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Abstract

The risk-neutral pricing formula provides the valuation of European deriva-
tives in absence of arbitrages. Despite the variety of option payoffs, price dy-
namics are driven by the same (possibly stochastic) interest rate process. We
formalize this intuition by showing that no arbitrage prices constitute the weak
solution of a differential equation, where interest rates have prominent role. To
achieve this goal, we introduce the notion of weak time-derivative, which per-
mits to differentiate functions of Markov processes. Importantly, martingales
have null weak time-derivative. Finally, we reformulate the eigenvalue problem
of Hansen and Scheinkman (2009) by using weak time-derivatives.

Keywords: no arbitrage pricing; weak time-derivative; martingale component; stochastic

interest rates.
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1 Introduction

The no arbitrage pricing formula for the valuation of European derivatives is a milestone of

asset pricing theory. Roughly speaking, it states that the proper price of a European option

at time t is given by the conditional expectation of the discounted future payoff under a

∗We thank Simone Cerreia-Vioglio, Lars Peter Hansen, Luigi Montrucchio and Emanuela Rosazza-Gianin
for useful comments. We also thank seminar participants at XL AMASES Annual Meeting in Catania
(2016) and at Università Bicocca. Massimo Marinacci acknowledges the financial support of ERC (grant
INDIMACRO).
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risk-neutral probability Q. If the derivative has payoff hT at maturity T , the risk-neutral

price π(t) is

π(t) = EQt
[
e−

∫ T
t r(s)dshT

]
,

where r is a (possibly stochastic) interest rate. From this formulation it is clear that the

short-term rate r plays a fundamental role in the derivative pricing. Indeed, price dynamics

are determined by the same interest rate process, whatever the terminal payoff of the option.

This intuition goes back to Cox and Ross (1976), who derived Black and Scholes (1973)

result by exploiting the accounting relations between bonds, stocks and options. This line

of reasoning actually stems from the original approach of Modigliani and Miller (1958).

In this paper we formalize the intuition that risk-neutral valuation is driven by the

process of interest rates by proving that the no arbitrage pricing formula is the weak solution

of the differential equation
dπ

dt
(t) = r(t)π(t) (1)

with the terminal condition π(T ) = hT . In case we consider, instead of an option, a

bond with deterministic payoff, eq. (1) is an ordinary differential equation with exponential

solution. However, since in general π(t) and r(t) are random processes, we develop the

mathematical tools needed to give a precise meaning to eq. (1). In particular, we introduce

the notion of weak time-derivative for functions of Markov processes.

The definition of weak time-derivative requires a suitable set of test functions (see Defini-

tions 1 and 14) and involves the conditional expectation of functions of stochastic processes.

This instrument provides a handy characterization of martingales. Indeed, up to technical

conditions, the weak time-derivative of a function is null if and only if the function is a

martingale process. Hence, the weak time-derivative allows us to qualify martingales as the

stochastic counterpart of constants in deterministic settings. In terms of interpretation, the

weak time-derivative provides an indication of the growth rate of the conditional expecta-

tion of the process. Similar results hold for submartingality and supermartingality, which

are related to positive or negative signs of weak time-derivatives.

The notion of weak time-derivative generalizes that of infinitesimal generator for Feller

processes: under suitable assumptions, the weak time-derivative specializes to the infinites-

imal generator. More in general, the weak time-derivative allows us to deal with generalized

formulations of problems that usually employ the infinitesimal generator in their stronger

form.

The main results of the paper are summarized by Theorems 12 and 15, which show

existence and uniqueness of the weak solution of eq. (1) where dπ/dt is the weak time-

derivative. Specifically, Theorem 12 deals with the case of deterministic short-term rates,
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while Theorem 15 involves stochastic interest rates. In addition, Proposition 13 provides

an equation for no arbitrage pricing of cashflows.

When the risk-free rate is constant, by rewriting eq. (1) in an operator form, we obtain

a reformulation of the eigenvalue-eigenvector problem analyzed by Hansen and Scheinkman

(2009), that employs the weak time-derivative in place of the extended generator of the

underlying Markov process. Following the same reasoning of Hansen and Scheinkman,

we also obtain a decomposition of the stochastic discount factor into a martingale and a

transient component.

Our work combines different areas of mathematical analysis and stochastic calculus. The

overall approach comes from variational calculus, it exploits the theory of Sobolev spaces

and weak formulations of differential equations. See, for example, Brezis (2010), Adams

and Fournier (2003) and Lions (1971) for a comprehensive introduction about variational

calculus, and Revuz and Yor (1999) for stochastic calculus.

From a financial point of view, our work builds directly on the foundations of no arbitrage

asset pricing theory illustrated, for instance, in Björk (2004), Hansen and Richard (1987)

and Föllmer and Schied (2011). In addition, our eigenvalue formulation refers to the long-

term risk literature, in particular to Hansen and Scheinkman (2009) and related works, like

Alvarez and Jermann (2005).

The paper is organized as follows. Subsection 1.1 introduces the general semigroup

framework. Section 2 develops the mathematical formalism of the weak time-derivative,

proves its main properties (Subsection 2.1) and relates it to the infinitesimal generator

(Subsection 2.2). In Sections 3 and 5 we solve the no arbitrage pricing equation with

deterministic and stochastic interest rates, respectively. A brief discussion of the special

case of Black-Scholes model is presented in Subsection 3.1, while Subsection 3.2 discusses the

risk-neutral pricing of cashflows. Section 4 deals with the eigenvalue-eigenvector problem

and the decomposition of the stochastic discount factor. In particular, Subsection 4.1

compares the roles of weak time-derivative and infinitesimal generator in the eigenvalue-

eigenvector formulation. Finally, additional results and proofs are included in Appendix.

1.1 The semigroup framework

Given a probability space (Ω,F , P ), fix T > 0 and consider a Markov process X =

{Xt}t∈[0,T ] such that Xt : Ω −→ R for all t ∈ [0, T ]. In our application Xt is a stock

price at time t. Let R be endowed with the Borel σ-algebra and F = {Ft}t∈[0,T ] be the

filtration generated by X.

Following Hansen and Scheinkman (2009), we consider the valuation operator

MThT = E [MThT ] ,
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where hT is a FT -measurable payoff, MT = ST /S0 and S = {St}t∈[0,T ] is a strictly positive

stochastic discount factor with S0 = 1 a.s. By convenience we will equivalently use both the

notations St and S(t). Here MThT represents the price at time 0 associated with the payoff

hT . For instance, hT may be the payoff at maturity T of a European option. In addition,

we require that the stochastic discount factor S satisfies the intertemporal consistency given

by the multiplicative relation

St+u = Su (θt)St ∀u > 0,

where θt is a shift operator. As a consequence, the process M = {Mt}t∈[0,T ] satisfies

M0 = 1 a.s., Mt+u = Mu (θt)Mt

and this relation guarantees the semigroup property of the valuation operator MT , i.e.

M0 = I, MT+U = MTMU .

The introduction of semigroups in asset pricing is due to Garman (1985).

In the following, we will deal with the valuation operator where the conditional expec-

tation is taken at time t 6 T :

Mt,ThT = Et [Mt,ThT ]

with Mt,T = ST /St. We call Mt,T pricing kernel in the interval [t, T ]. This terminology can

be retrieved, for instance, in Hansen and Renault (2009). Moreover,

MT,T = 1 a.s., Ms,T = Mt,TMs,t for t 6 s 6 T.

We assume that the physical measure P is strictly positive and there exists a risk-

neutral probability Q equivalent to P . We consider Q as given and we do not discuss mar-

ket completeness. Accordingly, stochastic discount factor and pricing kernel are uniquely

determined by the given Q. We denote by LT the Radon-Nikodym derivative of Q with

respect to P and Lt = Et [LT ] for all t ∈ [0, T ]. We observe that L0 = 1 and, moreover,

we define Lt,T = LT /Lt. If a riskless bond with interest rate r is traded, with continuous

compounding the stochastic discount factor and the pricing kernel in [t, T ] satisfy

St = e−rtLt, Mt,T = e−r(T−t)Lt,T .

See Hansen and Richard (1987) and Björk (2004) as references on risk-neutral pricing.

4



2 The weak time-derivative

Given a separable Banach space B, we consider functions f : [0, T ] −→ B. We denote as

C ([0, T ], B) the space of continuous functions from [0, T ] to B while Cnc ([0, T ], B) contains

n-times continuously differentiable functions from [0, T ] to B with compact support. All the

derivatives are defined from [0, T ] to B, too. We denote by B′ the topological dual of B and

we exploit the notion of weak Lebesgue measurability, that can be retrieved in Diestel and

Uhl (1977). A function f : [0, T ] −→ B is said to be weakly Lebesgue measurable (w.L.m.

for brevity) when the function

τ ∈ [0, T ] 7−→ `[f ](τ)

is Lebesgue measurable for any ` ∈ B′. For example, a function u : [0, T ] −→ L2 (FT ) is

weakly Lebesgue measurable when the function

τ ∈ [0, T ] −→ E [zTu (τ)]

is Lebesgue measurable for any zT ∈ L2 (FT ). Hence, we can discuss the integrability of

this function over the interval [0, T ].

For our purposes we introduce the notion of conditional weak Lebesgue measurability.

We say that a function u : [0, T ] −→ RΩ is conditionally weakly Lebesgue measurable when,

for every t ∈ [0, T ], the function

τ ∈ [t, T ] 7−→ E [Lτu (τ) 1At ]

is Lebesgue measurable for any Ft-measurable set At. The presence of indicator functions

reveals that conditional weak Lebesgue measurability is actually a property of the condi-

tional expectation of Lτu (τ) at any given time t. The term Lτ entails the change of measure

from the probability P to Q. Depending on the context, in case a change of measure is not

needed, it is enough to set Lτ constantly equal to 1 (for brevity we will write Lτ ≡ 1).

We define the space V as

V =

{
u : [0, T ] −→ RΩ : Lτu (τ) ∈ L2 (Fτ ) ∀τ,

u conditionally w.L.m.,

∫ T

0
E
[
L2
τu

2 (τ)
]
dτ < +∞

}
.

In addition, if u ∈ V is such that L(·)u (·) is Lebesgue measurable, then L(·)u (·) is also

Bochner integrable. In particular, the Bochner integral of L(·)u (·) is the element of L2 (FT )

denoted by ∫ T

0
Lτu (τ) dτ.
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To be precise, we should require that L(·)u (·) is strongly measurable. However, this is

equivalent to the fact that L(·)u (·) is Lebesgue measurable and its values L(τ)u (τ) belong,

for a.e. τ ∈ [0, T ], to a separable closed subspace of RΩ, a property that we always assume.

Moreover, the fact that ∫ T

0
E
[
L2
τu

2 (τ)
]
dτ < +∞

ensures that ∫ T

0

(
E
[
L2
τu

2 (τ)
]) 1

2 dτ < +∞.

The last condition is necessary and sufficient for a strongly measurable function L(·)u (·)
to be Bochner integrable. See Diestel and Uhl (1977) and Aliprantis and Border (2006) as

references.

We have now all the instruments to introduce the concept of weak time-differentiability

for functions in V.

Definition 1 Given u ∈ V, we say that u is weakly time-differentiable when there exists a

function w ∈ V such that for every t ∈ [0, T ]∫ T

t
E [Lτw (τ) 1At ]ϕ(τ)dτ = −

∫ T

t
E [Lτu (τ) 1At ]

dϕ

dt
(τ)dτ

∀At ∈ Ft, ∀ϕ ∈ C1
c ([t, T ],R) .

In this case we call w a weak time-derivative of u.

Similarly, u ∈ V is said to be twice weakly time-differentiable when there exists z ∈ V
such that for every t ∈ [0, T ]∫ T

t
E [Lτz (τ) 1At ]ϕ(τ)dτ =

∫ T

t
E [Lτu (τ) 1At ]

d2ϕ

dt2
(τ)dτ

∀At ∈ Ft, ∀ϕ ∈ C2
c ([t, T ],R) .

Observe that, if u ∈ V, the integrals∫ T

t
E [Lτu (τ) 1At ]

dϕ

dt
(τ)dτ,

∫ T

t
E [Lτw (τ) 1At ]ϕ(τ)dτ

are finite for any choice of ϕ ∈ C1
c ([t, T ],R) and At ∈ Ft. As a result, Definition 1 is

well-posed.

We identify two functions u, û in V when u (τ) = û (τ) almost surely for a.e. τ ∈ [0, T ].

After this identification the weak time-derivative turns out to be unique.
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Proposition 2 Let u ∈ V be weakly time-differentiable. Then, the weak time-derivative of

u is unique.

With a little abuse of notation we denote du/dt one of the versions of the weak time-

derivative of u. Moreover, we introduce the space

W = {weakly time-differentiable u ∈ V}

with the norm

‖u‖W =

(∫ T

0
E
[
L2
τu

2 (τ)
]
dτ +

∫ T

0
E

[
L2
τ

(
du

dt
(τ)

)2
]
dτ

) 1
2

.

2.1 Calculus of the weak time-derivative

We start by proving that a weakly time-differentiable function u has null weak time-

derivative when, for a.e. t ∈ [0, T ] and τ ∈ [t, T ], Et [u (τ)] depends only on t.

Proposition 3 A function u ∈ V is weakly time-differentiable with du/dt = 0 if and only

if, for a.e. t ∈ [0, T ], for a.e. τ ∈ [t, T ]

Et [Lτu (τ)] = ft a.s.

with ft ∈ L2 (Ft).

For example, suppose that u ∈ V and Ltu (t) has zero mean and independent increments

with respect to the given filtration. Then, for every t ∈ [0, T ],

Et [Lτu (τ)] = Et [Lτu (τ)− Ltu (t)] + Et [Ltu (t)] = Ltu (t) ∀τ ∈ [t, T ].

Therefore, u is weakly time-differentiable with du/dt = 0.

More precisely, in case u ∈ V and the process Lu = {Ltu (t)}t∈[0,T ] is a martingale, for

every t ∈ [0, T ]

Et [Lτu (τ)] = Ltu (t) ∀τ ∈ [t, T ].

Hence, u is weakly time-differentiable with du/dt = 0. For the converse implication, how-

ever, we need an additional assumption.

Corollary 4 Let u ∈ V.

i) If the process Lu is a martingale, then u is weakly time-differentiable with du/dt = 0.
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ii) If u is weakly time-differentiable with du/dt = 0 and, for a.e. t ∈ [0, T ],

Lτu (τ)
L1

−−→ Ltu (t) τ −→ t+,

then, for a.e. t ∈ [0, T ], for a.e. τ ∈ [t, T ]

Et [Lτu (τ)] = Ltu (t) a.s.

Under the assumptions of ii), it is easy to characterize the case of correct expectations,

in which for a.e. t ∈ [0, T ], for a.e. τ ∈ [t, T ]

Et [Lτu (τ)] = Lτu (τ) a.s.

Indeed, a function u ∈ V satisfying ii) has correct expectations if and only if Ltu(t) is a.s.

constant for a.e. t ∈ [0, T ]. In particular, by setting u(t) = Xt we see that forecasts about

future prices Xτ are accurate if and only if prices are a.s. constant over time. See the

discussion in Samuelson (1965).

Another simple corollary of Proposition 3 shows that, given a weak time-derivative w,

all the functions u ∈ W such that du/dt = w satisfy a precise property. Indeed, their

conditional expectations at any instant t differ by a function ft ∈ L2 (Ft).

Corollary 5 Let w ∈ V be the weak time-derivative of u1 ∈ W. If w is also the weak

time-derivative of u2 ∈ W, then, for a.e. t ∈ [0, T ], for a.e. τ ∈ [t, T ]

Et [Lτu2 (τ)] = Et [Lτu1 (τ)] + ft a.s.

with ft ∈ L2 (Ft).

It is also interesting to study the case in which Lτ ≡ 1 and the weak time-derivative is

deterministic.

Proposition 6 Let u ∈ V, Lτ ≡ 1, g : [0, T ] −→ R square-integrable and, for a.e. t ∈ [0, T ],

for a.e. τ ∈ [t, T ]

Et [u (τ)] =

∫ τ

t
g(s)ds+ ft a.s.

with ft ∈ L2 (Ft). Then, du/dt = g.

For example, in case Lτ ≡ 1 and for a.e. t ∈ [0, T ], for a.e. τ ∈ [t, T ]

Et [u (τ)] = ατ − αt+ ft a.s. (2)
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with α ∈ R and ft ∈ L2 (Ft), it is easy to see that du/dt = α. In addition, by Corollary 5

all the functions u ∈ W such that du/dt = α may be written as in eq. (2). For instance, if

m is a martingale in W, the function

u (t) = αt+mt

has du/dt = α. Indeed, a process in W which is the sum of a deterministic trend and a

martingale component has constant weak time-derivative and the value of du/dt identifies

the drift.

We now discuss the connection between monotonicity and sign of the weak time-derivative.

Any notion of monotonicity in this framework must account of conditional expectation.

Proposition 7 Let u ∈ W. For a.e. t ∈ [0, T ], for a.e. τ ∈ [t, T ]

Et
[
Lτ
du

dt
(τ)

]
> 0 a.s.

if and only if, for a.e. t ∈ [0, T ], for a.e. τ1, τ2 ∈ [t, T ] such that τ2 > τ1

Et [Lτ2u (τ2)] > Et [Lτ1u (τ1)] a.s.

The analogous result holds with 6 instead of >.

Hence, in conditional terms, we can associate the positivity of Lτdu/dt (τ) with the in-

creasing monotonicity of u. Similarly, a negative weak time-derivative reveals the decreasing

monotonicity of u, after taking the conditional expectation. Interestingly, these features can

be related to submartingality and supermartingality respectively.

Corollary 8 Let u ∈ W be such that, for a.e. t ∈ [0, T ]

Et [Lτu (τ)]
a.s.−−−→ Ltu (t) τ −→ t+.

i) If, for a.e. t ∈ [0, T ], for a.e. τ ∈ [t, T ]

Et
[
Lτ
du

dt
(τ)

]
> 0 a.s.,

then, for a.e. τ ∈ [t, T ]

Et [Lτu (τ)] > Ltu (t) .

ii) If, for a.e. t ∈ [0, T ], for a.e. τ ∈ [t, T ]

Et
[
Lτ
du

dt
(τ)

]
6 0 a.s.,

then, for a.e. τ ∈ [t, T ]

Et [Lτu (τ)] 6 Ltu (t) .
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Point i) of Corollary 8 reminds of the submartingale property of the process Lu, while

point ii) is reminiscent of supermartingality.

To conclude, we focus on the increments of the weak time-derivative, i.e. we deal with

the convexity (or concavity) of u. The function u satisfies a convexity property when

Lτdu/dt (τ) is increasing, after taking the conditional expectation.

Proposition 9 Let u ∈ W. For a.e. t ∈ [0, T ], for a.e. τ1, τ2 ∈ [t, T ] such that τ1 6 τ2

Et
[
Lτ1

du

dt
(τ1)

]
6 Et

[
Lτ2

du

dt
(τ2)

]
a.s.

if and only if, for a.e. t ∈ [0, T ], for a.e. τ1, τ2 ∈ [t, T ] such that τ1 6 τ2

Et
[
Lτ1

du

dt
(τ1)

]
6

Et [Lτ2u (τ2)]− Et [Lτ1u (τ1)]

τ2 − τ1
6 Et

[
Lτ2

du

dt
(τ2)

]
a.s.

The analogous result holds with > instead of 6.

Additional results about weak time-differentiability are presented in Appendix A. In

these further results, we focus on Bochner integrable functions because they can be inte-

grated directly, bypassing the expectation.

2.2 Comparison with the infinitesimal generator

We relate the notion of weak time-derivative with the one of infinitesimal generator, widely

known in stochastic calculus. A further comparison of the applications of both instruments

in option pricing is discussed in Subsection 4.1.

We begin with considering the infinitesimal incremental ratios of conditional expecta-

tions. We provide conditions that guarantee the convergence of these quantities to the weak

time-derivative.

Proposition 10 Let u ∈ W and t ∈ [0, T ]. If for a.e. τ ∈ [t, T ]

Et [Lτ+hu (τ + h)− Lτu (τ)]

h

is convergent in L1 when h −→ 0+, then for a.e. τ ∈ [t, T ]

Et [Lτ+hu (τ + h)− Lτu (τ)]

h

L1

−−→ Et
[
Lτ
du

dt
(τ)

]
h −→ 0+.

If, in addition, when τ −→ t+

Lτu (τ)
L1

−−→ Ltu (t) , Lτ
du

dt
(τ)

L1

−−→ Lt
du

dt
(t) ,

then
Et [Lt+hu (t+ h)]− Ltu (t)

h

L1

−−→ Lt
du

dt
(t) h −→ 0+.
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Fixing t ∈ [0, T ], the outcome of Proposition 10 can be restated as

Et [Lt+hu (t+ h)]− Ltu (t)− Lt
du

dt
(t)h

L1

−−→ 0 h −→ 0+

or, equivalently,

Et [Lτu (τ)]− Ltu (t)− Lt
du

dt
(t) (τ − t) L1

−−→ 0 τ −→ t+,

which is a first-order expansion of Et [Lτu (τ)] in a right neighbourhood of t, with the

limit taken in L1. This is the natural way to use weak time-derivatives for first-order

approximations.

As described in Revuz and Yor (1999), the infinitesimal generator of a Feller process

X = {Xt}t∈[0,T ] is the operator A that maps any continuous bounded function f belonging

to the domain of A into the function Af such that, for any t ∈ [0, T ],

Af (Xt) = lim
h→0+

Et [f (Xt+h)]− f (Xt)

h
.

The limit, here, is in the uniform topology and so Af is continuous and bounded.

If Lτ is constantly equal to 1, Proposition 10 shows that the weak time-derivative gen-

erally works as the infinitesimal generator with the limit h −→ 0+ taken in the L1-norm.

However, the weak time-derivative is a more general notion than the infinitesimal generator.

Indeed, under suitable assumptions the weak time-derivative turns out to be equal to the

infinitesimal generator.

Corollary 11 Let Lτ ≡ 1 and u ∈ W be such that, for every t ∈ [0, T ]

u (τ)
L1

−−→ u (t) ,
du

dt
(τ)

L1

−−→ du

dt
(t) τ −→ t+.

Assume that u (t) is not explicitly dependent on t and it defines a continuous bounded

function of Xt, i.e. u (t) = f (Xt) for any t ∈ [0, T ], with f in the domain of A. Then, for

every t ∈ [0, T ],
du

dt
(t) = Af (Xt) a.s.

As we will see in Subsection 4.1, the weak time-derivative provides a generalized formu-

lation of operator equations that involve the infinitesimal generator, such as the eigenvalue-

eigenvector problem Af = rf , with r > 0. This generalization is made possible by the fact

that both instruments provide a similar characterization of martingales. Indeed, the process

{f (Xt)}t∈[0,T ] is a martingale when the infinitesimal generator of f is null, as ensured by

Proposition 1.6 in Chapter VII of Revuz and Yor (1999). This result actually shares the
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same insight of Proposition 3 and Corollary 4 that relate the martingale property to the

nullity of weak time-derivatives.

However, the last remark holds when Lτ ≡ 1. If Lτ is arbitrary, the weak time-derivative

parallels the extended generator used by Hansen and Scheinkman (2009).

3 No arbitrage pricing

We consider a continuous-time market with two assets: a bond with constant interest rate

r and price process B = {Bt}t∈[0,T ] and a risky asset with price process X = {Xt}t∈[0,T ].

We take into consideration the filtered probability space (Ω,F, P ), where F = {Ft}t∈[0,T ] is

the filtration generated by X and P is a physical probability.

We call arbitrage possibility any self-financing portfolio whose value V satisfies:

V0 = 0, P (VT > 0) = 1, P (VT > 0) > 0.

As in Subsection 1.1, we assume that there exists a risk-neutral probability Q. In this case,

the no arbitrage price process of a European derivative with FT -measurable payoff function

hT is π = {π (t)}t∈[0,T ] such that

π (t) = e−r(T−t)EQt [hT ] .

The Radon-Nikodym derivative of Q with respect to P , denoted by LT , allows us to compute

EQ [hT ] = E [LThT ]. By the Bayes’ rule of conditional expectation, since Lt = Et [LT ], we

obtain

EQt [hT ] = Et
[
LT
Lt
hT

]
= Et [Lt,ThT ] ,

where Lt,T = LT /Lt. As a result,

π (t) = e−r(T−t)Et [Lt,ThT ] . (3)

We refer to π (t) as the no arbitrage pricing function (or risk-neutral pricing function)

of the derivative with terminal payoff hT . Note also that the discounted price process{
e−rtLtπ (t)

}
t∈[0,T ]

satisfies the martingale property

Ltπ (t)

ert
= Et

[
Lτπ (τ)

erτ

]
∀τ ∈ [t, T ].

The use of Radon-Nikodym derivative shows that martingality holds under the risk-neutral

probability measure.
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The price of the riskless bond can be obtained by taking a constant terminal payoff in

eq. (3). In particular, the bond price satisfies the boundary problem{
dB(t)
dt = rB(t) t ∈ [0, T )

B(T ) = erT

In words, with continuous compounding, the rate of change of B(t) is proportional to B(t)

and the coefficient of proportionality coincides with r.

In the following we show that the no arbitrage pricing function π (t) of a European

derivative satisfies the analogous boundary problem{
dπ
dt (t) = rπ (t) t ∈ [0, T )
π (T ) = hT

where LThT ∈ L2 (FT ) and du/dt is the weak time-derivative defined in Section 2. In

particular, the equality dπ
dt (t) = rπ (t) means that for a.e. t ∈ [0, T ] the weak time-derivative

of π equals rπ almost surely.

The financial interpretation of the problem is straightforward once we recall that dπ/dt (t)

is Ft-measurable for every t ∈ [0, T ]. Then, the infinitesimal variation dπ/dt (t) is known

at time t and the no arbitrage condition imposes that dπ/dt behaves as the deterministic

bond. In other words, the rate of change of π (t) must be proportional to π (t) as it is for

the riskless asset price.

In our setting the boundary condition alone is not enough to guarantee uniqueness of

the solution. Therefore, we require that Ltπ (t) converges to LThT in L1 as t approaches

T . Specifically, we solve 
dπ
dt (t) = rπ (t) t ∈ [0, T )
π (T ) = hT

Ltπ (t)
L1

−−→ LThT t −→ T

(4)

with LThT ∈ L2 (FT ).

Theorem 12 π (t) = e−r(T−t)Et [Lt,ThT ] is a solution of Problem (4) in W. Moreover, it

is the unique solution in W.

The proof of uniqueness exploits the fact that the weak time-derivative of e−rtπ (t) is

null a.s., which is the counterpart of the martingale property of the discounted price process

in our framework.

Suppose now that the interest rate is time dependent and that r(t) is Lebesgue mea-

surable and bounded. Then, Theorem 12 applies accordingly and the no arbitrage pricing

function

π (t) = e−
∫ T
t r(s)dsEt [Lt,ThT ]

13



is the unique solution of problem
dπ
dt (t) = r(t)π (t) t ∈ [0, T )
π (T ) = hT

Ltπ (t)
L1

−−→ LThT t −→ T.

A more general treatment of the same problem with stochastic interest rates is provided in

Section 5.

3.1 Example: Black-Scholes model

Black and Scholes (1973) model involves a continuous-time market with a riskless bond and

a risky asset, as the one we have described. In the filtered probability space (Ω,F, P ), the

filtration F = {Ft}t∈[0,T ] is generated by a P -Wiener process W =
{
W t

}
t∈[0,T ]

. The bond

and stock prices follow the dynamics

dBt = rBtdt, dXt = µXtdt+ σXtdW t,

where µ ∈ R is the drift, σ > 0 is the volatility and r ∈ R is the risk-free rate. Girsanov

Theorem ensures that there exists a probability measure Q equivalent to P under which

the discounted stock price process is a martingale. According to the First Fundamental

Theorem of Asset Pricing the market is, then, arbitrage-free. In particular, the dynamics

of the stock price under Q are

dXt = rXtdt+ σXtdWt,

where W = {Wt}t∈[0,T ] is a Q-Wiener process. Hence, the risky asset and the bond must

share the same drift given by the interest rate r in order to exclude any arbitrage possibility.

See Björk (2004) as a reference.

As before, the no arbitrage price process of a European derivative with FT -measurable

payoff hT is π = {π (t)}t∈[0,T ] such that

π (t) = e−r(T−t)EQt [hT ] ,

where the conditional expectation is computed according to Q. Specifically, in Black-Scholes

model π (t) is a deterministic function of t and Xt. Since the discounted price process{
e−rtπ (t)

}
t∈[0,T ]

is also a Q-martingale, the drift of π will be equal to r, too. This is the

crucial property which is captured, more in general, by Problem (4), where no special price

dynamics are assumed. This is also the intuition that drives Cox and Ross (1976) derivation

of Black-Scholes equation, that is based on a hedging argument.

14



3.2 Valuation of cashflows

The payoff of a European derivative with maturity T can be seen as a special cashflow

in which there is a unique random payment at time T . Indeed, the no arbitrage theory

described so far generalizes to the pricing of payoff streams.

In particular, we consider an adapted cashflow h = {ht}t∈[0,T ] which defines a function

h : [0, T ] −→ RΩ. We suppose that L2(·)h2(·) is Bochner integrable with respect to a finite

measure µ on [0, T ] that weighs cashflows over time.

The no arbitrage price process π = {π(t)}t∈[0,T ] of h is the expected discounted value

of future cashflows under the risk-neutral probability, i.e.

π(t) = Et
[∫ T

t
e−r(m−t)Lt,mhmµ(dm)

]
. (5)

For example, if µ is a counting measure, the previous formula evaluates a finite number or

a sequence of future payments. In case µ is absolutely continuous, we are pricing instead a

continuous stream of payoffs. In general, it is convenient to write µ(dm) = pmdm. In fact,

if µ is absolutely continuous, pm denotes the Radon-Nikodym derivative of µ with respect

to Lebesgue measure, otherwise pm has to be intended in the sense of distributions.

We also assume that the function h(·)p(·) belongs to V. Hence, we are able to show that

the risk-neutral pricing formula for cashflows satisfies the differential equation

dπ

dt
(t) = rπ(t)− htpt t ∈ [0, T ],

where dπ/dt is the weak time-derivative of π. If ht is null except for the time T and µ has

mass concentrated in T , we retrieve as special case the differential equation of Problem (4)

about European options with maturity T .

Proposition 13 π(t) = Et
[∫ T
t e−r(m−t)Lt,mhmµ(dm)

]
belongs to W and it is a solution

of the equation
dπ

dt
(t) = rπ(t)− htpt t ∈ [0, T ].

Observe that a term analogous to −htpt is added in Feynman-Kac equation when a

stream of dividends is present. See Duffie (2010) as a reference.

4 An operator approach

In this section we define the spaces and operators that allow us to formalize Problem (4)

as an eigenvalue-eigenvector problem.
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We start with observing that the no arbitrage pricing function π is weakly time-differentiable

infinitely many times. Indeed, dπ/dt belongs to V and it equals the original π except for

the multiplicative constant r. Hence, dπ/dt is weakly time-differentiable, too. By defining

the subspace of V

Z = {infinitely weakly time− differentiable u ∈ V} ,

we have that π ∈ Z. Moreover, the weak time-derivative defines a linear operator A : Z −→
Z by

A : u 7−→ du

dt
.

A allows us to rewrite the differential equation of Problem (4) in the operator form

Aπ = rπ, π ∈ Z. (6)

Hence, we obtain an eigenvalue-eigenvector problem, which is the same problem faced by

Hansen and Scheinkman (2009) where, instead of A, the extended generator of the under-

lying Markov process is involved. In our setting the no arbitrage pricing function π is an

eigenfunction of the operator A, associated with the eigenvalue r. Moreover, the process{
e−rtLtπ (t)

}
t

is a martingale.

Following Hansen and Scheinkman (2009), we choose a positive payoff hT . The positivity

of hT is related to the requirement of π to be an eigenfunction related to the principal

eigenvalue in Hansen and Scheinkman (2009). Indeed, Hansen and Scheinkman generalize

the Perron-Frobenius theory (see Meyer (2000)) from the finite-state Markov chain setting

to more abstract frameworks.

Then, we define

L̂t = e−rtLt
π (t)

π (0)
,

which still satisfies the martingale property and the multiplicative property

L̂0 = 1, L̂t+u = L̂u (θt) L̂t.

In addition, the stochastic discount factor St decomposes as

St = L̂t
π (0)

π (t)
= e−rtL̂t

π̃ (0)

π̃ (t)
,

where we define π̃ (t) = Et [Lt,ThT ]. In the last decomposition −r is referred to as the

growth rate of St, L̂t is the martingale component and π̃ (0) /π̃ (t) is the transient component.

However, the decomposition is not unique.
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This kind of results has proved to be fruitful in the macro-financial literature. For

instance, Alvarez and Jermann (2005) employ the last decomposition to quantify the dy-

namics of stochastic discount factors. Moreover, an application to the study of long-term

risk-return trade-off for the valuation of cash flows is described in Hansen, Heaton, and Li

(2008).

4.1 Comparison with the infinitesimal generator

As we saw in Proposition 10, in case Lt ≡ 1 the weak time-derivative provides a way to

differentiate random processes which generalizes the traditional infinitesimal generator for

a Feller process X = {Xt}t∈[0,T ]. Moreover, if the infinitesimal generator of f is null, then

the process {f (Xt)}t∈[0,T ] is a martingale, a fact that parallels Proposition 3 and Corollary

4. In particular, simple computations show that the no arbitrage pricing function

π (t) = e−r(T−t)Et [hT ]

satisfies the eigenvalue-eigenvector problem Aπ = rπ. We refer to Aπ = rπ as a strong form

eigenvalue-eigenvector problem, while Problem (4), rewritten as (6), defines its generalized

form.

In addition, it holds thatA
(
e−rtπ (t)

)
= 0, hence the discounted price process

{
e−rtπ (t)

}
t∈[0,T ]

is a martingale. By exploiting the terminal condition π (T ) = hT , this fact ensures that π

is the unique solution of the problem in strong form.

Finally, we observe that the convergence requirement of Problem (4), namely π (t)
L1

−−→
hT as t approaches T , is replaced here by the more general Feller property.

5 No arbitrage pricing with stochastic interest rates

We provide a refinement of the theory described so far in order to solve the no arbitrage

pricing equation when interest rates are stochastic. In this case we have two sources of

randomness. Indeed, we consider two Markov processes X = {Xt}t∈[0,T ] and Y = {Yt}t∈[0,T ]

defined on the same probability space (Ω,F , P ). As for the interpretation, X is associated

with the underlying stock, while Y affects the interest rates. For any instant t, Xt, Yt :

Ω −→ R and R is endowed with the Borel σ-algebra. We consider the filtration generated

by the pair (X,Y) and denote it by F = {Ft}t∈[0,T ]. As before, we assume that there exists

a risk-neutral probability Q equivalent to P and we consider the process L = {Lt}t∈[0,T ]

such that Lt = Et [LT ], where LT is the Radon-Nikodym derivative of Q with respect to P .

In this section we assign a stronger meaning to the notions of conditional weak Lebesgue

measurability and weak time-differentiability. To distinguish the new definitions from the

analogous ones of Section 2 we will write r-, that stays for robust.
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Specifically, we say that a function u : [0, T ] −→ RΩ is conditionally r-weakly Lebesgue

measurable when, for every t ∈ [0, T ], the function

τ ∈ [t, T ] 7−→ E [Lτu (τ) 1Atψ(τ)]

is Lebesgue measurable for any Ft-measurable set At and any adapted function ψ ∈
Cc ([t, T ], L∞ (FT )). By saying that ψ is adapted, we mean that ψ(τ) is Fτ -measurable

for all τ in [t, T ]. If ψ is constantly equal to 1, we retrieve the requirement of conditional

weak Lebesgue measurability discussed in Section 2. Accordingly, we define the space

Vr =

{
u : [0, T ] −→ RΩ : Lτu (τ) ∈ L2 (Fτ ) ∀τ,

u conditionally r-w.L.m.,

∫ T

0
E
[
L2
τu

2 (τ)
]
dτ < +∞

}
,

which is a subspace of the space V.

In this context r-weak time-differentiability involves a larger set of test functions than

weak time-differentiability of Definition 1. Hence, r-weak time-differentiability turns out to

be a stronger requirement.

Definition 14 Given u ∈ Vr, we say that u is r-weakly time-differentiable when there

exists a function w ∈ Vr such that for every t ∈ [0, T ]∫ T

t
E [Lτw (τ) 1Atϕ(τ)] dτ = −

∫ T

t
E
[
Lτu (τ) 1At

dϕ

dt
(τ)

]
dτ

∀At ∈ Ft, ∀ϕ ∈ C1
c ([t, T ], L∞ (FT )) adapted.

In this case we call w a r-weak time-derivative of u.

Definition 14 is well-posed because the integrals∫ T

t
E
[
Lτu (τ) 1At

dϕ

dt
(τ)

]
dτ,

∫ T

t
E
[
Lτ
du

dt
(τ) 1Atϕ(τ)

]
dτ

are finite for any choice of At and ϕ as required. Indeed, ϕ and dϕ/dt are continuous

functions that take values in L∞ (FT ), hence their image is bounded.

We finally define the space

Wr = {r-weakly time-differentiable u ∈ Vr} .

If u is r-weakly time-differentiable, it is also weakly time-differentiable because the test

functions ϕ, that are random variables, may specialize to deterministic functions. This
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simple observation allows us to inherit some of the results of Section 2. For instance, the

r-weak time-derivative is still unique. Moreover, if a function u ∈ Vr is r-weakly time-

differentiable with du/dt = 0, then for a.e. t ∈ [0, T ], for a.e. τ ∈ [t, T ]

Et [Lτu (τ)] = ft a.s.

with ft ∈ L2 (Ft).
We assume that the interest rate is a Lebesgue measurable function r : [0, T ] −→

L∞ (FT ) which is adapted. In addition, we impose that interest rates are uniformly bounded

over time, i.e. there is a positive R such that

|r(t)| 6 R a.s. ∀t ∈ [0, T ].

Lebesgue measurability and boundedness ensure the Bochner integrability of r. As a result,

the Bochner integral
∫ T

0 r(τ)dτ is a well-defined object in L∞ (FT ).

Furthermore, given any state ω ∈ Ω, consider the restriction rω : [0, T ]→ R of r on the

path induced by ω. We assume that the map from [0, T ]×Ω to R such that (t, ω) 7−→ rω(t)

is measurable. This assumption allows us to compute the Bochner integral of r as the

pathwise Lebesgue integral of rω. Indeed, since r is Bochner integrable, Bochner integral

and pathwise Lebesgue integral coincide almost surely. See Lemma 3 in Appendix B.

Since now interest rates are stochastic, the no arbitrage pricing differential equation is
dπ
dt (t) = r(t)π (t) t ∈ [0, T )
π (T ) = hT

Ltπ (t)
L1

−−→ LThT t −→ T

(7)

with LThT ∈ L2 (FT ). Differently from Problem (4), now each r(t) ∈ L∞ (Ft) and dπ/dt

represents the r-weak time-derivative. The unique solution of this problem in Wr is

π (t) = Et
[
Lt,T e

−
∫ T
t r(s)dshT

]
.

Theorem 15 π (t) = Et
[
Lt,T e

−
∫ T
t r(s)dshT

]
is a solution of Problem (7) in Wr. Moreover,

it is the unique solution in Wr.

The proof is more involved than that of Theorem 12 and it exploits the relation between

Bochner and pathwise Lebesgue integrability.

6 Conclusion

We introduced the weak time-derivative, a novel mathematical tool that allows us to dif-

ferentiate stochastic processes in a more general way than the infinitesimal generator. It
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provides easy characterizations of martingales and permits to formulate differential equa-

tions for random processes in weak form. Therefore, we expect this instrument to be suitable

for different kinds of differential problems, beyond the ones discussed in this work.

As we described in the body of the paper, a fruitful application of the weak time-

derivative involves the solution of the no arbitrage pricing equation for European options.

In particular, the generalized form that we solve clarifies the central role of interest rates

in driving the asset prices, with both deterministic and stochastic short-term rates. In

addition, constant interest rates deliver an eigenvalue-eigenvector formulation of the risk-

neutral pricing equation in full agreement with the long-term risk literature. Nevertheless,

how to set up the analogous eigenvalue-eigenvector problem when interest rates are time-

varying or stochastic still remains an open problem. Indeed, the candidate eigenvalue would

be a function or a random process. Moreover, such a formulation should be able to generate

a term structure of interest rates. We leave this and other interesting questions for future

research.
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A Additional results about weak time-differentiability

The following results assume Lebesgue measurability and involve Bochner integrability. In
this case we can integrate a function u ∈ V directly because we are not forced to employ
the expectation to ensure measurability.

Lemma 1 Let u ∈ V such that for a.e. t ∈ [0, T ]

Ltu (t) =

∫ t

0
Lsg (s) ds,

where g ∈ V and L(·)g (·) is Lebesgue measurable. Then, u is weakly time-differentiable with
du/dt = g.

Proof. First, observe that the function L(·)g (·) is Bochner integrable, as discussed in
Section 2. We want to show that g ∈ V satisfies the definition of weak time-derivative of u.
Given t ∈ [0, T ], consider any ϕ ∈ C1

c ([t, T ],R) and At ∈ Ft. Then∫ T

t
E [Lτu (τ) 1At ]

dϕ

dt
(τ)dτ =

∫ T

t
E
[∫ τ

0
Lsg (s) ds1At

]
dϕ

dt
(τ)dτ.

As the expectation defines a bounded operator, according to Lemma 11.45 in Aliprantis
and Border (2006) we can exchange the order of expectation and Bochner integral. After
that, we apply Fubini’s Theorem and exploit the compact support of ϕ:∫ T

t
E [Lτu (τ) 1At ]

dϕ

dt
(τ)dτ =

∫ T

t

(∫ τ

0
E
[
Lsg (s) 1At

dϕ

dt
(τ)

]
ds

)
dτ

=

∫ t

0

(∫ T

t
E [Lsg (s) 1At ]

dϕ

dt
(τ)dτ

)
ds

+

∫ T

t

(∫ T

s
E [Lsg (s) 1At ]

dϕ

dt
(τ)dτ

)
ds

=

∫ t

0

(
E [Lsg (s) 1At ]

∫ T

t

dϕ

dt
(τ)dτ

)
ds

+

∫ T

t

(
E [Lsg (s) 1At ]

∫ T

s

dϕ

dt
(τ)dτ

)
ds

= −
∫ T

t
E [Lsg (s) 1At ]ϕ(s)ds.

In consequence, g is the weak time-derivative of u.

The next result is reminiscent of the Fundamental Theorem of Integral Calculus.

Proposition 16 Let u ∈ W such that L(·)du/dt (·) is Lebesgue measurable. Then, for a.e.
t ∈ [0, T ] there exists ūt ∈ W such that L(·)ūt (·) ∈ C ([t, T ], L∞ (FT )), for a.e. τ ∈ [t, T ]

Et [Lτu (τ)] = Et [Lτ ūt (τ)]
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and, for any τ1, τ2 ∈ [t, T ],

Lτ2 ūt (τ2)− Lτ1 ūt (τ1) =

∫ τ2

τ1

Ls
du

dt
(s) ds.

Proof. du/dt belongs to V and L(·)du/dt (·) is Lebesgue measurable, therefore L(·)du/dt (·)
is Bochner integrable and we can consider the function û (·) : [0, T ] −→ L∞ (FT ) defined by

û (τ) =
1

Lτ

∫ τ

0
Ls
du

dt
(s) ds.

As L(·)û (·) is a primitive of a Bochner integrable function, L(·)û (·) belongs to C ([0, T ], L∞ (FT )).
See Hille and Phillips (1996) as a reference.

By Lemma 1, du/dt is the weak time-derivative of û. As du/dt is also the weak time-
derivative of u, the weak time-derivative of u−û is null. By Proposition 3, for a.e. t ∈ [0, T ],
for a.e. τ, s ∈ [t, T ]

Et [Lτu (τ)]− Et [Lτ û (τ)] = Et [Lsu (s)]− Et [Lsû (s)] .

Choose s = st in a way that the above equality is satisfied and consider the function
ūt (·) : [t, T ] −→ L∞ (FT ) defined by

ūt (τ) = û (τ) +
Lst
Lτ

u (st)−
Lst
Lτ

û (st) .

L(·)ūt (·) ∈ C ([t, T ], L∞ (FT )) because L(·)û (·) ∈ C ([0, T ], L∞ (FT )). Moreover, for a.e.
τ ∈ [t, T ]

Et [Lτu (τ)] = Et [Lτ û (τ)] + Et [Lstu (st)]− Et [Lst û (st)]

= Et [Lτ û (τ)] + Et
[
Lτ
Lst
Lτ

u (st)

]
− Et

[
Lτ
Lst
Lτ

û (st)

]
= Et

[
Lτ

{
û (τ) +

Lst
Lτ

u (st)−
Lst
Lτ

û (st)

}]
= Et [Lτ ū (τ)] .

Since
Lτ ūt (τ) = Lτ û (τ) + Lstu (st)− Lst û (st) ,

we have that, for any τ1, τ2 ∈ [t, T ],

Lτ2 ūt (τ2)− Lτ1 ūt (τ1) = Lτ2 ût (τ2)− Lτ1 ût (τ1)

=

∫ τ2

0
Ls
du

dt
(s) ds−

∫ τ1

0
Ls
du

dt
(s) ds

=

∫ τ2

τ1

Ls
du

dt
(s) ds.
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B Proofs

Lemma 2 Let f : [t, T ] −→ R.

i) If f is bounded, nonnegative, with compact support and
∫ T
t f(τ)g(τ)dτ = 0 for any

g ∈ Cc ([t, T ],R), then f = 0 a.e.

ii) If f is measurable and
∫ T
t f(τ)g(τ)dτ = 0 for any g ∈ Cc ([t, T ],R), then f = 0 a.e.

Proof.

i) If f is strictly positive on a set A with positive measure, consider the indicator function
1A and a sequence {Un}n of continuous positive approximations of 1A, obtained by
convolution with a smooth positive kernel. As Un converges to 1A in L2,

0 6
∫ T

t
f(τ)1A(τ)dτ = lim

n

∫ T

t
f(τ)Un(τ)dτ = 0.

In consequence, f is null a.e.

ii) Suppose that f is positive with compact support. For any N > 0 consider fN (s) =
min{f(τ), N}. Then

0 6
∫ T

t
fN (τ)g(τ)dτ 6

∫ T

t
f(τ)g(τ)dτ = 0.

Therefore, each fN is null a.e. by i) and so f is.

Proof of Proposition 2

Let w and ŵ be two weak time-derivatives of u. Then, for every t ∈ [0, T ]∫ T

t
E [Lτ {w (τ)− ŵ (τ)}1At ]ϕ(τ)dτ = 0

∀At ∈ Ft, ∀ϕ ∈ C1
c ([t, T ],R) .

By Lemma 2, for a.e. τ ∈ [t, T ],

E [Lτ {w (τ)− ŵ (τ)}1At ] = E [01At ] = 0 ∀At ∈ Ft.

Hence, the a.s. null function fits the definition of conditional expectation of Lτ {w (τ)− ŵ (τ)}
with respect to Ft. Therefore, for a.e. τ ∈ [t, T ],

Et [Lτw (τ)] = Et [Lτ ŵ (τ)] a.s.
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Now fix τ ∈ [0, T ]. Except for a set with measure zero of values of τ , we can find an
increasing sequence {ti}i∈N ⊂ [t, τ ] such that ti → τ and

Eti [Lτw (τ)] = Eti [Lτ ŵ (τ)] a.s.

By Lévy’s Upward Theorem, i.e. Theorem 14.2 in Williams (1991), when ti approaches τ ,

Eti [Lτw (τ)] −→ Eτ [Lτw (τ)] = Lτw (τ) a.s.

Since the last relation holds also for ŵ and Lτ is strictly positive, we deduce that w (τ) =
ŵ (τ) almost surely for a.e. τ ∈ [0, T ].

Proof of Proposition 3

Let t ∈ [0, T ] be such that for a.e. τ ∈ [t, T ]

Et [Lτu (τ)] = ft a.s.

Then, for all ϕ ∈ C1
c ([t, T ],R) and At ∈ Ft,∫ T

t
E [Lτu (τ) 1At ]

dϕ

dt
(τ)dτ =

∫ T

t
E [Et [Lτu (τ)] 1At ]

dϕ

dt
(τ)dτ

=

∫ T

t
E [ft1At ]

dϕ

dt
(τ)dτ

= E [ft1At ]

∫ T

t

dϕ

dt
(τ)dτ

= 0

because ϕ is a function in C1
c ([t, T ],R). As a result, w = 0 a.s. for a.e. t ∈ [0, T ] satisfies

the definition of weak time-derivative of u. By uniqueness of the weak time-derivative, we
claim that du/dt = 0.

Conversely, suppose that u ∈ V is weakly time-differentiable with du/dt = 0. We show
that, given t ∈ [0, T ], Et [Lτu (τ)] is not dependent on τ for a.e. τ ∈ [t, T ].

Take a continuous function η : [t, T ] −→ R with compact support such that∫ T

t
η(τ)dτ = 1.

Given a continuous function ξ : [t, T ] −→ R with compact support, we define the function
kξ : [t, T ] −→ R by

kξ(s) = ξ(s)−
(∫ T

t
ξ(τ)dτ

)
η(s).

kξ is continuous with compact support and∫ T

t
kξ(τ)dτ = 0.
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Hence, kξ has a primitiveKξ which is continuous with compact support. AsKξ ∈ C1
c ([t, T ],R),

we employ it as a test function in the definition of weak time-derivative of u. Since
du/dt = 0, for all At ∈ Ft we have

0 =

∫ T

t
E [Lsu (s) 1At ]

{
ξ(s)−

(∫ T

t
ξ(τ)dτ

)
η(s)

}
ds

=

∫ T

t
E [Lsu (s) 1At ] ξ(s)ds−

∫ T

t
E [Lsu (s) 1At ]

(∫ T

t
ξ(τ)dτ

)
η(s)ds

=

∫ T

t
E [Lτu (τ) 1At ] ξ(τ)dτ −

∫ T

t

{∫ T

t
E [Lsu (s) 1At ] η(s)ds

}
ξ(τ)dτ

=

∫ T

t

{
E [Lτu (τ) 1At ]−

∫ T

t
E [Lsu (s) 1At ] η(s)ds

}
ξ(τ)dτ.

By the density of continuous functions ξ, Lemma 2 ensures that for a.e. τ ∈ [t, T ]

E [Lτu (τ) 1At ] =

∫ T

t
E [Lsu (s) 1At ] η(s)ds.

Since
∫ T
t η(s)ds = 1, we can rewrite the left-hand side as

∫ T
t E [Lτu (τ) 1At ] η(s)ds so that∫ T

t
{E [Lτu (τ) 1At ]− E [Lsu (s) 1At ]} η(s)ds = 0.

As the last equality holds for any continuous function η with compact support in [t, T ], we
have that, for a.e. s ∈ [t, T ],

E [Lsu (s) 1At ] = E [Lτu (τ) 1At ] .

Since At is any Ft-measurable set, we deduce that, for a.e. s ∈ [t, T ],

Et [Lsu (s)] = Et [Lτu (τ)] a.s.

As a result, Et [Lτu (τ)] is not dependent on τ for a.e. τ ∈ [t, T ] and so we can state that

Et [Lτu (τ)] = ft a.s.

for some Ft-measurable function ft. By Jensen’s inequality, Et [Lτu (τ)] ∈ L2 (Ft) since

E
[
(Et [Lτu(τ)])2

]
6 E

[
Et
[
L2
τu

2(τ)
]]

= E
[
L2
τu

2(τ)
]
,

which is finite because Lτu(τ) ∈ L2 (Fτ ). Hence, ft ∈ L2 (Ft), too.
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Proof of Corollary 4

i) Since for every t ∈ [0, T ]

Et [Lτu (τ)] = Ltu (t) ∀τ ∈ [t, T ],

Proposition 3 ensures that u is weakly time-differentiable with du/dt = 0.

ii) By Proposition 3 we know that for a.e. t ∈ [0, T ] there exists ft ∈ L2 (Ft) such that,
for a.e. τ ∈ [t, T ]

Et [Lτu (τ)] = ft a.s.

Since Lτu (τ) converges in L1 to Ltu (t) as τ goes to t from the right, we have that

E [|Et [Lτu (τ)− Ltu (t)]|] 6 E [Et [|Lτu (τ)− Ltu (t)|]]
= E [|Lτu (τ)− Ltu (t)|] −→ 0,

i.e.

Et [Lτu (τ)]
L1

−−→ Et [Ltu (t)] = Ltu (t) τ −→ t+.

Since for a.e. τ ∈ [t, T ], Et [Lτu (τ)] coincides a.s. with ft, which is not dependent
on τ , the uniqueness of the L1-limit implies that ft = Ltu (t) a.s. Therefore, for a.e.
t ∈ [0, T ], for a.e. τ ∈ [t, T ]

Et [Lτu (τ)] = Ltu (t) a.s.

Proof of Corollary 5

Consider the function u2 − u1 ∈ W. The weak time-derivative of u2 − u1 is null, hence, by
Proposition 3, for a.e. t ∈ [0, T ] we can find ft ∈ L2 (Ft) such that for a.e. τ ∈ [t, T ]

Et [Lτu2 (τ)] = Et [Lτu1 (τ)] + ft a.s.

Proof of Proposition 6

As g is deterministic and square-integrable, g ∈ V. Moreover, denote for a.e. τ ∈ [t, T ],

G(τ) =

∫ τ

t
g(s)ds = Et [u (τ)]− ft.
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Taken any At ∈ Ft and any ϕ ∈ C1
c ([t, T ],R), for every t ∈ [0, T ] we have∫ T

t
E
[
g (τ) 1At

]
ϕ(τ)dτ =

∫ T

t
g (τ)E [1At ]ϕ(τ)dτ

= P (At)

∫ T

t
g (τ)ϕ(τ)dτ

= P (At)

{
[G(τ)ϕ(τ)]Tt −

∫ T

t
G(τ)

dϕ

dt
(τ)dτ

}
= −P (At)

∫ T

t
G(τ)

dϕ

dt
(τ)dτ

= −
∫ T

t
E [1At ]G(τ)

dϕ

dt
(τ)dτ

= −
∫ T

t
E [G(τ)1At ]

dϕ

dt
(τ)dτ

= −
∫ T

t
E [Et [u (τ)] 1At ]

dϕ

dt
(τ)dτ +

∫ T

t
E [ft1At ]

dϕ

dt
(τ)dτ

= −
∫ T

t
E [u (τ) 1At ]

dϕ

dt
(τ)dτ + E [ft1At ]

∫ T

t

dϕ

dt
(τ)dτ

= −
∫ T

t
E [u (τ) 1At ]

dϕ

dt
(τ)dτ.

In consequence, g is the weak time-derivative of u.

Proof of Proposition 7

As in the proof of Proposition 3, we consider the continuous with compact support functions
η, ξ : [t, T ] −→ R, with

∫ T
t η(s)ds = 1 and we define kξ : [t, T ] −→ R by

kξ(τ) = ξ(τ)−
(∫ T

t
ξ(s)ds

)
η(τ).

The primitive

Kξ(τ) =

∫ τ

t
ξ(s)ds−

(∫ T

t
ξ(s)dτ

)∫ τ

t
η(s)ds

belongs to C1
c ([t, T ],R) and we employ it as a test function in the definition of weak time

derivative of u. In addition, we require that
∫ T
t ξ(s)ds = 1, so that we consider

Kξ(τ) =

∫ τ

t
(ξ(s)− η(s)) ds, kξ(τ) = ξ(τ)− η(τ).
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As u ∈ W, for all ϕ ∈ C1
c ([t, T ],R) and At ∈ Ft, we have∫ T

t
E [Lτu (τ) 1At ] (ξ(τ)− η(τ)) dτ

= −
∫ T

t
E
[
Lτ
du

dt
(τ) 1At

](∫ τ

t
(ξ(s)− η(s)) ds

)
dτ.

By Fubini’s Theorem,∫ T

t
E [Lτu (τ) 1At ] (ξ(τ)− η(τ)) dτ

= −
∫ T

t

(∫ T

s
E
[
Lτ
du

dt
(τ) 1At

]
dτ

)
(ξ(s)− η(s)) ds

so that ∫ T

t

(
E
[
Lτu (τ)1At

]
+

∫ T

τ
E
[
Ls
du

dt
(s) 1At

]
ds

)
ξ(τ)dτ

=

∫ T

t

(
E [Lτu (τ) 1At ] +

∫ T

τ
E
[
Ls
du

dt
(s) 1At

]
ds

)
η(τ)dτ.

By the density of continuous functions ξ, η, Lemma 2 implies that for a.e. τ1, τ2 ∈ [t, T ]

E [Lτ1u (τ1) 1At ] +

∫ T

τ1

E
[
Ls
du

dt
(s) 1At

]
ds

= E [Lτ2u (τ2) 1At ] +

∫ T

τ2

E
[
Ls
du

dt
(s) 1At

]
ds,

namely

E [Lτ2 (u (τ2)− Lτ1u (τ1)) 1At ] =

∫ τ2

τ1

E
[
Ls
du

dt
(s) 1At

]
ds.

Note that we can rewrite the equality as

E [Et [Lτ2u (τ2)− Lτ1u (τ1)] 1At ] =

∫ τ2

τ1

E
[
Et
[
Ls
du

dt
(s)

]
1At

]
ds.

If for a.e. τ ∈ [t, T ]

Et
[
Lτ
du

dt
(τ)

]
> 0 a.s.,

then, for a.e. τ1, τ2 ∈ [t, T ] such that τ2 > τ1,∫ τ2

τ1

E
[
Ls
du

dt
(s) 1At

]
ds > 0

for any At ∈ Ft and so
E [(Lτ2u (τ2)− Lτ1u (τ1)) 1At ] > 0.
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Since this holds for any Ft-measurable set At, we infer that

Et [Lτ2u (τ2)− Lτ1u (τ1)] > 0 a.s.,

as we wanted to prove.
Conversely, if

Et [Lτ2u (τ2)− Lτ1u (τ1)] > 0 a.s.

for a.e. τ1, τ2 ∈ [t, T ] such that τ2 > τ1, then∫ τ2

τ1

E
[
Ls
du

dt
(s) 1At

]
ds > 0.

Since this holds for a.e. τ1, τ2 ∈ [t, T ], it follows that, for a.e. τ ∈ [t, T ]

E
[
Lτ
du

dt
(τ) 1At

]
> 0.

As At is any Ft-measurable set, we have

Et
[
Lτ
du

dt
(τ)

]
> 0 a.s.

Proof of Corollary 8

We prove only i) since ii) is analogous.
By Proposition 7, for a.e. t ∈ [0, T ], for a.e. τ1, τ2 ∈ [t, T ] such that τ2 > τ1

Et [Lτ2u (τ2)] > Et [Lτ1u (τ1)] a.s.

When τ1 tends to t from the right, Et [Lτ1u (τ1)]
a.s.−−−→ Ltu (t) and so

Et [Lτ2u (τ2)] > Ltu (t) ,

as we wanted to show.

Proof of Proposition 9

Following the proof of Proposition 7, given t ∈ [0, T ], for a.e. τ1, τ2 ∈ [t, T ], for every
Ft-measurable set At

E [Et [Lτ2u (τ2)− Lτ1u (τ1)] 1At ] =

∫ τ2

τ1

E
[
Et
[
Ls
du

dt
(s)

]
1At

]
ds.

Let τ1 6 τ2. If

Et
[
Lτ1

du

dt
(τ1)

]
6 Et

[
Lτ2

du

dt
(τ2)

]
a.s.
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we have

E
[
Et
[
Lτ1

du

dt
(τ1)

]
1At

]
6 E

[
Et
[
Lτ2

du

dt
(τ2)

]
1At

]
and this monotonicity ensures that

E
[
Et
[
Lτ1

du

dt
(τ1)

]
1At

]
6

∫ τ2
τ1

E
[
Et
[
Ls

du
dt (s)

]
1At
]
ds

τ2 − τ1

6 E
[
Et
[
Lτ2

du

dt
(τ2)

]
1At

]
.

By the initial equality,

E
[
Et
[
Lτ1

du

dt
(τ1)

]
1At

]
6

E [Et [Lτ2u (τ2)− Lτ1u (τ1)] 1At ]

τ2 − τ1

6 E
[
Et
[
Lτ2

du

dt
(τ2)

]
1At

]
.

As this holds for any At ∈ Ft, we deduce that

Et
[
Lτ1

du

dt
(τ1)

]
6

Et [Lτ2u (τ2)]− Et [Lτ1u (τ1)]

τ2 − τ1
6 Et

[
Lτ2

du

dt
(τ2)

]
a.s.

Conversely, if the last inequality holds, it is clear that

Et
[
Lτ1

du

dt
(τ1)

]
6 Et

[
Lτ2

du

dt
(τ2)

]
a.s.

Proof of Proposition 10

By following the same steps of the proof of Proposition 7 we find that, for a.e. τ, τ̂ ∈ [t, T ],
for every Ft-measurable set At

E [Et [Lτ̂u (τ̂)− Lτu (τ)] 1At ] =

∫ τ̂

τ
E
[
Et
[
Ls
du

dt
(s)

]
1At

]
ds.

By setting τ̂ = τ + h for some h > 0, we have

E
[
Et [Lτ+hu (τ + h)− Lτu (τ)]

h
1At

]
=

1

h

∫ τ+h

τ
E
[
Ls
du

dt
(s) 1At

]
ds.

Now we take the limit as h −→ 0+. By Lebesgue Differentiation Theorem, the right-hand
side converges to E [Lτdu/dt (τ) 1At ]. Moreover, if w (τ) denotes the Ft-measurable L1-limit

of
Et[Lτ+hu(τ+h)−Lτu(τ)]

h , the left-hand side converges to E [w (τ) 1At ]. Consequently,

E [w (τ) 1At ] = E
[
Lτ
du

dt
(τ) 1At

]

30



for every Ft-measurable set At. Hence, by definition of conditional expectation,

w (τ) = Et
[
Lτ
du

dt
(τ)

]
.

As a result, by uniqueness of the L1-limit, we conclude that, for a.e. τ ∈ [t, T ]

Et [Lτ+hu (τ + h)− Lτu (τ)]

h

L1

−−→ Et
[
Lτ
du

dt
(τ)

]
h −→ 0+

and this proves the first part of the statement.
Now suppose that, as τ −→ t+,

Lτu (τ)
L1

−−→ Ltu (t) , Lτ
du

dt
(τ)

L1

−−→ Lt
du

dt
(t) .

This implies that

Et [Lτu (τ)]
L1

−−→ Et [Ltu (t)] = Ltu (t) τ −→ t+

and

Et
[
Lτ
du

dt
(τ)

]
L1

−−→ Et
[
Lt
du

dt
(t)

]
= Lt

du

dt
(t) τ −→ t+.

Also, the fact that, for a.e. τ ∈ [t, T ],

Et [Lτ+hu (τ + h)− Lτu (τ)]

h

L1

−−→ w (τ) h −→ 0+

ensures that, for a.e. τ ∈ [t, T ],

Et [Lτ+hu (τ + h)]
L1

−−→ Et [Lτu (τ)] h −→ 0+.

Indeed, for every h > 0,

E
[∣∣Et[Lτ+hu (τ + h)− Lτu (τ)]

∣∣] = hE
[
|Et [Lτ+hu (τ + h)− Lτu (τ)]|

h

]
6 h

{
E
[∣∣∣∣Et [Lτ+hu (τ + h)− Lτu (τ)]

h
− w (τ)

∣∣∣∣]+ E [|w (τ)|]
}

and this quantity converges to 0 as h −→ 0+ since w is integrable. In particular, for any
fixed h > 0, we have

Et [Lτ+hu (τ + h)]
L1

−−→ Et [Lt+hu (t+ h)] τ −→ t+

and so

Et [Lτ+hu (τ + h)− Lτu (τ)]

h

L1

−−→ Et [Lt+hu (t+ h)]− Ltu (t)

h
τ −→ t+.

31



Putting things together, for a.e. τ ∈ [t, T ], h > 0 we have

E

[∣∣∣∣∣Et [Lt+hu (t+ h)]− Ltu (t)

h
− Lt

du

dt
(t)

∣∣∣∣∣
]

6 E
[∣∣∣∣Et [Lt+hu (t+ h)]− Ltu (t)

h
− Et [Lτ+hu (τ + h)− Lτu (τ)]

h

∣∣∣∣]
+ E

[∣∣∣∣−Ltdudt (t) + Et
[
Lτ
du

dt
(τ)

]∣∣∣∣]
+ E

[∣∣∣∣Et [Lτ+hu (τ + h)− Lτu (τ)]

h
− Et

[
Lτ
du

dt
(τ)

]∣∣∣∣] .
The previous convergences allow us to choose τ ∈ [t, T ] in a way that the first two terms in
the right-hand side are arbitrarily small and the first part of the Proposition allows us to
choose h so that the last term is arbitrarily little. Hence, when h −→ 0+,

Et [Lt+hu (t+ h)]− Ltu (t)

h

L1

−−→ Lt
du

dt
(t) .

Proof of Corollary 11

The function f (Xt) is continuous and bounded and Af (Xt) is continuous, bounded and
integrable. Since, for every τ ∈ [t, T ],

Eτ [f (Xτ+h)]− f (Xτ )

h

converges to Af (Xτ ) as h −→ 0+ in the uniform topology,

Et [f (Xτ+h)− f (Xτ )]

h

L1

−−→ Et [Af (Xτ )] h −→ 0+.

Indeed, since f is in the domain of the infinitesimal generator A, we can find an arbitrary
small ε > 0 such that∣∣∣∣Eτ [f (Xτ+h)]− f (Xτ )

h

∣∣∣∣ 6 ∣∣∣∣Et [f (Xτ+h)]− f (Xτ )

h
−Af (Xτ )

∣∣∣∣+ |Af (Xτ )|

6 sup
Xτ

∣∣∣∣Et [f (Xτ+h)]− f (Xτ )

h
−Af (Xτ )

∣∣∣∣+ |Af (Xτ )|

6 ε+ |Af (Xτ )| .

By the Conditional Dominated Convergence Theorem, when h −→ 0+

Et
[
Eτ [f (Xτ+h)]− f (Xτ )

h

]
−→ Et [Af (Xτ )] a.s.

that is
Et [f (Xτ+h)− f (Xτ )]

h
−→ Et [Af (Xτ )] a.s.
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Moreover, ∣∣∣∣Et [f (Xτ+h)− f (Xτ )]

h

∣∣∣∣ =

∣∣∣∣Et [Eτ [f (Xτ+h)]− f (Xτ )

h

]∣∣∣∣
6 Et

[∣∣∣∣Eτ [f (Xτ+h)]− f (Xτ )

h

∣∣∣∣]
6 Et [ε+ |Af (Xτ )|]
= ε+ Et [|Af (Xτ )|] .

Therefore, by the Dominated Convergence Theorem, for every t ∈ [0, T ], for every τ ∈ [t, T ]

Et [f (Xτ+h)− f (Xτ )]

h

L1

−−→ Et [Af (Xτ )] h −→ 0+.

In particular,
Et [f (Xt+h)]− f (Xt)

h

L1

−−→ Af (Xt) h −→ 0+.

Since
Et[f(Xτ+h)]−f(Xτ )

h is convergent in L1 as h −→ 0+ for every t ∈ [0, T ] and every
τ ∈ [t, T ], Proposition 10 applies. In consequence,

Et [f (Xt+h)]− f (Xt)

h

L1

−−→ du

dt
(t) h −→ 0+.

By uniqueness of the L1-limit, we infer that

du

dt
(t) = Af (Xt) a.s.

Proof of Theorem 12

• EXISTENCE
In order to show that π ∈ W, we prove that π belongs to V and that it is weakly

time-differentiable.
First, for all τ ∈ [0, T ], Lτπ(τ) ∈ L2 (Fτ ). Indeed, by Jensen’s inequality, we have

E
[
L2
τπ

2 (τ)
]

= e−2r(T−τ)E
[
L2
τ (Eτ [Lτ,ThT ])2

]
= e−2r(T−τ)E

[
(Eτ [LThT ])2

]
6 e−2r(T−τ)E

[
L2
Th

2
T

]
< +∞

because LThT ∈ L2 (FT ).
As for the conditional weak Lebesgue measurability of π, fix t ∈ [0, T ] and consider for

any At ∈ Ft the function

τ ∈ [t, T ] 7−→ E [Lτπ (τ) 1At ] = E [LτEτ [Lτ,ThT ] 1At ] e
−r(T−τ)

= E [LThT1At ] e
−r(T−τ),

33



where we exploited the fact that Lτ1At is Fτ -measurable for all τ ∈ [t, T ]. Since E [LThT1At ]
is not dependent on τ , we easily conclude that E [Lτπ (τ) 1At ] is Lebesgue measurable and
so π is conditionally weakly Lebesgue measurable.

In addition, ∫ T

0
E
[
L2
τπ

2 (τ)
]
dτ 6

∫ T

0
e−2r(T−τ)E

[
L2
Th

2
T

]
dτ

=

(∫ T

0
e−2r(T−τ)ds

)
E
[
L2
Th

2
T

]
,

which is finite because LThT ∈ L2 (FT ). Therefore π belongs to V.
Now we look for the weak time-derivative of π. We consider any set At ∈ Ft and any test

function ϕ ∈ C1
c ([t, T ],R). Recall that, for any set At, the functions 1At are Fτ -measurable

for all τ ∈ [t, T ], so that

−
∫ T

t
E [Lτπ (τ) 1At ]

dϕ

dt
(τ)dτ = −

∫ T

t
E
[
Lτe

−r(T−τ)Eτ [Lτ,ThT ] 1At

] dϕ
dt

(τ)dτ

= −
∫ T

t
E
[
e−r(T−τ)Eτ [LThT ] 1At

] dϕ
dt

(τ)dτ

= −
∫ T

t
E
[
e−r(T−τ)LThT1At

] dϕ
dt

(τ)dτ

= −E [LThT1At ]

∫ T

t
e−r(T−τ)dϕ

dt
(τ)dτ

= E [LThT1At ]

∫ T

t
re−r(T−τ)ϕ(τ)dτ

=

∫ T

t
rE
[
e−r(T−τ)LThT1At

]
ϕ(τ)dτ

=

∫ T

t
rE
[
Lτe

−r(T−τ)Lτ,ThT1At

]
ϕ(τ)dτ

=

∫ T

t
E [Lτrπ (τ) 1At ]ϕ(τ)dτ.

Therefore, the candidate weak time-derivative of π is rπ and Ltrπ(t) belongs to L2 (Ft) for
all t. Clearly, rπ is also conditionally weakly Lebesgue measurable and it belongs to V.
Hence, rπ is the weak time-derivative of π:

dπ

dt
(t) = rπ (t) .

As for the L1-convergence to the boundary, Lévy’s Upward Theorem, that is Theorem
14.2 in Williams (1991), guarantees that

e−r(T−t)Et [LThT ]
L1

−−→ ET [LThT ] = LThT t −→ T
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and so Ltπ (t) converges in L1 to LThT .
Summing up, we showed that π ∈ W and it solves Problem (4).

• UNIQUENESS
Let π1, π2 ∈ W be two solutions of Problem (4), that is for a.e. t ∈ [0, T ]

dπi
dt

(t) = rπi (t) i = 1, 2,

πi (T ) = hT and Ltπi (t)
L1

−−→ LThT as t goes to T . By defining z = π1 − π2 ∈ W, we have
that, for a.e. t ∈ [0, T ],

dz

dt
(t) = rz (t) ,

z (T ) = 0 and Ltz (t)
L1

−−→ 0 as t goes to T .
Now we show that the weak time-derivative of the function e−rtz (t) is

e−rt
(
dz

dt
(t)− rz (t)

)
.

Indeed, for every t ∈ [0, T ], we have that, for any ϕ ∈ C1
c ([t, T ],R) and At ∈ Ft,∫ T

t
E
[
Lτ
dz

dt
(τ) 1At

]
e−rτϕ(τ)dτ = −

∫ T

t
E [Lτz (τ) 1At ]

d

dt

(
e−rtϕ(t)

)
(τ)dτ

= −
∫ T

t
E [Lτz (τ) 1At ] e

−rτ dϕ

dt
(τ)dτ

+

∫ T

t
E [Lτz (τ) 1At ] e

−rτrϕ(τ)dτ

that is ∫ T

t
E

[
Lτe

−rτ
(
dz

dt
(τ)− rz (τ)

)
1At

]
ϕ(τ)dτ

= −
∫ T

t
E
[
Lτe

−rτz (τ) 1At
] dϕ
dt

(τ)dτ.

This means that the weak time-derivative of e−rtz (t) is

e−rt
(
dz

dt
(t)− rz (t)

)
.

However this function is null a.s. Therefore, e−rtz (t) has null weak time-derivative. Conse-
quently, by Proposition 3, for a.e. t ∈ [0, T ] there exists a function ft ∈ L2 (Ft) such that,
for a.e. τ ∈ [t, T ]

Et
[
Lτe

−rτz (τ)
]

= ft

or, equivalently,
Et [Lτz (τ)] = erτft.
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Letting τ go to T , we have that

Et [Lτz (τ)] −→ erT ft pointwise.

In addition, the fact that Lτz (τ) converges to zero in L1 as τ approaches T ensures that

E [|Et [Lτz (τ)− 0]|] 6 E [Et [|Lτz (τ)|]] = E [|Lτz (τ)|] −→ 0,

i.e. Et [Lτz (τ)] tends to zero in L1. By uniqueness of the L1-limit, we infer that ft = 0 a.s.
As a result, for a.e. t ∈ [0, T ], for a.e. τ ∈ [t, T ]

Et [Lτz (τ)] = 0 a.s.

An application of Lévy’s Upward Theorem as in Proposition 2 ensures that, for a.e. τ ∈
[0, T ], z (τ) = 0 a.s. This proves uniqueness of the solution of Problem (4).

Proof of Proposition 13

We show that π(t) = Et
[∫ T
t e−r(m−t)Lt,mhmµ(dm)

]
belongs to V and it is weakly time-

differentiable.
First, for all τ ∈ [0, T ], Lτπ(τ) ∈ L2 (Fτ ). By exploiting Jensen’s inequality twice,

indeed, we find

E
[
L2
τπ

2 (τ)
]

= E

[
L2
τ

(
Eτ
[∫ T

τ
e−r(m−τ)Lτ,mhmµ(dm)

])2
]

= E

[(
Eτ
[∫ T

τ
e−r(m−τ)Lmhmµ(dm)

])2
]

6 E

[(∫ T

τ
e−r(m−τ)Lmhmµ(dm)

)2
]

6 E
[∫ T

τ
e−2r(m−τ)L2

mh
2
mµ(dm)

]
µ([τ, T ])

6 E
[∫ T

τ
L2
mh

2
mµ(dm)

]
µ([τ, T ]) < +∞

because µ is a finite measure and L2(·)h2(·) is Bochner integrable with respect to µ.
As for the conditional weak Lebesgue measurability of π, fix t ∈ [0, T ] and take into

consideration for any At ∈ Ft the function

τ ∈ [t, T ] 7−→ E [Lτπ (τ) 1At ] = E
[
LτEτ

[∫ T

τ
e−r(m−τ)Lτ,mhmµ(dm)

]
1At

]
= E

[
Eτ
[∫ T

τ
e−r(m−τ)Lmhmµ(dm)

]
1At

]
= erτE

[∫ T

τ
e−rmLmhmµ(dm)1At

]
.
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The last integral is a well-defined Bochner integral and it defines a continuous (and so
Lebesgue measurable) function of τ . As the expectation is a continuous operator, it pre-
serves measurability and so the whole function is Lebesgue measurable. As a result, π is
conditionally weakly Lebesgue measurable.

Moreover, ∫ T

0
E
[
L2
τπ

2 (τ)
]
dτ 6

∫ T

0
E
[∫ T

τ
L2
mh

2
mµ(dm)

]
µ([τ, T ])dτ

6 µ([0, T ])

∫ T

0
E
[∫ T

0
L2
mh

2
mµ(dm)

]
dτ

= µ2([0, T ])E
[∫ T

0
L2
mh

2
mµ(dm)

]
,

which is finite as argued before. In consequence, π belongs to V.
Now we compute the weak time-derivative of π. We consider any set At ∈ Ft and any

test function ϕ ∈ C1
c ([t, T ],R). For any set At, the functions 1At are Fτ -measurable for all

τ ∈ [t, T ] and so

−
∫ T

t
E
[
Lτπ (τ) 1At

]
dϕ

dt
(τ)dτ

= −
∫ T

t
E
[
LτEτ

[∫ T

τ
e−r(m−τ)Lτ,mhmµ(dm)

]
1At

]
dϕ

dt
(τ)dτ

= −
∫ T

t
E
[∫ T

τ
e−r(m−τ)Lmhm1Atpmdm

]
dϕ

dt
(τ)dτ.

because µ(dm) = pmdm. Since the expectation is a bounded operator, by Lemma 11.45
in Aliprantis and Border (2006) we can exchange it with the integral. Later we apply
integration by parts:

−
∫ T

t
E[Lτπ (τ) 1At ]

dϕ

dt
(τ)dτ

= −
∫ T

t

(∫ T

τ
e−r(m−τ)E [Lmhmpm1At ] dm

)
dϕ

dt
(τ)dτ

= 0 +

∫ T

t

d

dτ

(∫ T

τ
e−r(m−τ)E [Lmhmpm1At ] dm

)
ϕ(τ)dτ

=

∫ T

t

(
0− e−r(τ−τ)E [Lτhτpτ1At ] + r

∫ T

τ
e−r(m−τ)E [Lmhmpm1At ] dm

)
ϕ(τ)dτ

=

∫ T

t

(
E [Lτ (−hτpτ ) 1At ] + E

[
r

∫ T

τ
e−r(m−τ)Lmhmpm1Atdm

])
ϕ(τ)dτ

=

∫ T

t
E
[
Lτ (−hτpτ ) 1At + LτrEτ

[∫ T

τ
e−r(m−τ)Lτ,mhmµ(dm)

]
1At

]
ϕ(τ)dτ

=

∫ T

t
E [Lτ (rπ(τ)− hτpτ ) 1At ]ϕ(τ)dτ.
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Since both π(·) and h(·)p(·) belong to V, it follows that π(·) − h(·)p(·) is included in V.
Therefore, the latter is the weak time-derivative of π:

dπ

dt
(t) = rπ (t)− htpt.

Lemma 3 Let r : [0, T ] −→ L∞ (FT ) be a Bochner integrable function and let rω : [0, T ] −→
R denote its restriction on the path induced by any ω ∈ Ω. If the map [0, T ] × Ω −→ R
such that (t, ω) 7−→ rω(t) is measurable, the Bochner integral of r coincides a.s. with the
pathwise Lebesgue integral obtained by integrating each restriction rω.

Proof. The Bochner integral construction involves simple functions s : [0, T ] −→ L∞ (FT )
that are finite linear combinations of terms as 1Ew, where E is a measurable subset of [0, T ]
and w ∈ L∞ (FT ). Since r is Bochner integrable, there exists a sequence of simple functions
sn such that ∫ T

0
E
[
(r(τ)− sn(τ))2

] 1
2
dτ 6

1

2n

and the Bochner integral of r is the L2-limit of the integral of simple functions:∫ T

0
sn(τ)dτ

L2

−−→
∫ T

0
r(τ)dτ.

Hence the convergence is also in probability.
On the other hand,

+∞∑
n=1

∫ T

0
E [|r(τ)− sn(τ)|] 6

+∞∑
n=1

∫ T

0
E
[
(r(τ)− sn(τ))2

] 1
2
dτ 6

+∞∑
n=1

1

2n
,

which is finite. Therefore, by Fubini’s Theorem,

E

[∫ T

0

+∞∑
n=1

|r(τ)− sn(τ)| dτ

]
=

+∞∑
n=1

∫ T

0
E [|r(τ)− sn(τ)|] dτ

is finite, too. As a result, the random variable∫ T

0

+∞∑
n=1

|r(τ)− sn(τ)| dτ

is finite a.s. Consequently, for a.e. ω ∈ Ω the pathwise restriction satisfies

|rω(τ)− sn,ω(τ)| −→ 0

for a.e. τ ∈ [0, T ]. Moreover, since |rω(τ)− sn,ω(τ)| is dominated by its sum over n, the
Dominated Convergence Theorem ensures that, for a.e. ω ∈ Ω∫ T

0
sn,ω(τ)dτ −→

∫ T

0
rω(τ)dτ,
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which is the Lebesgue integral along the path induced by ω. By collecting all the trajec-
tories we find the limit a.s. of the random variable

∫ T
0 sn(τ)dτ . This convergence holds in

probability, too. But before we showed the convergence in probability of
∫ T

0 sn(τ)dτ to the

Bochner integral
∫ T

0 r(τ)dτ . Therefore, by uniqueness of the limit, the Bochner integral
coincides a.s. with the pathwise Lebesgue integral.

Proof of Theorem 15

• EXISTENCE
In order to show that π ∈ Wr, we prove that π belongs to Vr and that it is r-weakly

time-differentiable.
First, for all τ ∈ [0, T ], Lτπ(τ) ∈ L2 (Fτ ). Indeed,

∫ T
t r(s)ds is a continuous, and then

bounded, function of t ∈ [0, T ]. Hence, there exists K > 0 such that e−
∫ T
τ r(s)ds 6 K a.s.

for all t. In addition, Jensen’s inequality ensures that

E
[
L2
τπ

2 (τ)
]

= E
[
L2
τ

(
Eτ
[
Lτ,T e

−
∫ T
τ r(s)dshT

])2
]

= E
[(

Eτ
[
LT e

−
∫ T
τ r(s)dshT

])2
]

6 E
[
L2
T e
−2

∫ T
τ r(s)dsh2

T

]
6 K2E

[
L2
Th

2
T

]
< +∞

because LThT ∈ L2 (FT ).
As for the conditional r-weak Lebesgue measurability of π, fix t ∈ [0, T ], take any At ∈ Ft

and any adapted function ψ ∈ Cc ([t, T ], L∞ (FT )). Then, consider the function

τ ∈ [t, T ] 7−→ E [Lτπ (τ) 1Atψ(τ)] = E
[
LτEτ

[
Lτ,T e

−
∫ T
τ r(s)dshT

]
1Atψ(τ)

]
= E

[
LT e

−
∫ T
τ r(s)dshT1Atψ(τ)

]
,

where we exploited the fact that Lτ1Atψ(τ) is Fτ -measurable for all τ ∈ [t, T ]. Since∫ T
τ r(s)ds is a well-defined Bochner integral, e−

∫ T
τ r(s)ds is a continuous function of τ , as

well as ψ(τ). Therefore, the quantity

LT e
−

∫ T
τ r(s)dshT1Atψ(τ)

is Lebesgue measurable. The expectation is a continuous operator and so it preserves
Lebesgue measurability. Consequently, π is conditionally r-weakly Lebesgue measurable.

In addition,∫ T

0
E
[
L2
τπ

2 (τ)
]
dτ 6

∫ T

0
K2E

[
L2
Th

2
T

]
dτ = K2TE

[
L2
Th

2
T

]
,

which is finite because LThT ∈ L2 (FT ). Therefore π belongs to Vr.
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Now we look for the r-weak time-derivative of π. We consider any set At ∈ Ft and any
adapted function ϕ ∈ C1

c ([t, T ], L∞ (FT )). Recall that, for any Ft-measurable set At, the
functions 1At are Fτ -measurable for all τ ∈ [t, T ]. Since dϕ/dt is adapted too, we deduce
that

−
∫ T

t
E
[
Lτπ (τ)1At

dϕ

dt
(τ)

]
dτ

= −
∫ T

t
E
[
LτEτ

[
Lτ,T e

−
∫ T
τ r(s)dshT

]
1At

dϕ

dt
(τ)

]
dτ

= −
∫ T

t
E
[
Eτ
[
LT e

−
∫ T
τ r(s)dshT1At

] dϕ
dt

(τ)

]
dτ

= −
∫ T

t
E
[
LT e

−
∫ T
τ r(s)dshT1At

dϕ

dt
(τ)

]
dτ.

e−
∫ T
τ r(s)dsdϕ/dt(τ) is a continuous function of τ ∈ [t, T ], hence it is Bochner integrable.

The expectation is a bounded operator, so Lemma 11.45 in Aliprantis and Border (2006)
allows us to exchange expectation and integral. Therefore,

−
∫ T

t
E
[
Lτπ (τ) 1At

dϕ

dt
(τ)

]
dτ = −E

[
LThT1At

∫ T

t
e−

∫ T
τ r(s)dsdϕ

dt
(τ)dτ

]
= E

[
LThT1At

∫ T

t

(
1− e−

∫ T
τ r(s)ds

) dϕ
dt

(τ)dτ

]
− E

[
LThT1At

∫ T

t

dϕ

dt
(τ)dτ

]
= E

[
LThT1At

∫ T

t

(
1− e−

∫ T
τ r(s)ds

) dϕ
dt

(τ)dτ

]
because ϕ has compact support. Now consider the function u 7−→ r(u)e−

∫ T
u r(s)ds. This

function is Bochner integrable (because r is bounded) and its Bochner integral coincides
almost surely with the pathwise Lebesgue integral. For any state ω ∈ Ω the restriction rω
of r satisfies: ∫ T

τ
rω(u)e−

∫ T
u rω(s)dsdu =

[
e−

∫ T
u rω(s)ds

]T
τ

= 1− e−
∫ T
τ rω(s)ds.

In consequence, the Bochner integral is∫ T

τ
r(u)e−

∫ T
u r(s)dsdu = 1− e−

∫ T
τ r(s)ds a.s.

By exploiting integration by parts (see Craven (1970)), we obtain
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−
∫ T

t
E
[
Lτπ (τ)1At

dϕ

dt
(τ)

]
dτ

= E
[
LThT1At

∫ T

t

(∫ T

τ
r(u)e−

∫ T
u r(s)dsdu

)
dϕ

dt
(τ)dτ

]
= E

[
LThT1At

∫ T

t
r(τ)e−

∫ T
τ r(s)dsϕ(τ)dτ

]
=

∫ T

t
E
[
LThT1Atr(τ)e−

∫ T
τ r(s)dsϕ(τ)

]
dτ

=

∫ T

t
E
[
r(τ)Eτ

[
LT e

−
∫ T
τ r(s)dshT

]
1Atϕ(τ)

]
dτ

=

∫ T

t
E
[
Lτr(τ)Eτ

[
Lτ,T e

−
∫ T
τ r(s)dshT

]
1Atϕ(τ)

]
dτ

=

∫ T

t
E [Lτr(τ)π(τ)1Atϕ(τ)] dτ.

Therefore, the candidate r-weak time-derivative of π is rπ and Ltr(t)π(t) belongs to L2 (Ft)
for all t because r is bounded. Clearly, rπ is also conditionally r-weakly Lebesgue measurable
and it belongs to Vr. Hence, rπ is the r-weak time-derivative of π:

dπ

dt
(t) = r(t)π (t) .

As for the L1-convergence to the boundary of Ltπ(t), observe that

E
[ ∣∣∣Et [LT e− ∫ T

t r(s)dshT

]
− LThT

∣∣∣ ]
6 E

[∣∣∣Et [LT e− ∫ T
t r(s)dshT − LThT

]∣∣∣]+ E [|Et [LThT ]− LThT |]

= E
[
|LThT |

∣∣∣e− ∫ T
t r(s)ds − 1

∣∣∣]+ E [|Et [LThT ]− LThT |]

6
(
E
[
L2
Th

2
T

]) 1
2

(
E
[(
e−

∫ T
t r(s)ds − 1

)2
]) 1

2

+ E [|Et [LThT ]− LThT |] .

LThT ∈ L2 (Ft) and E
[(
e−

∫ T
t r(s)ds − 1

)2
]

converges to zero as t approaches T because

r is bounded. Moreover, Et [LThT ] tends to LThT in L1 by Lévy’s Upward Theorem, i.e.
Theorem 14.2 in Williams (1991). As a result, the right-hand side of the previous inequality
tends to zero as t goes to T and this ensures the L1-convergence of Ltπ(t) to LThT .

Summing up, we showed that π ∈ Wr and it solves Problem (7).

• UNIQUENESS
Let π1, π2 ∈ Wr be two solutions of Problem (7), that is for a.e. t ∈ [0, T ]

dπi
dt

(t) = r(t)πi (t) i = 1, 2,
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πi (T ) = hT and Ltπi (t)
L1

−−→ LThT as t goes to T . By defining z = π1 − π2 ∈ Wr, we have
that, for a.e. t ∈ [0, T ],

dz

dt
(t) = r(t)z (t) ,

z (T ) = 0 and Ltz (t)
L1

−−→ 0 as t goes to T .
The function r(t) is Bochner integrable. Reasoning state by state, we have∫ T

t
rω(s)ds = Rω(T )−Rω(t),

where Rω is a primitive of rω. By denoting with R the random variable that collects all
Rω, it follows that the Bochner integral of r is∫ T

t
r(s)ds = R(T )−R(t) a.s.

Now we show that the r-weak time-derivative of the function e−R(t)z (t) is

e−R(t)

(
dz

dt
(t)− rz (t)

)
.

For any adapted ϕ ∈ C1
c ([t, T ], L∞ (FT )), consider the function

u 7−→ e−R(u)r(u)ϕ(u)− e−R(u)dϕ

dt
(u).

Since r is bounded, this function is Bochner integrable. By reasoning pathwise, it follows
that ∫ T

τ

(
e−R(u)r(u)ϕ(u)− e−R(u)dϕ

dt
(u)

)
du = e−R(τ)ϕ(τ) a.s.

Hence, e−Rϕ is adapted, it belongs to C1
c ([t, T ], L∞ (FT )) and so we can use it as test

function in the definition of r-weak time-derivative of z:∫ T

t
E
[
Lτ
dz

dt
(τ)1Ate

−R(τ)ϕ(τ)

]
dτ

= −
∫ T

t
E
[
Lτz (τ) 1At

(
e−R(τ)dϕ

dt
(τ)− e−R(τ)r(τ)ϕ(τ)

)]
dτ

= −
∫ T

t
E
[
Lτz (τ) 1Ate

−R(τ)dϕ

dt
(τ)

]
dτ

+

∫ T

t
E
[
Lτz (τ) 1Ate

−R(τ)r(τ)ϕ(τ)
]
dτ

that is ∫ T

t
E

[
Lτe

−R(τ)

(
dz

dt
(τ)− r(τ)z (τ)

)
1Atϕ(τ)

]
dτ

= −
∫ T

t
E
[
Lτe

−R(τ)z (τ) 1At
dϕ

dt
(τ)

]
dτ.
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This means that the r-weak time-derivative of e−R(t)z (t) is

e−R(t)

(
dz

dt
(t)− r(t)z (t)

)
.

However this function is null a.s. Therefore, e−R(t)z (t) has null r-weak time-derivative. Con-
sequently, by following the proof of Proposition 3 for test functions in C1

c ([t, T ], L∞ (FT )),
for a.e. t ∈ [0, T ] there exists a function ft ∈ L2 (Ft) such that, for a.e. τ ∈ [t, T ]

Et
[
Lτe

−R(τ)z (τ)
]

= ft.

As τ approaches T , Et
[
Lτe

−R(τ)z (τ)
]

goes to zero in L1. Indeed, since e−R(τ) is bounded,

E
[∣∣∣Et [Lτe−R(τ)z(τ)

]
− 0
∣∣∣] 6 E

[
Et
[
|Lτz(τ)| e−R(τ)

]]
6 CE [|Lτz(τ)|]

for some C > 0. However, the last term converges to zero because Lτz(τ) tends to zero in
L1 as τ approaches T .

By uniqueness of the L1-limit, we infer that ft = 0 a.s. As a result, for a.e. t ∈ [0, T ],
for a.e. τ ∈ [t, T ]

Et
[
Lτe

−R(τ)z (τ)
]

= 0 a.s.

An application of Lévy’s Upward Theorem as in Proposition 2 ensures that, for a.e. τ ∈
[0, T ], Lτe

−R(τ)z (τ) = 0 a.s. and so z (τ) = 0 a.s. This proves uniqueness of the solution of
Problem (7).
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