
 
 
 

Institutional Members: CEPR, NBER and Università Bocconi 

 
 
 
 

WORKING PAPER SERIES 
 

 
 
 

Orthogonal Decompositions in  
Hilbert A-Modules 

 
S. Cerreia-Vioglio, F. Maccheroni, and M. Marinacci 

 
Working Paper n. 577 

 
 

This Version: June, 2017 
 

 

 
 
 
 
 
 
 
 
 
 

IGIER – Università Bocconi, Via Guglielmo Röntgen 1, 20136 Milano –Italy 
http://www.igier.unibocconi.it 

 
 

The opinions expressed in the working papers are those of the authors alone, and not those of the Institute, 
which takes non institutional policy position, nor those of CEPR, NBER or Università Bocconi.  



Orthogonal Decompositions in Hilbert A-Modules∗

S. Cerreia-Vioglio, F. Maccheroni, and M. Marinacci

Università Bocconi and IGIER

June 2017

Abstract

Pre-Hilbert A-modules are a natural generalization of inner product spaces

in which the scalars are allowed to be from an arbitrary algebra. In this per-

spective, submodules are the generalization of vector subspaces. The notion of

orthogonality generalizes in an obvious way too. In this paper, we provide nec-

essary and suffi cient topological conditions for a submodule to be orthogonally

complemented. We present four applications of our results. The most impor-

tant ones are Doob’s and Kunita-Watanabe’s decompositions for conditionally

square-integrable processes. They are obtained as orthogonal decomposition re-

sults carried out in an opportune pre-Hilbert A-module. Second, we show that

a version of Stricker’s Lemma can be also derived as a corollary of our results.

Finally, we provide a version of the Koopman-von-Neumann decomposition the-

orem for a specific pre-Hilbert module which is useful in Ergodic Theory.

1 Introduction

Pre-Hilbert A-modules are to algebras as inner product spaces are to the real/complex

field. In fact, they can be defined by simply replacing in the definition of inner product

space the real/complex field with an algebra A (for example, of functions). In this

paper, compared to the vast majority of the literature, we focus on the case A is a real

algebra. We assume that A is an Archimedean f -algebra with multiplicative unit and

we provide topological conditions that guarantee that a submodule is (orthogonally)

complemented.1 In this work, the most important examples of Archimedean f -algebras

with unit will be the following three: L∞ (Ω,G, P ), L0 (Ω,G, P ), and the space of

predictable processes.
∗Simone Cerreia-Vioglio gratefully acknowledges the financial support of ERC (grant SDDM-TEA).

Massimo Marinacci gratefully acknowledges the financial support of ERC (grant INDIMACRO).
1Since we will only study orthogonal complementation, we will just refer to it as complementation.
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More formally, given a pre-Hilbert A-module (H,+, ·, 〈 , 〉H) and a submoduleM ⊆
H, we define

M⊥ = {y ∈ H : 〈x, y〉H = 0 ∀x ∈M} .

In this paper, we provide conditions on A and topological conditions on M that guar-

antee that M is such that

H = M ⊕M⊥.

As in the standard case of Hilbert spaces, we will see that the problem of M being

complemented is strictly connected to the problem ofM being self-dual and, in studying

complementation, we will also provide a new topological condition which is equivalent

to self-duality (see Theorem 7). We conclude the paper by providing four applications

of our results. In particular, we show how versions of different famous decomposition

results can be better understood once framed within the Hilbert module framework

(see Proposition 4 which is a version of Stricker’s Lemma, Theorem 4 which generalizes

the Koopman-von-Neumann decomposition result to modules, and Corollaries 3 and 4

which correspond, respectively, to the Doob’s and Kunita-Watanabe’s decomposition).

Related literature The literature on complementation in pre-Hilbert A-modules

(similarly to the literature on self-duality) can be roughly divided in two main streams.

The first one introduced the notion of Hilbert A-modules and considers complex C∗-

algebras A. The second one focuses on a particular algebra of functions, namely,

L0 (G) = L0 (Ω,G, P ) (either complex or real). On the one hand, the notion of pre-

Hilbert A-module was introduced by Kaplansky [21]. Kaplansky [21] considers Hilbert

modules over commutative (complex) AW ∗-algebras A with unit and shows that a self-

dual submodule is always complemented [21, Theorem 3].2 Frank [13, Theorem 2.8]

shows that for a generic C∗-algebra self-duality of a submodule M implies M being

complemented. As a consequence Frank obtains that: a) complete (hence, closed)

finitely generated submodules are always complemented, b) that complete submodules

are always complemented,3 provided A is finite dimensional (see [13, Corollary 2.9] and

the references therein). Finally, if A is a W ∗-algebra, Frank and Troitsky [14] show

that, given a subset M ⊆ H, M⊥ and M⊥⊥ are direct summands of H.4 On the other

hand, Guo [15] studies pre-Hilbert L0 (G)-modules H and shows that a submodule is

complemented if and only if it is closed with respect to a particular metrizable topology.

2In this context, self-duality is characterized in terms of algebraic properties, rather than topological

ones.
3Completeness, in this case, is expressed in terms of the norm ‖ ‖H below.
4See also [24, Proposition 2.5.4 and Lemma 3.6.1], for a textbook exposition.
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Our contributions In this paper, we focus on real commutative algebras. We

provide (topological) conditions on A and H that will allow us to conclude that a sub-

module of a pre-Hilbert A-module H is complemented. We start by considering A to

be an Arens algebra of L∞ type (Definition 2). In this case, H can be suitably topolo-

gized with several norm topologies as well as with a topology induced by an invariant

metric dH . In particular, two norms stand out: ‖ ‖H and ‖ ‖m (Subsection 2.2). We
will discuss two results. Conceptually, the first provides topological conditions that

guarantee the self-duality of the submodule M , while the second provides topological

conditions that generalize the well known complementation result for standard Hilbert

spaces.

When A is of L∞ type and H is a self-dual pre-Hilbert A-module, in Theorem 1,

we show that the following conditions are equivalent:

(i) M is “weakly”closed;

(ii) M ∩BH is “weakly”closed (where BH is the unit ball induced by ‖ ‖H);

(iii) M ∩BH is “weakly”compact;

(iv) M ∩BH is ‖ ‖m closed;

(v) M ∩BH is dH closed;

(vi) H = M ⊕M⊥;

(vii) M = M⊥⊥.

Condition (v) builds on a new characterization of self-duality, which is contained

in Theorem 7. This theorem is an interesting result in itself. Indeed, the topology

induced by the metric dH is the only topology that can be considered in both types of

pre-Hilbert A-modules, that is, the one written over algebras A of either L∞ type or
L0 type (Definition 3). In the former case, Theorem 7 shows that self-duality amounts

to dH completeness of the unit ball BH . In the latter case, [9, Theorem 5] shows

that self-duality amounts to dH completeness of the entire space H. Thus, Theorem

7 illustrates what is the common “topological trait” of these two classes of self-dual

pre-Hilbert A-modules.

When A is of L∞ type and H is a self-dual pre-Hilbert A-module, in Theorem 2,

we show that the following conditions are equivalent:

(i) M is “weakly”closed;

(ii) M is dH closed;
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(iii) M is ‖ ‖m closed;

(iv) H = M ⊕M⊥.

Note that, when A = R, it is easy to show that ‖ ‖m coincides with the usual norm
topology and dH induces the same topology. Thus, in this case, properties (i)-(iv) are

well known to be equivalent and we can conclude that our Theorem 2 is a natural

generalization of the classical complementation theorem for Hilbert spaces. Indeed,

note that, in that context, self-duality is equivalent to completeness in norm.

We then move to consider A to be an f -algebra of L0 type (Definition 3). In this

case, H can be topologized with an invariant metric dH . When A is of L0 type and H is

a self-dual pre-Hilbert A-module, in Theorem 3, we show that the following conditions

are equivalent:

(i) M is dH closed;

(ii) H = M ⊕M⊥.

We are thus able to obtain Guo’s complementation result ([15, Theorem 47]). The

contribution to the literature of our Theorem 3 is twofold: 1) it applies to a larger class

of f -algebras (see Subsection 4.3), 2) paired with Theorem 2, it highlights the connec-

tion between pre-Hilbert L0-modules and pre-Hilbert L∞-modules. Such a connection
is again provided by the metric dH .

Finally in both cases, we pay particular attention to finitely generated submodules

and their complementation (see Corollaries 1 and 2). Indeed, finitely generated sub-

modules and their closure play a key role in Finance where pre-Hilbert modules are

useful in modelling asset pricing with conditional information (see Subsection 4.1 as

well as [17] and [10]). Most notably, we show that finitely generated submodules are

always closed and complemented in a self-dual pre-Hilbert L0-module.

Outline of the paper Section 2 introduces the two classes of algebras A we

will consider in studying the orthogonal complementation problem and contains all the

useful definitions and facts concerning pre-Hilbert A-modules.

Section 3 starts by studying few natural and useful properties that come with the

orthogonal complementation procedure, paying, in Subsection 3.1, particular attention

to finitely generated submodules. Subsection 3.2 contains our first set of results on

complementation, while Subsection 3.3 contains the second one. Section 4 deals with

the application of our results.

Since this paper is a paper about orthogonal complementation, we relegate all the

self-duality results to Appendices A and B.
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2 Mathematical preliminaries

2.1 Algebras

We are going to consider two classes of algebras which are strictly connected: Arens

algebras of L∞ type and f -algebras of L0 type. The reader, at a first read, might want

to think of the former class as the class of standard L∞ (Ω,G, P ) spaces and of the

latter as the class of standard L0 (Ω,G, P ) spaces.5 ,6

Arens algebras of L∞ type. Given a commutative real Banach algebra A with

multiplicative unit e, we denote by ‖ ‖A the norm of A.

Definition 1 A commutative real Banach algebra A with unit e such that

‖e‖A = 1 and ‖a‖2
A ≤

∥∥a2 + b2
∥∥
A
∀a, b ∈ A

is called an Arens algebra.

These algebras admit a concrete representation as a space of continuous functions

over a compact Hausdorff topological space and were first studied by Arens [7] and

Kelley and Vaught [22].7 The cone generated by the squares of A induces a natural

order relation on A: a ≥ b if and only if a−b belongs to the norm closure of {c2 : c ∈ A}.
By using standard techniques, one can show that (A,≥) is a Riesz space with strong

order unit e. Moreover, ‖ ‖A is a lattice norm such that

‖a‖A = min {α ≥ 0 : |a| ≤ αe} and
∥∥a2
∥∥
A

= ‖a‖2
A ∀a ∈ A.

In light of these observations, note that for each a ≥ 0, there exists a unique b ≥ 0

such that b2 = a. From now on, we will denote such an element by a
1
2 or

√
a. If A

admits a strictly positive linear functional ϕ̄ : A→ R (wlog ϕ̄ (e) = 1), then we could

also consider A endowed with the invariant metric d : A × A → [0,∞), defined by

d (a, b) = ϕ̄ (|b− a| ∧ e) for all a, b ∈ A. It is immediate to see that

d (a, b) ≤ ‖b− a‖A ∀a, b ∈ A. (1)

We conclude by defining a particular class of Arens algebras which are isomorphic to

some space L∞ (Ω,G, P ) (see [1, Corollary 2.2]).

5Subsection 4.3 is a notable exception to this statement.
6In this case, the functional ϕ̄ we are going to encounter below is nothing but the expected value:

ϕ̄ (a) =
∫
adP for all a ∈ L∞ (Ω,G, P ). The element e is the function that takes constant value 1.

7See also [3] for a modern treatment of the subject.
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Definition 2 Let A be an Arens algebra. We say that A is of L∞ type if and only if A
is Dedekind complete and admits a strictly positive order continuous linear functional

ϕ̄ on A.

f-algebras of L0 type. Assume that A is an Archimedean f -algebra with unit e 6= 0

(see Aliprantis and Burkinshaw [5, Definition 2.53]). It is well known that e is a weak

order unit. If A is Dedekind complete and a ≥ 1
n
e for some n ∈ N, then there exists

a unique b ∈ A+ such that ab = e.8 We denote this element by a−1. If a ≥ 0 is such

that there exists a−1 and b ∈ A, then we alternatively denote ba−1 by b/a. By [18,

Theorem 3.9], if A is also Dedekind complete, for each a ≥ 0, there exists a unique

b ≥ 0 such that b2 = a. Also in this case, we will denote such an element by a
1
2 or
√
a.

The principal ideal generated by e is the set

Ae = {a ∈ A : ∃α > 0 s.t. |a| ≤ αe} .

It is immediate to see that Ae is a subalgebra of A with unit e. If A is an Arens

algebra, then A is an Archimedean f -algebra with unit e and Ae = A. If there exists

a strictly positive linear functional ϕ̄ : Ae → R (wlog ϕ̄ (e) = 1), then we can define

d : A× A→ [0,∞) by

d (a, b) = ϕ̄ (|b− a| ∧ e) ∀a, b ∈ A.

As in the case of an Arens algebra, d is an invariant metric.

Definition 3 Let A be an Archimedean f-algebra with unit e. We say that A is an f-
algebra of L0 type if and only if Ae is an Arens algebra of L∞ type and A is Dedekind
complete and d complete.

If b ≥ 0 and b ∈ Ae, then there exist c ≥ 0 and 0 ≤ d ∈ A such that cb = b, c2 = c,

and bd = c. We refer to such an element c as the basic component of b and we denote

it by cb. Similarly, we denote the element d by db.9 Moreover, if {an}n∈N ⊆ A is such

that an = can for all n ∈ N and anb
d→ l, then an

d→ ld.

Some common properties. Let A be either of L∞ type or L0 type. In both cases, d

is generated by the Riesz pseudonorm c 7→ ϕ̄ (|c| ∧ e). By [4, Theorems 2.28 and 4.7],
it is easy to prove that the topology generated by d is linear, locally solid, and Fatou.

Moreover, it can be shown that:

8Recall that A+ = {a ∈ A : a ≥ 0}.
9Clearly, in this context, d is an element of A and is not connected to the metric d, we previously

discussed. Loosely speaking, if A = L0 (Ω,G, P ) and b ≥ 0, then c = 1C where C = {ω ∈ Ω : b (ω) > 0}
and d : Ω→ R is such that d (ω) = 1

b(ω) on C and zero otherwise.
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1. If an ↓ 0 and b ≥ 0, then anb ↓ 0 and anb
d→ 0;

2. If b ∈ A and an
d→ a, then ban

d→ ba.

3. If λ > 0 and {an}n∈N ⊆ [−λe, λe] and {an}n∈N is a d Cauchy sequence, then there
exists a ∈ A such that an

d→ a ∈ [−λe, λe].10

2.2 Pre-Hilbert A-modules

Let A be an Archimedean f -algebra with unit e. The 4-tuple (H,+, ·, 〈 , 〉H) is a

pre-Hilbert A-module if and only if (H,+, ·) is a left A-module (see [2, p. 107]) and
〈 , 〉H : H ×H → A is such that for each a ∈ A and for each x, y, z ∈ H:

1. 〈x, x〉H ≥ 0, with equality if and only if x = 0;

2. 〈x, y〉H = 〈y, x〉H ;

3. 〈x+ y, z〉H = 〈x, z〉H + 〈y, z〉H ;

4. 〈a · x, y〉H = a 〈x, y〉H .

Observe that a pre-Hilbert A-module H is endowed with a natural scalar product.

In fact, we can define ·e : R×H → H to be such that α ·e x = (αe) · x. It is immediate
to check that (H,+, ·e) is a vector space. For each α ∈ R and x ∈ H, we denote

α ·e x = αx.

Since the Cauchy-Schwarz inequality holds for 〈 , 〉H , that is,

〈x, y〉2H ≤ 〈x, x〉H 〈y, y〉H ∀x, y ∈ H, (2)

we say that H is self-dual if and only if for each f : H → A that satisfies:

- A-linearity: f (a · x+ b · y) = af (x) + bf (y) for all a, b ∈ A and for all x, y ∈ H

- Boundedness: There exists c ∈ A+ such that f 2 (x) ≤ c 〈x, x〉H for all x ∈ H

there exists (a unique) z ∈ H such that f (x) = 〈x, z〉H for all x ∈ H.

Arens algebras of L∞ type. Define N : H → A+ by N (x) = 〈x, x〉
1
2
H for all x ∈ H.

The function N is a vector-valued norm. Moreover, we can endow H with several

10Here, [−λe, λe] = {a ∈ A : −λe ≤ a ≤ λe} and the statement follows from Nakano’s theorem (see

[4, Theorem 4.28]).
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topologies.11 In this paper, we will consider two topologies generated by a norm, one

generated by a metric, and a weak topology. The first two norms we will consider are:

1. ‖x‖H =
√
‖〈x, x〉H‖A for all x ∈ H;

2. ‖x‖m =
√
ϕ̄ (〈x, x〉H) for all x ∈ H.

The metric we will consider is instead defined by

dH (x, y) = ϕ̄ (N (x− y) ∧ e) = d (0, N (x− y)) ∀x, y ∈ H.

Before defining the weak topology, note that we can define a standard real valued inner

product by the formula

〈x, y〉m = ϕ̄ (〈x, y〉H) ∀x, y ∈ H.

It follows that (H,+, ·e, 〈 , 〉m) is a standard pre-Hilbert space. We can finally define

the weak topology σ (H,S (H)), that is, given a net {xi}i∈I ⊆ H

xi
σ(H,S(H))→ x

def⇐⇒ 〈xi, y〉m → 〈x, y〉m ∀y ∈ H.

The relations among these topologies is the following one

xn
‖ ‖H→ x =⇒ xn

‖ ‖m→ x =⇒
{

xn
dH→ x

xn
σ(H,S(H))→ x

.

In characterizing self-duality, ‖ ‖H plays only an ancillary role. Indeed, define BH =

{x ∈ H : ‖x‖H ≤ 1}. By [9, Theorem 3] and Theorem 7, H is self-dual if and only if

BH is ‖ ‖m complete if and only if BH is dH complete if and only if BH is σ (H,S (H))

compact.12

f-algebras of L0 type. As before, we can define N : H → A+ by N (x) = 〈x, x〉
1
2
H

for all x ∈ H. The function N is a vector-valued norm. In this case, we can endow H

with only one natural topology: the one generated by the metric

dH (x, y) = ϕ̄ (N (x− y) ∧ e) = d (0, N (x− y)) ∀x, y ∈ H. (3)

11We refer the interested reader to Cerreia-Vioglio, Maccheroni, and Marinacci [9] for a detailed

study of these and other topologies as well as all the mathematical facts reported in this part of the

paper.
12If H is self-dual, then H is ‖ ‖H complete, but, typically, it is neither ‖ ‖m nor dH complete. At

the same time, if H is a self-dual pre-Hilbert A-module, where A is an f -algebra of L0 type, then

the norm ‖ ‖H cannot be defined, yet H turns out to be dH complete. Since in these two cases,

topological completeness refers to different concepts, depending on which algebra A we use, in this

paper, we refrain to formally talk about Hilbert A-modules.
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By [9, Theorem 5], H is self-dual if and only if H is dH complete.

Some common properties. Let A be either of L∞ type or L0 type. We have that the

map x 7→ 〈x, y〉H is dH − d continuous. Finally, if {an}n∈N ⊆ A, x ∈ H, and an
d→ a,

then an · x
dH→ a · x.

3 Orthogonal decompositions and projections

In this section, we recall the notion of submodule and define the one of orthogonality.

As a by-product, we also define orthogonal complements. This latter concept will allow

us to naturally define (modular) orthogonal projections. The rest of the section will

be devoted to provide necessary and suffi cient conditions for the decomposition of a

pre-Hilbert A-module H in a submodule and its orthogonal complement. We will pay

particular attention to finitely generated submodules.

Definition 4 Let A be an Archimedean f-algebra with unit e and H a pre-Hilbert A-

module. A nonempty subset M of H is a submodule if and only if a · x+ b · y ∈M for

all a, b ∈ A and for all x, y ∈M .

Observe that each submodule M is a vector subspace of H, yielding that 0 ∈M .

Let A be an Archimedean f -algebra with unit e and H a pre-Hilbert A-module.

Given two elements x, y ∈ H, we say that x and y are orthogonal if and only if

〈x, y〉H = 0. Given a nonempty subset M ⊆ H, we define

M⊥ = {y ∈ H : 〈x, y〉H = 0 ∀x ∈M} .

It is immediate to verify that M⊥ is a submodule and M ∩ M⊥ ⊆ {0}. We will
call M⊥ the orthogonal complement of M . Define also M⊥⊥ =

(
M⊥)⊥. Given a

submodule M ⊆ H, we will say that M is (orthogonally) complemented if and only if

H = M ⊕M⊥.13

If M is a complemented submodule, then it induces a natural pair of projections.

Indeed, note that for each x ∈ H there exist unique y1 ∈ M and y2 ∈ M⊥ such that

x = y1 + y2. Define PM : H → M and PM⊥ : H → M⊥ to be such that PM (x) = y1

and PM⊥ (x) = y2 for all x ∈ H. By definition, we have that

PM (x) = x ∀x ∈M and PM⊥ (x) = x ∀x ∈M⊥.

13Since M and M⊥ are submodules, they are vector subspaces too, therefore M ⊕M⊥ means, as
usual, M +M⊥ and M ∩M⊥ = {0}.
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Let us denote by P either PM or PM⊥. It is immediate to verify that

P (a · x+ b · y) = a · P (x) + b · P (y) ∀a, b ∈ A, ∀x, y ∈ H.

Finally, we have that PM (x) + PM⊥ (x) = x as well as 〈PM (x) , PM⊥ (y)〉H = 0 for all

x, y ∈ H.

Lemma 1 Let A be an Archimedean f-algebra with unit e and H a pre-Hilbert A-

module. If M1 and M2 are two submodules, then the following statements are true:

1. (M1 +M2)⊥ = M⊥
1 ∩M⊥

2 .

2. M1 ⊆M⊥⊥
1 .

3. If M1 ⊆M2, then M⊥
2 ⊆M⊥

1 .

4. If M1 is self-dual, then M1 is complemented.

5. If M1 is complemented, then M1 = M⊥⊥
1 .

Proof. Given their importance in the sequel, we only prove points 4 and 5, since the
other points are proven by replicating well known techniques in Hilbert space theory.

4. Clearly, M1⊕M⊥
1 ⊆ H. As for the opposite inclusion, consider y ∈ H. SinceM1

is a submodule of H, if we define 〈 , 〉M1
as the restriction of 〈 , 〉H to M1 ×M1, then(

M1,+, ·, 〈 , 〉M1

)
is a pre-Hilbert A-module. The map defined on M1 by x 7→ 〈x, y〉H

is A-linear and bounded. Since M1 is self-dual, it follows that there exists a unique

y1 ∈M1 such that

〈x, y1〉H = 〈x, y1〉M1
= 〈x, y〉H ∀x ∈M1.

Define y2 = y − y1. We have that

〈x, y2〉H = 〈x, y − y1〉H = 0 ∀x ∈M1,

that is, y2 ∈M⊥
1 . It is also immediate to see that y1 + y2 = y. Since y was arbitrarily

chosen, it follows that H ⊆M1 ⊕M⊥
1 .

5. SinceM1 ⊆M⊥⊥
1 , we only need to prove the opposite inclusion. By assumption,

if x ∈ M⊥⊥
1 , then there exists xM1 ∈ M1 and xM⊥1 ∈ M

⊥
1 such that x = xM1 + xM⊥1 .

SinceM1 ⊆M⊥⊥
1 , we have thatM⊥

1 3 xM⊥1 = x−xM1 ∈M⊥⊥
1 . SinceM⊥

1 ∩M⊥⊥
1 = {0},

this implies that x−xM1 = 0, that is, x = xM1 ∈M1, proving the opposite inclusion.�

Remark 1 The suffi ciency of self-duality for a submoduleM to be complemented was

already noted by Frank [13], when A is a C∗-algebra. His proof relies on a result of

Paschke [26]. Here, instead, we prove this fact for a different class of algebras and

we rely on a more direct argument, which replicates the techniques used for standard

Hilbert spaces.
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In the next result, we characterize when complementation is preserved by the

Minkowski’s sum. Inter alia, this result will help us in providing conditions that guar-

antee that finitely generated submodules are complemented.

Proposition 1 Let A be an Archimedean f-algebra with unit e and H a pre-Hilbert A-

module. If M1 and M2 are two submodules such that M1 is complemented, the following

statements are equivalent:

(i) PM⊥1 (M2) is complemented;

(ii) M1 +M2 is complemented.

Moreover, we have that

M1 +M2 = M1 + PM⊥1 (M2) . (4)

Proof. First, we prove (4). Consider x ∈ M1 + PM⊥1 (M2). It follows that there exists

xi ∈Mi for i ∈ {1, 2} such that

x = x1 + PM⊥1 (x2) = x1 − PM1 (x2) + PM1 (x2) + PM⊥1 (x2)

= (x1 − PM1 (x2)) + x2 ∈M1 +M2.

Viceversa, consider x ∈ M1 + M2. There exists xi ∈ Mi for i ∈ {1, 2} such that
x = x1 + x2. We can conclude that

x = x1 + x2 = x1 +
(
PM1 (x2) + PM⊥1 (x2)

)
= (x1 + PM1 (x2)) + PM⊥1 (x2)

belongs to M1 + PM⊥1 (M2). Define M3 = PM⊥1 (M2) and M = M1 + PM⊥1 (M2) =

M1 + M3. Let y ∈ M1. Since M3 = PM⊥1 (M2) ⊆ M⊥
1 , we observe that 〈x, y〉H = 0 for

all x ∈ M3, proving that y ∈ M⊥
3 , that is, M1 ⊆ M⊥

3 . By point 1 of Lemma 1 and

since PM⊥1
(
M⊥

3

)
⊆M⊥

1 and PM⊥1
(
M⊥

3

)
⊆M⊥

3 ,
14 this implies that M⊥ = M⊥

1 ∩M⊥
3 ⊇

PM⊥1

(
M⊥

3

)
.

(i) implies (ii). Since clearly M ⊕M⊥ ⊆ H, we only need to prove the opposite

inclusion. Consider x̄ ∈ H. Since M3 ⊆M⊥
1 , note that

x̄ = PM1 (x̄) + PM⊥1 (x̄) = PM1 (x̄) + PM⊥1

(
PM3 (x̄) + PM⊥3 (x̄)

)
= PM1 (x̄) + PM⊥1 (PM3 (x̄)) + PM⊥1

(
PM⊥3 (x̄)

)
= (PM1 (x̄) + PM3 (x̄)) + PM⊥1

(
PM⊥3 (x̄)

)
,

14Consider y ∈ PM⊥
1

(
M⊥3

)
. Let x ∈M⊥3 be such that y = PM⊥

1
(x). Clearly, x = PM1

(x)+PM⊥
1

(x).

Since M1 ⊆M⊥3 , it follows that y = PM⊥
1

(x) = x− PM1 (x) ∈M⊥3 .
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where PM1 (x̄) ∈M1, PM3 (x̄) ∈M3, and PM⊥1

(
PM⊥3 (x̄)

)
∈M⊥, proving that PM1 (x̄)+

PM3 (x̄) ∈M1 +M3 = M and PM⊥1

(
PM⊥3 (x̄)

)
∈M⊥.

(ii) implies (i). Clearly, we have M3 ⊕M⊥
3 ⊆ H. Viceversa, consider x̄ ∈ H. Since

M1 ⊆M , note that

x̄ = PM (x̄) + PM⊥ (x̄) = PM

(
PM1 (x̄) + PM⊥1 (x̄)

)
+ PM⊥ (x̄)

= PM (PM1 (x̄)) + PM

(
PM⊥1 (x̄)

)
+ PM⊥ (x̄)

= PM1 (x̄) + PM

(
PM⊥1 (x̄)

)
+ PM⊥ (x̄)

= PM

(
PM⊥1 (x̄)

)
+ (PM1 (x̄) + PM⊥ (x̄)) .

Observe that y = PM⊥1 (x̄) ∈ M⊥
1 . By point 1 of Lemma 1 and since y = PM (y) +

PM⊥ (y), we have that PM (y) = y−PM⊥ (y) ∈M⊥
1 . Since PM (y) ∈M = M1 +M3 and

M1 ∩M3 = {0}, it follows that PM
(
PM⊥1 (x̄)

)
= PM (y) ∈ M3. Finally, by point 1 of

Lemma 1, note that since M1 ⊆M⊥
3 , PM1 (x̄) ∈M1, and PM⊥ (x̄) ∈M⊥ = M⊥

1 ∩M⊥
3 ,

we have that PM1 (x̄) + PM⊥ (x̄) ∈ M⊥
3 . We can conclude that x̄ = PM

(
PM⊥1 (x̄)

)
+

(PM1 (x̄) + PM⊥ (x̄)) where PM
(
PM⊥1 (x̄)

)
∈M3 and PM1 (x̄) + PM⊥ (x̄) ∈M⊥

3 . �

We conclude by observing that, if A is either an f -algebra of L0 type or an Arens

algebra of L∞ type, then the orthogonal complement of a nonempty subset M is

necessarily dH closed. This provides a hint for our characterization of complemented

submodules. Indeed, by point 5 of Lemma 1, if M is a complemented submodule, then

necessarily M =
(
M⊥)⊥, thus necessarily it must be dH closed. Later on in the paper,

we will show that this is also a suffi cient condition for complementation.

Lemma 2 Let A be either an f-algebra of L0 type or an Arens algebra of L∞ type and
H a pre-Hilbert A-module. If ∅ 6= M ⊆ H, then M⊥ is dH closed.

Proof. Recall that the map z 7→ 〈z, x〉H is A-linear and dH − d continuous for all

x ∈ H. In particular, z 7→ 〈z, x〉H is linear. Fix x ∈ H and define ker {x} =

{y ∈ H : 〈x, y〉H = 0}. It follows immediately that ker {x} is dH closed. Since M⊥ =⋂
x∈M ker {x}, the statement follows. �

3.1 Finitely generated submodules

In this subsection, we recall the notion of span for (pre-Hilbert) A-modules and we

provide a suffi cient condition for a finitely generated submodule to be complemented

(see Proposition 2).
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Definition 5 Let A be an Archimedean f-algebra with unit e and H a pre-Hilbert

A-module. Given a finite set {xi}ni=1 ⊆ H, we define spanA {xi}
n
i=1 as the smallest

submodule of H containing {xi}ni=1.

Similarly to what happens for standard vector spaces (see [6, p. 31]), spanA {xi}
n
i=1

is well defined and is characterized as the intersection of all submodules which contain

{xi}ni=1 as well as the set of all A-linear combinations of the elements in {xi}
n
i=1, that

is,

spanA {xi}
n
i=1 =

{
x ∈ H : ∃ {ai}ni=1 ⊆ A s.t. x =

n∑
i=1

ai · xi

}
. (5)

Proposition 2 Let A be an Archimedean f-algebra with unit e and H a pre-Hilbert

A-module. If H is such that for each x ∈ H the submodule spanA {x} is comple-
mented, then for each finite collection {xi}ni=1 ⊆ H the submodule spanA {xi}

n
i=1 is

complemented.

Proof. We proceed by induction.

Initial Step. n = 1. It follows by assumption.

Inductive Step. The statement is true for n. We next show it holds for n+ 1. By (5),

it is immediate to see that

spanA {xi}
n+1
i=1 = spanA {xi}

n
i=1 + spanA {xn+1} . (6)

By inductive assumption, M1 = spanA {xi}
n
i=1 is complemented. If we define M2 =

spanA {xn+1}, then we have that PM⊥1 (spanA {xn+1}) = spanA

{
PM⊥1 (xn+1)

}
, where

the latter submodule is complemented by assumption. By Proposition 1, M1 + M2 is

complemented. By (6), the inductive step follows.

By induction, the statement follows. �

Since the span of one element plays a fundamental role, we next study the topolog-

ical properties of this object. Later on in the paper, this will yield that, for self-dual

pre-Hilbert A-modules over algebras of L0 type, finitely generated submodules are al-

ways complemented. While, for self-dual pre-Hilbert A-modules over algebras of L∞

type, submodules generated by one element are always complemented, provided the

norm of the generator is invertible.

Lemma 3 Let A be either an f-algebra of L0 type or an Arens algebra of L∞ type and
H a pre-Hilbert A-module. If {an}n∈N ⊆ A and x̄ ∈ H is such that N (x̄) ≤ e then:

1. If A is an f-algebra of L0 type, by defining ãn = cN(x̄)an for all n ∈ N, we have
that an · x̄ = ãn · x̄ for all n ∈ N and

an · x̄
dH→ y ⇐⇒ ãn

d→ a ∈ A and y = a · x̄.
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2. If A is an Arens algebra of L∞ type, N (x̄) is invertible,15 and {an · x̄}n∈N ⊆ BH ,

then

an · x̄
dH→ y ⇐⇒ an

d→ a ∈ A and y = a · x̄ ∈ BH .

Proof. 1. Since 0 ≤ N (x̄) ∈ Ae, we can consider its basic component cN(x̄). For the

sake of brevity, we will denote it by c. Recall that c2 = c. Note that

N (an · x̄− ãn · x̄) = N ((an − ãn) · x̄) = |an − ãn|N (x̄) = |an − ãn| cN (x̄)

= |an − ãn| |c|N (x̄) = |can − cãn|N (x̄) =
∣∣can − c2an

∣∣N (x̄)

= |can − can|N (x̄) = 0,

proving that an · x̄ = ãn · x̄ for all n ∈ N. Next, assume that an · x̄
dH→ y. It follows that

ãn · x̄
dH→ y. Observe that

|ãnN (x̄)− ãmN (x̄)| = |ãn − ãm| |N (x̄)| = |ãn − ãm|N (x̄) = N ((ãn − ãm) · x̄)

= N (ãn · x̄− ãm · x̄) ∀m,n ∈ N.

This implies that

d (ãnN (x̄) , ãmN (x̄)) = ϕ̄ (|ãnN (x̄)− ãmN (x̄)| ∧ e) = ϕ̄ (N (ãn · x̄− ãm · x̄) ∧ e)
= dH (ãn · x̄, ãm · x̄) ∀m,n ∈ N.

Since {ãn · x̄}n∈N is dH convergent (in particular, it is dH Cauchy), we can conclude

that {ãnN (x̄)}n∈N ⊆ A is d Cauchy. Since A is d complete, ãnN (x̄)
d→ l. We can

conclude that ãn
d→ ldN(x̄). Define a = ldN(x̄). It follows that an · x̄ = ãn · x̄

dH→ a · x̄.
Since the limit is unique, we have that y = a · x̄, proving one implication. On the other
hand, if ãn

d→ a, then an · x̄ = ãn · x̄
dH→ a · x̄, proving the opposite implication.

2. Assume that an · x̄
dH→ y. Since {an · x̄}n∈N ⊆ BH , we have that |anN (x̄)| =

|an|N (x̄) = N (an · x̄) ≤ e for all n ∈ N. This implies that {anN (x̄)}n∈N ⊆ [−e, e]. At
the same time, by the same arguments of before, we have that d (anN (x̄) , amN (x̄)) =

dH (an · x̄, am · x̄) for all n,m ∈ N. Since {an · x̄}n∈N is dH convergent (in particu-

lar, it is dH Cauchy), we can conclude that {anN (x̄)}n∈N ⊆ A is d Cauchy. Since

{anN (x̄)}n∈N ⊆ A is d Cauchy and [−e, e] is d complete, anN (x̄)
d→ l ∈ [−e, e]. Since

N (x̄) is invertible, we can conclude that an
d→ l (N (x̄))−1. Define a = l (N (x̄))−1. It

follows that an · x̄
dH→ a · x̄. Since the limit is unique, we have that y = a · x̄. Since

the topology induced by d is locally solid, we also have that |anN (x̄)| d→ |aN (x̄)| =

N (a · x̄) = |l| ∈ [−e, e], proving that a · x̄ ∈ BH and the implication. On the other

hand, if an
d→ a, then an · x̄

dH→ a · x̄, proving the opposite implication. �
15That is, there exists b ≥ 0, denoted by N (x̄)

−1, such that bN (x̄) = e.
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Lemma 4 Let A be either an f-algebra of L0 type or an Arens algebra of L∞ type and
H a pre-Hilbert A-module. If x ∈ H, then there exists x̄ ∈ H such that N (x̄) ≤ e and

spanA {x} = spanA {x̄}. Moreover,

1. If A is an f-algebra of L0 type, then spanA {x} is a dH closed set.

2. If A is an Arens algebra of L∞ type and N (x) is invertible, then spanA {x}∩BH

is a dH closed set.

Proof. Given x ∈ H, define ā = N (x) + e, b̄ = ā−1, and x̄ = b̄ · x. Since b̄ ≥ 0, it

follows that N (x̄) = b̄N (x) ≤ b̄ā = e. Next, note that if y ∈ spanA {x}, then there
exists a ∈ A such that y = a · x. It follows that y =

(
a
(
āb̄
))
· x = (aā) ·

(
b̄ · x

)
=

(aā) · x̄ ∈ spanA {x̄}. Viceversa, if y ∈ spanA {x̄}, then there exists a ∈ A such that

y = a · x̄ =
(
ab̄
)
· x ∈ spanA {x}.

1. We next prove that spanA {x̄} = spanA {x} is dH closed. Let {xn}n∈N ⊆
spanA {x̄} be such that xn

dH→ y. It follows that there exists a sequence {an}n∈N ⊆ A

such that an · x̄ = xn
dH→ y. By point 1 of Lemma 3, we can conclude that there exists

a ∈ A such that xn = an · x̄
dH→ a · x̄ ∈ spanA {x̄}, proving that spanA {x̄} is dH closed.

2. We next prove that spanA {x̄} ∩ BH = spanA {x} ∩ BH is dH closed. Since N (x)

is invertible, so is N (x̄). Let {xn}n∈N ⊆ spanA {x̄} ∩ BH be such that xn
dH→ y. It

follows that there exists a sequence {an}n∈N ⊆ A such that an · x̄ = xn
dH→ y and

{an · x̄}n∈N ⊆ BH . By point 2 of Lemma 3, we can conclude that there exists a ∈ A
such that xn = an · x̄

dH→ a · x̄ ∈ spanA {x̄} ∩ BH , proving that spanA {x̄} ∩ BH is dH
closed. �

3.2 Arens algebras of L∞ type
In a standard Hilbert space, it is well known that, given a vector subspace M ⊆ H,

H = M ⊕M⊥ if and only if M is norm closed. Since a vector subspace is convex, this

is also equivalent to M being closed in the weak topology.

Given a pre-Hilbert A-module where A is an Arens algebra of L∞ type, the gen-

eralization of the above facts leaves several options open. The first thing to observe

is that the pre-Hilbert requirement needs to be strengthened. We will in fact assume,

as a premise, that H is self-dual. Clearly, in the standard case of A = R, self-duality
is equivalent to completeness in norm. At the same time, in studying a submodule

M ⊆ H, we will show that there are several “right”notions of closure ofM . In Lemma

2, we saw already that closure with respect to the metric dH could be a possible can-

didate. The next lemma shows that closure with respect to the topology σ (H,S (H))

could be another.
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Lemma 5 Let A be an Arens algebra of L∞ type and H a pre-Hilbert A-module. If

∅ 6= M ⊆ H, then M⊥ is σ (H,S (H)) closed.

Proof. Fix x ∈ H and define ker {x} = {y ∈ H : 〈x, y〉H = 0}. Consider a net {yi}i∈I ⊆
ker {x} such that yi

σ(H,S(H))→ y. It follows that 0 = a 〈yi, x〉H = 〈yi, a · x〉H for all i ∈ I
and for all a ∈ A. This implies that

0 = ϕ̄ (〈yi, a · x〉H)→ ϕ̄ (〈y, a · x〉H) ∀a ∈ A.

We can conclude that ϕ̄ (a 〈x, y〉H) = ϕ̄ (〈y, a · x〉H) = 0 for all a ∈ A. If we define

ā = 〈x, y〉H ∈ A, this implies that 0 = ϕ̄ (ā 〈x, y〉H) = ϕ̄ (ā2). Since ϕ̄ is strictly

positive, this implies that ā2 = 0, that is, ā = 0. By definition of ā, we can conclude that

y ∈ ker {x}, proving that ker {x} is σ (H,S (H)) closed. Since M⊥ = ∩x∈M ker {x},
the statement follows. �

We are ready to prove our first two main results on complementation. On the

one hand, the first set of topological conditions (Theorem 1), which characterize when

a submodule M is complemented, consists of conditions which characterize the self-

duality of M (see also point 4 of Lemma 1). On the other hand, the second set of

topological conditions (Theorem 2) consists instead of “genuine”topological conditions

on M , which, in particular, highlight the connection between pre-Hilbert A-modules

over Arens algebras of L∞ type and f -algebras of L0 type (cf. Condition (ii) in Theorem

2 and Condition (i) in Theorem 3).

Theorem 1 Let A be an Arens algebra of L∞ type and H a pre-Hilbert A-module. If

H is self-dual andM is a submodule of H, then the following statements are equivalent:

(i) M is σ (H,S (H)) closed;

(ii) M ∩BH is σ (H,S (H)) closed;

(iii) M ∩BH is σ (H,S (H)) compact;

(iv) M ∩BH is ‖ ‖m closed;

(v) M ∩BH is dH closed;

(vi) H = M ⊕M⊥;

(vii) M = M⊥⊥.
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Proof. By [9, Theorem 3] and since H is self-dual, we have that BH is σ (H,S (H))

compact.

(i) implies (ii). Since σ (H,S (H)) is Hausdorff, BH is closed. The implication

trivially follows.

(ii) implies (iii). SinceM ∩BH ⊆ BH is σ (H,S (H)) closed and BH is σ (H,S (H))

compact, it follows that M ∩BH is σ (H,S (H)) compact.

(iii) implies (iv). Since M ∩ BH is σ (H,S (H)) compact, it is also σ (H,S (H))

closed. Consider now a sequence {xn}n∈N ⊆ M ∩ BH such that xn
‖ ‖m→ x. Since

xn
‖ ‖m→ x implies xn

σ(H,S(H))→ x, it follows that x ∈M ∩BH , proving the implication.

(iv) implies (vi). SinceM is a submodule of H, if we define 〈 , 〉M as the restriction

of 〈 , 〉H to M ×M , then (M,+, ·, 〈 , 〉M) is a pre-Hilbert A-module. We also have

that M ∩ BH = BM and the norm ‖x‖m′ =
√
ϕ̄ (〈x, x〉M) coincides with ‖ ‖m on M .

Since H is self-dual, BH is ‖ ‖m complete. By assumption, this implies that BM is

‖ ‖m complete, that is, BM is ‖ ‖m′ complete. By [9, Theorem 3], we have that M is

self-dual. By point 4 of Lemma 1, the implication follows.

(vi) implies (vii). By point 5 of Lemma 1, the implication follows.

(vii) implies (i). By Lemma 5 and since M = M⊥⊥ =
(
M⊥)⊥, it follows that M is

σ (H,S (H)) closed.

It follows that conditions (i), (ii), (iii), (iv), (vi), and (vii) are equivalent. Finally

observe that:

(v) implies (iv). Consider a sequence {xn}n∈N ⊆ M ∩ BH such that xn
‖ ‖m→ x.

Since M ∩ BH is dH closed and xn
‖ ‖m→ x implies that xn

dH→ x, we can conclude that

x ∈M ∩BH , proving the implication.

(vii) implies (v). By Lemma 2 and since M = M⊥⊥ =
(
M⊥)⊥, M is dH closed. By

Theorem 7 and since H is self-dual, BH is dH complete. It follows that M ∩BH is dH
closed, proving the implication. �

As a corollary, under the assumption that the norm of the generator is invertible, we

obtain that submodules generated by one element are complemented, and, in particular,

they are σ (H,S (H)) as well as ‖ ‖H closed. Finally, the same holds for the sum of

two complemented and orthogonal submodules.

Corollary 1 Let A be an Arens algebra of L∞ type and H a pre-Hilbert A-module. If

H is self-dual, then the following statements are true:

1. For each x ∈ H such that N (x) is invertible, the submodule spanA {x} is com-
plemented. In particular, spanA {x} is σ (H,S (H)) and ‖ ‖H closed.
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2. If M1 and M2 are complemented and orthogonal submodules, then their sum is

complemented. In particular, M1 +M2 is σ (H,S (H)) and ‖ ‖H closed.

Proof. 1. Let x ∈ H. By point 2 of Lemma 4, spanA {x} ∩ BH is dH closed. By

Theorem 1, we have that spanA {x} is complemented.
2. SinceM1 andM2 are orthogonal, it follows thatM2 ⊆M⊥

1 and PM⊥1 (M2) = M2.

By Proposition 1 and since M1 and M2 are complemented, we have that M1 + M2 is

complemented.

In both cases, by Theorem 1, the property of being complemented yields that the

new (sum) submodule is σ (H,S (H)) closed, which immediately implies that it is ‖ ‖H
closed too. �

In the next result, we show that removing the hypothesis of invertibility in point 1

of Corollary 1 easily generates counterexamples.

Example 1 Let (Ω,F , P ) = (N,P (N) , P ) where P (A) =
∑

i∈A
1
2i
for all A ∈ P (N).

Consider A = H = L∞ (Ω,F , P ) .The space A is an Arens algebra of L∞ type. The

space H is a pre-Hilbert A-module where + is the usual sum. The outer product · is
the usual product and 〈x, y〉H = xy. In particular, H = L2,∞ (Ω,G,F , P ) of Section

4 when (Ω,F , P ) = (N,P (N) , P ) and G = F . This yields that H is self-dual (see

[9, Theorem 7]). Consider x ∈ H to be such that x (i) = 1
i
for all i ∈ N. Note that

N (x) = x is not invertible in A. Consider M = spanA {x}. Note that if y ∈M⊥, then

〈x, y〉H = xy = 0, that is, 0 = x (i) y (i) = 1
i
y (i) for all i ∈ N, that is, y (i) = 0 for all

i ∈ N. Thus, M⊥ = {0}. At the same time, consider z ∈ H such that z (i) = 1 for all

i ∈ N. It is immediate to see that z 6∈M . We can conclude that

z ∈ H and z 6∈M = M ⊕M⊥.

The next result, which provides topological conditions for M being complemented,

generalizes the usual known result for standard Hilbert spaces. Indeed, when A = R,
‖ ‖m is the norm induced by the inner product and σ (H,S (H)) is the weak topology

induced by the norm dual of H.

Theorem 2 Let A be an Arens algebra of L∞ type and H a pre-Hilbert A-module. If

H is self-dual andM is a submodule of H, then the following statements are equivalent:

(i) M is σ (H,S (H)) closed;

(ii) M is dH closed;

(iii) M is ‖ ‖m closed;
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(iv) H = M ⊕M⊥.

Proof. By Theorem 1, (i) is equivalent to (iv).

(ii) implies (iii). Consider a sequence {xn}n∈N ⊆ M such that xn
‖ ‖m→ x. Since

xn
‖ ‖m→ x implies xn

dH→ x and M is dH closed, it follows that x ∈ M , proving the

implication.

(iii) implies (iv). By [9, Theorem 3] and since H is self-dual, it follows that BH

is ‖ ‖m complete, in particular, it is ‖ ‖m closed. This implies that BH ∩M is ‖ ‖m
closed. By Theorem 1, the implication follows.

(iv) implies (ii). By point 5 of Lemma 1, we have that M = M⊥⊥. By Lemma 2

and since M⊥⊥ =
(
M⊥)⊥, it follows that M is dH closed. �

We conclude by observing that the orthogonal complement of a submodule M

coincides with the orthogonal complement computed in a standard pre-Hilbert space.

The result then should clarify the meaning of Lemma 5 and point (iii) of Theorem 2.

Indeed, first recall that 〈 , 〉m : H ×H → R, defined by

〈x, y〉m = ϕ̄ (〈x, y〉H) ∀x, y ∈ H,

makes (H,+, ·e, 〈 , 〉m) a standard pre-Hilbert space.16

Proposition 3 Let A be an Arens algebra of L∞ type and H a pre-Hilbert A-module.

If M ⊆ H is a submodule, then

M⊥ = {y ∈ H : 〈x, y〉m = 0 ∀x ∈M} .

Proof. If y ∈ M⊥, then 〈x, y〉H = 0 for all x ∈ M , yielding that 〈x, y〉m = 0 for

all x ∈ M . Viceversa, assume that y ∈ H is such that 〈x, y〉m = 0 for all x ∈ M .

By contradiction, assume that y 6∈ M⊥, that is, a = 〈x̄, y〉H 6= 0 for some x̄ ∈ M .

It follows that either 0 ≤ a+ 6= 0 or 0 ≤ a− 6= 0 or both. In the first case, by [8,

Lemma 3], we have that there exists c ∈ A such that c = c2 and a+ = ca. Since M is a

submodule, observe that c · x̄ ∈M . Since a+ > 0 and ϕ̄ is strictly positive, this implies

that 0 < ϕ̄ (a+) = ϕ̄ (c 〈x̄, y〉H) = ϕ̄ (〈c · x̄, y〉H) = 〈c · x̄, y〉m = 0, a contradiction.

Similarly, in the second case, by [8, Lemma 3], we have that there exists c ∈ A such

that c = c2 and −a− = ca. Since M is a submodule, observe that c · x̄ ∈ M . Since
a− > 0 and ϕ̄ is strictly positive, this implies that 0 > ϕ̄ (−a−) = ϕ̄ (c 〈x̄, y〉H) =

ϕ̄ (〈c · x̄, y〉H) = 〈c · x̄, y〉m = 0, a contradiction. �
16Note that H is typically not an Hilbert space, that is, it is not ‖ ‖m complete, even if H is

self-dual. See, for example, the self-dual pre-Hilbert L∞ (G)-module L2,∞ (Ω,G,F , P ) of Section 4.
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3.3 f-algebras of L0 type

As we already observed before, in a standard Hilbert space, it is well known that, given

a vector subspace M ⊆ H, H = M ⊕M⊥ if and only if M is norm closed.

Given a pre-Hilbert A-module H where A is an Arens algebra of L∞ type, we

saw that the generalization of this result to pre-Hilbert modules was not completely

obvious (see Theorems 1 and 2), given the several different natural topologies that one

can consider on H. When A is an f -algebra of L0 type, the generalization is much

more intuitive: M is complemented if and only if it is closed with respect to the metric

dH .

Theorem 3 Let A be an f-algebra of L0 type and H a pre-Hilbert A-module. If H is

self-dual and M is a submodule of H, then the following statements are equivalent:

(i) M is dH closed;

(ii) H = M ⊕M⊥;

(iii) M = M⊥⊥.

Proof. (i) implies (ii). Since M is a submodule of H, if we define 〈 , 〉M as the

restriction of 〈 , 〉H to M ×M , then (M,+, ·, 〈 , 〉M) is a pre-Hilbert A-module. It

is immediate to see that dM = dH once the latter is restricted to M × M . By [9,

Theorem 5] and since H is self-dual, H is dH complete. By [9, Theorem 5] and since

M is dH closed, M is dM = dH complete and it follows that M is self-dual. By point

4 of Lemma 1, the statement follows.

(ii) implies (iii). By point 5 of Lemma 1, the implication follows.

(iii) implies (i). By Lemma 2 and since M = M⊥⊥ =
(
M⊥)⊥, it follows that M is

dH closed. �

Remark 2 Guo [15] proves a similar result when A = L0 (Ω,G, P ). His proof is

different from ours since it relies on a version of the projection theorem for pre-Hilbert

L0 (G)-modules. Here, instead, we prove it by relying on self-duality. Most importantly,

our result holds for a larger class of algebras (see A in Subsection 4.3).

Corollary 2 Let A be an f-algebra of L0 type and H a pre-Hilbert A-module. If H is

self-dual, then the following statements are true:

1. For each {xi}ni=1 ⊆ H the submodule spanA {xi}
n
i=1 is dH closed and comple-

mented.
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2. For each {xi}ni=1 ⊆ H and each dH closed submodule M , we have that M +

spanA {xi}
n
i=1 is dH closed and complemented.

3. If M1 and M2 are dH closed and orthogonal submodules, then their sum is dH
closed and complemented.

Proof. 1. First, we prove the statement for n = 1. Let x1 ∈ H. By point 1 of Lemma
4, spanA {x1} is dH closed. By Theorem 3, we have that spanA {x1} is complemented.
By Proposition 2, it follows that spanA {xi}

n
i=1 is complemented for any collection

{xi}ni=1 ⊆ H.

2. Define M1 = M and M2 = spanA {xi}
n
i=1. By Theorem 3, M1 is comple-

mented. Note also that PM⊥1 (M2) = spanA{PM⊥1 (xi)}ni=1. By point 1, this implies that

PM⊥1 (M2) is complemented as well. By Proposition 1, M + spanA {xi}
n
i=1 is comple-

mented.

3. By Theorem 3 and since M1 is dH closed, M1 is complemented. Since M1 and

M2 are orthogonal, it follows that M2 ⊆ M⊥
1 and PM⊥1 (M2) = M2. By Theorem 3

and since M2 is dH closed, PM⊥1 (M2) is complemented. By Proposition 1, M1 +M2 is

complemented.

In all three cases, by Theorem 3, the property of being complemented yields that

the new (sum) submodule is dH closed. �
Note that for self-dual pre-Hilbert A-modules over f -algebras of L0 type, finitely

generated submodules are always dH closed: a key property in Finance applications.

4 Applications

We will first introduce two pre-Hilbert A-modules that will play a key role in our

applications: L2,0 (Ω,G,F , P ) and L2,∞ (Ω,G,F , P ). Consider a nonempty set Ω, a σ-

algebra of subsets of Ω denoted byF , a sub-σ-algebra G ⊆ F , and a probability measure
P : F → [0, 1]. Two F-measurable random variables are defined to be equivalent if

and only if they coincide almost surely. Define:

1. A = L0 (G), that is, A is the space (of equivalence classes) of real valued and

G-measurable functions;17

2. b ≥ a if and only if b (ω) ≥ a (ω) almost surely;

3. e = 1Ω, that is, e is the function that takes constant value 1;

17As usual, we view the equivalence classes as functions. This convention will apply throughout the

rest of the paper.
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4. It follows that Ae = L∞ (G), that is, Ae is the space of all essentially bounded

and G-measurable functions;

5. ϕ̄ : L∞ (G)→ R as

ϕ̄ (a) =

∫
adP = Ea ∀a ∈ L∞ (G) ;

6. d : L0 (G)× L0 (G)→ R as

d (a, b) = ϕ̄ (|b− a| ∧ e) =

∫
(|b− a| ∧ e) dP ∀a, b ∈ L0 (G) .

Note that the topology induced by d is the one of convergence in probability P .

It is immediate to verify that (A =)L0 (G) is an f -algebra of L0 type and (Ae =)L∞ (G)

is an Arens algebra of L∞ type.18

We denote by L0 (F) = L0 (Ω,F , P ) the space of real valued and F-measurable
functions. We call x, y, and z the elements of L0 (F). Given an F-measurable function
x : Ω→ R such that x ≥ 0, we denote by E (x||G) its conditional expected value with

respect to P given G (see Loeve [23, Section 27] and Shiryaev [28, p. 213]) which exists
and is unique P -a.s. Observe that E (x||G) might not be real valued. If x 6≥ 0, we

define E (x||G) = E (x+||G)−E (x−||G), provided E (x+||G) ,E (x−||G) ∈ L0 (G). As for

integrable random variables, one can show that if x, y ∈ L0 (F) and E (x||G) ,E (y||G)

are well defined, then

1. E (ax+ by||G) = aE (x||G) + bE (y||G) for all a, b ∈ L0 (G);

2. ϕ (E (x||G)) ≤ E (ϕ (x) ||G), provided ϕ : R → R is convex and the latter expec-
tation is well defined (Conditional Jensen’s inequality)

Denote by

H = L2,0 (Ω,G,F , P ) =
{
x ∈ L0 (F) :

√
E (x2||G) ∈ L0 (G)

}
.

We endow H with two operations:

1. + : H ×H → H which is the usual pointwise sum operation;

2. · : A×H → H such that a · x = ax where ax is the usual pointwise product.

18Both spaces are endowed with the usual operations of sum, scalar product, and multiplication.

The norm on L∞ (G) is the essential sup norm.
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The space L2,0 (Ω,G,F , P ) was introduced by Hansen and Richard [17]. Finally,

we also define an inner product, namely, 〈 , 〉H : H ×H → L0 (G) by

〈x, y〉H = E (xy||G) ∀x, y ∈ H.

Inter alia, Hansen and Richard [17, p. 592] show that this generalized inner product is

well defined and, in particular, a conditional version of the Cauchy-Schwarz’s inequality

holds:

|E (xy||G)| ≤
√
E (x2||G)

√
E (y2||G) ∀x, y ∈ H. (7)

Note that dH : H ×H → [0,∞)

dH (x, y) =

∫ (√
E
(
(x− y)2 ||G

)
∧ 1Ω

)
dP ∀x, y ∈ H. (8)

It is well known that H is a self-dual pre-Hilbert L0 (G)-module (see [17], [15], and [9,

Theorem 6]). Thus, in particular, H is dH complete.

We next consider another pre-Hilbert module. Denote by L2 (F) = L2 (Ω,F , P )

the space of F-measurable and square integrable functions. Denote also by

H = L2,∞ (Ω,G,F , P ) =
{
x ∈ L2 (F) :

√
E (x2||G) ∈ L∞ (G)

}
⊆ L2 (F) .

If we restrict the two above operations, + and ·, to L2,∞ (Ω,G,F , P ) and L∞ (G) and

we also restrict (x, y) 7→ E (xy||G) to L2,∞ (Ω,G,F , P ), then it is not hard to show that

L2,∞ (Ω,G,F , P ) is a pre-Hilbert L∞ (G)-module. This space was studied in Ergodic

theory (in dealing with compact extensions) by Tao [29].19

Note that in this case ‖ ‖H : H → [0,∞) is such that

‖x‖H =
√
‖E (x2||G)‖L∞(G) ∀x ∈ H.

Similarly, we have that

‖x‖m =

√∫
E (x2||G) dP =

√∫
x2dP = ‖x‖L2(F) ∀x ∈ H.

By [9, Theorem 7], we have that H is a self-dual pre-Hilbert L∞ (G)-module.

4.1 Stricker’s Lemma

In Finance, it is common to assume that there are n primary assets that are traded at

an initial date t = 0. Typically, each primary asset xi is modelled to be a contingent

payment or a stream of contingent payments. Mathematically, xi is an F-measurable
19Tao [29] focuses on the complex case. See also Zhao [31] for the real case.
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function from Ω to either R (see, e.g., Hansen and Richard [17]) or a space of sequences
(see, e.g., Hansen [16] and Cochrane [11]). At t = 0, it is possible to trade in the market

these primary assets. In particular, a payoffvector of the form
∑n

i=1 ai·xi can be traded.
From an economic point of view, the element ai specifies the quantity to buy/sell of

asset i at 0. Moreover, each ai might be more than a number, it can be a function

which depends on the information at time 0, that is, ai is a G-measurable function from
Ω to R. Intuitively, it follows that the space of marketed contingent claims is nothing
but spanA {xi}

n
i=1. The closure of spanA {xi}

n
i=1 is then a fundamental condition for

providing versions of the Fundamental Theorem of Asset Pricing (see [17, Assumption

2.1], [16], [27], [11, p. 17], and [10]). Depending on the space H the set {xi}ni=1

is assumed to belong to, this amounts to prove a version of Stricker’s Lemma. For

example, if {xi}ni=1 ⊆ L2,0 (Ω,G,F , P ), as in [17, Assumption 2.1] and [10], we have:

Proposition 4 Let H = L2,0 (Ω,G,F , P ). If {xi}ni=1 ⊆ H, then spanA {xi}
n
i=1 is dH

closed.

Proof. By Corollary 2 and since H is a self-dual pre-Hilbert L0 (G)-module, the

statement follows. �

Remark 3 The original Stricker’s Lemma (see [27, Lemma 2.3]) proves that, given
{xi}ni=1 ⊆ L0 (F), the set{

x ∈ L0 (F) : ∃ {ai}ni=1 ⊆ L0 (G) s.t. x =
n∑
i=1

aixi

}

is closed with respect to the topology of convergence in probability. The arguments

contained in [27, Lemma 2.4] show that this is equivalent to prove the same result

for {xi}ni=1 ⊆ L2,0 (Ω,G,F , P ). Thus, despite being suffi cient for financial applications

(see [17, Assumption 2.1] and [10]), our result is weaker and differs from the original

Stricker’s Lemma in only one, but key dimension: We show that spanA {xi}
n
i=1 is dH

closed, rather than closed with respect to the topology of convergence in probability.

Note that the latter is coarser than the former. At the same time, if G = F , then
L2,0 (Ω,G,F , P ) = L0 (F) and dH indeed metrizes the topology of convergence in

probability. Thus, in this special case, our result coincides with Stricker’s Lemma.

4.2 Ergodic theory

Consider the pre-Hilbert module H = L2,∞ (Ω,G,F , P ). Consider also a map τ : Ω→
Ω such that τ is F/F-measurable and P (E) = P (τ−1 (E)) for all E ∈ F . Let G be
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the sub-σ-algebra of invariant events. Define T : H → H to be such that x 7→ x ◦ τ .
An element x ∈ H is said to be (conditionally) weak mixing if and only if

1

N

N−1∑
n=0

‖〈T n (x) , x〉H‖L2(F) → 0. (9)

We denote by Hwm the set {x ∈ H : x is weak mixing}.

Theorem 4 Let H = L2,∞ (Ω,G,F , P ). If G is the sub-σ-algebra of invariant events,
then Hwm ∩BH is ‖ ‖L2(F) closed. In particular, we have that

H = Hwm ⊕H⊥wm. (10)

Proof. One can show that Hwm is a submodule.20 Note that T is linear and such that

‖T (x)‖H = ‖x‖H and ‖T (x)‖L2(F) = ‖x‖L2(F) for all x ∈ H.21 Moreover, observe that√
E |〈x, y〉H |

2 =

√
E 〈x, y〉2H ≤

√
E (〈x, x〉H 〈y, y〉H) ≤

√
E
(
‖〈x, x〉H‖L∞(G) 〈y, y〉H

)
=
√
‖〈x, x〉H‖L∞(G) E (〈y, y〉H) =

√
‖〈x, x〉H‖L∞(G)

√
E (〈y, y〉H)

= ‖x‖H ‖y‖L2(F) .

Let {xk}k∈N ⊆ Hwm ∩BH to be such that xk
‖ ‖L2(F)→ x ∈ H. This implies that for each

k ∈ N and n ∈ N0

‖〈T n (x) , x〉H − 〈T n (xk) , xk〉H‖L2(F) ≤ ‖〈T
n (x) , x〉H − 〈T n (xk) , x〉H‖L2(F)

+ ‖〈T n (xk) , x〉H − 〈T n (xk) , xk〉H‖L2(F)

= ‖〈T n (x− xk) , x〉H‖L2(F) + ‖〈T n (xk) , x− xk〉H‖L2(F)

= ‖〈x, T n (x− xk)〉H‖L2(F) + ‖〈T n (xk) , x− xk〉H‖L2(F)

≤ ‖x‖H ‖T n (x− xk)‖L2(F) + ‖T n (xk)‖H ‖x− xk‖L2(F)

= ‖x‖H ‖x− xk‖L2(F) + ‖xk‖H ‖x− xk‖L2(F)

≤ (‖x‖H + 1) ‖x− xk‖L2(F) .

20A sketch of the proof is contained in [29, p. 206].
21Note that 〈T (x) , T (x)〉H = T (〈x, x〉H) = 〈x, x〉H for all x ∈ H. This yields that

‖T (x)‖H =
√
‖〈T (x) , T (x)〉H‖L∞(G)

=
√
‖〈x, x〉H‖L∞(G)

= ‖x‖H .

Similarly, we have that

‖T (x)‖L2(F) =
√
E (〈T (x) , T (x)〉H) =

√
E (〈x, x〉H) = ‖x‖L2(F) .
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It follows that for each k,N ∈ N

1

N

N−1∑
n=0

‖〈T n (x) , x〉H‖L2(F) ≤
1

N

N−1∑
n=0

‖〈T n (x) , x〉H − 〈T n (xk) , xk〉H‖L2(F)

+
1

N

N−1∑
n=0

‖〈T n (xk) , xk〉H‖L2(F)

≤ (‖x‖H + 1) ‖x− xk‖L2(F) +
1

N

N−1∑
n=0

‖〈T n (xk) , xk〉H‖L2(F) .

Since {xk}k∈N ⊆ Hwm and xk
‖ ‖L2(F)→ x ∈ H, we can conclude that for each k ∈ N

lim sup
N

1

N

N−1∑
n=0

‖〈T n (x) , x〉H‖L2(F) ≤ (‖x‖H + 1) ‖x− xk‖L2(F) → 0,

proving that limN
1
N

∑N−1
n=0 ‖〈T n (x) , x〉H‖L2(F) = 0, that is, x ∈ Hwm. Since H is

self-dual and {xk}k∈N ⊆ BH , we have that xk
‖ ‖L2(F)→ x ∈ BH . By Theorem 1, equation

(10) follows. �

Remark 4 Inter alia, in a mildly different setting, Zhao [31] obtains the same decom-
position contained in equation (10). He first shows that H⊥wm coincides with the set

of conditionally almost periodic elements. He then proceeds, by direct arguments, to

show that H = Hwm⊕H⊥wm. Instead here, we obtain the latter as a consequence of an
Hilbertian decomposition.

4.3 Stochastic processes and Hilbert modules

Consider a discrete-time filtered space
{

Ω,F , (Ft)t∈N0 , P
}
. We denote the conditional

expectation E (·||Ft) by Et (·) for all t ∈ N0. We consider three spaces of processes

x = (xt)t∈N0 :

1. S0 which denotes the space of semimartingales with initial value 0, that is, x0 = 0

and x is adapted, (i.e., xt ∈ L0 (Ft) for all t ∈ N0);

2. M loc
0 which denotes the space of local martingales with initial value 0, that is,

x ∈ M loc
0 if and only if x ∈ S0, Et−1 (|xt|) ∈ L0 (Ft−1), and Et−1 (xt) = xt−1 for

all t ∈ N.

3. M2,loc
0 which denotes the space of conditionally square integrable local martingales

with initial value 0, that is, x ∈M2,loc
0 if and only if x ∈ S0, Et−1 (x2

t ) ∈ L0 (Ft−1),

and Et−1 (xt) = xt−1 for all t ∈ N.
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Our terminology and notation is justified by the fact that, in discrete time, being

a semimartingale is conceptually equivalent to be an adapted process (see Jacod and

Shiryaev [19, p. 62]). The elements in M loc
0 are generalized martingales as defined in

Shiryaev [28, p. 476] (see also Kabanov and Safarian [20, p. 255]), where the usual

integrability condition is weakened to “conditional” integrability. At the same time,

the integrability of the initial value x0 guarantees that x is a generalized martingale if

and only if it is a local martingale (see [28, p. 478] and [20, Proposition 5.3.2]). Finally,

using the conditional Jensen’s inequality, it is immediate to see that M2,loc
0 ⊆ M loc

0 ,

since Et−1 (x2
t ) ∈ L0 (Ft−1) implies Et−1 (|xt|) ∈ L0 (Ft−1).

We say that a process a = (at)t∈N is predictable if and only if at ∈ L0 (Ft−1) for

all t ∈ N. We denote by A the space of predictable processes (that start at t = 1). It

is not hard to show that A is an f -algebra of L0 type where the operations of sum,

scalar product, and multiplication are the usual pointwise ones and so is the ≥ binary
relation.22

Given x ∈ S0, we define ∆tx = xt − xt−1 for all t ∈ N. We focus our attention on
the following two spaces:

H =
{
x ∈ S0 : Et−1

(
(∆tx)2) ∈ L0 (Ft−1) ∀t ∈ N

}
and

Hmar =
{
x ∈M loc

0 : Et−1

(
(∆tx)2) ∈ L0 (Ft−1) ∀t ∈ N

}
.

Proposition 5 Hmar ⊆ H and Hmar = H ∩M loc
0 = M2,loc

0 . Moreover,

H =
{
x ∈ S0 : Et−1

(
x2
t

)
∈ L0 (Ft−1) ∀t ∈ N

}
. (11)

Proof. We only prove (11) and Hmar = M2,loc
0 , being the other inclusions trivial.

Observe that, clearly, ∆tx ∈ L0 (Ft) for all t ∈ N. Note that x ∈ H if and only if

x ∈ S0 and ∆tx ∈ L2,0 (Ω,Ft−1,Ft, P ) for all t ∈ N. Define H̃ = {x ∈ S0 : Et−1 (x2
t ) ∈

L0 (Ft−1) ∀t ∈ N}. Assume that x ∈ H. Since x ∈ S0 and xt−1 ∈ L0 (Ft−1) ⊆
L2,0 (Ω,Ft−1,Ft, P ) for all t ∈ N, it follows that xt = ∆tx+ xt−1 ∈ L2,0 (Ω,Ft−1,Ft, P )

22In particular, we have that Ae is the space of uniformly bounded predictable processes where e is

the constant process et = 1Ω for all t ∈ N, ϕ̄ : Ae → R is such that

ϕ̄ (a) =

∞∑
t=1

(
1

2

)t
Eat ∀a ∈ Ae,

and

d (a, b) =

∞∑
t=1

(
1

2

)t
E (|bt − at| ∧ 1Ω) ∀a, b ∈ A.
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for all t ∈ N, and in particular, Et−1 (x2
t ) ∈ L0 (Ft−1) for all t ∈ N, proving that x ∈ H̃.

Viceversa, assume that x ∈ H̃. This implies that x ∈ S0 and xt ∈ L2,0 (Ω,Ft−1,Ft, P )

for all t ∈ N. Since xt−1 ∈ L0 (Ft−1) ⊆ L2,0 (Ω,Ft−1,Ft, P ) for all t ∈ N, it follows that
∆tx ∈ L2,0 (Ω,Ft−1,Ft, P ) for all t ∈ N and, in particular, Et−1

(
(∆tx)2) ∈ L0 (Ft−1)

for all t ∈ N, proving that x ∈ H. Since, clearly, Hmar = H ∩M loc
0 = H̃ ∩M loc

0 and

M2,loc
0 ⊆M loc

0 , it follows that Hmar = H̃ ∩M loc
0 = M2,loc

0 . �

In other words, Proposition 5 shows that H is the space of conditionally square

integrable semimartingales.

Example 2 Let z be such that zt = t for all t ∈ N0. Clearly, z ∈ S0 and

∆tz = 1 ∀t ∈ N =⇒ Et−1

(
(∆tz)2) ∈ L0 (Ft−1) ∀t ∈ N.

Example 3 Let M2
0 be the space of square integrable martingales with initial value

0, that is, x ∈ M2
0 if and only if x0 = 0, x is a martingale, and ‖xt‖L2(F) < ∞ for all

t ∈ N. It is immediate to see that M2
0 ⊆M2,loc

0 .

We first restrict our attention to H. On H we have two operations: one internal of

sum, denoted +, and one external of outer product, denoted ·. We define:

• + : H ×H → H to be such that (x+ y)t = xt + yt for all t ∈ N0.

• · : A×H → H to be such that

(a · x)0 = 0 and (a · x)t =
t∑

s=1

as (xs − xs−1) =
t∑

s=1

as∆sx ∀t ∈ N.

In other words, the outer product is the transform of x by a (see Shiryaev [28, p.

478] and Jacod and Shiryaev [19, p. 62]). Observe that this transform satisfies

the following properties: For all a, b ∈ A and all x, y ∈ H:

1. a · (x+ y) = a · x+ a · y;

2. (a+ b) · x = a · x+ b · x;

3. a · (b · x) = (ab) · x;

4. e · x = x.

We can also define a generalized inner product 〈 , 〉H : H × H → A by (x, y) 7→
〈x, y〉H where the latter is the process

(〈x, y〉H)t = Et−1 ((∆tx) (∆ty)) ∀t ∈ N. (12)
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By the conditional Cauchy-Schwarz inequality, we have that for each t ∈ N∣∣(〈x, y〉H)t
∣∣ = |Et−1 ((∆tx) (∆ty))| ≤

√
Et−1

(
(∆tx)2)√Et−1

(
(∆ty)2) ∈ L0 (Ft−1) .

(13)

We next show that +, ·, and 〈 , 〉H are well defined given the domains and target

spaces we have chosen. Moreover, this will allow us to conclude that H is a pre-Hilbert

A-module.23

Proposition 6 (H,+, ·, 〈 , 〉H) is a pre-Hilbert A-module.

Proposition 7
(
M2,loc

0 ,+, ·, 〈 , 〉H
)
is a pre-Hilbert A-module. In particular, M2,loc

0

is a submodule of H.

We next show that H andM2,loc
0 are self-dual pre-Hilbert A-modules. To show this,

we need to consider the metric dH of equation (3), which, in this case, is equal to

dH (x, y) =
∞∑
s=1

(
1

2

)s
ds (∆sx,∆sy)

where ds : L2,0 (Ω,Fs−1,Fs, P ) × L2,0 (Ω,Fs−1,Fs, P ) → [0,∞) for all s ∈ N is the

metric in equation (8), that is,

ds (∆sx,∆sy) = E
(√

Es−1

(
(∆sx−∆sy)2) ∧ 1Ω

)
∀s ∈ N.

Theorem 5 H is self-dual.

Theorem 6 M2,loc
0 is self-dual. In particular, M2,loc

0 is dH closed.

4.3.1 Martingales decompositions

In what follows, we show how our orthogonal decomposition results in pre-Hilbert A-

modules, in the setting of semimartingales S0, yield a pair of famous decomposition

results for our class of processes: Doob’s and Kunita-Watanabe’s. To get an intuition

of why this is the case, observe that, if x and y are two square integrable martingales,

then they are orthogonal in our sense, that is 〈x, y〉H = 0, if and only if they are

strongly orthogonal (see Follmer and Schied [12, p. 375]).

We start by obtaining Doob’s decomposition result. By Theorems 3 and 6, it follows

that M2,loc
0 is complemented in H. Define

Hpre =
{
x ∈ S0 : xt ∈ L0 (Ft−1) ∀t ∈ N

}
,

23The proofs of Propositions 6 and 7 as well as the proofs of Theorems 5 and 6 are in Appendix B.
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that is, x ∈ Hpre if and only if x is a predictable process (that starts at t = 0) with

initial value 0. It is immediate to see that Hpre is a submodule of H and that the

former set is dH closed.

Corollary 3 Hpre =
(
M2,loc

0

)⊥
and H = Hpre⊕M2,loc

0 . In particular, for each x ∈ H
there exists a predictable process xpre ∈ Hpre and a conditionally square integrable

martingale xmar ∈ M2,loc
0 such that x = xpre + xmar. Moreover, this decomposition is

unique.

Proof. By Theorem 3 and since Hpre is a dH closed submodule, we have that Hpre =

(Hpre)⊥⊥ and H = Hpre ⊕ (Hpre)⊥. We next show that Hpre =
(
M2,loc

0

)⊥
. Consider

y ∈ Hpre. It follows that for each x ∈M2,loc
0

(〈x, y〉H)t = Et−1 ((∆tx) (∆ty)) = (∆ty)Et−1 (∆tx) = 0 ∀t ∈ N,

proving that Hpre ⊆
(
M2,loc

0

)⊥
. Viceversa, consider y ∈ (Hpre)⊥. By Proposition 5,

we have that y ∈ S0 and Et−1 (y2
t ) ∈ L0 (Ft−1) for all t ∈ N. Moreover, we have that

for each x ∈ Hpre

0 = (〈x, y〉H)t = Et−1 ((∆tx) (∆ty)) = (∆tx)Et−1 (∆ty) ∀t ∈ N.

Set x = z as in Example 2, it follows that x ∈ Hpre and

Et−1 (∆ty) = 0 ∀t ∈ N,

proving that y ∈M2,loc
0 . We can conclude that (Hpre)⊥ ⊆M2,loc

0 . By point 3 of Lemma

1,
(
M2,loc

0

)⊥
⊆ (Hpre)⊥⊥ = Hpre, yielding thatHpre =

(
M2,loc

0

)⊥
. Finally, by Theorem

3 and since M2,loc
0 is dH closed, it follows that (Hpre)⊥ =

(
M2,loc

0

)⊥⊥
= M2,loc

0 which

yields the rest of the statement. �

Remark 5 Note that the above result is a version of Doob’s decomposition result (see,
e.g., [30, p. 120]). Recall that the classic version of this result requires x to be such

that each xt is integrable. Instead here, in light of Proposition 5, we require x to be

such that each xt is conditionally square integrable. Of course, if x is such that each

xt is square integrable, then x satisfies the hypotheses of both versions of the result.

We conclude by proving the Kunita-Watanabe decomposition and by merging the

two decompositions together in Corollary 5.
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Corollary 4 Let {xi}ni=1 ∈ M
2,loc
0 . For each x ∈ M2,loc

0 , there exist {ai}ni=1 ⊆ A and

y ∈M2,loc
0 such that

x =
n∑
i=1

ai · xi + y and 〈xi, y〉H = 0 ∀i ∈ {1, ..., n} .

Moreover, this decomposition is unique, in the sense that y is uniquely determined.

Proof. Consider spanA {xi}
n
i=1. By Theorem 6 and Corollary 2, it follows that

spanA {xi}
n
i=1 is dH closed and complemented, proving the statement. �

Remark 6 We conjecture that other decomposition results of the stochastic processes’
literature, such as the Follmer-Schweizer decomposition, could be obtained as decom-

position results in an opportune pre-Hilbert A-module.

Corollary 5 Let {xi}ni=1 ∈M
2,loc
0 . For each x ∈ H, there exist xpre ∈ Hpre, {ai}ni=1 ⊆

A, and y ∈M2,loc
0 such that

x = xpre +
n∑
i=1

ai · xi + y and 〈y, xpre〉H = 〈xi, xpre〉H = 〈xi, y〉H = 0 ∀i ∈ {1, ..., n} .

Moreover, this decomposition is unique, in the sense that xpre and y are uniquely de-

termined.

A Self-duality

Given a pre-Hilbert A-module H where A is an Arens algebra of L∞ type, recall that
the dual module is the set

H∼ =
{
f ∈ AH : f is A-linear and bounded

}
.

We can define a vector norm on H∼, N∗ : H∼ → A+, to be such that

N∗ (f) = sup
x∈H

(
sup
n∈N

|f (x)|
N (x) + 1

n
e

)
∀f ∈ H∼.

We also define a metric dH∼ : H∼ ×H∼ → [0,∞) by

dH∼ (f, g) = d (0, N∗ (f − g)) ∀f, g ∈ H∼.

Lemma 6 If A is an Arens algebra of L∞ type and H a pre-Hilbert A-module, then

dH∼ is an invariant metric.

We omit the proof of this fact, since it follows by replicating exactly the same

arguments used in proving Lemma 3 in [9].
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Theorem 7 Let A be an Arens algebra of L∞ type and H a pre-Hilbert A-module.

The following statements are equivalent:

(i) BH is dH complete;

(ii) H is self-dual.

Proof. (i) implies (ii). It is [9, Proposition 16].

(ii) implies (i). Consider a dH Cauchy sequence {yn}n∈N ⊆ BH . Define {fn}n∈N as
fn (x) = 〈x, yn〉H for all x ∈ H and for all n ∈ N.
Step 1. There exists f : H → A such that fn (x)

d→ f (x) for all x ∈ H.
Proof of the Step. By (2), we have that for each n,m ∈ N and for each x ∈ H

|fn (x)− fm (x)| = |〈x, yn〉H − 〈x, ym〉H | ≤ N (x)N (yn − ym) . (14)

Fix x ∈ BH . We can conclude that

|fn (x)− fm (x)| ∧ e ≤ (N (x)N (yn − ym)) ∧ e ≤ N (yn − ym) ∧ e,

yielding that

d (fn (x) , fm (x)) = ϕ̄ (|fn (x)− fm (x)| ∧ e)
≤ ϕ̄ (N (yn − ym) ∧ e) = dH (yn, ym) ∀n,m ∈ N.

We thus have that {fn (x)}n∈N ⊆ A is a d Cauchy sequence. Moreover, by (2) and

since x, yn ∈ BH for all n ∈ N, we have that

|fn (x)| ≤ N (x)N (yn) ≤ e ∀n ∈ N.

Since [−e, e] is d complete, this yields that fn (x)
d→ ax ∈ [−e, e]. Next, note that if

x ∈ H\BH , then x̄ = x
‖x‖H

∈ BH . We have that fn (x̄)
d→ ax̄. Thus, we can conclude

that there exists ax ∈ A such that

fn (x) = ‖x‖H fn (x̄)
d→ ‖x‖H ax̄ = ax.

Since the limit is unique and x was arbitrarily chosen, we can define a map f : H → A

such that f (x) = ax for all x ∈ H. �
Step 2. The map f is A-linear.

Proof of the Step. Consider a, b ∈ A and x, y ∈ H. By Step 1 and since each fn is

A-linear, this implies that

afn (x) + bfn (y) = fn (a · x+ b · y)
d→ f (a · x+ b · y) .
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At the same time, since fn (x)
d→ f (x) and fn (y)

d→ f (y), we have that

afn (x) + bfn (y)
d→ af (x) + bf (y) .

Since the limit is unique, we can conclude that f (a · x+ b · y) = af (x)+bf (y), proving

the statement. �
Step 3. The map f is bounded. In particular, f ∈ H∼ and there exists y ∈ BH such

that f (x) = 〈x, y〉H for all x ∈ H.
Proof of the Step. Let x ∈ H. Since {yn}n∈N ⊆ BH , it follows that

|fn (x)| ≤ N (x)N (yn) ≤ N (x) ∀n ∈ N.

Since fn (x)
d→ f (x) and the topology induced by d is locally solid, we can conclude

that

|f (x)| d←− |fn (x)| ≤ N (x) .

Since x was arbitrarily chosen, we have that

|f (x)| ≤ N (x) ∀x ∈ H, (15)

proving boundedness. Since H is self-dual, it follows that there exists y ∈ H such that

f (x) = 〈x, y〉H for all x ∈ H. By (15), we have that

‖y‖2
H = ‖〈y, y〉H‖A = ‖f (y)‖A ≤ ‖N (y)‖A ≤ ‖y‖H ,

proving that ‖y‖H ≤ 1. �
Step 4. fn

dH∼→ f .

Proof of the Step. By (14), we have that

|fn (x)− fm (x)|
N (x) + 1

k
e
≤ N (yn − ym) ∀k,m, n ∈ N,∀x ∈ H.

This yields that

d

(
0,
|fn (x)− fm (x)|
N (x) + 1

k
e

)
≤ dH (yn, ym) ∀k,m, n ∈ N,∀x ∈ H.

Consider ε > 0. Since {yn}n∈N is a dH Cauchy sequence, there exists nε ∈ N such that

d

(
0,
|fn (x)− fm (x)|
N (x) + 1

k
e

)
≤ ε ∀k ∈ N,∀m,n ≥ nε,∀x ∈ H.

By taking the limit in n, we have that

d

(
0,
|f (x)− fm (x)|
N (x) + 1

k
e

)
≤ ε ∀k ∈ N,∀m ≥ nε,∀x ∈ H.
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Next, consider the sequence
{
|f(x)−fm(x)|
N(x)+ 1

k
e
∧ e
}
k∈N
. This sequence is bounded by e and

increasing. Thus, |f(x)−fm(x)|
N(x)+ 1

k
e
∧ e ↑ supk∈N

(
|f(x)−fm(x)|
N(x)+ 1

k
e
∧ e
)

= supk∈N

(
|f(x)−fm(x)|
N(x)+ 1

k
e

)
∧ e.

Since ϕ̄ is order continuous, we can conclude that

d

(
0, sup

k∈N

(
|f (x)− fm (x)|
N (x) + 1

k
e

))
= ϕ̄

(
sup
k∈N

(
|f (x)− fm (x)|
N (x) + 1

k
e

)
∧ e
)

= ϕ̄

(
sup
k∈N

(
|f (x)− fm (x)|
N (x) + 1

k
e
∧ e
))

= sup
k∈N

ϕ̄

(
|f (x)− fm (x)|
N (x) + 1

k
e
∧ e
)
≤ ε ∀m ≥ nε,∀x ∈ H.

We also have that for each m ∈ N

N∗ (f − fm) = sup
k∈N

|〈y − ym, y − ym〉H |
N (y − ym) + 1

k
e

= N (y − ym) .24 (16)

We can conclude that

dH∼ (f, fm) = d (0, N∗ (f − fm))

= d

(
0, sup

k∈N

(
|f (y − ym)− fm (y − ym)|

N (y − ym) + 1
k
e

))
≤ ε ∀m ≥ nε,

proving the statement. �
By (16), we have that dH (y, ym) = dH∼ (f, fm) for all m ∈ N. By Step 4 and since

dH (y, ym) = dH∼ (f, fm) for all m ∈ N, we can conclude that ym
dH→ y, proving that BH

is dH complete. �
24Note that if there exists z ∈ H such that g : H → A is defined by g (x) = 〈x, z〉H for all x ∈ H,

then for all k ∈ N and for all x ∈ H

|g (x)| = |〈x, z〉H | ≤ N (x)N (z) ≤
(
N (x) +

1

k
e

)
N (z) .

This implies that
|g (x)|

N (x) + 1
ke
≤ N (z) ∀k ∈ N,∀x ∈ H,

yielding that

N∗ (g) = sup
x∈H

(
sup
k∈N

|g (x)|
N (x) + 1

ke

)
≤ N (z) .

On the other hand, we have that

N∗ (g) ≥ sup
k∈N

|g (z)|
N (z) + 1

ke
= sup

k∈N

〈z, z〉H
N (z) + 1

ke
= sup

k∈N

N (z)
2

N (z) + 1
ke
.

By the same arguments contained in [9, Footnote 13], we have that

sup
k∈N

N (z)
2

N (z) + 1
ke

= N (z) ,

yielding that N∗ (g) = N (z). If we set g = f − fm, then z = y − ym and (16) follows.
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Remark 7 This self-duality result should clarify the connection between pre-Hilbert
L∞-modules and pre-Hilbert L0-modules, where self-duality, for the latter ones, amounts

to dH completeness (see also [9, Theorem 5]). Moreover, for the former ones, it con-

firms the intuition provided by Frank [13, Remark 3.9] for (complex) W ∗-algebras. In

a nutshell, Frank conjectures that the “combination”of a topology over A that makes

the unit ball of A complete with either the vector-valued norm N or the functionals in

H∼ might provide a topology on H with respect to which BH is complete, allowing for

the possibility of characterizing self-duality.

B Stochastic processes

Proof of Proposition 6. We already argued that H is nonempty. Let x, y ∈ H. It
is obvious that the sum of two adapted processes is an adapted process and clearly

(x+ y)0 = 0, proving that x+ y ∈ S0. Call z = x+ y ∈ S0. Clearly, ∆tz = ∆tx+ ∆ty

for all t ∈ N. By (13), we have that for each t ∈ N

Et−1

(
(∆tz)2) = Et−1

(
(∆tx)2 + (∆ty)2 + 2 (∆tx) (∆ty)

)
= Et−1

(
(∆tx)2)+ Et−1

(
(∆ty)2)+ 2Et−1 ((∆tx) (∆ty)) ,

where the latter belongs to L0 (Ft−1), proving that x+ y = z ∈ H. At the same time,
it is immediate to see that for each α ∈ R, αx ∈ H. It follows that H is a vector

subspace of the space of adapted processes. In particular, this yields that (H,+) is an

abelian group. Next, let a ∈ A and x ∈ H. It is immediate to verify that a · x ∈ S0.

Finally, since a is predictable, we have that

Et−1

(
(∆t (a · x))2) = Et−1

(
a2
t (∆tx)2) = a2

tEt−1

(
(∆tx)2) ∈ L0 (Ft−1) ,

proving that a · x ∈ H. Properties 1—4 of the sequence transform yield that (H,+, ·) is
an A-module. Next, let x, y, z ∈ H and a ∈ A. First, by (13), recall that (〈x, y〉H)t ∈
L0 (Ft−1) for all t ∈ N. It follows that the process

{
(〈x, y〉H)t

}
t∈N is predictable, that

is, 〈x, y〉H ∈ A.
1. Clearly, 〈x, x〉H ≥ 0. At the same time, we have that

〈x, x〉H = 0 ⇐⇒ (〈x, x〉H)t = 0 ∀t ∈ N ⇐⇒ Et−1

(
(∆tx)2) = 0 ∀t ∈ N

⇐⇒ ∆tx = 0 ∀t ∈ N ⇐⇒ xt = xt−1 ∀t ∈ N.

Since x0 = 0, we have that 〈x, x〉H = 0 ⇐⇒ x = 0.

2. Consider x, y ∈ H. We have that for each t ∈ N

(〈x, y〉H)t = Et−1 ((∆tx) (∆ty)) = Et−1 ((∆ty) (∆tx)) = (〈y, x〉H)t ,
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that is, 〈x, y〉H = 〈y, x〉H .
3. Consider x, y, z ∈ H. We have that for each t ∈ N

(〈x+ y, z〉H)t = Et−1 ((∆t (x+ y)) (∆tz)) = Et−1 ((∆tx+ ∆ty) (∆tz))

= Et−1 ((∆tx) (∆tz) + (∆ty) (∆tz))

= Et−1 ((∆tx) (∆tz)) + Et−1 ((∆ty) (∆tz))

= (〈x, z〉H)t + (〈y, z〉H)t ,

proving that 〈x+ y, z〉H = 〈x, z〉H + 〈y, z〉H .
4. Let a ∈ A and x ∈ H. We have that for each t ∈ N

(〈a · x, y〉H)t = Et−1 ((∆t (a · x)) (∆ty)) = Et−1 ((at∆tx) (∆ty))

= atEt−1 ((∆tx) (∆ty)) = at (〈x, y〉H)
t
,

proving that 〈a · x, y〉H = a 〈x, y〉H . �

Proof of Proposition 7. By Proposition 5 and since M2,loc
0 = Hmar ⊆ H, it is

enough to show that M2,loc
0 is closed under the sum and the outer product. Since

M2,loc
0 = H ∩M loc

0 , this amounts to show that x + y and a · x are local martingales
whenever x, y ∈ M2,loc

0 and a ∈ A. Clearly, the sum of two local martingales is a local

martingale. At the same time, since a is predictable, we have that as∆sx ∈ L0 (Fs)
and asxs−1 ∈ L0 (Fs−1) for all s ∈ N. It follows that (a · x)0 = 0 and (a · x)t =∑t

s=1 as (xs − xs−1) ∈ L0 (Ft) for all t ∈ N. This implies that

Et−1 (|(a · x)t|) = Et−1

(∣∣∣∣∣
t∑

s=1

as∆sx

∣∣∣∣∣
)
≤ Et−1

(∣∣∣∣∣
t−1∑
s=1

as∆sx

∣∣∣∣∣
)

+ Et−1 (|at∆tx|)

=

∣∣∣∣∣
t−1∑
s=1

as∆sx

∣∣∣∣∣+ |at|Et−1 (|∆tx|)

≤
∣∣∣∣∣
t−1∑
s=1

as∆sx

∣∣∣∣∣+ |at|Et−1 (|xt|+ |xt−1|)

=

∣∣∣∣∣
t−1∑
s=1

as∆sx

∣∣∣∣∣+ |at|Et−1 (|xt|) + |at| |xt−1| ∈ L0 (Ft−1) ∀t ∈ N,

proving that a · x is conditionally integrable. Finally, observe that for each t ∈ N

Et−1

(
(a · x)t − (a · x)t−1

)
= Et−1 (at∆tx) = atEt−1 (∆tx) = 0,

proving that a · x ∈M loc
0 . �

Proof of Theorem 5. By [9, Theorem 5], it is enough to show that H is dH complete.

Consider the product metric space ×∞s=1 (L2,0 (Ω,Fs−1,Fs, P ) , ds). Endow this space
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with the metric d∞ =
∑∞

s=1

(
1
2

)s
ds. By [25, p. 196] and since L2,0 (Ω,Fs−1,Fs, P )

is ds complete for all s ∈ N, ×∞s=1 (L2,0 (Ω,Fs−1,Fs, P ) , ds) is d∞ complete. Given

x ∈ H, define ∆x to be the sequence {∆sx}s∈N. By definition of H, it follows that
{∆sx}s∈N ∈ ×∞s=1 (L2,0 (Ω,Fs−1,Fs, P ) , ds).

Consider a dH Cauchy sequence {xn}n∈N ⊆ H. Since dH (xn, xm) = d∞ (∆xn,∆xm)

for all n,m ∈ N. This implies that {∆xn}n∈N ⊆ ×∞s=1 (L2,0 (Ω,Fs−1,Fs, P ) , ds) is a d∞
Cauchy sequence, yielding that ∆xn

d∞→ w, that is, ∆sxn
ds→ ws ∈ L2,0 (Ω,Fs−1,Fs, P )

for all s ∈ N. Define x to be such that x0 = 0 and xt =
∑t

s=1ws. It is immediate to

see that x ∈ S0. Moreover, ∆sx = ws ∈ L2,0 (Ω,Fs−1,Fs, P ) for all s ∈ N, proving that
x ∈ H. Finally, we have that

dH (xn, x) = d∞ (∆xn,∆x) = d∞ (∆xn, w)→ 0,

proving completeness. �

Proof of Theorem 6. By [9, Theorem 5], it is enough to show that Hmar = M2,loc
0

is dH complete. By Proposition 7 and Theorem 5 and since M2,loc
0 ⊆ H, it is enough

to show that M2,loc
0 is dH closed. Thus, consider a sequence {xn}n∈N ⊆ M2,loc

0 such

that xn
dH→ x ∈ H. We only need to show that x ∈ M2,loc

0 , in particular, that x is

conditionally square integrable and satisfies the martingale property. By Proposition

5 and since x ∈ H, we have that Et−1 (x2
t ) ∈ L0 (Ft−1) for all t ∈ N. By definition of

dH , we have that xn
dH→ x implies ∆sxn

ds→ ∆sx for all s ∈ N. Since Es−1 (∆sxn) = 0 for

all s ∈ N and for all n ∈ N, this yields that 0 = Es−1 (∆sxn) converges in probability

to Es−1 (∆sx), proving that Es−1 (∆sx) = 0 for all s ∈ N, that is, Es−1 (xs) = xs−1 for

all s ∈ N, which yields x ∈M2,loc
0 . �
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