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Abstract

We introduce a new approach for the estimation of high-dimensional factor models

with regime-switching factor loadings by extending the linear three-pass regression

filter to settings where parameters can vary according to Markov processes. The

new method, denoted as Markov-Switching three-pass regression filter (MS-3PRF),

is suitable for datasets with large cross-sectional dimensions since estimation and

inference are straightforward, as opposed to existing regime-switching factor models,

where computational complexity limits applicability to few variables. In a Monte-

Carlo experiment, we study the finite sample properties of the MS-3PRF and find

that it performs favorably compared with alternative modelling approaches whenever

there is structural instability in factor loadings. As empirical applications, we consider

forecasting economic activity and bilateral exchange rates, finding that the MS-3PRF

approach is competitive in both cases.
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1 Introduction

This paper introduces a new approach for the estimation of high-dimensional factor models

with regime-switching factor loadings. The literature on factor models has mostly concen-

trated on situations where the comovements among variables is assumed to be constant over

time. However, there is now a large body of literature that has challenged the assumption

of constant parameters to model the macroeconomic environment (see, e.g., Sims (1993)

or Canova (1993)), as well as the relevance of modelling time variation for macroeconomic

forecasting (see, e.g., D’Agostino et al. (2013) and Aastveit et al. (2016)). The importance

of incorporating time instabilities in large-scale factor models has gained traction in the

literature in recent years (see, e.g., Eickmeier et al. (2015) and Mikkelsen et al. (2015)),

but the number of works on this front remains relatively small. Moreover, this literature

has so far been restricted to the estimation of models with time-varying factor loadings

where time-variation is modelled using random-walk or autoregressive behaviours, which

typically restrict the dynamics of time-variation to gradual changes in the factor loadings

that may not be appropriate to all situations. The literature has also considered the estima-

tion of factor models with temporal instability (structural breaks) in both factor loadings

and the number of factors, see, e.g., Cheng et al. (2016). In contrast, in this paper, we

consider factor loadings that vary according to regime-switching processes so as to model

recurrent abrupt changes in factor loadings that are potentially highly relevant features in

macroeconomic and financial variables.

Our modelling approach builds on Kelly and Pruitt (2015), who develop a new estimator

for factor models – the three-pass regression filter (3PRF) – that relies on a series of ordi-

nary least squares regressions. As emphasized in Kelly and Pruitt (2015), the key difference

between principal component analysis (PCA) and the 3PRF approach is that PCA summa-

rizes the cross-sectional information based on the covariance within the predictors whereas

3PRF condenses cross-sectional information based on the correlation of the predictors with

the target variable of the forecasting exercise, thereby extending partial least squares. In

this paper, we extend the 3PRF approach by introducing regime-switching parameters in

the linear 3PRF filter. This new framework is denoted as Markov-switching three-pass re-

gression filter (MS-3PRF). A key advantage of this approach is to be well-suited to handle

large dimensional factor models, as opposed to the existing regime-switching factor models

that can only handle models with limited dimensions due to computational complexity (see,

e.g., Camacho et al. (2012)).1 Our approach is attractive in that our estimation strategy

1Groen and Kapetanios (2016) show that partial least squares (and Bayesian methods) perform better

than principal components when forecasting based on a large dataset with a weak factor structure. As

partial least squares is obtained as a special case of the 3PRF (see Kelly and Pruitt (2015) for details), our

method can be also adopted to introduce Markov switching in partial least squares regressions.
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only requires to estimate a series of univariate Markov-switching regressions. As such, it is

computationally straightforward to implement and offers a great deal of flexibility in mod-

elling time variation in that we do not restrict the regime changes in the cross-sectional

dimension to be governed by a single or a limited number of Markov chains.2

Empirically, we use the MS-3PRF approach for forecasting selected variables based on

a large set of predictors. Since the seminal work of Stock and Watson (2002b), a large liter-

ature has developed to improve on the forecasting performance of the principal component

approach for macroeconomic forecasting (see, e.g., Forni et al. (2005) and De Mol et al.

(2008) among many others). A related work to our paper is Bai and Ng (2008) who find

improvements to the principal component approach by using fewer but informative predic-

tors. They also suggest that additional forecasting gains can be obtained when modelling

non-linearities. The MS-3PRF approach is related to this strand of the literature given

that factors are extracted by modelling the correlation of the predictors with the forecast

target so that the estimation of the factors takes into account how informative the predic-

tors are for the target variable. Moreover, the MS-3PRF approach captures non-linearities

by modelling parameters that vary according to unobservable Markov chains.

This paper contributes to the literature along two main dimensions. First, theoreti-

cally, we provide a new framework for the estimation of high-dimensional factor models

with regime switching parameters under classical inference. In a simulation experiment,

we study the finite sample accuracy of the MS-3PRF forecasts compared with a number of

alternatives. We find that the MS-3PRF performs well when there are instabilities in the

DGP modelled via regime-switching parameters. Second, empirically, we provide evidence

that the MS-3PRF performs well when forecasting major U.S. macroeconomic variables

based on the McCracken and Ng (2015) dataset. Moreover, when forecasting major cur-

rencies based on a panel of exchange rates, we also find predictive gains when using the

MS-3PRF approach. As such, this provides additional evidence in terms of gains one can

draw from the use of factor analysis to forecast exchange rates (see, e.g., Engel et al. (2015))

as well as the importance of modelling non-linearities in this context.

This paper is organized as follows. Section 2 introduces the MS-3PRF approach and

discusses its main features. Section 3 presents a Monte-Carlo experiment to study the

finite sample accuracy of the MS-3PRF. Section 4 gathers empirical applications devoted

to macroeconomic and exchange rate forecasting. Section 5 concludes.

2For example, extracting one factor from the MS-3PRF approach using a panel of 130 macroeconomic

and financial variables with GDP growth as a target proxy takes about 350 seconds using a laptop with a

2.7 GHz processor and 16 GB RAM.
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2 Markov-switching Three-Pass Regression Filter

2.1 The algorithm

There is now a growing literature on dynamic factor models with time-varying param-

eters. For example, in a Bayesian setting, Del Negro and Otrok (2008) first introduced

a dynamic factor model with time-varying factor loadings. In a classical context, see

Mikkelsen et al. (2015) and Eickmeier et al. (2015). However, the literature on regime-

switching dynamic factor models is limited, and more importantly, restricted to small scale

models (see, e.g., Chauvet (1998), Camacho et al. (2012) or Barnett et al. (2016), who use

less than 10 variables and focus only on switches in the parameters governing the factor dy-

namics and not in the factor loadings).3 The same is true for vector autoregression (VAR)

models in that, while there is now a large (both methodological and empirical) literature

on time-varying parameter VAR models, the literature using regime-switching VAR models

is a lot more narrower, although there are few noticeable exceptions (see, e.g., Sims and

Zha (2006) and Hubrich and Tetlow (2015)).

One of the key reasons for the absence of a significant literature on large-scale Markov-

switching factor models relates to the computational challenges associated with the esti-

mation of such models. We present here the Markov-switching three-pass regression filter,

which circumvents these difficulties and offers a flexible approach in that we impose very

few restrictions on the Markov processes driving the changes in the parameters of the

model.

The type of setting we have in mind can be informally described as follows. There is

a relatively large number N of predictors x from which we want to extract factors so as

to forecast a target variable y. While x depends on two sets of common factors, say f

and g (plus idiosyncratic components), y only depends on f , so that we would like to only

extract f from x. In addition, there exist proxi variables, z, whose common components

are also only driven by f . This setting is the same as that in Kelly and Pruitt (2015), who

introduced the linear 3PRF for estimation of f and forecasting of y, but the key novelty is

that we include time variation in the model parameters via Markov processes.

3In a Bayesian context, Guérin and Leiva-Leon (2016) develop an algorithm to estimate a high-

dimensional factor-augmented VAR model with regime-switching parameters in the factor loadings to

study the interactions between monetary policy, the stock market and the connectedness of industry-level

stock returns. See also von Ganske (2016), who introduce regime-switching parameters in partial least

squares regressions from a Bayesian perspective so as to forecast industry stock returns. Using a Bayesian

framework, Hamilton and Owyang (2012) develop a framework for modelling common Markov-switching

components in panel datasets with large cross-section and time-series dimensions to estimate turning points

in U.S. state-level employment data.
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More formally, let us consider the following model:

yt+1 = β0(St) + β′(St)Ft + ηt+1(St), (1)

zt = λ0(St) + Λ(St)Ft + ωt(St), (2)

xt = φ0(St) + Φ(St)Ft + εt(St), (3)

where y is the target variable of interest; Ft = (f ′t,g
′
t)
′ are the K = Kf + Kg common

driving forces of all variables, the unobservable factors; St denotes a standard Markov-

chain driving the parameters of the forecasting equation, while St = (S1,t, S2,t, ..., SN,t)
′ is a

vector containing variable-specific Markov chains with M regimes driving the parameters of

the factor equations, each Markov chain is governed by its own M×M transition probability

matrix,

Pi =


pi,11 pi,21 · · · pi,M1

pi,12 pi,22 · · · pi,M2

...
...

. . .
...

pi,1M pi,2M · · · pi,MM

 , (4)

for i = 1, 2, ..., N ; β(St) = (β′f (St),0
′)′, so that y only depends on f ; z is a small set of L

proxies that are driven by the same underlying forces as y, so that Λ(St) = (Λf (St),0); xt

is a large set of N variables, driven by both ft and gt; and t = 1, ..., T .

To achieve identification, when N and T diverge, the covariance of the loadings is

assumed to be the identity matrix in each state, and the factors are orthogonal to one

another.4 For the sake of space, we refer to Kelly and Pruitt (2015) for precise conditions on

the factors, allowed temporal and cross-sectional dependence of the residuals, and existence

of proper central limit theorems.

Given the model in (1)-(3), our algorithm for the Markov-switching Three-Pass Regres-

sion Filter model consists of the following three steps:

• Step 1: Time series regressions of each element of x, xi, on z; that is, run N Markov-

switching regressions

xi,t = φ0,i(Si,t) + z′tφi(Si,t) + εi,t(Si,t), (5)

4More precisely, defining JT = IT − 1
T ιT ι

′

T where IT is a T -dimensional identity matrix and

ιT a T -vector of ones (and similarly JN ) and assuming that N−1Φ′(St)JNΦ(St) −→
N−→∞

P(St),

N−1Φ′(St)JNφ0(St) −→
N−→∞

P1(St), T
−1F′JTF −→

T−→∞
∆F , for identification we require, as Kelly and

Pruitt (2015), that P(St) = I, P1(St)= 0 and ∆F is diagonal, positive definite, and each diagonal element

is unique.
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where i = {1, ..., N}, εi,t|Si,t ∼ NID(0, σ2(Si,t)) and keep the maximum likelihood

estimate of φi(Si,t), denoted by φ̂i(Si,t). All regime-switching models are estimated

via (pseudo) maximum likelihood, and we make a normality assumption about the

disturbances to write down the log-likelihood function, which is not required when

estimating the linear version of the three-pass regression filter. As mentioned pre-

viously, Si,t is a standard Markov chain with M regimes and dynamics driven by

constant transition probabilities. It is important to stress that the estimated latent

processes Si,t differ across all cross section units i. The pattern of the regime changes

in the factor loadings is therefore left unrestricted as opposed to assuming that the

changes in the parameters φ0,i and φi are governed by a single (or a limited number

of) Markov chain(s) across all cross section units. Moreover, a different number of

regimes could be used across the N first pass regressions. As such, the MS-3PRF

approach offers a great deal of flexibility in modelling regime changes.

• Step 2: Cross section regressions of xi,t on φ̂i,t; that is, run T linear regressions

xi,t = α0,t + φ̂′i,tFt + εi,t, (6)

where t = {1, ..., T} and keep (for each t) the OLS estimates Ft. In this step, the

time-varying factor loadings φ̂i,t can be obtained from the first step of the algorithm

by following two alternatives. First, as a weighted average of the regime-specific

factor loadings:

φ̂i,t =
M∑
j=1

φ̂i(Si,t = j)P (Si,t = j|ΩT ), (7)

where P (Si,t = j|ΩT ) is the smoothed probability of being in regime j given the full

sample information ΩT . Second, as a selected loading:

φ̂i,t =
M∑
j=1

φ̂i(Si,t = j)I(P (Si,t = j|ΩT )), (8)

where I(·) is an indicator function that selects the regime with the highest smoothed

probability, P (Si,t = j|ΩT ), at time t.

• Step 3: Time series regressions of yt on F̂t−h; that is, run one Markov-switching

regression for each forecast horizon of interest, h:

yt = β0(St) + F̂′t−hβ(St) + ηt(St), (9)

keep the MLE estimates β0(St) and β(St), and calculate the forecast ŷT+h|T as:

ŷT+h|T =
M∑
j=1

(
P (ST+h = j|ΩT )β̂0(ST+h = j) + P (ST+h = j|ΩT )F̂′tβ̂(ST+h = j)

)
,

(10)
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where P (ST+h = j|ΩT ) is the predicted probability of being in regime j h-step-ahead

given the information available up to time T , ΩT .

In the third pass of the algorithm, the Markov-chain St allows us to model time variation

in the intercept of the forecasting regression, which is a common source of forecast failure.

Changes in the slope parameters β are relevant in that this also allows us to model time

variation in the predictive power of the estimated factors F̂t for the target variable yt+1.

Note that one can estimate a linear model in the third step. We denote this approach as

“MS-3PRF (first pass),” while “MS-3PRF (first and third pass)” refers to a situation when

considering regime changes in both the first and third pass.

2.2 Assumptions and theoretical properties

The algorithm outlined in the previous subsection rests on a number of assumptions,

including the choice of the number of factors and proxi variables to be used in the first step

of the algorithm, as well as the number of regimes to consider for the MS-3PRF.

There are several ways to assess the number of regimes in a Markov-switching regression

under a classical framework. Just to mention a few, Cho and White (2007) and Carter and

Steigewald (2012) suggest the use of a quasi-likelihood ratio test, however, they ignore

the Markov property of the variable St. Other alternatives consist in calculating goodness

of fit measures that trade off the fit of the likelihood against the number of parameters

(e.g. Smith et al. (2006)). For ease of illustration of the proposed approach, throughout

the simulation exercises and empirical applications, we leave aside this complication and

assume that predictor variables experience either M = 1 or M = 2 regimes. However, the

framework can be generalized accordingly.

For the choice of the proxi variables, when there is just one ft factor, Kelly and Pruitt

(2015) suggest to use directly the target variable y as proxy z. From a predictive point

of view, this is a natural choice, since, in this context, one wants to extract a factor that

summarizes how related the predictors are to the the predicted variable. They refer to

this case as target-proxy 3PRF. In the case of more factors, they propose to use either

economic theory to select indicators correlated with the target variable y, or an automated

procedure, that can be implemented with the following steps, indicating a proxy by zj with

j = 1, ..., L.

• Pass 1: set z1 = y, get the 3PRF forecast ŷ1
t , and the associated residuals e1

t = yt− ŷ1
t .
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• Pass 2: set z2 = e1, get the 3PRF forecast ŷ2
t using z1 and z2 as proxies. Get the

associated residuals e2
t = yt − ŷ2

t .

• ...

• Pass L: set zL = eL−1, get the 3PRF forecast ŷLt using z1, z2, ...zL as proxies.

For the choice of the number of factors, Kelly and Pruitt (2015) use appropriate in-

formation criteria with asymptotic optimality properties. However, empirically it can be

more informative to assess the performance of different number of factors. As in the case of

principal component analysis, using more factors than needed reduces forecast efficiency in

finite samples but does not introduce a bias, while using fewer factors generates an omitted

variable problem and therefore biases both the estimators of the loadings and the forecasts.

Kelly and Pruitt (2015) develop asymptotic theory for the linear 3PRF approach, show-

ing that the 3PRF based forecast converges in probability to the infeasible best forecast

as cross section N and sample size T become large. However, we need additional spe-

cial conditions to be able to claim that their consistency results could be extended to

the nonlinear case. Specifically, we need consistency of the parameter estimators for the

Markov-switching models in steps 1 and 3. Douc et al. (2004) establish results concerning

the consistency and asymptotic normality of the maximum likelihood estimator in Markov-

switching models. For the general case of hidden Markov models, Leroux (1992) proved

the consistency of the maximum likelihood estimator under mild regularity conditions. For

ease of notation, we suppress the i subscript and assume that the same conditions apply to

all the predictor variables in x. In particular, for any given variable xt, let {f(·, θ) : θ ∈ Θ}
be a family of densities on a Euclidean space with respect to θ1, θ2, ..., θM elements of Θ.

The characteristics of the model are parameterized by φ which belongs to a parameter

space Φ, i.e., we have pjk(φ), for j, k = 1, 2, ...,M , and θj(φ) ∈ Θ, for j = 1, 2, ...,M . The

usual case is φ = (p11, p12, ..., pMM , θ1, θ2, ..., θM), and pjk(·) and θj(·) equal to coordinate

projections. Letting the true parameter value be denoted by φ∗, we assume the following

conditions:

• Assumption 1: The M ×M transition probability matrix, [pjk(φ
∗)], is irreducible.

• Assumption 2: The family of mixtures of at most M elements of {f(y, θ) : θ ∈
Θ} is identifiable. In other words, the finite mixture with M or fewer components

determines a unique distribution.

• Assumption 3: For each xt, the density f(xt, ·) is continuous and vanishes at infinity.
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• Assumption 4: For each j, k, pjk(·) and θj(·) are continuous.

• Assumption 5: Eφ∗ [| log(f(X1, θj(φ
∗)))|] <∞ for j = 1, 2, ..,M .

• Assumption 6: For every θ ∈ Θ, Eφ∗ [sup‖θ−θ′‖<δ(log(f(X1, θ
′
)))+] < ∞, for some

δ > 0.5

Leroux (1992) proved that under assumptions 1-6, the maximum likelihood estimator, φ̂,

converges to the true parameter value, φ∗, with probability one.

Hence, based on this consistency result of the Markov-switching parameters in the first

and third steps, under the above assumptions 1 to 6 and the assumptions in Kelly and

Pruitt (2015), the asymptotic results from Kelly and Pruitt (2015) follow through, and

thereby the MS-3PRF conserves the theoretical properties from the linear 3PRF. However,

as in practical applications both T and N are finite, it is important to also assess the finite

sample performance of the MS-3PRF, which is what we do in the next section.

3 Monte Carlo Simulations

In this section, we conduct Monte Carlo simulations to evaluate the finite sample prop-

erties of the MS-3PRF, focusing on its predictive performance. We compare the MS-3PRF

with competing approaches that have proved to be successful in dealing with large data

sets, such as, the linear three-pass regression filter (3PRF) and principal component anal-

ysis (PCA). We also use two additional benchmark models – targeted PCA (TPCA) and

PC-LARS – from which factors are extracted by the method of principal component from

a smaller set of predictors than the N predictors used by PCA. These two additional meth-

ods are described in the Appendix; appendix A.1 describes the hard thresholding approach

or targeted PCA (TPCA) and appendix A.2 outlines the soft thresholding approach (or

PC-LARS). Our simulation exercises compute the full-sample Mean Square Forecasting

Errors (MSFE) to predict the target variable, yt that is generated based on a large set of

predictors, xt = (x1,t, x2,t, ..., xN,t)
′, driven by a factor structure with regime-switching in

the loadings.

5Where, ‖ · ‖ is the Euclidean distance, and w+ = max{w, 0}.
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3.1 Design

The data on xt and yt, for t = {1, 2, ..., T}, are generated following the factor structure

proposed in Bates et al. (2013) and Kelly and Pruitt (2015):

xt = ΦtFt + εt, (11)

yt+1 = ΛFt + ηt, (12)

where Ft = (ft,g
′
t)
′, Φt = (Φf,t,Φg,t), Λ = (1,0). The relevant and irrelevant factors are

generated according to the following dynamics, respectively:

ft = ρfft−1 + uf,t, (13)

gt = ρggt−1 + ug,t, (14)

where uf,t ∼ N(0, 1), and ug,t ∼ N(0,Σg), with uf,t and ug,t uncorrelated. We consider,

Kg = 4, irrelevant factors and, Kf = 1, relevant factor. The parameters in Σg are chosen so

that irrelevant factors are dominant; that is, their variances are 1.25, 1.75, 2.25, 2.75 times

larger than the relevant factor. The idiosyncratic terms are assumed to follow autoregressive

dynamics,

εit = αεi,t−1 + vi,t, (15)

and to be cross-sectionally correlated; that is, vt = (v1,t, v1,t, ..., vN,t)
′ and it is i.i.d normally

distributed with covariance matrix Ω = (β|i−j|)ij, as in Amengual and Watson (2007). The

starting values for the factors and idiosyncratic terms, f0, g0, εi0 are drawn from their

respective stationary distributions. The disturbances, ηt, associated to the target variable

equation are i.i.d. normally distributed with a variance, σ2
η, which is adjusted to ensure

that the infeasible best forecast has a R2 of 50%. The free parameters of our Monte Carlo

simulations are ρf , ρg, α, β, N , and T . In line with Stock and Watson (2002a), Bates

et al. (2013) and Kelly and Pruitt (2015), we consider ρf = {0.3, 0.9}, ρg = {0.3, 0.9},
α = {0.3, 0.9}, β = {0, 0.5}, N = {100, 200}, T = {100, 200}.

The factor loadings, collected in Φt, experience changes between two regimes over time,

Φt = Φ1St + Φ2(1− St), (16)

where St = (S1,t, S2,t, ..., SN,t) contains N dichotomous state variables, each following dis-

tinct dynamics according to a first-order Markov chain. Since the data in xt are generated

from a factor structure, it is mechanically subject to a certain degree of comovement.

Therefore, the nonlinear relationship between the data, xt, and the factors, Ft, measured

by the factor loadings, Φt, may also experience a certain degree of comovement.
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To provide a more realistic data generating process that is relevant for economic data

where data are generally weakly dependent (as opposed to i.i.d.), we model comovement

in the factor loadings, which is translated in modeling comovement in the Markovian state

variables contained in St. In doing so, let S̃i,t be the state vector of the i-th sequence at

time t. If the i-th sequence is in state 1 at time t then we write S̃i,t = (1, 0)′, and if it is in

state 2 at time t, then we write S̃i,t = (0, 1)′. First, we generate a “seed” sequence variable

S̃0,t. For time t, compute (q, 1− q)′ = P00S̃0,t, where

P00 =

(
p11 1− p22

1− p11 p22

)
, (17)

is the transition probability matrix, and the realization of the sequence at time t + 1 is

defined as

S̃0,t+1 =

{
(1, 0)′ If q ≥ θ

(0, 1)′ otherwise
(18)

where θ is drawn from a U [0, 1]. Next, we generate a Markov chain S̃i,t conditional on the

dynamics of S̃0,t, using the following system[
(q0, 1− q0)′

(qi, 1− qi)′

]
=

[
λ00P00 λ0iP0i

λi0Pi0 λiiPii

][
S̃0,t

S̃i,t

]
, (19)

where the coefficients λ measure the comovement between both Markov chains, with λjk ≥
0, and

∑2
k=1 λjk = 1. The matrix Pjk collects the transition probabilities from the states in

the k-th sequence to the states in the j-th sequence.6 Accordingly, qk represents the state

probability distribution of the k-th sequence at time t+ 1, from which the realization S̃i,t+1

can be generated as follows,

S̃i,t+1 =

{
(1, 0)′ If qi ≥ θ

(0, 1)′ Otherwise
. (20)

For simplicity we assume that P0i = Pi0 = Pii = P00, and that p11 = p22, with p11 = 0.9.

Also, we set λ00 = λii = 0.2, to induce a relatively large degree of comovement between

the state variables. Given S̃0,t, we repeat the same procedure for i = {1, 2, ..., N}, to get

all the elements in St. Finally, the elements in Φκ, for κ = {1, 2}, are generated from a

N(φκ, σφ) , with φ1 = 0.5, φ2 = 1.5, and σφ = 0.1.

We also study the case when xt and yt are generated by following the same processes

described above but with the factor loadings being driven by Markov chains that are totally

independent from each other and do not experience comovement. Finally, we assess the

performance of the proposed nonlinear approaches in estimating the factors under different

features of regime-switching factor loadings dynamics.

6Ching et al. (2002) proposed a multivariate Markov chain approach for modeling multiple categorical

data sequences.
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3.2 Models and evaluation criteria

We perform L = 500 Monte Carlo replications for each configuration of parameters ρf ,

ρg, α, and β, and sample sizes, T and N . Once xt and yt are generated, we apply the MS-

3PRF to extract the factor and predict the target variable. In particular, first, we estimate

a time series (Markov-switching) regression, xi,t = z′tφi(Si,t) + εi,t, for i = {1, 2, ..., N}. For

simplicity, we take the proxy variable as the target variable, z′t = yt. Second, we run a

cross section (OLS) regression, xi,t = φ̂′i,tFt + εi,t, for t = 1, 2, ..., T , using the weighted

average of the regime-switching factor loadings obtained in the previous step. Third, we

run a time series (OLS) regression, yt = F̂′t−1β+ ηt, and produce the forecast, ŷt+1 = F̂′tβ̂,

obtained with the MS-3PRF approach introduced in this paper. Also, we produce forecasts

with the version of the MS-3PRF when the loadings are selected instead of being averaged

(MSS-3PRF); that is, the time-varying loadings are set to the regime-specific loadings of

the most likely regime. To ease the computational burden, in our Monte Carlo simulations,

we do not model regime switches in the third pass of the algorithm. This is not detrimental

for our simulation exercise, since we are only interested in studying situations characterized

by instabilities in the factor loadings (and not time instability in the relation between the

predicted variable and the predictors). However, in the empirical applications, we consider

the case of regime switches in the third pass.

We compare the predictive performance of the two variants of our proposed method

with several benchmark methodologies. First, we compute the forecast obtained with the

linear version of the 3PRF, proposed in Kelly and Pruitt (2015). Second, Bates et al. (2013)

show that principal components estimation (PCA) methods can be applied to consistently

estimate dynamic factor models under certain instabilities in the loadings. Therefore,

we compute the forecast obtained with the method of principal components. Third, Bai

and Ng (2008) argue that the principal components methodology, as it stands, does not

take into account the predictive ability of xt for yt+h when the factors are estimated.

Therefore, Bai and Ng (2008) propose to use only predictors that are informative for yt in

estimating the factors in order to take explicitly into account that the object of interest

is ultimately the forecast of yt. Accordingly, we also compute the forecast obtained with

targeted PCA (TPCA). Fourth, we consider the Elastic Net soft-thresholding rules, which

are special cases of the ‘Least Angle Regression’ (LARS) algorithm developed in Efron

et al. (2004), and compute the forecast using the PC-LARS method. Ultimately, our focus

is on comparing the median in-sample MSFE over the L replications associated to each of

the six methods (two MS-3PRF approaches and four competitors) to evaluate their relative

predictive performance. Finally, in our simulation experiments, we assume that the number

of relevant factors and the number of regimes are known (i.e., across all procedures, we

extract one factor and the non-linear models consider the case of two regimes).
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3.3 Results

Table 1 reports the simulation results associated to the different configurations of param-

eters, methodologies and degrees of instability (regime-switching) in the data. In particular,

the upper part of Table 1 present the MSFE for the cases when all factor loadings exhibit

regime-switching dynamics. First, the MSS-3PRF exhibits the lowest MFSE for most of

the cases, indicating that it performs best in terns of predictive performance. In particular,

the MSS-3PRF outperforms the MS-3PRF, linear 3PRF, PCA, TPCA and PC-LARS. No-

tice also that, in general, the MS-3PRF exhibits the second best forecasting performance,

suggesting that the nonlinear frameworks, MS-3PRF and especially MSS-3PRF, are able

to capture in a better way instabilities in the relationship between the set of predictors and

its common factor.

Second, TPCA tends to provide the best performance when the irrelevant factors, and

the idiosyncratic terms, have a low autocorrelation, but the relevant factor is highly auto-

correlated. If the irrelevant factors behave close to white noise processes, while the relevant

factors experience a high autocorrelation, then TPCA would be able to easily identify the

variables highly associated with the relevant factors so as to obtain a reliable estimation

of the relevant factors, as long as the target variable to be predicted, yt, does not approxi-

mately behave as a white noise. Also notice that the linear 3PRF outperforms in most cases

PCA and PC-LARS. This implies that in the presence of instabilities in the loadings, the

linear 3PRF takes better advantage of both the time series and cross sectional dimensions

to provide a more accurate estimation of the underlying factor than PCA and PC-LARS.

Third, the scenarios associated with low autocorrelation in the irrelevant factors, ρg,

yield the highest MSFE. The fact that irrelevant factors (i) behave close to a white noise,

(ii) are linked to xt trough regime-switching loadings, and (iii) are dominant, make them

able to introduce a relatively large amount of noise into the set of predictors, creating

more difficulty for all the methods to provide more accurate estimates of the underlying

relevant factor and consequently better forecasts for yt. In particular, when not only the

irrelevant factors, but also the idiosyncratic terms are closer to behave as a white noise

(that is, ρg = 0.3 and α = 0.3) the forecasting performance of all methods deteriorates due

to the reason just described. These results indicate that in the presence of instabilities in

the loadings, a lower autocorrelation in any of the components driving the observed data

(predictors and target variables) is detrimental for the predictive performance of all factor

extraction methods studied in this paper.

Fourth, the performance of the methods varies with the size of both cross sectional and

time series dimensions. In particular, while a larger N helps to improve the predictive

ability of the methods, a larger T appears to be detrimental for the predictive ability.
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Notice that when holding constant the cross sectional dimension N and letting grow the

time series dimension T ; that is, when comparing the case of T = 100, N = 100 versus

the case of T = 200, N = 100, there is an overall increase in the corresponding MSFE.

However, when keeping constant T and letting grow N , that is, when comparing the case

of T = 100, N = 100 versus the case of T = 100, N = 200, there is an overall reduction in

the MSFE, pointing to an increase in the predictive ability across all the methods. As such,

this suggests that higher ratio of N to T is better. This is because a larger cross sectional

dimension is helpful for more precise estimation of the underlying factor, and thereby leads

to better predictive performance.

When dealing with large dimensional data sets, the substantial heterogeneity in the

data may be accompanied by different degrees of instabilities contained in the predictors

xt. Therefore, we repeat these simulation exercises along the lines of Bates et al. (2013)

and let only a subset J of variables, randomly selected from a uniform distribution, exhibit

regime-switching factor loadings. The lower part of Table 1 reports the case when the share

of variables experiencing instabilities in their loadings is 0.25. The results are relatively

similar to the ones obtained with all the variables experiencing instabilities in the loadings

in that the MSS-3PRF obtains the best forecasting performance. However, the method

showing the second best forecasting performance is TPCA. Another important difference is

that the increase in the predictive ability of the methods when N increase and T remains

constant is not systematically observed through all the scenarios under consideration, as it

was the case when all the variables where experiencing instabilities in the loadings. This is

simply because in this case there is less cross sectional information that can help to capture

the nonlinearities in the time dimension of the data. We performed the same simulation

exercise when the share of variables experiencing instabilities in the loadings is 0.50 and

0.75. The results remained qualitatively unchanged. However, to conserve space, we do

not report the results for these DGPs, but these results are available upon request.

The results reported in Table 1 were based on a data generating process where the factor

loadings associated to each predictor variable were driven by their own Markov chain, and

these Markov chains were assumed to experience a high degree of interdependence between

them in order to mimic the behavior that macroeconomic and financial data usually tend to

exhibit. However, we are interested in assessing the performance of the methods when the

assumption of interdependent Markov chains is no longer valid; that is, when the loadings

depend on Markov chains that are independent from each other. The upper part of Table

2 reports the MSFE for the case when factors loading are driven by independent Markov

chains. The results provide the same consistent message obtained from the previous exer-

cises, the MSS-3PRF shows the most accurate predictive performance among the methods

under consideration, followed by the MS-3PRF. These results imply that regardless of the
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relationship between the Markov chains driving the factor loadings, the nonlinear methods

proposed in this paper consistently outperform the linear competing methods.

Finally, we compare the forecasting performance of the methods under consideration

when the dynamics of the factor is also subject to regime changes. In particular, we repeat

the Monte Carlo exercises assuming that the DGP of the factor is given by

ft = ρf,tft−1 + uf,t, (21)

where the dynamics of the autoregressive coefficient depends on the “seed” Markov chain,

ρf,t = ρ1fS0,t + ρ0f (1− S0,t). (22)

The lower part of Table 2 shows the corresponding MSFE for the different scenarios, show-

ing that MSS-3PRF and the MS-3PRF perform better than the linear benchmarks for most

of the cases. Notice that, in this case, the MS-3PRF model is not correctly specified given

that there is no regime switching in the factor loadings.

Overall, conditional on our DGPs, we can conclude that, on average, the MSS-3PRF

is the framework best able to capture instabilities in the relationship between the set of

predictors and its common factor, followed by the MS-3PRF. Both nonlinear frameworks

outperform linear approaches. Regarding the linear frameworks, in general, TPCA outper-

forms the 3PRF and the PC-LARS, and PCA obtains the weakest forecasting performance.

4 Empirical Applications

The first application is related to exchange rate forecasting. This is highly relevant

given that it has long been recognized that non-linearities play an important role in the

dynamics of exchange rates (see, e.g., the early contribution in Chinn (1991) and more

recently Rossi (2013) and Abbate and Marcellino (2016)). However, it is only recently that

the literature on exchange rate forecasting has concentrated on the role and importance

of factors for predicting exchange rates (see, e.g., Engel et al. (2015) in a linear context).

Putting the MS-3PRF approach at work in the context of exchange rate forecasts is highly

relevant in that this allows us to combine the non-linear dynamics observed in exchange

rate movements with the factor structure driving systematic variations in exchange rates,

which has recently gained traction in the exchange rate forecasting literature. Our second

empirical application is a standard macroeconomic forecasting application in that we use

the McCracken and Ng (2015) dataset so as to forecast economic activity in the United

States.
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4.1 Forecasting exchange rates

In this first forecasting exercise, we construct factors from a cross-section of nominal

bilateral U.S. dollar (USD) exchange rates against a panel of twenty-six currencies. We

extract factors from the MS-3PRF, the MSS-3PRF, the linear 3PRF, PCA, TPCA and

PC-LARS. We then use the resulting factors to forecast selected bilateral exchange rates.

(All currency pairs use the USD as numéraire.) The choice of the dataset draws from

the exercise in Greenaway-McGrevy et al. (2016). The dataset is monthly and the full

sample size extends from January 1995 to December 2015. The data are obtained from

the International Financial Statistics of the International Monetary Fund, and the monthly

data are taken as the monthly average of daily data. The dataset consists of the currencies

of Australia (AUS), Brazil (BRA), Canada (CAN), Chile (CHI), Columbia (COL), the

Czech Republic (CZE), the euro (EUR), Hungary (HUN), Iceland (ICE), India (IND),

Israel (ISR), Japan (JPN), Korea (KOR), Mexico (MEX), Norway (NOR), New Zealand

(NZE), the Philippines (PHI), Poland (POL), Romania (ROM), Singapore (SIN), South

Africa (RSA), Sweden (SWE), Switzerland (SUI), Taiwan (TAI), Turkey (TUR) and the

United Kingdom (GBR).7

We consider forecast horizons, h, ranging from 1 month to 12 months and report pre-

dictive results for selected major currencies: the euro, the British pound, the Japanese

yen and the Canadian dollar. The first estimation sample runs from February 1995 to

March 2007, and it is recursively expanded until we reach the end of the estimation sam-

ple. Hence, the forecast evaluation period extends from April 2007 to December 2015. As

in the Monte-Carlo experiment, we compare the forecasts obtained from the MS-3PRF

with forecasts derived from principal component analysis, the linear 3PRF, targeted PCA

(TPCA) and PC-LARS. Moreover, we use two different versions of the MS-3PRF, one

with regime-switching only in the first step (i.e., in the factor loadings), and one with

regime-switching parameters in the first and third step (i.e., in the factor loadings and the

parameters of the forecasting equation). In the first step of the algorithm for the MS-3PRF

approach, we model regime changes in all parameters of the model (i.e., intercept, slope and

innovation variance), since we obtained stronger fit – as measured by the SIC – with such

a specification. Note also that we consider a model with two factors across all methods.

The choice of the number of factors follows the modelling choices in Engel et al. (2015),

Greenaway-McGrevy et al. (2016) and Verdelhan (2015), but, qualitatively, our results are

robust to the use of one or three factors in the predictive equation. We also include the

MSS-3PRF approaches in the set of models we consider (both versions; that is, with regime

switches in the first pass only and regime switches in the first and third pass).

7Data for the euro before January 1999 and Taiwan were obtained from the U.S. Federal Reserve G.5

table (monthly average of daily data).
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All exchange rate series are taken as the first difference of their logarithm before per-

forming factor analysis. In the case of the 3PRF approaches, we use the automatic proxy-

selection procedure from Kelly and Pruitt (2015); that is, we use the exchange rate we

are interested in forecasting as a target proxy when extracting the first factor and then

proceed sequentially as outlined in Table 2 from Kelly and Pruitt (2015). For PCA, TPCA

and PC-LARS, we standardize the data recursively in the estimation before estimating the

factors. In contrast, the 3PRF approaches do not require to standardize the data before

estimation.

For the prediction step, in the linear cases; that is, for PCA, TPCA, PC-LARS, 3PRF,

MS-3PRF (first pass) and MSS-3PRF (first pass), the h-period ahead forecasts for a specific

currency Rj
t+h|t are constructed in level based on the following equation

Rj
t+h|t = Rj

t (1 + α̂ + F ′tβ̂), (23)

where α̂ and β̂ are obtained from the following regression (for simplicity of the notation,

we omit h subscripts from the coefficients α and β)

∆rjt,h = α + F ′t−hβ + εt, (24)

where ∆rjt,h indicates the h-period change in the logarithm of the exchange rate Rj
t (i.e.,

∆rjt,h = ln(Rj
t ) − ln(Rj

t−h)), Ft indicates the factors extracted from either PCA, TPCA,

PC-LARS, 3PRF or MS-3PRF approaches. In the case of the MS-3PRF (first and third

pass) and MSS-3PRF (first and third pass), equation (24) is modified as follows

∆rjt,h = α(Sjt ) + F ′t−hβ(Sjt ) + εt(S
j
t ), (25)

where Sjt is a two-regime Markov-chain – distinct across all predicted currencies j – with

constant transition probabilities. In the case of the MS-3PRF (first and third pass), as

commonly done in forecasting exercises with Markov-switching models, the forecasts are

calculated as a weighted average of forecasts conditional on the parameters being in a

given regime. The predicted probabilities of being in a given regime k, h periods ahead are

obtained recursively as

P (Sjt+h|t = k) =
2∑
i=1

pjikP (Sjt+h−1|t = k), (26)

where pjik indicates the constant transition probabilities and 2 is the total number of regimes.

In the case of the MSS-3PRF (first and third pass) approach, the forecasts are calculated

conditional on being in a given regime, i.e., the predicted probabilities are obtained as

P (Sjt+h|t = k) = I(P (Sjt|t = k)), (27)
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where I(·) is an indicator variable that indicates the regimes with the highest smoothed

probability at the origin of the forecast horizon. As such, this corresponds to the approach

often used to plot (regime-specific) impulse responses in MS-VAR models (see, e.g., Hubrich

and Tetlow (2015)).

As an illustration of the MS-3PRF approach to extract factors from a panel of exchange

rates, Figure 1 reports the Markov-switching factor loadings based on the MS-3PRF ap-

proach using the Canadian dollar as a target proxy; that is, the factor loadings associated

with the first factor. From this figure, one can see that there is substantial time variation in

factor loadings for a number of currencies (e.g., the Australian dollar or the New Zealand

dollar) whereas for other currencies, there is little time variation in the factor loadings (e.g.,

the euro and Swiss franc).

A number of additional comments are in order. First, we do not use observable factors to

model the dynamics of exchange rates. Verdelhan (2015) finds that exchange rate variations

are driven by a two-factor structure: a U.S. dollar factor that serves as a proxy for global

macroeconomic risk and a carry factor which is interpreted as capturing uncertainty risk.

Our analysis differs from this study in that our focus is on out-of-sample predictive ability.

Hence, we do not aim at providing a structural interpretation to the factors we extract.

Table 3 reports point forecasting results for specific currencies: the Canadian dollar

(CAD), the euro (EUR), the Japanese yen (JPY) and the British pound (GBP), all relative

to the USD. These are G7 currencies, and among the most traded currency pairs according

to the BIS Triennal Central Bank Survey.8 The point forecast results are presented as

the MSFE of a specific approach relative to the MSFE obtained from the no-change fore-

cast. The no-change forecast is the standard benchmark in the exchange rate forecasting

literature (see, e.g., Rossi (2013)). This table also reports the results of the Diebold and

Mariano (1995) test of equal out-of-sample predictive accuracy using the no-change fore-

cast as a benchmark.9 First, the models’ forecasting performance relative to the no-change

forecast is typically the strongest for forecast horizon h = 1 (except for the JPY-USD). The

improvement in forecast accuracy relative to the random walk is also statistically significant

according to the Diebold and Mariano test of equal MSFE when forecasting the Canadian

dollar at forecast horizon h = 1 across most approaches (this is also true to a lesser extent

for the British pound). Second, the PC-LARS approach performs best for forecast horizon

h = 1 when forecasting the euro and the British pound, albeit it is closely followed by PCA

and TPCA in those cases. Third, for the Canadian dollar and the Japanese yen, modelling

8See http://www.bis.org/publ/rpfx16fx.pdf.
9The Diebold and Mariano (1995) test of equal out-of-sample predictive accuracy is reported to give a

sense of statistical significance of the point forecasting results. However, this test is based on the population

MSPE (not the actual MSPE) so that this test tends to reject the null of equal MSPEs too often.
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time variation in the forecasting equation is relevant in that this leads to substantial fore-

casting improvement over the no-change forecast at distant forecast horizons h={9,12} for

the Japanese yen and h={2,3,6,9,12} for the Canadian dollar, using the MS-3PRF (first

and third pass) approach. 10

Next, Table 4 shows the directional accuracy forecasting results, which are broadly in

line with the point forecast results. Under the null hypothesis of no directional accuracy,

one would expect a success ratio of 0.5. In this table, we also report the results of the Pe-

saran and Timmermann (2009) test to evaluate the statistical significance of the directional

accuracy results. Across all forecasting approaches, the success ratios tend to be stronger

for forecast horizon h = 1, except for the JPY-USD. It is also interesting to note that the

success ratios are especially strong at distant forecast horizons for selected currencies, as

high as 67.3 per cent for the CAD-USD and 79.7 per cent for the JPY-USD in the case of

the MS-3PRF and MSS-3PRF with regime changes in the first and third pass.

4.2 Forecasting economic activity

In this application, we use the McCracken and Ng (2015) dataset to forecast eight major

quarterly U.S. variables: GDP, Consumption, Investment, Exports, Imports, Total Hours,

GDP inflation and PCE inflation.11 We implemented the following outlier corrections to

the predictors: observations of the transformed series with absolute median deviations

larger than 6 times the inter quartile range were replaced with the median value of the

preceding five observations. The full sample extends from 1960Q3 to 2015Q3. In the

forecasting exercise, the first estimation sample extends from 1960Q3 to 1984Q4, and it is

recursively expanded until we reach the end of the sample. We consider forecast horizons,

h, ranging from 1 quarter to 8 quarters. We use eight competing approaches: principal

component analysis (PCA) from which we extract 5 factors from the underlying dataset,

but we only use the first one in the forecasting equation; PCA where hard thresholding has

been performed before extracting the first principal component to forecast (TPCA); PCA

where soft thresholding has been performed before extracting the first principal component

to forecast (PC-LARS); linear 3PRF; MS-3PRF and MSS-3PRF with regime-switching

parameters in the first pass only; and MS-3PRF and MSS-3PRF with regime-switching

10Admittedly, in the case of the euro, the forecasting performance of the MS-3PRF (first and third

pass) and the MSS-3PRF (first and third pass) approaches deteriorate as the forecast horizon lengthens,

suggesting that it is not always relevant to model regime shifts in the forecasting equation.
11Data descriptions and details on data transformation are available online at https://research.

stlouisfed.org/econ/mccracken/fred-databases/Appendix_Tables_Update.pdf, the slight modifica-

tions we made to the original dataset are reported in the appendix.
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parameters in the first and third passes. For the 3PRF approaches, we use one factor

and use the predicted variable as a target proxy in the first step of the 3PRF approach

(target-proxy 3PRF).12

We first report results from an in-sample exercise. Figure 2 shows the estimated factors

across all six methods (PCA, TPCA, PC-LARS, 3PRF, MS-3PRF and MSS-3PRF; the

latter three methods use GDP growth as a target variable). This shows that the factor

estimates are relatively similar across approaches, and that they closely follow the U.S.

business cycle. As in McCracken and Ng (2015), we calculate diffusion indices (F̂t) based

on the partial sums of the factor estimates f̂t; that is, F̂t =
∑t

j=1 f̂j. (The reason for doing

so is that diffusion indices summarize information contained in the trend as opposed to the

“raw” factors that are estimated on stationary data so that the resulting factors are too

volatile for turning point analysis.) The factors ft are extracted with the six aforemen-

tioned methods. We then implemented the Bry and Boschan (1971) algorithm to estimate

expansions and recessions from these diffusion indices.13 The resulting classification of

U.S. business cycles obtained from the MS-3PRF diffusion index has the strongest corre-

lation with the NBER dummy variable of expansions and recessions (0.563) followed by

the 3PRF diffusion index (0.543), MSS-3PRF diffusion index (0.506), PC-LARS diffusion

index (0.497), PCA diffusion index (0.486) and TPCA diffusion index (0.467). Moreover,

only the MS-3PRF and MSS-3PRF approaches obtain a perfect classification of recessions,

while PCA, TPCA and 3PRF diffusion indices have a near perfect classification of reces-

sions (these three methods identify the 1973-1974 recession with a one-quarter lag). As

such, this suggests that the MS-3PRF approach has important information related to the

state of the business cycle that is not necessarily reflected in competing approaches.

An attractive feature of Markov-switching models is their ability to endogenously esti-

mate regimes. Figure 3 shows a heatmap of the smoothed probability of being in the first

regime (associated with adverse business cycle conditions) for the in-sample factor loadings

obtained from the first step of the MS-3PRF approach. First, it is interesting to note that,

across all series, there is substantial time variation in the smoothed probability, suggesting

that there is evidence in favor of regime shifts in the factor loadings. Second, the tim-

ing of the shifts in the factor loadings coincides with the changes in business cycle phases

12When estimating the number of factors using information criteria, it is common to find a large number

of factors summarizing the co-movements of U.S. macroeconomic variables (e.g., McCracken and Ng (2015)

estimate eight factors in the FRED-MD monthly macroeconomic database). However, in the forecasting

exercise, in line with the literature, we use the first factor in the predictive equation. This corresponds to

a real economic activity factor that closely follows the U.S. business cycle dynamics (see figure 2). Using

the first two factors in the predictive equation led to little changes in the forecasting performance.
13The Bry and Boschan (1971) is a non-parametric method to estimate cycles in time series. We imple-

mented the quarterly version of the Bry and Boschan (1971) algorithm from Harding and Pagan (2002),

using the GAUSS code available at http://www.ncer.edu.au/resources/data-and-code.php.
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for a large number of series (e.g., output and income, as well as labor market variables).

Additional evidence on regime shifts in the factor loadings is provided in Figure 4. This

figure shows that there is substantial variation in the factor loadings for the unemployment

rate and industrial production related to the state of the business cycle. Selected financial

and credit variables (S&P500 returns and consumer loans) also exhibit substantial time

variation, suggesting that the assumption of constant factor loadings often employed with

this type of dataset is likely to be too restrictive.

A few additional comments related to the out-of-sample forecasting exercise are required.

First, note that macroeconomic variables are typically subject to substantial revisions and

different publication lags. In this empirical exercise, we abstract from this issue, and

consider revised data. While this is not a fully realistic approach from a practitioners’

perspective, there is no reason to think that one specific approach would benefit more from

this simplification. Hence, this remains a useful forecasting exercise to compare the relative

merits of each forecasting approach. Second, across all approaches, quarterly factors are

extracted from the monthly dataset of McCracken and Ng (2015), where quarterly data are

taken as quarterly averages of monthly data before performing factor analysis. Obviously,

alternative temporal aggregation schemes could be adopted, but we found that the in-

sample correlation of the real activity factor was very strong compared with a situation

where one would use the last monthly observation of the quarter as a quarterly observation

before performing factor analysis (about 0.95 between these two aggregation schemes across

the different factor approaches). 14 Our temporal aggregation scheme is standard in the

literature (see, e.g., section 6.1 in Stock and Watson (2016)) and we leave the issue of a

mixed-frequency setting to future research.15 Third, the forecasts are constructed as follows

yt+h|t = α̂ + β̂(L)f̂t + γ̂(L)yt, (28)

where β(L) and γ(L) are finite order lag polynomials, whose lag lengths are obtained with

the SIC at the beginning of the forecasting exercise, using a maximum lag length of 6 for

γ(L) and 3 for β(L). All predicted variables yt are taken as the first difference of their

logarithm. For the MS-3PRF and MSS-3PRF with switches in the first and third passes,

we consider regime-switching parameters in all parameters of equation (28) and in the

variance of the error term.

14This result still holds when doing PCA at a monthly frequency and then aggregating the factor at a

quarterly frequency.
15As a side note, the first pass of the 3PRF filter could possibly accommodate mixed-frequency data using

the techniques outlined in Foroni et al. (2015); whereas, in the third pass of the filter, unrestricted MIDAS

polynomials could be used as in Hepenstrick and Marcellino (2016), and regime switching parameters in

the mixed-frequency predictive equation could be modelled as in Guérin and Marcellino (2013).
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Tables 5 and 6 show the out-of-sample forecasting results. All results are reported rel-

ative to the forecasts obtained from PCA. Hence, a number below 1 indicates that a given

approach outperforms PCA. We also report the results of the Diebold and Mariano (1995)

test of equal out-of-sample predictive accuracy using PCA as a benchmark. Overall, across

all forecast horizons and predicted variables (64 cases), the MS-3PRF and MSS-3PRF ob-

tain the best forecasting results in 35 cases, the linear 3PRF in 16 cases, PC-LARS in 10

cases and TPCA in 1 case. In the remainder of the cases, PCA performs best. It is interest-

ing to note that the MSS-3PRF (first and third pass) approach performs best for forecasting

inflation (both PCE inflation and GDP inflation) and it does so significantly according to

the Diebold and Mariano (1995) test at long forecast horizons (i.e., for h > 4 for GDP infla-

tion and h > 3 for PCE inflation). The rationale for the strong forecasting performance of

the MSS-3PRF (first and third pass) when forecasting inflation at distant forecast horizons

is that over the full sample we look at, there is a decline in the rate of inflation. Moreover,

as the forecast horizon increases, forecasts tend to converge toward the full sample mean

of inflation. However, forecasts from the MSS-3PRF (first and third pass) approach give

zero weight to the high inflation observed in the early part of the sample as opposed to

the forecasts from the competing approaches, which necessarily include information from

high inflation episodes at distant forecast horizons. When forecasting aggregate economic

activity (GDP), the MSS-3PRF approach performs best at short forecasting horizon and

the linear 3PRF tend to perform best for distant forecast horizons, and the improvements

in forecast accuracy relative to PCA are typically statistically significant according to the

Diebold and Mariano (1995) test. The MS-3PRF forecasting approaches perform partic-

ularly well relative to PCA when predicting export, import and hours worked, whereas

PC-LARS performs well for forecasting investment and hours worked at relatively short

forecast horizons (i.e., h < 4).

5 Conclusion

In this paper, we extended the linear three-pass regression filter to settings where parame-

ters can vary according to Markov processes, introducing the Markov-Switching Three-Pass

Regression Filter. A key advantage of our framework is to circumvent the computational

difficulties associated with the estimation of a large scale dynamic factor model with regime-

switching parameters without foregoing flexibility in modelling choices.

In both simulation and empirical examples, our method compares favorably with ex-

isting alternatives in terms of forecasting performance. The MS-3PRF approach is also

attractive beyond forecasting applications. For example, the MS-3PRF approach would
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easily allow one to model regime-switching correlations often observed in finance in a high-

dimensional setting. This could be relevant in the context of the growing literature aiming

at measuring network connectedness among financial firms or asset classes (see, e.g., Billio

et al. (2012) or Diebold and Yilmaz (2014)). Likewise, the MS-3PRF framework could be

used in the context of structural factor-augmented VAR models that are commonly used

in macroeconomics. Overall, thanks to its generality and ease of implementation, the MS-

3PRF approach offers a promising framework to model regime changes in high-dimensional

settings for a large class of applications in macroeconomics and finance.
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Appendix

A.1 Description of the hard thresholding forecasting approach

The hard thresholding algorithm consists of the following steps (This description partly

stems from Bai and Ng (2008).)

1. For each variable xi,t, perform a time series regression of the variable to forecast yt

on xi,t and a constant. Let ti denote the t statistic associated with xi,t

2. Let k∗α be the number of series whose |ti| exceeds a threshold significance level, α. In

our application, we use a threshold of 1.65, which corresponds to a one-sided 5 per

cent significance level for the t test.

3. Let χt(α) = (x[1t], ..., x[k∗α]) be the corresponding set of predictors. Estimate ft from

χt(α) by the method of principal component.

4. Estimate equation (28) to calculate the h period ahead forecast yt+h.

This approach is denoted as TPCA.

A.2 Description of the soft thresholding forecasting approach

The soft thresholding approach we adopt follows from the least angle regressions (LARS)

method described in Bai and Ng (2008). In detail, we select the set of the first K predictors

xi,t selected by forward stagewise selection regressions to extract principal component(s).

In the macroeconomic forecasting application, we use K = 30 predictors, since it is the

number of predictors retained by Bai and Ng (2008) and Kelly and Pruitt (2015) when

forecasting macroeconomic variables with a similar dataset than ours. For the exchange

rate forecasting application, we retain the first K = 10 predictors ordered by LARS to

extract principal components, which corresponds to slightly more than a third of the total

number of predictors (26). Finally, in the Monte Carlo experiments, we set K = 30 across

all DGPs.

This approach is denoted as PC-LARS.
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A.3 Additional Details on the macroeconomic forecasting exer-
cise

In the macroeconomic forecasting empirical application, we use the May 2016 vintage of the

McCracken and Ng (2015) dataset as available online at https://research.stlouisfed.

org/econ/mccracken/fred-databases/. We use the exact same transformation as sug-

gested by McCracken and Ng (2015). However, due to missing observations, we omit the

following five series in our analysis (fred mnemonics are in parenthesis): “New Orders

for Consumer Goods” (ACOGNO), “New Orders for Nondefense Capital Goods” (AN-

DENOx), “Trade-weighted U.S. Dollar Index: Major Currencies” (TWEXMMTH), “Con-

sumer Sentiment Index” (UMCSENTx) and the “VXO” (VXOCLSx).

The eight variables we forecast in the macroeconomic forecasting application are : Gross

Domestic Product (GDPQ@USNA), Personal Consumption Expenditures (CQ@USNA),

Gross Private Domestic Investment (IQ@USNA), Exports of Goods & Services (XQ@USNA),

Imports of Goods & Services (MQ@USNA), Business Sector: Hours of All Persons (LXBH@USECON),

Gross Domestic Product: Chain Price Index (JGDP@USNA) and Personal Consumption

Expenditures: Chain Price Index (JC@USNA). (Haver/Analytics mnemonics are in paren-

thesis.)
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Figure 1: Markov-switching factor loadings – Canadian dollar as a target

proxy

Note: Dark red indicates higher values for the factor loadings obtained with the MS-3PRF approach

with the Canadian dollar as a target proxy. Three-letter country codes follow the convention from the

International Olympic Committee except for Taiwan labelled as TAI.

30



F
ig

u
re

2:
F
a
c
t
o
r
e
st

im
a
t
e
s
a
c
r
o
ss

d
if
f
e
r
e
n
t
a
p
p
r
o
a
c
h
e
s

 

-5-4-3-2-10123 19
60

Q
3

19
64

Q
3

19
68

Q
3

19
72

Q
3

19
76

Q
3

19
80

Q
3

19
84

Q
3

19
88

Q
3

19
92

Q
3

19
96

Q
3

20
00

Q
3

20
04

Q
3

20
08

Q
3

20
12

Q
3

Li
ne

ar
 3

PR
F

M
S-

3P
RF

PC
A

TP
CA

PC
-L

AR
S

M
SS

-3
PR

F

N
o
te
:

F
ac

to
r

es
ti

m
at

es
ac

ro
ss

d
iff

er
en

t
ap

p
ro

ac
h

es
:

li
n

ea
r

3
P

R
F

,
M

a
rk

ov
-s

w
it

ch
in

g
3
P

R
F

(b
o
th

M
S

-3
P

R
F

a
n

d
M

S
S

-3
P

R
F

),
P

C
A

,
T

P
C

A
a
n

d
P

C
-

L
A

R
S

.
G

D
P

gr
ow

th
is

u
se

d
as

a
ta

rg
et

p
ro

x
y

fo
r

th
e

3
P

R
F

a
p

p
ro

a
ch

es
.

31



Figure 3: Probability of being in the first regime for the factor loadings

Note: Dark red indicates higher value for the probability of being in the first regime, which is normalized

to correspond to the lowest intercept of the two regimes. Factor loadings are obtained from the MS-3PRF

approach with GDP growth as a target proxy.
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Table 1: Simulation results with different degrees of instabilities in the loadings

Instability in 100 per cent of the loadings

ρf ρg α β T=100 , N=100 T=100 , N=200

MS-3PRF MSS-3PRF 3PRF PCA TPCA PC-LARS MS-3PRF MSS-3PRF 3PRF PCA TPCA PC-LARS

0.3 0.9 0.3 0 2.00 1.97 2.00 2.05 2.00 2.05 1.99 1.98 2.01 2.07 2.00 2.07

0.3 0.9 0.3 0.5 2.00 1.97 2.00 2.05 2.00 2.05 1.98 1.96 1.97 2.03 1.96 2.02

0.3 0.9 0.9 0 1.91 1.86 1.94 2.08 2.00 2.07 1.91 1.85 1.97 2.05 1.98 2.06

0.3 0.9 0.9 0.5 1.93 1.90 1.97 2.08 1.99 2.08 1.91 1.82 1.95 2.07 1.98 2.06

0.9 0.3 0.3 0 8.57 8.51 8.55 8.60 8.26 8.54 9.12 9.05 9.13 9.11 8.78 9.04

0.9 0.3 0.3 0.5 8.67 8.50 8.72 8.77 8.50 8.72 8.23 8.21 8.35 8.29 8.02 8.25

0.9 0.3 0.9 0 8.02 7.62 8.49 8.69 8.20 8.75 8.01 7.60 8.77 8.89 8.56 8.84

0.9 0.3 0.9 0.5 8.44 8.04 8.86 8.99 8.68 8.99 8.01 7.51 8.64 8.80 8.35 8.71

ρf ρg α β T=200 , N=100 T=200 , N=200

MS-3PRF MSS-3PRF 3PRF PCA TPCA PC-LARS MS-3PRF MSS-3PRF 3PRF PCA TPCA PC-LARS

0.3 0.9 0.3 0 2.03 2.02 2.03 2.06 2.02 2.07 2.04 2.04 2.06 2.10 2.04 2.10

0.3 0.9 0.3 0.5 2.05 2.03 2.05 2.09 2.04 2.09 2.05 2.02 2.05 2.09 2.03 2.09

0.3 0.9 0.9 0 1.96 1.91 2.00 2.08 2.01 2.08 1.94 1.90 1.99 2.07 1.99 2.06

0.3 0.9 0.9 0.5 1.96 1.92 2.01 2.08 2.02 2.08 1.95 1.90 2.00 2.08 1.99 2.08

0.9 0.3 0.3 0 9.23 9.14 9.24 9.26 9.08 9.26 9.46 9.33 9.42 9.36 9.27 9.34

0.9 0.3 0.3 0.5 9.27 9.25 9.26 9.25 9.22 9.25 9.31 9.17 9.30 9.36 9.26 9.31

0.9 0.3 0.9 0 8.64 8.40 9.10 9.17 8.98 9.14 8.94 8.69 9.42 9.55 9.43 9.53

0.9 0.3 0.9 0.5 8.71 8.39 9.13 9.19 9.04 9.19 9.12 8.95 9.58 9.62 9.39 9.60

Instability in 25 per cent of the loadings

ρf ρg α β T=100 , N=100 T=100 , N=200

MS-3PRF MSS-3PRF 3PRF PCA TPCA PC-LARS MS-3PRF MSS-3PRF 3PRF PCA TPCA PC-LARS

0.3 0.9 0.3 0 1.93 1.89 1.93 2.04 1.92 2.04 1.91 1.86 1.93 2.04 1.90 2.04

0.3 0.9 0.3 0.5 1.96 1.92 1.98 2.08 1.94 2.08 1.94 1.89 1.96 2.04 1.90 2.05

0.3 0.9 0.9 0 1.88 1.79 1.88 2.12 2.02 2.13 1.89 1.80 1.90 2.15 2.03 2.15

0.3 0.9 0.9 0.5 1.89 1.83 1.91 2.12 2.01 2.12 1.86 1.79 1.88 2.12 1.99 2.11

0.9 0.3 0.3 0 8.67 8.34 9.02 9.32 8.53 9.14 8.10 7.81 8.39 8.64 7.96 8.31

0.9 0.3 0.3 0.5 8.37 8.05 8.53 8.76 7.93 8.56 8.48 8.15 8.71 9.03 8.16 8.71

0.9 0.3 0.9 0 6.99 6.41 7.59 8.48 7.56 8.36 7.20 6.70 8.14 8.56 7.72 8.19

0.9 0.3 0.9 0.5 7.19 6.70 8.18 8.88 8.05 8.73 7.41 6.91 8.30 8.74 7.95 8.41

ρf ρg α β T=200 , N=100 T=200 , N=200

MS-3PRF MSS-3PRF 3PRF PCA TPCA PC-LARS MS-3PRF MSS-3PRF 3PRF PCA TPCA PC-LARS

0.3 0.9 0.3 0 1.93 1.89 1.95 2.05 1.89 2.03 1.94 1.92 1.98 2.07 1.93 2.06

0.3 0.9 0.3 0.5 1.94 1.92 1.95 2.05 1.92 2.06 1.96 1.92 1.98 2.08 1.92 2.07

0.3 0.9 0.9 0 1.88 1.81 1.89 2.09 1.96 2.09 1.88 1.79 1.88 2.10 1.96 2.11

0.3 0.9 0.9 0.5 1.86 1.81 1.89 2.07 1.95 2.07 1.92 1.82 1.91 2.12 1.99 2.12

0.9 0.3 0.3 0 8.76 8.46 9.01 9.11 8.74 8.94 8.91 8.56 9.09 9.24 8.90 8.89

0.9 0.3 0.3 0.5 8.62 8.38 8.91 9.10 8.76 8.89 8.64 8.35 8.91 9.05 8.64 8.86

0.9 0.3 0.9 0 7.94 7.38 8.68 9.09 8.63 8.86 7.85 7.31 8.89 9.33 8.79 8.98

0.9 0.3 0.9 0.5 7.85 7.30 8.74 9.13 8.69 9.00 7.87 7.27 8.83 9.16 8.75 8.82

Note: The table reports the median MSFE based on 500 replications. Serial correlation in the factors

is governed by ρf and ρg, while α and β govern serial and cross sectional correlation in the predictors’

residuals, respectively. Entries in bold represent the lowest median MSFE for each specification. See text

for additional details.
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Table 2: Simulation results with different relationships of loadings instabilities

Regime changes in the factor loadings are governed by independent Markov chains

ρf ρg α β T=100 , N=100 T=100 , N=200

MS-3PRF MSS-3PRF 3PRF PCA TPC LARS MS-3PRF MSS-3PRF 3PRF PCA TPC LARS

0.3 0.9 0.3 0 1.97 1.94 1.98 2.06 2.00 2.06 1.97 1.97 1.96 2.05 1.97 2.04

0.3 0.9 0.3 0.5 1.97 1.94 1.98 2.04 1.97 2.04 1.91 1.86 1.93 2.08 2.00 2.09

0.3 0.9 0.9 0 1.91 1.86 1.93 2.08 2.00 2.09 1.91 1.84 1.94 2.10 1.99 2.10

0.3 0.9 0.9 0.5 1.88 1.84 1.93 2.08 1.96 2.07 1.89 1.83 1.94 2.08 1.99 2.08

0.9 0.3 0.3 0 8.69 8.44 8.69 8.78 8.49 8.72 8.65 8.51 8.57 8.59 8.32 8.57

0.9 0.3 0.3 0.5 8.50 8.33 8.55 8.68 8.34 8.60 8.60 8.36 8.55 8.68 8.45 8.57

0.9 0.3 0.9 0 8.05 7.79 8.57 8.71 8.15 8.61 7.97 7.74 8.54 8.79 8.38 8.65

0.9 0.3 0.9 0.5 8.08 7.66 8.72 8.78 8.54 8.84 7.76 7.39 8.55 8.70 8.26 8.61

ρf ρg α β T=200 , N=100 T=200 , N=200

MS-3PRF MSS-3PRF 3PRF PCA TPC LARS MS-3PRF MSS-3PRF 3PRF PCA TPC LARS

0.3 0.9 0.3 0 2.00 1.98 2.01 2.06 2.00 2.06 2.02 2.00 2.00 2.06 1.99 2.06

0.3 0.9 0.3 0.5 2.02 2.00 2.00 2.06 2.00 2.05 2.01 1.98 2.00 2.07 2.00 2.06

0.3 0.9 0.9 0 1.94 1.88 1.96 2.07 1.98 2.06 1.92 1.86 1.96 2.06 1.97 2.06

0.3 0.9 0.9 0.5 1.93 1.89 1.97 2.06 1.98 2.06 1.94 1.89 1.99 2.08 1.98 2.07

0.9 0.3 0.3 0 8.99 8.88 9.10 9.17 9.03 9.13 9.22 9.06 9.29 9.30 9.12 9.28

0.9 0.3 0.3 0.5 9.22 9.16 9.27 9.24 9.13 9.24 9.01 8.86 8.90 8.92 8.80 8.83

0.9 0.3 0.9 0 8.90 8.60 9.32 9.48 9.24 9.45 8.77 8.34 9.33 9.43 9.15 9.38

0.9 0.3 0.9 0.5 8.83 8.39 9.24 9.34 9.21 9.33 8.72 8.41 9.19 9.39 9.17 9.30

Markov-switching autoregressive dynamics for the relevant factor f

ρf0 ρf1 ρg α β T=100 , N=100 T=100 , N=200

MS-3PRF MSS-3PRF 3PRF PCA TPCA PC-LARS MS-3PRF MSS-3PRF 3PRF PCA TPCA PC-LARS

0.1 0.9 0.9 0.3 0 3.84 3.71 3.84 4.00 3.92 3.98 3.72 3.63 3.71 3.85 3.72 3.82

0.1 0.9 0.9 0.3 0.5 3.65 3.55 3.67 3.76 3.72 3.75 3.60 3.47 3.66 3.82 3.71 3.80

0.1 0.9 0.9 0.9 0 3.44 3.23 3.59 3.86 3.78 3.86 3.33 3.11 3.50 3.70 3.60 3.69

0.1 0.9 0.9 0.9 0.5 3.66 3.47 3.82 4.05 3.96 4.07 3.53 3.31 3.68 3.90 3.78 3.89

0.3 0.7 0.3 0.3 0 2.64 2.63 2.63 2.65 2.59 2.64 2.57 2.55 2.56 2.57 2.51 2.57

0.3 0.7 0.3 0.3 0.5 2.61 2.59 2.58 2.61 2.51 2.60 2.58 2.56 2.56 2.59 2.51 2.58

0.3 0.7 0.3 0.9 0 2.40 2.29 2.49 2.60 2.49 2.59 2.39 2.30 2.47 2.60 2.48 2.60

0.3 0.7 0.3 0.9 0.5 2.41 2.34 2.48 2.62 2.49 2.61 2.38 2.29 2.46 2.58 2.46 2.57

ρf0 ρf1 ρg α β T=200 , N=100 T=200 , N=200

MS-3PRF MSS-3PRF 3PRF PCA TPCA PC-LARS MS-3PRF MSS-3PRF 3PRF PCA TPCA PC-LARS

0.1 0.9 0.9 0.3 0 4.08 4.01 4.09 4.21 4.16 4.19 4.02 3.90 3.98 4.03 3.99 4.03

0.1 0.9 0.9 0.3 0.5 4.09 4.02 4.12 4.24 4.19 4.22 4.03 3.99 4.02 4.13 4.04 4.11

0.1 0.9 0.9 0.9 0 3.77 3.50 3.96 4.11 4.02 4.11 3.89 3.62 4.20 4.37 4.28 4.35

0.1 0.9 0.9 0.9 0.5 3.89 3.72 4.19 4.37 4.29 4.35 3.92 3.68 4.12 4.24 4.19 4.20

0.3 0.7 0.3 0.3 0 2.75 2.76 2.72 2.74 2.69 2.73 2.78 2.76 2.74 2.78 2.71 2.77

0.3 0.7 0.3 0.3 0.5 2.73 2.72 2.69 2.72 2.67 2.71 2.74 2.74 2.69 2.72 2.65 2.71

0.3 0.7 0.3 0.9 0 2.57 2.50 2.66 2.75 2.65 2.74 2.51 2.42 2.60 2.69 2.60 2.68

0.3 0.7 0.3 0.9 0.5 2.54 2.49 2.66 2.72 2.66 2.73 2.54 2.49 2.63 2.71 2.61 2.70

Note: The table reports the median MSFE based on 500 replications. Serial correlation in the relevant

factor during each of the two regimes is governed by ρf0 and ρf1, serial correlation in the irrelevant factors

is governed by ρg, while α and β govern serial and cross sectional correlations in the predictors’ residuals.

Entries in bold represent the lowest median MSFE for each specification. See text for additional details.

35



Table 3: Out-of-Sample Exchange Rate Forecasting: Selected Currencies (RMSFE)

Forecast horizon 1 2 3 6 9 12

CAD–USD

PCA 0.871* 0.951 0.980 1.001 1.094 1.175

TPCA 0.872* 0.955 0.986 0.996 1.088 1.182

PC-LARS 0.872 0.949 0.986 0.998 1.095 1.157

Linear 3PRF 0.910* 0.959 0.997 1.001 1.043 1.057

MS-3PRF (first pass) 0.915* 0.975 0.994 1.006 1.018 1.045

MS-3PRF (first and third pass) 0.994 1.080 0.964 0.938 0.895 0.949

MSS-3PRF (first pass) 0.916* 0.953 0.981 0.987 1.019 1.047

MSS-3PRF (first and third pass) 1.150 1.204 0.995 0.972 1.148 1.072

EUR–USD

PCA 0.988 1.033 1.000 1.034 1.085 1.138

TPCA 0.995 1.049 1.010 1.061 1.109 1.155

PC-LARS 0.961 1.028 1.010 1.072 1.141 1.207

Linear 3PRF 1.014 1.010 1.016 1.049 1.081 1.148

MS-3PRF (first pass) 0.986 1.028 1.011 1.022 1.071 1.127

MS-3PRF (first and third pass) 1.078 1.037 1.117 1.170 1.126 1.270

MSS-3PRF (first pass) 0.996 1.049 1.049 1.088 1.111 1.174

MSS-3PRF (first and third pass) 1.234 1.108 1.306 1.329 1.463 2.043

JPY–USD

PCA 1.091 1.093 1.108 1.070 1.101 1.145

TPCA 1.081 1.111 1.098 1.066 1.085 1.121

PC-LARS 1.066 1.066 1.078 1.078 1.074 1.117

Linear 3PRF 1.019 1.046 1.055 1.031 1.068 1.105

MS-3PRF (first pass) 1.019 1.035 1.038 1.055 1.075 1.094

MS-3PRF (first and third pass) 1.035 0.984 1.025 1.126 0.879 0.877*

MSS-3PRF (first pass) 1.032 1.023 1.024 1.045 1.082 1.072

MSS-3PRF (first and third pass) 1.119 1.075 1.187 1.236 0.695** 0.872

GBP–USD

PCA 0.803* 0.977 1.043 1.045 1.064 1.091

TPCA 0.796* 0.965 1.023 1.043 1.064 1.091

PC-LARS 0.784* 0.953 1.029 1.035 1.073 1.114

Linear 3PRF 0.875* 0.934 0.989 1.029 1.059 1.094

MS-3PRF (first pass) 0.893 0.980 1.014 1.034 1.084 1.110

MS-3PRF (first and third pass) 1.679 1.201 1.049 1.082 1.131 1.079

MSS-3PRF (first pass) 0.889 0.982 1.013 1.039 1.078 1.113

MSS-3PRF (first and third pass) 1.337 1.382 1.351 1.422 1.408 1.252

Note: This table shows the Relative Mean Square Forecast Error (RMSFE) for selected currency pairs

(CAD–USD, EUR–USD, JPY–USD and GBP–USD) using PCA, TPCA, PC-LARS, linear 3PRF, MS-

3PRF (first pass), MS-3PRF (first and third pass), MSS-3PRF (first pass) and MSS-3PRF (first and third

pass) as forecasting approaches. An entry smaller than 1 indicates that a given approach outperforms

the random walk model. Entries in bold indicate the best performing approach for a specific horizon.

Statistically significant reductions in the MSFE relative to the random-walk according to the Diebold-

Mariano test are indicated by asterisks (* denotes significance at the 10% level and ** denotes significance

at the 5% level).
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Table 4: Out-of-Sample Exchange Rate Forecasting: Selected Currencies (Success Ratios)

Forecast horizon 1 2 3 6 9 12

CAD–USD

PCA 0.637** 0.602** 0.575* 0.522 0.504 0.407

TPCA 0.637** 0.620** 0.593** 0.522 0.487 0.407

PC-LARS 0.611** 0.602** 0.513 0.487 0.469 0.407

Linear 3PRF 0.611** 0.620** 0.558** 0.513 0.522 0.478

MS-3PRF (first pass) 0.620** 0.575** 0.540 0.487 0.522 0.460

MS-3PRF (first and third pass) 0.558 0.566** 0.690** 0.655** 0.646** 0.673**

MSS-3PRF (first pass) 0.646** 0.611** 0.558 0.504 0.522 0.460

MSS-3PRF (first and third pass) 0.504 0.522 0.620** 0.575 0.673** 0.681**

EUR–USD

PCA 0.549 0.487 0.540 0.504 0.416 0.372

TPCA 0.558 0.487 0.566 0.487 0.443 0.354

PC-LARS 0.566* 0.531 0.549 0.540 0.460 0.389

Linear 3PRF 0.531 0.496 0.540 0.496 0.434 0.398

MS-3PRF (first pass) 0.549 0.513 0.584 0.540 0.487 0.460

MS-3PRF (first and third pass) 0.540 0.496 0.522 0.451 0.425 0.398

MSS-3PRF (first pass) 0.549 0.496 0.540 0.443 0.460 0.416

MSS-3PRF (first and third pass) 0.496 0.575 0.540 0.487 0.425 0.345

JPY–USD

PCA 0.460 0.496 0.469 0.496 0.504 0.425

TPCA 0.460 0.434 0.451 0.504 0.478 0.425

PC-LARS 0.531 0.504 0.496 0.487 0.469 0.425

Linear 3PRF 0.575** 0.549* 0.531 0.522 0.460 0.504

MS-3PRF (first pass) 0.496 0.487 0.443 0.443 0.487 0.460

MS-3PRF (first and third pass) 0.593** 0.575* 0.487 0.522 0.726** 0.584

MSS-3PRF (first pass) 0.513 0.513 0.531 0.531 0.407 0.469

MSS-3PRF (first and third pass) 0.504 0.566** 0.496 0.566 0.797** 0.611*

GBP–USD

PCA 0.593** 0.540 0.513 0.434 0.522 0.575

TPCA 0.593** 0.540 0.504 0.469 0.558** 0.584**

PC-LARS 0.611** 0.593** 0.531 0.531 0.425 0.496

Linear 3PRF 0.584** 0.593** 0.602** 0.513 0.504 0.478

MS-3PRF (first pass) 0.549 0.566* 0.549 0.504 0.504 0.451

MS-3PRF (first and third pass) 0.460 0.540 0.593** 0.504 0.425 0.522

MSS-3PRF (first pass) 0.522 0.522 0.558 0.504 0.531 0.558

MSS-3PRF (first and third pass) 0.460 0.522 0.531 0.496 0.416 0.504

Note: This table shows the Success Ratios for selected currency pairs (CAD–USD, EUR–USD, JPY–

USD and GBP–USD) using PCA, TPCA, PC-LARS, linear 3PRF, MS-3PRF (first pass), MS-3PRF (first

and third pass), MSS-3PRF (first pass) and MSS-3PRF (first and third pass) as forecasting approaches.

Under the null hypothesis of no directional accuracy, one would expect a success ratio of 0.5. Higher

ratios indicate an improvement over the no-change forecast. Entries in bold indicate the best performing

approach for a specific horizon. Statistically significant improvements in directional accuracy according to

the Pesaran-Timmermann test are indicated by asterisks (* denotes significance at the 10% level and **

denotes significance at the 5% level).
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Table 5: Out-of-Sample Macroeconomic Forecasting

Forecast horizon 1 2 3 4 5 6 7 8

GDP

MS-3PRF (first pass) 1.151 0.967* 0.975* 0.973 0.936** 0.976 1.013 0.979

MS-3PRF (first and third pass) 1.095 1.029 1.306 1.196 1.026 1.147 1.169 1.104

MSS-3PRF (first pass) 1.150 0.961** 0.975* 0.943** 0.943** 0.973 1.020 0.959

MSS-3PRF (first and third pass) 0.962 1.114 1.172 1.246 1.226 1.172 1.118 1.109

Linear 3PRF 1.077 0.971** 1.009 0.983 0.943** 0.945** 0.978** 0.916**

TPCA 0.966** 0.986** 0.990** 0.996 0.997 1.006 1.003 1.004

PC-LARS 1.024 0.963* 0.950** 0.935** 0.944** 0.962 1.003 0.950*

Consumption

MS-3PRF (first pass) 1.054 0.963 1.001 0.933 0.950 0.956 0.955 0.956

MS-3PRF (first and third pass) 1.073 1.029 1.368 1.099 1.164 1.058 1.109 1.168

MSS-3PRF (first pass) 1.035 0.958 0.987 0.920 0.956 0.944* 0.952 0.953

MSS-3PRF (first and third pass) 1.055 1.149 1.256 1.421 1.309 1.467 1.300 1.311

Linear 3PRF 0.970 0.959** 0.969** 0.949** 0.954** 0.926** 0.939** 0.945**

TPCA 0.939** 0.961** 0.981** 0.986* 0.997 1.008 1.020 1.009

PC-LARS 1.028 1.011 0.972** 1.016 0.982 0.990 0.961 0.985

Investment

MS-3PRF (first pass) 0.933 0.996 1.039 1.039 1.000 0.995 1.013 1.010

MS-3PRF (first and third pass) 1.181 1.106 1.186 1.397 1.207 1.140 1.104 1.065

MSS-3PRF (first pass) 0.963 0.998 1.047 1.056 1.001 1.006 1.015 1.015

MSS-3PRF (first and third pass) 0.912 1.062 1.141 1.139 1.081 1.043 1.029 1.043

Linear 3PRF 0.997 0.990 1.034 1.023 0.996 0.989 0.992 0.988

TPCA 1.010 0.998 0.999 1.001 1.005 1.009 1.003 1.005

PC-LARS 0.913 0.977 0.980 0.991 0.995 1.003 1.021 1.007

Export

MS-3PRF (first pass) 1.175 0.984 1.009 0.963 1.020 1.004 1.007 0.982

MS-3PRF (first and third pass) 1.003 1.031 1.108 1.082 1.019 1.084 1.003 0.954**

MSS-3PRF (first pass) 1.192 0.985 0.998 0.965 1.015 1.008 1.003 0.989

MSS-3PRF (first and third pass) 0.927** 1.072 1.094 1.037 1.036 1.057 1.064 1.045

Linear 3PRF 1.003 0.996 0.991 0.983 1.003 0.983 0.996 0.999

TPCA 1.061 1.029 1.021 1.006 1.008 1.002 0.999 0.998

PC-LARS 1.117 1.027 1.018 1.000 1.010 1.003 1.006 1.003

Note: This table reports the mean squared prediction error of a given approach relative to the MSPE of PCA for forecast

horizons ranging from 1 quarter to 8 quarters ahead. Linear 3PRF uses a single target proxy, MS-3PRF (first pass) and

MSS-3PRF (first pass) are regime-switching 3PRFs based on a single target proxy and regime-switching parameters in the

first pass only; MS-3PRF (first and third pass) and MSS-3PRF (first and third pass) are regime-switching 3PRFs based on a

single target proxy and regime-switching parameters in the first and third pass. For these approaches, the target proxy is the

variable to forecast. TPCA is PCA where hard thresholding was performed before extracting the first principal component to

forecast. PC-LARS is PCA where soft thresholding was performed before extracting the first principal component to forecast.

Boldface indicates the best performing procedure for a specific horizon and variable. The first estimation sample extends

from 1960Q3 to 1984Q4, and it is recursively expanded as we progress in the forecasting exercise. The full evaluation sample

runs from 1985Q1 to 2015Q3. Statistical reductions in MSPE relative to PCA according to the Diebold and Mariano (1995)

test are indicated by asterisks (* denotes significance at the 10% level and ** denotes significance at the 5% level).
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Table 6: Out-of-Sample Macroeconomic Forecasting

Forecast horizon 1 2 3 4 5 6 7 8

Import

MS-3PRF (first pass) 1.129 0.981 0.938 0.994 0.921* 1.011 0.993 0.948

MS-3PRF (first and third pass) 0.992 0.947 0.925 0.987 0.928 0.967 1.009 0.981

MSS-3PRF (first pass) 1.187 0.983 0.935 0.997 0.916* 1.007 1.026 0.953

MSS-3PRF (first and third pass) 1.035 0.961 0.963 1.051 0.973 1.026 1.062 1.027

Linear 3PRF 1.028 0.994 0.976 0.978* 0.943* 0.936** 0.962* 0.940*

TPCA 1.012 0.995** 0.997 1.004 1.012 1.011 1.010 1.018

PC-LARS 1.058 0.991 1.004 1.000 0.977 0.977 0.962** 0.972

Hours

MS-3PRF (first pass) 1.057 1.037 1.013 0.995 0.992 1.006 0.972 0.982

MS-3PRF (first and third pass) 1.037 1.253 1.565 1.500 1.417 1.159 1.327 1.217

MSS-3PRF (first pass) 1.088 1.032 1.017 0.995 0.997 1.011 0.984 0.990

MSS-3PRF (first and third pass) 1.069 1.001 1.017 1.109 1.319 1.401 1.515 1.491

Linear 3PRF 1.023 1.026 1.046 1.023 1.009 1.009 1.003 0.992

TPCA 1.010 1.001 1.003 1.005 1.009 1.003 1.005 1.008

PC-LARS 0.864** 0.980* 0.993 1.006 1.010 1.004 1.017 1.030

GDP inflation

MS-3PRF (first pass) 1.018 1.094 1.215 1.242 1.289 1.296 1.312 1.320

MS-3PRF (first and third pass) 1.003 1.099 1.725 1.611 1.528 1.393 1.407 1.459

MSS-3PRF (first pass) 1.018 1.096 1.181 1.228 1.263 1.276 1.288 1.315

MSS-3PRF (first and third pass) 0.965 0.787 0.798 0.784 0.710* 0.616** 0.588** 0.570**

Linear 3PRF 1.109 1.263 1.320 1.093 1.068 1.038 1.038 1.048

TPCA 1.010 1.026 1.037 1.056 1.050 1.059 1.031 1.044

PC-LARS 0.996 1.031 1.140 1.294 1.250 1.221 1.132 1.085

PCE inflation

MS-3PRF (first pass) 1.033 1.029 1.069 1.059 1.051 1.102 1.124 1.104

MS-3PRF (first and third pass) 1.004 1.065 1.547 1.867 2.076 2.353 2.469 2.346

MSS-3PRF (first pass) 1.020 1.020 1.056 1.050 1.028 1.085 1.093 1.050

MSS-3PRF (first and third pass) 0.957 0.863 0.938 0.834* 0.801** 0.835* 0.778** 0.707**

Linear 3PRF 1.038 1.045 1.074 1.049 1.076 1.100 1.082 1.114

TPCA 1.031 1.023 1.025 1.023 1.029 1.028 1.049 1.043

PC-LARS 1.069 1.130 1.169 1.168 1.132 1.100 1.077 1.046

Note: This table reports the mean squared prediction error of a given approach relative to the MSPE of PCA for forecast

horizons ranging from 1 quarter to 8 quarters ahead. Linear 3PRF uses a single target proxy, MS-3PRF (first pass) and

MSS-3PRF (first pass) are regime-switching 3PRFs based on a single target proxy and regime-switching parameters in the

first pass only; MS-3PRF (first and third pass) and MSS-3PRF (first and third pass) are regime-switching 3PRFs based on a

single target proxy and regime-switching parameters in the first and third pass. For these approaches, the target proxy is the

variable to forecast. TPCA is PCA where hard thresholding was performed before extracting the first principal component to

forecast. PC-LARS is PCA where soft thresholding was performed before extracting the first principal component to forecast.

Boldface indicates the best performing procedure for a specific horizon and variable. The first estimation sample extends

from 1960Q3 to 1984Q4, and it is recursively expanded as we progress in the forecasting exercise. The full evaluation sample

runs from 1985Q1 to 2015Q3. Statistical reductions in MSPE relative to PCA according to the Diebold and Mariano (1995)

test are indicated by asterisks (* denotes significance at the 10% level and ** denotes significance at the 5% level).

39


	wp591cover.pdf
	Markov-Switching Three-Pass Regression Filter
	Pierre Guerin, Danilo Leiva-Leon, Massimiliano Marcellino
	Working Paper n. 591


