the multiplier preferences; the latter turn out to be the
intersection of smooth and variational preferences (see Cerreia-Vioglio et al. 2011).
Maccheroni, Marinacci, and Rustichini (2006) axiomatize variational preferences and show how

the function c captures ambiguity attitudes in a simple way: a variational preference %1 is more
ambiguity averse (in the sense of Ghirardato and Marinacci, 2002) than a variational preference %2 if
c1 (µ) ≤ c2 (µ) for every µ ∈ ∆ (M).104 Heuristically, the index c can be also viewed as a confidence
weight on priors, where c (µ) > c (µ′) means that the DM gives prior µ′ a higher weight than µ. In
the dichotomic case (60) that characterizes the maxmin criterion only two weights can be given.
Finally, Strzalecki (2011) shows which axioms characterize multiplier preferences within the class

of variational preferences, and Cerreia-Vioglio et al. (2013a) axiomatize the two-stage version of
variational preferences that we present here.

5.3 No trade

The no trade result of Dow and Werlang (1992) holds for the multiple priors criterion. Assume risk
neutrality. The no trade condition (32) becomes

min
µ∈C

Eµ̄ (y) < p < max
µ∈C

Eµ̄ (y) (61)

The larger the set C (and so the higher the perceived model uncertainty or the aversion to it), the
larger the set of prices that result in no trade. It is important to observe that —since (as previously
discussed) the multiple priors criterion (56) need not exhibit extreme attitudes —it follows that the
scope of the multiple priors no trade result is actually much broader than for its Waldean counterpart
(28), which does exhibit extreme attitudes.
In the present non Bayesian setup, a low trade result holds more generally for variational pref-

erences. In reading this result, note that for the variational criterion we have W (εy) ≤ −W (−εy),
with equality if y is crisp.

Proposition 18 Let ε > 0. There is at most ε-trade volume in asset y if

W (εy)

ε
< p < −W (−εy)

ε
(62)

When W is the multiple priors criterion, for each ε > 0 the condition (62) reduces to (61). In
fact,

min
µ∈C

Eµ̄ (y) = W (y) < p < −W (−y) = max
µ∈C

Eµ̄ (y)

Hence, there is no trade whatsoever and we are back to the Dow and Werlang (1992) result. The Dow
and Werlang insight has been developed in many papers, starting with Epstein and Wang (1994) (see
Guidolin and Rinaldi 2013).

6 Appendix: Proofs and related analysis

6.1 Section 4

Proof of Proposition 2 Points (i)-(iii) are easily checked. As to point (iv), observe that if φ and u
are concave, then c (·, µ), and so c (·, µ), is quasi concave. Under either translation invariance (which,
by (ii), holds in the CARA case) or positive homogeneity (which, by (iii), holds in the CRRA case),
then c (·, µ) is concave. �
104We refer to Gilboa and Marinacci (2013) for a detailed discussion of comparative ambiguity attitudes.
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To prove Proposition 4, we need a preliminary lemma, due to Hardy, Littlewood and Polya (1934,
p. 94).

Lemma 19 Let x1 ≤ x2 ≤ x3 ≤ x4 and let φ : [x1, x4] −→ R be concave. Then,

φ (x4)− φ (x3)

x4 − x3
≤ φ (x2)− φ (x1)

x2 − x1

Proof of Proposition 4 Let U(b,m′′) ≤ U (a,m′′) ≤ U (a,m′) ≤ U(b,m′). Since for all m 6=
m′,m′′, U (a,m) = U(b,m), we have that

U(a,m′)µ(m′) + U(a,m′′)µ(m′′) = U(b,m′)µ(m′) + U(b,m′′)µ(m′′).

We want to show that

µ(m′) (φ (U(b,m′))− φ (U (a,m′))) + µ(m′′) (φ (U (a,m′′))− φ (U(b,m′′))) ≥ 0.

Assume µ(m′), µ(m′′) ≥ 0. The preceding equality implies

µ(m′) (U(b,m′)− U (a,m′)) = µ(m′′) (U (a,m′′)− U(b,m′′))

so that we can rewrite the preceding inequality as

µ(m′′) (φ (U (a,m′′))− φ (U(b,m′′)))

µ(m′′) (U (a,m′′)− U(b,m′′))
≥ µ(m′) (φ (U(b,m′))− φ (U (a,m′)))

µ(m′) (U(b,m′)− U (a,m′))

or equivalently

φ (U(b,m′))− φ (U (a,m′))

U(b,m′)− U (a,m′)
≤ φ (U (a,m′′))− φ (U(b,m′′))

U (a,m′′)− U(b,m′′)
.

Now let us check the following cases:

1. If U(b,m′′) ≤ U (a,m′′) ≤ U (a,m′) = U(b,m′), then the problem becomes one of verifying
whether µ(m′′) (φ (U (a,m′′))− φ (U(b,m′′))) ≥ 0, which holds by the concavity of φ .

2. If U(b,m′′) = U (a,m′′) ≤ U (a,m′) ≤ U(b,m′), then the problem is to verify

µ(m′) (φ (U(b,m′))− φ (U (a,m′))) ≥ 0

However, this is true because U(b,m′′) = U (a,m′′) implies that U (a,m′) = U(b,m′).

3. If U(b,m′′) ≤ U (a,m′′) = U (a,m′) ≤ U(b,m′) , then we have

φ (U(b,m′))− φ (U (a,m′))

U(b,m′)− U (a,m′)
≤ φ (U (a,m′))− φ (U(b,m′′))

U (a,m′)− U(b,m′′)

(see Hardy, Littlewood and Polya 1934, p. 93).

4. If µ(m′) = 0, then again we must verify µ(m′′) (φ (U (a,m′′))− φ (U(b,m′′))) ≥ 0, which holds
by the concavity of φ .

5. If µ(m′′) = 0, then again we must verify µ(m′) (φ (U(b,m′))− φ (U (a,m′))) ≥ 0. Yet this
holds because µ(m′′) = 0 implies that U (a,m′) = U(b,m′).

6. If µ(m′) = µ(m′′) = 0, then the inequality trivially holds as an equality to zero. �
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6.2 Section 4.5

Proof of Proposition 5 If x > 0, thenminm∈suppµ Em (y) < p⇐⇒ V (x) = minm∈suppµ Em (yx− px) <
0. If x < 0, then

V (x) = min
m∈suppµ

Em (yx− xp) = − max
m∈suppµ

Em ((−x) (y − p)) = x max
m∈suppµ

Em (y − p) (63)

and so maxm∈suppµ Em (y) > p if and only if V (x) < 0. We conclude that (32) holds if and only if
V (x) < 0 if x 6= 0. �

Proof of Lemma 6 Since cλ (·, µ) is concave, it follows that cλ (x, µ) ≤ −cλ (−x, µ) = c−λ (x, µ) for
all x ∈ R. If x is crisp, then cλ (x, µ) = Emx =− cλ (−x, µ). �

Proof of Proposition 7 By Proposition 2-(iv), cλ is subhomogeneous. Fix any x ∈ R. If x ≥ ε > 0,
there is a k ≥ 1 such that x = kε; hence

cλ (x, µ) = cλ (x (y − p) , µ) = cλ (kε (y − p) , µ) ≤ kcλ (ε (y − p) , µ)

Because

cλ (ε (y − p) , µ) = cλ (εy, µ)− εp < 0⇐⇒ cελ (y, µ) =
cλ (εy, µ)

ε
< p

we have that cελ (y, µ) < p implies cλ (x, µ) < 0 when x ≥ ε.
If x ≤ −ε < 0, then there is a k ≥ 1 such that x = k (−ε), so

cλ (x, µ) = cλ (x (y − p) , µ) = cλ (k (−ε) (y − p) , µ) = cλ (kε (p− y) , µ) ≤ kcλ (ε (p− y) , µ)

We have

cλ (ε (p− y) , µ) = εp+ cλ (ε (−y) , µ) < 0⇐⇒ p < −cλ (ε (−y) , µ)

ε
= c−ελ (y, µ)

Hence, p < c−ελ (y, µ) implies cλ (x, µ) < 0 when x ≤ −ε. We conclude that (34) implies cλ (x, µ) < 0
for all x /∈ (−ε, ε). �

6.3 Proof of Proposition 8

Lemma 20 If a ∼Em bm for all m ∈M , then a ∼
∑
m∈M

bm1Em .

Proof Note that, a ∼Em bm if and only if, for every c ∈ A,

c (s) if s ∈ E1

...
...

c (s) if s ∈ Em−1

a (s) if s ∈ Em
c (s) if s ∈ Em+1

...
...

c (s) if s ∈ En


∼



c (s) if s ∈ E1

...
...

c (s) if s ∈ Em−1

bm (s) if s ∈ Em
c (s) if s ∈ Em+1

...
...

c (s) if s ∈ En


where M = {mi}ni=1. If we omit (for brevity) the second column in the representation of acts above,
repeated application of Assumption C delivers

a (s)
a (s)
a (s)
...

a (s)
a (s)


∼



b1 (s)
a (s)
a (s)
...

a (s)
a (s)


∼



b1 (s)
b2 (s)
a (s)
...

a (s)
a (s)


∼ · · · ∼



b1 (s)
b2 (s)
b3 (s)
...

bM−1 (s)
a (s)


∼



b1 (s)
b2 (s)
b3 (s)
...

bM−1 (s)
bM (s)
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The transitivity of ∼ now implies the result. �

Proof of Proposition 8. By Assumption D, a ∼Em u−1
(∫
S
u (a (s)) dm

)
for all a ∈ A and

m ∈ M . By the previous lemma, a ∼
∑
m∈M

[
u−1

(∫
S
u (a (s)) dm (s)

)]
1Em . By Assumption B, since∑

m∈M

[
u−1

(∫
S
u (a) dm

)]
1Em is E measurable, we have

a ∼
∑
m∈M

[
u−1

(∫
S

u (a) dm

)]
1Em ∼ v−1

(∑
m∈M

v

[
u−1

(∫
S

u (a) dm

)]
P (Em)

)
Setting µ (m) = P (Em), we conclude that

a ∼ v−1

∫
M

v

[
u−1

(∫
S

u (a (s)) dm

)]
µ (m)


as desired. �

6.4 Section 4.8

Proof of Proposition 9 By standard arguments, there exists a unique solution â ∈ A for the
problem maxa∈A

∫
M
φ (R (a,m)) dµ (m). It satisfies the variational inequality (see e.g. Kinderlehrer

and Stampacchia 1980, ch. 1)105

∇V (â) · (a− â) =

n∑
i=1

(ai − âi)
∫
M

φ′ (R (â,m))
∂R

∂ai
(â,m) dµ (m) ≤ 0 ∀a ∈ A

Thus, since φ′ > 0, we have
n∑
i=1

(ai − âi)
∫
M

φ′ (R (â,m))∫
M
φ′ (R (â,m)) dµ (m)

∂R

∂ai
(â,m) dµ (m) ≤ 0 ∀a ∈ A

Consider the function ζ given by (43). Since φ′ > 0, it holds ζ (m) > 0 for each m ∈M ; moreover,∑
m∈M ζ (m)µ (m) = 1. Define µ̂ ∈ ∆ (M) by µ̂ (m) = ζ (m)µ (m). Since ζ > 0, µ̂ and µ are

equivalent. We have ∇V (â) · (a− â) ≤ 0 if and only if
n∑
i=1

(ai − âi)
∫
M

∂R

∂ai
(â,m) dµ̂ (m) ≤ 0 ∀a ∈ A (64)

Yet because R is strictly concave, there is a unique solution ā ∈ A for the problem

max
a∈A

∫
M

R (a,m) dµ̂ (m) (65)

and it is the unique action (Kinderlehrer and Stampacchia 1980, ch. 1) that satisfies the variational
inequality

n∑
i=1

(ai − āi)
∫
M

∂R

∂ai
(ā,m) dµ̂ (m) ≤ 0

In view of (64), we conclude that â = ā and so â also solves problem (65). �

Proof of Lemma 12 If µ̂ = µ, we have α = minm∈suppµ ζ (m) = 1. Suppose µ̂ 6= µ and let
0 < ᾱ ≤ minm∈suppµ ζ (m). We have µ (m) ᾱ ≤ µ̂ (m) and so ᾱ < 1 because µ̂ 6= µ. Setting
ν = (1/ (1− ᾱ)) µ̂ − (ᾱ/ (1− ᾱ))µ ∈ ∆ (M), we can write µ̂ = ᾱµ + (1− ᾱ) ν. As for the converse,
let α ∈ (0, 1] and ν ∈ ∆ (M) be such that µ̂ = αµ + (1− α) ν. Then ζ (m)µ (m) = µ̂ (m) ≥ αµ (m)
for all m ∈M , and so α ≤ minm∈suppµ ζ (m). �
105 If â is an interior point, condition ∇V (â) · (a− â) ≤ 0 reduces to ∇V (â) = 0.
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6.5 Section 4.9

Proof of Proposition 13 From the constraints c0 = I0−EP (ρw) and c1i = I1i +wi, it follows that

c0 ≥ 0⇐⇒ EP (ρw) ≤ I0 and ci1 ≥ 0⇐⇒ wi ≥ −I1i ∀i

that is, pw ≤ I0 and w ≥ −I. Setting A =
{
w ∈ Rk : EP (ρw) ≤ I0 and w ≥ −I1

}
, we can define the

function g : A ⊆ Rk → R as

g (w) =
∑
m

φ

(
k∑
i=1

u (I0 − Em∗ (ρw) , I1i + wi)mi

)
µ (m)

We can thus solve the optimization problem maxw∈A g (w). Since g is strictly concave, there is at
most a solution ŵ. Suppose it is an interior point of A (so that the corresponding ĉ is interior). The
function g is differentiable at ŵ. Denote by g′ (ŵ; ·) : W → R the directional derivative g′ (ŵ;w) =
limt↓0 (g (ŵ + tw)− g (ŵ)) /t. Since ŵ is interior, g′ (ŵ;w) = 0 for every w ∈W . By the chain rule,

0 = g′ (ŵ;w) = −Eµ
(
φ′ (Em (u (ĉ)))

) ∂u
∂c0

(ĉ) Em∗ (ρw) + Eµ

(
φ′ (Em (u (ĉ))) Em

(
∂u

∂c1
(ĉ)w

))
By (46), pw = Em∗ (ρw), and so (50) follows. �

Proof of Proposition 15 Define ν ∈ ∆ (S) by

νi = Eµ̂

(
Em

∂u
∂c1

(ĉ)

Eµ̂Em
∂u
∂c1

(ĉ)
m̂i

)
∀i = 1, ..., k

We have

νi =
Eµ̂

(
m̂iEm

∂u
∂c1

(ĉ)
)

Eµ̂Em
∂u
∂c1

(ĉ)
=
∑
m

Em
∂u
∂c1

(c)

Eµ

(
ζ (m) Em

∂u
∂c1

(c)
)m̂iµ̂ (m) =

∑
m

Em
∂u
∂c1

(c) Eµ
(
φ′ (Emu (ĉ))

)
Eµ

(
φ′ (Emu (ĉ)) Em

∂u
∂c1

(c)
)m̂iµ̂ (m)

=
∑
m

Em
∂u
∂c1

(ĉ) Eµ
(
φ′ (Emu (ĉ))

)
Eµ

(
φ′ (Emu (ĉ)) Em

∂u
∂c1

(ĉ)
) ∂u

∂c1i
(ĉ)

Em
∂u
∂c1

(ĉ)
miµ̂ (m) =

∑
m

∂u
∂c1i

(ĉ) Eµ
(
φ′ (Emu (ĉ))

)
Eµ

(
φ′ (Emu (ĉ)) Em

∂u
∂c1

(c)
)miµ̂ (m)

=
∑
m

∂u
∂c1i

(ĉ)
∂u
∂c0

(ĉ)
Eµ
(
φ′ (Emu (ĉ))

)
Eµ

(
φ′ (Emu (ĉ)) Em

∂u
∂c1

(c)
∂u
∂c0

(ĉ)

)miµ̂ (m) =
∑
m

∂u
∂c1i

(ĉ)
∂u
∂c0

(ĉ)

Eµ

(
ζ (m) Em

∂u
∂c1

(c)
∂u
∂c0

(ĉ)

)miµ̂ (m)

=
∑
m

∂u
∂c1i

(ĉ)
∂u
∂c0

(ĉ)

Eµ̂Em
∂u
∂c1

(c)
∂u
∂c0

(ĉ)

miµ̂ (m) =
1

Em∗ρ

∑
m

∂u
∂c1i

(ĉ)
∂u
∂c0

(ĉ)
miµ̂ (m) =

1

Em∗ρ
Eµ̂

∂u
∂c1i

(ĉ)
∂u
∂c0

(ĉ)
mi

Note that Eµ̂Em

(
∂u
∂c1

(c) / ∂u∂c0 (ĉ)
)

= Em∗ρ = 1/rf because the risk free claim 1 is replicable. Since

νi =
∑
m

Em
∂u
∂c1

(ĉ)

Eµ̂Em
∂u
∂c1

(ĉ)
m̂iµ̂ (m) =

∑
m

m̂iµ̃ (m)

we can write

Em∗ (ρ) Eµ̃ (Em̂w) = Em∗ (ρ) Eνw = Em∗ (ρ)

k∑
i=1

Eµ̂

(
Em

∂u
∂c1

(ĉ)

Eµ̂Em
∂u
∂c1

(ĉ)
m̂i

)
wi

=

k∑
i=1

Eµ̂

∂u
∂c1i

(ĉ)
∂u
∂c0

(ĉ)
miwi = Eµ̂

k∑
i=1

∂u
∂c1i

(ĉ)
∂u
∂c0

(ĉ)
miwi = Eµ̂Em

(
∂u
∂c1

(ĉ)
∂u
∂c0

(ĉ)
w

)
= pw
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where the last equality follows from (50). �

Proof of Lemma 16 The if part is obvious. As to the converse, suppose that fractional treatment is
not optimal. We first remark that the concavity of V is easy to check. Hence V (0) 6= V (1) because
otherwise V (a) ≥ V (0) = V (1) for all a ∈ (0, 1). Suppose V (0) < V (1), so that the optimal decision
is â = 1, i.e., V (1) > V (a) for every a ∈ [0, 1). By concavity, V (a) ≥ aV (1) + (1− a)V (0) ≥ V (0)
for every a ∈ [0, 1], and so V (0) = mina∈[0,1] V (a). Set φ (a) = V (a) − V (0) / (V (1)− V (0)).
Then, φ (0) = 0 and φ (1) = 1. Since V , and so φ, is concave, given any ā ∈ (0, 1), we have
φ (a) ≤ φ (ā) + φ′+ (ā) (a− ā) for all a ∈ [0, 1]. Hence, 1 = φ (1) ≤ φ (ā) + φ′ (ā) (1− ā), which
implies V ′+ (ā) = φ′+ (ā) > 0 since φ (ā) < φ (1) = 1. We conclude that V is strictly increasing. If
V (0) > V (1), a similar argument shows that V is strictly decreasing. �

6.6 Section 5

Proof of Proposition 18 For brevity we omit the proof. It is similar to the proof of Proposition 7
but with W in place of cλ. �

6.7 Miscellanea

Equation (31) It is a special case of equation (58) with M = {δs : s ∈ E}. �

Equation (40) Assume that a is finitely valued. For β 6= 0 small enough, we have (see e.g. Billingsley
1995, p. 148):

cβ (a, µ) = − 1

β
log Eµe

βEm(−a) = − 1

β

∞∑
n=1

βn

n!
cn (E (−a))

= −
∞∑
n=1

(−1)
n
βn−1

n!
cn (E (a)) =

∞∑
n=1

(−1)
n+1

βn−1

n!
cn (E (a))

= Eµ̄a−
1

2
ασ2

µ (E (a)) +

∞∑
n=3

(−1)
n+1

βn−1

n!
cn (E (a))

In turn, this implies (40). �

Equation (51) We have:

pw = Eµ

(
φ′ (Em (u (ĉ)))

Eµ
(
φ′ (Em (u (ĉ)))

)Em

(
∂u
∂c1

(ĉ)
∂u
∂c0

(ĉ)
w

))
= Eµ

(
Em

(
φ′ (Em (u (ĉ))) ∂u

∂c1
(ĉ)

Eµ
(
φ′ (Em (u (ĉ)))

)
∂u
∂c0

(ĉ)
w

))

= Eµ

(
Em∗

(
φ′ (Em (u (ĉ))) ∂u

∂c1
(ĉ)

Eµ
(
φ′ (Em (u (ĉ)))

)
∂u
∂c0

(ĉ)

m

m∗
w

))
= Em∗

(
Eµ
(
φ′ (Em (u (ĉ))) m

m∗

)
Eµ
(
φ′ (Em (u (ĉ)))

) ∂u
∂c1

(ĉ)
∂u
∂c0

(ĉ)
w

)
Since Since the market is complete, by considering Arrow contingent claims we get (51). �

Example 17We have â ∈ (0, 1) if and only if Eµc̄m (t0) c̄m (t1) < min
{

Eµc̄
2
m (t0) ,Eµc̄

2
m (t1)

}
. Since

for all a, b ∈ R it holds 2 min {a, b} = (a+ b)− |a− b|, this inequality holds if and only if

2Eµc̄m (t0) c̄m (t1) < Eµc̄
2
m (t0) + Eµc̄

2
m (t1)−

∣∣Eµc̄2m (t0)− Eµc̄
2
m (t1)

∣∣
That is, |V (a)− V (b)| =

∣∣Eµc̄2m (t0)− Eµc̄
2
m (t1)

∣∣ < Eµd
2
m as desired. �

Equation (58) Since {δm : m ∈M} ⊆ ∆ (M), the inequality ≤ follows. On the other hand,∫
S
u (a (s)) dm ≥ minm∈M

∫
S
u (a (s)) dm for all m ∈ M , and so

∫
M

(∫
S
u (a (s)) dm

)
dµ (m) ≥

minm∈M
∫
S
u (a (s)) dm for all µ ∈ ∆ (M). Hence, also the inequality ≥ holds. �

52



References

[1] M. Abdellaoui, A. Baillon, L. Placido, and P. P. Wakker, The rich domain of uncertainty: Source
functions and their experimental implementation, American Economic Review, 101, 695-723,
2011.

[2] H. Akaike, Prediction and entropy, in A celebration of statistics (A. C. Atkinson and E. Fien-
berg, eds.), Springer-Verlag, New York, 1985.

[3] M. Amarante, Foundations of neo-Bayesian statistics, Journal of Economic Theory, 144, 2146-
2173, 2009.

[4] A. H. S. Ang and W. H. Tang, Probability concepts in engineering, 2nd ed., John Wiley and
Sons, New York, 2007.

[5] F. J. Anscombe and R. J. Aumann, A definition of subjective probability, Annals of Mathematics
and Statistics, 34, 199-205, 1963.

[6] G. Apostolakis, The concept of probability in safety assessments of technological systems, Sci-
ence, 1359-1364, 1990.

[7] K. J. Arrow, Alternative approaches to the theory of choice in risk-taking situations, Econo-
metrica, 19, 404-437, 1951.

[8] K. J. Arrow and L. Hurwicz, An optimality criterion for decision-making under ignorance, in
Uncertainty and expectations in economics (C. F. Carter and J. L. Ford, eds.), Basil Blackwell,
Oxford, 1972

[9] R. J. Aumann, Correlated equilibrium as an expression of Bayesian rationality, Econometrica,
55, 1-18, 1987.

[10] D. Backus, A. Ferriere, and S. Zin, Risk and ambiguity in models of business cycles, Journal of
Monetary Economics, 69, 42-63, 2015.

[11] J. W. Baker, An introduction to probabilistic seismic hazard analysis (PSHA), mimeo, 2008.

[12] N. Barberis, Investing for the long run when returns are predictable, Journal of Finance, 55,
225-264, 2000.

[13] A. Barron, J. Rissanen, and B. Yu, The minimum description length principle in coding and
modeling, IEEE Transactions on Information Theory, 44, 2743-2760, 1998.

[14] P. Battigalli, S. Cerreia-Vioglio, F. Maccheroni, and M. Marinacci, Selfconfirming equilibrium
and model uncertainty, American Economic Review, 105, 646-677, 2015a.

[15] P. Battigalli, S. Cerreia-Vioglio, F. Maccheroni, M. Marinacci, and T. Sargent, Monetary poli-
cies in self-confirming equilibria with uncertain models, mimeo, 2015b.

[16] J. O. Berger, Robust Bayesian analysis: Sensitivity to the prior, Journal of Statistical Planning
and Inference, 25, 303-328, 1990.

[17] J. O. Berger, Statistical decision theory and Bayesian analysis, 2nd ed., Springer, New York,
1993.

[18] J. O. Berger, The case for objective Bayesian analysis, Bayesian Analysis, 1, 385-402, 2006.

[19] L. Berger, J. Emmerling, and M. Tavoni, Managing catastrophic climate risks under model
uncertainty aversion, mimeo, 2014.

53



[20] J. M. Bernardo and A. Smith, Bayesian theory, John Wiley & Sons, New York, 1994.

[21] D. Bernoulli, Specimen theoriae novae de mensura sortis, Commentarii Academiae Scientiarum
Imperialis Petropolitanae, 1738 (translated in Econometrica, 22, 23-36, 1954).

[22] P. Billingsley, Ergodic theory and information, Wiley, New York, 1965.

[23] P. Billingsley, Probability and measure, 3rd ed., Wiley, New York, 1995.

[24] G. Boole, An investigation in the laws of thought, Walton and Maberley, London, 1854.

[25] E. Borel, Elements de la théorie des probabilités, Hermann, Paris, 1909.

[26] E. Borgonovo, V. Cappelli, F. Maccheroni, and M. Marinacci, Risk analysis and decision theory,
mimeo, 2015.

[27] L. Breiman, Statistical modeling: The two cultures, Statistical Science, 16, 199-231, 2001.

[28] W. A. Brock, S. N. Durlauf, and K. D. West, Policy evaluation in uncertain economic environ-
ments, Brookings Papers on Economic Activity, 2003.

[29] V. S. Bawa, S. J. Brown, and R. W. Klein, Estimation risk and optimal portfolio choice, North
Holland, Amsterdam, 1979.

[30] R. Carnap, The two concepts of probability, Philosophy and Phenomenological Research, 5,
513-532, 1945.

[31] R. Carnap, Logical foundations of probability, University of Chicago Press, Chicago, 1950.

[32] S. Cerreia-Vioglio, F. Maccheroni, and M. Marinacci, Put-call parity and market frictions,
Journal of Economic Theory, 157, 730-762, 2015.

[33] S. Cerreia-Vioglio, F. Maccheroni, M. Marinacci, and L. Montrucchio, Uncertainty averse pref-
erences, Journal of Economic Theory, 146, 1275-1330, 2011.

[34] S. Cerreia-Vioglio, F. Maccheroni, M. Marinacci, and L. Montrucchio, Ambiguity and robust
statistics, Journal of Economic Theory, 148, 974-1049, 2013a.

[35] S. Cerreia-Vioglio, F. Maccheroni, M. Marinacci, and L. Montrucchio, Classical subjective
expected utility, Proceedings of the National Academy of Sciences, 110, 6754-6759, 2013b.

[36] A. Chateauneuf and J. H. Faro, Ambiguity through confidence functions, Journal of Mathe-
matical Economics, 45, 535-558, 2009.

[37] H. Chernoff, Rational selection of decision functions, Econometrica, 22, 422-443, 1954.

[38] H. S. Chew and J. Sagi, Small worlds: Modeling attitudes toward sources of uncertainty, Journal
of Economic Theory, 139, 1-24, 2008.

[39] D. M. Cifarelli and E. Regazzini, de Finetti’s contribution to probability and statistics, Statis-
tical Science, 11, 253-282, 1996.

[40] J. H. Cochrane, Asset pricing, Princeton University Press, Princeton, 2005.

[41] J. H. Cochrane and L. P. Hansen, Asset pricing explorations for macroeconomics, NBER Macro-
economics Annual, 7, 115-182, 1992.

[42] M. Cohen and J.-Y. Jaffray, Rational behavior under complete ignorance, Econometrica, 48,
1281-1299, 1980.

54



[43] F. Collard, S. Mukerji, K. Sheppard, and J.-M. Tallon, Ambiguity and the historical equity
premium, mimeo, 2012.

[44] D. R. Cox, Principles of statistical inference, Cambridge University Press, Cambridge, 2006.

[45] D. B. Davis and M.-E. Paté-Cornell, A challenge to the compound lottery axiom: A two-stage
normative structure and comparison to other theories, Theory and Decision, 37, 267-309, 1994.

[46] B. de Finetti, Sul significato soggettivo della probabilità, Fundamenta Mathematicae, 17, 298-
329, 1931.

[47] B. de Finetti, La prévision: ses lois logiques, ses sources subjectives, Annales de l’Institut Henri
Poincaré, 7, 1-68, 1937.

[48] B. de Finetti, Probabilità di una teoria e probabilità dei fatti, in Studi in onore di G. Pompilj,
Oderisi Editore, Gubbio, 1971.

[49] B. de Finetti, Probabilities of probabilities: A real problem or a misunderstanding?, in New
developments in the applications of Bayesian methods, (A. Aykac and C. Brumat, eds.), Ams-
terdam, 1977.

[50] W. E. Deming, Out of the crisis: Quality, productivity and competitive position, Cambridge
University Press, Cambridge, 1986.

[51] A. Der Kiureghian, Analysis of structural reliability under parameter uncertainty, Probabilistic
Engineering Mechanics, 23, 351-358, 2008.

[52] A. Der Kiureghian and O. Ditlevsen, Aleatory or epistemic? Does it matter?, Structural Safety,
31, 105-112, 2009.

[53] P. Diaconis and D. Freedman, A dozen de Finetti-style results in search of a theory, Annales
de l’IHP Probabilités et Statistiques, 23, 397-423, 1987.

[54] O. Ditlevsen and H. O. Madsen, Structural reliability methods, John Wiley and Sons, New York,
2007.

[55] A. Dominiak and J.-P. Lefort, Ambiguity and probabilistic information, mimeo, 2015.

[56] J. Dow and S. R. C. Werlang, Uncertainty aversion, risk aversion, and the optimal choice of
portfolio, Econometrica, 60, 197-204, 1992.

[57] D. Draper, Assessment and propagation of model uncertainty, Journal of the Royal Statistical
Society, Series B, 45-97, 1995.

[58] D. Draper, J. S. Hodges, E. E. Leamer, C. N. Morris, D. B. Rubin, A research agenda for
assessment and propagation of model uncertainty, RAND Corporation, 1987.

[59] J. Eichberger and A. Guerdjikova, Ambiguity, data and preferences for information - A case-
based approach, Journal of Economic Theory, 148, 1433-1462, 2013.

[60] I. Ekeland, The broken dice, University of Chicago Press, Chicago, 1993.

[61] D. Ellsberg, Risk, ambiguity, and the Savage axioms, Quarterly Journal of Economics, 75,
643-669, 1961.

[62] L. Epstein and T. Wang, Intertemporal asset pricing under Knightian uncertainty, Economet-
rica, 62, 283-322, 1994.

55



[63] H. Ergin and F. Gul, A theory of subjective compound lotteries, Journal of Economic Theory,
144, 899-929, 2009.

[64] R. V. Field and M. Grigoriu, Model selection in applied science and engineering: A decision-
theoretic approach, Journal of Engineering Mechanics, 133, 780-791.

[65] P. C. Fishburn, Subjective expected utility: A review of normative theories, Theory and Deci-
sion, 13, 139-199, 1981.

[66] R. A. Fisher, The underworld of probability, Sankhya, 18, 201-210, 1957.

[67] M. Friedman, The methodology of positive economics, in Essays in positive economics, Univer-
sity of Chicago Press, 1953.

[68] M. Friedman and L. J. Savage, The utility analysis of choices involving risk, Journal of Political
Economy, 16, 279-304, 1948.

[69] T. Gajdos, T. Hayashi, J.-M. Tallon, and J.-C. Vergnaud, Attitude toward imprecise informa-
tion, Journal of Economic Theory, 140, 27-65, 2008.

[70] P. Ghirardato, F. Maccheroni and M. Marinacci, Differentiating ambiguity and ambiguity atti-
tude, Journal of Economic Theory, 118, 133-173, 2004.

[71] P. Ghirardato and M. Marinacci, Risk, ambiguity, and the separation of utility and beliefs,
Mathematics of Operations Research, 4, 864-89, 2001.

[72] P. Ghirardato and M. Marinacci, Ambiguity made precise: A comparative foundation, Journal
of Economic Theory, 102, 251-289, 2002.

[73] R. N. Giere, Epistemological roots of scientific knowledge, in Induction, Probability, and Confir-
mation (G. Maxwell and R. M. Anderson, Jr., eds.), University of Minnesota Press, Minneapolis,
1975.

[74] R. N. Giere, Philosophy of science naturalized, Philosophy of Science, 52, 331-356, 1985.

[75] I. Gilboa, Theory of decision under uncertainty, Cambridge University Press, Cambridge, 2009.

[76] I. Gilboa, O. Lieberman, and D. Schmeidler, On the definition of objective probabilities by
empirical similarity, Synthese, 172, 79-95, 2010.

[77] I. Gilboa and M. Marinacci, Ambiguity and the Bayesian paradigm, in Advances in economics
and econometrics: Theory and applications (D. Acemoglu, M. Arellano, and E. Dekel, eds.),
Cambridge University Press, Cambridge, 2013.

[78] I. Gilboa and D. Schmeidler, Maxmin expected utility with a non-unique prior, Journal of
Mathematical Economics, 18, 141-153, 1989.

[79] I. Gilboa and D. Schmeidler, A theory of case-based decisions, Cambridge University Press,
Cambridge, 2001.

[80] R. Giraud, Second order beliefs models of choice under imprecise risk: nonadditive second order
beliefs versus nonlinear second order utility, Theoretical Economics, 9, 779-816, 2014.

[81] C. Gollier, Portfolio choices and asset prices: The comparative statics of ambiguity aversion,
Review of Economic Studies, 78, 1329-1344, 2011.

[82] C. Gollier, Pricing the planet’s future: The economics of discounting in an uncertain world,
Princeton University Press, Princeton, 2013.

56



[83] I. J. Good, Kinds of probability, Science, 129, 443-450, 1959.

[84] I. J. Good, The estimation of probabilities: An essay on modern Bayesian methods, MIT Press,
Cambridge, 1965.

[85] S. Grant and B. Polak, Mean-dispersion preferences and constant absolute uncertainty aversion,
Journal of Economic Theory, 148, 1361-1398, 2013.

[86] A. Guerdjikova and E. Sciubba, Survival with ambiguity, Journal of Economic Theory, 155,
50-94, 2015.

[87] M. Guidolin and F. Rinaldi, Ambiguity in asset pricing and portfolio choice: A review of the
literature, Theory and Decision, 74, 183-217, 2013.

[88] F. Gul and W. Pesendorfer, Hurwicz expected utility and multiple sources, Journal of Economic
Theory, forthcoming.

[89] J. Guo and X. Du, Sensitivity analysis with mixture of epistemic and aleatory uncertainties,
Journal of the American Institute of Aeronautics and Astronautics, 45, 2337-2349, 2007.

[90] T. Haavelmo, The probability approach in econometrics, Econometrica, 12, Supplement, 1944.

[91] I. Hacking, The emergence of probability, Cambridge University Press, Cambridge, 1975.

[92] A. Halevy, P. Norvig, and F. Pereira, The unreasonable effectiveness of data, IEEE Intelligent
Systems, 24, 8-12, 2009.

[93] E. Hanany and P. Klibanoff, Updating ambiguity averse preferences, The BE Journal of Theo-
retical Economics, 9, 2009.

[94] L. P. Hansen, Beliefs, doubts and learning: Valuing macroeconomic risk, American Economic
Review, 97, 1-30, 2007.

[95] L. P. Hansen, Uncertainty outside and inside economic models, Journal of Political Economy,
122, 5, 945-987, 2014.

[96] L. P. Hansen and S. F. Richard, The role of conditioning information in deducing testable
restrictions implied by dynamic asset pricing models, Econometrica, 55, 587-613, 1987.

[97] L. P. Hansen and T. J. Sargent, Robust control and model uncertainty, American Economic
Review, 91, 60-66, 2001.

[98] L. P. Hansen and T. J. Sargent, Recursive robust estimation and control without commitment,
Journal of Economic Theory, 136, 1-27, 2007.

[99] L. P. Hansen and T. J. Sargent, Robustness, Princeton University Press, Princeton, 2008.

[100] L. P. Hansen and T. J. Sargent, Fragile beliefs and the price of uncertainty, Quantitative Eco-
nomics, 1, 129-162, 2010.

[101] L. P. Hansen and T. J. Sargent, Uncertainty within economic models, World Scientific, Singa-
pore, 2014.

[102] M. H. Hansen and B. Yu, Model selection and the principle of minimum description length,
Journal of the American Statistical Association, 96, 746-774, 2001.

[103] G. H., Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, Cam-
bridge, 1934.

57



[104] T. Hayashi and J. Miao, Intertemporal substitution and recursive smooth ambiguity preferences,
Theoretical Economics, 6, 423-472, 2011.

[105] G. Heal and A. Millner, Uncertainty and decision making in climate change economics, Review
of Environmental Economics and Policy, 8, 120-137, 2014.

[106] J. J. Heckman, Econometric causality, International Statistical Review, 76, 1-27, 2008.

[107] L. Hurwicz, Some specification problems and application to econometric models, Econometrica,
19, 343-344, 1951.

[108] J.-Y. Jaffray, Linear utility theory for belief functions, Operations Research Letters, 8, 107-112,
1989.

[109] M. R. Jahan-Parvar and H. Liu, Ambiguity aversion and asset prices in production economies,
Review of Financial Studies, 27, 3060-3097, 2014.

[110] E. T. Jaynes, Probability theory in science and engineering, Mobil Oil Company, Dallas, 1959.

[111] E. T. Jaynes, Probability theory: The logic of science, Cambridge University Press, Cambridge,
2003.

[112] I. Jewitt and S. Mukerji, Ordering ambiguous acts, mimeo, 2011.

[113] N. Ju and J. Miao, Ambiguity, learning, and asset returns, Econometrica, 80, 559-591, 2012.

[114] S. Kandel and R. F. Stambaugh, On the predictability of stock returns: An asset-allocation
perspective, Journal of Finance, 51, 385-424, 1996.

[115] S. Kaplan and B. J. Garrick, On the quantitative definition of risk, Risk Analysis, 1, 1-28, 1981.

[116] S. Kaplan, H. F. Perla, and D. C. Bley, A methodology for seismic risk analysis of nuclear power
plants, Risk Analysis, 3, 169-180, 1983.

[117] R. E. Kass and L. Wasserman, The selection of prior distributions by formal rules, Journal of
the American Statistical Association, 91, 1343-1370, 1996.

[118] T. Kelly, Evidence: Fundamental concepts and the phenomenal conception, Philosophy Com-
pass, 3, 933-955, 2008.

[119] M. G. Kendall, The advanced theory of statistics, 2nd ed., Griffi n, London, 1946.

[120] J. M. Keynes, A treatise on probability, MacMillan, London, 1921.

[121] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their ap-
plications, Academic Press, New York, 1980.

[122] P. Klibanoff, Thoughts on policy choice under ambiguity, Journal of Institutional and Theoret-
ical Economics, 169, 134-138, 2013.

[123] P. Klibanoff, M. Marinacci, and S. Mukerji, A smooth model of decision making under ambi-
guity, Econometrica, 73, 1849-1892, 2005.

[124] F. H. Knight, Risk, uncertainty and profit, Houghton Miffl in, Boston, 1921.

[125] S. Konishi and G. Kitagawa, Information criteria and statistical modeling, Springer, New York,
2008.

[126] T. C. Koopmans, Measurement without theory, Review of Economic Statistics, 29, 161-172,
1947.

58



[127] K. Kording, Decision theory: what “should” the nervous system do?, Science, 318, 606-610,
2007.

[128] H. Kuhn, Extensive games and the problem of information, in Contributions to the Theory of
Games (eds. H. Kuhn and A. Tucker), Princeton University Press, Princeton, 1953.

[129] J.-J. Laffont, The economics of uncertainty and information, MIT Press, Cambridge, 1989.

[130] M. Lang, First-order and second-order ambiguity aversion, mimeo, 2015.

[131] P.-S. Laplace, Théorie analytique des probabilités, Courcier, Paris, 1812.

[132] L. Le Cam, A note on metastatistics or ‘An essay toward stating a problem in the doctrine of
chances’, Synthese, 36, 133-60, 1977.

[133] S. F. LeRoy and L. D. Singell, Knight on risk and uncertainty, Journal of Political Economy,
394-406, 1987.

[134] D. V. Lindley, Understanding uncertainty, 2nd ed., John Wiley and Sons, New York, 2013.

[135] R. E. Lucas Jr., Understanding business cycles, in Stabilization of the Domestic and Interna-
tional Economy (K. Brunner and A. H. Meltzer, eds.), North-Holland, Amsterdam, 1977.

[136] F. Maccheroni, M. Marinacci, and D. Ruffi no, Alpha as ambiguity: Robust mean-variance
portfolio analysis, Econometrica, 81, 1075-1113, 2013.

[137] F. Maccheroni, M. Marinacci, and A. Rustichini, Ambiguity aversion, robustness, and the
variational representation of preferences, Econometrica, 74, 1447-1498, 2006.

[138] F. Maccheroni, M. Marinacci, and A. Rustichini, Social decision theory: Choosing within and
between groups, Review of Economic Studies, 79, 1591-1636, 2012.

[139] M. J. Machina, Almost-objective uncertainty, Economic Theory, 24, 1-54, 2004.

[140] C. F. Manski, Diversified treatment under ambiguity, International Economic Review, 50, 1013-
1041, 2009.

[141] M. Marinacci, Learning from ambiguous urns, Statistical Papers, 43, 143-151, 2002.

[142] J. Marschak, Economic measurements for policy and prediction, in Studies in Econometric
Method (W. Hood and T. J. Koopmans, eds.). Wiley, New York, 1953.

[143] J. Marschak and R. Radner, Economic theory of teams, Yale University Press, New Haven,
1972.

[144] W. Marzocchi, C. Newhall, and G. Woo, The scientific management of volcanic crises, Journal
of Volcanology and Geothermal Research, 181-189, 2012.

[145] R. D. Mauldin, D. Preiss, and H. von Weizsacker, Orthogonal transition kernels, Annals of
Probability, 970-988, 1983.

[146] M. Meinshausen, N. Meinshausen, W. Hare, S. Raper, K. Frieler, R. Knutti, D. Frame, and
M. Allen, Greenhouse-gas emission targets for limiting global warming to 2o C., Nature, 458,
1158-1162, 2009.

[147] J. Miao, Economic dynamics in discrete time, MIT Press, Cambridge, 2014.

[148] A. Millner, S. Dietz, and G. Heal, Scientific ambiguity and climate policy, Environmental and
Resource Economics, 55, 21-46, 2013.

59



[149] J. Milnor, Games against nature, in Decision Processes (R.M. Thrall, C.H. Coombs and R.L.
Davis, eds.), New York, Wiley, 1954.

[150] S. Morris, The common prior assumption in economic theory, Economics and Philosophy, 11,
227-253, 1995.

[151] P. Muliere and G. Parmigiani, Utility and means in the 1930s, Statistical Science, 8, 421-432,
1993.

[152] J. F. Muth, Rational expectations and the theory of price movements, Econometrica, 29, 315-
335, 1961.

[153] National Research Council, Science and decisions: Advancing risk assessment, National Acad-
emies Press, Washington, 2009

[154] R. F. Nau, Uncertainty aversion with second-order utilities and probabilities, Management
Science, 52, 136-145, 2006 (see also Proceedings of ISIPTA 2001 ).

[155] W. S. Neilson, A simplified axiomatic approach to ambiguity aversion, Journal of Risk and
Uncertainty, 41, 113-124, 2010.

[156] J. Neyman, ‘Inductive behavior’ as a basic concept of philosophy of science, Review of the
International Statistical Institute, 25, 7-22, 1957.

[157] D. S. Ornstein and B. Weiss, How sampling reveals a process, Annals of Probability, 18, 905-930,
1990.

[158] V. Pareto, Sunto di alcuni capitoli di un nuovo trattato di economia pura, Giornale degli
Economisti, 20, 216-235, 1900 (translated in Giornale degli Economisti, 67, 453-504, 2008).

[159] L. Pastor, Portfolio selection and asset pricing models, Journal of Finance, 55, 179-223, 2000.

[160] M.-E. Paté-Cornell, Uncertainties in risk analysis: Six levels of treatment, Reliability Engineer-
ing & System Safety, 54, 95-111, 1996.

[161] J. Pearl, Probabilistic reasoning in intelligent systems: Networks of plausible inference, Morgan
Kaufmann Publishers, San Francisco, 1988.

[162] G. Picci, Some connections between the theory of suffi cient statistics and the identifiability
problem, SIAM Journal on Applied Mathematics, 33, 383-398, 1977.

[163] K. R. Popper, The propensity interpretation of probability, British Journal for the Philosophy
of Science, 10, 25-42, 1959.

[164] K. Porter, K. Shoaf, and H. Seligson, Value of injuries in the Northridge earthquake, Earthquake
Spectra, 22, 555-563, 2006.

[165] E. L. Porteus, Foundations of stochastic inventory theory, Stanford University Press, Stanford,
2002.

[166] J. W. Pratt and R. Schlaifer, On the nature and discovery of structure, Journal of the American
Statistical Association, 79, 9-21, 1984.

[167] H. Raiffa and R. Schlaifer, Applied statistical decision theory, Harvard Graduate School of
Business Administration, Boston, 1961.

[168] F. P. Ramsey, Truth and probability, 1926 (in R. Braithwaite, ed., The foundations of mathe-
matics and other logical essays, Routledge and Kegan, London, 1931).

60



[169] J. Rissanen, Information and complexity in statistical modeling, Springer, New York, 2007.

[170] J. Rogelj, M. Meinshausen, and R. Knutti, Global warming under old and new scenarios using
IPCC climate sensitivity range estimates, Nature Climate Change, 2, 248-253, 2012.

[171] S. A. Ross, Neoclassical finance, Princeton University Press, Princeton, 2005.

[172] M. J. Rothschild and J. Stiglitz, Increasing risk I: A definition, Journal of Economic Theory,
2, 225-243, 1970.

[173] P. A. Samuelson, A note on the pure theory of consumer’s behaviour, Economica, 5, 61-71,
1938.

[174] T. J. Sargent, Evolution and intelligent design, American Economic Review, 98, 3-37, 2008.

[175] L. J. Savage, The theory of statistical decision, Journal of the American Statistical Association,
46, 55-67, 1951.

[176] L. J. Savage, The foundations of statistics, John Wiley and Sons, New York, 1954.

[177] D. Schmeidler, Subjective probability and expected utility without additivity, Econometrica,
57, 571-587, 1989.

[178] U. Segal, The Ellsberg paradox and risk aversion: An anticipated utility approach, International
Economic Review, 28, 175—202, 1987.

[179] K. Seo, Ambiguity and second-order belief, Econometrica, 77, 1575-1605, 2009.

[180] G. Shafer, Non-additive probabilities in the work of Bernoulli and Lambert, Archive for History
of Exact Sciences, 19, 309-370, 1978.

[181] N. D. Singpurwalla, Reliability and risk: a Bayesian perspective, John Wiley and Sons, New
York, 2006.

[182] M. Siniscalchi, Dynamic choice under ambiguity, Theoretical Economics, 6, 379-421, 2011.

[183] B. F. Skinner, Cognitive science and behaviourism, British Journal of Psychology, 76, 291-301,
1985.

[184] V. L. Smith, Measuring nonmonetary utilities in uncertain choices: The Ellsberg urn, Quarterly
Journal of Economics, 83, 324-329, 1969.

[185] S. Solomon et al., IPCC climate change 2007: The physical science basis, Cambridge University
Press, Cambridge, 2007.

[186] N. Stern, The economics of climate change, Cambridge University Press, Cambridge, 2007.

[187] J. Stoye, Statistical decisions under ambiguity, Theory and Decision, 70, 129-148, 2011.

[188] T. Strzalecki, Axiomatic foundations of multiplier preferences, Econometrica, 79, 47-73, 2011.

[189] T. Strzalecki, Temporal resolution of uncertainty and recursive models of ambiguity aversion,
Econometrica, 81, 1039-1074, 2013.

[190] M. Taboga, Portfolio selection with two-stage preferences, Finance Research Letters, 2, 152-164,
2005.

[191] H. Teicher, Identifiability of finite mixtures, Annals of Mathematical Statistics, 34, 244-248,
1963.

61



[192] J. B. Tenenbaum, C. Kemp, T. L. Griffi ths, and N. D. Goodman, How to grow a mind: Statis-
tics, structure, and abstraction, Science, 331, 1279-1285, 2011.

[193] H. Theil, Economic forecasts and policy, North Holland, Amsterdam, 1961.

[194] J. Tinbergen, On the theory of economic policy, North Holland, Amsterdam, 1952.

[195] R. von Mises, Probability, statistics, and truth, MacMillan Company, New York, 1939.

[196] J. von Neumann and O. Morgenstern, Theory of games and economic behavior (2nd edition),
Princeton University Press, Princeton, 1947.

[197] J. von Plato, Ergodic theory and the foundations of probability, in Causation, chance, and
credence (B. Skyrms and W. L. Harper, eds.), Kluwer, Dordrecht, 1988.

[198] J. von Plato, Probability in dynamical systems, in Logic, methodology and philosophy of science
VIII, (eds. J. E. Fenstad, I. T. Frolov and R. Hilpinen), North Holland, Amsterdam, 1989.

[199] J. von Plato, Creating modern probability: Its mathematics, physics, and philosophy in historical
perspective, Cambridge University Press, Cambridge, 1994.

[200] P. P. Wakker, Prospect theory, Cambridge University Press, Cambridge, 2010.

[201] A. Wald, Statistical decision functions, John Wiley and Sons, New York, 1950.

[202] W. E. Walker, P. Harremoes, J. Rotmans, J. P. van der Sluijs, M. van Asselt, P. Janssen, and
M. Krayer von Krauss, Defining uncertainty: a conceptual basis for uncertainty management
in model-based decision support, Integrated Assessment, 4, 5-17, 2003.

[203] J. W. Weibull, The mass action interpretation, in H. Kuhn et al. “The work of John Nash in
game theory”, Journal of Economic Theory, 69, 153-185, 1996.

[204] R. L. Winkler, Uncertainty in probabilistic risk assessment, Reliability Engineering & System
Safety, 54, 127-132, 1996.

[205] F. Xu and V. Garcia, Intuitive statistics by 8-month-old infants, Proceedings of the National
Academy of Sciences, 105, 5012-5015, 2008.

[206] F. Xu and T. Kushnir, Infants are rational constructivist learners, Current Directions in Psy-
chological Science, 22, 28-32, 2013.

[207] J. Xue, Three representations of preferences with decreasing absolute uncertainty aversion,
mimeo, 2012.

[208] S. L. Zabell, The subjective and the objective, Handbook of the Philosophy of Science, vol. 7
(P. S. Bandyopadyay and M. R. Forster, eds.), Elsevier, Amsterdam, 2011.

62


	wp553cover.pdf
	Massimo Marinacci Working Paper n. 553


