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Abstract

The triplet-based risk analysis of Kaplan and Garrick (1981) is the keystone of state-of-the-

art probabilistic risk assesment in several applied �elds. This paper performs a sharp embedding

of the elements of this framework into the one of formal decision theory, which is mainly con-

cerned with the methodological and modelling issues of rational decision making. In order to

show the applicability of such an embedding, we also explicitly develop it within a nuclear

probabilistic risk assessment, as prescribed by the U.S. NRC.

The aim of this exercise is twofold: on the one hand, it gives risk analysis a direct access to

the rich toolbox that decision theory has developed, in the last decades, in order to deal with

complex layers of uncertainty; on the other, it exposes decision theory to the challenges of risk

analysis, thus providing it with broader scope and new stimuli.

50% of the problems in the world result [...] from people using di¤erent words with the same meaning.

Kaplan (1997, p. 408)

1 Introduction

In the management of complex technological systems, the term risk analysis refers to the part

of the policy-making process associated with the identi�cation of scenarios and their likelihoods
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(Clemen and Reilly, 1999 and Paté-Cornell and Dillon, 2006). The location of a nuclear waste

repository (Garrick and Kaplan, 1999), the programming of a space mission (Stamatelatos et

al., 2011, Borgonovo and Smith, 2011, Dillon et al., 2003), and the evaluation of design changes

in chemical and nuclear plants (Boykin et al., 1984, Caruso et al., 1999), are a few examples

in which decision making is informed by a risk analysis, in the so-called risk-informed decision

making (Apostolakis, 2004). This discipline has gained a signi�cant amount of attention from both

policymakers and the public over the past 30 years, as the interaction of technology and policy choices

has become more predominant in the evaluation of trade-o¤s in a democratic society (Apostolakis

and Pickett, 1998, p. 621).[1]

Over the years, Kaplan and Garrick�s de�nition of risk (Kaplan and Garrick, 1981, henceforth

KG) has become one of the pillars of risk analysis, guiding several key studies performed by national

and international agencies and laboratories (for instance, Kaplan and Garrick�s risk triplets are a

structural part of NASA�s recent risk management handbook by Stamatelatos et al., 2011). The

triplet structure introduced by Kaplan and Garrick remains in�uential also for recent generalizations

of the risk concept (Althaus, 2005, Aven, 2012b). These latter works signal a common trait of risk

analysis, that is, the consideration of risk as a self-standing concept, independent of any decision-

analytical consideration. This separation is deemed attractive by some researchers (see the debates

reported in Aven, 2012), insofar it permits the extension of Kaplan and Garrick�s de�nition of

risk to non-probabilistic approaches. However, it has the drawback of neglecting the operative

motivation that a decision-making approach brings to a risk analysis.[2]

Indeed, in their seminal 1981 article, Kaplan and Garrick maintain that risk must thus be con-

sidered always within a decision theory context (KG, p. 25). Several subsequent works discuss risk

analysis from a decision-making viewpoint (Howard, 1988, Apostolakis, 1990, Winkler, 1996, and

Apostolakis and Pickett, 1998). Both Paté-Cornell and Dillon (2006) and Clemen and Reilly (1999)

underline that risk analysis and decision analysis are intertwined: a decision analysis can include

a risk analysis component (Paté-Cornell and Dillon, 2006, p. 220). Nonetheless, the decision-
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analytical background upholding Kaplan and Garrick�s de�nition itself has not been investigated

in depth to date.

This gap in risk analysis leads us to the decision side. Subjective expected utility originates

in the seminal works of von Neumann and Morgenstern (1947), Wald (1950), and Savage (1954),

which have become the pillars of modern decision analysis (Pratt et al., 1995, and Smith and

von Winterfeldt, 2004). This theory features a decision maker (DM) who evaluates acts whose

consequences depend on states of the environment generated by mechanisms that are only partially

known or understood. Each such mechanism corresponds to a probabilistic model that describes the

frequency of the various states inherent to the phenomenon at hand. The information available to

the DM allows him to posit a set of possible mechanisms, that is, of possible probabilistic models.[3]

In general, such a set is not a singleton because information is not su¢ ciently accurate to pin down

a single mechanism. In other words, the DM is uncertain about the true probabilistic model. Thus,

two layers of uncertainty are at play as follows: the irreducible aleatory uncertainty (physical

risk) about states and the epistemic uncertainty about models (of the physical phenomenon).

The �rst is described by probabilistic models, the second by a prior probability over them. The

recent Cerreia-Vioglio et al. (2013), henceforth CMMM, extends Savage�s analysis by showing

that: if the DM�s preferences satisfy Savage (1954)�s axioms plus a consistency condition, then one

obtains a subjective expected utility functional where the qualitative distinction of the two layers

is meaningful (see Section 5).

The heart of the present work is the reconciliation of Kaplan and Garrick�s de�nition of risk in its

various formats with the corresponding decision-theoretic counterparts. First of all, we observe that

the notion of hazard in Kaplan and Garrick�s is in one-to-one correspondence with the decision-

theoretic notion of act. We then show that Kaplan and Garrick�s risk triplets in �frequency�

format can be embedded in the von Neumann and Morgenstern decision-theoretic framework, in

which uncertainty is described by an objective probability. Similarly, triplets in �probability�
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format belong to Savage�s framework, in which uncertainty is described by a subjective probability.

Finally, we show that the �probability of frequency�format, where the two layer distinction between

aleatory and epistemic uncertainty is achieved, �nds its natural collocation within the Waldean

extension of Savage�s framework recently proposed by CMMM.

The correspondence we obtain is �non-utilitarian,� in the sense that it does not rely on the

speci�cation of a utility function over outcomes. The purpose of building this �bridge�is twofold:

� it gives risk analysis a direct access to the rich toolbox that decision theory has developed in

the last decades in order to deal with complex layers of uncertainty;

� it exposes decision theory to the challenges of risk analysis, thus giving it broader scope and

new stimuli.

The relevance of the latter point is self-explanatory. As to the �rst point, it is important to

recall that, starting with the seminal paper of Schmeidler (1989) and until the present days, decision

theory has been studying in careful detail the problem of ambiguity which is very closely related to

that of epistemic uncertainty (Cerreia-Vioglio et al., 2013b, henceforth CMMMb). Thus the present

paper opens the way towards more sophisticated approaches to risk-informed decision making in

the presence of epistemic uncertainty, and it consolidates the existing ones (Section 6). Another

advantage of connecting risk analysis and decision theory is that the decision theoretic approach is

axiomatic; that is, it makes explicit the choice implications of the di¤erent criteria available to the

DM. Clearly, the unveiling of such implications allows the regulator to better evaluate the criteria

adopted by a DM (Apostolakis, 2014).

We illustrate the applicability of our exercise through several examples. In particular, we embed

the three levels of nuclear Probabilistic Risk Assessment (PRA) in a decision-theoretic setup.

The remainder of this paper is organized as follows. In Sections 2 and 3 we present, respectively,

the KG triplets�setup and the decision theoretic framework. In Section 4, the heart of the paper,
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we embed the former setup in the latter. This embedding allows us, in Section 5, to connect

standard decision making criteria in risk analysis with classical expected utility theories, and so to

root these criteria in the axiomatic approach to rational choice, that is proper of decision theory.

Conversely, in Section 6, by building on recent developments of decision theory,[4] we propose some

robust decision making criteria as risk informed approaches that take into account the qualitative

di¤erences between epistemic and aleatory uncertainty (emphasized in risk analysis by, e.g., Paté-

Cornell and Fischbeck, 1992, Der Kiureghian and Ditlevsen, 2009, and Marzocchi, Newhall and

Woo, 2012). The di¤erent uses of those criteria in a risk analysis perspective are discussed in the

subsequent Section 7. Finally, Section 8 illustrates the obtained identi�cation in the context of

PRA, as prescribed by the U.S. NRC, and Section 9 concludes.

2 The Risk Analysis Setup

In their de�nition of risk, KG state that a risk analysis must be capable of responding to the

following three questions:

1. �What can happen?�

2. �How likely is it that it will happen?�

3. �If it does happen, what are the consequences?�

The response to the �rst question identi�es a scenario Sn. The answer to the second question

indicates the likelihood `n of scenario Sn. The answer to the third question is the consequence xn

of Sn. Typically, xn is a measure of the damage that the occurrence of scenario Sn causes.

Hazard is then formally de�ned by KG (p. 13, footnote 2) as the set of doublets

H = fhSn; xni : n = 1; :::; Ng (1)

Risk is de�ned as the set of triplets

R = fhSn; `n; xni : n = 1; :::; Ng : (2)
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A term hSn; `n; xni in eq. (2) is called a risk triplet. Informally, KG describe the concepts of hazard,

as �a source of danger�, and risk as �the possibility of loss or injury�and �the degree of probability

of such loss.�

Kaplan and Garrick then consider three di¤erent formats in which the notion of likelihood takes

alternative meanings.

Format 1 (Frequency) Consider a repetitive situation underlaid by a stationary and ergodic

process with many past observations that allow the DM to learn frequencies. One can then ask

�how frequently does scenario n occur?.�The likelihood of Sn is expressed by an objective frequency :

`n = �n:

Then, the frequency format of risk (2) becomes

R = fhSn; �n; xni : n = 1; :::; Ng . (3)

If consequences are scalars monotonically ranked as 0 � x1 � � � � � xN , risk R determines a

staircase function � : [0; xN ]! [0; 1], called risk curve, de�ned by

� (x) =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

NP
n=1

�n x 2 [0; x1]

NP
n=2

�n x 2 (x1; x2]

� � � � � �

�N�1 + �N x 2 (xN�2; xN�1]

�N x 2 (xN�1; xN ]

The value � (x) above is the cumulative probability of a consequence equal to or greater than x.
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Figure 1. A risk curve as in KG

Figure 1 represents a risk curve. When consequences are measured on a continuous scale, using

the original expression of KG, the staircase function (dotted) is replaced by the smoothed risk curve.

Format 2 (Probability) In this format, Kaplan and Garrick consider a general uncertain sit-

uation, possibly not repetitive. Here likelihoods quantify the DM�s beliefs about scenarios. The

likelihood of Sn is thus expressed by a subjective probability :

`n = pn:

The risk de�ned by (2) becomes

R = fhSn; pn; xni : n = 1; :::; Ng . (4)

Kaplan (1997) calls (4) risk in probability format and contrasts it with the frequency format.

In case of scalar consequences, with 0 � x1 � � � � � xN , risk R here determines a subjective risk

curve.

Format 3 (Probability of Frequency) Finally, consider a repetitive (at least conceptually)

situation in which the DM can conceive frequencies, but without enough information to assess
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them precisely. Then, there is uncertainty about the frequency of scenario Sn, which is described

by Kaplan and Garrick through a discrete probability distribution:

`n = fh��; (��)ni : � 2 �g (5)

where �� is the subjective probability that (��)n is the actual frequency of Sn. The probability

distribution in (5) is called the probability of frequency of Sn.

With the abbreviation `n = �n (�n) of (5), the risk triplets in (2) give rise to

R = fhSn; �n (�n) ; xni : n = 1; :::; Ng (6)

which is therefore called risk in probability of frequency format.

Remarks

First, note that `n = �n (�n) is a probability distribution, while in the previous two formats `n = �n

and `n = pn are scalars.

Second, while �n is an objective probability and pn is a subjective probability, �n (�n) is an hybrid

consisting of two parts: �� is an objective probability, that captures the aleatory uncertainty

about the scenario Sn that will obtain, �� is a subjective probability, that captures the epistemic

uncertainty about the true ��. The coexistence of frequentist and Bayesian components is motivated

by the copresence of two di¤erent sources of risk (�state risk�and �model risk�).

Third, it is worth pointing out that R in (6) bundles together the family fR� : � 2 �g of risks in

frequency format

R� = fhSn; (��)n ; xni : n = 1; :::; Ng

by means of the discrete probability distribution � = fh��; ��i : � 2 �g. N
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In the case of scalar consequences, with 0 � x1 � � � � � xN , the family of risks fR� : � 2 �g

determines a family f�� : � 2 �g of risk curves indexed by �. Formally,

�� (x) =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

NP
n=1

(��)n x 2 [0; x1]

NP
n=2

(��)n x 2 (x1; x2]

� � � � � �

(��)N�1 + (��)N x 2 (xN�2; xN�1]

(��)N x 2 (xN�1; xN ] :

While, graphically, Figure 2 displays the (smoothed) families of risk curves obtained as a result of

the risk assessment of a nuclear waste isolation study (Paté-Cornell, 1999).

Figure 2. A family of risk curves as in Pate-Cornell (1999).

After enumerating the previous formats, Kaplan (1997, p. 409) writes that, among them, the

probability of frequency format �is the most general and by far the most powerful and useful idea.�

In fact, consider a risk R = fhSn; �n (�n) ; xni : n = 1; :::; Ng in probability of frequency format.

The expected frequency

�pn = E [�n (�n)] =
X
�2�

(��)n ��
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can be seen as the probability assigned to scenario Sn (KG, p. 19). This leads to a reduced risk

�R = fhSn; �pn; xni : n = 1; :::; Ng in probability format.[5] On the other hand, �n (�n) reduces to �n

when only one frequency � is considered, that is, � is a singleton. If so, R has the frequency format

fhSn; �n; xni : n = 1; :::; Ng.

Summing up, as anticipated by KG, the probability of frequency format encompasses both the

probability and the frequency formats.

3 Decision theoretic setup

3.1 The Savage setup

Following Savage (1954), a decision problem under uncertainty features a DM who has to choose

among a set of alternative acts whose consequences depend on uncertain factors beyond his control,

called states. The consequence of act f in state s is denoted by f (s).

In decision theory, it is common use to denote the set of consequences by X and the state space

by S. The state space is endowed with an event �-algebra �.[6] An act is a simple �-measurable

function

f : S ! X

s 7! x = f (s)

that is

Figure 3. A decision theoretic act
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where fx1; x2; :::; xNg = f (S) is a �nite set of consequences inX and fS1; S2; :::; SNg =
�
f�1 (x1) ; :::; f�1 (xN )

	
is a partition of S in �. This observation allows us to write an act of decision theory as an hazard

of risk analysis. Namely,

f �
�

f�1 (x) ; x

�
: x 2 f (S)

	
= fhSi; xii : n = 1; :::; Ng = H

with Si = f�1 (xi) or, equivalently, xi = f (Si).[7] This modelling stage is both �non-utilitarian,�

in the sense of the introduction, and �pre-probabilistic�in that no assumption whatsoever has still

been made about the likelihoods of events.

Figure 4. A decision tree as in Howard (1988)

Example 1 A Probabilistic Risk Assessment study might be conducted to support the licensing

of a new nuclear power plant. Howard (1988) discusses the underlying decision problem through

a simple but e¤ective example (Figure 4). The available alternatives are: to licence L or not to

licence NL. If the plant is licensed and operates properly (that is, it does not fail within the period

of interest), it provides a net monetary bene�t a to the society. Should the plant fail, society incurs

in a large cost c, to be subtracted from the bene�t. If the plant, instead, is not licensed, society

is provided with some bene�t b. Suppose X is the vector of random variables that determines the

failure conditions of the plant and g is its limit state function. The implied failure and safe event
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are Sfailure = [g (X) < 0] and Ssafe = [g (X) � 0], respectively. The Savage acts corresponding to L

and to NL are:

fL(s) =

8>>>><>>>>:
a� c s 2 Sfailure

a s 2 Ssafe

and fNL(s) = b s 2 S:

In this case,

Sfailure = f
�1
L (a� c) , Ssafe = f

�1
L (a) , and S = f�1NL (b)

so that

fL � fhSfailure; a� ci ; hSsafe; aig = HL and fNL � fhS; big = HNL

where HL and HNL are the hazards connected to licensing and not licensing the plant. N

3.2 A Waldean extension

In several situations, the DM might not possess enough information to posit a single objective

probability (frequency) over the states. He assumes that states s are generated by a random

mechanism m that belongs to a given �nite collection M of probabilistic models. Technically,

M is a set of probability measures on �. Each such m represents aleatory uncertainty, that is,

the inherent randomness that states feature. In other words, the DM posits a model space M in

addition to the state space S.

Denoting by A the subset of available acts (in Example 1 above, A = ffL; fNLg), the quartet

(A; S;X;M)

represents the Savage-Wald form of a (statistical) decision problem (see CMMM and CMMMb).

According to the Bayesian paradigm, the subjective state-of-knowledge of the DM about models

in M is represented by a prior probability � on M. The prior � on models naturally induces a

predictive probability P� on states through model averaging. In decision theory, this process is

12



called reduction and the average of conditional models is called predictive probability, formally

de�ned by

P� (E) =
X
m2M

m (E)� (m) E 2 �:

The decision theoretic relation between � and P� is discussed in CMMM.

4 Embedding

Let (A; S;X;M) be a decision problem and � be a prior probability onM. In order to facilitate

the comparison with the risk analysis notation, write

M = fm� : � 2 �g :

Acts and hazards We already established the relation

f �
�

f�1 (x) ; x

�
: x 2 f (S)

	
= fhSi; xii : n = 1; :::; Ng = H (7)

between Savage�s acts f and Kaplan and Garrick�s hazards H.

Remark This also implies that, the fourth standard risk analysis question (Greenberg et al., 2012):

4. �How can concequences be prevented or reduced?�

can be rephrased as �what is the set A of feasible acts?�. This set will be typically determined by

the hazard containment regulations, the technical limits, and the economic constraints of a society.

N

Models and frequencies For every probabilistic model m� 2 M and every scenario Sn, the

frequency (��)n of Sn is m� (Sn), brie�y

m� � �� (8)

for all � 2 �. That is, each probabilistic model m� 2 M, in the decision theoretic framework,

corresponds to a possible frequency �� in the Kaplan and Garrick probability of frequency setup.
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Prior and probability of frequency Having established that each possible frequency �� of

scenarios corresponds to a probabilistic model m�, the probability of frequency �� � m� be the

true one is simply � (m�), that is,

�� � � (m�) � 2 �: (9)

But then, for every scenario Sn,

�n (�n) = fh��; (��)ni : � 2 �g = fh� (m�) ;m� (Sn)i : � 2 �g

and it corresponds to the discrete subjective distribution of the probability evaluation map m� 7!

m� (Sn), that is,

fh� (m�) ;m� (Sn)i : � 2 �g �
X
�2�

� (m�) �m�(Sn)

and the latter is denoted by �Sn . We thus have

�n (�n) � �Sn : (10)

Risks Just putting together all the collected pieces, we obtain

R = fhSn; �n (�n) ; xni : n = 1; :::; Ng

=
�

Sn; �

Sn ; xn
�
: n = 1; :::; N

	
=

nD
f�1 (x) ; �f

�1(x); x
E
: x 2 f (S)

o
� (f j �)

where f is the act corresponding to hazard fhSi; xii : n = 1; :::; Ng and � is the prior corresponding

to � as in (9).

Risk curves In the case of scalar consequences, with 0 � x1 � � � � � xN , the family of risk curves

f�� : � 2 �g corresponds to the family
n
G�f : � 2 �

o
of decreasing distribution functions

G�f (x) = m� [s 2 S : f (s) � x] x 2 [0; xN ] (11)

of act f under the models m�. In turn, each G�f can be identi�ed with the its discrete distribution

�
m� � f�1

�
(x) = m� [s 2 S : f (s) = x] x 2 f (S) :
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These distributions are called lotteries in decision theory.[8] That is, risk curves are, essentially, the

lotteries induced by the act corresponding to the faced hazard, conditional on the models.

Being a discrete probability distribution on consequences, lottery m� � f�1 can be represented

as

m��f�1 �
�

m�

�
f�1 (x)

�
; x
�
: x 2 f (S)

	
= fhm� (Sn) ; xni : n = 1; :::; Ng = fh(��)n ; xni : n = 1; :::; Ng :

Glossary We have obtained a full correspondence between Kaplan and Garrick�s probability of

frequency format and the decision theory framework of CMMM. Here is the conversion table

KG probability of frequency format Classical decision theory framework

H = fhSn; xni : n = 1; :::; Ng f (s) = xn s 2 Sn (n = 1; :::; N)

�� m�

(��)n m� (Sn)

�� � (m�)

�n (�n) = fh��; (��)ni : � 2 �g �Sn =
P
�2� � (m�) �m�(Sn)

R = hSn; �n (�n) ; xni (f j �)

�� G�f

4.1 Special embeddings

As observed at the end of Section 2, to each risk in probability of frequency formatR = fhSn; �n (�n) ; xni :

n = 1; :::; Ng it naturally corresponds a reduced risk in probability format �R = fhSn; �pn; xni : n = 1; :::; Ng

where, for each n = 1; :::; N ,

�pn =
X
�2�

(��)n �� =
X
�2�

m� (Sn)� (m�) = P� (Sn) :

This establishes the correspondence between, Kaplan and Garrick�s probability format and the

decision theory framework of Savage where only the predictive probability P� is considered (see

again the discussion in CMMM).
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On the other hand, Kaplan and Garrick�s frequency format corresponds to the degenerate

probability of frequency format in which � is a singleton, so that also M = fmg is a singleton,

and the frequency �n of each scenario Sn is simply m (Sn). Formally

R = fhSn; �n; xni : n = 1; :::; Ng

= fhSn;m (Sn) ; xni : n = 1; :::; Ng

=
�

f�1 (x) ;m

�
f�1 (x)

�
; x
�
: x 2 f (S)

	
� (f j m)

so that Kaplan and Garrick�s frequency format corresponds to the decision theory framework of

von Neumann and Morgenstern where an objective probability m over states is given.

5 Classical Expected Utility

At this point we consider the characterizing ingredient of decision theory: preferences. In this

framework, DM�s preferences are represented by a binary relation % de�ned over the set of all

acts. In particular, we write f % g if act f is (weakly) preferred to act g. Denoting by x both a

consequence and the constant act that delivers x in every state, we can write x % y. The preference

% is thus able to rank also consequences.

Among acts, bets play a special role since it is through them that subjective probabilities are

elicited. In particular, consider any two consequences x and y, and let x � y, that is, x be preferred

to y. Then, we denote by xEy the bet on event E that pays the best consequence x if E obtains

and y otherwise. Given any two events E and F , a preference xEy % xFy reveals that the DM

considers E more likely than F . If, moreover, % satis�es the Savage axioms, then there exists a

unique subjective probability P over � such that

xEy % xFy () P (E) � P (F ) :

Again, the subjective probability P quanti�es the DM beliefs and is elicited via betting behav-

ior. Now when a decision problem (A; S;X;M) is considered, it seems natural to assume betting
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behavior to be consistent with the statistical datumM, that is,

m (E) � m (F ) 8m 2M =) xEy % xFy (12)

for all events E and F and consequences x � y. If event E is more likely than event F for all

possible probabilistic models, then the DM prefers to bet on E than on F accordingly.

As CMMM show, if % satis�es Savage�s axioms and the consistency condition (12), then there

exists a subjective prior probability � onM, representing epistemic uncertainty, such that acts are

ranked according to the criterion

U (f j �) =
X
m2M

 
NX
n=1

u (f (Sn))m (Sn)

!
� (m) (13)

where:

� u : X ! R is a von Neumann-Morgenstern utility function that captures risk attitudes (i.e.,

attitudes towards aleatory uncertainty);

� U (f j m) =
PN
n=1 u (f (Sn))m (Sn) is the von Neumann-Morgenstern expected utility of f

conditional on model m.

Since positing a collection M of models is a central tenet of classical statistics, CMMM call

Classical Subjective Expected Utility the representation (13). The corresponding choice rule is

maximization of the average expected utility of act f with respect to the probabilistic models

posited by the DM according to the epistemic distribution �. Or, equivalently,

f % g () U (f j �) � U (g j �) :

But now, using our glossary, we have that

U (f j �) =
X
�2�

 
NX
n=1

u (xn) (��)n

!
�� =

X
�2�

��U� = U (R)

where U� =
PN
n=1 u (xn) (��)n = U (f j m�) is the von Neumann-Morgenstern expected utility of

risk R� = fhSn; (��)n ; xni : n = 1; :::; Ng. That is, U (f j �) is the decision theoretic translation of
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the expected utility U (R) that KG (p. 23) use to evaluate risk R; a few lines before closing their

pioneering paper. This observation concludes our translation work. In the next section we brie�y

sketch how our exercise can bring novel tools to risk informed decision making in the presence of

both epistemic and aleatory uncertainty.

6 Robust criteria

The idea of including aversion to epistemic uncertainty in risk analysis dates back to Paté-Cornell

and Fischbeck (1992). Their crucial intuition is that the decision theoretic counterpart of aversion

to epistemic uncertainty is ambiguity aversion; which, in terms of statistical decision making,

corresponds to a preference for robust procedures (see CMMMb). On the other hand, representation

(13) presupposes that the expected utilities

U (f j m) m 2M

conditional on probabilistic models are averaged to produce the unconditional evaluation

U (f j �) =
X
m2M

U (f j m)� (m) : (14)

This means that the DM is neutral about �model risk,�the risk involved in not knowing the true

probabilistic model m.[9] More precisely, the DM is neutral to epistemic uncertainty, or ambiguity

neutral. For example, (14) implies that facing an hazard f with conditional expected losses

�U (f j m) m 2M

that depend on the true model is indi¤erent to facing an hazard g with conditional expected losses

�U (g j m) = �
X
q2M

U (f j q)� (q) m 2M

that do not depend on the true model. On the other hand, in many circumstances, there may be

a premium in the adoption of policies that are not a¤ected by model misspeci�cation. Especially,
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when catastrophic risks are considered, it may be normatively compelling to be averse to epistemic

uncertainty, or ambiguity averse.[10]

To distinguish attitudes toward aleatory and epistemic uncertainties, Klibano¤ et al. (2005)

introduce, in decision theory, preferences represented by

V (f j �) = v�1
 X
m2M

v (U (f j m))� (m)
!

(15)

where v is now a strictly increasing and continuous function that represents the attitudes of the DM

towards epistemic uncertainty.[11] For example a decision maker (DM1) is more ambiguity averse

than another decision maker (DM2) if and only if v1 is more concave than v2. Klibano¤ et al.

(2005) call criterion (15) the smooth ambiguity criterion. Criterion (14) is the special case in which

the DM is neutral to epistemic uncertainty, that is v is a¢ ne.

But now, using our glossary, we have that

V (R) = v�1

 X
�2�

v

 
NX
n=1

u (xn) (��)n

!
��

!

when risk R = fhSn; �n (�n) ; xni : n = 1; :::; Ng is considered, thus yielding the risk triplet coun-

terpart of the criterion proposed by Paté-Cornell and Fischbeck (1992, p. 208) in a (von Neumann-

Morgenstern) compound-lotteries environment.

Finally, it is well known that the smooth ambiguity criterion corresponding to v (t) = �e��t

for all t 2 R, with constant absolute ambiguity aversion coe¢ cient � > 0, can be written as

V (f j �) = � 1
�
ln

 X
m2M

e��U(f jm)� (m)

!
= inf
���

 X
m2M

U (f j m) � (m) + 1

�
K (�jj�)

!
(16)

where K is the Kullback-Leibler divergence. This suggests considering, in the spirit of Ben-Tal et

al. (1991), general robust criteria of the form

V (f j �) = inf
���

 X
m2M

U (f j m) � (m) +D (�jj�)
!

(17)

where D is a generic divergence between priors, that is, a function

D : � (M)��(M)! [0;1]
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such that D (�jj�) is convex and D (�jj�) = 0 for every �.[12] Maccheroni et al. (2006) and CMMMb

show how D (�jj�) captures ambiguity attitudes in a simple way: DM1 is more ambiguity averse

than DM2 if D1 (�jj�) � D2 (�jj�) for every � 2 �(M).

We conclude by observing that, when D is identically equal to 0, that is, assuming maximal

ambiguity aversion,[13] we obtain

W (f j �) = min
m2M�

U (f j m) (18)

whereM� = fm 2M : � (m) > 0g. This is the fundamental robust criterion formulated by Gilboa

and Schmeidler (1989).

Example 2 Consider a binary risk in probability of frequency format

R = fhSfailure; fh��; (��)failurei : � 2 �g ; a� ci ; hSsafe; fh��; (��)safei : � 2 �g ; aig

that corresponds to an hazard of the type considered in Example 1. Without loss of generality

assume that u (a� c) = 0, u (a) = 1, and �� > 0 for all � 2 �. Then:

�eq. (14) prescribes

U (R) =
X
�2�

�� (��)safe

that is, it evaluates risk through the arithmetic mean-probability of success;

�eq. (16) prescribes

V� (R) = �
1

�
ln

 X
�2�

��e
��(��)safe

!

that is, it evaluates risk through the exponential mean-probability of success;

�eq. (18) prescribes

W (R) = min
�2�

(��)safe

that is, it evaluates risk through the minimal probability of success.

In a nutshell, U (R) corresponds to Bayesian risk assessment while W (R) embodies the precau-

tionary principle. But more is true: V� (R) 2 (W (R) ; U (R)) for all � > 0 and it monotonically
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decreases in �, while, passing to the limit,

W (R) = lim
�!1

V� (R) and U (R) = lim
�!0

V� (R) .

Thus, if we de�ne, as usual in risk analysis, acceptable a risk for which the probability of success

is as high as reasonably practicable, say �, and � 2 (W (R) ; U (R)), then acceptability will depend

on the value of �. Speci�cally, R will be acceptable if and only if

� 1
�
ln

 X
�2�

��e
��(��)safe

!
� �:

This inequality implicitly determines an ambiguity aversion coe¢ cient �� 2 (0;1) such that R is

deemed acceptable for all � � �� and unacceptable otherwise. In words, acceptability will depend

on the degree of aversion to epistemic uncertainty of the decision maker.

This overview of criteria shows how robust decision making yields a reconciliation of risk analysis

and the precautionary principle, which together form the basis of present day risk governance (Starr,

2003). This seems especially important in the presence of epistemic uncertainty, the relevance of

which has been appreciated �in the last two decades �in all areas of risk analysis.[14]

7 The use of decision making criteria in risk analysis

There are multiple ways in which the criteria we discussed above can be used in risk analysis. In

the approach which is typical of economic analysis, a unique criterion V1 is used to choose among

alternative acts. The act which maximizes V1 is chosen among all the available ones. On the other

hand, in risk analysis, it may also be natural to think of a multiple-stages and/or a multiple-criteria

approach.

In a multiple-stage approach, �rst, a set of acceptable risks is determined by setting one (or

more) thresholds. Say, an available act is acceptable if and only if it satis�es the essential require-

ments V1 (f) � �1, V2 (f) � �2, ... , Vk (f) � �k. Second, an act is chosen, among those acceptable,

by maximizing a possibly di¤erent criterion, say Vk+1.
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In a multiple-criteria approach (Figueira et al., 2005), alternatives may be ranked on the basis

of several criteria at the same time. Sometimes, it could be desirable not to evaluate alternatives

according to a synthetic number, obtained by aggregating the possibly di¤erent features of an act

by means of a single function. In those cases, it is possible to associate a speci�c ranking criterion

to every such feature and leaving the aggregation of them to a later stage. This framing of the

problem allows, on top of other things, to disentangle objective and subjective evaluations. For

example, it may be the case that a team of experts provides a ranking of alternatives based on a

number of technical characteristics, leaving the �nal decision maker (may it be a single individual

or a committee) elaborate the resultances according to a further criterion.

In particular, it follows that multiple-criteria approaches can be used also to deal with situations

in which the utility of the ultimate decision maker is unknown or non-unique, as it may be the case

in group decision making, where the decision protocol widely varies in the practice.

A detailed analysis of the multiple-criteria approaches to risk analysis is the object of current

research, but beyond the scope of this work.

8 Probabilistic Risk Assessment

One of the most general (and challenging) risk analysis exercises is represented by Probabilistic Risk

Assessment for a nuclear plant (PRA). Here we follow the guidelines of the U.S. NRC, verbatim.

Some parts are directly reported from their o¢ cial website.[15]

� A Level 1 PRA estimates the frequency of accidents that cause damage to the nuclear reactor

core.

� A Level 2 PRA, which starts with the Level 1 core damage accidents, estimates the frequency

of accidents that release radioactivity from the nuclear power plant.

� A Level 3 PRA, which starts with the Level 2 radioactivity release accidents, estimates the

consequences in terms of injury to the public and damage to the environment.
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Figure 5. U.S. NRC Probabilistic Risk Assessment

It is worth to notice that the set of available alternatives depends on the application at hand.

For instance, we might be evaluating competing designs for a new plant, or changes to design-

bases, or operation protocols, and so on and so forth. Each of these decisions impacts how the

plant sustains the structural challenge of an external (initiating) event in alternative ways, and will

be brie�y called design d.

Furthermore, as from Der Kiureghian and Ditlevsen (2009), the proper speci�cation of the state

spaces is a choice of the modeler and hence entails some degree of arbitrariness. However, the U.S.

NRC and other regulatory authorities have provided guidance of what are, at each level of the

analysis, the elements of interest.

Level 1 PRA A Level 1 PRA models the various plant responses to an event that challenges plant

operation. The plant response paths are called accident sequences. A challenge to plant operation

is called an initiating event. Some pairs (initiating event, accident sequence) will result in a safe

recovery and some will result in reactor core damage. Thus, the state space consists of pairs

s1 = (initiating event, accident sequence) 2 I �A
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and, as a mnemonic, we set S1 = I � A. Examples of initiating events are earthquakes, terrorist

attacks, and snowfalls. Here, the term initiating event is unfortunate: in a decision theoretic

framework, the same object should be called �initiating state.�A possible reconciliation of the two

terminologies is obtained by considering singleton initiating events, which e¤ectively correspond to

initiating states. Moreover, typically, in PRA the initiating event and the design of the plant are

�xed. That is, I = fig and only one design d is considered. Since we want to compare di¤erent

designs in terms of their ability to withstand possible initiating events, we allow for a nonsingleton

I.

Although, in general, one can allow for di¤erent degrees of core damage, a binary assignment,

core damage or safe recovery, is used in the practice. Therefore, the acts/hazards considered at

this level, and depending on the design d of the plant, are of the form

f 0d(s1) =

8>>>><>>>>:
core damage s1 2 Sdsevere

safe recovery s1 2 Sdsafe

In this case, the act is uniquely determined by the event Sdsevere which is the set of all severe

accidents (see the �rst line of Figure 5).

The Level 1 PRA also provides the core damage frequencies (or, more in general, likelihoods)

thus allowing the transition from acts/hazards of the form

f 0d �
nD
Sdsevere; core damage

E
;
D
Sdsafe; safe recovery

Eo
= Hd

to risks of the form

Rd =
nD
Sdsevere;

nD
��; (��)

d
severe

E
: � 2 �

o
; core damage

E
;
D
Sdsafe;

nD
��; (��)

d
safe

E
: � 2 �

o
; safe recovery

Eo
.

Note that:

� core damage frequencies correspond to frequencies of the event Sdsevere;

� the risks obtained at this level are mathematically identical to those discussed in Example 2,

hence the analysis we carried on there directly applies to this level of risk analysis.
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Level 2 PRA A Level 2 PRA models the plant�s response to the Level 1 PRA severe accidents,

and analyzes the progression of an accident by considering how the containment structures and

systems respond to the accident, which varies based on the initial status of the structure or system

and its ability to withstand the harsh accident environment. Once the containment response is

characterized, the analyst can determine the amount and type of radioactivity released from the

containment. Thus, the Level 2 PRA state space conditional on design d, consists of pairs

sd2 = (severe accident, containment response) 2 Sdsevere � C:

and consequences are radioactivity releases Q. Hence, conditional on Sdsevere, an act considered at

this level is a map

f 00d : S
d
severe � C ! Q.

Since we want to compare di¤erent designs d, which induce di¤erent partitions
�
Sdsevere; S

d
safe

	
of

I �A, we complete the act by assigning 0 release to non severe accidents, so that

f 00d : S1 � C ! Q

with the convention f 00d (s2) = 0 if s2 2 Sdsafe � C, thus S2 = S1 � C (see again Figure 5).

Level 2 PRA also provides the release frequencies (or, more in general, likelihoods) by analyzing

the frequencies of the relevant events in S2 (see the discussion of Level 1 PRA).

Level 3 PRA A Level 3 PRA considers the e¤ects of the radioactive material released in a severe

accident (which, by Level 2 PRA, depends on the realized state s2, and the chosen design d).

Speci�cally, this level is concerned with health e¤ects (such as short-term injuries or long-

term cancers) resulting from the radiation doses to the population around the plant and land

contamination resulting from radioactive material released in the accident. These consequences

are estimated based on the characteristics of the radioactivity release calculated by the Level 2

PRA. They also depend on several other factors such as the population in the plant vicinity, the

evacuation conditions and the path of the radioactive plume, which, in turn, is a¤ected by weather
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conditions. Thus, the Level 3 PRA state space, consists of tuples

s3 = (s2, weather, population, evacuation) 2 S2 �W � Z � E

brie�y S2 �W � Z � E = S3. Note that S3 is the largest state space because all the unknown

factors jointly determine the �nal (relevant) consequences. Recall

PRA1 S1 = I �A only severe accidents determine core damage,

PRA2 S2 = S1 � C also containment response is relevant for radioactive releases,

PRA3 S3 = S2 �W � Z � E additional environmental conditions lead to �nal consequences.

Denoting by J �L the pairs (j; l) of health e¤ects and land contamination levels, we are now ready

to write the level 3 acts:

f
000
d : S3 ! J � L

that associate complete states to relevant consequences. Note that here consequences are multiat-

tribute vectors.[16]

Finally, like in the previous two cases, Level 3 PRA estimates the likelihoods of events in S3,

which ultimately determine the likelihoods of the consequences that are relevant for the DM�s

decision. The construction we just described leads us to a complete speci�cation of risk triplets (as

detailed in Section 4 and exempli�ed for Level 1 PRA), which are precisely the object of the analysis

performed by the U.S. NRC (What can go wrong, how likely is it, and what are the consequences?),

sic.

The added value of the above exercise is framing the PRA in a setup that allows to compare

di¤erent designs, for example, by evaluating the obtained third level acts through some of the

criteria discussed in the previous sections.

9 Conclusions

As promised, a formal bridge between risk analysis and decision theory has been built and tested

on the benchmark of nuclear PRA. The hope is that it will foster the cross-fertilization of the two
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�elds. Indeed, given the depht and scope of the two underlying subjects, the possibilities of mutual

enrichment are substantial.

An immediate bene�t of our analysis is providing a structured decision making framework to the

regulator. Indeed, whether a decision issue is straightforward or di¢ cult, a nuclear regulator will

bene�t by having a structured decision-making framework (Murley, 2005). Another connected ad-

vantage is that it makes starkly explicit the assumptions underlying decision making, thus allowing

more careful considerations upon them (Apostolakis, 2014).

Notes

[1] For an early and critical review about risks and bene�ts of technological systems, we refer to

Starr (1969).

[2] The problem was already clear at the time of KG. As they state: one often hears people

say that we cannot use probability because we have insu¢ cient data, in light of our current

de�nitions, we see that this is a misunderstanding. When one has insu¢ cient data, there is

nothing else one can do but use probability.

[3] In particular, deterministic models correspond to degenerate probabilistic ones.

[4] See Gilboa and Marinacci (2013) for a recent and comprehensive review.

[5] Though here �pn is a reduced probability that arises in a repetitive situation.

[6] In what follows, events are always elements of �; for example, Borel subsets of the real line.

[7] There is a little abuse of notation here, justi�ed by the fact that for every sn; tn 2 Sn we have

f (sn) = f(tn), so that we can write f (Sn) instead of f (sn).

[8] In decision theory, lottery is a synonym of discrete probability distribution over consequences.

[9] Paté-Cornell and Fischbeck (1992, p. 208) call m a model of the world.

27



[10] Paté-Cornell and Fischbeck (1992, p. 203) refer to severe core damage of a nuclear reactor and

submit that rationality can and should be extended to include willingness to pay a systematic

premium to replace ... epistemic uncertainties ... by aleatory uncertaint[ies].

[11] While V represents % in the sense that f % g () V (f j �) � V (g j �).

[12] We denote by �(M) the simplex of all priors onM.

[13] For example, letting the ambiguity aversion coe¢ cient � go to 1 in (16).

[14] Some applications include Bedford (2013), Helton and Johnson (2011), Hora (1996), Marzoc-

chi et al. (2004) and Mert and Thieken (2005).

[15] http://www.nrc.gov/about-nrc/regulatory/risk-informed/pra.html

[16] According to the U.S. NRC description of this level of analysis one can assume that the

consequence vector f 000d (s3) depends from the s2 component of s3 = (s2; w; z; e) only through

f 00d (s2) which describes the corresponding radioactivity release.
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