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Abstract

The purpose of this note is to discuss the relation between model uncertainty in risk
analysis and decision theory.

1 Introduction

Having di¤erent focuses, the �elds of risk analysis and decision theory have been evolving in
parallel for the last decades. While the former specialized in risk assessment, risk characteriza-
tion, and risk communication toward the end of understanding and managing risk, the latter
specialized in the study of decision criteria for choice under uncertainty and of their di¤erent
descriptive and prescriptive implications. Recently, it emerged in risk analysis the demand for
decision criteria that go beyond expected loss. At the same time, decision theory faces the
problem of implementing a more sophisticated quanti�cation of uncertainties involved in the
newly developed criteria.
Our analysis aims at connecting the two �elds thus allowing to share their new developments

and leading to a modern decision analysis where a risk informed risk analysis becomes the input
of applied decision theory.
While a �rst step in this direction was taken by Borgonovo et al. (2016), this chapter

focuses on the issue of model uncertainty. In particular, the purpose of this note is to discuss
the relation between model uncertainty in the risk analysis setup and in modern decision theory.
We will then sketch how novel criteria in decision theory can be meaningfully applied in decision
analysis contexts when di¤erent speci�cations of model uncertainty are involved.

2 Model uncertainty in risk analysis and decision theory

Decision theory aims at modeling decision situations, both from a descriptive and prescrip-
tive viewpoint. Some of its recent developments focused on the issue of model uncertainty

�The authors gratefully acknowledge the �nancial support of the European Research Council (INDIMACRO)
and of the AXA Research Fund.
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(see Marinacci, 2015, for a review). The typical decision situation features a decision maker
who has to choose an action, among those available, whose consequences depend on uncertain
factors beyond his control. Canonically, all these ingredients (alternatives, uncertain factors,
consequences, and the relation between them) are a datum of the decision problem, together
with the information, conditional on which decisions are taken. Uncertain factors are usually
called states of the world (or of the environment, or of nature), and the possible mechanisms
(or laws) that generate states are represented by a set of probability measures over them. In
the language of decision theory, these probability measures are called probability models (see
Marinacci, 2015, page 1000) and represent the posited intrinsic variability of states. When
the latter set is not a singleton, there is probabilistic model uncertainty, or model uncertainty
from a decision theory viewpoint (sometimes called model ambiguity). In this sense, model
uncertainty refers to uncertainty about the stochastic nature of states�realizations. Moreover,
often, the degree of con�dence of the decision maker about these models is represented by a
prior probability over them.
As de Finetti (1971) writes:

A scienti�c theory, in the sense of a law, is not a statement whose truth or falsity
is objectively decidable. It seems therefore reasonable to analyse its validity, from
this point of view, with probabilistic arguments, necessarily subjective.

Summing up, model uncertainty in decision theory is typically the object of two probabilistic
layers of analysis: a �rst layer featuring probability models on states that quantify inherent ran-
domness, and a second layer characterized by a prior probability quantifying model uncertainty
on probability models.

In risk analysis, a model is a (often mathematical) representation of reality which captures
some of its aspects relevant to a speci�c objective, for instance a decision or a prediction. It is
usually in the form of a mapping from input variables to output variables, and it is intended to
represent relationships between quantities in a system.1 Model uncertainty, from a risk analysis
viewpoint, is uncertainty about this representation of reality. See, e.g., Apostolakis (1994), Zio
and Apostolakis (1996), Apostolakis (1999), Nielsen and Aven (2003). There is some consensus
about the fact that there are two qualitatively di¤erent kinds of model uncertainty: uncertainty
in the output caused by uncertainty in the functional form of the model is referred to as model
structure uncertainty; uncertainty in the output caused by uncertainty in the input variables
is referred to as parameter uncertainty.2

Another distinction about which there is consensus is the one between stochastic and deter-
ministic models. In a deterministic model, each input vector is associated to a unique value of
the output, while in a stochastic model an input vector is mapped into a distribution of output
values. Thus deterministic models can be seen as special cases of stochastic models. This
classi�cation is independent of the previous one and they might well coexist in the analysis. In
turn, all the models used in risk analysis usually consist of a multiple submodels, describing
the system at di¤erent levels, and uncertainty may a¤ect any of these levels.

1The input and output variables correspond to the various quantities in the system itself.
2However, as observed by Apostolakis and Wu (1993), and Buslik (1994), in some cases model structure

uncertainty can be reframed as as parameter uncertainty.
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As we will see, the relation between model uncertainty in decision theory and in risk analysis
is not completely obvious.3 We will expand on this point in the following sections. Speci�cally,
we will illustrate how model uncertainty in risk analysis can be accommodated into a decision
theoretic framework. This will be done by putting into correspondence the constituents of
risk analysis and those of decision theory. Then we will brie�y show how this allows for the
treatment of model uncertainty in a decision analysis. Furthermore, we will illustrate our
techniques with an example, and we will conclude with a discussion.

3 Distributions

A (discrete probability) distribution on a set Z is a function

p : Z ! [0; 1]
z 7! p (z)

such that p (z) 6= 0 for �nitely many elements of Z and
P

z2Z p (z) = 1. The value p (z) is
the probability of the singleton set fzg. Denoting by fzigi2I a �nite subset of Z such thatP

i2I p (zi) = 1, we often write p = hpi; ziii2I . For every subset Y of Z, p (Y ) =
P

y2Y p (y) is
the probability of the set Y .
When Z is an interval of real numbers a decumulative probability distribution is a left

continuous decreasing function p with supremum value 1 and in�mum value 0. The value
p (z) is the probability of the set fy 2 Z : y � zg. For every sub-interval Y = [a; b) of Z,
p (Y ) = p (a)� p (b) is the probability of the set Y .4

4 Risk triplets in a risk analysis setup

We adopt the description of risk proposed by Kaplan and Garrick (1981). Among those pro-
posed in the SRA Glossary (2015) this one represents a good compromise between simplicity
and �exibility, and it is widely adopted in applications of risk analysis (e.g. by the US NRC).

3In particular, it depends on the de�nition of state of the world or of the environment and on the requirements
about states�observability.

4The probability of any sub-interval can then be computed because the probability of the singleton set fzg
is p (z)� p (z+).

3



Kaplan and Garrick informally de�ne hazard as �a source of danger�and risk as the �pos-
sibility of loss or injury�and �the degree of probability of such loss�. They then carry out a
risk analysis in terms of triplets

hSi; `i; xii (1)

each of the components consisting of an answer to the following questions:

1. �What can happen?�The answer identi�es a scenario Si.

2. �How likely is it that it will happen?�The answer indicates the likelihood `i = ` (Si) of
scenario Si.

3. �If it does happen, what are the consequences?�The answer is the consequence of scenario
Si.

Hazard is then formally de�ned as the set of doublets

H = hSi; xiii2I

while risk is de�ned as the set of triplets

R = hSi; `i; xiii2I :

They consider three formats that capture and quantify, the concept of �likelihood.�

Format 1. (Frequency)
This applies when we have a repetitive situation, and we ask, �How frequently does scenario

i occur?�In this case the likelihood is expressed as a frequency `i = � (Si), abbreviated �i, and
risk becomes R = hSi; �i; xiii2I .

Format 2. (Probability)
When the situation is �one shot�, like a mission to Mars, we want to quantify our degree

of con�dence that the mission will succeed. In this case likelihood is expressed as a probability
`i = p (Si), abbreviated pi, and the triplets become R = hSi; pi; xiii2I .

Format 3. (Probability of Frequency)
The third format applies when we have a repetitive situation, or can imagine one as a

thought experiment, so that the frequency exists, but since we haven�t done the experiment
we are uncertain about what that frequency would be. We therefore express our state of
knowledge about that frequency with a distribution h��; ��i�2�. We call this the �Probability
of Frequency�format, here `i = h��; �� (Si)i, abbreviated h��; (��)ii�2�, and

R =


Si; h��; (��)ii�2� ; xi

�
i2I : (2)

Notice that to any such risk corresponds to a family of risks R� = hSi; (��)i ; xiii2I in frequency
format paired with a distribution � on �, that is, R = h��; R�i�2�.

We hereby consider the generalized version of Format 3 proposed by Kaplan (1997) in which
xi = x (Si) is a random outcome, formally a conditional distribution over �nal outcomes in a
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set Z (where conditioning is made on scenarios). The model uncertainty analysis of these risks
is better understood by decomposing each risk in two components

hSi; `i; xiii2I � hSi; `iii2I ^ hSi; xiii2I :

The �rst component hSi; `iii2I is a model of scenario realization saying that scenario Si occurs
with likelihood `i = h��; �� (Si)i; the second is hSi; xiii2I is a conditional model of �nal outcomes
realization saying that conditional on the realization of scenario Si, the �nal outcome z occurs
with likelihood xi (z) = x (z j Si).
In this perspective, the types of model uncertainty in risk analysis that we discussed in the

introduction emerge in a simple and compelling way. For every �, �� is an aleatory model of the
realizations of S1; :::; SN , and epistemic uncertainty about this stochastic model is represented
by �. Thus, according to the previous classi�cation, � captures state of knowledge (= epistemic)
parameter uncertainty while each �� captures stochastic (= aleatory) parameter uncertainty.
For every i, given Si, the distribution xi of �nal outcomes represents the uncertainty about

the relation between the inputs and the outputs. This uncertainty may result from two sources.
Either, the model of �nal outcome realization is aleatory and thus the input-output relation
becomes probabilistic, or the same model is deterministic, but its speci�c structure is only
partially known and this again induces a probabilistic relation between inputs and outputs, or
both. In other words, the probabilistic nature of xi captures model structure uncertainty.
If one wants to distinguish the aleatory and the epistemic components of model structure

uncertainty, it is necessary to augment the risk triplet format by considering triplets of the formD
Si; h��; (��)ii�2� ;



�
; (x
)i

�

2�

E
i2I
=


Si; h��; �� (Si)i�2�

�
i2I ^

D
Si; h�
; x
 (Si)i
2�

E
i2I

(3)

where each x
 is a scenario-conditional aleatory model of the outcome,5 and � is an epistemic
probability model representing the degree of con�dence in x
. Following the distinction we intro-
duced above, the �rst case (aleatory structural model uncertainty without epistemic structural
model uncertainty) corresponds to a degenerate �,6 the second (deterministic structural model
with epistemic structural model uncertainty) to degenerate x
�s, and the third (aleatory struc-
tural model uncertainty without epistemic structural model uncertainty) to nondegenerate �
and x
�s.
Also in this case a family of (aleatory) triplets

R(�;
) = hSi; �� (Si) ; x
 (Si)ii2I
emerges and it is paired with a (joint epistemic) distribution (�; �) on �� �. The �nal triplet
can thus be written as, R =



�� � �
; R(�;
)

�
�2�;
2�.

Clearly, both the models of scenario generation and those of scenario-outcome propaga-
tion, can consist of several submodels each entailing di¤erent levels of uncertainty, as we will
exemplify below. At this level of abstraction the distinction fades.

5 Lottery acts in a decision theory setup

In this section we relate the Anscombe and Aumann (1963) framework to the Kaplan and
Garrick setup presented above. Following Anscombe and Aumann, a decision problem under

5For each Si, the �nal outcome z occurs with likelihood x
 (z j Si).
6And we are back to the formulation (2) of Kaplan (1997).
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uncertainty features a decision maker who has to choose among a set of actions whose �nal
outcomes depend stochastically on uncertain factors beyond his control, called states of the
environment.7 Formally, for every action d, fd (s) is the distribution of �nal outcomes in a set
Z resulting from the choice of d and conditional on the realization of state s in a measurable
space S and, the (simple and measurable) function

fd : S ! X
s 7! fd (s)

is called Anscombe and Aumann act. This de�nition implies that every act can be written as

fd (s) =

8>><>>:
x1 s 2 S1
x2 s 2 S2
::: :::
xN s 2 SN

where fx1; x2; :::; xNg is a �nite set of random outcomes and fS1; S2; :::; SNg is a �nite measur-
able partition of S. This expression of acts immediately delivers a one to one correspondence
with hazards given by

fd �


Si; x

d
i

�
i2I = H

d:

In the perspective of risk analysis, Hd is the hazard corresponding to implementing action d.
From the discussion of the previous section, it follows that fd can be seen as representing the
structural model of action d conditional on the realization of states. As we discussed above it
can be desirable to disentangle the epistemic and aleatory parts of structural model uncertainty.
This can be achieved by considering a distribution over acts



�d
; f

d



�

2�d �

�
Si;
D
�d
;
�
xd

�
i

E

2�d

�
i2I

(4)

formally, these are the objects of choice considered by Anscombe and Aumann (1963), often
called lottery acts. They correspond to the output component of (3).
As for the modelling of states� generation, Cerreia-Vioglio, Maccheroni, Marinacci, and

Montrucchio (2013) enrich the Anscombe and Aumann framework with a family of probabil-
ity measures f��g�2� on S, that describe the intrinsic variability of states: aleatory (state)
uncertainty. Which paired with a distribution � over � gives a full description h��; ��i�2� of
the uncertainty concerning states.8 The relation with the framework of Kaplan and Garrick
is now �nalized by noticing that h��; ��i�2� naturally induces likelihoods `i = h��; �� (Si)i on
scenarios, therefore yielding the doublets


Si; h��; (��)ii�2�
�
i2I : (5)

which together with (3) associates with every lottery act a risk in the form (3).

7More on states and the implications of their de�nition on model uncertainty in the discussion below.
8Cerreia-Vioglio et al. (2013) use di¤erent letters for their objects, e.g., f��g�2� is denoted by M and � is

called �. We translitterated them in order to ease comparison with the risk triplets setup.
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Summing up, we have the following glossary:

KG triplets AA acts
Hd =



Si; x

d
i

�
i2I fd (s) = xi s 2 Si, i = 1; :::; N�

Si;
D
�d
;
�
xd

�
i

E

2�d

�
i2I



�d
; f

d



�

2�d

Rd =

�
Si; h��; (��)ii�2� ;

D
�d
;
�
xd

�
i

E

2�d

�
i2I



�d
; f

d



�

2�d ^ h��; ��i�2�

(6)

Notice that � can be naturally seen as a prior over the set of probabilistic models f��g�2�,
and in this sense probabilistic model uncertainty can be seen as a special case of parameter
uncertainty. But, as we will discuss in the �nal section, this depends on the adoption of the
modelling framework of Anscombe and Aumann. By chosing the setup of Savage with a larger
state space and no uncertainty in the description of outcome realization conditional on states,
the converse relation can be obtained. In other words, it is always possible to translate one
formulation of model uncertainty into the other. This further facilitates the communication
between the two �elds.

5.1 Decision theoretic risk evaluation

We conclude this section by showing how our analysis can be used to enrich a decision analysis
under model uncertainty with state-of-the-art decision theoretic tools. The extra �exibility
granted by the use of decision criteria more sophisticated than expected loss, allow to take into
account di¤erent facets of risk under model uncertainty. Assume a risk analysis, for example,
like the one in the example below on the renovation of a nuclear power plant, has produced

risk triplets Rd =
�
Si; h��; (��)ii�2� ;

D
�d
;
�
xd

�
i

E

2�d

�
i2I
corresponding to di¤erent renovation

projects d 2 D. To every such risk, it corresponds a lottery act by means of (6), and therefore,
when the time of choosing among the di¤erent projects comes, the decision maker can consider
all the criteria developed in decision theory in order to make a decision (see, e.g., Cerreia-Vioglio
et al., 2013). A tractable, yet powerful example is the two-stage decision criterion introduced
by Klibano¤, Marinacci, and Mukerji (2005). Without epistemic structural model uncertainty
it has the form

V
�
Rd
�
= V

�
fd ^ h��; ��i�2�

�
=
X

�2�
��v

�X
i2I
�� (Si)u

�
xdi
��

(7)

where we can interpret u as capturing attitudes toward aleatory uncertainty and v as capturing
risk attitudes towards epistemic uncertainty (as discussed in Marinacci, 2015). If, in addition,
there is epistemic structural model uncertainty the previous criterion becomes

V
�
Rd
�
= V

�

�d
; f

d



�

2�d ^ h��; ��i�2�

�
=
X


2�d
�d

X

�2�
��v

�X
i2I
�� (Si)u

��
xd

�
i

��
which is the version of (7) studied by Seo (2009).
Adopting the more pragmatical view of Winkler (1996), these representations allow for the

decomposition of the di¤erent sources of uncertainty so to distinguish their role and possibly
target them in order to reduce vulnerabilities at speci�c levels. Speci�cally, the functions u and
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v describe how the di¤erent sources of uncertainty impact the overall evaluation of alternative
d.
As anticipated, this is only but one example. Our translation leads the way to the direct

use of the vast majority of recent decision criteria under uncertainty developed in decision
theory (see e.g. Gilboa and Marinacci, 2013, for a comprehensive review). Importantly, besides
model uncertainty, many more considerations can be embedded in the analysis, ranging from
robustness concerns to behavioral traits, as discussed in Borgonovo et al. (2016).

6 An example of seismic risk analysis

In this section we will illustrate the use of our translation in the context of a bona �de risk
analysis.
Kaplan, Perla and Bley (1983, henceforth KPB) study the process of a �rst level probabilistic

risk analysis for a nuclear power plant. The analysis is carried on according to the following
steps:

1. Seismicity: description of the likelihood of ground motions at the plant location.

2. Fragility of components: description of the likelihood of the failure of the single compo-
nents conditional on di¤erent ground motions.

3. Plant logic: identi�cation of component failures which would lead to failure of the plant
(here, core melt).

4. Plant level fragilities: computation of the likelihood of plant failure.

Seismicity is described by means of crustal models that take the form of cumulative distrib-
ution functions, that identify the probability of exceedance. Here is the �rst place where model
uncertainty can already be found: it translates into uncertainty about the speci�c form (or the
parameters) of the distribution function.
Fragility of a given component is described by a fragility curve associating to each level

of ground acceleration the corresponding failure fraction of the component. Also here model
uncertainty can bite and, in particular, may regard the speci�c form (or the parameters) of the
fragility curve of the component.
Plant logic analysis typically involves boolean modeling. Of course there can be uncertainty

also at this level, but, as KPB, we will not consider it.
In the �nal step, the families of fragility curves obtained at step 2 are used to obtain the

plant level fragility curve, for a given plant logic. Also here we can �nd model uncertainty. It
can be at the very least inherited by the one about components, but can also descend from
uncertainty in the way in which fragility curves are combined (e.g. their correlation structure).
Notice that while the uncertainty regarding ground motion does not depend on the design

of the plant, i.e. its components and their combination, the one about the plant fragility curves
obviously does, because as components change also the families of their fragility curves do.
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States and eartquake models As commonly done, KPB describe earthquakes intensities as
peak ground accelerations s 2 R+. The state space is thus S = R+. A crustal dynamics model
produces a decumulative probability distribution � : S ! [0; 1] called seismicity curve. At any
point s 2 S, the value � (s) represents the frequency of exceedance, that is, the frequency with
which earthquakes of acceleration s or greater occur at the plant location per year.
Yet, our knowledge of the crustal dynamics that determine peak ground accelerations is still

incomplete. For example, the information available to the risk analyst, say recorded seismic
history and geologic data, prevents him from knowing the curve � with great accuracy, and
this is expressed by considering a family f�� : � 2 �g of possible curves, the set � may be seen
as the set of alternative geophysical models, say di¤erent crustal dynamics equations. These,
in turn, may determine a family f��g�2� of Pareto distributions.
The risk analyst�s degree of con�dence in the various seismicity curves can thus be described

by another probability distribution � on �.

Anscombe-Aumann acts and consequences The design decision dk about a speci�c com-
ponent k (for example, the choice of a given kind of service water pump or of shear wall) deter-
mines the component�s fragility curve fdk : S ! [0; 1], describing for every peak ground acceler-
ation s the probability fdk (s) of failure of that speci�c component. The probability of meltdown
in each state s is then determined, by plant logic analysis, by the vector d = (d1; :::; dK) of all
design decisions that constitutes the plant design d.
Let�s consider a toy case in which the only design decisions are d1 =�service water pumps�

and d2 =�shear wall�, the frequency of plant failure, that is, the plant�s fragility curve, in state
s is given by

fd (s) = f (d1;d2) (s) = 1�
�
1� fd1 (s)

� �
1� fd2 (s)

�
= fd1 (s) + fd2 (s)� fd1 (s) fd2 (s) :

In fact, core damage can be caused either by failure of component 1 or failure of component
2 here assumed to be independent. At this point, note that measurement of (the continuum
of) peak ground accelerations is discrete and therefore both fd1 and fd2 are increasing stair-
case functions, and so it is fd (s). In other words, fd (s) is the act (à la Anscombe-Aumann)
that corresponds to nuclear plant design d, whose (�rst level) consequences are failure fractions
(meltdown probabilities) and depend on both the design decisions and the intensities of earth-
quakes in the plant location. Such intensities are thus the relevant states of the environment.

In general, for each plant design d, there exist 0 = s1 � s2 � ::: � sN < 1 such that,
setting xdn = f

d (sn) for all n = 1; :::; N , we have

fd (s) =

8>><>>:
xd1 s 2 [s1; s2) = S1
xd2 s 2 [s2; s3) = S2
::: :::
xdN s 2 [sN ;1) = SN

(8)

where Si is the scenario in which an earthquake of intensity s 2 [si; si+1) occurs and xdi is the
consequent failure probability. As anticipated, consequences are failure probabilities, hence the
consequence set can be modelled as X = [0; 1].
This shows how the plant design determines and Anscombe and Aumann act fd : S ! [0; 1]

or equivalently by the hazard
Hd =



Si; x

d
i

�
i2I :
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As it happens for seismicity curves also the determination of frequency of seismic core melt
conditional on the design d and the peak ground acceleration is di¢ cult. Two possible reasons
are the some degree of variability of the fragility estimation of the single components and the
complexity of the system under consideration. In the toy example above, it may be the case
that component failure are not independent, but the depence structure is unknown. Notice
that KPB also consider the fact that the fragility curves of the single component might be
themselves subject to uncertainty.
In any case this leads to the fact that to each plant design d is associated a family

�
fd
 : 
 2 �d

	
of possible plant fragility curves (and correspondingly a family of acts/hazards). Again, the
risk analyst�s degree of con�dence in the various curves can be described by a probability
distribution �d on �d.
Notice that both �d
, the degree of con�dence in the plant fragility curve being f

d

 , and the

plant fragility curves fd
 , which determine the probability of failure of the system, depend on
d. In fact, di¤erent designs can lead to di¤erent probabilities of failures of the system under
di¤erent plant logic hypotheses. Indeed, since d describes a vector of components of the plant,
whenever we modify a component this has an impact, for a given logic model, upon the degree
of con�dence in the plant fragility curve being fd
 , that is �

d

.

For example, if �d is �nite and �d =
�

�d
; 


�	
, then a lottery�

fd
 ; �
d



�

2�d

of Anscombe-Aumann acts is obtained, the corresponding risk analysis object is a stochastic
hazard 


�d
; H
d



�

2�d =

�
Sn;

D
�d
;
�
xd

�
i

E

2�d

�
i2I
:

Finally, passing from hazards to risks we obtain�
Si; h��; (��)ii�2� ;

D
�d
;
�
xd

�
i

E

2�d

�
i2I
:

The analysis performed above pertains to a �rst level probabilistic risk assessment. The
estension to the subsequent levels is of course doable. It is both conceptually and mathemati-
cally straightforward but notationally heavy. It basically consists in enriching the consequence
space with additional layers of uncertainty regarding the relation between core damage and
radioactive release (level two) and between radioactive release and e¤ects on the population
(level three).

7 Discussion

In this section we discuss some issues raised in the literature about scenarios and models.

Scenarios
Each scenario in the risk analysis setup is an event in (that is, a subset of) the state space

S of the decision theoretic setup (see Anscombe and Aumann, 1963 and Savage, 1954). A
matter which may be worth considering is whether, in general, scenarios form an exclusive and
exhaustive list of the events that are consequence relevant. This question has two relevant
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implications: one conceptual and that goes at the hearth of the theory and one practical. The
brief answer, in the risk analysis setup, is yes: for any given risk, their disjoint union covers
the full state space, that is the set of "all that can happen." In particular, for any given risk,
scenarios are mutually exclusive (see footnote 4 in Kaplan and Garrick, 1981, p. 13).

With respect to exhaustiveness, among others, Kaplan and Garrick point out (p. 14) that
the list of scenarios might, in principle, be in�nite. Hence, it is unlikely that a scenario analysis
or a risk analysis be exhaustive in terms of the identi�ed scenarios.
The pragmatic solution proposed by Kaplan and Garrick (1981) is to introduce a scenario

called other that encompasses all scenarios that cannot be envisioned, making the list virtu-
ally exhaustive. At the same time, the problem of attaching a consequence to the residual
scenario remains. Adding an other consequence, although coherent, is clearly problematic in
that its evaluation is hardly determinable. A possibility is considering set valued consequences.
The analysis we performed can be easily adapted to this situation, by adopting the extension
of Anscombe and Aumann (1963) due to Jeleva and Ja¤ray (2011) and Viero (2009). This
approach allows in general to consider misspeci�ed consequences.
Another approach considers the possibility of not being able to specify a residual scenario:

this is the case of the so called unknown unknowns. A caveat: when unknown unknowns enter
the picture, it can be the case that the analyst may not know he is ignoring a scenario or, for a
given and known scenario, he may not know he is ignoring consequences attached to it. Also in
this case there are decision theoretic frameworks we can rely on, for example the one of Karni
and Viero (2014), by suitably extending the translation we performed.

Models
Winkler (1994) and Bier (1993), among others, discuss some of the conceptual issues that

may arise whenever models considered are not mutually exclusive or collectively exhaustive.
In particular this poses a challenge to assigning a probability distribution over the considered
models to express the (absolute) degree of con�dence that the analyst assigns to their validity.
This issue can be addressed from di¤erent perspectives. One entails taking a conditional

con�dence approach, so that the probabilistic weight assigned to a model expresses the analyst�s
con�dence on the model relative to the family of the considered ones, which in turn depends on
the state of knowledge, that in our analysis is taken as given for any decision problem. Another
adapts the line of reasoning we followed above for the case of completing scenarios. This case can
be framed as considering a mixed model weighted according to the residual con�dence. Another
possibility involves the use of capacities in place of probabilities to quantify the various degree
of con�dence in the conceived models.

States of the world vs. states of the environment
The stochasticity of �nal outcomes, conditional on states realization, suggests that the space

S of states of the environment of the Anscombe and Aumann framework does not reduce all
the uncertainty in the system. This is not the case in another fundamental decision theoretic
setup: the one of Savage (1954), in which states are complete descriptions of (all the outcome
relevant aspects of) the world, in fact called states of the world. Conditional upon them the
�nal outcome is deterministic. As discussed by Marinacci (2015), this determinism comes at
the cost of a larger state space with respect to the one of Anscombe and Aumann. Relative
to the latter framework a Savagean state of the world determines not only the state of the
environment, but also describes how selected actions and realized states of the environment
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jointly determine �nal outcomes. Denote by D the set of available actions. A Savage state
is a pair (s; r) 2 S � R where R is the set of all result functions r : D � S ! Z. Any
function r determines the �nal outcome z0 = r (d0; s0) of every action d0 2 D in every state of
the environment s0 2 S. Therefore, for every action d, �d (s; r) = r (d; s) is the �nal outcome
resulting from the choice of d and conditional on the realization of state (s; r). The function

�d : S �R ! Z

(s; r) 7! �d (s; r)

is called Savage act. The analysis of Marinacci (2015) can be adapted to show that probabilis-
tic model uncertainty in the Savage framework we just sketched, accounts simultaneously for
parametric model uncertainty and structural model uncertainty in the Anscombe and Aumann
framework we adopted here. At the same time, when the grand state space S�R is considered,
the elements of R can be called hidden states because they have a di¤erent observability stand-
ing relative to the elements of S. While the component s of (s; r) is tacitly assumed to be an
observable that will realize in the implicit time horizon (say, a peak ground acceleration in the
seismic case),9 r is an hypothetical causality relation between (action, state of the environment)
pairs and outcomes,10 typically not observable and that (by de�nition) cannot realize because
only one action d can be taken.

9A fact in the words of de Finetti (1971).
10A theory in the words of de Finetti (1971).
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