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Abstract

The results of an experiment extending Ellsberg’s setup demonstrate that attitudes

towards ambiguity and compound uncertainty are closely related. However, this asso-

ciation is much stronger when the second layer of uncertainty is subjective than when

it is objective. Provided that the compound probabilities are simple enough, we find

that most subjects, consisting of both students and policy makers, (1) reduce com-

pound objective probabilities, (2) do not reduce compound subjective probabilities,

and (3) are ambiguity non-neutral. By decomposing ambiguity into risk and model

uncertainty, and jointly eliciting the attitudes individuals manifest towards these two

types of uncertainty, we characterize individuals’ degree of ambiguity aversion. Our

data provides evidence of decreasing absolute ambiguity aversion and constant relative

ambiguity aversion.
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“Ambiguity may be high [...] when there are questions of reliability and rele-

vance of information, and particularly where there is conflicting opinion and

evidence.”

Ellsberg (1961, p. 659)

1 Introduction

We report the results of an experiment aiming at disentangling the mechanisms behind

ambiguity aversion. By distinguishing preferences for objective and subjective probabili-

ties, and showing that individuals generally do not consider the two in the same way, we

are able to detect a strong association between preferences for subjective probabilities and

those for ambiguity, and bring our collective understanding on what originates ambiguity

aversion a step forward.

Slightly more than fifty years ago, Ellsberg (1961) conducted a series of experiments

whose results suggest that people prefer situations in which they perfectly know the prob-

abilities of events occurrence (risk) to situations in which these probabilities are unknown

(ambiguity). This seminal paper has given rise to a large body of literature in economics,

exploring both the theoretical and experimental sides of the problem. Ambiguity aversion

has since been subject to heated debates among scholars, questioning whether preferences

emerging from observed behaviors in these experiments should be considered as a deviation

from rationality, or instead, they should be seen as a key characteristic defining human

preferences having therefore a normative status (which may then informs policy making).

For instance, Halevy (2007) proposed a series of experiments extending Ellsberg’s setup,

from which he suggested that attitudes towards ambiguity and towards compound lot-

teries are tightly associated. The implication of this result, which has been replicated in

several other experiments, may have an important impact on the way attitude to ambi-

guity is perceived and treated in economic models. In particular, if one sees the violation

of independence in risky choices as a departure from rationality, and if subjects who are

ambiguity averse are also less likely to reduce compound risk, then this weakens the po-

tential for ambiguity aversion to claim a normative status. We test this association in

a simple context of decision making to rule out other potential confounding factors, and

measure whether ambiguity remains strongly associated with compound risk, or whether

it is the nature of probabilities that plays a central role. In particular, if preferences over

compound uncertainty with subjective probabilities correlate better with preferences over

ambiguity, then it would shed new light on what are the intrinsic behavioral components

driving ambiguity attitudes.

Ambiguity (also known as deep uncertainty or Knightian uncertainty) is a concept

which characterizes situations in which a decision maker does not have sufficient infor-

mation to quantify through a single probability distribution the nature of the problem
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she is facing. It is distinct from the notion of risk, which refers to situations in which

probabilities of a random event are perfectly known. Ambiguity is present in most real

life situations involving uncertainty. It plays a major role in many economic problems

and directly affects the process of decision making. A noteworthy example concerns the

decision to mitigate greenhouse gas emissions in the presence of climate change (Berger

et al., 2016).

Economics has traditionally treated those situations in which no objectively known

or commonly agreed upon probabilities are given by following the approach proposed by

the Subjective Expected Utility (SEU) theory (Savage, 1954). In line with the Bayesian

tradition, the idea in this framework is that any source of uncertainty can be quantified in

probabilistic terms and considered as a risk. The prior probabilities an individual has over

the different states of the world are subjective, and the decision is made by maximizing the

expected utility, given the individual’s prior. Following the broad evidence –initiated by

Ellsberg (1961)– that most individuals treat ambiguity differently than objective risk (and

as a consequence the difficulty for Savage’s axioms to be fulfilled), several lines of research

have been followed and alternative decision models have been proposed. These models

do not treat objective and subjective probabilities in the same way. For example, Gilboa

and Schmeidler (1989) gave a behavioral foundation to the influential maxmin expected

utility (MEU) model, in which an individual’s utility is given by the minimal expected

utility over a set of multiple priors that the individual might have. Ghirardato et al. (2004)

then axiomatized an extension of this model by considering combinations of minimal and

maximal expected utilities over the individual’s set of priors. Other models such as the

ones proposed by Klibanoff et al. (2005); Nau (2006); Ergin and Gul (2009); Seo (2009)

assume that individuals have both a set of first order priors and a second order probability

over them, and are expected utility maximizers over both the first and the second layer of

uncertainty (two-stage models).

Given the pervasiveness of ambiguity in all fields of economics and its relevance in the

process of real-life decision making, we feel that it is crucial (1) to better understand what

drives the observed behavior of ambiguity aversion; and (2) to quantify more precisely the

extent to which ambiguity aversion exists and characterize its main properties.1 The aim

of this paper is to address this twofold objective. To do so, we follow the decomposition

of uncertainty into two distinct layers of analysis, as proposed by Hansen (2014) and

Marinacci (2015) building on Arrow’s (1951) work. The first layer, commonly referred to

as aleatory uncertainty, features the probability measure associated with the randomness of

an event. It refers to the physical quantification of uncertainty by means of a probabilistic

model, and refers to a notion –central in classical statistics– which is generally called risk

1While the vast majority of the experimental effort has been devoted to finding evidence of ambiguity
aversion (Trautmann and van de Kuilen, 2014), few studies have attempted to actually quantify the strength
of this effect (notable exceptions, using various models, are Abdellaoui et al. (2011); Dimmock et al. (2015);
Baillon and Placido (2015)).
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in economics. The second layer, referred to as epistemic uncertainty, characterizes the fact

that the correct probabilistic model (or risk) is itself unknown.2 Rather multiple models

may exist, each of them associated with a subjective probability representing the decision

maker’s (DM) degree of belief in that particular model. These subjective probabilities

quantify what we will be referring to as model uncertainty. We feel this distinction can help

us analyze in practice the vast majority of decision problems under uncertainty. Through

the lens of this two layer model, ambiguity can be interpreted as the combination of risk

and model uncertainty.

In a controlled experimental environment which extends both Ellsberg’s (1961) and

Halevy’s (2007) setups, we confront our subjects with four different types of uncertain

situations, represented by urns filled with balls that may be either red or black. The

two extreme situations are the standard Ellsberg ones, in which the number of red and

black balls –and therefore probabilities– are either objectively known (risk) or completely

unknown (ambiguity). In the spirit of Halevy (2007), a fair coin determines the number of

red and black balls in the third urn, which therefore presents objective probabilities in two

distinct layers (compound risk). Finally in the last situation, the number and color of balls

is unknown but two “experts” provide their assessment of the urn composition. This latter

situation also presents uncertainty in two layers, but probabilities in the second layer are

subjectively determined (model uncertainty). In particular, model uncertainty is achieved

by providing the subjects with two possible models (represented by the two experts3). We

focus our research on the distinction between objective and subjective probabilities in a

context characterized by two layers of uncertainty. Building on setups used by Holt and

Laury (2002) and Andersen et al. (2008), we propose a design that enables us to test the

association between ambiguity non-neutrality and, respectively, violation of reduction of

compound lottery (ROCL, when probabilities are objective) and violation of reduction of

compound uncertainty (ROCU, when probabilities are subjective). We run our experiment

on both a panel of university students and a panel of policy makers. The first experiment

took place in a laboratory at Bocconi University, and we carried out the second as an

artefactual field experiment during the 2015 United Nations Climate Change Conference,

COP 21.

There are three main findings emerging from our analysis. First, attitudes towards

ambiguity and uncertain situations presented in two layers are closely related. However,

2The term “epistemic” derives from the Ancient Greek ἐπισvτήμη, which means “knowledge”, while the
term “aleatory”, which originates from the Latin alea, refers to any game of chance involving dice.

3Experts are individuals who presumably have more information and/or expertise than the decision
maker. In in our particular context, experts may be defined as in Budescu and Yu (2007), as individuals
who: “(a) have access to information that can shed new light on, or reduce uncertainty about, the possible
outcomes of their decisions, and/or (b) have the expertise and qualifications that are necessary to interpret
the available information, and/or (c) can provide confidence enhancing psychological support”. In real life
situations these experts could for example be scientists/scientific studies when the decision is that of a
policy maker having to choose environmental policies, financial advisors when it concerns individual saving
decisions, doctors and specialists for medical decisions, or even family members or friends when personal
matters are at issue.
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this association is much stronger when the second layer of uncertainty is subjective than

when it is objective. Provided that the compound probabilities are simple enough, most of

our subjects behave according to the ROCL and violate the ROCU. Second, subjects tend

to be both risk and model uncertainty averse, and furthermore exhibit stronger aversion

towards model uncertainty than towards risk. This behavioral characteristic is interpreted

as evidence of ambiguity aversion, which is elicited via a joint estimation procedure. Third,

and analogously to what has been previously reported for risk aversion (Holt and Laury,

2002, 2005), we find that model uncertainty aversion is decreasing when considered in

absolute terms, and increasing when considered in relative terms. In terms of ambiguity

attitude, we find evidence of decreasing absolute ambiguity aversion (DAAA) and constant

relative ambiguity aversion (CRAA).

2 Experimental procedures

The experiment consists of a sequence of nine tasks, divided in two sets each employing

a different elicitation procedure. The first one is a random lottery pair (RLP) procedure,

in which subjects face pairs of uncertain alternatives and are asked to pick one of two. This

set of choices enable us to test the predictions of expected utility theory (EUT) and detect

potential deviations from it in situations of uncertainty. In the second set of tasks, we use

a double price list (PL) procedure to jointly elicit risk and model uncertainty attitudes.

In this part, each subject is confronted with a series of binary choices, presented in the

form of ordered tables, as popularized by Holt and Laury (2002).

2.1 The choice situations

Across the various tasks subjects may be confronted with four different uncertain

situations. These situations are represented by urns containing balls that can either be red

or black. Each urn describes a particular type of uncertainty. The urns are characterized

as follows:

• Urn 1 (risk): the number of red and black balls is perfectly known;

• Urn 2 (compound risk): the number of red and black balls is determined by flipping a

fair coin in the air;

• Urn 3 (model uncertainty): the number of red, black and the total number of balls in

the urn are unknown, but information is provided by two “experts”,4 each giving her

own assessment of the composition of the urn;

• Urn 4 (Ambiguity à la Ellsberg): the total number of balls in the urn is given, but the

exact composition of the urn is unknown.

4We refer to experts as those individuals or entities who presumably have more information and/or
expertise than the DM, and who are acting as advisors by providing information (Budescu et al., 2003).
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In the RLP task for example, the urn compositions (red balls, black balls) are as follows:

Urn 1’s composition is (50,50); Urn 2 is either (100,0) or (0,100) (flipping a fair coin

determines which of the two); Urn 3’s composition is unknown but Expert 1’s assessment

is that there are only red balls, while Expert 2’s assessment is that there are only black

balls; Urn 4 is composed of any possible combination of red and black balls. These four

urns are also illustrated in Table 1. In the first two urns, the probability of drawing a

red ball P (r) is objectively known to be 1/2, the only difference between the two being

that Urn 1 corresponds to a simple risk, while Urn 2 is presented as a compound risk.

In Urns 3 and 4 the probabilities are unknown. However, subjects are still given some

information taking the form of the experts’ beliefs about the urn’s composition (in Urn 3),

or the total number of balls (in Urn 4). As is the case of Urn 2, the information in Urn 3

is presented in two layers, with the difference being that the probabilities associated with

the different compositions of the urn are not objective. These urns are presented two by

Table 1: Composition of the urns in the RLP task

Situation Uncertainty P (r) Probability type Presentation

Urn 1 Risk 1/2 objective simple

Urn 2 Compound risk
1/2

objective compound
(1 if “tails”; 0 if “heads”)

Urn 3 Model uncertainty
unknown

subjective compound(1 according to Expert 1;
0 according to Expert 2)

Urn 4 Ambiguity (Ellsberg) unknown subjective simple

two in a randomized sequence. In each decision, subjects are required to place a bet on

the color of the ball drawn from each urn (Red or Black), and to decide on which of the

two urns to place their bet (allowing for indifference). The bet may win the subject e15

and entails no losses otherwise. In order to replicate results previously obtained in the

literature while introducing the model uncertainty framework, the risky Urn 1 is kept as

a reference and systematically paired with the other three urns.

In the second part of the experiment, we specifically focus on Urn 1 and 3’s frameworks.

Subjects are confronted with three risky and five model uncertainty tasks. The first of the

risky tasks takes the common form of a certainty equivalent (CE) task in which subjects

are asked to choose between a binary lottery and a sure amount of money. Specifically,

by letting O denote the set of monetary outcomes, and ōpo the binary lottery yielding

ō ≥ o ∈ O with probability p and o ∈ O otherwise, subjects are asked to make a series

of ten choices between ōpo and different values of o ∈ O ordered from ō to o.5 This

task allows us to characterize the interval containing the certainty equivalent, which is

5In the CE tasks of our experiment we used the following values: ō = 25, o = 4, p = 0.5, and
o ∈ {25, 18, 15, 14, 13, 12, 10, 8, 6, 4}.
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defined as the payoff that would leave the subject indifferent between the sure amount

and the lottery. The design of the other two risky tasks is also standard and follows Holt

and Laury’s (2002) PL procedure. The first model uncertainty task is analogous to the

certainty equivalent task. In this case however, the binary lottery ōpo is replaced by the

uncertain situation denoted ōp̂1p̂2o, in which the subject is only given information on two

experts’ assessed probabilities p̂1 and p̂2. In the four remaining uncertain tasks, subjects

make a series of choices between risky situations ōpo and situations of model uncertainty

ōp̂1p̂2o .

The PL procedure is one of the most commonly employed elicitation methods to rep-

resent choices between gambles (Andersen et al., 2006). It is considered as a transparent

procedure that rarely confuses subjects about the incentives to respond truthfully (Harri-

son and Rutström, 2008). However, one of the main disadvantages of this method is that

subjects typically have the possibility to switch freely between the two options as they

progress down the decision tables. They may therefore make inconsistent choices either

by switching more than once, or by making reverse choices (Charness et al., 2013). While

we recognize these inconsistent behaviors raise additional difficulties –given that they are

difficult to rationalize under standard assumptions on preferences, and that the estimation

technique and inference of risk and model uncertainty attitudes require a unique switch-

ing point– we decided not to enforce consistent choices in this experiment.6 Rather, we

view such behavior as indicative of failing to understand the instructions correctly, or of

confusion on the part of the subjects, and discard this inconsistent data from our analysis.

2.2 The randomness device

Since one of our main goals in the experiment is to characterize the way individuals

behave in the presence of model uncertainty –i.e. in situations where the only source of

information is the one given by the experts– we need to make sure that, in the absence

of experts’ information, subjects are indeed in a situation of perfect ignorance.7 This is

different from the canonical Ellsberg example in which (objective) information is given con-

cerning the total number of balls, thus enabling the decision maker to posit a restricted set

of possible objective models M .8 To mimic the situation of perfect ignorance (and compel

subjects to consider all the possible probabilities in [0, 1]), we construct Urn 3 in such a

way that the total number of balls in the urn is itself unknown, and comprised between

1 and 100. We call this modification of Ellsberg’s canonical experiment that reduces the

information bias due to the peculiarity of the urn representation, the randomness device.

6Several techniques have been proposed in the literature to enforce consistency in the subjects’ choices
(see for example Andersen et al. (2006)), but with the major drawback that they may significantly bias
the results (Charness et al., 2013).

7In other words, they should a priori consider the continuum of probabilities between 0 and 1, which in
our context would corresponds to the case in which the urn contains an infinite number of balls.

8In particular, M = {P (r) ∈ { 0
100

, 1
100

, . . . , 100
100
}} in Ellsberg’s two urn example, where P (r) denotes

the probability of drawing a red ball.
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In such a situation, the total number of potential objective models is equal to 3045, which

is the cardinality of the Farey sequence of order 100.9 To see this, consider Table 2 below.

It presents the sets of potential models when the maximum number of balls N is known to

be between 1 (first row) and 8 (last row). As can be seen, when the maximum number of

Table 2: Sets of models and their corresponding cardinality when the maximum number
of balls in the urn is N

N Set of possible models: MN = {P (r)} |MN |
1 0

1
1
1 2

2 0
1

1
2

1
1 3

3 0
1

1
3

1
2

2
3

1
1 5

4 0
1

1
4

1
3

1
2

2
3

3
4

1
1 7

5 0
1

1
5

1
4

1
3

2
5

1
2

3
5

2
3

3
4

4
5

1
1 11

6 0
1

1
6

1
5

1
4

1
3

2
5

1
2

3
5

2
3

3
4

4
5

5
6

1
1 13

7 0
1

1
7

1
6

1
5

1
4

2
7

1
3

2
5

3
7

1
2

4
7

3
5

2
3

5
7

3
4

4
5

5
6

6
7

1
1 19

8 0
1

1
8

1
7

1
6

1
5

1
4

2
7

1
3

3
8

2
5

3
7

1
2

4
7

3
5

5
8

2
3

5
7

3
4

4
5

5
6

6
7

7
8

1
1 23

balls is N = 1, the set of models M consists of two elements: M1 = {P (r) ∈ {0, 1}}, where

P (r) denotes the probability of drawing a red ball. When N = 2, the cardinality of M

increases to |M | = 3, such that M2 = {P (r) ∈ {0, 12 , 1}}.
10 We view this device sufficiently

complicated to prevent subjects from doing any calculation of probability distribution over

the possible compositions of the urn and their corresponding weights. In that sense, absent

of any additional information from the experts, subjects will –most likely– be unable to

compute the set of possible objective models, and end up in a situation close to one of

perfect ignorance :

M100 = {P (r) ∈ {F100}} ∼ {P (r) ∈ [0, 1]}. (1)

We feel that such a setup, that emphasizes Frank Knight’s (1921) original distinction

between “measurable” and “unmeasurable” uncertainty (which cannot be represented by

numerical probabilities) better reflects the actual state of individuals facing complex prob-

lems. Such is the case in a large fraction of modern science problems for example, where

the level of abstraction and mathematical requirement to understand processes are such

that individuals cannot have a mental construct of the problem they are facing.

9A Farey sequence of order N , denoted FN , is the ascending series of irreducible fractions between 0
and 1 whose denominators do not exceed N (Hardy et al., 1979).

10Note that even in the case in which all the possible total numbers of balls, and all their possible
compositions are assumed to be equally probable, the possible models are not weighted uniformly. To
see this, remark that for a total number of balls comprised between 1 and 3, five different models exist:
M3 = {P (r) ∈ {0, 1

3
, 1

2
, 2

3
, 1}}. Assuming the number of balls in the urn is uniformly distributed between

1 and 3, and that for each case the different models are weighted equally, we end up with weights attached
to the possible models that are respectively q = { 13

36
, 1

12
, 1

9
, 1

12
, 13

36
}.
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2.3 Discussion

We tried to build a setup that at the same time remains extremely simple and yet

emphasizes the difference between compound risk and model uncertainty. As in any ex-

periment, some features had to be left out for pragmatic purposes. First, for the sake of

simplicity and for reasons that will become clear in what follows, the second layer of un-

certainty in some of the tasks (for example the RLP task) is structured so that one of the

two events is associated with a 100% probability. One could argue that such a situation

is too extreme to be realistic in the experts’ case, or that the compound lottery –being

degenerate– can no longer be considered compound. Second, it might be argued that the

absence of real, physical “experts” in the room potentially leads subjects to downplay

their role and to (partially) ignore them, making the situation close to one of ignorance.

We acknowledge these arguments, but we believe that our design captures the essentials

of what we want to detect, keeping the potential biases minimal. Specifically, as to first

issue, while risk has stricto sensu disappeared in the second layer of uncertainty when

compound lottery is considered, we argue that subjects still need to make some compu-

tational effort to find out the final probability of winning. This is reinforced by the fact

that our subjects are given the choice of color on which to bet, which requires them to

consider the different possibilities depending on the outcome of the coin toss. We are not

the first to consider compound risk with a degenerate second layer. For example, Halevy

(2007) also uses this specific form to test for reduction of compound lotteries and finds

differences in the way subjects value it relative to simple risk, rejecting therefore any sys-

tematic reduction.11 To make the “model uncertainty” situation fully comparable with

the objective compound risk, experts are dogmatic in the RLP task (in the sense that

they both assess a 100% probability to one particular event). This allows us to isolate

directly the impact of model uncertainty aversion from risk aversion (see below). Overall,

any concern associated with the incompleteness of the extremely simplified setup should

then equally influence both the subjective and the objective compound situations. Sec-

ond, concerning the issue of whether subjects actually considered the experts although

they were not physically present in the room during the experiment, the results obtained

in the various PL tasks show that our subjects did effectively consider them.12 Indeed, one

can show that subjects’ choices monotonically follow the information provided by the two

experts, suggesting our subjects incorporated this information when making their choices.

Although we can trace subjects’ attention to and incorporation of experts’ information,

we can however not guarantee that subjects did not have any additional and alternative

models in mind when making decisions. If anything then, our setup may be biased in the

direction of making the difference between attitudes towards risk and model uncertainty

11Note that Abdellaoui et al. (2015) also use compound risk with degenerate second layer to test for
violations of time neutrality.

12For that purpose, we specifically mentioned the following in the instructions: “These experts are the
best we could find for this situation. They are both experienced and both have excellent track records”.
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that we found weaker than what it actually is.

2.4 Recruitment and administration

The laboratory experiment took place in Bocconi University in April, 2015. 189 sub-

jects were recruited through a dedicated recruiting system (BELSS, Bocconi University).

Each subject was authorized to participate only once and had to sign up in advance for

a particular time slot. The experiment was organized into 12 sessions taking place over

four days. Each session lasted approximately 75 minutes, and comprised of 13 to 19 sub-

jects. Subjects were provided with paper, pen and a calculator. A session typically started

with silent reading of general instructions which were printed and provided to each sub-

ject in the cubicle to which she/he was assigned. The experimenter then read once more

the instructions aloud and made sure everything was clear, before the subjects started a

computerized training session that introduced them to the concepts of risky and uncer-

tain urns, and decision tables. The experiment was then performed on computers, with

the order of tasks being randomized. Overall, the nine tasks constituting our experiment

were associated with a random incentive system to determine the final payoff. Once all

subjects had answered all the questions, they were asked to fill in a short socio-economic

questionnaire before being told their payoffs (i.e. which of their decisions had been ran-

domly selected, what was the color of the ball drawn from the urn they chose (if any),

and what was the corresponding amount they won). Subjects were then paid in cash

a e5 participation fee, and the additional amount (up to e35) won on the basis of the

choices they made. The average gain was about e18.50 per subject. The lab experiment

was programmed and conducted with the experiment software z-Tree (Fischbacher, 2007).

Details of the experimental procedure, instructions and demographic data are provided in

the Supplemental Material available online. To confirm the results of the lab experiment,

we also conducted an artefactual field experiment (Harrison and List, 2004) at the 2015

United Nations Climate Change Conference, held in Paris in December, 2015. The 91 sub-

jects who participated in this robustness round originated from 52 different countries and

were either climate negotiators (46%), NGO representatives (21%), researchers/academics

(11%), journalists (5%), representatives of the private sector (4%), or self-identified with

another category (12%). In individual in-person interviews, we confronted respondents

who volunteered for the study with the RLP task (we did not include the PL task as time

was a binding constraint in the field). Other procedural differences are that the experi-

ment was conducted with pen and paper, the payoff reached e50 if the bet was correct,

and subjects did not have access to calculators.
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3 Theoretical predictions

In this section we describe a theory of choice under uncertainty that may be used to

describe and predict choices made by subjects in our experiment. This theory, developed

by Marinacci (2015) elaborating on Klibanoff et al. (2005), is fairly general. It enriches

and encompasses many of the recent theories of choice under uncertainty in the case

where Waldean information is incorporated in the decision problem, while allowing for a

distinction between objective and subjective probabilities.

3.1 A theory of choice under uncertainty

The decision maker in our setting evaluates acts (or bets) f whose outcome de-

pends on the realization of an observable state. In the experiment a state is the quartet

{c1, c2, c3, c4}, where ci ∈ {R,B} ∀i = 1, . . . , 4 is the color of the ball (red R, or black B)

drawn from Urn i. The state space S = {R,B}4 is therefore made up of 16 states, but

there are only two events c ∈ E of importance for each bet on a specific Urn i: either a

red ball is drawn (c = ri) or a black ball is drawn (c = bi). In this context, each ball draw

may be seen as the realization of a random variable that can be described by a specific

objective model.13 The uncertainty about the outcome of a given model is of the aleatory

type and generally called risk. This risk is directly relevant to the DM since it determines

the probability with which each event realizes. Probabilities of the different events can, in

this case, be defined as objective (they refer to a physical concept, represented by a specific

composition of the urn). As is the case in the vast majority of decision problems, it may

however happen that the DM does not know exactly which probability model generates

the observations. In such a situation, a second layer of uncertainty adds onto the first

layer of risk. This second layer of uncertainty, which concerns the possible compositions

of the urn, may have different natures. It may be a second layer of risk, in which case the

uncertain situation is simply an instance of compound risk. Or it may be characterized by

epistemic uncertainty, if multiple compositions of the urn are possible, but the DM does

not know how likely each of them is. The probabilities in this second layer of uncertainty

represent the DM’s degree of belief in each potential model, and are then subjective.14

This situation is referred to as model uncertainty. As in Cerreia-Vioglio et al. (2013b) and

Marinacci (2015), it is assumed that the DM knows the possible alternative models belong

to a subset M of ∆, the collection of all probability measures on the state space S. In

our case, this is the information given to subjects that allows them to posit this subset.

Elements of M are seen as possible compositions of the urn that are consistent with the

13The notion of “model” refers here to a probability distribution. In our experiment, a model corresponds
to a possible composition of the urn.

14We here follow the definition of Schmeidler (1989) who interprets subjective probabilities of an event as
the number used in calculating the expectation of a random variable. Remark that this definition includes
objective probabilities as a special case where we know exactly which number to use.
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available information,15 and that could hence be selected by nature to generate observa-

tions. We assume that the set M is taken as a datum of the decision problem (Wald,

1950), and that model uncertainty is addressed by considering a single prior probability

measure over models. More specifically, we let the different possible models be indexed

by a parameter θ and fully characterized by Pθ(r), the probability of drawing a red ball

conditional on θ. This probability is uncertain and takes value Pθ(r) with probability qθ,

reflecting the DM’s belief about the accuracy of model θ.

Under the model uncertainty framework, the decision maker chooses the act that max-

imizes her utility given by:

U(fi) = Eθ(v ◦ u−1)

 ∑
c∈{ri,bi}

P̃θ(c)u (fi(c))

 , (2)

where Eθ is the expectation operator taken over the prior distribution indexed by θ, u is

the standard von Neumann and Morgenstern (1944) utility index capturing the DM’s at-

titude towards risk (i.e. over objective probabilities), and v captures the attitude towards

model uncertainty (i.e. over subjective probabilities). These functions are assumed to

be strictly increasing and continuous. They are both cardinally unique. The sum within

brackets is nothing but the expected utility of an act for a given objective model. It is then

expressed in monetary terms by considering the certainty equivalent for each model Pθ.

Since Pθ is itself uncertain, the different certainty equivalents are then evaluated by consid-

ering the expected utility using function v. In the case where both attitudes towards the

different types of uncertainty are identical, we recover the classical subjective expected

utility model of Cerreia-Vioglio et al. (2013b). This model therefore encompasses both

the Savagian subjective expected utility16 and the classical von Neumann-Morgernstern

representations. When attitudes towards risk and model uncertainty are different, repre-

sentation (2) corresponds to Marinacci’s (2015) setup, which consists of an enriched version

of Klibanoff et al. (2005) in the presence of Waldean information (the smooth ambiguity

function is recovered by setting φ ≡ v ◦ u−1). In that sense, the DM is ambiguity averse

if she is more averse to model uncertainty than to risk. This general representation is

useful to compare the different situations presented in the experiment. In particular, the

different uncertain situations presented in the RLP task are evaluated as follows:

• Risk (Urn 1): In the first risky urn, the set of possible models is a singleton M =

{P (r) = 1/2}. There is no model uncertainty and representation (2) collapses to the

15Cerreia-Vioglio et al. (2013a) call these models “objectively rational beliefs”. It is analogous to what
Ellsberg (1961) calls “reasonable” distributions in his subjective setting. Note that in general incomplete-
ness of information makes the set M non-singleton, contrary to what is assumed in the standard subjective
expected utility theory.

16Remark that for each prior distribution q, there exists a distribution P̄ (c) such that U(fi) =∑
c P̄ (c)u(fi(c)), as in the original Savagian SEU representation.
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standard von Neumann-Morgenstern (vNM) expected utility representation:

U(f1) =
∑

c∈{r1,b1}

P (c) u (f1(c)) . (3)

• Compound risk (Urn 2): The case of Urn 2 is very similar since it only deals with risk.

A bet on this urn is therefore evaluated using function u only. Two objective models

are considered here: M = {P (r) = 1, P (r) = 0}, and the probability of each model

being the correct one is the objective probability associated with the coin toss. The

subjective prior beliefs over models therefore coincide with the objective probabilities.

This representation of the two layers of risk is mathematically equivalent to a situation

in which a single model P̄ (r) exists. This therefore means that if the decision maker is

able to reduce compound risks, the situation is evaluated exactly the same way as the

first one:

U(f2) = Eθ(u ◦ u−1)
∑

c∈{r2,b2}

P̃θ(c) u (f2(c)) =
∑

c∈{r2,b2}

P̄ (c) u (f2(c)) , (4)

where P̄ (c) ≡ EθP̃θ(c) = 1/2 is the reduced probability of event c ∈ {r2, b2}.

• Model uncertainty (Urn 3): In the case of Urn 3, the DM is not given any information

about the total number of balls in the urn to make it difficult for him to construct any

possible objective urn model. However, direct information about the composition of the

urn is given by two “experts” that only differentiate themselves by their names (“Expert

1” and “Expert 2”) and their assessments of the urn composition. This information is

assumed to be taken as a datum of the problem, and as such considered as objective by

the DM. In particular, this information enables the DM to define the set M = {Pθ(r)},
where θ = {1, 2} refers to the experts. In the RLP task, the two possible models de-

scribed by the experts are M = {P (r) = 1, P (r) = 0}. The probability qθ of each model

being perceived as correct is subjective and the second layer of uncertainty is evaluated

using function v. In principle, this urn is therefore evaluated using a combination of

both functions u and v. However since the two experts are dogmatic in our RLP task,

the risk is degenerate. The evaluation of any act in this special case is then realized

using function v only:

Ud(f3) =
∑

c∈{r3,b3}

qθv
(
f3(c)

)
, (5)

where the superscript d refers to the case where experts are dogmatic.

• Ambiguity à la Ellsberg (Urn 4): In the case of Urn 4, the proportion of red and black

balls is unknown, but the total number of balls N present in the urn is given. The set

of possible models may therefore be restricted to M = {Pθ(r) : P (r) = θ−1
N for θ =

{1, . . . , N + 1}}, and the DM then subjectively determines to which model he assigns a
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positive probability. Act f4 is then evaluated as follows:

U(f4) =

N+1∑
θ=1

qθ(v ◦ u−1)

 ∑
c∈{r4,b4}

Pθ(c) u (f4(c))

 . (6)

3.2 Predictions and literature review

Since the main part of our experiment enables us to measure attitudes directly from

behavior (i.e. without assuming any specific model of choice),we first express the predic-

tions from a very general point of view, before translating them into the language of the

particular functional forms of the model we just presented.

Hypothesis 1. We expect subjects to be both risk and model uncertainty averse,

in the sense that they generally prefer the degenerate lottery, giving
∑

c∈{r,b} P̄ (c) f(c)

with certainty, to any uncertain situation in which an act f yields f(c) with (expected)

probability P̄ (c) ∀c ∈ {r, b}. By letting Ci denote the certainty equivalent for Urn i, and

C0 the sure amount corresponding to the expected gain of the uncertain bet, we implicitly

expect to observe:

C0 ≥ C1, (7)

C0 ≥ C3. (8)

In terms of functions u and v representing attitudes towards risk and model uncertainty,

this hypothesis simply becomes u′′ ≤ 0 and v′′ ≤ 0. While the first result is trivial

(Holt and Laury, 2002, 2005; Andersen et al., 2008), it is necessary to study what we are

ultimately testing, which is whether ambiguity aversion is related to a stronger aversion

towards model uncertainty than towards risk (or to v being more concave than u in the

sense that −v′′

v′ ≥ −
u′′

u′ ).

Hypothesis 2. Following Ellsberg’s (1961) seminal results and the subsequent exper-

imental literature on ambiguity aversion (see Trautmann and van de Kuilen (2014) for a

survey), we predict our subjects to generally prefer to be confronted with risk (Urn 1)

rather than with ambiguity (Urn 4). Considering the decomposition of ambiguity into

model uncertainty and risk, we also expect this behavior to be related to the fact that

they prefer risk (Urn 1) to model uncertainty (Urn 3). Moreover, we predict that when

the compound risk is sufficiently easy to reduce, subjects are indifferent between a simple

risk (Urn 1) and a compound one (Urn 2). Finally, we predict that the degrees of model

uncertainty aversion and of ambiguity aversion are finite. In other words, we expect sub-

jects not to behave according to a maxmin criterion. In terms of certainty equivalents,
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these predictions may be written (under the assumption of equal expected values) as:

C1 = C2 ≥ C3 > C, (9)

C1 ≥ C4 > C, (10)

where C corresponds to the certainty equivalent obtained under the worst possible model.

Our central hypothesis is the association between (9) and (10). According to the theoret-

ical model, this association turns out to be perfect by construction (since φ = v ◦ u−1).
Condition (9) is therefore both necessary and sufficient for (10). The condition C3 > C

translates to −v′′

v′ < ∞, or equivalently v−1
(

Eθ(v ◦ u−1)
(∑

c∈{ri,bi} P̃θ(c)u (fi(c))
))

>

u−1
(

minθ
∑

c∈{ri,bi} Pθ(c)u (fi(c))
)

. Since criterion (2) collapses to the standard vNM

expected utility model when all sources of uncertainty are objective, the first equality

of statement (9) is trivial: people are indifferent between risk and compound risk when

the expected values of the lotteries are identical. This rational behavior of subjects has

however been seriously challenged in the literature.

An early example dates back to Yates and Zukowski (1976), while more recent contri-

butions comprise of Chow and Sarin (2002); Halevy (2007). In particular, Halevy (2007)

reports the results of an experiment suggesting that people are generally compound risk

averse, and that attitudes towards compound risk and towards ambiguity are tightly asso-

ciated. However, he also shows that people, on average, prefer compound risk situations

to ambiguous ones.17 Qualitatively similar results were also obtained by Dean and Or-

toleva (2015) and by Armantier and Treich (2015), who show that not only was attitude

to compound risk tightly associated to attitude towards ambiguity, but so was attitude

towards complex risk.18 Abdellaoui et al. (2015) also find, in a setup close to Halevy’s,

an association between compound risk reduction and ambiguity neutrality. The associa-

tion they find is however weaker than in Halevy’s data. In particular, these authors show

that compound and simple risks are valued differently, but also find pronounced differ-

ences between compound risk and ambiguity attitudes. Interestingly, they show that, for

mathematically more sophisticated subjects (i.e. engineers), compound risk reduction is

compatible with ambiguity non-neutrality, suggesting that failure to reduce compound risk

and ambiguity non-neutrality do not necessarily share the same behavioral grounds. In a

recent study, Harrison et al. (2015) specifically test the reduction of compound lotteries

with objective probabilities both in a setup with multiple choices coupled with a random

incentive system, and in a setup with a unique choice. They find evidence of violation

17Remark that, using the Becker, DeGroot, and Marschak (1964) mechanism, in which subjects are asked
for their ‘selling price’ of an uncertain prospect, Halevy’s definition of compound risk neutrality may seem
demanding in the context of an experiment with students. It corresponds to situations in which a subject
simultaneously expresses exactly the same selling prices for: an urn containing 5 red and 5 black balls (in
the spirit of Urn 1), an urn containing either 10 or 0 red balls with probability 1/2 (in the spirit of Urn
2), and an urn in which the number of red balls is uniformly distributed between 0 and 10.

18A complex risk in Armantier and Treich’s (2015) design refers to a situation in which the probabilities
associated with the different events are non-trivial to compute.
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of reduction of compound lotteries (towards compound risk loving behaviors) in the first

case, but not in the second.

While evidence is far from definitive, overall these results suggest that subjects in

general manifest aversion towards compound risks. This behavior presents similarities to

what has been reported concerning ambiguity aversion. The tight association between

ambiguity and compound lottery attitude lends itself to two possible hypotheses. First,

ambiguous situations may be perceived by individuals as compound risks and individuals

fail to reduce them (in violation of the reduction –or independence– axiom). Alternatively,

compound risks may be perceived as ambiguous situations to which individuals feel an

aversion (in violation with the independence axiom). Although we do not explicitly test any

specific theory that might explain why compound risk may be associated with ambiguity,

we try to shed light on this issue through an experimental setup where the compound

lottery is extremely simple. If cognitive inability is at the basis of failures to reduce

compound probabilities (Abdellaoui et al., 2015; Harrison et al., 2015), and aversion to

compound lottery reflects a deficiency of the ‘human intuitive statistician’ (Budescu and

Fischer, 2001), then by designing a compound risk situation that is very easily reducible,

we partly rule out instances based on limited cognitive ability, and we expect subjects to

effectively reduce compound risk if the probabilities of the two layers of uncertainty are

objectively given.

The situation is different when the probability assessments are described by experts.

In this case the second layer of uncertainty is no longer objective, and the two situations

are expected to be evaluated differently. In particular, we expect to observe C2 ≥ C3

when the only difference between the uncertain situations is whether the probabilities of

being confronted with a given risk are subjectively determined or given by a known ran-

dom device. In the extreme case with dogmatic experts, the situation is analogous to

Schmeidler’s (1989) two coins examples.19 While a Savagian expected utility maximizer

would be indifferent between the two uncertain situations, we predict that most subjects

in our experiment will not evaluate them in the same way. In the case of the risky urn (or

fair coin), the distribution is based on objective information that supports a symmetric

assessment while in the case of conflicting dogmatic experts (or unknown coin), the same

estimates are subjective and rely on symmetry in the absence of information. From the

DM’s point of view this distinction is essential and we expect to observe a majority of

subjects opting for the risk rather than the model uncertainty situation, revealing in this

way higher aversion towards subjective uncertainty. By transitivity, we also expect any

uncertain situation being proposed with given probabilities to be preferred to a compa-

19In this example a subject is given the choice between betting on the result of a known fair coin coming
up Heads or Tails, and a coin that has never been tested and is absolutely unknown. In this case, since
no information is available about the probability of each side coming up, it is a symmetry argument which
suggests the probabilities 50% to be considered. Notice that the Bayesian approach does not permit any
distinction between the 50%-50% distribution based on information (from experts for example) and the
one based on lack of information. See Gilboa et al. (2012) for a discussion on this subject.
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rable situation with similar expected value and expected probabilities, but where these

probabilities come from different expert’s assessments (i.e. C1 ≥ C3).

The last two hypotheses we are testing concern particular properties of risk and model

uncertainty aversion (or functions u and v) that can only be investigated using the second

part of our experiment. These hypotheses are presented under the framework of the specific

model of choice of Section 3.1.

Hypothesis 3. Analogously to what is widely accepted in the risk theory literature and

given the similarity of our procedure with the one used by Holt and Laury (2002, 2005),

we expect to observe decreasing absolute risk aversion (DARA) and increasing relative

risk aversion (IRRA) for both functions u and v.20 By changing the values of the gains

proposed and the probabilities that are associated to these gains, we expect to observe:

∂

∂w0

[
−u
′′(w0)

u′(w0)

]
≤ 0 and

∂

∂w0

[
−u
′′(w0)

u′(w0)
w0

]
≥ 0, (11)

where w0 denotes the individual’s wealth level, which is composed of the individual’s

background wealth ω, and the expected gain in each lottery. Similarly, we are interested

in the DARA and IRRA properties of function v, and therefore test whether we observe:

∂

∂w1

[
−v
′′(w1)

v′(w1)

]
≤ 0 and

∂

∂w1

[
−v
′′(w1)

v′(w1)
w1

]
≥ 0, (12)

where the individual’s wealth level w1, in situations of model uncertainty, is an average of

certainty equivalent wealth levels under the two expert’s models.

Hypothesis 4. Since ambiguity aversion in this setup results from the combination of at-

titudes towards both risk and model uncertainty, we are able to indirectly characterize the

properties of the ambiguity function. In particular, we are interested in knowing whether

the absolute ambiguity aversion is constant or whether it is increasing or decreasing, in

the sense that agents are willing to pay more or less to remove all source of uncertainty

as they become better off. Constant absolute ambiguity aversion (CAAA), as argued by

Grant and Polak (2013), is an implicit characteristic of many of the ambiguity models pro-

posed in the theoretical literature. It is for example implicitly assumed in the models by

Gilboa and Schmeidler (1989); Hansen and Sargent (2001); Maccheroni et al. (2006). On

the contrary, decreasing absolute ambiguity aversion (DAAA) is a condition that has been

shown to play an important role in the determination of the precautionary saving motive

under ambiguity (Gierlinger and Gollier, 2008; Berger, 2014), in the chances of survival

of ambiguity averse investors (Guerdjikova and Sciubba, 2015), or in the choice of opti-

20To be completely precise, we should talk about “decreasing absolute model uncertainty aversion” and
“increasing relative model uncertainty aversion” in the case of function v, but for the sake of simplicity we
prefer to refer to the widely used acronyms DARA and IRRA for the v function as well. While the DARA
property seems well accepted in the literature, note however that the IRRA property is subject to debate
when investigated outside of the lab environment (Harrison et al., 2007; Brunnermeier and Nagel, 2008;
Chiappori and Paiella, 2011).
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mal abatement policies under scientific uncertainty (Berger et al., 2016). The framework

we describe in this paper does not assume any particular type of preference functional.

As previously mentioned, it could be seen as an enriched version of the model developed

by Klibanoff et al. (2005). The domain of the ambiguity function φ is however different

than that of u and v, which are defined over monetary sets. Indeed, φ takes arguments

that belong to a set of expected utilities. Considering this difference, what we are testing

is the sign of ∂
∂U

[
−φ′′(U)
φ′(U)

]
, where U is the individual’s expected utility level when the

probabilities given by experts are averaged.21

4 General results

We now report the results obtained from the direct comparisons between the urns

(RLP task) and from the certainty equivalent tasks (CE task).

4.1 Ambiguity neutrality, reduction and the nature of probabilities

Table 3 reports the results of the RLP task that was used to test our predictions and

confront the expected utility theory with the model uncertainty framework. Specifically,

it presents the results of the pairwise comparisons between Urn 1 and Urns 2, 3 and 4

respectively. In the spirit of Ellsberg, subjects are called ambiguity neutral if they ex-

press indifference between Urn 1 and Urn 4. A non-neutral attitude may either express

ambiguity aversion or ambiguity seeking. Analogously, subjects may either be compound

risk neutral or not, and exhibit the same attitude towards risk and model uncertainty or

not. The results reveal the anticipated pattern: 70.9% of our subjects (or 134 subjects out

of 189) reduce compound lottery, 68.8% (or 130 out of 189) express a different attitude

towards objective probabilities (risk) than towards subjective ones (model uncertainty),

and 79.4% (or 150 out of 189) are non-neutral towards ambiguity.22 As in Halevy (2007),

we recover the association between ambiguity neutrality and reduction of compound ob-

jective risks. The association we found is however weaker than the one found by Halevy,

with 82% of the ambiguity neutral subjects reducing compound risks (32 out of 39 sub-

jects), but only 24% of the compound risk neutral subjects being also ambiguity neutral

(32 out of 134). In comparison with the expected frequency under a null hypothesis of

independence, the observed number of subjects indifferent between Urns 1, 2 and 4 is off

by 16%. On the contrary, Table 3 reveals a stronger association between attitudes towards

model uncertainty and ambiguity. Out of the 59 subjects who expressed the same attitude

towards risk and model uncertainty, 46% of them (27 subjects) also expressed ambiguity

21Note that in a recent contribution, Baillon and Placido (2015) also tested the CAAA and DAAA
hypotheses using a framework different from ours and found evidence of DAAA under Ellsberg’s type of
uncertainty.

22In particular, 62.4% of our subjects are more model uncertainty averse than risk averse, and 70.4% are
ambiguity averse. The detailed contingency table is provided in Appendix B (Table B.1).
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Table 3: Association between ambiguity neutrality, reduction of compound lotteries with
objective probabilities (ROCL) and reduction of compound uncertainty with subjective
probabilities (ROCU).

ROCL ROCU

Ambiguity neutral No Yes No Yes Total

No
Count 48 102 118 32

150
Expected 43.7 106.3 103.2 46.8

Yes
Count 7 32 12 27

39
Expected 11.3 27.7 26.8 12.2

Total 55 134 130 59 189

Note: Chi-square test: 0.085 Chi-square test: 8.9e-09

neutrality, representing 69% of the 39 ambiguity neutral subjects. The observed frequency

of subjects implicitly expressing C1 = C3 = C4 is therefore 2.2 times more than the

expected frequency under the null hypothesis of independence. Similarly, out of the 130

subjects who did not reduce the two layers of uncertainty when being confronted with sub-

jective probabilities, only 9% of them (12 subjects, which represents less than half of the

expected frequency under the hypothesis of independence) were also ambiguity neutral.

In comparison, the numbers obtained with two layers of objective probabilities suggest a

weaker association, with 7 subjects being ambiguity neutral out of the 55 subjects who

did not reduce the compound risk. Finally, out of the 150 subjects who did not express

ambiguity neutrality, 48 did not reduce the compound uncertainty with objective proba-

bilities (9.8% more than under the independence hypothesis), while 118 did not reduce the

compound uncertainty in the presence of subjective probabilities (14.3% more than under

the independence hypothesis). From Table 3, we conclude that the association observed

between ambiguity neutrality and reduction of compound uncertainty is stronger when

probabilities are subjective than when they are objectively given. This result is confirmed

by a Chi-square test rejecting (p=8.9e-09) the independence hypothesis between ambiguity

neutrality and reduction of compound uncertainty in the presence of subjective probabil-

ities, and the Chi-square test that does not reject the one (p=0.085) between ambiguity

neutrality and reduction of compound objective risk. A theory accounting for ambiguity

non-neutrality should therefore be able to make a distinction between situations in which

probabilities are objectively known and situations in which probabilities are subjective.

We then perform a couple of logistic regressions, reported in Table 4, where the proba-

bility of ambiguity neutrality is explained by attitudes towards compound risk and model

uncertainty. Exhibiting the same attitude towards objective and subjective probabili-

ties predicts ambiguity neutrality (odds of being ambiguity neutral are 8.3 times higher,

p=1.23e-7), while reduction of compound risks does not (p=0.09). The probability of be-

ing ambiguity neutral is 20.6% in our sample and it increases to 46% when the individual

exhibits the same attitude towards objective as towards subjective probabilities, while it
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Table 4: Characteristics of Ambiguity Neutrality: Logistic Regressions

Odds Ratio Standard Error
Lower 95% Upper 95%
Confidence

Interval
Confidence
Interval

ROCL
2.151 0.973 0.886 5.222

(2.138) (1.045) (0.820) (5.573)

ROCU
8.297∗∗∗ 3.320 3.787 18.176

(8.282∗∗∗) (3.343) (3.754) (18.270)

Notes: Logistic regressions. Adjusted results in parentheses. Dependent variable: Ambiguity neutrality.

189 observations. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

diminishes to 9% otherwise. This means that the predicted probability of ambiguity neu-

trality is 37 percentage points greater (p=1.56e-7) for an individual exhibiting the same

attitude towards risk and model uncertainty than for one who does not. In comparison,

compound risk neutrality only increases the predicted probability of ambiguity neutrality

by 11 percentage points (from 13% to 24%, p=0.055).

Robustness round. The original experiment presented in this section is not free from

being subject to biases and imperfections: the e15 payoff may seem too small or the length

of the whole experiment too long for subjects to carefully pay attention to the properties

of the problems they are facing; the recruitment of the subjects is based on an online

sign-up form and the sample consists only of university students; the experiment takes

place in a laboratory environment and the questionnaire is fully computerized. While the

procedure and organization we follow is standard in experimental economics, they might

have introduced different biases into our results. To assess the robustness of the results

we conduct a second experiment with slightly modified conditions. The purpose of this

robustness round is to confirm that objective and subjective probabilities are evaluated

differently, and to study the link between attitudes towards risks (simple and compound),

model uncertainty and ambiguity. The robustness round is an artefactual field experiment

differing from the original one in several dimensions: the experiment took place during

the 21st session of the Conference of the Parties (COP21) to the United Nations Frame-

work Convention on Climate Change (UNFCCC) held in Paris in December, 2015; the

subject pool consisting of policy makers or actors in the decision making process (mainly

climate negotiators and NGO representatives) originated from 52 countries; the experi-

ment was conducted with pen and paper during individual in-person interviews lasting

about 15 minutes; and the prize was scaled from e15 to e50. An interesting character-

istic of this sample is that subjects involved are, a priori, used to being confronted with

model uncertainty in their professional activities. Climate negotiators and other partic-

ipants are indeed aware different climate and economic models exist, with each of them

giving different predictions regarding the evolution of the climate system and its economic
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consequences. Results of the robustness round are described in Appendix A. In general,

the robustness round reinforces the results we previously found, with 69% of our subjects

revealing a non-neutral attitude towards ambiguity, 70% exhibiting a different attitude to-

wards objective and subjective probabilities, and 52% reducing compound risks. In total,

the share of non ambiguity neutral subjects who did not reduce compound uncertainty

with subjective probabilities is 87%, while the share of non-ambiguity neutral subjects

who did not reduce compound risk is 60% (see Table A.1). Although the independence

hypothesis between compound risk and ambiguity is rejected in this round, the results

of the logistic regressions confirm the much stronger association between ambiguity neu-

trality and similar attitudes towards risk and model uncertainty, than between ambiguity

neutrality and compound risk reduction (Table A.2).

In Appendix B, we go beyond the dichotomous analysis of neutral/non-neutral atti-

tudes, and separate preferences into “averse”, “neutral” and “loving” behaviors for the

different types of uncertain situations we propose. We show that the results obtained for

both the main experiment and the robustness round are maintained and are even strength-

ened in this case. All in all, model uncertainty attitudes seem to be the driving force in

determining the attitudes subjects exhibit towards ambiguity.

4.2 Risk vs. Model uncertainty

If a non-neutral attitude towards ambiguity is tightly associated with the difference in

the attitudes towards risk and model uncertainty, it is interesting to investigate in more

detail the extent to which individuals place different value on these two types of uncertain

situations. The two CE tasks enable us to obtain a direct measure of the strength of model

uncertainty aversion relative to risk aversion. It is achieved using pairwise comparisons

where the individual is offered a series of choices between a sure amount, and a risky or

model uncertainty outcome respectively. As previously mentioned, we chose to discard

inconsistent data from this analysis. The consistent sub-sample is made of 169 subjects.

Table 5 reports the descriptive statistics of the intervals to which the certainty equivalents

of Urns 1 and 3 (i.e. uncertain situations 25.54 and 251 04, respectively) belong. Each

interval defines the highest outcome for which the uncertain situation is preferred and

the lowest outcome which is preferred to the uncertain situation. The results from Table

Table 5: Descriptive Statistics

Mean Median Mode SD Min Max Obs

C1 [11.92; 13.22] [13 ; 14] [14 ; 15] [2.35 ; 1.98]a [6 ; 8] [15 ; 18] 169

C3 [10.25; 11.80] [10 ; 12] [8 ; 10] [3.16 ; 2.82]a < 4 > 25 169

aThe first (second) number corresponds to the standard deviation of the lower (upper) bound.
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5 confirm our predictions: subjects are on average ready to pay a higher premium –

measured as the difference between the certainty equivalent and the expected gain– to

avoid a situation where probabilities are subjective than to avoid a situation in which

probabilities are objective. In particular, for an expected outcome of e14.50, the mean

amount that our subjects deem equivalent to the risky situation is between e11.90 and

e13.22, while under model uncertainty the mean lies in the interval e10.25-13.22.23 The

distribution of certainty equivalents of the risky situation (C1) second order stochastically

dominates the distribution of the certainty equivalents of the model uncertainty situation

(C3). While C1 does not first order stochastically dominate (FOSD) C3, this is only

because there is one subject who systematically preferred the model uncertainty situation

to the sure outcome (even when the choice was made between e25 for sure, and a situation

in which one expert expressed a 100% probability the gain would be e25, and the other

expert expressed a 100% probability the gain would be e4). We can only speculate what

the preferences of this subject are. He/she could be a very optimistic subject who always

trusts the expert predicting the highest outcome. In that sense, his/her first choice would

express indifference between two situations yielding e25. Once we remove this subject

from the sample, we recover the result that C1 FOSD C3. This result is illustrated in

Figure 1, which displays the proportions of safe choices –expressed by preference for the

sure amount– for each of the the ten decisions between Urn 1 or Urn 3. The list of sure

amounts is written in descending order. The dashed line represents the prediction under

Figure 1: Proportion of safe choices in the CE tasks and predictions
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23In what follows, it is assumed the two expert’s models are weighted equally. This assumptions relies
on a symmetry of information argument: since the information about the experts is completely symmetric,
there is a priori no reason to believe that one is more correct than the other, so that the prior distribution
over the models should reflect this symmetry. It refers to what Schmeidler (1989) calls an “unwritten rule
saying that symmetric information with respect to the occurrence of events results in equal probabilities”,
or more generally to the “Principle of Insufficient Reason” or “Principle of Indifference” (Bernoulli, 1713;
Laplace, 1814).
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the assumption of either risk or model uncertainty neutrality. In this case, the certainty

equivalents of both uncertain situations are the same, and the probability that the sure

outcome is chosen is 1 for the first three decisions, and then 0 for the remaining ones. The

blue line presents the observed choice frequency of the sure outcome option for each of the

decisions in the risky situation. As can be observed, it is at the right of the risk neutral

prediction, indicating a tendency for risk aversion among subjects (C1 ≤ C0). The red

line represents the observed frequency in the case of model uncertainty. It lies to the right

of the blue line, suggesting our subjects manifest a stronger aversion to model uncertainty

than to risk (C3 ≤ C1 ≤ C0). As predicted, we finally note that our subjects did not

express infinite model uncertainty aversion (which would have consisted of a proportion

of 100% for each decision). In fact, only two subjects (representing a proportion of 1.2%)

expressed an extreme form of pessimism by systematically selecting the certain outcome

when confronted to model uncertainty.24 We can therefore confidently reject the maxmin

expected utility hypothesis (Wald, 1950) in which subjects only consider the worst possible

existing model in their decision making process. A Wilcoxon signed-rank test statistically

confirms (p=3.2e-12) that the risky alternative is valued differently than the corresponding

model uncertainty situation.25 Choice frequencies for each number of safe choices and the

implied interval for the risk or model uncertainty aversion parameter, in the special case

of the CRRA function,26 are reported in Table 6. As can be observed, more than

Table 6: Classification of uncertain choices (CE tasks)

Number
of safe
choices

Range of relative risk or model
uncertainty aversion:

u(x) or v(x) = x1−r/1− r

Proportion of choices

Risk Model
Uncertainty

0-1 r < −1.04 0.00 % 0.59 %
2 −1.04 < r < −0.12 0.56 % 0.59 %
3 −0.12 < r < 0.12 34.91 % 17.75 %
4 0.12 < r < 0.34 17.16 % 8.28 %
5 0.34 < r < 0.55 18.34 % 15.38 %
6 0.55 < r < 1 14.20 % 20.71 %
7 1 < r < 1.55 10.06 % 21.89 %
8 1.55 < r < 2.58 4.73 % 9.47 %

9-10 2.58 < r 0.00 % 5.33 %

84% of subjects made between 3 and 6 safe choices in the risky task, while in the model

24Note that relaxing the definition of expressing an extreme form of pessimism by considering those
subjects who expressed nine safe choices before switching to the model uncertainty situation as indifferent
between the two options, the number of extreme model uncertainty averse individuals increases to 9 out
of the 169 subjects (5.3%).

25The significance of the one-sided test, where the alternative hypothesis is that the median of the
switching point in the model uncertainty task is greater than in the risk aversion task, is 4.2e-12.

26A utility function has the CRRA property if it takes the form u(x) = x1−r

1−r , where r is the coefficient
of relative risk aversion (when r = 1, this collapses to u(x) = lnx).
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uncertainty task the proportion of subjects making choices in this interval is only 62%.

When we consider the proportion of subjects making between 2 and 7 safe choices, these

numbers increase respectively to 95% and 85%. Finally, using an estimation procedure that

will be described in the next section, we also found the best estimates for the coefficients

of relative risk and model uncertainty aversion when both u and v are of CRRA type to

be respectively ru = 0.42 and rv = 0.83 for the two CE tasks.

5 Characterizing preferences under uncertainty

We now use the choices made in the various PL tasks to further characterize preferences

under uncertainty. In particular, we use the 80 binary choices each subject typically

provided to infer attitudes towards risk and model uncertainty, and use this information

to quantify the degree of ambiguity aversion. In total about 14% of choices in the eight

PL tasks were deemed inconsistent (reverse choices or multiple switching points) and were

discarded from the analysis. This number is in line with what is found in other laboratory

experiments (e.g., Holt and Laury, 2002). We feel confident that subjects who are left in

the sample understood the instructions correctly and were revealing their true preferences.

5.1 Preliminary remark

Since the model of decision under uncertainty we study involves two distinct behavioral

characteristics of the decision maker, the experimental procedure has to be designed such

that it generates data that are rich enough to disentangle the different components of the

subjects’ attitude towards ambiguity. The double PL procedure, which presents choices in

the presence of both objective and subjective probabilities, is designed for this purpose. It

enables us to jointly elicit risk and model uncertainty attitudes. To see the importance of

using a joint procedure, consider the identification of risk and model uncertainty under the

general model uncertainty theory presented in expression (2). Assuming this expression

correctly describes choices made by our subjects over uncertain alternatives, a subject

would be indifferent between two options ōpo and ōp̂1p̂2o if and only if:

u−1
(
pu(ω + ō) + (1− p)u(ω + o)

)
= v−1

(
1

2

(
v ◦ u−1

) (
p̂1u(ω + ō) + (1− p̂1)u(ω + o)

)
+

1

2

(
v ◦ u−1

) (
p̂2u(ω + ō) + (1− p̂2)u(ω + o)

))
,

(13)

where ω represents background wealth. When considered in terms of attitude towards

ambiguity, the identity φ = v ◦ u−1 enables us to rewrite (13) as

pu(ω + ō) + (1− p)u(ω + o) = φ−1

(
1

2
φ
(
p̂1u(ω + ō) + (1− p̂1)u(ω + o)

)
+

1

2
φ
(
p̂2u(ω + ō) + (1− p̂2)u(ω + o)

))
.

(14)

From (13) and (14), it is clear that estimating model uncertainty aversion or ambiguity
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aversion under the assumption of risk neutrality yields exactly the same results. Ambiguity

aversion is therefore significantly overestimated when risk neutrality is assumed.27 If

we relax the assumption of risk neutrality and let risk aversion −u′′/u′ be positive, it

becomes clear from the relationship −φ′′/φ′ = (−v′′/v′+u′′/u′)/u′ that the implied degree

of absolute ambiguity aversion is lower. One can therefore not capture the distinction

between model uncertainty and ambiguity aversion without estimating the level of risk

aversion, for which separated risky tasks also need to be performed.

5.2 The double PL tasks

In the double PL tasks, we exploit comparisons between urns of type 2 and 3, with

experts who are no longer dogmatic. The risky tasks only deal with urns of type 2.

They are based on Holt and Laury’s (2002) mechanism, which has become a standard

for elicitation of risk aversion. The model uncertain tasks are constructed analogously.

Table 7 illustrates the type of choices our subjects were confronted with in this part of the

experiment. In this example, Option A offers either e35 or e1 with equal probability, while

Option B offers the same outcomes with unknown probabilities (although respondents are

also given additional information in the form of the two experts’ assessments). In the first

decision for example, Expert 1 assesses the probability of obtaining e35 to be 50%, while

Expert 2 is 100% sure the outcome is e1. The expected value of Option A (EVA), the

expected value of Option B if either Expert 1 or Expert 2 is correct (respectively EVB
1

and EVB
2 ), the average expected value of Option B (EVB) under the assumption of equal

weights attached to each expert, and its standard deviation (SDB), are also provided in

Table 7, but were not given to subjects during the experiment. While the expected

Table 7: Payoff table in the model uncertainty aversion tasks

Option A Option B EVA EVB
1 EVB

2 EVB SDB

ō p o ō p̂1 p̂2 o (e) (e) (e) (e) (e)

35 0.5 1 35 0.5 0 1 18 18 1.0 9.5 8.5
35 0.5 1 35 0.9 0 1 18 31.6 1.0 16.3 15.3
35 0.5 1 35 0.9 0.09 1 18 31.6 4.1 17.8 13.8
35 0.5 1 35 0.8 0.19 1 18 28.2 7.5 17.8 10.4
35 0.5 1 35 0.8 0.21 1 18 28.2 8.1 18.2 10.0
35 0.5 1 35 0.7 0.31 1 18 24.8 11.5 18.2 6.6
35 0.5 1 35 0.6 0.41 1 18 21.4 14.9 18.2 3.2
35 0.5 1 35 0.55 0.46 1 18 19.7 16.6 18.2 1.5
35 0.5 1 35 0.51 0.50 1 18 18.3 18.0 18.2 0.2
35 0.5 1 35 0.61 0.60 1 18 21.7 21.4 21.6 0.2

Notes: Probabilities always refer to the outcome ō ≥ o ∈ O. EVB = 1
2

EVB
1 + 1

2
EVB

2 ; SDB =
(

1
2

(EVB
1 − EVB)2 + 1

2
(EVB

2 − EVB)2
)0.5

value of Option A is kept constant throughout the various choices, the expected value

of Option B is increasing as one proceeds down the table. The standard deviation, on

27We discuss the estimation results of this particular case in Appendix ?? provided online.
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the other hand, is decreasing (except between the first and second decision). Overall, the

decision table is constructed in such a way that, for any increasing utility function, Option

B always stochastically dominates (in the first or second order sense) the previous decision

as one proceeds down the table.28 Following the theoretical model presented in Section

3.1, this feature should induce subjects to switch only once, from Option A to Option B,

while progressing down the table. Our subjects went through four tasks similar to the

one illustrated in Table 7, which vary in the proposed payoffs and probabilities. The set

of payoffs and probabilities is designed in a way that the final payoffs span the range of

income over which we are estimating model uncertainty aversion, which is the same as the

one over which risk aversion is estimated.

5.3 Eliciting risk and model uncertainty attitudes

We use each of the subjects’ binary choices to estimate the parameters of two latent

utility functions that explain these choices. We allow for a stochastic error structure,

as opposed to a strictly deterministic structural estimation procedure, as we want to

allow for subjects to make some errors and, at the same time, to account for the panel

structure of the data. Given the important support for the CRRA hypothesis in the

empirical literature on risk aversion (Harrison et al., 2007; Brunnermeier and Nagel, 2008;

Chiappori and Paiella, 2011), but at the same time the experimental evidence found in

favor of increasing relative risk aversion (IRRA) (Holt and Laury, 2002), we maintain a

generic parametric structure for the identification problem. We let both utility functions

representing risk and model uncertainty attitudes be of the expo-power (EP) form (Saha,

1993). In the case of risk, this means that the utility function takes the following form:

u(x) =
1− exp

(
−au(ω + x)1−ru

)
au

. (15)

This representation includes CRRA and constant absolute risk aversion (CARA) as spe-

cial cases, and exhibits the desirable properties of decreasing absolute risk aversion and

increasing relative risk aversion for positive values of the parameters au and ru (Abdellaoui

et al., 2007).29 Note the presence of ω, representing background wealth in expression (15).

As is generally the case in the experimental literature, we assume ω = 0. It should however

be clear that in situations in which ω > 0, the same observed choices would imply higher

risk aversion. Using the procedure proposed by Andersen et al. (2008), we then construct

the expected utility of the two options comprising each decision by using candidate values

of parameters au and ru, and a linking index in order to infer the likelihood of the observed

28It is for example easy to see that Option B in the second decision first order stochastically domi-
nates Option B in the first decision, and that Option B in the fourth decision second order stochastically
dominates Option B in the third decision.

29As is well known, the Arrow-Pratt index of relative risk aversion of the EP function is −u′′(x)(ω +
x)/u′(x) = ru + au(1− ru)(ω+ x)1−ru . It is then easy to see that this function exhibits CRRA of value ru
when au = 0, and CARA of au when ru = 0.
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choice. The parameters of the latent utility function (15) are then chosen in order to max-

imizes the likelihood of getting the observed ranking of the different options, taking into

account a Luce (1959) error specification with a structural noise parameter.30 The first

part of Table 8 presents the estimates obtained from the risky tasks. Given the prominent

position CRRA has achieved in the theoretical and empirical literature, we provide both

of the estimates for the cases in which u is of the CRRA and EP type. The estimate

Table 8: Estimates of risk, model uncertainty and ambiguity preferences

u v φ

CRRA EP CRRA EP CRAA EP

a
0.0294∗∗∗ 0.152∗∗∗ -1.802
(0.00215) (0.0542) (0.9655)

r
0.279∗∗∗ 0.135∗∗∗ 0.738∗∗∗ 0.467∗∗∗ 0.534∗∗∗ 0.86∗∗∗

(0.0119) (0.0193) (0.0210) (0.0542) (0.0261) (0.0452)

noise parameter
0.103∗∗∗ 0.105∗∗∗ 0.0358∗∗∗ 0.0534∗∗∗ 0.0476∗∗∗ 0.0363∗∗∗

(0.00327) (0.00330) (0.00237) (0.00343) (0.00213) (0.00184)

Observations 5320 5320 7570 7570 7570 7570

Loglikelihood -1550.3 -1516.8 -3682.5 -3682.1 -3680.6 -3675.1
Notes: Luce error specification is used in the estimation. Standard errors in parentheses. The EP risk specification is

used to estimate v and φ. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

of the CRRA parameter we obtain is 0.28, which is lower than the one we found using

the CE task only. When the EP specification is considered, we estimate ru = 0.135 and

au = 0.029, which implies IRRA. While the focus of our analysis is on comparing these

estimates with the ones obtained for the model uncertainty function v, we note that their

absolute magnitudes are consistent with the results obtained by Holt and Laury (2002);

Andersen et al. (2008). We however recognize that the estimates we obtain only hold

locally over the domain of stakes offered in our experiment. The last two rows of Table

8 present information about the data used (30 risk aversion choices for each of the 189

subjects, minus the inconsistent choices that are discarded) and the resulting loglikelihood

values.31 Given the superiority of the EP specification in explaining the observed choices

in the risky tasks, this is the specification we consider in the remaining part of the estima-

tion procedure. We then estimate the model uncertainty aversion function v, which takes

the general EP form:

v(CE) =
1− exp

(
−av(CE)1−rv

)
av

, (16)

30The statistical specification we use allows for taking into account the correlation between responses
given by the same subject. Robust estimates considering clustering corrections are provided in the Sup-
plemental Material provided online (Appendix ??). There is essentially no difference in the significance of
our estimates in this case.

31As can be observed, the loglikelihood of the EP specification is slightly better than the CRRA one,
but this should not be surprising given that the estimates are all significant, and the hypothesis au = 0 is
therefore rejected.
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where CE represents the certainty equivalent wealth for a given model θ: CE ≡ u−1
(
p̂θu(ō)+

(1 − p̂θ)u(o)
)

. The second part of Table 8 presents the estimates obtained from our five

uncertain PL tasks. Estimates for the special cases of v being of the CRRA type (av = 0)

are also provided for indicative purposes. In that case, the coefficient estimated is signifi-

cantly higher than the one obtained in the case of risk. It should however be noted that

this specification leads to a smaller loglikelihood value than the general expo-power for-

mulation (16). Focusing on the EP specification, we remark that the estimates we obtain

(av = 0.152 and rv = 0.467) with the joint identification procedure are both significantly

positive. This implies our subjects exhibit both decreasing absolute model uncertainty

aversion and increasing relative model uncertainty aversion. Our interest lies in compar-

ing the estimates obtained for model uncertainty with the ones obtained for risk aversion.

In Figure 2, we provide the paths of estimated absolute and relative aversion indexes for

both risk and model uncertainty over the experimental prize domain. As predicted, we

observe that the indexes are both decreasing in the monetary outcome when considered in

absolute terms and increasing in relative terms (DARA and IRRA). Interestingly, we also

Figure 2: Absolute (left) and relative (right) risk and model uncertainty aversion using
EP estimates (95% confidence in grey).
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directly observe from Figure 2 that the degree of model uncertainty aversion is significantly

higher (in both absolute and relative terms) than the one of risk aversion. This result con-

firms our main hypothesis that subjects are more averse to subjective probabilities than

to objective ones. Specifically, while the index of relative risk aversion is respectively 0.32

and 0.62 when the monetary outcome considered is either x = 10 or x = 30, the index

of relative model uncertainty aversion takes values of 0.74 and 0.96 for the corresponding

outcomes. Note that in the special case where both u and v are of the CRRA type, the

indexes of relative aversion to risk and model uncertainty are ru = 0.28 and rv = 0.73

when jointly estimated.32 These differences observed between the attitudes towards objec-

32In order to assess the sensitivity of the model uncertainty aversion index to variations in relative risk
aversion, we also used the maximum likelihood procedure to estimate rv using different (exogenously given)

28



tive and subjective probabilities now enable us to quantify the attitude subjects manifest

towards ambiguity.

5.4 The implications for ambiguity attitude

The joint characterization of functions u and v representing the subjects’ attitudes

towards two different types of uncertainty has an important direct implication for the

characterization of ambiguity aversion. Indeed using the identity φ ≡ v◦u−1 and the results

obtained in the previous section, we are now able to characterize directly the attitude

subjects manifest towards ambiguity, and to compute the indexes of absolute and relative

ambiguity aversion (see Online Appendix ?? for the detailed analytical computations under

the double EP specification). These indexes are represented in Figure 3. While we observe

Figure 3: Absolute (left) and relative (right) ambiguity aversion obtained with EP function
estimates
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a clear decreasing trend in the degree of absolute ambiguity aversion, we remark that

the degree of relative ambiguity aversion seems to be fairly constant over the domain

considered.33 To assess the robustness of the constant relative ambiguity aversion (CRAA)

result presented in Figure 3, we apply the joint estimation procedure directly to u and φ.

In particular, this means that we let the ambiguity aversion function be:

φ(U) =
1− exp

(
−aφ(U)1−rφ

)
aφ

, (17)

where U represents the expected utility obtained under a given model θ: U ≡ p̂θu(ō) +

(1 − p̂θ)u(o), and u is defined as in equation (15). The estimated results are provided in

the last two columns of Table 8. In this case, the coefficient aφ of the EP formulation is

values of ru. These additional results are presented in Appendix ?? available online.
33As explained above, the domain of the ambiguity function φ is not the same monetary outcome domain

used in the study of u and v. Instead, φ is defined over expected utility levels U . In this sense, the vertical
dashed lines in Figure 3 represent the levels of utility obtained for the corresponding monetary outcomes
in Figure 2, when the utility function u is of the EP type and coefficients are as estimated in Table 8.
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not significant at the 5% level (p = 0.062). The function describing preferences towards

ambiguity should therefore be of the CRAA type instead. Under this particular specifica-

tion, the constant relative ambiguity aversion index is estimated to be 0.53. It does not

correspond exactly to the value observed in Figure 3, but this should not be surprising

given that the ambiguity functions do not share the same specification in the two cases. If

we instead consider the case of u being CRRA, we also obtain a non significant coefficient

aφ (p = 0.093) under the EP specification, and estimate the coefficient rφ = 0.62 under

constant relative ambiguity aversion.34

6 Conclusion

Uncertainty is crucial in collective as well as in individual decision making. During the

past few years, a vast literature aiming at better formalizing the decision process in the

face of objective and subjective uncertainty has been growing and encompassing multiple

academic fields. This body of research investigates how individuals integrate available

information in the process of decision making through the development of theoretical

frameworks and experimental analyses. In particular, multiple decision models have been

developed to account for attitudes towards ambiguity. These models have been adopted

to explain individuals’ behavior in multiple contexts and are increasingly applied to pre-

scribe optimal strategies in the face of uncertainty. The growing application of ambiguity

aversion models calls for the development of experimental efforts enabling both a better

understanding of the underlying mechanisms at play, and the quantification of ambiguity

preferences, similar to what has been done in the study of risk. In this paper, we provide

new experimental evidence on behavior towards compound risk and model uncertainty in

relation to simple risk and ambiguity. Our design enables us to disentangle the role played

by objective and subjective probabilities in determining individuals’ ambiguity attitudes,

and to quantify, through a joint elicitation procedure, the extent to which ambiguity aver-

sion exists as well as the properties of the ambiguity aversion function. We conducted

both a laboratory experiment with students, and a field experiment with policy makers,

and use non-parametric statistics as well as structural econometrics to analyze choice

patterns.

There are three main findings emerging from our analysis. First, we confirm that

attitudes towards ambiguity and uncertainty presented in a compound way are associ-

ated. This association is however much stronger when the second layer of uncertainty is

subjective than when it is objective. Provided that the compound probabilities are simple

enough, we find that most subjects reduce compound risks but do not reduce compound

uncertainty when different models are considered and the probability of each of them being

34In this case, the result could have been obtained directly from the twofold CRRA estimation results
provided in online Appendix ??, given that φ is of the CRAA type with rφ = rv−ru

1−ru , when both u and v
are CRRA (Berger et al., 2016).
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correct is unknown. Second, we show that subjects tend to be both risk and model uncer-

tainty averse, but exhibit stronger aversion to model uncertainty than to risk. Following

a generic model of choice under uncertainty (Klibanoff et al., 2005; Marinacci, 2015), we

interpret this behavioral characteristic as evidence of ambiguity aversion. Using a joint

estimation procedure, we elicit the degree of ambiguity aversion, which we estimate to be

around 0.5 when considered in relative terms. Third, investigating in more detail attitude

towards model uncertainty, we find that model uncertainty aversion is decreasing in wealth

when considered in absolute terms, and increasing when considered in relative terms. In

regards to ambiguity attitude, we find evidence of decreasing absolute ambiguity aver-

sion (DAAA) and constant relative ambiguity aversion (CRAA). The results we obtain

reveal inconsistencies with the SEU model (Savage, 1954; Cerreia-Vioglio et al., 2013b):

most of our subjects reduce compound objective risk and the majority of them (70%) are

ambiguity non-neutral or do not reduce subjective probabilities (62%). The results also

enable us to reject the maxmin model: only between 1 and 5% of our subjects’ choices

are compatible with a decision based only on the most pessimistic model, and the coeffi-

cients of both model uncertainty and ambiguity aversion that we estimate are finite. Our

findings are however consistent with an interpretation of the two-stage model (Klibanoff

et al., 2005; Nau, 2006; Marinacci, 2015) in which ambiguity non-neutrality stems from

the non-reduction of objective and subjective uncertainty, rather than from an inability to

reduce compound objective risks (Seo, 2009). Finally, our results caution against modeling

ambiguity attitude by means of exponential functions (Hansen and Sargent, 2001, 2008),

though further research is warranted to make bolder quantitative statements.35 Overall,

the results in these experiments call for a new reading of some important findings previ-

ously obtained in the literature in trying to explain the behavioral mechanisms underneath

individuals’ attitudes towards ambiguity.

35The robust control model developed by Hansen and Sargent (2001, 2008) may be seen as a special
case of an REU model in which the ambiguity function is of the exponential form (i.e. constant absolute
ambiguity aversion) (Cerreia-Vioglio et al., 2011).
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Appendix

A Robustness round

We conducted a second experiment (robustness round) at the COP21 to the UNFCCC,

held in Paris in December, 2015. The 91 subjects who participated in this robustness

round originated from 52 different countries: 46% of them were climate negotiators, 21%

represented NGOs, and the remaining ones were either researchers/academics (11%), jour-

nalists (5%), representatives of the private sector (4%) or self-identified with a different

category (12%). In individual in-person interviews, we prompted respondents who vol-

unteered for the study with a few questions framed in the context of climate change,36

before giving them the RLP task. Additional procedural differences were: the experiment

was conducted with pen and paper, the payoff reached e50 if the bet was correct, and

subjects did not have access to calculators. Table A.1 summarizes the association we

found in the robustness round between ambiguity neutrality, reduction of compound lot-

teries with objective probabilities (ROCL) and reduction of compound uncertainty with

subjective probabilities (ROCU). As can be observed, most of our subjects (69%) reveal

Table A.1: Association between ambiguity neutrality, ROCL and ROCU (robustness
round)

ROCL ROCU

Ambiguity neutral No Yes No Yes Total

No
Count 38 25 55 8

63
Expected 30.5 32.5 44.3 18.7

(41.76%) (27.47%) (60.44%) (8.79%) (69.23%)

Yes
Count 6 22 9 19

28
Expected 13.5 14.5 19.7 8.3

(6.59%) (24.18%) (9.89%) (20.88%) (30.77%)

Total
44 47 64 27 91

(48.35%) (51.65%) (70.33%) (29.67%) (100%)

Notes: Relative frequencies in parentheses. Chi-square test: 6.1e-4 Chi-square test: 1.1e-7

a non-neutral attitude towards ambiguity, 48% do not reduce compound risk, and 70% do

not reduce compound uncertainty when different probabilistic models exist and the prob-

abilities associated to each of them are subjective. Similarly to Halevy’s (2007) results,

we observe a relatively strong association between ambiguity neutrality and reduction of

compound objective risks. In particular, the observed frequency of subjects implicitly

revealing C1 = C2 = C4 is 52% higher than the expected frequency under a null hypoth-

esis of independence. However, as observed in the original experiment, the frequency of

subjects implicitly expressing C1 = C3 = C4 is also more than twice (exactly 2.3 times)

36Specifically we asked them their assessed probability distribution over 2100 temperature increases
based on current “Nationally Determined Contributions”.
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the expected frequency under the null hypothesis of independence. We observe a stronger

association between ambiguity neutrality and reduction of compound uncertainty when

probabilities are subjective than when they are objective, but contrary to the main ex-

periment, we reject the independence hypothesis in both situations (the p-value of the

Chi-square test of independence between ambiguity neutrality and reduction of compound

uncertainty when probabilities are objective is 6.1e-4, and 1.1e-7 when probabilities are

subjective).

The results of the logistic regressions for the probability of being ambiguity neutral are

reported in Table A.2. As in the original experiment, ambiguity non-neutral subjects are

overrepresented in the sample. The results are very similar to those presented in Table 4.

In particular, an identical attitude towards objective and subjective probabilities enables

us to predict ambiguity neutrality with statistical significance. The odds of being ambi-

guity neutral when expressing ROCU corresponds to 14.5 times the odds when it is not

the case (p=1.37e-6). Reduction of compound risk alone also now has a significant impact

on ambiguity neutrality (p = 0.0011). However, we can see from Table A.2 that the odds

ratio is much lower than the one corresponding to the attitude towards model uncertainty.

Moreover, as we adjust the logistic regression to account for the two effects simultaneously,

the effect of compound risk attitude becomes non-significant (p=0.37). The probability

Table A.2: Characteristics of Ambiguity Neutrality: Logistic Regressions (robustness
round)

Odds Ratio Standard Error
Lower 95% Upper 95%
Confidence

Interval
Confidence
Interval

ROCL
5.573∗∗ 2.941 1.981 15.677

(1.793) (1.174) (0.497) (6.472)

ROCU
14.514∗∗∗ 8.041 4.900 42.989

(10.671∗∗∗) (6.790) (3.066) (37.138)

Notes: Logistic regressions. Adjusted results in parentheses. Dependent variable: Ambiguity neutrality.

91 observations. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

of being an ambiguity neutral subject in this sample is 30.7%. It increases to 70% when

the individual exhibits the same attitude towards objective as towards subjective prob-

abilities (and drops to 14% when this is not the case). This means that the change in

probability increases by 56 percentage points and is significant (p=9.26e-9) when attitude

towards model uncertainty goes from ‘the same attitude as the one towards risk’ to ‘a

different attitude than the one towards risk’. In comparison, compound risk neutrality

only increases the predicted probability of ambiguity neutrality by 33 percentage points

when considered in isolation (from 14% to 47%, p=0.0002).
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B Beyond neutrality vs. non-neutrality

We here present the results from the RLP tasks when the distinction is made between

three different attitudes towards the type of uncertainty i: aversion (C1 > Ci), neutrality

(C1 = Ci), and loving (C1 < Ci), where i = {2, 3, 4} represents compound risk, model

uncertainty and ambiguity respectively.

Table B.1: Association between attitudes towards ambiguity, compound risk and model
uncertainty

Compound risk Model uncertainty

Ambiguity C1 > C2 C1 = C2 C1 < C2 C1 > C3 C1 = C3 C1 < C3 Total

Main experiment (N=189)

C1 > C4
Count 23 93 17 98 26 9 133
Expected 23.2 94.3 15.5 83 41.5 8.4

(12.17%) (49.21%) (8.99%) (51.85%) (13.76%) (4.76%) (70.37%)

C1 = C4
Count 4 32 3 10 27 2 39
Expected 6.8 27.7 4.5 24.3 12.2 2.5

(2.12%) (16.93%) (1.59%) (5.29%) (14.29%) (1.06%) (20.63%)

C1 < C4
Count 6 9 2 10 6 1 17
Expected 3 12.1 2 10.6 5.3 1.1

(3.17%) (4.76%) (1.06%) (5.29%) (3.17%) (0.53%) (8.99%)

Total
33 134 22 118 59 12 189

(17.46%) (70.9%) (11.64%) (62.43%) (31.22%) (6.35%) (100%)

Fisher’s exact test: 0.188 Fisher’s exact test: 3.35e-7

Robustness round (N=91)

C1 > C4
Count 19 22 7 35 7 6 48
Expected 13.2 24.8 10 22.7 14.2 11.1

(20.88%) (24.18%) (7.69%) (38.46%) (7.69%) (6.59%) (52.75%)

C1 = C4
Count 3 22 3 5 19 4 28
Expected 7.7 14.5 5.8 13.2 8.3 6.5

(3.30%) (24.18%) (3.30%) (5.49%) (20.88%) (4.40%) (30.77%)

C1 < C4
Count 3 3 9 3 1 11 15
Expected 4.1 7.7 3.1 7.1 4.5 3.5

(3.30%) (3.30%) (9.89%) (3.30%) (1.10%) (12.09%) (16.48%)

Total
25 47 19 43 27 21 91

(27.47%) (51.65%) (20.88%) (47.25%) (29.67%) (23.08%) (100%)

Relative frequencies in parentheses. Fisher’s exact test: 8.31e-5 Fisher’s exact test: 4.161e-10

Contingency. As can be observed from the upper panel of Table B.1, among the 189 sub-

jects participating in the main experiment, 133 (70.4%) are ambiguity averse, 134 (70.9%)

are compound risk neutral, and 118 (62.4%) are more model uncertainty averse than risk

averse. Among those individuals manifesting stronger aversion to model uncertainty than

to risk, 83% (98 out of 118 subjects) also exhibit ambiguity aversion. Looking at com-

pound risk attitude, we remark that 69.4% of our subjects (93 out of 134) who reduce

compound risks are also ambiguity averse, suggesting separate attitudes towards these

two types of uncertain situations. Comparing the observed frequencies with the expected

ones under the null hypothesis of independence with respect to ambiguity attitude, we do

not observe significant differences in the case of compound risk, but do observe differences

in the case of model uncertainty. More specifically, we observe that the number of subjects
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exhibiting both ambiguity aversion and being more averse to model uncertainty than to

risk increases by 18% compared to the null hypothesis of independence, while the num-

ber of subjects who are ambiguity neutral and manifest the same attitude towards model

uncertainty and towards risk is more than twice the number under the null hypothesis.

Interestingly, we do not observe any kind of pattern between ambiguity loving and either

compound risk loving or having less aversion to model uncertainty than to risk. To test

statistically the relationship between the attitudes towards the different types of uncer-

tainty, we conducted two-by-two independence tests. Fisher exact tests (2-sided) confirm

(p=3.3e-7) our predictions that attitude towards model uncertainty and towards ambigu-

ity are tightly associated, while we cannot reject the independence hypothesis between the

attitudes towards compound lottery and ambiguity (p=0.19).

Turning to the pool of policy makers (robustness round), we see from the lower panel

of Table B.1 that most of our subjects exhibit ambiguity aversion (52.7%), reduce com-

pound risk (51.6%), and are more model uncertainty averse than risk averse (47.3%). As

already observed in Appendix A, there is an association between ambiguity attitude and

compound risk, but this association seems weaker than the one between ambiguity and

model uncertainty. Comparing the observed frequencies with the ones obtained under the

null hypothesis of independence, we observe that the number of ambiguity averse subjects

that are also compound risk averse increases by 43.9%, while this number rises to 54.2%

when ambiguity aversion is considered together with having a stronger aversion to model

uncertainty than to risk. The same happens when considering neutrality: the observed

frequency of both ambiguity and compound risk neutral subjects is increased by 51.7%

with respect to the expected frequency under the null hypothesis of independence, while it

is more than doubled (+128.9%) when considering ambiguity neutral subjects expressing

the same aversion to risk and model uncertainty. Contrary to the results obtained in the

main experiment with students, this association is also extended to those with uncertainty

loving attitudes. Specifically, 9 subjects are observed to be both ambiguity and compound

risk loving (compared to an expected count of 3.1 under the independence hypothesis),

and 11 are observed to be both ambiguity loving and less averse to model uncertainty

than to risk (3.5 under the independence hypothesis). The associations we found between

the different attitudes towards different types of uncertainty are confirmed by Fisher’s

exact tests, which enable us to statistically reject the independence hypotheses between

ambiguity and both compound risk and model uncertainty respectively.

Multinomial logistic analysis. To further investigate the association between the

attitudes towards the different types of uncertainty, we run a couple of multinomial logistic

regressions. The results are summarized in Table B.2. We present, for both the main

experiment and the robustness round, the relative risk ratios for the multinomial logit

model, the standard errors and the bounds of the 95% confidence interval. The reference

group is ambiguity neutrality (C1 = C4). The relative risk ratio in the first row for example
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Table B.2: Characteristics of Ambiguity Attitude: Multinomial Logistic Regressions

Relative Risk Ratio Standard Error
Lower 95% Upper 95%
Confidence

Interval
Confidence
Interval

Main experiment (N=189)

C1 > C4
C1 > C2 1.978 1.146 0.636 6.157
C1 < C2 1.950 1.285 0.536 7.093

C1 > C3 10.177∗∗∗ 4.386 4.373 23.682
C1 < C3 4.673 3.872 0.921 23.710

C1 < C4
C1 > C2 5.333∗ 3.988 1.232 23.090
C1 < C2 2.370 2.341 0.342 16.429

C1 > C3 4.5∗ 2.859 1.295 15.633
C1 < C3 2.25 2.937 0.174 29.055

Robustness round (N=91)

C1 > C4
C1 > C2 6.333∗∗∗ 4.374 1.636 24.515
C1 < C2 2.333 1.757 0.533 10.209

C1 > C3 19∗∗∗ 12.373 5.302 68.086
C1 < C3 4.071 3.186 0.879 18.868

C1 < C4
C1 > C2 7.333 7.498 0.988 54.404
C1 < C2 22∗∗∗ 19.961 3.716 130.238

C1 > C3 11.4 14.357 0.966 134.545
C1 < C3 52.25∗∗∗ 61.680 5.167 528.342

Notes: Multinomial logistic regressions. Dependent variable: Ambiguity attitude. Coefficients show effects
relative to the excluded category ”neutrality”. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

compares compound risk aversion (C1 > C2) to compound risk neutrality (C1 = C2) for

being ambiguity averse (C1 > C4) relative to being ambiguity neutral. In this case,

the relative risk ratio is not statistically different from 1. On the contrary, for being

more averse to model uncertainty than to risk (C1 > C3) relative to expressing the same

attitude towards the two types of uncertainty (C1 = C3), the relative risk for being

ambiguity averse relative to being ambiguity neutral is expected to increase by a factor

of 10.17. This ratio is higher than 1 and statistically significant, at a confidence level of

0.1%.

Altogether, the results presented in Table B.2 reinforce the results obtained in the

dichotomous case, in which we compare the cases of neutrality to non-neutrality. In

the main experiment, only having a stronger aversion to model uncertainty than to risk

explains ambiguity aversion relative to ambiguity neutrality with statistical significance,

while a significant part of the association we found between compound risk and ambiguity

comes from the ambiguity loving attitude relative to ambiguity neutrality, being explained

by compound risk aversion relative to compound risk neutrality (relative risk ratio of

5.3). In the robustness round, the association between attitudes towards ambiguity and
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towards compound risk is significant, but weaker than the one between ambiguity and

model uncertainty. In particular, for being ambiguity averse relative to being ambiguity

neutral, the relative risk ratio switching from compound risk neutral to averse is 6.3, and

is 19 for switching from having the same aversion towards model uncertainty as to risk,

to having a higher aversion towards model uncertainty than to risk. Finally, as already

observed in the contingency analysis, we also observe a significant association between the

loving attitudes towards the different types of uncertainty.

In Figure B.1, we present the predicted probabilities of exhibiting each type of atti-

tude towards ambiguity (aversion, neutrality, loving in the column dimension), at each

corresponding attitude towards compound risk (in blue) and model uncertainty (in red).

To ease comparisons, we also provide the predicted probabilities of ambiguity attitudes

irrespective of the attitudes towards compound risk and model uncertainty (dashed black

lines).37 The pattern we already observed from the analysis of the relative risk ratios

Figure B.1: Adjusted predictions of model uncertainty and compound risk attitudes
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Notes: First row represents results of the main experiment (N=189), second row represents results of
robustness round (N=91). Bars represent 95% confidence levels

is here made clearer. In the main experiment (first row), exhibiting a stronger aversion

towards model uncertainty than towards risk increases the probability of being ambiguity

averse to 83%, while the probability decreases to 44% if the subject exhibits the same

attitude towards risk and model uncertainty. These numbers are significantly different

37Remark that these probabilities exactly correspond to the total proportions of ambiguity averse, neutral
and loving subjects provided in the last columns of Table B.1.
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from the 70.4% dashed line, which represents the probability of being ambiguity averse

for the whole sample. Similarly we observe that having equal aversion to risk and model

uncertainty increases the probability of being ambiguity neutral significantly (from 20.6%

in the whole sample, to 45.8%). Compound risk attitude on the contrary does not seem

to significantly effect the probabilities associated with the different ambiguity attitudes

(except compound risk aversion which increases the probability of being ambiguity loving

to 18.2%, as opposed to 9% for the whole sample). Turning to the robustness round, we

observe a tight association between ambiguity attitudes and both compound risk attitudes

and model uncertainty attitudes. However, the association is stronger when attitude to-

wards model uncertainty is considered. The probability of exhibiting ambiguity aversion

is for example 81.4% for a more model uncertainty averse than risk averse individual, as

opposed to 52.8% for the whole sample. Similarly, the predictive probability of ambiguity

neutrality goes from 30.8% for the whole sample to 70.4% once the subject exhibits equal

attitude towards model uncertainty as towards risk. Finally, the association extends to

the case of ambiguity loving, which goes from 16.5% to 52.4% once the subject becomes

more risk averse than model uncertainty averse.
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