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Abstract

This paper proposes and discusses an instrumental variable estimator that can
be of particular relevance when many instruments are available and/or the number
of instruments is large relative to the total number of observations. Intuition and
recent work (see, e.g., Hahn (2002)) suggest that parsimonious devices used in the
construction of the final instruments may provide effective estimation strategies.
Shrinkage is a well known approach that promotes parsimony. We consider a new
shrinkage 2SLS estimator. We derive a consistency result for this estimator under
general conditions, and via Monte Carlo simulation show that this estimator has
good potential for inference in small samples.
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1 Introduction

Recent theoretical work in instrumental variable estimation has focused on the conse-

quences of having "weak instruments", "many instruments", or a combination of these

two cases. Instrument weakness is, unfortunately, rather likely in economic applications,

and the availability of larger and larger information sets makes the many instruments case

also relevant for empirical analyses. Hence, the theoretical contributions on IV estimation

have a vast range of practical applicability.

By "weak instruments" we label the case where instrumental variables are only weakly

correlated with the endogenous explanatory variables of an instrumental variables (IV)

regression. A natural measure of instrument weakness (or strength) in a linear IV frame-

work is the so-called concentration parameter, see, e.g. Phillips (1983), Rothenberg (1984),

Stock and Yogo (2003b) and Chao and Swanson (2005). In standard analysis the concen-

tration parameter is taken to grow at the rate of the sample size whereas in the case of

weak instruments this parameter grows more slowly or, in the extreme case introduced

and considered by Staiger and Stock (1997), it remains �nite asymptotically. Weak in-

struments a¤ect the properties of IV estimators such as the two stage least squares (2SLS)

and the limited information maximum likelihood (LIML) estimators, in particular they

can become inconsistent.

The "many instruments" case was �rst analysed by Morimune (1983) and later gener-

alized by Bekker (1994). Other relevant papers include Donald and Newey (2001), Hahn,

Hausman, and Kuersteiner (2001), Hahn (2002), and Chao and Swanson (2004). In gen-

eral, the larger the available information set the more e¢ cient the resulting estimator.

However, when the number of instruments becomes too large, standard IV estimators can

be become inconsistent, as in the weak instrument case though for di¤erent reasons.

These two developments in the IV literature have later been combined to provide a

comprehensive framework for the analysis of the properties of IV estimators in the case of

many weak instruments. Work in this area includes Hansen, Hausman, and Newey (2006),

Stock and Yogo (2003a), Newey (2004) and Chao and Swanson (2005). The last paper

is closest to the spirit of the analysis of the current paper. A clear conclusion from this

work suggests that inconsistency of IV estimators is a probable outcome when many weak
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instruments are used.

Given this problem, recent research focuses on considering parsimonious modeling

methods for the large set of potentially weak instruments to avoid IV estimator incon-

sistency. In particular, Kapetanios and Marcellino (2010) and Bai and Ng (2010) suggest

that imposing a factor structure on the set of instruments, extracting estimates of these

factors and using them as instruments can be very useful. Of course, an issue with this

approach is the need to assume a factor structure, albeit a possibly weak one, as discussed

in detail in Kapetanios and Marcellino (2010). Simulation evidence suggests that if no

factor structure exists then assuming one is problematic for IV estimation as one would

expect. Another approach similar to Kapetanios and Marcellino (2010) but designed to

parsimoniously summarize large sets of instruments in the complete absence of a factor

structure is proposed by Kapetanios and Marcellino (2007). The basic idea is that a �nite

number of cross-sectional weighted averages of the available instruments can, under certain

conditions, be valid instruments themselves.

The current paper provides a new approach to deal with the IV inconsistency issue,

which shares the search for parsimony with the papers mentioned in the previous para-

graph but can be applied under more general conditions. In particular, we suggest that a

shrinkage estimator be considered in the �rst stage of IV regression to construct appropri-

ate instruments which can then be used in a standard way in the second stage to estimate

the parameters of the structural equation. Shrinkage promotes parsimony in the �rst stage

of estimation. In addition to the reasonably strong case for parsimony for IV estimation

made in the cited literature, Hahn (2002) provides grounds for parsimony also in terms of

optimal inference when many instruments are available.

After introducing our new estimator, that we label Two Stages Least Squares Shrink-

age (2SLSS), we provide a formal proof of its consistency under general conditions on the

instrument set. Further, we carry out a Monte Carlo study which provides clear evidence

in favor of the new estimator compared with existing estimators such as 2SLS or LIML

(also when the number of instruments is large relative to the total number of observations).

Finally, we apply the new estimator to the Angrist and Krueger (1991) dataset which has

been repeatedly used in the literature, in the context of analyzing new methodological IV-

related advances. We propose an innovative way of using this dataset in order to evaluate
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the performance of the new estimator relative to existing ones.

The paper is structured as follows: Section 2 presents the theoretical results. Section 3

reports results of the Monte Carlo study. Section 4 presents the results of our empirical

application. Finally, Section 5 concludes. Proofs are relegated to an Appendix.

2 Theoretical Results

The model is given by

y1n = Y2n� + un (1)

Y2n = Zn�n + Vn (2)

where y1n and Y2n are respectively an n � 1 vector and an n � G matrix of observations

on the G+ 1 endogenous variables of the system, Zn is an n�Kn matrix of observations

on the Kn instrumental variables, and un = (u1; :::; ui; :::; un)0 and Vn = (v1; :::; vi; :::; vn)0

are, respectively, an n� 1 vector and an n�G matrix of random disturbances.

We propose a two stage shrinkage estimator for � obtained as follows: In the �rst

stage, we obtain instruments by using a standard shrinkage estimator to estimate �n

in (2). Then, we use these instruments in a standard fashion to obtain a second stage

estimator for �. For simplicity we use the following shrinkage estimator:

�̂n = (Z
0
nZn + snI)

�1Z 0nY2n

Then, straightforwardly, the two stage estimator is given by

�̂2SLSS =
�
Y 02nZn(Z

0
nZn + snI)

�1Z 0nY2n
��1

Y 02nZn(Z
0
nZn + snI)

�1Z 0ny1n (3)

We refer to this estimator as the 2SLS Shrinkage (2SLSS) estimator. This estimator

becomes of interest if the shrinkage parameter sn becomes large enough to promote par-

simony asymptotically. As we will see, for this it is required that n=sn = o(1). We make

the following assumptions.

Assumption 1 (i) Kn ! 1 as n ! 1 such that Kn=n ! � , 0 � � � C < 1. (ii) 8n,
Z 0nZn + snI has full rank. (iii) There exist two nondecreasing sequences of real numbers,

rn and sn, such that as n ! 1 rn=n ! � for some nonnegative constant �, n=sn = o(1)

and sn=nKn = o(1), and such that

qn�
0
nZ

0
nZn(Z

0
nZn + snI)

�1Z 0nZn�n
rn

! 	 (4)
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where qn = sn=n, almost surely for some positive de�nite matrix 	 and

qn�
0
nZ

0
nZn(Z

0
nZn + snI)

�1Z 0nZn(Z
0
nZn + snI)

�1ZnZn�n
rn

! 0

almost surely. (iv) The eigenvalues of Z 0nZn=n are bounded away from zero and in�nity

for all n.

Assumption 2 (i) Zn and �i = (ui; v0i)
0 are independent for all i; n, (ii) �i � i:i:d:(0;�),

where � =
�
�uu �0V u
�V u �V V

�
, (iii) �i has �nite fourth moments.

Given the above, we have the following Theorem

Theorem 1 Let P snZn = Zn(Z
0
nZn + snI)

�1Z 0n. Let qn = sn=n such that qn ! 1 and
Kn

qn
!1 and rn

qn
!1. Let the shrinkage estimator be given by

�̂2SLSS =
�
Y 02nP

sn
Zn
Y2n
��1 �

Y 02nP
sn
Zn
y1n
�

Assume that Kn

rn
! 0. Then, �̂2SLSS is consistent for �0.

Some comments on the assumptions are in order. In particular, Assumption 1(iii) is

worthy of comment. The �rst part of assumption 1(iii) is the counterpart of the assumption

relating to the concentration parameter made usually in the literature concerning the

2SLS and other IV estimators. Note that there is no need for the sequence rn satisfying

Assumption 1(iii) for the 2SLSS estimator to be the same or have the same order of

magnitude as that required for the 2SLS estimator.

The importance of parsimony for IV estimation has been pointed out by Hahn (2002)

who conjectured that a 2SLS estimator using a small subset of available instruments, when

the number of available instruments is large, may be optimal. We view our shrinkage

estimator in the same spirit as the estimator suggested by Hahn (2002). It is important to

note Condition 1 of Hahn (2002) which requires that the �t of a parsimonious estimator

be comparable to that of the 2SLS estimator using all instruments. In this sense it is

reasonable to expect that the �t of the shrinkage estimator may, under certain conditions

relating to the structure of �n, be close to that of the 2SLS estimator using all instruments,

thereby implying that the rn sequence for the 2SLSS estimator be of a larger order of

magnitude than the analogous sequence for the 2SLS estimator. However, it is di¢ cult to

envisage speci�c conditions for �n that ensure this is the case.

We have chosen to focus on the simplest shrinkage estimator on the grounds of sim-

plifying the asymptotic analysis. This estimator shrinks, in a uniform way, the parameter
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estimates towards zero. It may in fact be more appropriate to shrink towards a nonzero

constant or vary the degree of shrinkage depending on the instrument. For such shrinkage

estimators the condition (4) would have a di¤erent form and therefore it is entirely pos-

sible that such estimator will have di¤erent and possibly superior consistency properties,

depending of course on the data generating process for zt. We leave theoretical investiga-

tion of this possibility to future work mainly because there are many possibilities for the

shrinkage setup. However, in the Monte Carlo section we consider uniform shrinkage to a

non-zero constant and obtain interesting results.

3 Monte Carlo Evidence

In this section we provide a Monte Carlo study of the 2SLS Shrinkage (2SLSS) estimator

and its relative performance compared to the traditional 2SLS estimator, the LIML

estimator, and the bias corrected Nagar�s B2SLS estimator. These estimators fall in the

class of k-estimators, and can be written as:

�̂K =
�
Y 02nZn(Z

0
nZn)

�1Z 0nY2n � �Y 02nY2n
��1 �

Y 02nZn(Z
0
nZn)

�1Z 0ny1n � �Y 02ny1n
�
; (5)

where the 2SLS estimator corresponds to � = 0, the LIML corresponds to setting � to

the minimum of (Y�Y2n�)
0Zn(Z0nZn)

�1Z0n(Y�Y2n�)
(Y�Y2n�)0(Y�Y2n�) , and the B2SLS corresponds to � = Kn�2

n
.

The basic setup of the Monte Carlo experiments is:

yi = xi + �i; i = 1; :::; n (6)

zij = eij; j = 1; :::; Kn; i = 1; :::; n (7)

xi =
KnX
j=1

K�1=2
n (1 + �j)zij + ui; (8)

where eij � i:i:d:N(0; 1), cov(eil; esj) = 0 for i 6= s or l 6= j, �j � N(0; c2) with c =

0:1; 0:5; 1. Let �i = (�i; ui)
0. Then, �i = P�i, where �i = (�1;i; �2;i)

0, �j;i � i:i:d:N(0; 1)

and P = [pij], pij � i:i:d:N(0; 1). The errors eij and us are related as follows:

�i = �ui +
p
1� �2vi (9)

where u and v are both i:i:d:N(0; 1): We run experiments with � = 0:25; 0:5; 0:75:

The 2SLSS estimator is computed for a grid of values of the tightness parameter sn.

In particular we use the grid sn = 0; 10; 103; 105. For sn = 0 the 2SLSS and 2SLS are

equivalent, therefore we do not report results for this case. Higher values of sn correspond
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to stronger shrinkage. We consider two di¤erent shrinkage setups: one where we shrink

towards q = 0 and one where we shrink towards q = 1=
p
Kn. The latter corresponds to

the true value of the coe¢ cients in the setup of the Monte Carlo. We have also considered

shrinking towards 1=Kn with very similar results1 to those for 1=
p
Kn giving us some

comfort that the actual choice of the non-zero constant may not be crucial.

Results are reported in Tables 1-3. The tables display the Relative Mean Squared Error

(RMSE) of each estimator with respect to the 2SLS estimator, i.e. the ratio between the

Mean Squared Error (MSE) of a given estimator and the MSE of the 2SLS estimator.

For the 2SLS estimator we do not report the ratio (as it will be equal to 1) but theMSE.

The tables are organized so that on the rows are reported results for di¤erent numbers of

observations n while on the columns are displayed results for di¤erent proportions of the

number of instruments to the number of observations, i.e. Kn=n. The tables are vertically

divided in three subpanels providing results for the three cases c = 0:1; 0:5; 1.

In Tables 1-3 a �gure smaller than 1 signals that the considered estimator is more

e¢ cient than 2SLS. As is clear, both the LIML and the B2SLS estimators substantially

improve on the traditional 2SLS in all the cases in which Kn < n (with large n), while

in the case n = Kn the LIML performs very poorly, and the B2SLS is by construction

equivalent to 2SLS2.

Turning our attention to the 2SLSS estimator, two main results are apparent. First,

the 2SLSS features a systematically smaller MSE than both 2SLS and, to a smaller

extent, LIML and B2SLS. Second, when both n and Kn are large theMSEs of 2SLSS

with prior mean q = 1=
p
Kn become remarkably small.

Finally we focus on the case Kn > n. As for this case the competitor estimators are

not implementable, we provide results only for the 2SLSS. Table 4 displays theMSEs of

the 2SLSS estimator in the cases Kn=n = 1 and Kn=n = 1:1, as well as their ratio. The

ratios are systematically close to 1, showing that the 2SLSS estimator can handle the Kn

> n case almost as e¢ ciently as the case n = Kn.

These results con�rm our theoretical �ndings and, further, show that using shrinkage

in the �rst stage may signi�cantly improve the small sample e¢ ciency of the estimator.

Our results for the case q = 1=
p
Kn suggest that shrinking the coe¢ cients towards an

appropriate direction might improve the results even further, possibly indicating that the

consistency properties of this shrinkage estimator are di¤erent to those of the simple one

1These results are not reported but are available upon request.
2B2SLS and 2SLS are also equivalent to OLS when n = Kn. The two equivalences are obvious once

one notes that for n = Kn, Y 02nZn(Z
0
nZn)

�1Z 0nY2n = Y
0
2nY2n and Y

0
2nZn(Z

0
nZn)

�1Z 0ny1n = Y
0
2ny1n.
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analysed theoretically in the previous section. As we noted in Remark 3 this is entirely

possible since the relevant consistency condition (4) will be di¤erent for the two shrinkage

estimators. This is a topic of interest for future work.

4 Application to Angrist-Krueger (1991) dataset

In this Section we evaluate the properties of the 2SLSS estimator by using the Angrist and

Krueger (1991) dataset. This dataset has been repeatedly used when evaluating new IV

related methods (see, e.g., Donald and Newey (2001)). The dataset is composed of 329509

observations on men born between 1930-39 and is taken from the US Census. Angrist

and Krueger (1991) estimate an equation where the dependent variable is the log of the

weekly wage, and the explanatory variable of interest, featuring endogeneity, is the number

of years of schooling. They consider several models, di¤ering in the set of exogenous ex-

planatory variables which are included in the equation of interest. The particular version

of the model we consider is the same selected also by Donald and Newey (2001), and is

the one in which the exogenous explanatory variables include an intercept, 9 year-of-birth

dummies, and 50 state-of-birth dummies (for a total of 60 variables). All the 60 exogenous

explanatory variables are used as instruments. Additionally, the instrument set includes

3 quarter-of-birth dummies, 27 interactions of the 3 quarter-of-birth dummies with the 9

year-of-birth dummies, and 150 interactions of the 3 quarter-of-birth dummies with the 50

state-of-birth dummies. This gives a total of 240 instruments. This particular model and

dataset correspond to column 2 of table VII in Angrist and Krueger (1991), and row 4 in

Table VIII of Donald and Newey (2001). Using the whole sample, the 2SLS estimate of

the coe¢ cient on years of schooling is 0:0928, with a standard deviation of 0:0093. One

interesting feature of this dataset is that the number of observations greatly exceeds the

number of instruments. This implies that we are not faced with a relatively large number

of instruments and therefore that standard methods such as 2SLS can be expected to per-

form reasonably well.

The above feature of this widely analysed dataset can be used to evaluate the per-

formance of the 2SLSS against the traditional 2SLS estimator, in, what we view as, an

innovative way. We propose the following approach. We draw from the complete dataset

of 329509 observations, a total of 600 subsamples of 500 observations each. Each subsam-
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ple is composed of equally spaced observations of the randomly ordered complete sample.3

If in some samples, some dummies are not active causing perfect multicollinearity they

are removed. These 600 subsamples can be then used to estimate the coe¢ cient of in-

terest, and this will provide a distribution of estimates. If we knew the true value of the

coe¢ cient, this distribution would provide us with an estimate of the bias, variance, and

Mean Square Error (MSE) of the estimator used. As the dataset is composed of 329509

observations, we can reasonably argue that the estimated coe¢ cient of 0:0928 obtained,

via 2SLS, using the whole sample is close enough to the truth to be considered a proxy

for the actual coe¢ cient. Therefore, we can compute an estimate of the MSE for all the

estimators at hand by using the estimated distributions and assuming that the true value

of the coe¢ cient is 0:0928.

Results for this experiment are displayed in Table 5. The �rst row of the table re-

ports the 2SLS estimate obtained using the whole sample, which is identical to the result

reported in Angrist and Krueger (1991) and Donald and Newey (2001). The remaining

rows report the estimated MSE, bias, variance, and standard deviation of the alternative

estimators, computed by using the 600 subsamples of 500 observations. The estimators

we consider are 2SLS; LIML; B2SLS; and 2SLSS (with several di¤erent values of the

shrinkage parameter). As is clear from the table, 2SLS seems superior to B2SLS and

LIML in terms of MSE, and this is due to a much smaller bias4.

On the other hand, there are values of the shrinkage parameter sn (e.g. 0:1, 0:5 and

1) such that the MSE associated with 2SLSS is more than six times smaller that that of

2SLS, with gains coming both in the form of reduced bias and in reduced variance. Note

that with this dataset a value of sn between 0:1 and 5 is reasonably large if one compares

it with the scale of the data. To give a rough idea for this, we note that, for the present

dataset, the trace of the matrix Z�Z is about 1670499, so that 1670499/(nKn) is roughly

equal to 0.02. We conclude that for a reasonable set of values for the shrinkage parameter

2SLSS can perform as well and in some case much better than existing estimators. Only

3In particular we take observations spaced by 658 places, e.g. subsample 1 is composed by observations
1, 659, 1317, ..., 328343, subsample 2 is composed by observations 2, 660, 1318, ..., 328344, and so on until
the last subsample considered which is composed by observations 600, 1258, 1916, ..., 328942.

4Note that this result is by no means driven by the fact that we are using the 2SLS estimates on the
whole sample rather than the LIML or the B2SLS as a proxy for the true value of the coe¢ cient. Indeed,
although the LIML and B2SLS estimates using the whole sample are di¤erent from those of 2SLS, the
di¤erence is both relatively small (LIML = 0:1064 and B2SLS = 0:1086) and implies even larger bias in
the subsample estimates.
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when the shrinkage parameter deviates considerably from reasonable values, as discussed

above, is 2SLSS performing badly. We consider this result as suggestive of a considerable

amount of robustness for 2SLSS with respect to this tuning parameter.

5 Conclusions

Estimation of structural equations using instrumental variable techniques, in the presence

of a large number of, possibly weak, instruments, is a topic that has received substantial

attention in the literature. Most work has focused on the properties of existing estimators

in the case of many, possibly weak, instruments. These estimators include the 2SLS esti-

mator and the LIML estimator.

This paper is part of a small literature that discusses estimators that can be of par-

ticular relevance when many instruments are available. Intuition and recent work (see,

e.g., Hahn (2002)) suggests that parsimonious devices used in the construction of the �nal

instruments may provide e¤ective estimation strategies. Shrinkage is a well known ap-

proach that promotes parsimony. We consider a new shrinkage 2SLS estimator. We derive

a consistency result for this estimator under general conditions, and, via both Monte Carlo

simulations and an empirical application, show that it has also good potential for inference

in small samples.

An open and interesting question for future research relates to the choice of the shrink-

age parameter, sn. It is of interest to develop a data-dependent way of determining this.

An interesting possibility is to derive approximations of the MSE of the 2SLS shrinkage

estimator and optimise the choice of sn with respect to this measure, in the spirit of Donald

and Newey (2001). We consider such an investigation to be the next step in our research

agenda on this topic.
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Appendix

Lemmas

Lemma 1 Let assumptions 1-2 hold. Let P snZn = Zn(Z
0
nZn + snI)

�1Z 0n. De�ne qn = sn=n

such that qn !1, Kn

qn
!1 and rn

qn
!1. Then, (i) for some constant C,

V 0nP
sn
Zn
Vn

��
CKn

qn

�
= �V V +Op

�r
qn
Kn

�
;

(ii) for some constant C,

V 0nP
sn
Zn
un

��
CKn

qn

�
= �V u +Op

�r
qn
Kn

�
;

(iii)

V 0nP
sn
Zn
Zn�n

��
rn
qn

�
= Op

�r
qn
rn

�
and (iv)

u0nP
sn
Zn
Zn�n

��
rn
qn

�
= Op

�r
qn
rn

�
:

Proof. C denotes constants which may be di¤er across contexts. To prove (i) it is su¢ cient

to prove the statement for the g; h-th element of V 0nP
sn
Zn
Vn denoted by V 0gnP

sn
Zn
Vhn where

Vgn denotes the g-th column of Vn. It is su¢ cient to show that

E

�
V 0gnP

sn
Zn
Vhn

��
CKn

qn

�
� �ghV V

�2
= Op

�
qn
Kn

�
where �ghV V denotes the g; h-th element of �V V . So, denoting the (i; j)-th element of P

sn
Zn

by psnij;n, we have

E

�
V 0gnP

sn
Zn
Vhn

��
CKn

qn

�
� �ghV V

�2
=�

qn
CKn

�2 nX
i=1

nX
k=1

nX
k=1

nX
l=1

E
�
psnij;np

sn
kl;n

�
E (vigvjhvkgvlh)�

2qn�
gh
V V

CKn

nX
i=1

nX
j=1

E
�
psnij;n

�
E (vigvjh) +

�
�ghV V

�2
=

�
qn
CKn

�2
E
�
v2igv

2
jh

� " nX
i=1

E
��
psnii;n

�2�#
+

 p
2qn

CKn

!2
�ggV V�

hh
V V

"
nX
i=2

i�1X
j=1

E
��
psnij;n

�2�#
+

8<:
 p

2�ghV V qn
CKn

!2 " nX
i=2

i�1X
j=1

E
�
psnii;np

sn
jj;n +

�
psnii;n

�2�#�
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2
�
�ghV V

�2
qn

CKn

nX
i=1

E
�
psnii;n

�
+
�
�ghV V

�29>=>; = A1n + A2n + A3n

We examine each of A1n, A2n and A3n in turn. Starting with A1n we have that�
qn
CKn

�2
E
�
v2igv

2
jh

� " nX
i=1

E
��
psnii;n

�2�# �
�
qn
CKn

�2q
E
�
v4ig
�q
E
�
v4jh
� " nX

i=1

E
��
psnii;n

�2�# ��
qn
CKn

�q
E
�
v4ig
�q
E
�
v4jh
�
= O

�
qn
Kn

�
:

The second inequality follows from the fact that

nX
i=1

E
��
psnii;n

�2� � nX
i=1

E
�
psnii;n

�
which follows from the fact that 0 � psnii;n � 1. This in turn follows from the fact that

0 � pii;n � 1 where pii;n is the (i; i)-th element of Zn(Z 0nZn)�1Z 0n. The result then follows
from Lemma 2. Next, focusing on A2n we have that p

2qn
CKn

!2
�ggV V�

hh
V V

"
nX
i=2

i�1X
j=1

E
��
psnij;n

�2�# �
�
qn
CKn

�2
�ggV V�

hh
V V

"
nX
i=1

E
��
psnii;n

�2�
+ 2

nX
i=2

i�1X
j=1

E
��
psnij;n

�2�#
But "

nX
i=1

E
��
psnii;n

�2�
+ 2

nX
i=2

i�1X
j=1

E
��
psnij;n

�2�#
= tr

�
E
�
P snZnP

sn
Zn

��
� CKn

q2n

by Lemma 2. So p
2qn

CKn
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Table 1. Mean Squared Errors, � = 0:25
c=0.1 c=0.5 c=1

Kn/n! 0.60 0.80 1.00 0.60 0.80 1.00 0.60 0.80 1.00
n#

2SLS (level) 2SLS (level) 2SLS (level)
50 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01
100 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
200 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.01
400 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.01

B2SLS B2SLS B2SLS
50 4.58 12.2 1.00 2.78 7.13 1.00 1.63 4.82 1.00
100 2.01 6.71 1.00 1.57 3.28 1.00 1.24 1.72 1.00
200 1.09 1.84 1.00 1.01 1.53 1.00 0.82 1.18 1.00
400 0.62 0.96 1.00 0.58 0.81 1.00 0.53 0.67 1.00

LIML LIML LIML
50 11.5 25.5 114.3 9.88 27.8 112.6 2.63 18.4 166.1
100 3.00 13.4 142.5 1.87 7.10 164.4 1.35 4.30 217.2
200 1.09 6.26 159.8 1.01 2.24 191.1 0.81 1.32 310.7
400 0.59 1.00 166.9 0.57 0.82 238.2 0.52 0.66 315.1

2SLSS 2SLSS 2SLSS
q=1/n; sn= 10 q=1/n; sn= 10 q=1/n; sn= 10

50 0.90 0.84 0.80 0.91 0.86 0.80 0.94 0.88 0.84
100 0.89 0.86 0.80 0.90 0.85 0.79 0.93 0.87 0.80
200 0.91 0.87 0.83 0.92 0.88 0.81 0.93 0.88 0.81
400 0.94 0.91 0.86 0.95 0.91 0.85 0.95 0.91 0.83

q=1/n; sn= 103 q=1/n; sn= 103 q=1/n; sn= 103

50 0.98 0.87 0.81 1.12 1.03 0.85 1.65 1.39 1.27
100 0.66 0.57 0.45 0.79 0.62 0.53 1.08 0.83 0.70
200 0.43 0.34 0.29 0.50 0.40 0.32 0.67 0.51 0.41
400 0.31 0.27 0.25 0.36 0.30 0.27 0.46 0.37 0.32

q=1/n; sn= 105 q=1/n; sn= 105 q=1/n; sn= 105

50 1.04 0.94 0.90 1.22 1.17 0.97 2.11 2.02 1.69
100 0.71 0.62 0.50 0.90 0.73 0.64 1.46 1.16 1.00
200 0.46 0.36 0.29 0.59 0.45 0.35 0.96 0.74 0.59
400 0.26 0.20 0.16 0.33 0.26 0.20 0.57 0.42 0.31

q=0; sn= 10 q=0; sn= 10 q=0; sn= 10
50 0.96 0.90 0.87 0.96 0.92 0.85 0.97 0.91 0.87
100 0.94 0.91 0.84 0.95 0.89 0.83 0.95 0.90 0.83
200 0.95 0.91 0.86 0.95 0.91 0.84 0.95 0.90 0.82
400 0.97 0.93 0.87 0.96 0.93 0.86 0.96 0.92 0.84

q=0; sn= 103 q=0; sn= 103 q=0; sn= 103

50 1.05 0.96 0.88 1.06 0.96 0.87 1.08 0.95 0.90
100 0.87 0.83 0.72 0.91 0.80 0.72 0.96 0.84 0.73
200 0.77 0.69 0.62 0.77 0.69 0.60 0.81 0.69 0.59
400 0.70 0.63 0.57 0.69 0.62 0.55 0.70 0.60 0.53

q=0; sn= 105 q=0; sn= 105 q=0; sn= 105

50 1.06 0.97 0.90 1.08 0.98 0.88 1.10 0.97 0.92
100 0.89 0.84 0.72 0.93 0.81 0.73 0.98 0.85 0.74
200 0.77 0.67 0.60 0.77 0.68 0.59 0.81 0.69 0.59
400 0.66 0.58 0.51 0.65 0.57 0.51 0.68 0.56 0.48

The Table displays the Relative Mean Squared Error (RMSE) of each estimator with respect to the 2SLS estimator,
i.e. the ratio between the Mean Squared Error (MSE) of a given estimator and the MSEof the 2SLS estimator.
For the 2SLS estimator we do not report the ratio (as it will be equal to 1) but the MSE. On the rows are reported
results for di¤erent numbers of observations nwhile on the columns are displayed results for di¤erent proportions of
the number of instruments to the number of observations, i.e. Kn=n. Results are computed with � = 0:25



Table 2. Mean Squared Errors, � = 0:50
c=0.1 c=0.5 c=1

Kn/n! 0.60 0.80 1.00 0.60 0.80 1.00 0.60 0.80 1.00
n#

2SLS (level) 2SLS (level) 2SLS (level)
50 0.03 0.04 0.04 0.02 0.03 0.04 0.01 0.02 0.02
100 0.02 0.03 0.04 0.02 0.03 0.03 0.01 0.02 0.02
200 0.02 0.03 0.04 0.02 0.02 0.03 0.01 0.01 0.02
400 0.02 0.03 0.04 0.02 0.02 0.03 0.01 0.01 0.02

B2SLS B2SLS B2SLS
50 3.04 5.01 1.00 1.80 4.82 1.00 1.40 1.90 1.00
100 0.88 3.21 1.00 0.81 2.09 1.00 0.64 0.78 1.00
200 0.41 1.32 1.00 0.36 0.62 1.00 0.34 0.41 1.00
400 0.19 0.29 1.00 0.19 0.24 1.00 0.18 0.21 1.00

LIML LIML LIML
50 3.53 8.39 40.88 1.93 6.95 42.32 2.05 3.04 56.24
100 0.73 3.07 43.58 0.65 1.64 51.43 0.62 1.00 65.69
200 0.31 0.68 46.65 0.30 0.44 52.19 0.29 0.34 84.41
400 0.15 0.22 43.83 0.15 0.19 56.17 0.15 0.16 81.71

2SLSS 2SLSS 2SLSS
q=1/n; sn= 10 q=1/n; sn= 10 q=1/n; sn= 10

50 0.77 0.71 0.66 0.78 0.72 0.67 0.81 0.75 0.68
100 0.82 0.78 0.73 0.83 0.78 0.72 0.85 0.79 0.72
200 0.89 0.85 0.79 0.89 0.85 0.78 0.90 0.84 0.77
400 0.93 0.90 0.84 0.93 0.90 0.83 0.94 0.90 0.82

q=1/n; sn= 103 q=1/n; sn= 103 q=1/n; sn= 103

50 0.49 0.35 0.30 0.61 0.43 0.35 0.96 0.71 0.54
100 0.27 0.20 0.16 0.32 0.22 0.19 0.49 0.34 0.27
200 0.17 0.14 0.13 0.21 0.16 0.14 0.29 0.23 0.19
400 0.18 0.17 0.17 0.21 0.19 0.18 0.27 0.24 0.21

q=1/n; sn= 105 q=1/n; sn= 105 q=1/n; sn= 105

50 0.52 0.39 0.33 0.68 0.49 0.42 1.25 1.81 0.73
100 0.29 0.21 0.18 0.37 0.25 0.20 0.66 0.46 0.37
200 0.15 0.11 0.09 0.20 0.14 0.10 0.35 0.24 0.18
400 0.07 0.05 0.04 0.10 0.07 0.05 0.18 0.12 0.09

q=0; sn= 10 q=0; sn= 10 q=0; sn= 10
50 0.89 0.81 0.76 0.88 0.81 0.75 0.88 0.81 0.73
100 0.90 0.85 0.79 0.90 0.84 0.77 0.90 0.83 0.75
200 0.93 0.89 0.82 0.93 0.88 0.81 0.92 0.87 0.79
400 0.96 0.93 0.86 0.96 0.92 0.85 0.95 0.91 0.83

q=0; sn= 103 q=0; sn= 103 q=0; sn= 103

50 0.79 0.66 0.60 0.79 0.67 0.59 0.80 0.69 0.58
100 0.68 0.60 0.53 0.67 0.58 0.52 0.69 0.58 0.49
200 0.63 0.55 0.51 0.62 0.55 0.48 0.61 0.52 0.45
400 0.63 0.56 0.52 0.61 0.54 0.50 0.59 0.51 0.45

q=0; sn= 105 q=0; sn= 105 q=0; sn= 105

50 0.79 0.66 0.59 0.79 0.67 0.59 0.81 0.69 0.58
100 0.67 0.59 0.52 0.67 0.57 0.50 0.68 0.57 0.48
200 0.60 0.52 0.47 0.59 0.51 0.45 0.58 0.49 0.42
400 0.56 0.49 0.45 0.54 0.47 0.43 0.52 0.44 0.38

The Table displays the Relative Mean Squared Error (RMSE) of each estimator with respect to the 2SLS estimator,
i.e. the ratio between the Mean Squared Error (MSE) of a given estimator and the MSEof the 2SLS estimator.
For the 2SLS estimator we do not report the ratio (as it will be equal to 1) but the MSE. On the rows are reported
results for di¤erent numbers of observations nwhile on the columns are displayed results for di¤erent proportions of
the number of instruments to the number of observations, i.e. Kn=n. Results are computed with � = 0:50



Table 3. Mean Squared Errors, � = 0:75
c=0.1 c=0.5 c=1

Kn/n! 0.60 0.80 1.00 0.60 0.80 1.00 0.60 0.80 1.00
n#

2SLS (level) 2SLS (level) 2SLS (level)
50 0.05 0.07 0.09 0.04 0.05 0.07 0.02 0.03 0.05
100 0.05 0.07 0.08 0.04 0.05 0.07 0.02 0.03 0.04
200 0.05 0.07 0.08 0.04 0.05 0.07 0.02 0.03 0.04
400 0.04 0.06 0.08 0.03 0.05 0.07 0.02 0.03 0.04

B2SLS B2SLS B2SLS
50 1.97 3.68 1.00 1.25 2.46 1.00 0.77 1.83 1.00
100 0.55 1.34 1.00 0.53 1.93 1.00 0.37 0.47 1.00
200 0.22 0.61 1.00 0.20 0.33 1.00 0.18 0.21 1.00
400 0.10 0.17 1.00 0.09 0.14 1.00 0.09 0.11 1.00

LIML LIML LIML
50 0.63 3.65 18.17 0.91 1.82 20.90 0.50 0.80 29.56
100 0.31 0.47 19.28 0.22 0.36 23.71 0.25 0.28 28.97
200 0.12 0.15 19.78 0.11 0.13 22.01 0.12 0.11 38.13
400 0.06 0.06 18.70 0.05 0.06 22.77 0.06 0.05 32.62

2SLSS 2SLSS 2SLSS
q=1/n; sn= 10 q=1/n; sn= 10 q=1/n; sn= 10

50 0.70 0.66 0.62 0.72 0.67 0.62 0.75 0.68 0.62
100 0.80 0.76 0.71 0.81 0.76 0.70 0.82 0.76 0.69
200 0.88 0.84 0.78 0.88 0.84 0.77 0.89 0.83 0.75
400 0.93 0.90 0.84 0.93 0.90 0.83 0.93 0.89 0.81

q=1/n; sn= 103 q=1/n; sn= 103 q=1/n; sn= 103

50 0.28 0.19 0.16 0.32 0.25 0.18 0.90 0.39 0.28
100 0.14 0.10 0.09 0.16 0.12 0.09 0.26 0.18 0.14
200 0.10 0.09 0.09 0.12 0.11 0.10 0.18 0.15 0.13
400 0.15 0.15 0.15 0.17 0.17 0.17 0.22 0.20 0.19

q=1/n; sn= 105 q=1/n; sn= 105 q=1/n; sn= 105

50 0.31 0.22 0.18 0.37 0.29 0.22 0.97 0.78 0.45
100 0.15 0.10 0.08 0.19 0.13 0.10 0.35 0.23 0.17
200 0.07 0.05 0.04 0.09 0.06 0.05 0.17 0.11 0.08
400 0.04 0.02 0.02 0.05 0.03 0.02 0.08 0.05 0.04

q=0; sn= 10 q=0; sn= 10 q=0; sn= 10
50 0.85 0.79 0.72 0.85 0.78 0.71 0.84 0.76 0.68
100 0.89 0.83 0.77 0.88 0.82 0.75 0.88 0.80 0.72
200 0.93 0.88 0.82 0.93 0.87 0.80 0.92 0.86 0.77
400 0.96 0.92 0.86 0.96 0.92 0.85 0.95 0.91 0.82

q=0; sn= 103 q=0; sn= 103 q=0; sn= 103

50 0.65 0.58 0.51 0.66 0.56 0.49 0.66 0.55 0.47
100 0.60 0.54 0.49 0.59 0.52 0.46 0.59 0.49 0.43
200 0.59 0.53 0.49 0.58 0.51 0.46 0.56 0.48 0.42
400 0.61 0.55 0.51 0.59 0.53 0.48 0.57 0.49 0.44

q=0; sn= 105 q=0; sn= 105 q=0; sn= 105

50 0.65 0.57 0.50 0.65 0.55 0.48 0.66 0.54 0.46
100 0.59 0.52 0.47 0.58 0.50 0.44 0.58 0.47 0.41
200 0.55 0.49 0.45 0.54 0.47 0.42 0.52 0.44 0.38
400 0.54 0.48 0.43 0.52 0.46 0.41 0.49 0.41 0.37

The Table displays the Relative Mean Squared Error (RMSE) of each estimator with respect to the 2SLS estimator,
i.e. the ratio between the Mean Squared Error (MSE) of a given estimator and the MSEof the 2SLS estimator.
For the 2SLS estimator we do not report the ratio (as it will be equal to 1) but the MSE. On the rows are reported
results for di¤erent numbers of observations nwhile on the columns are displayed results for di¤erent proportions of
the number of instruments to the number of observations, i.e. Kn=n. Results are computed with � = 0:75



Table 4. Mean Squared Errors of the 2SLSS. Case Kn > n
� = 0:25 � = 0:50 � = 0:75

Kn/n! 1 1.1 Ratio 1 1.1 Ratio 1 1.1 Ratio
n
# q=1/n sn = 10 q=1/n sn = 10 q=1/n sn = 10
50 0.011 0.011 1.018 0.024 0.025 0.960 0.044 0.048 0.913
100 0.008 0.009 0.953 0.024 0.024 0.979 0.048 0.051 0.955
200 0.007 0.008 0.923 0.024 0.025 0.941 0.051 0.054 0.946
400 0.007 0.007 0.972 0.025 0.026 0.984 0.056 0.058 0.959

q=1/n sn = 10
3 q=1/n sn = 10

3 q=1/n sn = 10
3

50 0.012 0.012 1.008 0.013 0.012 1.066 0.012 0.013 0.932
100 0.006 0.006 0.982 0.006 0.006 1.034 0.007 0.007 0.985
200 0.003 0.003 0.935 0.004 0.005 0.936 0.007 0.008 0.893
400 0.002 0.002 0.957 0.006 0.006 0.932 0.011 0.012 0.911

q=1/n sn = 10
5 q=1/n sn = 10

5 q=1/n sn = 10
5

50 0.014 0.014 0.986 0.015 0.014 1.063 0.015 0.016 0.936
100 0.007 0.007 0.971 0.007 0.007 1.030 0.007 0.007 1.015
200 0.003 0.003 0.970 0.003 0.003 0.970 0.003 0.003 1.031
400 0.002 0.002 1.000 0.002 0.002 1.000 0.002 0.002 1.133

q=0; sn = 10 q=0; sn = 10 q=0; sn = 10
50 0.012 0.012 1.017 0.027 0.028 0.961 0.050 0.054 0.921
100 0.009 0.009 0.956 0.025 0.026 0.984 0.052 0.054 0.959
200 0.007 0.008 0.925 0.025 0.026 0.943 0.053 0.056 0.950
400 0.007 0.007 0.972 0.026 0.026 0.985 0.057 0.059 0.960

q=0 sn = 10
3 q=0 sn = 10

3 q=0 sn = 10
3

50 0.012 0.012 1.042 0.022 0.022 0.977 0.035 0.038 0.913
100 0.007 0.008 0.949 0.017 0.017 1.000 0.032 0.033 0.967
200 0.005 0.006 0.914 0.015 0.016 0.937 0.031 0.033 0.939
400 0.005 0.005 0.978 0.015 0.016 0.968 0.033 0.034 0.948

q=0 sn = 10
5 q=0 sn = 10

5 q=0 sn = 10
5

50 0.013 0.012 1.041 0.021 0.022 0.977 0.034 0.037 0.914
100 0.008 0.008 0.949 0.017 0.016 1.012 0.031 0.032 0.968
200 0.005 0.006 0.929 0.014 0.015 0.939 0.028 0.030 0.943
400 0.004 0.004 0.976 0.013 0.013 0.977 0.028 0.029 0.955

The table displays the MSEof the 2SLSS estimator in the cases Kn=n = 1and Kn=n = 1:1,
and their ratio (i.e. MSEin the caseKn=n = 1 divided byMSEin the caseKn=n = 1:1). The three
verstical subpanels display results for � = 0:25; 5; 0:75:The parameter cis set to c = 0:5.



Table 5. Application to Angrist Krueger (1991) data.
Coef SE

2SLS all sample 0.0928 0.0093

Average Coef. MSE Bias Variance StDev
2SLS 0:0360 0:0045 �0:0568 0:0012 0:0350
LIML 0:0007 0:0085 �0:0922 0:0000 0:0052
B2SLS 0:0000 0:0086 �0:0928 0:0000 0:0003
S2SLS
sn = 0 0:0360 0:0045 �0:0568 0:0012 0:0350
sn = 0:1 0:0736 0:0008 �0:0192 0:0004 0:0202
sn= 0:5 0:0859 0:0007 �0:0069 0:0006 0:0246
sn = 1 0:0956 0:0008 0:0027 0:0008 0:0285
sn = 2 0:1095 0:0015 0:0167 0:0012 0:0346
sn = 3 0:1204 0:0023 0:0276 0:0016 0:0398
sn = 5 0:1379 0:0044 0:0451 0:0024 0:0486
sn = 10 0:1707 0:0106 0:0779 0:0045 0:0672
sn = 10

3 2:0872 7:8401 1:9943 3:8627 1:9654
sn = s

� 0:1450 0:0056 0:0522 0:0029 0:0537

Average coef and the other statistics are computed by splitting the sample in 600 subsamples of 500
observations each. The used instruments are 60 exogenous variables plus 3 quarter of birth dummy, plus
27 interactions of the 3 quarter of birth dummies with 9 year of birth dummies, plus 150 interactions of
the 3 quarter of birth dummies with 50 state of birth dummies, for a total of 240 instruments. If in some
samples some dummies are not active causing perfect multicollinearity they are removed.
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