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Abstract

We study from a preferential viewpoint absolute and relative attitudes toward

ambiguity determined by wealth effects. We provide different characterizations

of these attitudes for a large class of preferences: monotone and continuous

preferences which satisfy risk independence. We specify our results for different

subclasses of preferences.

1 Introduction

Beginning with the seminal work of David Schmeidler, several choice models have been

proposed in the past thirty years in the large and growing literature on choice under

uncertainty that deals with ambiguity, that is, with Ellsberg-type phenomena.1 At the

same time, many papers have investigated the economic consequences of ambiguity.

Our purpose in this paper is to study a basic economic problem: How the ambiguity

attitudes of a decision maker change as his wealth changes. In other words, our purpose

is to study absolute and relative ambiguity attitudes.

To fix ideas and understand our main motivation, one should think of how central

is in many fields of Economics the relationship between wealth and agents’attitudes
∗We thank Pierpaolo Battigalli, Loic Berger, Peter Klibanoff, Mark Machina, Peter Wakker, and

Jingyi Xue as well as seminar audiences at Carlos III of Madrid, Cergy-Pontoise, Maastricht, Paris-

Dauphine, Radboud University, RUD 2016, and SAET 2016 for their useful comments. Simone

Cerreia-Vioglio gratefully acknowledges the financial support of ERC (grant SDDM-TEA) and Mas-

simo Marinacci of ERC (grant INDIMACRO).
1See Gilboa and Marinacci [18] for a survey.
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toward risk (for example, portfolio allocation problems and insurance demand). In

his seminal work [3, p. 96], Arrow, in discussing measures of absolute and relative

risk attitudes, mentions that “The behaviour of these measures as wealth changes

is of the greatest importance for prediction of economic reactions in the presence of

uncertainty”.

To the best of our knowledge, no systematic study has been done in exploring a

similar relation between wealth and ambiguity attitudes, despite the large and growing

use in applications of models that are nonneutral toward ambiguity. The challenge of

our work, compared to the analysis done under risk by Arrow and Pratt, is that in the

latter case their study has been restricted to the expected utility model. Conversely,

under ambiguity there are by now several alternative models, thus moving the analysis

well beyond expected utility. Hence, in this context Arrow’s observation should apply

even more and surely make the analysis nontrivial. Arrow’s observation suggests

also another motivation for our work. By now, an applied researcher has a large

choice in terms of models dealing with ambiguity. In providing notions of absolute

and relative ambiguity attitudes and characterizing them, our results provide some

behavioral guidance in such a choice, as the standard theory of absolute risk aversion

of Arrow and Pratt provides guidance in the choice of the von Neumann-Morgenstern

utility function. For example, our results will show that a researcher who believes that

agents are not constant absolute ambiguity averse can rule out the use of some models:

for example, α-maxmin, Choquet expected utility, and variational preferences under

risk neutrality. Similarly, for a researcher relying on the smooth ambiguity model,

behavioral assumptions on absolute and relative ambiguity attitudes translate into

corresponding choices of the model’s parameters. For instance, if risk attitudes are

assumed to be CRRA and risk averse —as common in Macroeconomics —and relative

ambiguity attitudes are assumed to be constant as well (irrespective of the prior µ),

then our results yield that φ must be either CARA or CRRA, depending on the von

Neumann-Morgenstern function being either the logarithm or the power function.

A preferential viewpoint We study absolute and relative attitudes toward ambi-

guity from a purely preferential viewpoint, starting from a preferential first principle:

a preference is, say, decreasing absolute ambiguity averse if, at a higher wealth level,

it becomes comparatively less averse to ambiguity. This first principle implies that a

proper analysis of absolute attitudes toward ambiguity requires that the underlying risk

preference on lotteries be constant absolute risk averse, so that absolute risk attitudes

do not intrude in wealth effects. In turn, this implies that different classes of prefer-
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ences characterize absolute attitudes toward ambiguity, depending on the risk attitude

(in terms of aversion or love) that the underlying risk preference exhibits. For instance,

among uncertainty averse preferences, variational preferences characterize constant

absolute ambiguity aversion under risk neutrality, but homothetic preferences charac-

terize it under risk nonneutrality. Therefore, the two quite different properties, both

conceptually and mathematically, of constant additivity (e.g. variational preferences)

and positive homogeneity (e.g. homothetic preferences) may happen to characterize

the preference functionals that are constant absolute ambiguity averse. Our results

thus underscore the importance of keeping track of risk attitudes that may, otherwise,

confound the analysis of ambiguity attitudes. They also underscore the importance

of keeping track of the unit of account: Absolute and relative attitudes are, indeed,

properly modelled via properties of the monetary certainty equivalents (which are in

the same unit of account of wealth).

Wealth effects We consider a standard Anscombe-Aumann set up.2 This choice is

motivated by our aim to study how wealth effects change ambiguity attitudes, thus

we want to control for the effects due to risk attitudes. We denote by F the set of

all Anscombe-Aumann acts f : S → ∆0 (R), where S is a state space and ∆0 (R) is

the set of simple monetary lotteries. As usual, preferences over final wealth levels are

modelled by a binary relation %. Given a wealth level w and an act f , we define by
fw the act whose final monetary outcomes are the outcomes of f shifted by w (see

Section 2.1, for a formal definition). Given this, we define preferences at wealth level

w by

f %w g def⇐⇒ fw % gw.

We say that % is decreasing absolute ambiguity averse if at lower wealth levels ambi-
guity aversion is higher, that is w′ > w yields that %w is more ambiguity averse than
%w′ —in the sense of Ghirardato and Marinacci [16]. This definition is an adaptation
to the ambiguity setting of the classic definition of decreasing absolute risk aversion.

In a similar fashion, we also define the notions of increasing and constant absolute

ambiguity aversion (see Definition 3).

In the paper, we characterize absolute ambiguity attitudes for the class of rational

preferences. This class of preferences is large and contains several models of choice

which are common in the literature (e.g., maxmin, α-maxmin, smooth ambiguity, and

2The relevant decision theoretic and mathematical notions are introduced in Section 2 and Ap-

pendix A.
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variational preferences). Rational preferences are known to admit a representation of

the form V : F → R such that

V (f) = I (u (f)) ∀f ∈ F , (1)

where u is a von Neumann-Morgenstern expected utility functional over ∆0 (R) and I

is a normalized and monotone functional that maps utility profiles s 7→ u (f (s)) into

the real line. This decomposition of the utility function V dates back to Schmeidler

[26].3 From a behavioral point of view, this decomposition is particularly useful since

the pair (u, I), other than representing % as in (1), characterizes the attitudes of the
decision maker toward risk and ambiguity: Namely, u characterizes the risk attitudes

of the decision maker, while I describes the ambiguity attitudes. This specific feature

of this decomposition has been emphasized by Ghirardato and Marinacci [15] and

exploited several times in the literature.4 It is no surprise that also in this work the

two functions u and I will play a key role.

Classifiable preferences As in the risk case, it is not hard to show that absolute

attitudes do not provide an exhaustive class of categories with which we can classify

rational preferences. In other words, there exist rational preferences that are neither

decreasing, nor increasing, nor constant absolute ambiguity averse. When a rational

preference relation % exhibits one of these three absolute ambiguity attitudes, we will
say that% is classifiable. Our first result (Proposition 3) states that if% is a classifiable
rational preference, then % must be constant absolute risk averse (henceforth, CARA).
Conceptually, this is important because, in this way, absolute risk attitudes do not

intrude in wealth effects and all the differences in terms of attitudes toward uncertainty

can be then rightfully attributed to attitudes toward ambiguity. In particular, any

comparative static exercise, e.g. in a portfolio allocation problem, that aims to study

the interplay of wealth effects and absolute ambiguity attitudes, has to be conducted

in a CARA setup, in order not to confound the analysis with the effects due to absolute

risk attitudes.5 CARA preferences as well as CRRA preferences, which arise in our

study of relative attitudes toward ambiguity, are standard assumptions in many areas

3In [26] it plays a key role in characterizing Choquet expected utility preferences (the functional

I is indeed a Choquet integral).
4For example, it has been useful in characterizing comparative ambiguity attitudes, as in Ghi-

rardato and Marinacci [16], as well as in exploring the relation between ambiguity attitudes and

preference for the timing of resolution of uncertainty, as in Strzalecki [28].
5For a portfolio-choice experiment estimating ambiguity aversion in a CARA setup, see Ahn et al.

[1].
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of Economics such as Macroeconomics, Finance, and Experimental Economics (see,

e.g., Blanchard and Fischer [5, pp. 43-44], Chiappori and Paiella [13], and Wakker

[29]). In the section below, we further elaborate on the CARA restriction and relax

this assumption.

With this in mind, we proceed by characterizing absolute ambiguity attitudes using

the decomposition (u, I) (Theorem 2 and Corollary 1). The following table provides

an informal summary of our characterization for a classifiable %:

Risk averse Risk loving Risk neutral

DAAA I superhomogeneous I subhomogeneous I constant superadditive

IAAA I subhomogeneous I superhomogeneous I constant subadditive

CAAA I homogeneous I homogeneous I constant additive

The table should be read as follows: Under the assumption of classifiability, the

rows specify the absolute ambiguity attitudes while the columns specify the risk atti-

tudes, be they averse, loving, or neutral;6 each cell then provides a full characteriza-

tion in terms of the functional I. For example, consider a preference relation which

is decreasing absolute ambiguity averse (DAAA) and risk averse. By Theorem 2, I is

superhomogeneous. On the other hand, if I is assumed to be superhomogeneous, the

table shows that there are only two possibilities for a classifiable preference: either %
is risk averse and DAAA or % is risk loving and IAAA.
The table also shows that (Corollary 3) invariant biseparable preferences —so in

particular α-maxmin and Choquet expected utility preferences —are classifiable if and

only if they are constant absolute ambiguity averse (CAAA). The reason is simple: For

this class of preferences, the functional I is both positively homogeneous and constant

additive.

The dichotomic properties of the functional I, which characterize absolute attitudes

toward ambiguity in the risk neutral and nonneutral cases and are most evident for

CAAA preferences, are the outcome of a unit of account problem. In fact, though

wealth effects are in monetary units (as traditional in Economics), for each act f the

number I (u (f)) is in von Neumann-Morgenstern utils.7 In contrast, if v denotes the

6Being classifiable, % must be CARA (Proposition 3). Thus, the von Neumann-Morgenstern

utility function over monetary outcomes can be normalized to be either v (c) = − 1
αe
−αc with α 6= 0

or v (c) = c.
7Since I is normalized, if an act f is such that, for some scalar k, u (f (s)) = k for all s ∈ S, then

I (u (f)) = k.
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von Neumann-Morgenstern utility function on monetary outcomes of u, then the map

c : F → R defined by
c (f) = v−1 (I (u (f))) ∀f

is a monetary certainty equivalent. Clearly, c is expressed in the same unit of account

of the wealth w. We show that monetary certainty equivalents emerge as the proper

representation for absolute attitudes (Proposition 4); for example, % is DAAA if and
only if % is CARA and c is wealth superadditive, that is,

c (fw) ≥ c (f) + w ∀w ≥ 0

for every act f . To sum up, a consistent use of the unit of account allows for a clear-cut

characterization of absolute ambiguity attitudes.

We then proceed to characterize absolute attitudes toward ambiguity by focus-

ing on the subclass of uncertainty averse preferences. For this class, we provide a

characterization of absolute attitudes in terms of their dual representation, that is, in

terms of properties of their ambiguity aversion index (Theorem 3). For this particular

class, we are able to show how constant absolute ambiguity attitudes are characterized

by two radically different models: variational preferences, under risk neutrality, and

homothetic preferences under risk nonneutrality (Corollaries 4 and 7).

In Section 3.5, we also study some portfolio implications of absolute attitudes

toward ambiguity. Our portfolio application is the adaptation of Arrow’s portfolio

exercise to our setting.

General risk attitudes and absolute uncertainty attitudes We conclude the

section on absolute attitudes toward ambiguity by allowing for more general attitudes

over risk. In an Anscombe and Aumann setting, there are two sources of uncertainty:

risk (i.e., the lotteries in ∆0 (R)) and ambiguity (i.e., the events in S). In studying how

changes in wealth affect ambiguity attitudes, our analysis rested on the comparative

notion of being more ambiguity averse of Ghirardato and Marinacci [16]. This notion

has the desirable feature of equalizing risk attitudes (cf. Proposition 3). Thus, all

the differences between %w and %w′ can be rightfully attributed to attitudes toward
ambiguity, since the decision maker over risk is necessarily CARA (cf. Proposition 11).

At the same time, any analysis of absolute ambiguity attitudes necessarily must have,

as important subcase, the one where the decision maker is CARA.

This is in line with the standard ceteris paribus approach adopted in comparative

statics exercises in Economics. Indeed, when the change of the variable of interest
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(wealth, in our case) generates changes through different channels, say two (risk and

ambiguity, in our case), typically one of the two channels has to be “shut down”to fully

grasp the effects of a change of the variable of interest only due to the active channel.

In consumer theory, for example, comparative statics is often done in terms of change

of the price of one good keeping all the other variables equal, that is, other prices and

income. It is well known that a change in price affects demand via two channels that

need to be separated: substitution effect and wealth effect. Hicksian demand is the

tool that allows for an analysis that “shuts down”the wealth channel and allows for

comparative statics to be carried out only in terms of substitution effects. It is only

at a second stage that price changes are studied without separating the two channels.

Nevertheless, one should keep in mind that this is done only when the two effects move

in the same direction. For example, the celebrated Law of Demand holds for normal

goods which are exactly the ones for which substitution effects and wealth effects move

in the same direction.

With this in mind, in Section 3.6 we allow for more general absolute risk attitudes.

In fact, a researcher could be interested in considering more general absolute attitudes

toward risk, for example decreasing absolute risk aversion (henceforth, also DARA).

We identify absolute attitudes toward ambiguity with the functional characterizations

found in the previous part of the paper and show that, for a large class of preferences,

absolute attitudes toward risk and ambiguity indeed compound (cf. Proposition 12).

For example, decreasing absolute risk aversion plus decreasing absolute ambiguity

aversion yields decreasing absolute uncertainty aversion. This confirms the portability

of the characterizations found in the previous part of the paper and conceptually

follows the scheme described above for a comparative statics exercise.

Relative attitudes Finally, we conduct a similar analysis for relative ambiguity

aversion. A preference is, say, decreasing relative ambiguity averse if, at a higher

proportional wealth level, it becomes comparatively less averse to ambiguity. Similarly

to the absolute case, we obtain that a proper analysis of relative attitudes toward

ambiguity requires that the underlying risk preference on lotteries be constant relative

risk averse (CRRA, a popular assumption in Macroeconomics and Finance), so that

relative risk attitudes do not intrude in proportional wealth effects. Our analysis of

relative attitudes reinforces our main message: It is fundamental to keep track of risk

attitudes (i.e., risk aversion/love) in studying ambiguity attitudes, be they absolute or

relative.

7



Related literature Absolute attitudes toward uncertainty have been previously

studied in a few insightful papers. On the one hand, Cherbonnier and Gollier [12]

propose and characterize a preferential definition of absolute attitudes toward uncer-

tainty (being the sum of risk and ambiguity) within the α-maxmin and the smooth

ambiguity models (see Section 3.6 for more details as well as Remarks 1 and 2). The

key differences with our work are that Cherbonnier and Gollier focus on the portfolio

implications of their characterizations and, since they do not operate in an Anscombe

and Aumann setup, they are not able to decouple risk and ambiguity attitudes, which

is essential to our preferential analysis. Moreover, their analysis is limited to two par-

ticular classes of preferences. On the other hand, Grant and Polak [20] start from the

following observation: “Constant absolute risk aversion says that if we add or subtract

the same constant both to a random variable and to a sure outcome to which it is pre-

ferred, then the preference is maintained”. They consider an Anscombe and Aumann

setting where lotteries are not necessarily monetary. They identify random variables

with acts and constants with constant acts (i.e. lotteries). Then, they observe that in

such a setting formal standard additions are not allowed,8 but convex combinations

are. Hence, they replace the former with the latter. In this way, constant absolute

ambiguity aversion becomes the following property: for any act f in F and any three
lotteries x, y, and z, and any α in (0, 1),

αf + (1− α)x % αz + (1− α)x =⇒ αf + (1− α) y % αz + (1− α) y. (2)

For rational preferences, (2) turns out to be equivalent to the Weak C-Independence

Axiom (e.g., variational preferences), which in turn is equivalent to the constant addi-

tivity of I, irrespective of any property of u and its risk attitudes. From a comparative

point of view, their analysis would be equivalent to the following approach. Consider

a rational preference with representation as in (1). As in [20], assume that Imu = R.
Define a preference relation < over utility profiles by

u (f) < u (g)
def⇐⇒ f % g.

It turns out that the binary relation < is a well defined monotone preference over

simple real-valued random variables. For, since Imu = R, for each simple real-valued
random variable ϕ there exists an act f ∈ F such that u (f) = ϕ. This fact and

8In other words, in order to define the sum of an act f and a lottery x, we would need to define

the sum, state by state, of two lotteries, namely f (s) and x, which is clearly something nonstandard.
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the definition of < allow for defining a derived preference <k over utility profiles by
imposing that

u (f) <k u (g)
def⇐⇒ u (f) + k < u (g) + k.

The binary relation<k is interpreted as the preference of the decision maker at a utility
level k ∈ R. In other words, in this analysis, adding or subtracting the same constant
is done at a utility level. With this in mind, constant absolute ambiguity aversion of

Grant and Polak [20] would be equivalent to say that <k is as ambiguity averse as
<k′ for any two utility levels k and k′. Xue [30] and [31] considers more general atti-
tudes, namely decreasing and increasing absolute attitudes, by suitably weakening (2)

and by axiomatizing a constant superadditive version of variational preferences as well

as two equivalent representations of uncertainty averse preferences. Independently of

Xue, Ghirardato and Siniscalchi [17] studied a similar notion of absolute ambiguity

attitudes in a general class of symmetric preferences. Relative to these papers, the key

difference with our work is that we directly address the effect of baseline monetary

shifts. As mentioned, in the latter four papers instead absolute ambiguity attitudes

are defined in terms of utility shifts rather than wealth shifts. A similar approach is

also present in Klibanoff, Marinacci, and Mukerji [22] as well as in Strzalecki [28]. As a

consequence, our analysis is consistent with their results under risk neutrality: this is

the only case when additive wealth shifts coincide with additive utility shifts. In gen-

eral, standard shifts in wealth considered in Economics do not generate well behaved

shifts in utility and, apart from the risk neutral case, our analysis leads to strikingly

different results and a richer picture (given the characterizations being dependent on

risk aversion/love). For example, homothetic preferences in this literature would be

classified as constant relative ambiguity averse while in our case they turn out to be

constant absolute ambiguity averse under risk nonneutrality. Finally, in a recent pa-

per Baillon and Placido [4] experimentally study absolute ambiguity attitudes. They

discuss their findings using both definitions: the one based on utility shifts as well as

the one based on wealth shifts.

2 Preliminaries

2.1 Setup

We consider a generalized version of the Anscombe and Aumann [2] setup with a

nonempty set S of states of the world, an algebra Σ of subsets of S called events, and
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a nonempty convex set X of consequences. We denote by F the set of all (simple)

acts: functions f : S → X that are Σ-measurable and take on finitely many values.

Given any x ∈ X, define x ∈ F to be the constant act that takes value x. Thus,
with the usual slight abuse of notation, we identify X with the subset of constant acts

in F . Using the linear structure of X, we define a mixture operation over F . For
each f, g ∈ F and α ∈ [0, 1], the act αf + (1 − α)g ∈ F is defined to be such that

(αf + (1− α)g) (s) = αf(s) + (1− α)g(s) ∈ X for all s ∈ S. Given a binary relation
% on F (a preference), for each f ∈ F we denote by xf ∈ X a certainty equivalent of

f , that is, xf ∼ f .9 Given a function u : X → R, we denote by Imu the set u (X); in

particular, observe that u ◦ f ∈ B0 (Σ) when f ∈ F . The mathematical notions used
in the main text, but not defined there, are collected in Appendix A.

In what follows, we will consider affi ne maps ◦ : X → X, that is, (αx+ (1− α) y)◦ =

αx◦+ (1− α) y◦ for all x, y ∈ X and α ∈ [0, 1]. These maps can be naturally extended

to F by defining f 7→ f ◦ where f ◦ (s) = f (s)◦ for all s ∈ S. Intuitively, we will

confine our attention to sets X of monetary simple lotteries and affi ne maps induced

by wealth shifts that are either additive (absolute ambiguity attitudes case) or multi-

plicative (relative ambiguity attitudes case).10

The paper relies on the following comparative notion of Ghirardato and Marinacci

[16].

Definition 1 Given two preferences %1 and %2 on F , we say that %1 is more ambi-

guity averse than %2 if, for each f ∈ F and x ∈ X, f %1 x implies f %2 x.

An important example of a convex consequence setX is that of all simple monetary

lotteries:

∆0 (R) =

{
x ∈ [0, 1]R : x (c) 6= 0 for finitely many c ∈ R and

∑
c∈R

x (c) = 1

}
.

For our purposes, the most important bijective affi ne transformation on ∆0 (R) is the

one induced by a scalar w, interpreted as a wealth level: for each x in ∆0 (R), xw is

the lottery such that xw (c) = x (c− w) for all c ∈ R. We thus interpret the outcome
of a lottery, c ∈ R, as a final wealth level. Thus, given x in ∆0 (R), if the decision

9In a monetary framework when X is either ∆0 (R) or ∆0 (R++), note that given f , xf is a lottery

that, received with certainty in each state s, is indifferent to f . Thus, xf is a risky prospect which is

independent of the realization on S.
10Since part of the analysis of these two cases is in common, some of the results only use the

abstract notion of affi ne map (e.g., Propositions 1 and 2).
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maker has wealth w, we interpret xw as being the distribution on final wealth levels.

In fact, lottery x yields a consequence d ∈ R (on top of w) with probability x (d) and

the probability of having as final wealth w + d, that is xw (w + d), is equal to x (d).

This implies that xw (w + d) = x (d) for all d ∈ R which is equivalent to our definition
of xw.

2.2 Axioms and representations

We will consider the following classes of preferences % on F : rational preferences
(Cerreia-Vioglio et al. [7]), uncertainty averse preferences (Cerreia-Vioglio et al. [8]),

invariant biseparable preferences (Ghirardato, Maccheroni, and Marinacci [14]), vari-

ational preferences (Maccheroni, Marinacci, and Rustichini [23]), and maxmin prefer-

ences (Gilboa and Schmeidler [19]). They rely on the following axioms, discussed in

the original papers as well as in Gilboa and Marinacci [18].

Axiom A. 1 (Weak Order) % is nontrivial, complete, and transitive.

Axiom A. 2 (Monotonicity) If f, g ∈ F and f(s) % g(s) for all s ∈ S, then f % g.

Axiom A. 3 (Continuity) If f, g, h ∈ F , the sets {α ∈ [0, 1] : αf + (1 − α)g % h}
and {α ∈ [0, 1] : h % αf + (1− α)g} are closed.

Axiom A. 4 (Risk Independence) If x, y, z ∈ X and α ∈ (0, 1),

x ∼ y =⇒ αx+ (1− α) z ∼ αy + (1− α) z.

Axiom A. 5 (Convexity) If f, g ∈ F and α ∈ (0, 1),

f ∼ g =⇒ αf + (1− α) g % f.

Axiom A. 6 (Weak C-Independence) If f, g ∈ F , x, y ∈ X, and α ∈ (0, 1),

αf + (1− α)x % αg + (1− α)x =⇒ αf + (1− α)y % αg + (1− α)y.

Axiom A. 7 (C-Independence) If f, g ∈ F , x ∈ X, and α ∈ (0, 1),

f % g ⇐⇒ αf + (1− α)x % αg + (1− α)x.

Axiom A. 8 (Unboundedness) There exist x and y in X such that x � y and for

each α ∈ (0, 1) there exists z ∈ X that satisfies

either y � αz + (1− α)x or αz + (1− α)y � x.
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The following omnibus result collects some of the results that the above papers

proved for the classes of preferences that they studied.

Theorem 1 (Omnibus) A preference % on F satisfies Weak Order, Monotonicity,

Continuity, and Risk Independence if and only if there exist a nonconstant and affi ne

function u : X → R and a normalized, monotone, and continuous functional I :

B0 (Σ, Imu)→ R such that the criterion V : F → R, given by

V (f) = I (u (f)) ∀f ∈ F (3)

represents %. The function u is cardinally unique and, given u, I is the unique nor-
malized, monotone, and continuous functional satisfying (3). In this case, we say that

% is a rational preference. A rational preference satisfies:

(i) C-Independence if and only if I is constant linear; in this case, we say that % is
an invariant biseparable preference.11

(ii) Convexity if and only if I is quasiconcave; in this case, we say that % is an

uncertainty averse preference.

(iii) Convexity and Weak C-Independence if and only if I is quasiconcave and constant

additive; in this case, we say that % is a variational preference.

(iv) Convexity and C-Independence if and only if I is quasiconcave and constant

linear; in this case, we say that % is a maxmin preference.

(v) Unboundedness if and only if Imu is unbounded.

Given u and I as in Theorem 1, we call (u, I) a (canonical) representation of the

rational preference %.12
We say that % on F is a homothetic (uncertainty averse) preference if there exists

a canonical representation (u, I), with Imu equal to either (−∞, 0) or (0,∞), such

that

I (ϕ) = min
p∈∆

∫
ϕc (p)− sgnϕ dp =


minp∈∆

∫
ϕdp

c(p)
if Imu = (0,∞)

minp∈∆ c (p)
∫
ϕdp if Imu = (−∞, 0)

11Invariant biseparable preferences correspond to the general class of α (f)-maxmin preferences of

Ghirardato, Maccheroni, and Marinacci [14], which, inter alia, includes the Choquet expected utility

preferences of Schmeidler [26].
12In Appendix B, we discuss more in detail the uniqueness features of canonical representations.
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where c : ∆ → [0, 1] is normalized, upper semicontinuous, and quasiconcave.13 Note

that I is positively homogeneous. These preferences, proposed by Chateauneuf and

Faro [11], are a natural counterpart to variational preferences with positive homogene-

ity in place of constant additivity. As [11] showed, positive homogeneity is implied

by a form of homotheticity/independence with respect to a worst consequence, when

such a consequence exists (something that in this paper we do not allow for; this is

why these preferences are not included in the omnibus theorem).

3 Results

3.1 Induced preferences

A preference % on F induces, through an affi ne and bijective transformation ◦ on X,
a preference %◦ on F given by

f %◦ g ⇐⇒ f ◦ % g◦.

The induced preference inherits some of the properties of the original preference.

Proposition 1 Let % be a preference on F and ◦ : X → X an affi ne bijection. Then:

(i) If % is a rational preference, so is %◦.

(ii) If % is an uncertainty averse preference, so is %◦.

Next, we compare the ambiguity aversion of different induced preferences.

Proposition 2 Let % be a rational preference on F and ◦ and # two affi ne and

bijective transformations on X. If %◦ is more ambiguity averse than %#, then u◦ is a

positive affi ne transformation of u#.14

In the rest of the paper (with the exception of Sections 3.6 and 4) we specialize

the set of consequences X to be made of monetary lotteries, that is X = ∆0 (R),

and the maps ◦ and # to be w and w′ . Moreover, note that an affi ne utility function

u : ∆0 (R)→ R takes the form u (x) =
∑

c∈R v (c)x (c), where v : R→ R.
13The function c is normalized if and only if maxp∈∆ c (p) = 1. Observe also that since Imu is equal

to either (−∞, 0) or (0,∞), then − sgnϕ = 1 or − sgnϕ = −1, yielding that c (p) can be brought

outside the integral.
14Here, u◦ and u# are part of a canonical representation for, respectively, %◦ and %#.
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Throughout the paper we make the following assumption.

Assumption The function v is strictly increasing and continuous.

In this monetary setup, we have the following classic notion.

Definition 2 A preference % on F is constant absolute risk averse (CARA) if, for

any two levels w and w′ of wealth, the induced preferences %w and %w′ agree on ∆0 (R).

This behavioral definition amounts to say that preferences over lotteries are unaf-

fected by the level of wealth w. A routine argument shows that, if % (on lotteries) is
represented by an affi ne utility function u : ∆0 (R)→ R, then % is CARA if and only
if there exist α ∈ R, a > 0, and b ∈ R such that

v (c) = vα (c) =

{
−a 1

α
e−αc + b if α 6= 0

ac+ b if α = 0
, (4)

that is, if vα is either exponential or affi ne. In the former case, % is a CARA preference
which is not risk neutral; in particular, it is (strictly) risk averse if α > 0 and (strictly)

risk loving if α < 0.15 Note that

Imu =


(−∞, b) if α > 0

(b,+∞) if α < 0

(−∞,+∞) if α = 0

and so b = sup Imu when % is risk averse and b = inf Imu when % is risk loving.

Momentarily, this extremum role of b will play a key role in Theorem 2.

3.2 Rational preferences

Absolute ambiguity attitudes describe how the decision maker’s preferences over un-

certain monetary alternatives vary as his wealth changes. This motivates the following

behavioral definition, which adapts to our setting a standard notion for risk domains.

We then proceed to characterize it for rational and for uncertainty averse preferences.

Definition 3 A preference % on F is decreasing (increasing, constant) absolute am-
biguity averse if, for any two levels w and w′ of wealth, w′ > w implies that %w is
more (less, equally) ambiguity averse than %w′.16
15In what follows, we omit “strictly” since a CARA preference is either risk neutral (α = 0) or

strictly risk averse (α > 0) or strictly risk loving (α < 0).
16Clearly, %w is less ambiguity averse than %w′ if and only if %w′ is more ambiguity averse than
%w. Similarly, equally ambiguity averse means that %w is, at the same time, more and less ambiguity
averse than %w′ .
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As this classification is not exhaustive, we say that a preference is (absolutely)

classifiable in terms of absolute ambiguity aversion if it can be classified according

to this definition, that is, if it is either decreasing or increasing or constant absolute

ambiguity averse. The next result shows that being CARA is a necessary condition

for a preference in order to be classifiable: in fact, in this way absolute risk attitudes

do not intrude in wealth effects.

Proposition 3 A rational preference % is classifiable only if it is CARA.

We first characterize absolute ambiguity attitudes for rational preferences.

Theorem 2 Let % be a rational preference on F with representation (u, I). The

following statements are equivalent:

(i) % is decreasing absolute ambiguity averse;

(ii) % is CARA and I is:

(a) concave (convex) at b provided % is risk averse (loving);

(b) constant superadditive provided % is risk neutral.

(iii) % is classifiable and I satisfies (a) or (b).

When vα (c) = − 1
α
e−αc, and so a = 1 and b = 0, in point (a) concavity (convexity)

at b reduces to positive superhomogeneity (subhomogeneity).17

Dual versions of this theorem are easily seen to hold for increasing and constant

absolute ambiguity aversion (for this latter case see Corollary 1). In particular, by

keeping the same premises, Theorem 2 takes a similar form with (i), (ii), and (iii)

replaced by:

(i)’% is increasing absolute ambiguity averse;

(ii)’% is CARA and I is:

(a) convex (concave) at b provided % is risk averse (loving);

(b) constant subadditive provided % is risk neutral.

(iii)’% is classifiable and I satisfies (a) or (b).
17See also Appendix A for the notions of concavity/convexity at b.
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The next result characterizes constant absolute ambiguity aversion for classifiable

rational preferences. At the same time, the result still holds if instead of requiring %
being classifiable we only require % to be CARA.18

Corollary 1 Let % be a classifiable rational preference on F with representation

(u, I). Then:

(i) If % is risk neutral, it is constant absolute ambiguity averse if and only if I is
constant additive.19

(ii) If % is not risk neutral, it is constant absolute ambiguity averse if and only if I
is affi ne at b.

When vα (c) = − 1
α
e−αc, and so a = 1 and b = 0, in point (ii) the affi nity at b reduces

to positive homogeneity, that is, I (λϕ) = λI (ϕ) for all λ > 0. Risk neutrality and risk

aversion of % may thus translate constant absolute ambiguity aversion in, respectively,
constant additivity and positive homogeneity of I which are two mathematically and

decision theoretically distinct properties.

In behavioral terms, Weak C-Independence underlies the risk neutral case of the

previous result.

Corollary 2 A risk neutral rational preference is constant absolute ambiguity averse
if and only if it satisfies Weak C-Independence.

Along with Corollary 1, the next result shows that invariant biseparable prefer-

ences are a class of rational preferences that, when classifiable, are constant absolute

ambiguity averse regardless of their risk attitudes.

Corollary 3 Let % be an invariant biseparable preference % on F . The following
conditions are equivalent:

(i) % is classifiable;

(ii) % is constant absolute ambiguity averse;

(iii) % is CARA.
18Recall that by Proposition 3, classifiable preferences are CARA.
19Recall that Imu = R in the risk neutral case.
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As mentioned in the introduction, Corollary 2 (and Corollary 4 below) show that

our analysis is consistent, under risk neutrality, with the approach of Grant and Polak

[20]. The role of constant superadditivity in Theorem 3 shows that a similar consis-

tency holds with the results of Xue [30] and [31].

Since we are dealing with acts yielding monetary lotteries, it is also possible to

discuss monetary certainty equivalents. Given a canonical representation (u, I), we

can define the functional c : F → R by the rule c (f) = v−1 (I (u (f))). Note that,

given f ∈ F , the scalar c (f) is the monetary amount that, received with certainty

in each state of the world, makes the decision maker indifferent between f and the

constant (risk free) act paying c (f). We will say that c is wealth superadditive (resp.,

subadditive, additive) if and only if for each f ∈ F and for each w ≥ 0

c (fw) ≥ c (f) + w (resp., ≤,= ).

Proposition 4 Let % be a rational preference on F with representation (u, I). Then:

(i) % is decreasing absolute ambiguity averse if and only if c is wealth superadditive
and % is CARA.

(ii) % is increasing absolute ambiguity averse if and only if c is wealth subadditive
and % is CARA.

(iii) % is constant absolute ambiguity averse if and only if c is wealth additive and %
is CARA.

3.3 Uncertainty averse preferences

Assume that % is an uncertainty averse preference. By definition, % is also ratio-

nal. If (u, I) is a (rational) representation of %, then there exists a unique minimal
linearly continuous G ∈ G (Imu×∆) such that I (ψ) = infp∈∆G

(∫
ψdp, p

)
for all

ψ ∈ B0 (Σ, Imu). Uncertainty averse preferences are thus characterized by the pair

(u,G). In particular, the function G is an index of ambiguity aversion.20

Nowwe characterize absolute ambiguity attitudes for uncertainty averse preferences

in terms of the pair (u,G).

Theorem 3 Let % be an uncertainty averse preference on F with representation

(u,G). The following statements are equivalent:

20These facts can be found in [8] (see also Appendix A). Because of the minimality of G, we have

G (t, p) = supf∈F
{
u (xf ) :

∫
u (f) dp ≤ t

}
for all (t, p) ∈ Imu×∆. The function G is unique given u.
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(i) % is decreasing absolute ambiguity averse;

(ii) % is CARA and G is such that:

(a) G (λt+ (1− λ) b, p) ≥ λG (t, p)+ (1− λ) b (≤) for all (t, p) ∈ Imu×∆ and

for all λ ∈ (0, 1) provided % is risk averse (loving);

(b) G (t+ k, p) ≥ G (t, p)+k for all (t, p) ∈ Imu×∆ and for all k ≥ 0 provided

% is risk neutral.

(iii) % is classifiable and G satisfies (a) or (b).

Here as well, dual versions of this result hold in the increasing and constant absolute

ambiguity averse case (with, respectively, opposite inequalities and equalities).

The next corollary shows that the behavioral characterization established in Corol-

lary 2 leads to variational preferences when preferences are uncertainty averse.

Corollary 4 A risk neutral uncertainty averse preference is constant absolute ambi-
guity averse if and only if it is a variational preference.

The next result reports a noteworthy consequence of the previous theorem for

uncertainty averse preferences which feature a concave G (or, equivalently, a concave

I).

Corollary 5 Let % be an uncertainty averse preference which is CARA and risk

averse. If G is concave, then % is decreasing absolute ambiguity averse.

This corollary can be sharpened for the class of variational preferences that are

not maxmin, and so in particular are not invariant biseparable. This class features a

concave G.

Corollary 6 A variational preference, which is not maxmin and not risk neutral,

satisfies:

(i) decreasing absolute ambiguity aversion if and only if it is CARA and risk averse;

(ii) increasing absolute ambiguity aversion if and only if it is CARA and risk loving.

In order to characterize constant absolute ambiguity attitudes when the preference

is not risk neutral, we need to consider homothetic preferences.

Corollary 7 A risk nonneutral uncertainty averse preference is constant absolute am-
biguity averse if and only if it is CARA and homothetic.

To sum up, depending on risk attitudes, homothetic or variational preferences

characterize constant absolute ambiguity attitudes for uncertainty averse preferences.
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3.4 Smooth ambiguity preferences

Let φ : Imu → R be a strictly increasing and continuous function, and µ a Borel

probability measure over ∆. The preferences represented by a pair (u, I), where

I (ϕ) = φ−1

(∫
φ

(∫
ϕdp

)
dµ

)
(5)

are called smooth ambiguity preferences (Klibanoff, Marinacci and, Mukerji [22]). They

are uncertainty averse when φ is concave.

Proposition 5 Let % be a CARA smooth ambiguity preference and φ (t) = −e−γt

with γ > 0. Then,

(i) If % is risk neutral, then it is constant absolute ambiguity averse.

(ii) If % is risk averse, then it is decreasing absolute ambiguity averse.

In our setup an exponential φ thus yields constant absolute ambiguity aversion,

as argued in [22], as long as % is risk neutral. In the next result, using Theorem 2,

we provide a full characterization of decreasing absolute ambiguity aversion within

the smooth ambiguity model. Before doing so, we need to introduce some additional

notions and terminology.

Given φ : R → R and w ∈ R, we define φw : R → R to be such that φw (t) =

φ (t+ w) for all t ∈ R. Similarly, given φ : (−∞, 0) → R (resp., φ : (0,∞) → R) and
ν > 0, we define φν (t) = φ (νt) for all t < 0 (resp., t > 0).

Definition 4 Let φ : Imu→ R be strictly increasing and continuous.

(i) If Imu = R, we say that φ is DARA if for each w′, w ∈ R, with w′ > w, there

exists a strictly increasing and concave f : Imφ→ Imφ such that φw = f ◦ φw′.

(ii) If Imu = (−∞, 0), we say that φ is IRRA if for each ν, η > 0, with ν > η, there

exists a strictly increasing and concave f : Imφ→ Imφ such that φν = f ◦ φη.

(iii) If Imu = (0,∞), we say that φ is DRRA if for each ν, η > 0, with ν > η, there

exists a strictly increasing and concave f : Imφ→ Imφ such that φη = f ◦ φν.

Consider a function φ : Imu → R which is twice continuously differentiable and
such that φ′ > 0. Clearly, φ is DARA if and only if −φ′′ (t) /φ′ (t) is decreasing and
similarly, φ is DRRA (resp., IRRA) if and only if −tφ′′ (t) /φ′ (t) is decreasing (resp.,
increasing).
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Proposition 6 Let % be a CARA smooth ambiguity preference with b = 0 in (4) and

assume that Σ is nontrivial. Then,

(i) If % is risk neutral, % is decreasing absolute ambiguity averse for all µ if and
only if φ is DARA.

(ii) If % is risk averse, % is decreasing absolute ambiguity averse for all µ if and

only if φ is IRRA.

(iii) If % is risk loving, % is decreasing absolute ambiguity averse for all µ if and only
if φ is DRRA.

This result provides some behavioral guidance in the specification of the function φ,

as the standard theory of absolute risk aversion of Arrow and Pratt provides guidance

in the choice of the von Neumann-Morgenstern utility function.

Remark 1 Cherbonnier and Gollier [12, Proposition 2 and Corollary 1], in a different
framework, characterize decreasing absolute uncertainty aversion (being the sum of

risk and ambiguity) for the smooth ambiguity model (see also Section 3.6). Under

the assumption that φ is concave, they show that a smooth ambiguity preference is

decreasing absolute uncertainty averse if and only if v and φ ◦ v are both DARA. The
characterization in Proposition 6, where v is CARA, is consistent with their findings.

At the same time, in our case, φ does not have to be concave.

Let cf (p) ∈ R be the monetary certainty equivalent of act f under p, that is,

cf (p) = v−1
(∫

u (f) dp
)
. By setting w = φ ◦ v : R → R, the smooth ambiguity

representation can be written as

V (f) =
(
v ◦ w−1

)(∫
w (cf (p)) dµ

)
=
(
v ◦ w−1

)(∫ (
w ◦ v−1

)(∫
u (f) dp

)
dµ

)
.

The function w can be interpreted as aversion to epistemic uncertainty.21 When v is

the identity, we have φ = w and so point (i) of the Proposition 5 can be interpreted

in terms of constant attitudes toward such uncertainty. When both v (c) = −e−αc and
w (c) = −e−βc are risk averse exponentials, with β > α > 0, then φ (t) = − (−t)

β
α .

21See Marinacci [24] for a discussion of this version of the smooth ambiguity model. The context

should clarify that here w is a function and not a wealth level.
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The condition β > α can be interpreted as higher aversion to epistemic uncertainty

than to risk (both being constant absolute averse). The next result shows that in this

double exponential case the resulting absolute ambiguity aversion is decreasing.

Proposition 7 Let % be a CARA smooth ambiguity preference, with b ≤ 0 in (4),

and suppose φ (t) = − (−t)γ for all t < 0 with γ > 1. If % is risk averse, then it is
decreasing absolute ambiguity averse.

3.5 Portfolio problem

In this section we study how absolute ambiguity attitudes affect portfolio choices. To

do so, we adapt to our setting the standard portfolio exercise of Arrow which originally

was carried in a risk domain, as an illustration of the implications of absolute and

relative risk attitudes. Assume that f : S → ∆0 (R) is a purely ambiguous asset, that

is, for each state of the world f yields a deterministic consequence, interpreted as a

return. Formally, as an Anscombe and Aumann act, we have that f (s) = δrs for all

s ∈ S where rs > 0 is the return in state s.22 The risk free asset is instead modelled by

the act g such that g (s) = δrf for all s ∈ S where rf > 0 is the return on the risk free

asset. The agent faces the following portfolio problem: he has wealth w > 0 which

he has to allocate between the ambiguous asset and the risk free asset. We denote by

β the amount of wealth invested in the ambiguous asset and by w − β the amount

invested in the risk free one. We assume that the agent cannot short any of the two

securities and therefore β ∈ [0, w]. Note that the allocation (β, w − β) generates an

Anscombe and Aumann act that in each state of the world yields δβrs+(w−β)rf where

βrs + (w − β) rf = wrf +β (rs − rf ) is the final wealth level in state s. We denote the
real-valued measurable random variable s 7→ rs by r. Similarly, with a small abuse of

notation, we denote by rf the constant random variable that in each state s assumes

value rf .

In terms of preferences, we assume that the agent has rational preferences % on F
with canonical representation (u, I) and von Neumann-Morgenstern function v : R→
R. The portfolio problem amounts to

max I (v (βr + (w − β) rf )) subject to β ∈ [0, w] . (6)

In what follows, we assume that this problem always admits a unique solution for all

w > 0, denoted by β∗ (w).

22As usual, x = δc is the degenerate lottery at c, that is, x (d) = 1 if d = c, and x (d) = 0 otherwise.
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Proposition 8 Let % be a rational preference on F with representation (u, I). If %
is constant absolute ambiguity averse, then

w′ > w > 0 =⇒ β∗ (w′) ≥ β∗ (w) .

If, in addition, β∗ (w) ∈ (0, w) with w > 0 and % is risk averse and uncertainty averse,
then

w′ > w =⇒ β∗ (w′) = β∗ (w) .

Before discussing the result, we comment on its generality. Note that, differently

from what happens under risk, the subclass of preferences which exhibit constant

absolute attitudes is quite large. Inter alia, this subclass contains the following pref-

erences: α-maxmin, Choquet expected utility, variational under risk neutrality, ho-

mothetic under risk nonneutrality as well as the risk averse CARA smooth ambiguity

preferences % of Proposition 7 when b = 0. Thus, the scope of the previous result is

much wider than one might suspect at a first glance.

We next discuss the second part of the statement. The result is indeed in line with

intuition. If the decision maker is risk and uncertainty averse, then his preferences are

convex in β, so the agent values diversification. It follows that if β∗ (w) is an interior

solution, then an intermediate subjective optimal balance has been found between the

certainty provided by the risk free asset and the potentially higher, yet uncertain,

returns of the ambiguous asset. At the same time, if w′ > w and % is constant

absolute ambiguity averse, then wealth does not impact the ambiguity attitudes of

the decision maker. In other words, the increment in wealth (w′ − w) rf is factored

out and, as a consequence, the previously optimal balance between the risk free asset

and the ambiguous one is unaffected, that is, β∗ (w′) = β∗ (w). In the first part of the

statement, we only obtain a weak inequality since we impose no restriction on β∗ (w).

This is easy to understand if, for example, we think of the case where rs > rf for all

s ∈ S. In such a case, the decision maker would always choose β∗ (w) = w, no matter

what and the inequality would trivially follow.

It eluded us whether a general portfolio result holds for decreasing absolute ambi-

guity aversion. However, we were able to prove such a result for two important classes

of preferences: risk neutral smooth ambiguity preferences and CARA multiplier pref-

erences.

In the first case, by Proposition 6 and since % is risk neutral, by choosing v to be
the identity, we know that decreasing absolute ambiguity aversion amounts to impose

φ being DARA, provided Σ is nontrivial.
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Proposition 9 Let % be a CARA smooth ambiguity preference with φ twice continu-
ously differentiable and such that φ′ > 0. If % is risk neutral, φ is concave and DARA,
and β∗ (w) ∈ (0, w) with w > 0, then

w′ > w =⇒ β∗ (w′) ≥ β∗ (w) . (7)

The second result instead deals with Hansen and Sargent [21] multiplier preferences.

Recall that % is a multiplier preference if it admits a rational representation (u, I)

where

I (ϕ) = −1

θ
log

(∫
e−θϕdq

)
= min

p∈∆

{∫
ϕdp+

1

θ
R (p||q)

}
where θ > 0, q is a countably additive element of ∆, and R (p||q) is the relative entropy
of p with respect to q.23 Multiplier preferences are variational. By Corollary 6, if % is
risk averse then % is decreasing absolute ambiguity averse.

Proposition 10 Let % be a CARA multiplier preference. If % is risk averse and

β∗ (w) ∈ (0, w) with w > 0, then (7) holds.

Remark 2 Cherbonnier and Gollier [12] carried out a portfolio analysis for decreas-
ing absolute uncertainty averse smooth and α-maxmin preferences. It is, however, a

different exercise than ours, based also on assumptions on returns. Combined with the

differences in the frameworks, this makes their results not directly comparable with

ours. In particular, in our setting also for the smooth ambiguity model we have a

monotonicity result in wealth (cf. [12, Proposition 5]).

3.6 General absolute risk attitudes

In an Anscombe and Aumann setting, under the usual interpretation there are two

sources of uncertainty: one which is objective —risk, the lotteries in ∆0 (R) —and one

which is subjective —ambiguity, the events in S. In studying how changes in wealth

affect ambiguity attitudes, our analysis rested on the comparative notion of being more

ambiguity averse contained in Definition 1. This notion has the desirable feature of

equalizing risk attitudes (cf. Propositions 2 and 3). Thus, all the differences between

%w and %w′ can be rightfully attributed to attitudes toward ambiguity. Moreover, as
we argued in the Introduction, this is in line with how comparative statics exercises are

carried in Economics when a change in one variable generates effects through different

channels.
23See also Maccheroni, Marinacci, and Rustichini [23, Section 4.2.1] as well as Strzalecki [27].

23



At the same time, one could be interested in allowing for more general absolute

risk attitudes. Clearly, if possible, any such analysis will encompass the CARA case

(hence, this paper) as a particular, yet important, case. In general, allowing for more

general absolute risk attitudes presents a diffi culty. Namely, we are not able anymore

to disentangle the effects of wealth on uncertainty attitudes coming from ambiguity

and risk. We thus tackle the problem in a different way. We explore how much our

characterization is portable to a non-CARA setting. In particular, outside the CARA

framework, we identify absolute ambiguity attitudes with the functional properties

found in the previous part of the paper and see how much this allows us to talk about

absolute uncertainty attitudes.

Indeed, assume that one is interested in the overall uncertainty attitudes of the

decision maker, that is, loosely speaking in the sum of risk and ambiguity attitudes.

Formally, let T be equal to either R or R++ and X = ∆0 (T ).24

Definition 5 Given two preferences %1 and %2 on F , we say that %1 is more uncer-

tainty averse than %2 if, for each f ∈ F and c ∈ T , f %1 δc implies f %2 δc.25

Consider two rational preferences %1 and %2 with canonical representations (u1, I1)

and (u2, I2). Let v1, v2 : T → R be the respective von Neumann-Morgenstern utilities
on monetary outcomes.26 It follows that %1 is more uncertainty averse than %2 if and

only if c1 (f) ≤ c2 (f) for all f ∈ F where, for i ∈ {1, 2}, ci : F → T is such that

ci (f) = v−1
i (Ii (ui (f))) for all f ∈ F . In other words, %1 is more uncertainty averse

than %2 if and only if for each act f the monetary certainty equivalent of decision

maker 1 is smaller or equal than the monetary certainty equivalent of decision maker

2.

Remark 3 Since lotteries are identified with constant acts, %1 is more uncertainty

averse than %2 only if %1 is more risk averse than %2. In particular, v2 is a strictly

increasing and convex transformation of v1.

By definition, if %1 is more ambiguity averse than %2, then %1 is more uncertainty

averse than %2.27 At the same time, there is something more to this mathematically

24For the case R++, we have to slightly modify the definition of xw and %w. See Appendix B.3.1
for details.
25Recall that x = δc is the degenerate lottery at c, that is, x (d) = 1 if d = c, and x (d) = 0

otherwise. Recall also that lotteries are identified with constant acts.
26Recall that we always assume that v1 and v2 are strictly increasing and continuous.
27Degenerate lotteries are a subset of ∆0 (T ).
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trivial implication. Indeed, the economic reason why comparative ambiguity aversion

implies comparative uncertainty aversion is that %1 coincides with %2 on ∆0 (T ) so

that all the differences come from ambiguity attitudes and those add up to the common

behavior of %1 and %2 over risk.

Thus, in our attempt to combine our analysis on ambiguity attitudes with different

absolute risk attitudes, we use Definition 5 to study how variations in wealth impact

uncertainty attitudes:

Definition 6 A preference % on F is decreasing (increasing, constant) absolute un-

certainty averse if, for any two levels w and w′ of wealth, w′ > w implies that %w is
more (less, equally) uncertainty averse than %w′.

Remark 4 The standard notions of decreasing (increasing, constant) absolute risk
aversion are defined using this definition, only restricted to lotteries. In what follows,

we will refer to decreasing and increasing absolute risk aversion also as DARA and

IARA.

As mentioned, intuitively, Definition 6 captures the combined effects of changes in

wealth that come from two channels: risk and ambiguity. Hence, if we were to shut

down one of the two, namely risk, all the effects should come from the other. The next

simple result confirms this intuition.

Proposition 11 Let % be a CARA rational preference on F . The following statements
are equivalent:

(i) % is decreasing (increasing, constant) absolute uncertainty averse;

(ii) % is decreasing (increasing, constant) absolute ambiguity averse.

In words, once wealth’s effects on risk are neutralized, the effects on uncertainty

attitudes equate the effects on ambiguity attitudes.

The goal of this section is to allow for more general absolute attitudes toward risk

and study how changes in wealth affect uncertainty attitudes where the latter are seen

as the combination of ambiguity and risk attitudes.

On the one hand, since there are two channels where uncertainty kicks in, charac-

terizations are very diffi cult and might be model dependent (see, for example, Cher-

bonnier and Gollier [12, Propositions 1 and 2]). Indeed, loosely speaking, one could

think of the following scenario. Consider a decision maker who is:
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1. decreasing absolute risk averse;

2. increasing absolute ambiguity averse (still to be defined outside a CARA setting).

A priori, we could still observe a decreasing absolute uncertainty averse behavior,

provided absolute risk aversion quantitatively cancels the positive effects on uncer-

tainty coming from the increasing ambiguity attitudes.

On the other hand, since our analysis is qualitative, we are only going to focus

on the combined effects of risk and ambiguity when they both share the same nature.

For example, we are going to study if decreasing absolute risk aversion and decreasing

absolute ambiguity aversion yield indeed decreasing absolute uncertainty aversion.

By Remark 3, a decision maker who is decreasing absolute uncertainty averse must

be DARA. Similar observations hold for increasing and constant absolute uncertainty

attitudes. Therefore, in studying either of these three notions the attitudes on risk

must necessarily match the ones on the overall uncertainty.

The conceptual issue in such an exercise is the exact meaning of decreasing absolute

ambiguity aversion when behavior under risk is not confined to be CARA. Outside the

CARA realm, we are going to identify decreasing absolute ambiguity aversion, DAAA,

with the functional properties of I that characterize such a behavioral property in the

CARA setting. By Theorem 2, recall that28

Under risk aversion: DAAA = Concavity at b of I

and

Under risk love: DAAA = Convexity at b of I.

So, in the next results we interpret concavity/convexity of I at b in terms of DAAA.

Proposition 12 Let % be a rational preference with representation (u, I) that satisfies

Weak C-Independence and Unboundedness. Then, % is decreasing absolute uncertainty
averse if either of the following two conditions holds:

(i) % is risk averse, DARA, and I is concave at b;

(ii) % is risk loving, DARA, and I is convex at b.
28As in the CARA case, we continue to set b = sup Imu if Imu = (−∞, b) and b = inf Imu if

Imu = (b,+∞). At the same time, we set b = 0 if Imu = R. Note that if % is not CARA, then Imu

can be the entire real line even if not risk neutral.
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The previous proposition confirms that29

DARA+DAAA =⇒ DAUA.

This result is proved for a large class of preferences, namely the class of rational

preferences that satisfy Weak C-Independence and therefore contains, inter alia, the

class of variational preferences [23] and invariant biseparable preferences [14].

Under the same premises of Proposition 12, a dual version holds for increasing

absolute uncertainty aversion: % is increasing absolute uncertainty averse if either of
the following two conditions holds:

(i)’% is risk averse, IARA, and I is convex at b;

(ii)’% is risk loving, IARA, and I is concave at b.

The results that follow are aimed to further confirm the above intuitions. For

example, the class of invariant biseparable preferences was identified in Corollary 3

as a large class of constant absolute ambiguity averse preferences (CAAA). Thus, one

should expect that for this class, if attitudes over risk are assumed to be DARA, then

the overall attitudes should be indeed DAUA, that is,

DARA+ CAAA =⇒ DAUA.

This is the content of the next result.

Proposition 13 Let % be an invariant biseparable preference on F . The following
conditions are equivalent:

(i) % is decreasing absolute uncertainty averse;

(ii) % is DARA.

Remark 5 Cherbonnier and Gollier [12, Proposition 1] proved that an α-maxmin

preference is decreasing absolute uncertainty averse if and only if it is DARA. The

above result generalizes their result to the class of invariant biseparable preferences.30

Compared to Proposition 12, we can dispense with the assumption of Unboundedness

and % can be neither risk averse nor risk loving.
29Decreasing absolute uncertainty averse is abbreviated to DAUA.
30This class is much larger since it contains, inter alia, Choquet expected utility preferences which

are not α-maxmin. At the same time, Cherbonnier and Gollier obtain their result in a different

framework.

27



Proposition 14 Let % be a rational preference with representation (u, I). If % is

risk averse, DARA, and such that Imu = (b,∞) and I is concave at b and constant

superadditive, then % is decreasing absolute uncertainty averse.

The previous result continues to hold if I is assumed to be concave, a much easier

property to check.

Corollary 8 Let % be a rational preference with representation (u, I). If % is risk

averse, DARA, and such that Imu = (b,∞) and I is concave, then % is decreasing
absolute uncertainty averse.

One more time, we obtain that decreasing absolute attitudes on risk and ambiguity

compound and yield decreasing absolute attitudes on uncertainty.

Example 1 Let v : R++ → R be such that v (c) = cγ for all c ∈ R++ with γ ∈ (0, 1).

Clearly, we have that Imu = (b,∞) with b = 0. Let φ : Imu → R be the power

function φ (t) = tρ with ρ ∈ (0, 1). Let µ be a Borel probability measure over ∆. The

rational preference represented by the pair (u, I), where

I (ϕ) = φ−1

(∫
φ

(∫
ϕdp

)
dµ

)
,

is a smooth ambiguity preference which satisfies all the hypotheses of Corollary 8. It

follows that % is decreasing absolute uncertainty averse. N

4 Relative ambiguity aversion

4.1 Relative analysis

In this section we briefly explore relative ambiguity aversion.31 For this reason, we

focus on lotteries which yield only strictly positive numbers, interpreted as returns:

X = ∆0 (R++). As before, we consider a group of transformations on X, but this

time, it is indexed by R++. In particular, given ν > 0, we denote by ν : ∆0 (R++) →
∆0 (R++) the affi ne and onto map such that xν (νc) = x (c) for all c ∈ R++ and for all

x ∈ ∆0 (R++). Given wealth ν > 0, the lottery xν is interpreted as the distribution of

final wealth if ν is invested in x. In this monetary setup, we have the following classic

notion.
31Proofs follow closely the ones carried out for the absolute case and are therefore omitted for

brevity.
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Definition 7 A preference % on F is constant relative risk averse (CRRA) if, for

any two strictly positive levels ν and η of wealth, the induced preferences %ν and %η
agree on ∆0 (R++).

This behavioral definition amounts to say that preferences over lotteries yielding

returns are unaffected by changes in invested wealth. A routine argument shows that,

if % is represented by an affi ne utility function u : ∆0 (R++)→ R,32 then % is CRRA
if and only if there exist γ ∈ R, a > 0, and b ∈ R such that

vγ (c) =

{
aγcγ + b if γ 6= 0

a log c+ b if γ = 0
, (8)

that is, if vγ is either a power or the logarithm. Note that

Imu =


(−∞, b) if γ < 0

(b,+∞) if γ > 0

(−∞,+∞) if γ = 0

and so b = sup Imu when γ < 0 and b = inf Imu when γ > 0. Again, this extremum

role of b will play a key role momentarily (Theorem 4).

4.2 Relative ambiguity attitudes

Relative ambiguity attitudes describe how the decision maker’s preferences over un-

certain monetary returns vary as the wealth invested changes. This motivates the

following behavioral definition, which adapts to our setting a standard notion for risk

domains. We then proceed to characterize it for rational preferences.

Definition 8 A preference % on F is decreasing (increasing, constant) relative am-

biguity averse if, for any two strictly positive levels ν and η of wealth, ν > η implies

that %η is more (less, equally) ambiguity averse than %ν.

Since also this classification of preferences is not exhaustive, we say that a pref-

erence is relatively classifiable (in terms of relative ambiguity aversion) if it can be

classified according to this definition, that is, if it is either decreasing or increasing

or constant relative ambiguity averse. The next result shows that being CRRA is a

necessary condition for a preference to be relatively classifiable: indeed, in this way

relative risk attitudes do not intrude in wealth’s proportionality effects.
32Even in this section, we maintain the assumption that if % on ∆0 (R++) is represented by an

affi ne utility function, then its von Neumann-Morgenstern utility function is strictly increasing and

continuous.
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Proposition 15 A rational preference % is relatively classifiable only if it is CRRA.

We next characterize decreasing relative ambiguity attitudes for rational prefer-

ences.

Theorem 4 Let % be a rational preference on F with representation (u, I). The

following statements are equivalent:

(i) % is decreasing relative ambiguity averse;

(ii) % is CRRA and I is:

(a) concave (convex) at b provided γ < 0 (γ > 0);

(b) constant superadditive provided γ = 0.

(iii) % is relatively classifiable and I satisfies (a) or (b).

Similar characterizations hold for increasing and constant relative ambiguity aver-

sion.33 We next provide a formal statement of a result mentioned in the Introduction

which shows that our results provide behavioral guidance in the choice of the parame-

ters of functional representations.

Proposition 16 Let % be a CRRA smooth ambiguity preference with b = 0 in (8),

γ ∈ [0, 1), and assume that Σ is nontrivial. Then,

(i) If γ = 0, % is constant relative ambiguity averse for all µ if and only if φ is

CARA.34

(ii) If γ ∈ (0, 1), % is constant relative ambiguity averse for all µ if and only if φ is
CRRA.35

33If we replace decreasing relative ambiguity aversion with increasing relative ambiguity aversion,

then we must invert the role of concavity and convexity at b as well as change constant superadditivity

in constant subadditivity. Similarly, if we replace decreasing relative ambiguity aversion with constant

relative ambiguity aversion, then concavity and convexity at b (resp., constant superadditivity) will

become affi nity at b (resp., constant additivity).
34That is, φ : R → R is a positive affi ne transformation of either − 1

β e
−βt where β 6= 0 or the

identity.
35That is, φ : (0,∞)→ R is a positive affi ne transformation of either ρtρ where ρ 6= 0 or log t.
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Example 2 As common in Macroeconomics, let v : R++ → R be either v (c) = cγ

with γ ∈ (0, 1) or v (c) = log c. Clearly, we have that Imu = (b,∞) with b = 0 in

the former case and Imu = R in the latter. Assume also that the agent has smooth
ambiguity preferences, as common in applications, with φ : Imu → R and µ a Borel
probability measure over ∆. On the one hand, if v is a power function, then choosing

φ to be φ (t) = tρ with ρ ∈ (0, 1) would yield constant relative ambiguity aversion no

matter what is µ. On the other hand, things would be extremely different if v were

to be chosen to be the logarithm. In this case, to obtain constant relative ambiguity

aversion one should assume that φ is CARA. In the former case, Example 1 yields

that the preference is also decreasing absolute uncertainty averse. In the latter case,

by assuming that φ is concave too, Proposition 12 brings to the same conclusion. N

Also in this case, it is possible to introduce monetary certainty equivalents. Given

a canonical representation (u, I), we can again define the functional c : F → R++ by

the rule c (f) = v−1 (I (u (f))). We will say that c is wealth superproportional (resp.,

subproportional, proportional) if and only if for each f ∈ F and for each ν ≥ 1

c (f ν) ≥ νc (f) (resp., ≤,= ).

Proposition 17 Let % be a rational preference on F with representation (u, I). Then:

(i) % is decreasing relative ambiguity averse if and only if c is wealth superpropor-
tional and % is CRRA.

(ii) % is increasing relative ambiguity averse if and only if c is wealth subproportional
and % is CRRA.

(iii) % is constant relative ambiguity averse if and only if c is wealth proportional and
% is CRRA.

A Appendix: Mathematics

We denote by B0 (Σ) the set of all real-valued Σ-measurable simple functions. If T is

an interval of the real line, set B0 (Σ, T ) = {ψ ∈ B0 (Σ) : ψ (s) ∈ T for all s ∈ S}. We
endow both B0 (Σ) and B0 (Σ, T ) with the topology induced by the supnorm.

With a small abuse of notation, we denote by k both the real number and the

constant function on S that takes value k. Let ϕ, ψ ∈ B0 (Σ, T ). A functional I :

B0 (Σ, T )→ R is:
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(i) normalized if I (k) = k for all k ∈ T ;

(ii) monotone if ϕ ≥ ψ implies I (ϕ) ≥ I (ψ);

(iii) quasiconcave if I (λϕ+ (1− λ)ψ) ≥ min {I (ϕ) , I (ψ)} for all λ ∈ (0, 1);

(iv) positively superhomogeneous (subhomogeneous) if I (λϕ) ≥ (≤)λI (ϕ) for all

λ ∈ (0, 1) such that λϕ ∈ B0 (Σ, T );

(v) positively homogeneous if it is both: positively superhomogeneous and subhomo-

geneous;36

(vi) concave (convex) at k ∈ cl (T ) if I (λϕ+ (1− λ) k) ≥ (≤)λI (ϕ) + (1− λ) k for

all λ ∈ (0, 1);

(vii) affi ne at k ∈ cl (T ) if it is both concave and convex at k;

(viii) constant superadditive (subadditive) if I (ϕ+ k) ≥ (≤) I (ϕ) + k for all k ≥ 0

such that ϕ+ k ∈ B0 (Σ, T ).

(ix) constant additive if I is both constant superadditive and subadditive;37

(x) constant linear if I (λϕ+ k) = λI (ϕ) + k for all λ ∈ (0, 1] and k ∈ R such that
λϕ+k ∈ B0 (Σ, T ). If T is either (−∞, 0) or (0,∞) or R, this amounts to impose
that I is constant additive and positively homogeneous.

When k = 0, concavity (convexity) at k reduces to positive superhomogeneity

(subhomogeneity).

As well known, the norm dual space of B0 (Σ) can be identified with the set ba (Σ)

of all bounded finitely additive measures on (S,Σ). The set of probabilities in ba (Σ)

is denoted by ∆ and is a (weak*) compact and convex subset of ba (Σ). Elements of

∆ are denoted by p or q. We endow ∆ and any of its subsets with the weak* topology.

36When either T = (−∞, 0) or T = (0,∞) or T = R, then I is positively homogeneous if and
only if I (λϕ) = λI (ϕ) for all ϕ ∈ B0 (Σ, T ) and for all λ > 0. Often, in this paper, in talking

about positive homogeneity properties of I, we will either say I is (sup/sub)homogeneous, dropping

the qualifier positive, or equivalently say it is positive (sup/sub)homogeneous as well as positively

(sup/sub)homogeneous.
37Note that I is constant additive if and only if I (ϕ+ k) = I (ϕ) + k for all ϕ ∈ B0 (Σ, T ) and for

all k ∈ R such that ϕ + k ∈ B0 (Σ, T ). In other words, if I (ϕ+ k) = I (ϕ) + k holds for positive

constants, then it also holds for k < 0, provided ϕ,ϕ+ k ∈ B0 (Σ, T ).
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Functions of the form G : T×∆ → (−∞,∞], where T is an interval of the real

line, play an important role in Section 3.3. We denote by G (T×∆) the class of these

functions such that:

(i) G is quasiconvex on T×∆,

(ii) G (·, p) is increasing for all p ∈ ∆,

(iii) infp∈∆ G (t, p) = t for all t ∈ T .

A function G : T×∆→ (−∞,∞] is linearly continuous if the map

ψ 7→ inf
p∈∆

G

(∫
ψdp, p

)
from B0 (Σ, T ) to [−∞,∞] is extended-valued continuous. Finally, given a function,

say u : X → R, we will denote its image, that is u (X), by Imu.

B Appendix: Proofs and related material

We begin with a preliminary result that will be used in the appendix.

Lemma 1 Let %1 and %2 be two rational preferences on F with representations

(u1, I1) and (u2, I2). The following statements are equivalent:

(i) %1 is more ambiguity averse than %2;

(ii) There exist a > 0 and b ∈ R such that u1 = au2 + b and I1 ≤ I2 (provided

u1 = u2).

B.1 Generic set of consequences

Proof of Proposition 1. Clearly, %◦ is well defined. Moreover, we have

f �◦ g ⇐⇒ f %◦ g and g 6%◦ f ⇐⇒ f ◦ % g◦ and g◦ 6% f ◦ ⇐⇒ f ◦ � g◦.

(i). Weak Order. Since % satisfies Weak Order and Monotonicity, it follows that there
exist x̄ and ȳ in X such that x̄ � ȳ. Since ◦ is bijective, it follows that there exist

x, y ∈ X such that x̄ = x◦ and ȳ = y◦. By definition of %◦, we have that

x̄ � ȳ =⇒ x◦ � y◦ =⇒ x �◦ y,
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proving that %◦ is nontrivial. Consider f, g ∈ F . Since f ◦, g◦ ∈ F and % satisfies
Weak Order, we have that either f ◦ % g◦ or g◦ % f ◦. By definition of %◦, this implies
that either f %◦ g or g %◦ f or both, thus proving that %◦ is complete. Next, consider
f, g, h ∈ F and assume that f %◦ g and g %◦ h. By definition of %◦, we have that
f ◦ % g◦ and g◦ % h◦. Since % satisfies Weak Order, we can conclude that f ◦ % h◦,

that is, f %◦ h, proving that %◦ is transitive. We can conclude that %◦ satisfies Weak
Order.

Monotonicity. Consider f, g ∈ F and assume that f (s) %◦ g (s) for all s ∈ S. By

definition of %◦ and ◦, it follows that f ◦ (s) = f (s)◦ % g (s)◦ = g◦ (s) for all s ∈ S.
Since % satisfies Monotonicity, we have that f ◦ % g◦, that is, f %◦ g.
Continuity. Consider f, g, h ∈ F and a sequence {αn}n∈N ⊆ [0, 1] such that αn → α

and αnf + (1− αn) g %◦ h for all n ∈ N. By definition of %◦ and since ◦ is affi ne, we
have αnf ◦ + (1− αn) g◦ = (αnf + (1− αn) g)◦ % h◦ for all n ∈ N. Since % satisfies
Mixture Continuity, we have that (αf + (1− α) g)◦ = αf ◦ + (1− α) g◦ % h◦. We can

conclude that αf + (1− α) g %◦ h. Thus, the set {α ∈ [0, 1] : αf + (1− α)g %◦ h} is
closed. A symmetric argument yields the closure of {α ∈ [0, 1] : h %◦ αf + (1− α)g}.
Risk Independence. Consider x, y, z ∈ X, α ∈ (0, 1), and assume that x ∼◦ y. It
follows that x◦ ∼ y◦. Since % satisfies Risk Independence and ◦ is affi ne, we have that

(αx+ (1− α) z)◦ = αx◦ + (1− α) z◦ ∼ αy◦ + (1− α) z◦ = (αy + (1− α) z)◦ ,

proving that αx+ (1− α) z ∼◦ αy + (1− α) z.

(ii). We only need to show that %◦ also satisfies Convexity.
Convexity. Consider f, g ∈ F and α ∈ (0, 1) and assume that f ∼◦ g. It follows that
f ◦ ∼ g◦. Since % satisfies Convexity and ◦ is affi ne, we have that (αf + (1− α) g)◦ =

αf ◦ + (1− α) g◦ % f ◦, that is, αf + (1− α) g %◦ f . �

Proof of Proposition 2. By Proposition 1, both preferences %◦ and %# are rational

preferences. By Theorem 1, both preferences have a canonical representation: (u◦, I◦)

and
(
u#, I#

)
. In particular, u◦ and u# are nonconstant and affi ne. Since %◦ is more

ambiguity averse than %#, we have that y %◦ x implies y %# x. Thus, we conclude

that u◦ (y) ≥ u◦ (x) implies u# (y) ≥ u# (x). By [14, Corollary B.3], the statement

follows. �

The next result will be instrumental in proving Theorem 2, Propositions 12 and

14 as well as Corollary 8.
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Proposition 18 Let (u, I) and
(
ū, Ī
)
be two canonical rational representations. The

two representations (u, I) and
(
ū, Ī
)
represent the same rational preference % if and

only if there exist a > 0 and b ∈ R such that

ū = au+ b and Ī (·) = aI

(
· − b
a

)
+ b.

Moreover,

(i) I is concave if and only if Ī is concave.

(ii) I is concave (convex, affi ne) at c if and only if Ī is concave (convex, affi ne) at

ac+ b.

(iii) I is constant superadditive (subadditive, additive) if and only if Ī is constant

superadditive (subadditive, additive), provided Imu is unbounded from above.

Proof. The first part of the statement follows from [7, Proposition 1]. Define f : R→
R as f (t) = at+ b for all t ∈ R. Define T : B0 (Σ, Im ū)→ B0 (Σ, Imu) as T (ϕ) = ϕ−b

a

for all ϕ ∈ B0 (Σ, Im ū). Note that both functions are bijective and Ī = f ◦ I ◦ T as
well as I = f−1 ◦ Ī ◦ T−1.

(i). “Only if”. Assume that I is concave. Since f and T are monotone and affi ne

and Ī = f ◦ I ◦ T , it follows that Ī is concave. “If”. Note that I = f−1 ◦ Ī ◦ T−1.

Assume that Ī is concave. Since f−1 and T−1 are monotone and affi ne, it follows that

I is concave.

(ii). “Only if”. Assume that I is concave (convex, affi ne) at c ∈ cl (Imu). Note

that c̄ = ac + b ∈ cl (Im ū). It follows that for each ϕ ∈ B0 (Σ, Im ū) and for each

λ ∈ (0, 1)

Ī (λϕ+ (1− λ) c̄) = aI

(
λϕ+ (1− λ) c̄− b

a

)
+ b = aI

(
λ
ϕ− b
a

+ (1− λ)
c̄− b
a

)
+ b

= aI

(
λ
ϕ− b
a

+ (1− λ)
ac+ b− b

a

)
+ b

= aI

(
λ
ϕ− b
a

+ (1− λ) c

)
+ b

≥ (≤,=) a

(
λI

(
ϕ− b
a

)
+ (1− λ) c

)
+ b

= λ

(
aI

(
ϕ− b
a

)
+ b

)
+ (1− λ) (ac+ b) = λĪ (ϕ) + (1− λ) c̄,
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proving that Ī is concave (convex, affi ne) at c̄. “If”. Assume that Ī is concave (convex,

affi ne) at c̄ = ac+ b. It follows that for each ϕ ∈ B0 (Σ, Imu) and for each λ ∈ (0, 1)

I (λϕ+ (1− λ) c) =
1

a
Ī (a (λϕ+ (1− λ) c) + b)− b

a

=
1

a
Ī (λ (aϕ+ b) + (1− λ) (ac+ b))− b

a

=
1

a
Ī (λ (aϕ+ b) + (1− λ) c̄)− b

a

≥ (≤,=)
1

a

(
λĪ (aϕ+ b) + (1− λ) c̄

)
− b

a

= λ

(
1

a
Ī (aϕ+ b)− b

a

)
+ (1− λ)

(
c̄

a
− b

a

)
= λI (ϕ) + (1− λ) c,

proving that I is concave (convex, affi ne) at c.

(iii). “Only if”. Assume that I is constant superadditive (subadditive, additive).

It follows that for each ϕ ∈ B0 (Σ, Im ū) and for each k ≥ 0

Ī (ϕ+ k) = aI

(
ϕ+ k − b

a

)
+ b = aI

(
ϕ− b
a

+
k

a

)
+ b

≥ (≤,=) a

(
I

(
ϕ− b
a

)
+
k

a

)
+ b = aI

(
ϕ− b
a

)
+ b+ k = Ī (ϕ) + k,

proving that Ī is constant superadditive (subadditive, additive). “If”. Assume that

Ī is constant superadditive (subadditive, additive). It follows that for each ϕ ∈
B0 (Σ, Imu) and for each k ≥ 0

I (ϕ+ k) =
1

a
Ī (a (ϕ+ k) + b)− b

a
=

1

a
Ī ((aϕ+ b) + ak)− b

a

≥ (≤,=)
1

a

(
Ī (aϕ+ b) + ak

)
− b

a
=

(
1

a
Ī (aϕ+ b)− b

a

)
+ k = I (ϕ) + k,

proving that I is constant superadditive (subadditive, additive). �

B.2 Monetary consequences

We next prove a couple of ancillary facts. Moreover, when% (on∆0 (R)) is represented

by an affi ne u and is CARA, we first assume that v of u corresponds to (4) with a = 1

and b = 0, that is, we normalize the von Neumann-Morgenstern utility function v to

be such that

v̄α (c) =

{
− 1
α
e−αc if α 6= 0

c if α = 0
. (9)
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In this case, for each w ∈ R and for each lottery x ∈ ∆0 (R), either u (xw) = e−αwu (x)

or u (xw) = u (x) + w.

Lemma 2 If % is a CARA rational preference with representation (u, I), then %w is
a rational preference with representation (u, Iw). Moreover, if we choose v = v̄α as in

(9), then Iw is such that

Iw (ϕ) =

{
I (ϕ+ w)− w if % is risk neutral

eαwI (e−αwϕ) otherwise
∀ϕ ∈ B0 (Σ, Imu) .

Proof. By Proposition 1, both preferences %w and % are rational for all w ∈ R. By
assumption, % is CARA. Thus, %w coincides with % on ∆0 (R) and it has a canonical

representation (uw, Iw) where vw of uw is either exponential or affi ne as in (4). Wlog,

we can thus set u = uw and choose v as in (9). By [7, Proposition 1], we have that

I (ϕ) = u (xg) where xg ∼ g and u (g) = ϕ

and

Iw (ϕ) = u (xf,w) where xf,w ∼w f and u (f) = ϕ.

a) Assume that v = v̄α is exponential (risk nonneutral case), that is, v̄α (c) = − 1
α
e−αc

for all c ∈ R. This implies that either Imu = (0,∞) or Imu = (−∞, 0), in particular,

for each w ∈ R and ϕ ∈ B0 (Σ, Imu), we have that e−αwϕ ∈ B0 (Σ, Imu). Consider

ϕ ∈ B0 (Σ, Imu). Then, there exists f ∈ F such that u (f) = ϕ. Call xf,w a certainty

equivalent of f for the induced preference %w, that is, xf,w ∼w f . It follows that

Iw (ϕ) = u (xf,w). By definition of %w, we have that fw ∼ xwf,w. It follows that

u (fw) = e−αwu (f) = e−αwϕ and u
(
xwf,w

)
= e−αwu (xf,w). If we define g = fw, then

we also have that xg can be chosen to be xwf,w, that is,

I
(
e−αwϕ

)
= I (u (g)) = u (xg) = e−αwu (xf,w) = e−αwIw (ϕ) ,

and so Iw (ϕ) = eαwI (e−αwϕ).

b) Assume that v = v̄α is the identity (risk neutral case). This implies that Imu = R.
Consider ϕ ∈ B0 (Σ, Imu). Then, there exists f ∈ F such that u (f) = ϕ. Call xf,w a

certainty equivalent of f for the induced preference %w, that is, xf,w ∼w f . It follows
that Iw (ϕ) = u (xf,w). By definition of %w, we have that fw ∼ xwf,w. It follows that

u (fw) = u (f) +w = ϕ+w and u
(
xwf,w

)
= u (xf,w) +w. If we define g = fw, then we

also have that xg can be chosen to be xwf,w, that is,

I (ϕ+ w) = I (u (g)) = u (xg) = u (xf,w) + w = Iw (ϕ) + w,
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and so Iw (ϕ) = I (ϕ+ w)− w. �

Proof of Proposition 3. Let w,w′ ∈ R be such that w 6= w′ and ◦ = w and # = w′.

If % is decreasing or constant absolute ambiguity averse, wlog, we can assume that
w′ > w. If % is increasing absolute ambiguity averse, wlog, we can assume that

w > w′. By Proposition 2 and since % is classifiable, we have that uw is a positive
affi ne transformation of uw′ and this holds for all w,w′ ∈ R, proving that % is CARA.
�

Proof of Theorem 2. Let % be a rational preference with canonical representation
(u, I) where u is such that u (x) =

∑
c∈R v (c)x (c) for every x ∈ ∆0 (R), with v strictly

increasing and continuous. Before starting the proof, we add few extra points.

(iv) % is CARA and Iw ≤ Iw′ , provided w′ > w and uw = uw′ = u and v = v̄α is as in

(9);

(v) % is CARA and, provided v = v̄α as in (9), for each ϕ ∈ B0 (Σ, Imu) and for each

w,w′ ∈ R such that w′ > w, either

eαwI
(
e−αwϕ

)
≤ eαw

′
I
(
e−αw

′
ϕ
)
if v̄α is exponential (10)

or

I (ϕ+ w)− w ≤ I (ϕ+ w′)− w′ if v̄α is the identity. (11)

(vi) % is CARA and, provided v = v̄α as in (9), I is:

(a) superhomogeneous (subhomogeneous) provided % is risk averse (loving);
(b) constant superadditive provided % is risk neutral.
(iii) implies (ii). By Proposition 3, we have that % is CARA. The implication

trivially follows.

(ii) implies (vi). By assumption, % is CARA. We can thus choose a canonical

representation
(
ū, Ī
)
where v = v̄α. In case % is risk averse (resp., loving) Im ū =

(−∞, 0) (resp., Im ū = (0,∞)). In both cases, we have that b̄ = 0. By Proposition 18,

the implication follows.

(vi) implies (v). % is CARA and, provided v = v̄α is as in (9), we have three cases:

a. % is risk averse, that is, α > 0. Consider w′ > w. It follows that λ = eα(w−w′) ∈
(0, 1). Next, consider ϕ ∈ B0 (Σ, Imu). Observe that e−αwϕ, e−αw

′
ϕ ∈ B0 (Σ, Imu).

We thus have that

I
(
eα(w−w′) (e−αwϕ)) ≥ eα(w−w′)I

(
e−αwϕ

)
=⇒ eαw

′
I
(
e−αw

′
ϕ
)
≥ eαwI

(
e−αwϕ

)
,
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since ϕ was arbitrarily chosen the statement follows.

b. % is risk loving, that is, α < 0. Consider w′ > w. It follows that λ = eα(w′−w) ∈
(0, 1). Next, consider ϕ ∈ B0 (Σ, Imu). Observe that e−αwϕ, e−αw

′
ϕ ∈ B0 (Σ, Imu).

We thus have that

I
(
eα(w′−w)

(
e−αw

′
ϕ
))
≤ eα(w′−w)I

(
e−αw

′
ϕ
)

=⇒ eαwI
(
e−αwϕ

)
≤ eαw

′
I
(
e−αw

′
ϕ
)
,

since ϕ was arbitrarily chosen the statement follows.

c. % is risk neutral, that is, α = 0 and v̄α is the identity. Consider w′ > w.

It follows that k = (w′ − w) > 0. Next, consider ϕ ∈ B0 (Σ, Imu). Observe that

ϕ+ w,ϕ+ w′ ∈ B0 (Σ, Imu). We thus have that

I (ϕ+ w + (w′ − w)) ≥ I (ϕ+ w) + (w′ − w) =⇒ I (ϕ+ w′)− w′ ≥ I (ϕ+ w)− w,

since ϕ was arbitrarily chosen the statement follows.

(v) is equivalent to (iv). By assumption, % is CARA. We consider two cases. For
each w,w′ ∈ R:
a. v = v̄α is exponential. By Lemma 2, we have that

Iw ≤ Iw′ ⇐⇒ eαwI
(
e−αwϕ

)
≤ eαw

′
I
(
e−αw

′
ϕ
)

∀ϕ ∈ B0 (Σ, Imu) .

b. v = v̄α is the identity. By Lemma 2, we have that

Iw ≤ Iw′ ⇐⇒ I (ϕ+ w)− w ≤ I (ϕ+ w′)− w′ ∀ϕ ∈ B0 (Σ, Imu) .

Subpoints a. and b. prove the equivalence between (iv) and (v).

(iv) implies (i). Let w′ > w. By Lemma 2 and since % is CARA, we have that
both preferences, %w and %w′ , admit a representation (uw, Iw) and (uw′ , Iw′). Since %
is CARA, we can choose uw = uw′ = u with v = v̄α for all w,w′ ∈ R. By Lemma 1
and since Iw ≤ Iw′ , we can conclude that %w is more ambiguity averse than %w

′
.

(i) implies (iv). By Proposition 3, since % is decreasing absolute ambiguity averse,
% is CARA. By Lemma 2, we have that for each w ∈ R the preference %w admits
a canonical representation (uw, Iw). Thus, we can choose uw = u for all w ∈ R with
v = v̄α. By Lemma 1 and since uw = uw′ for all w,w′ ∈ R, note that %w is more
ambiguity averse than %w′ only if Iw ≤ Iw′ .

(iv) implies (vi). By the previous part of the proof, we know that (iv) is equivalent

to (v). We thus assume (v) and prove (vi). We have three cases.
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a. % is risk averse, that is, α > 0. In (10) set w = 0, so that

I (ϕ) ≤ eαw
′
I
(
e−αw

′
ϕ
)

∀ϕ ∈ B0 (Σ, Imu) ,∀w′ > 0.

Since α is positive, it follows that eαw
′
> 1 and

{
eαw

′
: w′ > 0

}
= (1,∞). This implies

that I (ϕ) ≤ γI (ϕ/γ) for all ϕ ∈ B0 (Σ, Imu) and for all γ > 1. In other words,

λI (ϕ) ≤ I (λϕ) for all ϕ ∈ B0 (Σ, Imu) and for all λ ∈ (0, 1), proving superhomogene-

ity.

b. % is risk loving, that is, α < 0. In (10) set w = 0, so that

I (ϕ) ≤ eαw
′
I
(
e−αw

′
ϕ
)

∀ϕ ∈ B0 (Σ, Imu) ,∀w′ > 0.

Since α is negative, it follows that
{
eαw

′
: w′ > 0

}
= (0, 1). This implies that I (ϕ) ≤

γI (ϕ/γ) for all ϕ ∈ B0 (Σ, Imu) and for all γ ∈ (0, 1). If ϕ ∈ B0 (Σ, Imu), then

λϕ ∈ B0 (Σ, Imu) for all λ ∈ (0, 1). We have that

I (λϕ) ≤ λI

(
1

λ
(λϕ)

)
= λI (ϕ) ∀ϕ ∈ B0 (Σ, Imu) ,∀λ ∈ (0, 1) ,

proving subhomogeneity.

c. % is risk neutral, that is, v̄α is the identity. In (11) set w = 0 and k = w′, so that

I (ϕ) ≤ I (ϕ+ k)− k ∀ϕ ∈ B0 (Σ, Imu) ,∀k > 0.

In other words, I (ϕ)+k ≤ I (ϕ+ k) for all ϕ ∈ B0 (Σ, Imu) and for all k > 0, proving

superadditivity.

(vi) implies (ii). By assumption, % is CARA and represented by (u, I). We can

thus choose a canonical representation
(
ū, Ī
)
where v = v̄α. In case % is risk averse

(resp., loving) Im ū = (−∞, 0) (resp., Im ū = (0,∞)). In both cases, we have that

b̄ = 0. By Proposition 18, the implication follows.

We thus proved that (iii) implies (ii) and (ii) is equivalent to (i), (iv), (v), and

(vi). In particular, it follows that (ii) implies (i), thus % is classifiable, and I satisfies
condition (a) or (b), that is, (ii) implies (iii). �

B.3 Other proofs

Proof of Corollary 2. Call (u, I) the rational representation of % on F . Since % is
risk neutral, it follows that Imu = R and I : B0 (Σ)→ R.
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“Only if.”By point 1 of Corollary 1, it follows that I (ϕ+ k) = I (ϕ) + k for all

ϕ ∈ B0 (Σ) and for all k ≥ 0. It is immediate to show that the equality holds for all

k ∈ R. By [23, Lemma 25], it follows that I is a normalized niveloid. By [23, Lemma
28], we can conclude that % satisfies Weak C-Independence.
“If.”By [23, Lemma 28], it follows that I is a normalized niveloid. By [23, Lemma

25] and since Imu = R, it follows that I (ϕ+ k) = I (ϕ) + k for all ϕ ∈ B0 (Σ) and for

all k ∈ R. By point 1 of Corollary 1 (recall that it holds by only assuming CARA in
place of classifiable), the statement follows. �

Proof of Corollary 3. Call (u, I) the rational representation of %. Note that in all
three points (i)—(iii), % is necessarily CARA. Thus, wlog, choose v to be such that
a = 1 and b = 0. By [14], there also exists a normalized, monotone, and continuous

functional Î : B0 (Σ)→ R such that for each ϕ ∈ B0 (Σ)

Î (λϕ+ k) = λÎ (ϕ) + k ∀λ > 0,∀k ∈ R

and f % g if and only if Î (u (f)) ≥ Î (u (g)). It follows that Î and I coincide on

B0 (Σ, Imu).

(i) implies (iii). By Proposition 3, the implication follows.

(iii) implies (ii). By Corollary 1 (recall that it holds by only assuming CARA in

place of classifiable) and since Î and I coincide on B0 (Σ, Imu), the implication follows.

(ii) implies (i). Trivially, % is classifiable. �

Proof of Proposition 4. Let (u, I) be the canonical representation of %. Wlog, if
% is CARA, we choose v to be such that a = 1 and b = 0 (see equation (4)). In this

case, by the definition of c : F → R, we have that

c (f) =

{
− 1
α

log (−αI (u (f))) α 6= 0

I (u (f)) α = 0
∀f ∈ F .

Recall that for each f ∈ F and for each w ∈ R

u (fw) =

{
e−αwu (f) α 6= 0

u (f) + w α = 0
.

(i). “Only if”. By Proposition 3, % is CARA, we have three cases.
1. % is risk neutral, that is, α = 0. It follows that c (fw) = I (u (fw)) =

I (u (f) + w) for all f ∈ F and for all w ≥ 0. By Theorem 2, we have that for

each f ∈ F and for each w ≥ 0

c (fw) = I (u (f) + w) ≥ I (u (f)) + w = c (f) + w,
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proving that c is wealth superadditive.

2. % is risk averse, that is, α > 0. It follows that c (fw) = v−1 (I (u (fw))) =

v−1 (I (e−αwu (f))) for all f ∈ F and for all w ≥ 0. Note that if w ≥ 0, then

e−αw ∈ (0, 1]. By Theorem 2 and since b = 0, we have that for each f ∈ F and

for each w ≥ 0

c (fw) = − 1

α
log
(
−αI

(
e−αwu (f)

))
≥ − 1

α
log
(
−αe−αwI (u (f))

)
= − 1

α
log
(
e−αw (−αI (u (f)))

)
= − 1

α
log
(
e−αw

)
+− 1

α
log (−αI (u (f)))

= c (f) + w,

proving that c is wealth superadditive.

3. % is risk loving, that is, α < 0. It follows that c (fw) = v−1 (I (u (fw))) =

v−1 (I (e−αwu (f))) for all f ∈ F and for all w ≥ 0. Note that if w ≥ 0, then

eαw ∈ (0, 1]. By Theorem 2 and since b = 0, we have that for each f ∈ F and

for each w ≥ 0

c (f) = − 1

α
log (−αI (u (f))) = − 1

α
log
(
−αI

(
eαw

(
e−αwu (f)

)))
≤ − 1

α
log
(
−αeαwI

(
e−αwu (f)

))
= − 1

α
log (eαw) +− 1

α
log
(
−αI

(
e−αwu (f)

))
= −w + c (fw) ,

proving that c is wealth superadditive.

“If”. First, observe that

f % g ⇐⇒ I (u (f)) ≥ I (u (g)) ⇐⇒ v−1 (I (u (f))) ≥ v−1 (I (u (g))) ⇐⇒ c (f) ≥ c (g) .

Let w′ > w and f ∈ F . Since w′−w > 0 and c is wealth superadditive, it follows that

c
(
fw
′
)

= c
(

(fw)w
′−w
)
≥ c (fw) + w′ − w,

that is, c
(
fw
′) − w′ ≥ c (fw) − w. Next, let x ∈ ∆0 (R). Since % is CARA, we can

conclude that

f %w x =⇒ fw % xw =⇒ c (fw) ≥ c (xw) =⇒ c (fw) ≥ c (x) + w

=⇒ c (fw)− w ≥ c (x) =⇒ c
(
fw
′
)
− w′ ≥ c (x) =⇒ c

(
fw
′
)
≥ c (x) + w′

=⇒ c
(
fw
′
)
≥ c

(
xw
′
)

=⇒ fw
′ % xw

′
=⇒ f %w′ x.
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Since f , x, w, and w′ were arbitrarily chosen, we have that %w is more ambiguity
averse than %w′ , proving the statement.
(ii). “Only if”. By Proposition 3, % is CARA, we have three cases.
1. % is risk neutral, that is, α = 0. It follows that c (fw) = I (u (fw)) =

I (u (f) + w) for all f ∈ F and for all w ≥ 0. By what follows right after Theo-

rem 2, we have that for each f ∈ F and for each w ≥ 0

c (fw) = I (u (f) + w) ≤ I (u (f)) + w = c (f) + w,

proving that c is wealth subadditive.

2. % is risk averse, that is, α > 0. It follows that c (fw) = v−1 (I (u (fw))) =

v−1 (I (e−αwu (f))) for all f ∈ F and for all w ≥ 0. Note that if w ≥ 0, then

e−αw ∈ (0, 1]. By what follows right after Theorem 2 and since b = 0, we have

that for each f ∈ F and for each w ≥ 0

c (fw) = − 1

α
log
(
−αI

(
e−αwu (f)

))
≤ − 1

α
log
(
−αe−αwI (u (f))

)
= − 1

α
log
(
e−αw (−αI (u (f)))

)
= − 1

α
log
(
e−αw

)
+− 1

α
log (−αI (u (f)))

= c (f) + w,

proving that c is wealth subadditive.

3. % is risk loving, that is, α < 0. It follows that c (fw) = v−1 (I (u (fw))) =

v−1 (I (e−αwu (f))) for all f ∈ F and for all w ≥ 0. Note that if w ≥ 0, then

eαw ∈ (0, 1]. By what follows right after Theorem 2 and since b = 0, we have that for

each f ∈ F and for each w ≥ 0

c (f) = − 1

α
log (−αI (u (f))) = − 1

α
log
(
−αI

(
eαw

(
e−αwu (f)

)))
≥ − 1

α
log
(
−αeαwI

(
e−αwu (f)

))
= − 1

α
log (eαw) +− 1

α
log
(
−αI

(
e−αwu (f)

))
= −w + c (fw) ,

proving that c is wealth subadditive.

“If”. First, recall that f % g if and only if c (f) ≥ c (g). Let w′ > w and f ∈ F .
Since w′ − w > 0 and c is wealth subadditive, it follows that

c
(
fw
′
)

= c
(

(fw)w
′−w
)
≤ c (fw) + w′ − w,
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that is, c
(
fw
′) − w′ ≤ c (fw) − w. Next, let x ∈ ∆0 (R). Since % is CARA, we can

conclude that

f %w′ x =⇒ fw
′ % xw

′
=⇒ c

(
fw
′
)
≥ c

(
xw
′
)

=⇒ c
(
fw
′
)
≥ c (x) + w′

=⇒ c
(
fw
′
)
− w′ ≥ c (x) =⇒ c (fw)− w ≥ c (x) =⇒ c (fw) ≥ c (x) + w

=⇒ c (fw) ≥ c (xw) =⇒ fw % xw =⇒ f %w x.

Since f , x, w, and w′ were arbitrarily chosen, we have that %w′ is more ambiguity
averse than %w, proving the statement.
(iii). It is an easy consequence of points (i) and (ii). �

Proof of Theorem 3. Recall that an uncertainty averse preference is a rational
preference. In particular, given a canonical representation (u, I), we have that

G (t, p) = sup
ϕ∈B0(Σ,Imu)

{
I (ϕ) :

∫
ϕdp ≤ t

}
∀ (t, p) ∈ Imu×∆.

(i) implies (ii). By Theorem 2, it follows that % is CARA and I is either concave
at b, or convex at b, or constant superadditive, depending on % being, respectively,
either risk averse, or risk loving, or risk neutral. We consider the three different cases

separately:

-% is risk averse. Thus, Imu = (−∞, b). Let (t, p) ∈ Imu×∆ and λ ∈ (0, 1). There

exists a sequence {ϕn}n∈N ⊆ B0 (Σ, Imu) such that I (ϕn) ↑ G (t, p) and
∫
ϕndp ≤ t

for all n ∈ N. It follows that
∫

(λϕn + (1− λ) b) dp ≤ λt + (1− λ) b ∈ Imu for all

n ∈ N. Since I is concave at b, we have that for each n ∈ N

G (λt+ (1− λ) b, p) ≥ I (λϕn + (1− λ) b) ≥ λI (ϕn) + (1− λ) b.

By passing to the limit, it follows that G (λt+ (1− λ) b, p) ≥ λG (t, p) + (1− λ) b.

- % is risk loving. Thus, Imu = (b,∞). Let (t, p) ∈ Imu×∆ and λ ∈ (0, 1). There

exists a sequence {ϕn}n∈N ⊆ B0 (Σ, Imu) such that I (ϕn) ↑ G (λt+ (1− λ) b, p) and∫
ϕndp ≤ λt+ (1− λ) b for all n ∈ N. Define {ψn}n∈N to be such that

ψn =
ϕn − (1− λ) b

λ
∀n ∈ N.

Note also that

ψn (s) > b ∀s ∈ S,
∫
ψndp ≤ t, and ϕn = λψn + (1− λ) b ∀n ∈ N.
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Since I is convex at b, this implies that for each n ∈ N

I (ϕn) = I (λψn + (1− λ) b) ≤ λI (ψn) + (1− λ) b ≤ λG (t, p) + (1− λ) b.

By passing to the limit, it follows that G (λt+ (1− λ) b, p) ≤ λG (t, p) + (1− λ) b.

- % is risk neutral. Thus, Imu = R. Let (t, p) ∈ Imu×∆ and k ≥ 0. There exists

a sequence {ϕn}n∈N ⊆ B0 (Σ, Imu) such that I (ϕn) ↑ G (t, p) and
∫
ϕndp ≤ t for all

n ∈ N. It follows that
∫

(ϕn + k) dp ≤ t + k ∈ Imu for all n ∈ N. Since I is constant
superadditive, we have that for each n ∈ N

G (t+ k, p) ≥ I (ϕn + k) ≥ I (ϕn) + k.

By passing to the limit, it follows that G (t+ k, p) ≥ G (t, p) + k.

(ii) implies (iii) and (i). Recall that

I (ψ) = inf
p∈∆

G

(∫
ψdp, p

)
∀ψ ∈ B0 (Σ, Imu) .

Observe also that % is CARA by assumption and G satisfies (a) or (b). As before, we
consider three cases:

- % is risk averse. Let ϕ ∈ B0 (Σ, Imu) and λ ∈ (0, 1). We have that

I (λϕ+ (1− λ) b) = inf
p∈∆

G

(∫
(λϕ+ (1− λ) b) dp, p

)
= inf

p∈∆
G

(
λ

∫
ϕdp+ (1− λ) b, p

)
≥ inf

p∈∆

(
λG

(∫
ϕdp, p

)
+ (1− λ) b

)
≥ λ inf

p∈∆
G

(∫
ϕdp, p

)
+ (1− λ) b = λI (ϕ) + (1− λ) b,

that is, I is concave at b.

- % is risk loving. Let ϕ ∈ B0 (Σ, Imu) and λ ∈ (0, 1). We have that

I (λϕ+ (1− λ) b) = inf
p∈∆

G

(∫
(λϕ+ (1− λ) b) dp, p

)
= inf

p∈∆
G

(
λ

∫
ϕdp+ (1− λ) b, p

)
≤ inf

p∈∆

(
λG

(∫
ϕdp, p

)
+ (1− λ) b

)
= λ inf

p∈∆
G

(∫
ϕdp, p

)
+ (1− λ) b = λI (ϕ) + (1− λ) b,

that is, I is convex at b.
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- % is risk neutral. Let ϕ ∈ B0 (Σ, Imu) and k ≥ 0. We have that

I (ϕ+ k) = inf
p∈∆

G

(∫
(ϕ+ k) dp, p

)
= inf

p∈∆
G

(∫
ϕdp+ k, p

)
≥ inf

p∈∆

(
G

(∫
ϕdp, p

)
+ k

)
≥ inf

p∈∆
G

(∫
ϕdp, p

)
+ k = I (ϕ) + k,

that is, I is constant superadditive.

It follows that % is CARA and I either satisfies (a) or (b) of point (ii) of Theorem
2. By Theorem 2, we can conclude that % is decreasing absolute ambiguity averse and
is classifiable.

(iii) implies (ii). By Proposition 3 and since % is classifiable, we have that % is
also CARA.

We thus have proved that (i) =⇒ (ii) =⇒ (iii) =⇒ (ii) =⇒ (i), proving the

statement. �

Proof of Corollary 4. Recall that an uncertainty averse preference is a rational

preference. By Corollary 2, we can conclude that a risk neutral uncertainty averse

preference is constant absolute ambiguity averse if and only if it satisfies Weak C-

Independence. At the same time, by definition, uncertainty averse preferences that

satisfy Weak C-Independence are exactly variational preferences.

Proof of Corollary 5. Since % is CARA and risk averse, we have that Imu =

(−∞, b). Recall that G (t, p) ≥ t for all (t, p) ∈ Imu×∆. At the same time, note that

for each (t, p) ∈ Imu×∆ and for each λ ∈ (0, 1)

G (λt+ (1− λ) b, p) ≥ G (λt+ (1− λ) bn, p) ≥ λG (t, p) + (1− λ)G (bn, p)

≥ λG (t, p) + (1− λ) bn

where bn = b − 1
n
for all n ∈ N. By passing to the limit and since (t, p) and λ

were arbitrarily chosen, we have that G (λt+ (1− λ) b, p) ≥ λG (t, p) + (1− λ) b. By

Theorem 3, the statement follows. �

Proof of Corollary 6. Observe that a variational preference is a rational preference
where the canonical representation (u, I) has the extra property of I being quasicon-

cave and constant additive. In particular, I is normalized and concave.

(i). By Theorem 2 and since % is not risk neutral, if % is either decreasing absolute
ambiguity averse or CARA and risk averse, then v is a positive affi ne transformation of
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− 1
α
e−αc where α 6= 0. Without loss of generality, we assume that either Imu = (−∞, 0)

or Imu = (0,∞). The first case holds under risk aversion, the second one under risk

love. In the first case, since I is normalized and concave, observe that for each λ ∈
(0, 1) and for each ϕ ∈ B0 (Σ, Imu), we have that λϕ+(1− λ)

(
− 1
n

)
∈ B0 (Σ, Imu) and

I

(
λϕ+ (1− λ)

(
− 1

n

))
≥ λI (ϕ) + (1− λ) I

(
− 1

n

)
≥ λI (ϕ)− (1− λ)

1

n
∀n ∈ N.

By passing to the limit, it follows that I is concave at 0, that is, I is superhomogeneous.

In the second case, since I is normalized and concave, observe that for each λ ∈ (0, 1)

and for each ϕ ∈ B0 (Σ, Imu), we have that λϕ+ (1− λ) 1
n
∈ B0 (Σ, Imu) and

I

(
λϕ+ (1− λ)

1

n

)
≥ λI (ϕ) + (1− λ) I

(
1

n

)
≥ λI (ϕ) + (1− λ)

1

n
∀n ∈ N.

By passing to the limit, it follows that I is concave at 0, that is, I is again superho-

mogeneous.

“If”. By Theorem 2 and since I is concave at 0, if % is CARA and risk averse, it
follows that % is decreasing absolute ambiguity averse. “Only if”. By Theorem 2, if

% is decreasing absolute ambiguity averse, then % is CARA. Since % cannot be risk
neutral, it can either be risk averse or risk loving. By contradiction, assume it is risk

loving. By Theorem 2, it follows that I is convex at 0, that is, I is subhomogeneous.

From the previous part of the proof, we can conclude that I is homogeneous. To

sum up, we would have that I is normalized, monotone, continuous, concave, constant

additive, and homogeneous, that is, % is maxmin, a contradiction.
(ii). It follows from analogous arguments. �

Proof of Corollary 7. “If”. Since % is risk nonneutral, if % is CARA, then either %
is risk averse or it is risk loving. If % is homothetic uncertainty averse, then, in both
cases, I is positively homogeneous, proving the statement.

“Only if”. By Proposition 3 and since % is constant absolute ambiguity averse

and uncertainty averse, we have that % is CARA. Since % is uncertainty averse and
risk nonneutral, we can consider a canonical representation (u, I) such that either

Imu = (−∞, 0) or Imu = (0,∞). Since % is constant absolute ambiguity averse, we
also have that I is positively homogeneous. Define Ī : B0 (Σ)→ [−∞,∞) by

Ī (ϕ) = sup {I (ψ) : B0 (Σ, Imu) 3 ψ ≤ ϕ} ∀ϕ ∈ B0 (Σ) .
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By [8, Theorem 36], it follows that Ī is monotone, lower semicontinuous, quasiconcave,

and such that Ī|B0(Σ,Imu) = I. We next show that also Ī is positively homogeneous.

Consider ϕ ∈ B0 (Σ) and λ > 0. We have two cases:

1. {I (ψ) : B0 (Σ, Imu) 3 ψ ≤ ϕ} = ∅. SinceB0 (Σ, Imu) is a cone, {I (ψ) : B0(Σ, Imu) 3
ψ ≤ λϕ} = ∅, which yields that Ī (λϕ) = −∞ = Ī (ϕ) = λĪ (ϕ).

2. {I (ψ) : B0 (Σ, Imu) 3 ψ ≤ ϕ} 6= ∅. Let {ψn}n∈N ⊆ B0 (Σ, Imu) be such that

ψn ≤ ϕ for all n ∈ N and I (ψn) ↑ Ī (ϕ). Let now λ > 0. Since B0 (Σ, Imu) is a

cone, it follows that {λψn}n∈N ⊆ B0 (Σ, Imu) and it is such that λψn ≤ λϕ for

all n ∈ N. In particular, by the definition of Ī, we have that Ī (λϕ) ≥ I (λψn) =

λI (ψn) → λĪ (ϕ). We just proved that Ī (λϕ) ≥ λĪ (ϕ) for all ϕ ∈ B0 (Σ) and

for all λ > 0. By choosing 1/λ with λ > 0, it follows that

Ī (ϕ) = Ī

(
1

λ
(λϕ)

)
≥ 1

λ
Ī (λϕ) ,

that is, λĪ (ϕ) ≥ Ī (λϕ), proving positive homogeneity.

Consider G : R×∆→ [−∞,∞] defined by

G (t, p) = sup

{
Ī (ϕ) :

∫
ϕdp ≤ t

}
∀ (t, p) ∈ R×∆.

By [9], we have that G is lower semicontinuous, quasiconvex, and such that

Ī (ϕ) = min
p∈∆

G

(∫
ϕdp, p

)
∀ϕ ∈ B0 (Σ) (12)

and G (λt, p) = λG (t, p) for all λ > 0, for all t ∈ R, and for all p ∈ ∆. Define

c1, c2 : ∆→ [0,∞] to be such that

c1 (p) =
1

G (1, p)
and c2 (p) = −G (−1, p) ∀p ∈ ∆.

We now consider two cases:

Risk averse case. Imu = (−∞, 0). Since Ī ≤ 0 and Ī (−1) = I (−1) = −1, observe

that G (−1, p) ≤ 0 and G (−1, p) ≥ −1, that is, c2 (p) ≥ 0 and c2 (p) ≤ 1 for all p ∈ ∆.

Next, we have that for each α ∈ R

{p ∈ ∆ : c2 (p) ≥ α} = {p ∈ ∆ : −G (−1, p) ≥ α} = {p ∈ ∆ : G (−1, p) ≤ −α} .
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Since G is quasiconvex and lower semicontinuous, the set is convex and closed, proving

that c2 is quasiconcave and upper semicontinuous. By (12), we can conclude that for

each ϕ ∈ B0 (Σ, Imu)

I (ϕ) = Ī (ϕ) = min
p∈∆

G

(∫
ϕdp, p

)
= min

p∈∆

(
−
∫
ϕdp

)
G (−1, p) = min

p∈∆
c2 (p)

∫
ϕdp.

Since −1 = Ī (−1) = minp∈∆−c2 (p), we have that c2 is normalized. The statement

follows by setting c = c2.

Risk loving case. Imu = (0,∞). Since Ī (1) = I (1) = 1, observe that G (1, p) ≥ 1,

that is, 0 ≤ c1 (p) ≤ 1. Next, we have that for each α ∈ (0,∞)

{p ∈ ∆ : c1 (p) ≥ α} =

{
p ∈ ∆ :

1

G (1, p)
≥ α

}
=

{
p ∈ ∆ : G (1, p) ≤ 1

α

}
.

Since G is quasiconvex and lower semicontinuous, for each α ∈ (0,∞) the set is

convex and closed. Since {p ∈ ∆ : c1 (p) ≥ α} = ∆ for all α ≤ 0, it follows that

c1 is quasiconcave and upper semicontinuous. By (12), we can conclude for each

ϕ ∈ B0 (Σ, Imu)

I (ϕ) = Ī (ϕ) = min
p∈∆

(∫
ϕdp

)
G (1, p) = min

p∈∆

∫
ϕdp

c1 (p)
.

Since 1 = Ī (1) = minp∈∆
1

c1(p)
, we have that c1 is normalized. The statement follows

by setting c = c1. �

Proof of Proposition 5. Since there exists γ > 0 such that φ (t) = −e−γt for all
t ∈ R, we have that I, defined as in (5), can be defined over the entire space B0 (Σ).

Moreover, by [8, Proposition 54], I is normalized, concave and constant additive. In

particular, it is concave at b, in case % is either risk averse or risk loving.
(i). By Corollary 1 (recall that it holds by only assuming CARA in place of

classifiable) and since I is constant additive, if % is risk neutral, then % is constant
absolute ambiguity averse.

(ii). By Corollary 5 and since % is CARA, if % is risk averse, then % is decreasing
absolute ambiguity averse. �

Proof of Proposition 6. We only prove point (ii). Point (iii) follows from a com-

pletely specular argument. Point (i) instead follows from similar techniques (see also

Marinacci and Montrucchio [25, Theorem 12]).

49



(ii). Fix µ. By Theorem 2 and since % is risk averse and b = 0, we have that %
is decreasing absolute ambiguity averse if and only if I is positive superhomogeneous.

Thus, to prove point (ii), we only need to show that I is positive superhomogeneous

for all µ if and only if φ is IRRA. Since % is risk averse and b = 0, we also have that

Imu = (−∞, 0) and φ : (−∞, 0)→ R. For each ν > 0, define φν : (−∞, 0)→ R to be
such that φν (t) = φ (νt) for all t ∈ (−∞, 0). Note that φ1 = φ. Finally, we have that

Imφ = Imφν for all ν > 0. “If”Let µ be generic. Consider ν > η > 0. It follows that,

φν = f ◦ φη where f : Imφ→ Imφ is strictly increasing and concave. By the Jensen’s

inequality, it follows that if ν > η > 0, then

φ−1
ν

(∫
φν

(∫
ϕdp

)
dµ

)
≤ φ−1

η

(∫
φη

(∫
ϕdp

)
dµ

)
∀ϕ ∈ B0 (Σ, Imu) .

If we let η ∈ (0, 1) and ν = 1, we have that for each ϕ ∈ B0 (Σ, Imu)

φ

(
ηφ−1

(∫
φ

(∫
ϕdp

)
dµ

))
= φη

(
φ−1

(∫
φ

(∫
ϕdp

)
dµ

))
≤
∫
φ

(
η

∫
ϕdp

)
dµ.

We can conclude that for each ϕ ∈ B0 (Σ, Imu)

I (ηϕ) = φ−1

(∫
φ

(
η

∫
ϕdp

)
dµ

)
≥ ηφ−1

(∫
φ

(∫
ϕdp

)
dµ

)
= ηI (ϕ) ,

proving that I is positive superhomogeneous. “Only if” Let ν > η > 0. Consider
η
ν
∈ (0, 1). Fix µ. Since I is positive superhomogeneous, it follows that for each

ϕ ∈ B0 (Σ, Imu)

φ−1

(∫
φη

(∫
ϕdp

)
dµ

)
= φ−1

(∫
φ

(
η

∫
ϕdp

)
dµ

)
= φ−1

(∫
φ

(∫
η

ν
νϕdp

)
dµ

)
≥ η

ν
φ−1

(∫
φ

(∫
νϕdp

)
dµ

)
=
η

ν
φ−1

(∫
φν

(∫
ϕdp

)
dµ

)
,

yielding that

φ−1
η

(∫
φη

(∫
ϕdp

)
dµ

)
=

1

η
φ−1

(∫
φη

(∫
ϕdp

)
dµ

)
≥ 1

ν
φ−1

(∫
φν

(∫
ϕdp

)
dµ

)
= φ−1

ν

(∫
φν

(∫
ϕdp

)
dµ

)
∀ϕ ∈ B0 (Σ, Imu) .
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Since both φν and φη are both strictly increasing and continuous, there exists a strictly

increasing function h : Imφ→ Imφ such that φν = h ◦ φη. It follows that

h

(∫
φη

(∫
ϕdp

)
dµ

)
≥
∫
h

(
φη

(∫
ϕdp

))
dµ ∀ϕ ∈ B0 (Σ, Imu) . (13)

Since µ was arbitrarily chosen, (13) holds for all µ. Since Σ is nontrivial, there exists

E ∈ Σ such that E 6= ∅, S. Consider s1, s2 ∈ S such that s1 ∈ E and s2 ∈ Ec. Note

that δsi ∈ ∆ and {δsi} ∈ B for i ∈ {1, 2}.38 Let µ = λδδs1 + (1− λ) δδs2 with λ ∈ (0, 1).

Consider also k1, k2 ∈ Imφ. It follows that there exist t1, t2 ∈ (−∞, 0) such that

φη (ti) = ki for i ∈ {1, 2}. Define ϕ = t11E + t21Ec ∈ B0 (Σ, Imu). By (13), we have

that

h (λk1 + (1− λ) k2) = h (λφη (t1) + (1− λ)φη (t2))

= h

(
λφη

(∫
ϕdδs1

)
+ (1− λ)φη

(∫
ϕdδs2

))
= h

(∫
φη

(∫
ϕdp

)
dµ

)
≥
∫
h

(
φη

(∫
ϕdp

))
dµ

= λh

(
φη

(∫
ϕdδs1

))
+ (1− λ)h

(
φη

(∫
ϕdδs2

))
= λh (φη (t1)) + (1− λ)h (φη (t2)) = λh (k1) + (1− λ)h (k2) ,

proving that h is concave and φ is IRRA. �

Proof of Proposition 7. Since % is a smooth ambiguity preference, it admits a

canonical representation (u, I) where I is as in (5). Since % is CARA and risk averse
and b ≤ 0, we also have that I is defined over B0 (Σ, (−∞, 0)) ⊇ B0 (Σ, Imu). The

functional Î : B0 (Σ, (0,∞))→ (0,∞) defined by

Î (ϕ) =

(∫ (∫
ϕdp

)γ
dµ

) 1
γ

∀ϕ ∈ B0 (Σ, (0,∞)) .

is normalized, monotone, continuous, positively homogeneous, and quasiconvex. It fol-

lows that I : B0 (Σ, (−∞, 0))→ R, which is such that I (ϕ) = −Î (−ϕ), is normalized,

monotone, continuous, positively homogeneous, and quasiconcave. In particular, by

[9, Proposition 7 and its proof, WP version, Carlo Alberto Notebook 80], it is concave.

By Corollary 5 and since % is CARA and risk averse, the statement easily follows. �

Proof of Proposition 8. Since % is constant absolute ambiguity averse, then % is
CARA and I is either constant additive or affi ne at b, depending on % being risk

38If s ∈ S, then we denote by δs the Dirac at s. We denote by B the Borel σ-algebra over ∆.
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neutral or not. As usual, without loss of generality we can normalize a = 1 and b = 0

(see equation (4)). In both cases, it follows that

β 7→ v−1 (I (v (βr + (w − β) rf ))) = v−1 (I (v (wrf + β (r − rf ))))
= v−1 (I (v (β (r − rf )))) + wrf .

Thus, for each w ∈ (0,∞), maximizing β 7→ I (v (βr + (w − β) rf )) subject to β ∈
[0, w] is equivalent to maximize β 7→ v−1 (I (v (β (r − rf )))) subject to β ∈ [0, w].

Define f : [0,∞) → R by f (β) = v−1 (I (v (β (r − rf )))) for all β ≥ 0. Let w′ > w.

We have two cases:

1. β∗ (w′) ≥ w. This implies that β∗ (w′) ≥ w ≥ β∗ (w).

2. β∗ (w′) < w. Since β∗ (w′) maximizes f on [0, w′] and 0 ≤ β∗ (w) ≤ w ≤ w′,

we have that f (β∗ (w′)) ≥ f (β∗ (w)). Since β∗ (w) maximizes f on [0, w] and

0 ≤ β∗ (w′) < w, we have that f (β∗ (w)) ≥ f (β∗ (w′)). This implies that β∗ (w′)

is a maximizer of f on [0, w]. Since the solution of (6) is unique for all w > 0,

we can conclude that β∗ (w′) = β∗ (w).

Points 1 and 2 yield the main statement.

Note that if % is risk averse and uncertainty averse, it follows that f (β) =

v−1 (I (v (β (r − rf )))) is quasiconcave on [0,∞). Let w′ > w. By contradiction,

assume that β∗ (w′) 6= β∗ (w). From the previous part of the proof, it follows that

β∗ (w′) > β∗ (w). Consider β̂ ∈ (β∗ (w) ,min {w, β∗ (w′)}) ⊆ (0, w) ⊆ (0, w′). Since

β∗ (w) , β̂ ∈ (0, w) and the former is the unique maximizer of f on [0, w], it follows

that f (β∗ (w)) > f
(
β̂
)
. Similarly, since β∗ (w′) , β̂ ∈ [0, w′] and the former is the

unique maximizer of f on [0, w′], it follows that f (β∗ (w′)) > f
(
β̂
)
. On the one hand,

we can conclude that min {f (β∗ (w)) , f (β∗ (w′))} > f
(
β̂
)
. On the other hand, by

construction of β̂, we also have that there exists λ ∈ (0, 1) such that

β̂ = λβ∗ (w) + (1− λ) β∗ (w′) .

Since f is quasiconcave, this implies that f
(
β̂
)
≥ min {f (β∗ (w)) , f (β∗ (w′))}, a

contradiction. �

Proof of Proposition 9. Since % is risk neutral, without loss of generality, let v be
the identity. Note that

β 7→ I (v (βr + (w − β) rf )) = φ−1

(∫
φ

(
β

∫
rdp+ (w − β) rf

)
dµ

)
.
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Define r̂ : ∆ → R by r̂ (p) =
∫
rdp for all p ∈ ∆. We have that r̂ ≥ 0 is a bounded,

real-valued, Borel measurable function. It follows that the problem in (6) is equivalent

to solve

max

(∫
φ (βr̂ + (w − β) rf ) dµ

)
subject to β ∈ [0, w] ,

which is mathematically equivalent to the usual expected utility portfolio choice prob-

lem. Since φ is concave and DARA, it is twice continuously differentiable and such

that φ′ > 0, and β∗ (w) ∈ (0, w) with w > 0, we have that (7) holds. �

Proof of Proposition 10. Since % is a risk averse multiplier preference, note that

β 7→ I (v (βr + (w − β) rf )) = φ−1

(∫
φ (v (βr + (w − β) rf )) dq

)
where v (c) = −a 1

α
e−αc + b for all c ∈ R, with α, a > 0 and b ∈ R, and φ (t) = −e−θt

for all t ∈ R, with θ > 0. Define v̂ = φ ◦ v : R→ R. It follows that the problem in (6)

is equivalent to solve

max

(∫
v̂ (βr + (w − β) rf ) dq

)
subject to β ∈ [0, w] ,

which is mathematically equivalent to the usual expected utility portfolio choice prob-

lem. Since v̂ is concave and DARA, it is twice continuously differentiable and such

that v̂′ > 0, and β∗ (w) ∈ (0, w) with w > 0, we have that (7) holds. �

B.3.1 Non-CARA preferences

Let T be either R or R++. Consider a rational preference % with canonical represen-
tation (u, I), where u has von Neumann-Morgenstern utility v : T → R with v strictly
increasing and continuous. Fix w ∈ T . For this section, define vw : T → R to be

such that vw (c) = v (c+ w) for all c ∈ T and uw : ∆0 (T ) → R to be the associated
expected utility. Note that Imuw = Im vw ⊆ Im v = Imu for all w ∈ T . Note that
if T = R++, then we have to slightly modify the definition of xw. Indeed, using the

current definition, xw is defined to be such that

xw (c) = x (c− w) ∀c ∈ R++.

If T = R++, in this way, we can only define xw (c) for all values c > w. To overcome

such an issue, we set xw (c) = 0 for all the values c ∈ (0, w]. Clearly, this convention

is in line with our interpretation of xw. Since if the decision maker has wealth w > 0
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and outcomes are strictly positive, he cannot get a final wealth level which is smaller

than or equal to w. In light of this, note that we always have

u (xw) =
∑
c∈T

v (c)xw (c) =
∑
c∈T

v (c+ w)x (c) =
∑
c∈T

vw (c)x (c) = uw (x) ∀x ∈ ∆0 (T ) .

It follows that

I (u (fw)) = I (uw (f)) ∀f ∈ F .

Moreover, as in the previous part of the paper, for any w ∈ T , we define %w on F by

f %w g def⇐⇒ fw % gw.

Define cw : F → T to be such that cw (f) = v−1
w (I (uw (f))) for all f ∈ F . We can

conclude that

f %w g ⇐⇒ fw % gw ⇐⇒ I (u (fw)) ≥ I (u (gw))

⇐⇒ I (uw (f)) ≥ I (uw (g)) ⇐⇒ cw (f) ≥ cw (g) .

Proof of Proposition 11. Let w′, w ∈ T be such that w′ > w. Recall that % is

CARA. Hence, %w and %w′ agree on ∆0 (T ).

(i) implies (ii). Since% is decreasing (resp., increasing) absolute uncertainty averse,
we have that cw (f) ≤ cw′ (f) (resp., cw (f) ≥ cw′ (f)) for all f ∈ F . Consider f ∈ F
and x ∈ ∆0 (T ). We need to show that

f %w x =⇒ f %w′ x (resp., f %w′ x =⇒ f %w x).

Assume that f %w x (resp., f %w′ x). It follows that cw′ (f) ≥ cw (f) ≥ cw (x)

(cw (f) ≥ cw′ (f) ≥ cw′ (x)), that is, δcw′ (f) %w x (resp., δcw(f) %w
′
x). Since %w

coincides with %w′ on ∆0 (T ), this implies that δcw′ (f) %w
′
x (resp., δcw(f) %w x), that

is, cw′ (f) ≥ cw′ (x) (resp., cw (f) ≥ cw (x)) and f %w′ x (resp., f %w x). This proves
the implication for the two distinct cases of decreasing and increasing attitudes. Since

having constant attitudes means having both of the above features, the full implication

follows.

(ii) implies (i). It is trivial since the notion of more ambiguity averse implies the

notion of more uncertainty averse. �

Lemma 3 Let v : T → R be strictly increasing, continuous, and concave (resp.,

convex) and w′, w ∈ T be such that w′ > w. If v is DARA, then there exists a strictly

increasing and convex function φ : Im vw → Im vw′ such that

v (c+ w′) = φ (v (c+ w)) ∀c ∈ T

where 0 ≤ φ′+ (t) ≤ 1 (resp., φ′+ (t) ≥ 1) for all t ∈ Im vw. Moreover, φ = vw′ ◦ v−1
w .
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Proof. Consider w,w′ ∈ T such that w′ > w. Since v is DARA, it follows that

c 7→ vw (c) = v (c+ w) is more risk averse than c 7→ vw′ (c) = v (c+ w′). Thus, there

exists a strictly increasing and convex function φ : Im vw → Im vw′ such that

v (c+ w′) = φ (v (c+ w)) ∀c ∈ T.

Let c′ > c > 0. Since v is strictly increasing, define h = v (c′ + w)− v (c+ w) > 0. It

follows that

v (c′ + w′)−v (c+ w′) = φ (v (c′ + w))−φ (v (c+ w)) = φ (v (c+ w) + h)−φ (v (c+ w)) ,

that is,

v (c′ + w′)− v (c+ w′)

v (c′ + w)− v (c+ w)
=
v (c′ + w′)− v (c+ w′)

h
=
φ (v (c+ w) + h)− φ (v (c+ w))

h
.

Since v is concave (resp., convex) and v and φ are strictly increasing, it follows that

(resp., 1 ≤ ) 1 ≥ v (c′ + w′)− v (c+ w′)

v (c′ + w)− v (c+ w)
=
φ (v (c+ w) + h)− φ (v (c+ w))

h
≥ 0.

(14)

If we define c′n = c+ 1
n
for all n ∈ N, we have that 0 < hn = v (c′n + w)−v (c+ w)→ 0.

By (14) and since φ is convex and c and c′ were arbitrarily chosen, this implies that

0 ≤ φ′+ (v (c+ w)) ≤ 1 (resp., φ′+ (v (c+ w)) ≥ 1) for all c ∈ T . Consider t ∈ Im vw.

It follows that there exists ĉ ∈ T such that v (ĉ+ w) = vw (ĉ) = t. It follows that

φ′+ (t) = φ′+ (vw (ĉ)) = φ′+ (v (ĉ+ w)) ∈ [0, 1] (resp., ≥ 1), proving the statement. �

Lemma 4 Let v : T → R be strictly increasing, continuous, and concave (resp.,

convex) and w′, w ∈ T be such that w′ > w. If v is DARA and φ = vw′ ◦ v−1
w , then

there exist {aα}α∈A ⊆ (0, 1] (resp., {aα}α∈A ⊆ [1,+∞)) and {bα}α∈A ⊆ R such that

φ (t) = sup
α∈A
{aαt+ bα} ∀t ∈ Im vw

Moreover, if Im v = (0,∞) and v is concave, then bα > 0 for all α ∈ A.

Proof. Recall that φ : Im vw → Im vw′ is strictly increasing and convex. By [6,

Corollary 2.1.3] and since φ is convex, we have that for each t∗ ∈ Im vw

φ (t) ≥ φ (t∗) + φ
′

+ (t∗) (t− t∗) ∀t ∈ Im vw.
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This implies that

φ (t) = sup
t∗∈Im vw

{
φ
′

+ (t∗) t+
(
φ (t∗)− φ′+ (t∗) t∗

)}
∀t ∈ Im vw.

By Lemma 3, if we define A = Im vw and at∗ = φ
′
+ (t∗) as well as bt∗ = φ (t∗)−φ′+ (t∗) t∗,

the main statement follows.39 Next, assume that Im v = (0,∞) and v is concave. Note

that for each t∗ ∈ Im vw we have that v (c+ w) = t∗ for some c ∈ T . Since v is strictly
increasing, this implies that

φ (t∗) = φ (v (c+ w)) = v (c+ w′) > v (c+ w) = t∗ ∀t∗ ∈ Im vw ⊆ (0,∞) . (15)

By (15) and since v is concave, we have that bt∗ = φ (t∗)−φ′+ (t∗) t∗ > t∗
(
1− φ′+ (t∗)

)
≥

0 for all t∗ ∈ Im vw. �

Lemma 5 Let % be a rational preference with representation (u, I). If % is DARA
and I is such that for each w,w′ ∈ T with w′ > w

I (ϕ) ≤ φ−1 (I (φ (ϕ))) ∀ϕ ∈ B0 (Σ, Imuw) ⊆ B0 (Σ, Imu) , (16)

where φ = vw′ ◦v−1
w : Im vw → Im vw′, then % is decreasing absolute uncertainty averse.

Proof. Let w′, w ∈ T be such that w′ > w. Consider f ∈ F . Since % is DARA,

note that cw (f (s)) ≤ cw′ (f (s)) for all s ∈ S. Define ψ ∈ B0 (Σ, T ) to be such that

ψ = v−1
w (uw (f)). Define also ψ′ ∈ B0 (Σ, T ) to be such that ψ′ = v−1

w′ (uw′ (f)). It

follows that ψ ≤ ψ′. Define ϕ = uw (f) and ϕ′ = uw′ (f). We have that

uw′ (f) = vw′ (ψ
′) and ψ = v−1

w (ϕ)

as well as

φ (ϕ) = vw′
(
v−1
w (ϕ)

)
= vw′ (ψ) ∈ B0 (Σ, Imuw′) ⊆ B0 (Σ, Imu)

By (16), it follows that

I (uw (f)) = I (ϕ) ≤ φ−1 (I (φ (ϕ))) = φ−1 (I (vw′ (ψ))) ≤ φ−1 (I (vw′ (ψ
′)))

= φ−1 (I (uw′ (f))) ,

39For the case in which v is concave, Lemma 3 only says that φ′+ (t∗) ≥ 0 for all t∗ ∈ Im vw. At the

same time, since Im vw is an open interval and φ is convex and strictly increasing, we cannot have

φ′+ (t∗) = 0 for any t∗ ∈ Im vw. Otherwise, 0 ≤ φ′+
(
t̂
)
≤ φ′+ (t∗) = 0 for all t̂ ∈ Im vw such that

t̂ < t∗, yielding that φ is constant on Im vw ∩ (−∞, t∗) 6= ∅, which is a contradiction with φ being
strictly increasing.
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that is, I (uw (f)) ≤ φ−1 (I (uw′ (f))) = vw
(
v−1
w′ (I (uw′ (f)))

)
which yields

cw (f) = v−1
w (I (uw (f))) ≤ v−1

w′ (I (uw′ (f))) = cw′ (f) .

Since f was arbitrarily chosen, the statement follows. �

Proof of Proposition 12. Since % is a rational preference that satisfies Weak

C-Independence, it follows that % admits a canonical representation (u, I) where

I : B0 (Σ, Imu) → R is also normalized, monotone, and constant additive. Since

% satisfies Unboundedness, Imu is unbounded. Since T is open and v is strictly in-

creasing and continuous, Imu = Im v is an open set. We thus have three cases: either

Imu = (−∞, b) or Imu = (b,+∞) or Imu = (−∞,∞). In the first two cases, without

loss of generality, we can assume that b = 0. In this way, by Proposition 18, concavity

at b (resp., convexity at b) becomes superhomogeneity (resp., subhomogeneity) of I.

In the third case, by assumption, concavity at b (resp., convexity at b) is superhomo-

geneity (resp., subhomogeneity) of I. By [10] and since Imu is unbounded, I admits

a (unique) extension to B0 (Σ) which is normalized, monotone, and constant additive.

We will denote the extension by Ī.

(i). Given Lemma 5, we only need to prove that I satisfies

φ (I (ϕ)) ≤ I (φ (ϕ)) ∀ϕ ∈ B0 (Σ, Imuw) ⊆ B0 (Σ, Imu)

where φ = vw′ ◦ v−1
w when w,w′ ∈ T with w′ > w. By Lemma 4 and since % is

risk averse, it follows that φ (t) = supα∈A {aαt+ bα} where {aα}α∈A ⊆ (0, 1] and

{bα}α∈A ⊆ R for all t ∈ Imuw. Let ϕ ∈ B0 (Σ, Imuw) ⊆ B0 (Σ, Imu). We have

that φ (ϕ) ∈ B0 (Σ, Imuw′) ⊆ B0 (Σ, Imu) and aαϕ ∈ B0 (Σ, Imu) as well as φ (ϕ) ≥
aαϕ+ bα ∈ B0 (Σ) for all α ∈ A. We can conclude that for each α ∈ A

I (φ (ϕ)) = Ī (φ (ϕ)) ≥ Ī (aαϕ+ bα) = Ī (aαϕ) + bα = I (aαϕ) + bα ≥ aαI (ϕ) + bα.

We can conclude that

I (φ (ϕ)) ≥ sup
α∈A
{aαI (ϕ) + bα} = φ (I (ϕ)) ,

proving the statement.

(ii). Given Lemma 5, we only need to prove that I satisfies

φ (I (ϕ)) ≤ I (φ (ϕ)) ∀ϕ ∈ B0 (Σ, Imuw) ⊆ B0 (Σ, Imu)

where φ = vw′ ◦ v−1
w when w,w′ ∈ T with w′ > w. By Lemma 4 and since % is

risk loving, it follows that φ (t) = supα∈A {aαt+ bα} where {aα}α∈A ⊆ [1,∞) and
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{bα}α∈A ⊆ R for all t ∈ Imuw. Let ϕ ∈ B0 (Σ, Imuw) ⊆ B0 (Σ, Imu). We have

that φ (ϕ) ∈ B0 (Σ, Imuw′) ⊆ B0 (Σ, Imu) and aαϕ ∈ B0 (Σ, Imu) as well as φ (ϕ) ≥
aαϕ+ bα ∈ B0 (Σ) for all α ∈ A. We can conclude that for each α ∈ A

I (φ (ϕ)) = Ī (φ (ϕ)) ≥ Ī (aαϕ+ bα) = Ī (aαϕ) + bα = I (aαϕ) + bα ≥ aαI (ϕ) + bα

where the last inequality follows from the fact that subhomogeneity implies that

I (λϕ) ≥ λI (ϕ) for all λ ∈ [1,∞).40 We can conclude that

I (φ (ϕ)) ≥ sup
α∈A
{aαI (ϕ) + bα} = φ (I (ϕ)) ,

proving the statement. �

Proof of Proposition 13. (i) implies (ii). Let w,w′ ∈ T such that w′ > w. By

assumption, %w is more uncertainty averse than %w′ . By Remark 3, %w is more risk
averse than %w′ , proving that % is DARA.
(ii) implies (i). Call (u, I) the representation of %. By [14], there also exists a nor-

malized, monotone, and continuous functional Î : B0 (Σ)→ R such that Î (λϕ+ k) =

λÎ (ϕ) + k for all λ > 0, for all k ∈ R, and for all ϕ ∈ B0 (Σ) and such that f % g

if and only if Î (u (f)) ≥ Î (u (g)). It follows that Î and I coincide on B0 (Σ, Imu).

Given Lemma 5, we only need to prove that I satisfies

φ (I (ϕ)) ≤ I (φ (ϕ)) ∀ϕ ∈ B0 (Σ, Imuw) ⊆ B0 (Σ, Imu)

where φ = vw′ ◦ v−1
w when w,w′ ∈ T with w′ > w. Since % is DARA, φ is strictly

increasing and convex. It follows that φ (t) = supα∈A{aαt+ bα} where {aα}α∈A ⊆ R+

and {bα}α∈A ⊆ R. Let ϕ ∈ B0 (Σ, Imuw) ⊆ B0 (Σ, Imu). We have that φ (ϕ) ∈
B0 (Σ, Imuw′) ⊆ B0 (Σ, Imu) and φ (ϕ) ≥ aαϕ + bα ∈ B0 (Σ) for all α ∈ A. We can
conclude that for each α ∈ A

I (φ (ϕ)) = Î (φ (ϕ)) ≥ Î (aαϕ+ bα) = aαÎ (ϕ) + bα = aαI (ϕ) + bα.

We can conclude that

I (φ (ϕ)) ≥ sup
α∈A
{aαI (ϕ) + bα} = φ (I (ϕ)) ,

40For λ = 1, the inequality is obvious. Let λ > 1 and ϕ ∈ B0 (Σ, Imu). It follows that 1
λ ∈ (0, 1).

We have that

I (ϕ) = I

(
1

λ
(λϕ)

)
≤ 1

λ
I (λϕ) =⇒ λI (ϕ) ≤ I (λϕ) .
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proving the statement. �

Proof of Proposition 14. Call (u, I) the representation of %. Without loss of

generality, by Proposition 18, we can assume that b = 0. Given Lemma 5, we only

need to prove that I satisfies

φ (I (ϕ)) ≤ I (φ (ϕ)) ∀ϕ ∈ B0 (Σ, Imuw) ⊆ B0 (Σ, Imu)

where φ = vw′ ◦ v−1
w when w,w′ ∈ T with w′ > w. Since I is superhomogeneous and

constant superadditive, we have that

I
(
aϕ+ b̂

)
≥ I (aϕ) + b̂ ≥ aI (ϕ) + b̂ ∀a ∈ (0, 1] ,∀b̂ ≥ 0,∀ϕ ∈ B0 (Σ, Imu) . (17)

By Lemma 4 and since % is DARA and risk averse, it follows that φ (t) = supα∈A{aαt+
bα} where {aα}α∈A ⊆ (0, 1] and {bα}α∈A ⊆ R++. Let ϕ ∈ B0 (Σ, Imuw) ⊆ B0 (Σ, Imu).

By (17), we have that

I (φ (ϕ)) ≥ I (aαϕ+ bα) ≥ aαI (ϕ) + bα ∀α ∈ A.

We can conclude that

I (φ (ϕ)) ≥ sup
α∈A
{aαI (ϕ) + bα} = φ (I (ϕ)) ,

proving the statement. �

Proof of Corollary 8. Call (u, I) the representation of %. Without loss of generality,
by Proposition 18, we can assume that b = 0. In light of Proposition 14, we only

need to show concavity at b (that is, superhomogeneity) and constant superadditivity.

Consider λ ∈ (0, 1) and k ≥ 0 as well as ϕ ∈ B0 (Σ, Imu). Note that there exists a

sequence {kn}n∈N ⊆ (0,∞) such that kn → k. Moreover, we have that λϕ, λϕ + k ∈
B0 (Σ, Imu) as well as λϕ+kn,

kn
1−λ ∈ B0 (Σ, Imu) for all n ∈ N. Since I is normalized,

continuous, and concave, this implies that

I (λϕ+ k) = lim
n
I (λϕ+ kn) = lim

n
I

(
λϕ+ (1− λ)

kn
1− λ

)
≥ lim

n

[
λI (ϕ) + (1− λ) I

(
kn

1− λ

)]
= lim

n

[
λI (ϕ) + (1− λ)

kn
1− λ

]
= λI (ϕ) + lim

n
kn = λI (ϕ) + k.

Since λ, k, and ϕ were arbitrarily chosen and I is continuous, I is superhomogeneous

and constant superadditive and the statement follows. �
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