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Abstract

The Wold decomposition of a weakly stationary time series extends to the
multivariate case by allowing each entry of a weakly stationary vectorial process
to linearly depend on the components of a vector of shocks. Since univariate
coefficients are replaced by matrices, we propose a modelling approach based on
Hilbert A-modules defined over the algebra of squared matrices. The Abstract
Wold Theorem for Hilbert A-modules, that we prove, delivers two orthogonal de-
compositions of vectorial processes: the Multivariate Classical Wold Decomposi-
tion, which exploits the lag operator as isometry, and the Multivariate Extended
Wold Decomposition, where a scaling operator is employed. The latter enables
us to disentangle the heterogeneous levels of persistence of a weakly station-
ary vectorial process. Hence, the persistent components of the macro-financial
variables into consideration are related to the overlapping of different sources of
randomness with specific persistence. We finally provide a simple application to
V AR models.

1 Introduction

A vectorial process x = {xt}t∈Z is a collection of m univariate time series xi,t. Al-

though weakly stationary univariate processes generally depend on a unique source of

innovations,1 each variable xt,i of a weakly stationary multivariate process is possibly

affected by m kinds of shocks ε1,t, ε2,t, . . . , εm,t. This peculiarity is captured by the

∗We thank Giorgio Primiceri for valuable insights. Any errors or omissions are the sole responsi-
bility of the authors.

1This is ensured by the Classical Wold Decomposition for weakly stationary time series.
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use of matrix coefficients, which has been extremely fruitful for VAR processes in the

macroeconomic and financial literature.2 A big econometric issue is the shocks iden-

tification due to the large number of parameters involved, which makes necessary the

imposition of several restrictions to make VAR models empirically tractable.3

The main purpose of this work is to study persistence in multivariate economic time

series. Beyond the long-run risk literature (which focuses on the asymptotic properties

of processes), this topic is usually addressed by spectral analysis techniques, developed

in the frequency domain.4 In this paper, we describe a methodology to disentangle

uncorrelated persistent component from a weakly stationary vectorial process entirely

in the time domain. Each vectorial component explains a specific layer of persistence

and it is sensible to a family of shocks with determined half-life. In order to achieve this

goal, we first renew the standard treatment of multivariate time series by using Hilbert

A-modules. The Abstract Wold Theorem for Hilbert A-modules, indeed, allows us to

easily retrieve the Multivariate Classical Wold Decomposition (MCWD henceforth) and

to derive, in turns, the Multivariate Extended Wold Decomposition (MEWD), which is

persistence-based.

The standard approach to multivariate time series modelling considers matrix co-

efficients as a mere collection of sensitivities of the variables xi,t with respect to each

shock εj,t. Indeed, such matrices are not supposed to embody the projection mean-

ing which is, actually, the distinctive feature of ordinary least squares in univariate

modelling. Hence, we propose a new way to generalize one-dimensional time series to

multidimensional ones, while keeping this meaning. Specifically, we replace the vector

space R of the coefficients of univariate time series with the algebra A of m×m matri-

ces. Accordingly, we substitute the vector space of square-integrable variables xt with

the A-module H, in which matrices play the role of coefficients. Finally, we endow H

with an inner product, with values in A, which generalizes the inner product in L2.

Such a structure is a Hilbert A-module (see the recent Cerreia-Vioglio, Maccheroni and

Marinacci [10]).5

In Hilbert A-modules, orthogonality and projections on closed submodules are de-

fined. These notions allow us to describe two orthogonal decompositions of H. First,

we provide a brief summary of the MCWD, then we focus on the MEWD, which dis-

2A comprehensive treatment of VAR processes is contained in Lütkepohl [19]. Financial applica-
tions can be found in Barberis [3] and Campbell and Viceira [9].

3Sims [23] provides a deep discussion about this topic. Relevant applications to monetary and
fiscal policy can be found in Bernanke and Mihov [4] and Blanchard and Perotti [8] respectively.

4Cross-spectrum and squared coherency are, indeed, used to quantify the linear association between
single time series in a vectorial process. See, for example, Brockwell and Davis [6].

5The application of Hilbert module in the economic theory is not a novelty. For instance, a
pioneering use of Hilbert modules goes back to Hansen and Richard [16], who exploited this structure
to formalize the effect of conditional information in intertemporal asset pricing models.
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entangles heterogeneous layers of persistence from a vectorial process. The latter is

a generalization of the univariate Extended Wold Decomposition of Ortu, Severino,

Tamoni and Tebaldi [20]. The instrument to derive both the decompositions is the

Abstract Wold Theorem for self-dual Hilbert A-modules, that we state and prove.6

The next subsection introduces the Hilbert A-module framework in which we embed

multivariate weakly stationary processes and it provides a quick overview of the main

results. Section 2 revisits the MCWD and provides a proof by employing the Abstract

Wold Theorem for Hilbert A-modules. Section 3 states and proves the MEWD for

weakly stationary vectorial processes. We describe some applications of the latter in

Section 4. In particular we analyse Blanchard and Quah [7] model about demand

and supply influence on GNP and unemployment from the perspective of persistence.

Appendix A contains the main definitions and results about Hilbert A-modules (in

particular, the Abstract Wold Theorem), while Appendices C and D include all the

proofs.

1.1 Summary of main results

Given a probability space (Ω,F ,P), we consider the vector space L2(Rm,Ω,F ,P) of

measurable square-integrable random vectors x that take value in Rm.7 We build

on L2(Rm,Ω,F ,P) the structure of Hilbert A-module and we denote it by H.8 In

particular, we consider the algebra A = Rm×m of real m × m matrices. The outer

product A×H −→ H is the standard matrix-by-vector product. This operation makes

H an A-module.9 Then, we define the A-valued inner product 〈 , 〉H : H ×H −→ A

that associates any x = [x1, . . . , xm]′ , y = [y1, . . . , ym]′ ∈ H with the matrix

〈x, y〉H = E [xy′] = {E [xiyj]}i,j=1,...,m .

〈 , 〉H satisfies the usual properties of inner products. In addition,

〈x, x〉H = E [xx′] = {E [xixj]}i,j=1,...,m

is the covariance matrix of x, which is symmetric and positive semidefinite.

It is useful to define the trace functional ϕ̄ : A −→ R by setting, for any matrix a,

ϕ̄(a) = Tr(a) =
m∑
i=1

ai,i.

6See Theorem 7 in Appendix A.
7For any i = 1, . . . ,m the random variable xi belongs to L2(Ω,F ,P).
8All details are collected in Appendix A.
9Note that the natural structure of real vector space of H is kept because of the relation

λx = (λI)x ∀x ∈ H, λ ∈ R,

where I is the identity matrix.
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Indeed, H is a Hilbert space with the inner product 〈 , 〉ϕ̄ : H ×H −→ R defined by

〈x, y〉ϕ̄ = ϕ̄ (〈x, y〉H) = Tr (E [xy′]) =
m∑
i=1

E [xiyi] ∀x, y ∈ H

since 〈 , 〉ϕ̄ coincides with the usual inner product of L2 (Rm). The associated norm is

‖ ‖ϕ̄ : H −→ [0,+∞) such that

‖x‖ϕ̄ =
√
〈x, x〉ϕ̄ =

√
Tr (E [xx′]) =

√√√√ m∑
i=1

E [x2
i ] ∀x ∈ H.

As A is finite dimensional, the norm ‖ ‖H : H −→ [0,+∞) defined by

‖x‖H =
√
‖〈x, x〉H‖A =

√
‖E [xx′] ‖A ∀x ∈ H

is equivalent to ‖ ‖ϕ̄.10 In particular, ‖x‖H =
√
λmax, where λmax is the largest eigen-

value of the covariance matrix of x, i.e. the one associated with the Principal Compo-

nent of E [xx′] that explains the most variance.11 Proposition 13 in Appendix B shows

that H is a Hilbert A-module, i.e. it is complete. Since A is finite dimensional, it

follows that H is self-dual, as proved by Theorem 6 in Appendix A.

Now consider a multivariate process x = {xt}t∈Z such that xt = [x1,t, . . . , xm,t]
′ ∈ H

for all t ∈ Z. Assume that x is weakly stationary and, without loss of generality, that

it has zero mean. The autocovariance function Γ : Z −→ A associates any integer n

with the matrix Γn = [γi,j(n)]i,j=1,...,m with

γi,j(n) = Cov (xi,t, xj,t+n) = E [xi,txj,t+n] .

If Γn = 0 for any n 6= 0, we are facing a multivariate white noise, which displays

unit variance when Γ0 is the identity matrix. In this case, the single time series of

the multivariate white noise are uncorrelated. In general, the covariance matrix Γ0

of x is symmetric and positive semidefinite. We will also suppose that Γ0 is positive

definite (hence it has a positive definite square root12), a requirement that parallels the

regularity assumption in the univariate case.13

10Here ‖‖A denotes the operator norm of matrices. As for the equivalence, see Proposition 6 in
Appendix A.

11In case any xi is uncorrelated with any xj with i 6= j, the covariance matrix E [xx′] is diagonal
and so ‖x‖H =

√
maxi=1,...,m E [x2

i ].
12To avoid irrelevant complications in the theory sections, we will use square root matrices for

factorizing covariance matrices. Anyway, our results do not depend on the way the covariance matrix
is factorized. For instance, the Cholesky decomposition can be employed too, without affecting the
conclusions.

13See Bierens [5].
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Wold-type decompositions of one-dimensional processes follow from the Abstract

Wold Theorem, a functional analytical result that allows to orthogonally decompose

Hilbert spaces by using isometric operators.14 Indeed, this theorem applies to the

Hilbert space generated by the past realizations of a weakly stationary univariate time

series x = {xt}t so that any xt turns out to be the sum of uncorrelated variables (the

so-called innovations). For example, the Classical Wold Decomposition15 obtains when

the isometry is the lag operator. On the other hand, other choices for the isometry are

possible. For instance, Ortu, Severino, Tamoni and Tebaldi [20] derive a persistence-

based decomposition (named Extended Wold Decomposition) by exploiting the scaling

operator.

In order to address the decomposition of multidimensional processes, we provide a

generalization of the Abstract Wold Theorem for self-dual Hilbert A-modules. Orthog-

onality in Hilbert A-modules mimics the same definition in Hilbert spaces, provided

that the inner product 〈 , 〉H is employed.16 Hence, two elements x, y ∈ H are or-

thogonal when any xi is uncorrelated with any yj for all i, j = 1, . . . ,m. Similarly to

the Hilbert space case, the theorem requires a Hilbert A-module H and an isometry17

T : H → H and it delivers the orthogonal decomposition H = Ĥ ⊕ H̃, where

Ĥ =
∞⋂
n=0

T n (H) , H̃ =
∞⊕
n=0

T n (L) .

L = T (H)⊥, namely the orthogonal complement of T (H), is called wandering submod-

ule and it is uniquely determined by T . The submodule H̃ contains the orthogonal

innovations obtained by iteratively applying the isometry T to L, while Ĥ is an invari-

ant submodule.18

The MCWD obtains when we consider the Hilbert submodule Ht(x) of H spanned

by the vectorial sequence {xt−n}n∈N0
, i.e.

Ht(x) = cl

{
+∞∑
k=0

akxt−k : ak ∈ A,
+∞∑
k=0

+∞∑
h=0

Tr (akΓk−ha
′
h) < +∞

}
, 19

and the lag operator L, that maps any generator
∑∞

k=0 akxt−k ofHt(x) into
∑∞

k=0 akxt−1−k.

The submodule Ĥ delivers the purely deterministic term in the decomposition, while

14See Sz.-Nagy, Foias, Bercovici and Kérchy [24] as a reference.
15See, for instance, Brockwell and Davis [6] or the original work of Wold [26].
16Any x, y ∈ H are orthogonal when 〈x, y〉H is the null matrix, i.e. E [xiyj ] = 0 for any i, j =

1, . . . ,m.
17The operator T : H → H is an isometry in case it is A-linear and 〈T (x) , T (y)〉H = 〈x, y〉H for

all x, y ∈ H.
18See Theorem 7 in Appendix A for the precise statement and the proof of the Abstract Wold

Theorem for self-dual Hilbert A-modules.
19See Appendix B for details.
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the wandering submodule is spanned by the vector xt − PHt−1(x)xt.
20 The normaliza-

tion of such vector produces the multivariate classical Wold innovation (or fundamental

innovation) εt.

The MEWD, instead, comes from the application of the Abstract Wold Theorem

to a different submodule of H. Indeed, we consider the A-module Ht(ε) generated by

the sequence of fundamental innovations {εt−n}n∈N0
, namely

Ht(ε) =

{
+∞∑
k=0

akεt−k : ak ∈ A,
+∞∑
k=0

Tr (aka
′
k) < +∞

}
.

As isometry, we employ the scaling operator R : Ht(ε)→ Ht(ε) such that

R :
+∞∑
k=0

akεt−k 7−→
+∞∑
k=0

ak√
2

(εt−2k + εt−2k−1) .

The wandering submodule associated to R is spanned by the multivariate details at

scale 1, namely ε
(1)

t−k2j = (εt−2k + εt−2k−1) /
√

2, with k ∈ N0. Accordingly, the submod-

ules Rj(L) are generated by the details at scale j

ε
(j)

t−k2j =
1√
2j

2j−1−1∑
i=0

εt−k2j−i −
2j−1−1∑
i=0

εt−k2j−2j−1−i

 , k ∈ N0.

Each vector of shocks ε
(j)

t−k2j has half-life in the interval [2j−1, 2j) and so its degree

of persistence rises with the scale j. Moreover, the invariant submodule is null. As

a result, any xt ∈ Ht(ε) decomposes into an infinite sum of (multivariate) persistent

components g
(j)
t associated with different scales:

xt =
+∞∑
j=1

g
(j)
t , g

(j)
t =

+∞∑
k=0

β
(j)
k εt−k2j ∀j ∈ N.

A fundamental outcome of the Abstract Wold Theorem for Hilbert A-modules is that

the components g
(j)
t are orthogonal and so any spurious correlation within layers of

persistence is ruled out. The matrices β
(j)
k , that we call (multivariate) multiscale im-

pulse responses are, then, precisely associated with the scale j and the time shift k2j.

Moreover, each entry (p, q) of β
(j)
k quantifies the sensitivity of the variable xp,t with

respect to the q-th source of randomness in the vector of shocks, at the specific level

of persistence j and time lag k2j.

Different scales may capture diverse reactions with respect to shocks with specific

persistence, that are not recognizable in the classical impulse responses. This is the

case, for instance, of Blanchard and Quah bivariate model of GNP and unemployment,

that we inspect in Section 4.2.

20PMxt denotes the orthogonal projection of xt on the closed submodule M .
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2 The Multivariate Classical Wold Decomposition

The Multivariate Wold Decomposition Theorem allows to decompose a zero-mean reg-

ular weakly stationary vectorial process x into the infinite sum of uncorrelated multi-

variate innovations that occur at different times. Although a proof of this result can

be found in Rozanov [22], we show how to derive this decomposition by applying the

Abstract Wold Theorem for self-dual Hilbert A-modules.

Given a zero-mean weakly stationary vectorial process x = {xt}t∈Z, we consider the

Hilbert submodule of H spanned by the vectors xt−n with n ∈ N0, namely

Ht(x) = cl

{
+∞∑
k=0

akxt−k : ak ∈ A,
+∞∑
k=0

+∞∑
h=0

Tr (akΓk−ha
′
h) < +∞

}
, 21

Definition 1 We call lag operator the operator L : Ht(x) −→ Ht(x) that acts on

generators of Ht(x) as

L :
+∞∑
k=0

akxt−k 7−→
+∞∑
k=0

akxt−1−k.

L is A-linear and bounded, hence it can be extended to Ht(x) with continuity.22

Moreover, L is isometric on Ht(x).23

In order to apply the Abstract Wold Theorem for Hilbert A-modules, we have

to determine the images of Ht(x) through the powers of the operator L, and the

wandering submodule. Recall that, in a self-dual Hilbert A-module, the image of a

closed submodule through an isometry is a closed submodule, too.24 By exploiting this

fact, we find that LjHt(x) = Ht−j(x) for any j ∈ N.25

Then, we show that the A-module Ht(x) can be decomposed into the direct sum26

Ht(x) = Ht−1(x)⊕ span
{
xt − PHt−1(x)xt

}
.

In other words, the wandering submodule associated with the lag operator is

LL
t = span

{
xt − PHt−1(x)xt

}
.

We say that x is regular when, for any t ∈ Z,
〈
xt − PHt−1(x)xt, xt − PHt−1(x)xt

〉
H

is

a symmetric positive definite matrix. Hence, there exists a symmetric positive definite

square root matrix S such that〈
xt − PHt−1(x)xt, xt − PHt−1(x)xt

〉
H

= SS.

21See Appendix B for details.
22See Proposition 15 in Appendix C.
23See Proposition 16 in Appendix C.
24See Lemma 2 in Appendix A.
25See Proposition 17 in Appendix C.
26See Proposition 18 in Appendix C.
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As S is invertible, we define the fundamental innovation process ε = {εt}t∈Z by

εt = S−1
(
xt − PHt−1(x)xt

)
, t ∈ Z.

ε is a unit variance white noise, that is its components are uncorrelated.27

Lemma 4 in Appendix C shows that the lag and the projection operator commute:

for any k, j ∈ N0,

LjPHt−k−1(x)xt−k = PHt−k−j−1(x)xt−k−j.

This result ensures that the covariance matrix of xt−PHt−1(x)xt is actually not depen-

dent on the time index t ∈ Z and that, for any j ∈ N,

LjLL
t = span

{
xt−j − PHt−j−1(x)xt−j

}
.

We are now ready to apply the Abstract Wold Theorem to the Hilbert A-module Ht(x)

with the isometry L.

Theorem 1 The Hilbert A-module Ht(x) decomposes into the orthogonal sum

Ht(x) = Ĥt(x)⊕ H̃t(x),

where

Ĥt(x) =
+∞⋂
j=0

Ht−j(x), H̃t(x) =
+∞⊕
j=0

span
{
xt−j − PHt−j−1(x)xt−j

}
.

Proof. See Appendix C �

The application to zero-mean regular weakly stationary vectorial processes is now

straightforward.

Theorem 2 (Multivariate Classical Wold Decomposition) Let x = {xt}t∈Z be

a zero-mean regular weakly stationary m-dimensional process. Then, for any t ∈ Z, xt

decomposes as

xt =
+∞∑
k=0

αkεt−k + νt,

where the equality is in norm and

i) ε = {εt}t∈Z is a unit variance m-dimensional white noise;

27Indeed,

〈εt, εt〉H = E [εtε′t] = S−1
〈
xt − PHt−1(x)xt, xt − PHt−1(x)xt

〉
H

(
S−1

)′
= S−1SSS−1 = I.
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ii) for any k ∈ N0, the m×m matrices αk do not depend on t,

αk = E
[
xtε
′
t−k
]

and
+∞∑
k=0

Tr (αkα
′
k) < +∞;

iii) ν = {νt}t∈Z is a zero-mean weakly stationary m-dimensional process,

νt ∈
+∞⋂
j=0

Ht−j(x) and E
[
νtε
′
t−k
]

= 0 ∀k ∈ N0;

iv)

νt ∈ cl

{
+∞∑
h=1

ahνt−h ∈
+∞⋂
j=1

Ht−j(x) : ah ∈ A

}
.

Proof. See Appendix C �

The random vector
∑∞

k=0 αkεt−k is referred to as the non-deterministic component,

while ν constitutes the (predictable) deterministic component of x. If ν is the null

vector, we call the process x purely non-deterministic. Similarly, we say that x is

purely deterministic if the non-deterministic component is zero.

The main contribution of the approach that we followed so far is that the mul-

tivariate impulse responses αh are fully characterized by the projection on Hilbert

submodules. This feature generalizes the OLS methodology employed in the univari-

ate case28 and shows that the multivariate impulse responses are not only a collection of

one-dimensional impulse responses, computed entry by entry. Indeed, each projection

matrix αh minimizes the distance of the outcome xt from the submodule generated by

the vectorial innovation εt−h.

This construction naturally delivers vectors of innovations composed by univariate

sources of randomness that are uncorrelated within them. Indeed, ε is a unit variance

m-dimensional white noise. This property opens the door to the big issue of identifying

structural univariate shocks in vectorial processes.

3 The Multivariate Extended Wold Decomposition

The aim of this section is to generalize the Extended Wold Decomposition for weakly

stationary time series (see Ortu, Severino, Tamoni and Tebaldi [20]) to multidimen-

sional processes. Differently from the univariate case, in which Hilbert space techniques

are employed, we embed multivariate processes in a Hilbert A-module framework.

28Indeed, we are actually treating multivariate multiple regressions.
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Let ε = {εt}t∈Z be a unit variance m-dimensional white noise and consider the

Hilbert submodule of H generated by the sequence of εt−n with n ∈ N0, that is

Ht(ε) =

{
+∞∑
k=0

akεt−k : ak ∈ A,
+∞∑
k=0

Tr (aka
′
k) < +∞

}
.

We define the scaling operator R : Ht(ε) −→ Ht(ε) as follows29

R :
+∞∑
k=0

akεt−k 7−→
+∞∑
k=0

ak√
2

(εt−2k + εt−2k−1) =
+∞∑
k=0

ab k
2
c√

2
εt−k.

The scaling operator is well-defined, A-linear and isometric on Ht(ε).
30

We first show the orthogonal decomposition of Ht(ε), obtained by applying the

Abstract Wold Theorem for self-dual Hilbert A-modules with R as isometry. Then we

derive the MEWD of a vectorial time series x = {xt}t∈Z with fundamental innovations

given by ε.

3.1 The orthogonal decomposition of Ht(ε) induced by R

Before entering the details of the decomposition induced by the scaling operator, we

define the multivariate detail process at scale 1, denoted by ε(1) =
{
ε

(1)
t

}
t∈Z

, where

ε
(1)
t =

εt − εt−1√
2

, t ∈ Z.

Each ε
(1)
t has zero mean and unit variance.31 In general, we define the detail process at

scale j in the following way.

Definition 2 For any j ∈ N, we call detail process at scale j the vectorial process

ε(j) =
{
ε

(j)
t

}
t∈Z

where

ε
(j)
t =

1√
2j

2j−1−1∑
i=0

εt−i −
2j−1−1∑
i=0

εt−2j−1−i

 .

29b·c denotes the floor function, that associates any c ∈ R with the integer bcc = max{n ∈ Z : n 6 c}.
30See Proposition 19 in Appendix D.
31Indeed,

E
[
ε
(1)
t ε

(1)
t

′]
=

1
2

E
[
(εt − εt−1)

(
ε′t − ε′t−1

)]
=

1
2
{
E [εtε′t]− E

[
εtε
′
t−1

]
− E [εt−1ε

′
t] + E

[
εt−1ε

′
t−1

]}
=

1
2
{I − 0− 0 + I} = I.
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At any scale j, we consider the subseries of ε(j) defined on the support S
(j)
t = {t−k2j :

k ∈ Z} in order to avoid overlap among the vectors ε
(j)
t . The vectors ε

(j)

t−k2j , in fact,

exhibit a dual nature depending on the support on which they are considered. Indeed,

the process ε(j) is an MA(2j − 1) with respect to the fundamental innovations of x.

Therefore, some spurious correlation is present between the vectors ε
(j)

t−k2j and ε
(j)

τ−k2j

with |t− τ | 6 2j − 1. Nevertheless, each subseries
{
ε

(j)

t−k2j

}
k∈Z

is a unit variance white

noise on the support S
(j)
t .32

Now we want to determine the invariant submodule Ĥt(ε) that arises when the

Abstract Wold Theorem is applied on Ht(ε) with isometry R. The definition of the

scaling operator ensures that the submodule RHt(ε) is made of those linear combi-

nations of the multivariate innovations εt that have the (matrix) coefficients equal to

each others 2-by-2, that is

RHt(ε) =

{
+∞∑
k=0

c
(1)
k (εt−2k + εt−2k−1) ∈ Ht(ε) : c

(1)
k ∈ A

}
.

The same line of reasoning shows that, for any j ∈ N, the submodules RjHt(ε) consist

of the linear combinations of the vectors εt with (matrix) coefficients equal to each

others 2j-by-2j:

RjHt(ε) =


+∞∑
k=0

c
(j)
k

2j−1∑
i=0

εt−k2j−i

 ∈ Ht(ε) : c
(j)
k ∈ A

 .33

It follows that the intersection of all submodules RjHt(ε) contains only the zero ele-

ment, that is Ĥt(ε) is the null submodule: Ĥt(ε) = {0}.
We now focus on the submodule H̃t(ε). The wandering submodule LR

t associated

with R is the orthogonal complement of RHt(ε) in Ht(ε), namely RHt(ε)
⊥. As R is

linear and bounded, such submodule coincides with the kernel of its adjoint operator,

therefore

LR
t =

{
+∞∑
k=0

b
(1)
k ε

(1)
t−2k ∈ Ht(ε) : b

(1)
k ∈ A

}
.34

Hence, LR
t is the submodule of Ht(ε) that contains all infinite moving averages

driven by the detail process at scale 1 on the support S
(1)
t . More generally, for each j ∈

32See Proposition 20 in Appendix D.
33Note that the isometric operator Rj acts on the elements of Ht(ε) as

Rj :
+∞∑
k=0

akεt−k 7−→
+∞∑
k=0

ak√
2j

2j−1∑
i=0

εt−k2j−i

 .

34See Proposition 10 in Appendix A and Proposition 21 in Appendix D.
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N, the image of LR
t through the powers of the scaling operator Rj−1 is the submodule

Rj−1LR
t =

{
+∞∑
k=0

b
(j)
k ε

(j)

t−k2j ∈ Ht(ε) : b
(j)
k ∈ A

}
.35

In sum, the submodules Rj−1LR
t consist of all infinite moving averages with innovations

given by the detail process at scale j on the support S
(j)
t .

We have now all the instruments to state the orthogonal decomposition of Ht(ε)

induced by the scaling operator.

Theorem 3 The Hilbert A-module Ht(ε) decomposes into the orthogonal sum

Ht(ε) =
+∞⊕
j=1

Rj−1LR
t ,

where

Rj−1LR
t =

{
+∞∑
k=0

b
(j)
k ε

(j)

t−k2j ∈ Ht(ε) : b
(j)
k ∈ A

}
.

Proof. See Appendix D �

3.2 The Multivariate Extended Wold Decomposition of xt

Given a purely non-deterministic process x, the MCWD ensures that xt belongs to

Ht(ε), where εt is the fundamental innovation of xt. As a result, the orthogonal

decomposition of the A-module Ht(ε) induces a decomposition of xt. Indeed, there

exists a sequence
{
g

(j)
t

}
j∈N

of random vectors such that

xt =
+∞∑
j=1

g
(j)
t , (1)

where each g
(j)
t is the orthogonal projection of xt on Rj−1LR

t , in the sense of A-modules.

Definition 3 We call persistent component at scale j the orthogonal projection of xt

on the submodule Rj−1LR
t of Ht(ε) and we denote it by g

(j)
t .

Of course, given t, the components g
(j)
t are orthogonal to each others. Moreover, each

g
(j)
t belongs to Rj−1LR

t and so

g
(j)
t =

+∞∑
k=0

β
(j)
k ε

(j)

t−k2j

35See Proposition 22 in Appendix D.
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where the m×m matrices β
(j)
k satisfy∥∥∥∥∥

+∞∑
k=0

β
(j)
k ε

(j)

t−k2j

∥∥∥∥∥
2

ϕ̄

=
+∞∑
k=0

Tr
(
β

(j)
k β

(j)
k

′)
< +∞.

Each β
(j)
k is the matrix obtained by projecting xt on the submodule generated by the

detail ε
(j)

t−k2j , that is

β
(j)
k = 〈xt, ε(j)

t−k2j〉H = E
[
xtε

(j)

t−k2j

′]
.

By writing the explicit expression of g
(j)
t into (1), we obtain the Multivariate Extended

Wold Decomposition of xt.

Definition 4 We call Multivariate Extended Wold Decomposition of xt the decompo-

sition

xt =
+∞∑
j=1

+∞∑
k=0

β
(j)
k ε

(j)

t−k2j .

Moreover, we call the matrix β
(j)
k the (multivariate) multiscale impulse response func-

tion associated to the innovation at scale j and time translation k2j.

Since the details at different scales can be expressed in terms of the fundamental in-

novations εt, the MEWD and the MCWD exploit the same structure of shocks. Hence,

we can retrieve the matrices β
(j)
k from the matrices αh of the MCWD. Furthermore,

the matrices β
(j)
k are independent of the time index t.

Proposition 1 For any j ∈ N, k ∈ N0,

β
(j)
k =

1√
2j

2j−1−1∑
i=0

αk2j+i −
2j−1−1∑
i=0

αk2j+2j−1+i

 ,

hence β
(j)
k does not depend on t. In addition, limk→+∞ β

(j)
k = 0 for any j ∈ N.

Proof. See Appendix D �

Note that an orthogonal decomposition of Ht(ε) into a finite number of submodules

is also possible. Indeed, Ht(ε) = RHt(ε)⊕LR
t and, by iteratively applying the scaling

operator, we find:

Ht(ε) = RJHt(ε)⊕
J⊕
j=1

Rj−1LR
t .

We call residual component at scale j the orthogonal projection of xt on the submodule

RjHt(ε) and we denote it by π
(j)
t . This random vector has the following expression36

π
(j)
t =

+∞∑
k=0

γ
(j)
k

2j−1∑
i=0

εt−k2j−i

 ,

36See the proof of Proposition 1.
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where each matrix γ
(j)
k satisfies

γ
(j)
k =

1

2j

2j−1∑
i=0

αk2j+i

 .

As a result, a MEWD of xt holds both in the finite case, i.e. when a maximum scale

J is chosen, and in the infinite one:

xt = π
(J)
t +

J∑
j=1

g
(j)
t or xt =

+∞∑
j=1

g
(j)
t .

Specifically, the residual components π
(j)
t and the persistent components g

(j)
t have the

following expressions:

π
(j)
t =

+∞∑
k=0

1

2j

2j−1∑
i=0

αk2j+i

2j−1∑
i=0

εt−k2j−i

 ,

g
(j)
t =

+∞∑
k=0

1√
2j

2j−1−1∑
i=0

αk2j+i −
2j−1−1∑
i=0

αk2j+2j−1+i

 ε
(j)

t−k2j .

Theorem 4 (Multivariate Extended Wold Decomposition) Let x be a zero-mean,

weakly stationary purely non-deterministic m-dimensional process. Then xt decomposes

as

xt =
+∞∑
j=1

+∞∑
k=0

β
(j)
k ε

(j)

t−k2j ,

where the equality is in norm and

i) for any fixed j ∈ N, the m-dimensional process ε(j) =
{
ε

(j)
t

}
t∈Z

is an MA(2j−1)

with respect to the classical Wold innovations of x:

ε
(j)
t =

1√
2j

2j−1−1∑
i=0

εt−i −
2j−1−1∑
i=0

εt−2j−1−i


and

{
ε

(j)

t−k2j

}
k∈Z

is a unit variance white noise;

ii) for any j ∈ N, k ∈ N0, the m×m matrices β
(j)
k are unique and they satisfy

β
(j)
k =

1√
2j

2j−1−1∑
i=0

αk2j+i −
2j−1−1∑
i=0

αk2j+2j−1+i

 ,

hence they do not depend on t and
∑∞

k=0 Tr
(
β

(j)
k β

(j)
k

′)
< +∞ for any j ∈ N;

14



iii) letting

g
(j)
t =

+∞∑
k=0

β
(j)
k ε

(j)

t−k2j ,

then, for any j, l ∈ N, p, q, t ∈ Z, E
[
g

(j)
t−pg

(l)
t−q
′]

depends at most on j, l, p − q.
Moreover,

E
[
g

(j)

t−m2jg
(l)

t−n2l

′]
= 0 ∀j 6= l, ∀m,n ∈ N0, ∀t ∈ Z.

Proof. See Appendix D �

According to iii), when t is fixed, the orthogonality among persistent components

involves all the shifted vectors g
(j)

t−m2j and g
(l)

t−n2l , for any m,n ∈ Z, with time translation

proportional to 2j and 2l respectively. What we can say in general is that the covariance

matrix between g
(j)
t−p and g

(l)
t−q depends at most on the scales j, l and on the difference

p− q.
By the MEWD we decompose a zero-mean, purely non-deterministic vectorial pro-

cess into the sum of orthogonal components g
(j)
t associated with the level of persistence

j. Each vector g
(j)
t has innovations on a grid S

(j)
t = {t− k2j : k ∈ Z} with time

interval between two indices proportional to 2j. When the scale j increases, the sup-

port S
(j)
t becomes sparser and the degree of persistence of innovations rises. In case

a multivariate multiscale impulse response β
(j)
k is significantly different from the null

matrix, with high j, we are facing a low-frequency component, that affects the process

in the long run.

Although the innovations of the components have support S
(j)
t , the variables g

(j)
t

are defined for every t ∈ Z. In particular, given two different time indices t and τ with

|t − τ | 6 2j − 1, the innovations of g
(j)
t and g

(j)
τ belong to the different grids S

(j)
t and

S
(j)
τ . Notwithstanding, g

(j)
t and g

(j)
τ share the same matrix coefficients β

(j)
k , hence we

are handling 2j versions of the same process (in norm). According to the time index t

we choose, we pick up one of these versions, namely the one with support S
(j)
t . Such a

structure stems from the weak stationarity of the process x.

Note that the MEWD properly generalizes the one-dimensional Extended Wold

Decomposition of Ortu, Severino, Tamoni and Tebaldi [20]. Indeed, in case the matrix

coefficients αh are diagonal, any entry xi,t depends only on the innovations εi,t and it

satisfies the univariate Classical Wold Decomposition

xi,t =
+∞∑
h=0

αh(i, i)εi,t−h.

Accordingly, the multiscale impulse responses β
(j)
k are diagonal matrices too and the

MEWD delivers

xi,t =
+∞∑
j=1

+∞∑
k=0

β
(j)
k (i, i)ε

(j)

i,t−k2j ,
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where

β
(j)
k (i, i) =

1√
2j

2j−1−1∑
p=0

αk2j+p(i, i)−
2j−1−1∑
p=0

αk2j+2j−1+p(i, i)

 ,

as prescribed by the univariate Extended Wold Decomposition.

A justification of the fact that the iterated application of R increases persistence is

due to spectral analysis consideration and it is developed in detail in Ortu, Severino,

Tamoni and Tebaldi [20] for the univariate case.

Finally, we built the MEWD of xt as a refinement of the MCWD, where ε is

precisely the process of fundamental innovations of x. Nonetheless, such persistence-

based decomposition holds also in case ε is any unit variance white noise that allows

a moving average representation of xt. In addition, in case ε has a positive definite

covariance matrix Σ, then Σ = SS for some symmetric positive definite S ∈ A. Then,

ηt = S−1εt defines a unit variance white noise and the MCWD and the MEWD become

respectively,

xt =
+∞∑
h=0

α̃hηt−h, xt =
+∞∑
j=1

+∞∑
k=0

β̃
(j)
k ηt−h,

where α̃h = αhS and β̃
(j)
k = β

(j)
k S.

We now address the MEWD from the converse point of view. Suppose that the

dynamics at all time scales are given. We are interested in rebuilding the vectorial

process x = {xt}t∈Z obtained by summing up such components. In order to make the

sum feasible, we assume a common innovation process ε = {εt}t∈Z. This allows us to

define at each scale j ∈ N the detail process ε(j) =
{
ε

(j)
t

}
t∈Z

as

ε
(j)
t =

1√
2j

2j−1−1∑
i=0

εt−i −
2j−1−1∑
i=0

εt−2j−1−i

 .

Then, at any scale j we consider the processes g(j) =
{
g

(j)
t

}
t∈Z

defined by

g
(j)
t =

+∞∑
k=0

β
(j)
k ε

(j)

t−k2j ,

where β
(j)
k are matrices in A. Although each g(j) is a moving average with respect to

the innovations
{
ε

(j)

t−k2j

}
k∈Z

the variables g
(j)
t are defined for every t ∈ Z. The process

x obtained by the summation of all g
(j)
t has the following properties.
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Theorem 5 Let ε = {εt}t∈Z be a unit variance m-dimensional white noise process.

For any j ∈ N, define the detail process ε(j) =
{
ε

(j)
t

}
t∈Z

as

ε
(j)
t =

1√
2j

2j−1−1∑
i=0

εt−i −
2j−1−1∑
i=0

εt−2j−1−i


and consider a vectorial process g(j) =

{
g

(j)
t

}
t∈Z

such that

g
(j)
t =

+∞∑
k=0

β
(j)
k ε

(j)

t−k2j ,
+∞∑
j=1

+∞∑
k=0

Tr
(
β

(j)
k β

(j)
k

′)
< +∞.

Then, the vectorial process x = {xt}t∈Z defined by

xt =
+∞∑
j=1

g
(j)
t

is zero-mean, weakly stationary purely non-deterministic and

xt =
+∞∑
h=0

αhεt−h,

where, for any h ∈ N0,

αh =
+∞∑
j=1

1√
2j
β

(j)

b h

2j c
χ(j)(h)

and

χ(j)(h) =

{
−1 if 2j

⌊
h
2j

⌋
∈ {h− 2j + 1, . . . , h− 2j−1} ,

1 if 2j
⌊
h
2j

⌋
∈ {h− 2j−1 + 1, . . . , h} .

Theorem 5 provides the moving average representation of the aggregated process

x with respect to the underlying innovations ε. If, in addition, the shocks εt coincide

with the classical Wold innovations of x, we exactly retrieve the MCWD of xt form its

MEWD.

4 Applications

To put the MEWD into practice we first compute the multiscale impulse responses

of weakly stationary V AR(1) and V ARMA(1, 1) processes. Then, in Section 4.2, we

analyse the persistent dynamics of Blanchard and Quah [7] bivariate process.
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4.1 The MEWD of V AR(1) and V ARMA(1, 1) processes

Consider a weakly stationary purely non-deterministic vectorial ARMA(1, 1) process,

or simply V ARMA(1, 1), x = {xt}t∈Z defined by

xt = ρxt−1 + εt + θεt−1,

where ρ, θ ∈ A, ρ + θ 6= 0 and ε = {ε}t∈Z is a multivariate unit variance white noise.

The stationarity condition that we assume is ‖ρ‖A < 1.37 Later, by setting θ = 0 we

will retrieve a V AR(1) process as a special case.

By using the lag operator L, we can rewrite the previous equation as

(I − ρL)xt = (I + θL)εt.

Since ‖ρ‖A < 1, the operator
∑∞

l=0 (ρL)l is well-defined.38 Moreover,

(I − ρL)
+∞∑
l=0

(ρL)l = I

and so the operator (I − ρL) is invertible with
∑∞

l=0 (ρL)l as inverse. This enables us

to determine the moving average representation of xt. In fact,

xt = (I − ρL)−1(I + θL)εt = εt +
+∞∑
l=1

ρl−1(ρ+ θ)εt−l =
+∞∑
h=0

αhεt−h,

where we define

αh =

{
1 if h = 0,

ρh−1(ρ+ θ) if h > 1.

We now employ Proposition 1 for the computation of multiscale impulse responses.

Fixed a scale j ∈ N, we obtain

β
(j)
0 =

1√
2j

{
I + (I − ρ)−1

(
I − 2ρ2j−1−1 + ρ2j−1

)
(ρ+ θ)

}
and, for any k ∈ N,

β
(j)
k =

1√
2j

(I − ρ)−1
(
I − ρ2j−1

)2

ρk2j−1(ρ+ θ).

37Recall that ‖ρ‖2A = λmax (ρ′ρ) is the largest eigenvalue of the positive semidefinite matrix ρ′ρ. In
the literature, other assumptions are also considered, for instance stability (see Lütkepohl [19]).

38Indeed, ∥∥∥∥∥
+∞∑
l=0

(ρL)l
∥∥∥∥∥ 6

+∞∑
l=0

∥∥∥(ρL)l
∥∥∥ 6 +∞∑

l=0

‖(ρL)‖l 6
+∞∑
l=0

‖ρ‖lA ‖L‖
l =

+∞∑
l=0

‖ρ‖lA < +∞.
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By setting θ = 0 we find the multiscale impulse responses for a V AR(1). In

particular, for any k ∈ N0, the matrix coefficients β
(j)
k turn out to be

β
(j)
k =

1√
2j

(I − ρ)−1
(
I − ρ2j−1

)2

ρk2j

.

As an example, consider a weakly stationary bivariate V AR(1) process with xt =

[yt, zt]
′, εt = [ut, vt]

′ as unit variance white noise and

ρ =

[
a b

c d

]
,

that is [
yt

zt

]
=

[
a b

c d

][
yt−1

zt−1

]
+

[
ut

vt

]
.

For any j ∈ N and k ∈ N0, the multiscale impulse responses β
(j)
k turns out to be

β
(j)
k =

1√
2j [(1− a)(1− d)− bc]

[
1− d −b
−c 1− a

]I − [a b

c d

]2j−1
2 [

a b

c d

]k2j

.

4.2 Blanchard and Quah model

As in Blanchard and Quah [7], we take into account a zero-mean weakly stationary

purely non-deterministic bivariate time series x = {xt}t∈Z such that

xt =
+∞∑
h=0

αhεt−h, αh ∈ A (2)

where ε = {εt}t∈Z is a unit variance bivariate with noise, A = R2 ×R2 and the matrix

coefficients satisfy the long-run restriction

+∞∑
h=0

αh(1, 1) = 0.

xt is supposed to have also the MA representation

xt =
+∞∑
h=0

chηt−h, ch ∈ A, (3)

where η = {ηt}t∈Z is a bivariate with noise with covariance matrix Ω. The latter is the

usual formulation obtained by estimating the time series parameters from the data.

Specifically, we first estimate an autoregressive form for xt, that is

xt =
N∑
k=1

bkxt−k + ηt, N ∈ N.
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The matrix Ω is obtained from the covariance matrix of the residuals in this multivariate

regression. Then, the autoregressive form implies that

xt = ηt +
N∑
k=1

bk

+∞∑
h=0

chηt−k−h = ηt +
+∞∑
n=1

 n−1∑
h=max{n−N,0}

bn−hch

 ηt−n.

Therefore,

c0 = I, cn =
n−1∑

h=max{n−N,0}

bn−hch ∀n ∈ N.

The MA representations (2) and (3) of xt are related by

ηt = α0εt, αh = chα0,

where the matrix α0 is such that Ω = α0α
′
0. However, many choices for α0 are possible

since the factorization of Ω provides just three conditions for the identification of α0.

The long-run restriction is the fourth requirement that guarantees the identification

(up to a sign restriction). Indeed, there exists a unique lower triangular matrix s,

obtained by the Cholesky factorization, such that Ω = ss′. Any α0 such that Ω = α0α
′
0

is an orthonormal transformation of s, namely α0 = sr′ with r ∈ A orthonormal. The

long-run restriction and the sign restrictions r(1, 2) < 0, r(2, 1) > 0 imply that r is

uniquely determined by

r = − 1√
ϑ2 + 1

[
ϑ 1

−1 ϑ

]
with

ϑ = − s(2, 2)
∑∞

h=0 ch(1, 2)

s(1, 1)
∑∞

h=0 ch(1, 1) + s(2, 1)
∑∞

h=0 ch(1, 2)
.

In Blanchard and Quah xt = [yt, zt]
′, where yt is the first-difference process of log

real GNP (or output growth) and zt is the seasonally adjusted unemployment rate for

males aged more than 20. Data are taken quarterly and they span from 1950 : Q2

to 1987 : Q4. The maximum autoregressive lag N is chosen equal to 8. To reduce

non-stationarity, the unemployment rate is linearly detrended while the output growth

is demeaned by splitting the sample in two parts: before and after 1973 : Q4. The

multivariate innovation εt = [ut, vt]
′ consists of the demand shock ut and the supply

shock vt. The impulse responses of output are obtained by cumulating the impulse

responses of output growth. They are plotted together with unemployment rate impulse

responses in Figure 1, which reproduces Figures 1 and 2 in Blanchard and Quah [7].

The impulse responses of output with respect to ut converge to zero in the long term as a

consequence of the long-run restriction imposed from the beginning. This phenomenon,

however, is not present in the impulse responses of GNP with respect to vt. For this
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Figure 1: Impulse response functions of output (in blue) and unemployment rate (in red) with respect to demand or supply shocks.

See Figures 1 and 2 in Blanchard and Quah [7].



reason, the demand shock ut is associated with a transitory effect, while the supply

disturbance vt has a permanent impact on output.

In fact, Blanchard and Quah’s result is mainly the following. Demand shocks have

hump-shaped effects on output and unemployment, with a peak after two or four

quarters. The main discrepancy between the two humps is given by their sign, that are

opposite. Moreover, the impact of ut vanishes after three or five years. The economic

interpretation is that demand disturbances have similar relevant effects on GNP and

employment but, definitively, the subsequent adjustment of prices and wages leads the

economy back to the equilibrium. As for supply shocks, the influence of innovations

vt on output cumulates over time, reaching a peak after two years. Except for the

first quarter, the evolution of GNP is increasing. Then, the output response declines

and stabilizes on a steady level after five years from the initial shock. A different

reaction, instead, characterizes the unemployment rate. Indeed, even if the supply

disturbance is favourable (due for instance to a productivity increase), in the short

term unemployment rises, plausibly because of wage rigidities. After several quarters

unemployment drops and, later, it slowly reverts to the original value. No effect is

present after five years.

Differently from Figure 1, Figure 2 displays the impulse responses of output growth,

together with those of the unemployment rate. We notice a positive impact of demand

innovations on output growth until the second quarter, followed by a negative oscilla-

tory reaction up to roughly three years. Such behaviour of impulse responses reflects

the hump of cumulated responses of GNP. The reactions of output growth to supply

shocks are oscillatory too. Moreover, the response is positive except for the first quar-

ter, captured by the coefficient α1(1, 2), and the third year. This is the counterpart of

output increase of Figure 1, which is not always monotonic.

From the description above, it is apparent that impulse responses do not always

follow definite dynamics. The unclear patterns of responses may hide the superposition

of contemporary contrasting reactions. Therefore, we compute the multiscale impulse

responses β
(j)
k of xt in order to disentangle the effects of demand or supply shocks with

heterogeneous persistence. It comes out that the hump shape and the oscillations of

responses are due to the overlapping of positive and negative reactions at different

scales. The multiscale impulse responses of output growth and unemployment rate at

the scales j = 1, 2, 3, 4 are displayed in Figures 3, 4, 5 and 6 respectively.

To begin with, consider the output growth reaction to demand disturbances. Mul-

tiscale impulse responses at scales 2 and 3 reflect the behaviour of classical impulse

responses, positive in the short term and negative later. However, the negative reac-

tion is negligible at scale 1 and 4, which reveal a favourable feedback from demand

innovations. As a result, the decline of the hump in the responses of GNP is mainly
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Figure 2: Impulse response functions of output growth (in blue) and unemployment rate (in red) with respect to demand or supply

shocks.



due to yearly or biennial shocks occurring at scales 2 and 3 respectively. As for supply

shocks, the influence on output growth at scales 1 and 4 is generally positive, while

at scale 3 it is negative. This means that the reaction on a biennial basis is counter-

productive. In addition, a brake to GNP growth is captured by β
(2)
0 (1, 2) and β

(3)
0 (1, 2).

Hence, the negative reaction explained by α1(1, 2) actually starts at the previous quar-

ter and involves annual and biennial innovations. Such effect is actually concealed by

the contemporary positive response quantified by β
(1)
0 (1, 2) and β

(4)
0 (1, 2).

Now we focus on the unemployment rate. Multiscale responses to demand dis-

turbances are generally negative with the exception of β
(1)
0 (2, 1) and β

(2)
0 (2, 1), which

provide evidence for an immediate and temporary positive reaction to biannual and

yearly innovations. On the other hand, the negative coefficient β
(4)
0 (2, 1) is prevailing

and all the classical impulse responses of unemployment are negative. However, the

short-term positive impact of demand shocks delays the large drop in unemployment

and makes the hump shape arise. As for the impact of supply disturbances, the be-

haviour of multiscale responses reflects that of classical responses, except for β
(1)
0 (2, 2)

which reveals a temporary mean-reversion.

As a result, the MEWD allows us to disaggregate demand/supply calendar-time

shocks and to quantify the impact of innovations with different persistent levels. The

rigidities advocated by Blanchard and Quah to justify the dynamics of output and

unemployment act differently across scales. Moreover, the shocks ε
(j)
t may be due to

policies of diverse nature according to the scale, from temporary tax-benefits to long-

lasting monetary policy interventions, for instance. Therefore, the fact that the vector

process x comes from the superposition of persistent components with scale-specific

behaviours is useful from the policy maker perspective, too. Indeed, the impact of

the introduction of short, medium or long-term innovations in the economy is easily

quantified. This is the approach formally described by Theorem 5.
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Figure 3: Multiscale impulse response functions of output growth (in blue) and unemployment rate (in red) with respect to demand

or supply shocks at scale 1.



Figure 4: Multiscale impulse response functions of output growth (in blue) and unemployment rate (in red) with respect to demand

or supply shocks at scale 2.



Figure 5: Multiscale impulse response functions of output growth (in blue) and unemployment rate (in red) with respect to demand

or supply shocks at scale 3.



Figure 6: Multiscale impulse response functions of output growth (in blue) and unemployment rate (in red) with respect to demand

or supply shocks at scale 4.



5 Conclusion

A wide literature supports the idea that the realizations of economic time series are

actually the outcome of the reaction to contemporary phenomena with heterogeneous

persistence. Daily news and demographic trends are examples at opposite sides of

the spectrum. The situation is even more involved when multivariate processes are

taken into account. Indeed, the diversity of persistence commingles with a collection

of, possibly correlated, sources of randomness. As things stand, we reach our purpose

of eliciting persistent components from vectorial processes by the following plan.

We first revisit the standard treatment of multivariate time series in a Hilbert mod-

ule framework, where the role of matrix coefficient is clarified. We, then, prove the

Abstract Wold Theorem for Hilbert modules that allows us to derive two orthogonal

decompositions of the original process: the well-known Multiscale Classical Wold De-

composition and the persistence-based Multivariate Extended Wold Decomposition.

The latter provides a decomposition into uncorrelated vectorial components that ex-

plain idiosyncratic layers of persistence. Multivariate multiscale impulse responses

quantify the dependence on persistent shocks.

As we saw in the analysis of Blanchard and Quah’s model, the MEWD provides

useful information about the dynamics of multivariate processes. Such information is,

indeed, often unrecognisable when the aggregate process is observed by the lenses of

classical impulse response functions. Hence, we expect our methodology to be fruitful

applied to macroeconomic and financial variables usually modelled by V AR processes.

Further potential applications may involve DSGE models, too.
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A Hilbert A-modules

In this section of the appendix we present a short primer on Hilbert A-modules. The

purpose is twofold: a) to present a uniform and self-contained treatment of the topic, b)

to present results that are key for our theory and we could not find in the literature. We

will mostly focus our attention to the case of A being the algebra of squared matrices,

but we will keep our setting abstract in order to avoid getting lost in useless details.

Hilbert A-modules are nothing else, but a generalization of Hilbert spaces. In

particular, one starts from the observation that the scalar field R in a Hilbert space

can be replaced by an abstract algebra A: for example, the algebra of matrices. All

definitions39 are then kept identical to the ones of the scalar case. Since the seminal

paper of Kaplansky [17], Hilbert modules have been widely studied in Mathematics. In

Economics instead, Hilbert A-modules were studied and fruitfully used by Hansen and

Richard [16] to prove a conditional version of the fundamental theorem of asset pricing.

Mostly, the mathematical literature focused on complex C∗-algebras and developed

very rapidly and in a non systematic/scattered way.40 On the other hand, the real case

received little attention. Particularly, most of the results available have been developed

for algebras that are commutative, which is not our case here. This includes the work

of Hansen and Richard [16], Guo [13], and Cerreia-Vioglio, Maccheroni, Marinacci [10].

One notable exception to this is the paper of Goldstine and Horwitz [12] which deals

with the case we have at hand here: the algebra of squared real matrices.

We conclude by observing that the reader might be tempted to think that Hilbert

A-modules behave exactly like Hilbert spaces. For example, one might think that, as it

is the case for Hilbert spaces, each linear and bounded functional can be represented by

using the (generalized) inner product: the famous Riesz Theorem. Similarly, one could

also think that any closed subspace is automatically complemented. Unfortunately,

this is not the case and much of the truth of these statements depends on both the

properties of A and H.41 In what follows, we will derive both results and, in so doing,

we will highlight what are the connections and differences with the existing literature.

These two results will be instrumental in proving the Abstract Wold Theorem.

A.1 Introduction

Let A be a real C∗-algebra with (multiplicative) unit e which is isomorphic to the real

C∗-algebra of bounded operators over a real Hilbert space. We order A with the partial

order induced by the cone of its positive and self-adjoint elements. It follows that A

39See, e.g., Definition 5.
40See also Frank [11].
41This applies even to the complex case (see Lance [18, p. 7]).
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has a (multiplicative) unit e. We next proceed by defining the objects we study in this

paper.

Definition 5 An abelian group (H,+) is an A-module if and only if an outer product

· : A ×H → H is well defined with the following properties, for each a, b ∈ A and for

each x, y ∈ H:

(1) a · (x+ y) = a · x+ a · y;

(2) (a+ b) · x = a · x+ b · x;

(3) a · (b · x) = (ab) · x;

(4) e · x = x.

An A-module is a pre-Hilbert A-module if and only if an inner product 〈 , 〉H : H ×
H → A is well defined with the following properties, for each a ∈ A and for each

x, y, z ∈ H:

(5) 〈x, x〉H ≥ 0, with equality if and only if x = 0;

(6) 〈x, y〉H = 〈y, x〉∗H ;

(7) 〈x+ y, z〉H = 〈x, z〉H + 〈y, z〉H ;

(8) 〈a · x, y〉H = a 〈x, y〉H .

For A = R conditions (1)-(4) define vector spaces, while (5)-(8) define pre-Hilbert

spaces.42

Given a pre-Hilbert A-module, we will show that43

〈x, y〉∗H 〈x, y〉H ≤ ‖〈x, x〉H‖A 〈y, y〉H ∀x, y ∈ H

where ‖ ‖A is the norm of A.

Given an element y ∈ H, note that 〈 , 〉H induces an operator f : H → A defined

as f (x) = 〈x, y〉H with the following properties:

- A-linearity f (a · x+ b · y) = af (x) + bf (y) for all a, b ∈ A and for all x, y ∈ H;

- Boundedness There exists M > 0 such that ‖f (x)‖2
A ≤ M ‖〈x, x〉H‖A for all

x ∈ H.

42We will use Latin letters a, b, c to denote elements of A, Latin letters x, y, z to denote elements of
H, and Greek letters α, β to denote elements of R.

43We will adapt the techniques of Raeburn and Williams [21, Lemma 2.5] to the real case.
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In light of this fact, we give the following definition:

Definition 6 Let H be a pre-Hilbert A-module. We say that H is self-dual if and only

if for each f : H → A which is A-linear and bounded there exists y ∈ H such that

f (x) = 〈x, y〉H ∀x ∈ H.

A.2 C∗-algebras

In our case, we will consider A to be isomorphic to the algebra of bounded operators on

a real Hilbert space H ′. In particular, A is a real normed algebra with multiplicative

unit e, we denote by ‖ ‖A the norm of A. We denote the norm dual of A by A∗. Recall

that A is also a C∗-algebra with unit, that is, there exists an involution ∗ : A→ A such

that for each a, b ∈ A and α ∈ R

(a+ b)∗ = a∗ + b∗, (ab)∗ = b∗a∗, (αa)∗ = αa∗, and a∗∗ = (a∗)∗ = a.

The involution also well behaves with the norm, that is,

‖a‖2
A = ‖a∗a‖A ∀a ∈ A.

The algebra A is also naturally ordered by the order ≥ induced by the closed con-

vex cone of positive elements that are such that a = a∗.44 We denote by A+ =

{a ∈ A : a ≥ 0}. The following useful properties will be very useful in what follows:

1. ‖a‖A = ‖a∗‖A;

2. If a ∈ A, then we have that a∗a ∈ A+;

3. If a ≥ 0, then bab∗ ≤ ‖a‖A bb∗;

4. If a ≥ b ≥ 0, then ‖a‖A ≥ ‖b‖A;

5. If A is finite dimensional, then there exists a continuous linear functional ϕ̄ :

A→ R such that

a ≥ 0 =⇒ ϕ̄ (a) ≥ 0

a ≥ 0 and ϕ̄ (a) = 0 ⇐⇒ a = 0

ϕ̄ (a) = ϕ̄ (a∗) ∀a ∈ A
∃K > 0 such that ‖a‖A ≤ ϕ̄ (a) ≤ K ‖a‖A ∀a ≥ 0.

We will call a continuous and linear functional ϕ̄ that satisfies the first three prop-

erties of point 5. strictly positive. We will call a functional as in point 5 a trace. Since

A+ is a closed convex cone, there exists a closed and convex set C ⊆ A∗ such that

a ≥ b ⇐⇒ ϕ (a) ≥ ϕ (b) ∀ϕ ∈ C. (4)

44In the real case, the extra requirement a = a∗ is not redundant.
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A.3 The vector space structure of H

In this section, we will first show that a pre-Hilbert A-module has a natural structure

of vector space. Next, we will show that the Avalued inner product 〈 , 〉H shares

some of the properties of standard real-valued inner products. In particular, under the

assumption that A admits a strictly positive functional ϕ̄, we will show that it also

induces a real valued inner product on H, thus making H into a pre-Hilbert space.

We use the outer product · to define a scalar product:

·e : R×H → H

(α, x) 7→ (αe) · x
.

We next show that ·e makes the abelian group H into a real vector space.

Proposition 2 Let H be an A-module. (H,+, ·e) is a real vector space.

Proof. By assumption, H is an abelian group. For each α, β ∈ R and each x, y ∈ H,

we have that

(1) α ·e (x+ y) = αe · (x+ y) = (αe) · x+ (αe) · y = α ·e x+ α ·e y;

(2) (α + β) ·e x = ((α + β) e) · x = (αe+ βe) · x = (αe) · x+ (βe) · x = α ·e x+ β ·e x;

(3) α ·e (β ·e x) = (αe) · ((βe) · x) = ((αe) (βe)) · x = ((αβ) e) · x = (αβ) ·e x;

(4) 1 ·e x = (1e) · x = e · x = x.

�

From now on, we will often write αx in place of α ·e x.

Corollary 1 Let H be an A-module. If f : H → A is an A-linear operator, then f is

linear.

Proof. Consider x, y ∈ H and α, β ∈ R. We have that

f (αx+ βy) = f ((αe) · x+ (βe) · y) = (αe) f (x) + (βe) f (y)

= αf (x) + βf (y) ,

proving the statement. �

Assume A admits a strictly positive functional ϕ̄. Define 〈 , 〉ϕ̄ : H ×H → R by

〈x, y〉ϕ̄ = ϕ̄ (〈x, y〉H) ∀x, y ∈ H.
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Proposition 3 Let H be a pre-Hilbert A-module. If A admits a strictly positive func-

tional ϕ̄, then 〈 , 〉ϕ̄ is an inner product.

Proof. We prove four properties:

a. Consider x ∈ H. By assumption, we have that 〈x, x〉H ≥ 0. Since ϕ̄ is positive,

it follows that

〈x, x〉ϕ̄ = ϕ̄ (〈x, x〉H) ≥ 0.

Since ϕ̄ is strictly positive and 〈x, x〉H ≥ 0, note also that

ϕ̄ (〈x, x〉H) = 0 ⇐⇒ 〈x, x〉H = 0 ⇐⇒ x = 0.

b. Consider x, y ∈ H. Since ϕ̄ (a) = ϕ̄ (a∗) for all a ∈ A, we have that

〈y, x〉ϕ̄ = ϕ̄ (〈y, x〉H) = ϕ̄ (〈y, x〉∗H) = ϕ̄ (〈x, y〉H) = 〈x, y〉ϕ̄ .

c. Consider x, y, z ∈ H. Since ϕ̄ is linear, we obtain that

〈x+ y, z〉ϕ̄ = ϕ̄ (〈x+ y, z〉H) = ϕ̄ (〈x, z〉H + 〈y, z〉H)

= ϕ̄ (〈x, z〉H) + ϕ̄ (〈y, z〉H) = 〈x, z〉ϕ̄ + 〈y, z〉ϕ̄ .

d. Consider x, y ∈ H and α ∈ R. Since ϕ̄ is linear, we obtain that

〈αx, y〉ϕ̄ = ϕ̄ (〈(αe) · x, y〉H) = ϕ̄ ((αe) 〈x, y〉H)

= ϕ̄ (α 〈x, y〉H) = α 〈x, y〉ϕ̄ .

Properties a-d yield the statement. �

Corollary 2 Let H be a pre-Hilbert A-module. If A admits a strictly positive func-

tional ϕ̄, then
(
H,+, ·e, 〈 , 〉ϕ̄

)
is a pre-Hilbert space.

Proposition 4 Let H be a pre-Hilbert A-module. The following statements are true:

1. 〈x, y〉∗H 〈x, y〉H ≤ ‖〈x, x〉H‖A 〈y, y〉H for all x, y ∈ H;

2. ‖〈x, y〉H‖
2
A ≤ ‖〈x, x〉H‖A ‖〈y, y〉H‖A for all x, y ∈ H;

3. ‖〈x, y〉H‖A ≤ ‖〈x, x〉H‖
1
2
A ‖〈y, y〉H‖

1
2
A for all x, y ∈ H.

Proof. Consider w, z ∈ H and assume that 〈w, z〉H = 〈w, z〉∗H . It follows that for each

t ≥ 0

0 ≤ 〈w + tz, w + tz〉H = 〈w,w + tz〉H + 〈tz, w + tz〉H
= 〈w,w〉H + 〈w, tz〉H + 〈tz, w〉H + 〈tz, tz〉H
= 〈w,w〉H + t 〈w, z〉H + t 〈z, w〉H + t2 〈z, z〉H
= 〈w,w〉H + t 〈w, z〉H + t 〈w, z〉∗H + t2 〈z, z〉H
= 〈w,w〉H + 2t 〈w, z〉H + t2 〈z, z〉H .
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Consider ϕ ∈ C. It follows that

0 ≤ ϕ (〈w + tz, w + tz〉H) = ϕ
(
〈w,w〉H + 2t 〈w, z〉H + t2 〈z, z〉H

)
= ϕ (〈w,w〉H) + 2tϕ (〈w, z〉H) + t2ϕ (〈z, z〉H) ,

yielding that

ϕ (〈w, z〉H)2 ≤ ϕ (〈w,w〉H)ϕ (〈z, z〉H) . (5)

Choose x̄, ȳ ∈ H. Define w = 〈x̄, ȳ〉∗H x̄ and ȳ = y. It follows that

〈w, z〉H = 〈x̄, ȳ〉∗H 〈x̄, ȳ〉H ,

yielding that 〈w, z〉H = 〈w, z〉∗H and (5) holds. In particular, we have that

ϕ (〈x̄, ȳ〉∗H 〈x̄, ȳ〉H)
2

= ϕ (〈w, z〉H)2 ≤ ϕ (〈w,w〉H)ϕ (〈z, z〉H)

= ϕ (〈x̄, ȳ〉∗H 〈x̄, x̄〉H 〈x̄, ȳ〉H)ϕ (〈ȳ, ȳ〉H) .

Define a = 〈x̄, x̄〉H and b = 〈x̄, ȳ〉∗H . Recall that

bab∗ ≤ ‖a‖A bb
∗and bb∗ ≥ 0.

Thus, we have that

ϕ (〈x̄, ȳ〉∗H 〈x̄, ȳ〉H)
2 ≤ ϕ (〈x̄, ȳ〉∗H 〈x̄, x̄〉H 〈x̄, ȳ〉H)ϕ (〈ȳ, ȳ〉H)

≤ ϕ
(
‖〈x̄, x̄〉H‖A 〈x̄, ȳ〉

∗
H 〈x̄, ȳ〉H

)
ϕ (〈ȳ, ȳ〉H)

≤ ‖〈x̄, x̄〉H‖A ϕ (〈x̄, ȳ〉∗H 〈x̄, ȳ〉H)ϕ (〈ȳ, ȳ〉H)

and

ϕ (〈x̄, ȳ〉∗H 〈x̄, ȳ〉H) ≥ 0.

We thus have that

ϕ (〈x̄, ȳ〉∗H 〈x̄, ȳ〉H) ≤ ϕ
(
‖〈x̄, x̄〉H‖A 〈ȳ, ȳ〉H

)
. (6)

Since ϕ was arbitrarily chosen, we have that (6) holds for all ϕ ∈ C, that is, by (4)

〈x̄, ȳ〉∗H 〈x̄, ȳ〉H ≤ ‖〈x̄, x̄〉H‖A 〈ȳ, ȳ〉H .

Since x̄ and ȳ were arbitrarily chosen, the statement follows.

2. Consider x, y ∈ H. Call a = 〈x, y〉H and b = ‖〈x, x〉H‖A 〈y, y〉H . By point 1, we

have that

0 ≤ a∗a ≤ b.

It follows that

‖〈x, y〉H‖
2
A = ‖a‖2

A = ‖a∗a‖A ≤ ‖b‖A =
∥∥‖〈x, x〉H‖A 〈y, y〉H∥∥A

= ‖〈x, x〉H‖A ‖〈y, y〉H‖A ,

proving the point.

3. It trivially follows from point 2. �
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A.3.1 Topological structure

The ‖ ‖H norm

Define ‖ ‖H : H → [0,∞) by

‖x‖H =
√
‖〈x, x〉H‖A ∀x ∈ H.

Proposition 5 Let H be pre-Hilbert A-module. The following statements are true:

1. ‖ ‖H is a norm;

2. ‖a · x‖H ≤ ‖a‖A ‖x‖H for all a ∈ A and all x ∈ H.

Proof. 1. Note that

‖x‖H = 0 ⇐⇒ ‖〈x, x〉H‖A = 0 ⇐⇒ 〈x, x〉H = 0 ⇐⇒ x = 0.

Note also that for each α ∈ R and x ∈ H

‖αx‖H =
√
‖〈αx, αx〉H‖A =

√
‖α2 〈x, x〉H‖A

= |α|
√
‖〈x, x〉H‖A = |α| ‖x‖H .

Finally, we have that for each x, y ∈ H

‖x+ y‖2
H = ‖〈x+ y, x+ y〉H‖A

= ‖〈x, x〉H + 〈x, y〉H + 〈y, x〉H + 〈y, y〉H‖A
≤ ‖〈x, x〉H‖A + ‖〈x, y〉H‖A + ‖〈y, x〉H‖A + ‖〈y, y〉H‖A
≤ ‖〈x, x〉H‖A +

√
‖〈x, x〉H‖A ‖〈y, y〉H‖A +

√
‖〈y, y〉H‖A ‖〈x, x〉H‖A + ‖〈y, y〉H‖A

= ‖〈x, x〉H‖A + 2
√
‖〈x, x〉H‖A ‖〈y, y〉H‖A + ‖〈y, y〉H‖A

=
(
‖〈x, x〉H‖

1
2
A + ‖〈y, y〉H‖

1
2
A

)2

.

We can thus conclude that

‖x+ y‖H ≤
(
‖〈x, x〉H‖

1
2
A + ‖〈y, y〉H‖

1
2
A

)
= ‖x‖H + ‖y‖H ,

proving that ‖ ‖H is a norm.

2. Given any a ∈ A and x ∈ H, define b = 〈x, x〉H ≥ 0.

‖a · x‖2
H = ‖〈a · x, a · x〉H‖A = ‖a 〈x, x〉H a

∗‖A = ‖aba∗‖A ≤ ‖b‖A ‖aa
∗‖A

≤ ‖〈x, x〉H‖A ‖a‖
2
A = ‖a‖2

A ‖x‖
2
H ,
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proving the statement. �

By Proposition 4, it readily follows that

‖〈x, y〉H‖A ≤ ‖x‖H ‖y‖H ∀x, y ∈ H. (7)

Corollary 3 Let H be a pre-Hilbert A-module. For each y ∈ H, the functional 〈·, y〉H :

H → A is A-linear, ‖ ‖H − ‖ ‖A continuous, and has norm ‖y‖H .

Proof. Fix y ∈ H. It is immediate to see that the operator induced by y is A-linear,

thus, linear. Continuity easily follows from (7). Since the norm of the linear operator

is given by

sup
{
‖〈x, y〉H‖A / ‖x‖H : x 6= 0

}
,

the statement easily follows from (7) and the definition of ‖ ‖H . �

The ‖ ‖ϕ̄ norm

Assume A admits a strictly positive functional ϕ̄. Define ‖ ‖ϕ̄ : H → [0,∞) by

‖x‖ϕ̄ =
√
〈x, x〉ϕ̄ ∀x ∈ H. (8)

By Corollary 2, 〈 , 〉ϕ̄ is an inner product on H and it is immediate to see that ‖ ‖ϕ̄ is

a norm and

‖x‖ϕ̄ =
√
ϕ̄ (〈x, x〉H) ∀x ∈ H. (9)

Relations among norms

Assume A admits a strictly positive functional ϕ̄. Since ϕ̄ is a continuous linear

functional, it follows that there exists K > 0 such that

ϕ̄ (a) ≤ K ‖a‖A ∀a ∈ A+.

This implies that

‖x‖2
ϕ̄ = ϕ̄ (〈x, x〉H) ≤ K ‖〈x, x〉H‖A = ‖x‖2

H ∀x ∈ H,

that is,

‖x‖ϕ̄ ≤
√
K ‖x‖H ∀x ∈ H.

We can conclude that

xn
‖ ‖H→ 0 =⇒ xn

‖ ‖ϕ̄→ 0.

Proposition 6 Let H be a pre-Hilbert A-module. If A is finite dimensional, then A

admits a trace ϕ̄ and the norms ‖ ‖ϕ̄ and ‖ ‖H are equivalent.
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Proof. Since A is finite dimensional, there exists K > 0 such that ‖a‖A ≤ ϕ̄ (a) ≤
K ‖a‖A for all a ≥ 0. It follows that

‖x‖H =
√
‖〈x, x〉H‖A ≤

√
ϕ̄ (〈x, x〉H) = ‖x‖ϕ̄

=
√
ϕ̄ (〈x, x〉H) ≤

√
K
√
‖〈x, x〉H‖A

=
√
K ‖x‖H ∀x ∈ H,

proving the statement. �

A.4 Dual module

Given a pre-Hilbert A-module H, we define

H∼ =
{
f ∈ AH : f is A-linear and bounded

}
.

By definition of boundedness and ‖ ‖H , we have that f is bounded if and only if there

exists M > 0 such that

‖f (x)‖A ≤M ‖x‖H ∀x ∈ H.

Recall that if f ∈ H∼, then f is linear. Thus, in this case, we have that H∼ ⊆ B (H,A),

where the latter is the set of all bounded linear operators from H to A when H is

endowed with ‖ ‖H and A is endowed with ‖ ‖A.

Proposition 7 If H is a pre-Hilbert A-module, then H∼ is an A-module.

Proof. Define + : H∼ ×H∼ → H∼ to be such that for each f, g ∈ H∼

(f + g) (x) = f (x) + g (x) ∀x ∈ H.

In other words, + is the usual pointwise sum of operators. Define · : A × H∼ → H∼

to be such that for each a ∈ A and for each f ∈ H∼

(a · f) (x) = f (x) a∗ ∀x ∈ H.

It is immediate to verify that H∼ is closed under + and ·. In particular, (H,+) is an

abelian group. Note that for each a, b ∈ A and each f, g ∈ H∼:

1. (a · (f + g)) (x) = ((f + g) (x)) a∗ = (f (x) + g (x)) a∗ = f (x) a∗ + g (x) a∗ =

(a · f) (x) + (a · g) (x) = (a · f + a · g) (x) for all x ∈ H, that is, a · (f + g) =

a · f + a · g.

2. ((a+ b) · f) (x) = f (x) (a+ b)∗ = f (x) (a∗ + b∗) = f (x) a∗+f (x) b∗ = (a · f) (x)+

(b · f) (x) = (a · f + b · f) (x) for all x ∈ H, that is, (a+ b) · f = a · f + b · f .
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3. (a · (b · f)) (x) = ((b · f) (x)) a∗ = (f (x) b∗) a∗ = f (x) (b∗a∗) = f (x) (ab)∗ =

((ab) · f) (x) for all x ∈ H, that is, a · (b · f) = (ab) · f .

4. (e · f) (x) = f (x) e∗ = f (x) e = f (x) for all x ∈ H, that is, e · f = f . �

Since H∼ is an A-module, it is also a vector space. Note that the scalar product

·e coincides with the usual scalar product defined on B (H,A) once restricted to H∼.

Thus, we can also define a norm on H∼ defined as ‖ ‖H∼ : H∼ → [0,∞) such that

‖f‖H∼ = sup
‖x‖H=1

‖f (x)‖A ∀f ∈ H∼.

Define S∼ : H → H∼ by

S∼ (y) = 〈 , y〉H ∀y ∈ H.

Given Corollary 3 and the properties of 〈 , 〉H , the map S∼ is well defined and linear.

In fact, for each α, β ∈ R and each y, z ∈ H

S∼ (αy + βz) (x) = 〈x, αy + βz〉H = 〈x, αy〉H + 〈x, βz〉H
= 〈x, (αe) · y〉H + 〈x, (βe) · z〉H
= 〈x, y〉H (αe)∗ + 〈x, z〉H (βe)∗

= (S∼ (y) (x)) (αe)∗ + (S∼ (z) (x)) (βe)∗

= ((αe) · S∼ (y)) (x) + (βe · S∼ (z)) (x)

= ((αe) · S∼ (y) + (βe) · S∼ (z)) (x) ∀x ∈ H,

proving that

S∼ (αy + βz) = (αe) · S∼ (y) + (βe) · S∼ (z) = αS∼ (y) + βS∼ (z) .

Proposition 8 Let H be a pre-Hilbert A-module. The following statements are true:

1. H∼ is ‖ ‖H∼ complete.

2. S∼ is an isometry, that is, ‖S∼ (y)‖H∼ = ‖y‖H for all y ∈ H.

3. If H is self-dual, then S∼ is onto and H is ‖ ‖H complete.

Proof. 1. By Proposition 7, H∼ is an A-module. In particular, H∼ is a vector

subspace of B (H,A). Consider a ‖ ‖H∼ Cauchy sequence {fn}n∈N ⊆ H∼ ⊆ B (H,A).

By Aliprantis and Border [2, Theorem 6.6], we have that there exists f ∈ B (H,A) such

that fn
‖ ‖H∼→ f . We are left to show that f is A-linear. First, observe that f : H → A

is such that

f (x) = lim
n
fn (x) ∀x ∈ H
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where the limit is in ‖ ‖A norm. We can conclude that for each a, b ∈ A and x, y ∈ H

fn (x)
‖ ‖A→ f (x) , fn (y)

‖ ‖A→ f (y) =⇒ afn (x)
‖ ‖A→ af (x) , bfn (y)

‖ ‖A→ bf (y)

=⇒ afn (x) + bfn (y)
‖ ‖A→ af (x) + bf (y) .

At the same time, afn (x)+bfn (y) = fn (a · x+ b · y)
‖ ‖A→ f (a · x+ b · y) for all a, b ∈ A

and x, y ∈ H. By the uniqueness of the limit, we can conclude that f (a · x+ b · y) =

af (x) + bf (y) for all a, b ∈ A and x, y ∈ H, proving the statement.

2. Define S∼ : H → H∼ by

S∼ (y) (x) = 〈x, y〉H ∀x ∈ H.

By Corollary 3, it follows that ‖S∼ (y)‖H∼ = ‖y‖H for all y ∈ H.

3. If H is self-dual, it is immediate to see that S∼ is onto. Consider a ‖ ‖H Cauchy

sequence {xn}n∈N ⊆ H. Since S∼ is an isometry, it follows that {S∼ (xn)}n∈N is a

‖ ‖H∼ Cauchy sequence in H∼. Since H∼ is ‖ ‖H∼ complete and S∼ is onto, it follows

that there exists f ∈ H∼ such that S∼ (xn)
‖ ‖H∼→ f = S∼ (x) for some x ∈ H∼. Since

S∼ is an isometry, we have that xn
‖ ‖H→ x, proving that H is ‖ ‖H complete. �

A.5 Self-duality

Theorem 6 Let A be finite dimensional and H a pre-Hilbert A-module. The following

statements are equivalent:

(i) H is ‖ ‖H complete, that is, H is a Hilbert A-module;

(ii) H is ‖ ‖ϕ̄ complete;

(iii) H is self-dual.

Proof. Since A is finite dimensional, it admits a trace ϕ̄.

(i) implies (ii). By Proposition 6 and since A is finite dimensional, ‖ ‖ϕ̄ and ‖ ‖H
are equivalent. It follows that H is ‖ ‖ϕ̄ complete.

(ii) implies (iii). By Corollary 2 and since H is ‖ ‖ϕ̄ complete, it follows that H is

a Hilbert space with inner product 〈 , 〉ϕ̄. Consider f : H → A which is A-linear and

bounded. In particular, by the proof of Proposition 6, we have that there exists M > 0

such that

‖f (x)‖A ≤M ‖x‖H ≤M ‖x‖ϕ̄ ∀x ∈ H.

We can conclude that f : H → A is linear and ‖ ‖ϕ̄ − ‖ ‖A continuous. Consider the

linear functional l = ϕ̄ ◦ f . Since ϕ̄ is ‖ ‖A continuous and f is ‖ ‖ϕ̄−‖ ‖A continuous,
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we have that l is ‖ ‖ϕ̄ continuous. By the standard Riesz representation theorem, there

exists (a unique) y ∈ H such that l (x) = 〈x, y〉ϕ̄ for all x ∈ H. It follows that

ϕ̄ (f (x)− 〈x, y〉H) = ϕ̄ (f (x))− ϕ̄ (〈x, y〉H) = l (x)− 〈x, y〉ϕ̄ = 0 ∀x ∈ H. (10)

Fix x̄ ∈ H. Define a = (f (x̄)− 〈x̄, y〉H)∗ ∈ A. By (10), we have that

0 = ϕ̄ (f (a · x̄)− 〈a · x̄, y〉H) = ϕ̄ (af (x̄)− a 〈x̄, y〉H)

= ϕ̄ (a (f (x̄)− 〈x̄, y〉H)) = ϕ̄ (aa∗) .

Since ϕ̄ is a trace and aa∗ ≥ 0, this implies that aa∗ = 0, that is, ‖a∗‖2
A = ‖a‖2

A =

‖aa∗‖A = 0. We can conclude that f (x̄) − 〈x̄, y〉H = a∗ = 0. Since x̄ was arbitrarily

chosen, it follows that f (x) = 〈x, y〉H for all x ∈ H, proving that H is self-dual.

(iii) implies (i). By point 3. of Proposition 8, it follows that H is ‖ ‖H complete.

�

The implication (ii) implies (iii) can be found in Goldstine and Horwitz [12] al-

though few mathematical differences are present. Namely, Goldstine and Horwitz use

a different norm over A. The characterization of self-duality, that is, the remaining

implications, to the best of our knowledge is novel. A similar observation holds for the

implication (i) implies (ii) of Proposition 9.

A.5.1 Orthogonal decompositions

Pre-Hilbert modules behave very much like Hilbert spaces also in terms of orthogonal

decompositions. Consider a pre-Hilbert A-module H and let M ⊆ H. Define

M⊥ = {x ∈ H : 〈x, y〉H = 0 ∀y ∈M} .

It is immediate to prove that M⊥ is a submodule.45 It is also immediate to show that

M ∩M⊥ = {0} and that M⊥⊥ ⊇M where

M⊥⊥ =
(
M⊥)⊥ =

{
y ∈ H : 〈x, y〉H = 0 ∀x ∈M⊥} .

Before stating our result on orthogonal decompositions, we need an ancillary fact.

Lemma 1 Let H be a pre-Hilbert A-module. If M ⊆ H, then M⊥ is ‖ ‖H closed.

45A subset N of H is a submodule if and only if for each a, b ∈ A and x, y ∈ N

a · x+ b · y ∈ N.
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Proof. Fix z ∈ H and define ker {z} = {x ∈ H : 〈x, z〉H = 0}. Consider a sequence

{xn}n∈N ⊆ ker {z} such that xn
‖ ‖H→ x. Since S∼ (z) is ‖ ‖H − ‖ ‖A continuous, it

follows that S∼ (z) (x) = 0, that is, ker {z} is closed. Since M⊥ =
⋂
y∈M ker {y}, the

statement follows. �

Proposition 9 Let A be finite dimensional and H a pre-Hilbert A-module. If H is

self-dual and M is a submodule of H, then the following statements are equivalent:

(i) M is ‖ ‖H closed;

(ii) H = M ⊕M⊥;

(iii) M = M⊥⊥.

Proof. (i) implies (ii). Clearly, M ⊕M⊥ ⊆ H. We next prove the opposite inclusion.

Since M is a submodule of H, if we define 〈 , 〉M as the restriction of 〈 , 〉H to M×M ,

then (M,+, ·, 〈 , 〉M) is a pre-Hilbert A-module. It is immediate to see that ‖ ‖M =

‖ ‖H once the latter is restricted to M . Since M is ‖ ‖H closed, it follows that M is ‖ ‖M
complete and is itself self-dual. Fix y ∈ H. The map defined on M by x 7→ 〈x, y〉H
is A-linear and bounded. Since M is self dual, it follows that there exists a unique

y1 ∈M such that

〈x, y1〉H = 〈x, y1〉M = 〈x, y〉H ∀x ∈M.

Define y2 = y − y1. It follow that

〈x, y − y1〉H = 0 ∀x ∈M,

that is, y2 ∈M⊥. It is also immediate to see that y1 + y2 = y. Since y was arbitrarily

chosen, we can conclude that H ⊆M ⊕M⊥.

(ii) implies (iii). Since M ⊆ M⊥⊥, we only need to prove the opposite inclusion.

By assumption, if x ∈ M⊥⊥, then there exists xM ∈ M and xM⊥ ∈ M⊥ such that

x = xM + xM⊥ . Since M ⊆ M⊥⊥, we have that M⊥ 3 xM⊥ = x − xM ∈ M⊥⊥. Since

M⊥ ∩M⊥⊥ = {0}, this implies that x − xM = 0, that is, x = xM ∈ M , proving the

opposite inclusion and the statement.

(iii) implies (i). By Lemma 1 and since M = M⊥⊥ =
(
M⊥)⊥, it follows that M is

‖ ‖H closed. �

We conclude with a last piece of notation given M,N ⊆ H we write M⊥N if and

only if 〈x, y〉H = 0 for all x ∈ M and y ∈ N . Clearly, we have that M⊥M⊥ for all

M ⊆ H.

Proposition 9 allows us to define the (orthogonal) projection of an element x ∈ H
on a ‖ ‖H closed submodule M .
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Definition 7 Let A be finite dimensional, H a Hilbert A-module and M ⊆ H a ‖ ‖H
closed submodule. We call projection on M the linear map PM : H → M such that,

for any x ∈ H,

PMx = xM ,

where xM ∈M and xM⊥ ∈M⊥ are the unique elements that satisfy x = xM + xM⊥.

Given x ∈ H and y ∈ M , y = PMx if and only if 〈x− y, z〉H = 0 for all z ∈ M .

Moreover, PMx minimizes the distance between x and the submodule M because, for

any z ∈M ,

‖x− z‖2
H = ‖(x− PMx) + (PMx− z)‖2

H = ‖x− PMx‖2
H + ‖PMx− z‖2

H .

A.6 The Abstract Wold Theorem for Hilbert A-modules

In this section we prove an abstract version for Hilbert modules of the Wold Decom-

position Theorem.46 It is important to observe that the properties of self-duality and

complementability (see Theorem 6 and Proposition 9) are fundamental in allowing us

to follow the proof strategy used for Hilbert spaces. We say that T : H → H is an

isometry if and only if T is A-linear and such that

〈T (x) , T (y)〉H = 〈x, y〉H ∀x, y ∈ H. (11)

Note that an isometry in this sense satisfies the usual property

‖T (x)‖H = ‖x‖H ∀x ∈ H. (12)

It is immediate to prove that for each n ∈ N0 the iterate T n satisfies (11) and (12).47

In particular, by Abramovich and Aliprantis [1, Theorem 2.5], if H is ‖ ‖H complete,

T n (H) is a ‖ ‖H closed submodule of H.

Definition 8 Let T : H → H be an isometry. We say that a submodule L is wandering

if and only if for all m,n ∈ N0 such that m 6= n

T n (L)⊥Tm (L) .

Lemma 2 Let T : H → H be an isometry. If H is self-dual, then the following

statements are true:

1. If M is ‖ ‖H closed, so is T (M).

46See Sz.-Nagy, Foias, Bercovici and Kérchy [24].
47Recall that T 0 = I.
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2. If L = T (H)⊥, then L is wandering.

3. If L = T (H)⊥, then for each n ∈ N0

T n (H) = T n (L)⊕ T n+1 (H) and T n (L)⊥T n+1 (H) .

4. If L = T (H)⊥, then for each k ∈ N0

k⊕
n=0

T n (L) = T k+1 (H)⊥ .

Proof. 1. Since T is A-linear, that is, for each a, b ∈ A and each x, y ∈ H

T (a · x+ b · y) = a · T (x) + b · T (y) ,

we have that T is linear. By the proof of Abramovich and Aliprantis [1, Theorem 2.5]

and since T satisfies (11), we have that T (M) is closed.

2. Observe that T n (H) ⊆ H for all n ∈ N0. It follows that T n (H) ⊆ T (H) for

all n ∈ N. Since L ⊆ H, it also follows that T n (L) ⊆ T n (H) ⊆ T (H) for all n ∈ N.

Since T (H)⊥L, this implies that T n (L)⊥L for all n ∈ N. Next, consider m,n ∈ N0

such that m 6= n. Wlog, assume that n > m. By the previous part of the proof, we

have that T n−m (L)⊥L. By (11), we can conclude that T n (L)⊥Tm (L).

3. We proceed by induction.

Initial Step. n = 0. By definition of L, point 1, and Proposition 9 and since H is self

dual, we have that L is a ‖ ‖H closed submodule and

T n (H) = H = L⊕ L⊥ = L⊕ T (H) = T n (L)⊕ T n+1 (H)

proving the Step.

Inductive Step. Assume the statement is true for n. By assumption, it follows that

T n (H) = T n (L)⊕ T n+1 (H) and T n (L)⊥T n+1 (H). By (11) we have that

T n+1 (L)⊥T n+2 (H) (13)

as well as

T n+1 (H) = T (T n (H)) = T
(
T n (L)⊕ T n+1 (H)

)
= T (T n (L)) + T

(
T n+1 (H)

)
= T (T n (L))⊕ T

(
T n+1 (H)

)
where the last equality follows from (13).

The statement follows by induction.
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4. We proceed by induction.

Initial Step. k = 0. By definition of L,

k⊕
n=0

T n (L) = T 0 (L) = L = T (H)⊥ = T k+1 (H)⊥ .

Inductive Step. Assume the statement is true for k. By assumption, it follows

that
⊕k

n=0 T
n (L) = T k+1 (H)⊥. By Proposition 9 and since H is self-dual and since

T k+1 (H) is a ‖ ‖H closed submodule, this implies that

H = T k+1 (H)⊕ T k+1 (H)⊥ =
k⊕

n=0

T n (L)⊕ T k+1 (H) .

At the same time, by point 3., we also have that T k+1 (H) = T k+1 (L)⊕ T k+2 (H) and

T k+1 (L)⊥T k+2 (H). We can conclude that

k+1⊕
n=0

T n (L)⊕ T k+2 (H) = H and
k+1⊕
n=0

T n (L) = T k+2 (H)⊥ .

The statement follows by induction. �

Theorem 7 (Abstract Wold Theorem for Hilbert A-modules) Let T : H →
H be an isometry. If H is self-dual, then H = Ĥ ⊕ H̃ where

Ĥ =
∞⋂
n=0

T n (H) , H̃ =
∞⊕
n=0

T n (L) , L = T (H)⊥ .

Moreover, the submodules orthogonal decomposition,
(
Ĥ, H̃

)
, of H is the unique sub-

modules decomposition such that T
(
Ĥ
)

= Ĥ and H̃ =
⊕∞

n=0 T
n (L) given a wandering

set L.

Proof. Define L = T (H)⊥. Define also Mk =
⊕k

n=0 T
n (L) for all k ∈ N0, H̃ =⊕∞

n=0 T
n (L),48 and Ĥ = H̃⊥. It is immediate to see that Ĥ and H̃ are two ‖ ‖H

closed submodules. Note that Mk ⊆ Mk+1 for all k ∈ N0 and H̃ = cl‖ ‖H
(⋃

k∈N0
Mk

)
.

By construction, we have that Ĥ⊥Mk for all k ∈ N0. By Lemma 2, it follows that

Mk = T k+1 (H)⊥ for all k ∈ N. By Proposition 9, this implies that if x ∈ Ĥ, then

x ∈ M⊥
k = T k+1 (H) for all k ∈ N0. We can conclude that x ∈

⋂∞
n=1 T

n (H) ∩ H =⋂∞
n=0 T

n (H). Vice versa, since Mk = T k+1 (H)⊥ for all k ∈ N, if x ∈
⋂∞
n=0 T

n (H),

then

〈x, y〉H = 0 ∀y ∈
∞⋃
n=0

Mn.

48With the notation
⊕∞

n=0 T
n (L), we mean the ‖ ‖H closure of the set

⋃
k∈N0

Mk.
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Since cl‖ ‖H (
⋃∞
n=0Mn) = H̃, this implies that x ∈ H̃⊥ = Ĥ. In other words, we proved

that Ĥ =
⋂∞
n=0 T

n (H).

We next prove uniqueness. Since T n+1 (H) ⊆ T n (H) ⊆ H for all n ∈ N0, it follows

that

T
(
Ĥ
)

= T

(
∞⋂
n=0

T n (H)

)
=
∞⋂
n=0

T (T n (H)) =
∞⋂
n=1

T n (H) =
∞⋂
n=1

T n (H) ∩H = Ĥ.

Assume that
(
Ĥ ′, H̃

′
)

is another decomposition. Consider the wandering set L′ gen-

erating H̃ ′. By construction and since L′ is wandering, we have that L′⊥T
(
H̃ ′
)

and

L′ ⊕ T
(
H̃ ′
)

= H̃ ′. By construction and (11), this implies that

L = T (H)⊥ = T
(
Ĥ ′ ⊕ H̃ ′

)⊥
=
(
Ĥ ′ ⊕ T

(
H̃ ′
))⊥

= L′,

proving the statement. �

A.7 Adjoints

Given a pre-Hilbert A-module, we define by B∼ (H) the collection of all bounded A-

linear operators. In other words, T ∈ B∼ (H) if and only if

T (a · x+ b · y) = a · T (x) + b · T (y) ∀a, b ∈ A, ∀x, y ∈ H

and there exists M > 0 such that

‖T (x)‖H ≤M ‖x‖H ∀x ∈ H.

Since any A-linear operator is linear, we have that B∼ (H) ⊆ B (H) where the latter

is the set of all bounded and linear operators from H to H.

Given T ∈ B∼ (H), we define the adjoint of T , denoted by T ∗, to be such that

〈T (x) , y〉H = 〈x, T ∗ (y)〉H ∀x, y ∈ H. (14)

The next result shows that adjoints are well defined and all the properties that hold for

Hilbert spaces are satisfied once suitably adjusted to Hilbert modules. It is immediate

to see that B∼ (H) is a vector subspace of B (H). Note also that if S, T ∈ B∼ (H),

then the composition of S with T is also in B∼ (H).49

49Note that S, T ∈ B∼ (H) ⊆ B (H), thus ST ∈ B (H). We only need to prove A-linearity. We
have that for each a, b ∈ A and x, y ∈ H

(ST ) (a · x+ b · y) = S (T (a · x+ b · y)) = S (a · T (x) + b · T (y))

= a · S (T (x)) + b · S (T (y)) = a · (ST ) (x) + b · (ST ) (y) ,

proving A-linearity.
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Proposition 10 Let H be a self-dual pre-Hilbert A-module. The following statements

are true:

1. ∗ : B∼ (H)→ B∼ (H) is a well defined, injective, and linear;

2. T ∗∗ = T for all T ∈ B∼ (H);

3. ∗ : B∼ (H)→ B∼ (H) is a surjective;

4. ‖T‖ = ‖T ∗‖ for all T ∈ B∼ (H);

5. ‖ST‖ ≤ ‖S‖ ‖T‖ for all S, T ∈ B∼ (H);

6. ‖T ∗T‖ = ‖TT ∗‖ = ‖T‖2 for all T ∈ B∼ (H);

7. (ST )∗ = T ∗S∗ for all S, T ∈ T ∈ B∼ (H);

8. For all T ∈ B∼ (H), ker (T ∗) = T (H)⊥, where

ker (T ∗) = {x ∈ H : T ∗(x) = 0} .

Proof. 1. Consider T ∈ B∼ (H). Fix y ∈ H. Since T is A-linear and bounded, note

that the element y induces a bounded A-linear operator on H to A via the map

x 7→ 〈T (x) , y〉H ∀x ∈ H.

Since H is self-dual, there exists a unique zy ∈ H such that

〈T (x) , y〉H = 〈x, zy〉H ∀x ∈ H.

We define T ∗ : H → H to be such that T ∗ (y) = zy. It follows that T ∗ is well defined

and satisfies (14). Next, observe that for each y1, y2 ∈ H and α1, α2 ∈ R

〈x, T ∗ (α1y1 + α2y2)〉H = 〈x, zα1y1+α2y2〉H = 〈T (x) , α1y1 + α2y2〉H
= α1 〈T (x) , y1〉H + α2 〈T (x) , y2〉H
= α1 〈x, zy1〉H + α2 〈x, zy2〉H = 〈x, α1zy1 + α2zy2〉H
= 〈x, α1T

∗ (y1) + α2T
∗ (y2)〉H ∀x ∈ H,

yielding that T ∗ is linear. Finally, note that

‖T ∗‖ = sup
‖y‖H=1

‖T ∗ (y)‖H = sup
‖y‖H=1

(
sup
‖x‖H=1

‖〈x, T ∗ (y)〉H‖A

)

= sup
‖y‖H=1

(
sup
‖x‖H=1

‖〈T (x) , y〉H‖A

)
≤ sup
‖y‖H=1

(
sup
‖x‖H=1

‖T (x)‖H ‖y‖H

)

≤ sup
‖y‖H=1

(
sup
‖x‖H=1

‖T‖ ‖x‖H ‖y‖H

)
≤ ‖T‖ ,

49



proving that T ∗ ∈ B∼ (H) and ∗ is well defined. Next, fix y ∈ H. Consider S, T ∈
B∼ (H) and α, β ∈ R. Observe that

〈x, (αS + βT )∗ (y)〉H = 〈(αS + βT ) (x) , y〉H = 〈αS (x) + βT (x) , y〉H
= α 〈S (x) , y〉H + β 〈T (x) , y〉H = α 〈x, S∗ (y)〉H + β 〈x, T ∗ (y)〉H
= 〈x, αS∗ (y) + βT ∗ (y)〉H = 〈x, (αS∗ + βT ∗) (y)〉H ∀x ∈ H.

We can conclude that (αS + βT )∗ (y) = (αS∗ + βT ∗) (y). Since y was arbitrarily cho-

sen, we can conclude that (αS + βT )∗ = (αS∗ + βT ∗), that is, ∗ is linear. Next, fix

x ∈ H and assume that T ∗ = S∗. It follows that

〈T (x) , y〉H = 〈x, T ∗ (y)〉H = 〈x, S∗ (y)〉H = 〈S (x) , y〉H ∀y ∈ H.

We can conclude that T (x) = S (x). Since x was arbitrarily chosen, we can conclude

that T = S, that is, ∗ is injective.

2. Fix x ∈ H. By definition of T ∗ and T ∗∗, we have that

〈T (x) , y〉H = 〈x, T ∗ (y)〉H = 〈T ∗ (y) , x〉∗H = 〈y, T ∗∗ (x)〉∗H = 〈T ∗∗ (x) , y〉H ∀y ∈ H.

We can conclude that T (x) = T ∗∗ (x). Since x was arbitrarily chosen, we can conclude

that T = T ∗∗.

3. Consider S ∈ B∼ (H) and consider T = S∗. By point 2, it follows that T ∗ =

S∗∗ = S, that is, ∗ is surjective.

4. By the proof of point 1, we have that

‖T ∗‖ ≤ ‖T‖ ∀T ∈ B∼ (H) .

In particular, we have that ‖T ∗∗‖ ≤ ‖T ∗‖ ≤ ‖T‖ for all T ∈ B∼ (H). By point 2, we

can conclude that ‖T‖ ≤ ‖T ∗‖ ≤ ‖T‖ for all T ∈ B∼ (H), proving the statement.

5. Consider S, T ∈ B∼ (H). We have that

‖ST‖ = sup
‖y‖H=1

‖S (T (y))‖H ≤ sup
‖y‖H=1

(‖S‖ ‖T (y)‖H) ≤ ‖S‖ sup
‖y‖H=1

(‖T (y)‖H) ≤ ‖S‖ ‖T‖ ,

proving the statement.

6. Consider S ∈ B∼ (H). By points 4 and 5, observe that

‖S‖2 = sup
‖x‖H=1

‖S (x)‖2
H = sup

‖x‖H=1

‖〈S (x) , S (x)〉H‖A

= sup
‖x‖H=1

‖〈x, S∗ (S (x))〉H‖A ≤ sup
‖x‖H=1

‖x‖H ‖S
∗ (S (x))‖H

= sup
‖x‖H=1

‖(S∗S) (x)‖H = ‖S∗S‖ ≤ ‖S∗‖ ‖S‖ = ‖S‖2 ,
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yielding that ‖S∗S‖ = ‖S‖2. If we choose S = T , then ‖T ∗T‖ = ‖T‖2. If we choose

S = T ∗, then ‖TT ∗‖ = ‖T ∗‖2 = ‖T‖2.

7. Consider S, T ∈ B∼ (H). Fix y ∈ H. We have that, for any x ∈ H,

〈x, (ST )∗ (y)〉H = 〈(ST ) (x) , y〉H = 〈S (T (x)) , y〉H
= 〈T (x) , S∗ (y)〉H = 〈x, T ∗ (S∗ (y))〉H .

It follows that (ST )∗ (y) = T ∗ (S∗ (y)). Since y was arbitrarily chosen, it follows that

(ST )∗ (y) = T ∗ (S∗ (y)) for all y ∈ H, that is, (ST )∗ = T ∗S∗.

8. First we show that ker(T ∗) is included in T (H)⊥. Equivalently, we prove that

each y∗ ∈ ker (T ∗) is orthogonal to any y ∈ T (H). Note that T ∗ (y∗) = 0 and that

y = T (x) for some x ∈ H. By the definition of adjoint operator,

〈y, y∗〉H = 〈T (x), y∗〉H = 〈x, T ∗ (y∗)〉H = 0,

proving the orthogonality of y∗ and y. Conversely, consider any y∗ ∈ T (H)⊥, that is

〈T (x), y∗〉H = 0 for all x ∈ H. Since T ∗ is the adjoint operator, 〈x, T ∗ (y∗)〉H = 0 for

all x ∈ H and this ensures that T ∗ (y∗) = 0. �

Point 1 can also be found in Goldstine and Horwitz [12]. Also in this case, there is

a technical difference in terms of norm used over A.

A.8 Ancillary results

Proposition 11 Let H be a pre-Hilbert A-module. The following statements are true:

1. 〈z, x+ y〉H = 〈z, x〉H + 〈z, y〉H for all x, y, z ∈ H;

2. 〈x, a · y〉H = 〈x, y〉H a∗ for all a ∈ A and for all x, y ∈ H;

3. 〈x, αy〉H = α 〈x, y〉H for all α ∈ R for all x, y ∈ H.

Proof. 1. Consider x, y, z ∈ H. We have that

〈z, x+ y〉H = 〈x+ y, z〉∗H = (〈x, z〉H + 〈y, z〉H)∗

= 〈x, z〉∗H + 〈y, z〉∗H = 〈z, x〉H + 〈z, y〉H ,

proving the point.

2. Consider x, y ∈ H and a ∈ A. We have that

〈x, a · y〉H = 〈a · y, x〉∗H = (a 〈y, x〉H)∗ = 〈y, x〉∗H a
∗ = 〈x, y〉H a

∗,

proving the point.
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3. Consider x, y ∈ H and α ∈ R. We have that

〈x, αy〉H = 〈x, (αe) · y〉H = 〈x, y〉H (αe)∗ = α 〈x, y〉H ,

proving the point. �

Proposition 12 Let H be a self-dual pre-Hilbert A-module. If M,N,P,Q are four

‖ ‖H closed submodules such that

H = M ⊕N, N = P ⊕Q, N = M⊥, and P⊥Q,

then Q⊥ = M ⊕ P .

Proof. Note that

H = M ⊕ P ⊕Q. (15)

Consider x ∈ M , y ∈ P , and z ∈ Q. Since x ∈ M and z ∈ Q ⊆ N and N = M⊥, we

have that 〈x, z〉H = 0. Since y ∈ P , z ∈ Q and P⊥Q, we have that 〈y, z〉H = 0. It

follows that

〈x+ y, z〉H = 〈x, z〉H + 〈y, z〉H = 0.

Since z was arbitrarily chosen, it follows that 〈x+ y, z〉H = 0 for all z ∈ Q, that is,

x+y ∈ Q⊥. Since x ∈M and y ∈ P were arbitrarily chosen, we have that M⊕P ⊆ Q⊥.

Next, consider y ∈ Q⊥. By (15), we have that there exist x1 ∈M ⊕P and x2 ∈ Q such

that y = x1 + x2. Since M ⊕ P ⊆ Q⊥, it follows that Q⊥ 3 y − x1 = x2 ∈ Q, proving

that y− x1 = 0, that is, y = x1 ∈M ⊕P . Since y ∈ Q⊥ was arbitrarily chosen, we can

conclude the opposite inclusion Q⊥ ⊆M ⊕ P . �

B Hilbert A-modules for multivariate time series

We describe the special Hilbert A-modules that we employ for the treatment of random

vectors. We first introduce the Hilbert A-module H = L2(Rm,Ω,F ,P) that generalizes

the space of square-integrable random vectors, allowing for matrix coefficients. Then,

we review the main definitions of weakly stationary vector processes and we describe

the submodules of H induced by them.

B.1 The Hilbert A-module L2(Rm,Ω,F ,P)

Given a probability space (Ω,F ,P), we consider the vector space L2(Rm,Ω,F ,P) of

measurable square-integrable random vectors x that take value in Rm.50 We build on

50For any i = 1, . . . ,m the component xi belongs to L2(Ω,F ,P).
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L2(Rm,Ω,F ,P) the structure of Hilbert A-module and we denote it by H. We consider

the algebra A = Rm×m of real m ×m matrices. The unit in A is the identity matrix

and the product in A is the usual row-by-column product. A is normed by the operator

norm ‖ ‖A such that, for any a = {ai,j}i,j=1,...,m in A,

‖a‖A = sup
x∈Rm,‖x‖2=1

‖ax‖2,

where ‖ ‖2 is the L2 norm in Rm. In the algebra A, the involution that associates any

matrix a with its transposed a′ is defined. Such operation induces an order ≥ on the

convex cone of symmetric positive semidefinite matrices. For any a, b ∈ A, a ≥ b when

the matrix a− b is symmetric and positive semidefinite (equivalently, a− b ≥ 0).

Moreover, we define the trace functional ϕ̄ : A −→ R by setting, for any matrix a,

ϕ̄(a) = Tr(a) =
m∑
i=1

ai,i.

ϕ̄ satisfies the properties:51

• a ≥ 0 =⇒ ϕ̄(a) ≥ 0,

• a ≥ 0, ϕ̄(a) = 0 ⇐⇒ a = 0,

• ϕ̄(a) = ϕ̄(a′) ∀a ∈ A,

• ‖a‖A ≤ ϕ̄(a) ≤ m‖a‖A ∀a ≥ 0.

The outer product A × H −→ H is the standard matrix-by-vector product. This

operation makes H an A-module. Note that the natural structure of real vector space

of H is kept because of the relation

λx = (λI)x ∀x ∈ H, λ ∈ R,

where I is the identity matrix.

51Indeed, the trace of a symmetric positive semidefinite matrix a is nonnegative and it equals zero
just when a is null. Moreover, Tr(a) = Tr(a′) and, by denoting {zi}mi=1 an orthonormal basis of
eigenvectors of a (any zi is an eigenvector of the nonnegative eigenvalue λi), we have

ϕ̄(a) = Tr(a) =
m∑
i=1

λi‖zi‖2 =
m∑
i=1

‖azi‖2 6 m‖a‖A.

In addition, for any vector x =
∑
i µizi with ‖x‖22 =

∑
i µ

2
i = 1,

‖ax‖2 =

∥∥∥∥∥
m∑
i=1

µiazi

∥∥∥∥∥
2

≤
m∑
i=1

|µi| ‖azi‖2 ≤
m∑
i=1

‖azi‖2 =
m∑
i=1

λi‖zi‖2 = Tr(a).

Consequently, ‖a‖A ≤ ϕ̄(a).
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We define the A-valued inner product 〈 , 〉H : H × H −→ A that associates any

x = [x1, . . . , xm]′ , y = [y1, . . . , ym]′ ∈ H with the matrix

〈x, y〉H = E [xy′] = {E [xiyj]}i,j=1,...,m .

〈 , 〉H satisfies, for any x, y, z ∈ H and M ∈ A,

1. 〈x, x〉H ≥ 0 with equality if and only if x = 0;52

2. 〈x, y〉H = 〈y, x〉′H ;

3. 〈x+ y, z〉H = 〈x, z〉H + 〈y, z〉H ;

4. 〈ax, y〉H = a〈x, y〉H .

As a result, H is a pre-Hilbert A-module with the above operations. A useful conse-

quence of the previous properties is that

〈ax, by〉H = a〈x, y〉Hb′ ∀a, b ∈ A.

In addition,

〈x, x〉H = E [xx′] = {E [xixj]}i,j=1,...,m

is the covariance matrix of x which is symmetric and positive semidefinite. Hence,

E [xx′] has a unique symmetric positive semidefinite square root matrix S such that

〈x, x〉H = SS. Such matrix is positive definite in case E [xx′] is.53

As ϕ̄ is a trace functional, it is strictly positive. Therefore, H is also a pre-Hilbert

space with the inner product 〈 , 〉ϕ̄ : H ×H −→ R defined by

〈x, y〉ϕ̄ = ϕ̄ (〈x, y〉H) = Tr (〈x, y〉H) = Tr (E [xy′]) =
m∑
i=1

E [xiyi] ∀x, y ∈ H.

〈 , 〉ϕ̄ actually coincides with the usual inner product of L2 (Rm) and the associated

norm ‖ ‖ϕ̄ : H −→ [0,+∞) is

‖x‖ϕ̄ =
√
〈x, x〉ϕ̄ =

√
Tr (E [xx′]) =

√√√√ m∑
i=1

E [x2
i ] ∀x ∈ H.

52〈x, x〉H ≥ 0 means that 〈x, x〉H is a symmetric semipositive definite matrix.
53See Horn and Johnson [15, Theorem 7.2.6] as reference. Note that an alternative factorization

is provided by the Cholesky decomposition (see Trefethen and Bau III [25]). If E [xx′] is positive
definite, its Cholesky decomposition E [xx′] = LL′ is unique and L is a lower triangular matrix which
has positive entries on the diagonal. However, if E [xx′] is only positive semidefinite, the decomposition
is still possible (with zero entries on the diagonal), but it is not unique.
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As A is finite dimensional, the norm ‖ ‖H : H −→ [0,+∞) defined by

‖x‖H =
√
‖〈x, x〉H‖A =

√
‖E [xx′] ‖A ∀x ∈ H

is equivalent to ‖ ‖ϕ̄.54 In particular, observe that ‖x‖H =
√
λmax, where λmax is

the largest eigenvalue of the covariance matrix of x, i.e. the one associated with the

Principal Component of E [xx′] that explains the most variance.55 In case any xi is

uncorrelated with any xj with i 6= j, the covariance matrix E [xx′] is diagonal and so

‖x‖H =
√

maxi=1,...,m E [x2
i ].

In addition, an equivalent formulation of ‖x‖H exploits the Rayleigh-Ritz ratio:56

‖x‖2
H = max

‖y‖2=1
y′E [xx′] y.

Proposition 13 H is a Hilbert A-module.

Proof. We already described that H is a pre-Hilbert A-module. We are just left to

show that H is ‖ ‖ϕ̄ complete. Thus, we consider a Cauchy sequence
{
x(n)
}
n
⊂ H, i.e.

for any ε > 0 there exists N > 0 such that

∥∥x(n) − x(m)
∥∥2

ϕ̄
=

m∑
i=1

E
[(
x

(n)
i − x

(m)
i

)2
]
< ε2 ∀n,m > N.

Therefore, for any component i = 1, . . . ,m, the sequence
{
x

(n)
i

}
n
⊂ L2(Ω,F ,P) sat-

isfies the Cauchy condition. As L2(Ω,F ,P) is complete, there exists xi ∈ L2(Ω,F ,P)

such that

E
[(
x

(n)
i − xi

)2
]
<
ε2

m
∀n > Ni.

As a result, by defining x = [x1, . . . , xm]′ ∈ H, we have

∥∥x(n) − x
∥∥2

ϕ̄
=

m∑
i=1

E
[(
x

(n)
i − xi

)2
]
< ε2 ∀n > max

i=1,...,m
Ni

54See Proposition 6 in Appendix A.
55Indeed, let {zi}mi=1 be an orthonormal basis of eigenvectors of E [xx′], where each zi is an eigenvec-

tor of the nonnegative eigenvalue λi. Then, for any vector y =
∑
i µizi such that ‖y‖22 =

∑
i µ

2
i = 1,

‖E [xx′] y‖2 =

∥∥∥∥∥
m∑
i=1

µiE [xx′] zi

∥∥∥∥∥
2

=

∥∥∥∥∥
m∑
i=1

µiλizi

∥∥∥∥∥
2

=

√√√√ m∑
i=1

µ2
iλ

2
i .

As a result,

‖x‖2H = ‖E [xx′] ‖A = supP
i µ

2
i =1

√√√√ m∑
i=1

µ2
iλ

2
i =

√
λ2
max = λmax

because the supremum is attained by associating the highest weight 1 with the largest eigenvalue
λmax. Hence, ‖x‖H =

√
λmax.

56See Horn and Johnson [15].
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and so H is ‖ ‖ϕ̄ complete. �

Hence, H is self-dual by Theorem 6 in Appendix A.

We summarize in Table 1 the connection between general Hilbert modules and the

special case of H = L2(Rm,Ω,F ,P).

B.2 Weakly stationary multivariate time series

Let x = {xt}t∈Z be a stochastic process that takes value in Rm, that is xt = [x1,t, . . . , xm,t]
′

with xi,t measurable on (Ω,F ,P).

Definition 9 The vectorial process x = {xt}t∈Z is weakly stationary when, for any t,

i) E
[
x2
i,t

]
is finite for all i = 1, . . . ,m, i.e. xt ∈ L2(Rm,Ω,F ,P),

ii) E [xt] does not depend on t,

iii) the cross moments matrix E
[
xtx
′
t+k

]
depends at most on k, for any k ∈ Z.

With no loss of generality we assume that xt has zero mean. When x is weakly

stationary, the autocovariance function Γ : Z −→ A is well-defined: for any integer n,

Γn is the m×m matrix such that Γn = [γi,j(n)]i,j=1,...,m with

γi,j(n) = Cov (xi,t, xj,t+n) = E [xi,txj,t+n] .

Note that γi,j(n) = γj,i(−n), that is Γn = Γ′−n.57

Definition 10 A weakly stationary vectorial process ε = {εt}t∈Z is a multivariate

white noise if E [εt] = 0 and Γn = 0 for any n 6= 0.

The covariance matrix Γ0 of ε is symmetric and positive semidefinite. We will also

suppose that Γ0 is positive definite (hence it has a positive definite square root), a

requirement that parallels the regularity assumption in the univariate case.58 In addi-

tion, we say that ε is a unit variance multivariate white noise when Γ0 is the identity

matrix. In this case, the components of εt are uncorrelated.

Given a white noise ε, we consider the submodule Ht(ε) of H generated by the

innovations εt−k with k ∈ N0:

Ht(ε) =


+∞∑
k=0

akεt−k : ak ∈ A,

∥∥∥∥∥
+∞∑
k=0

akεt−k

∥∥∥∥∥
ϕ̄

< +∞

 .

57See Hamilton [14] as a reference.
58See Bierens [5].
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General theory Random vectors theory Description

Algebra A = Rm×m real m×m matrices

multiplicative unit in A e = I identity matrix

product in A ab = {
∑m

k=1 ai,kbk,j}i,j row-by-vector product

norm in A ‖a‖A = supx∈Rm,‖x‖2=1 ‖ax‖2 operator norm

involution in A a∗ = a′ transposition of matrices

order in A a− b ≥ 0 a− b symmetric and positive semidefinite

trace functional ϕ̄ : A→ R ϕ̄ = Tr(a) =
∑m

i=1 ai,i trace of the matrix a

Hilbert A-module H = L2(Rm,Ω,F ,P) square-integrable random vectors

outer product · : A×H → H ax = [. . . ,
∑m

k=1 ai,kxk, . . . ]
′

matrix-by-vector product

inner product 〈 , 〉H : H ×H → A 〈x, y〉H = E [xy′] = {E [xiyj]}i,j matrix of cross-covariances

inner product 〈x, x〉H 〈x, x〉H = E [xx′] = {E [xixj]}i,j covariance matrix of x

norm ‖ ‖H ‖x‖H =
√
λmax square root of the largest eigenvalue of E [xx′]

orthogonality 〈x, y〉H = 0 E [xiyj] = 0 ∀i, j = 1, . . . ,m any xi uncorrelated with any yj

inner product 〈 , 〉ϕ̄ : H ×H → R 〈x, y〉ϕ̄ = Tr (E [xy′]) =
∑m

i=1 E [xiyi] inner product of L2 (Rm)

norm ‖ ‖ϕ̄ ‖x‖ϕ̄ =
√

Tr (E [xx′]) =
√∑m

i=1 E [x2
i ] norm of L2 (Rm)

square root of the sum of eigenvalues of E [xx′]

Table 1: Relations between the general Hilbert module theory and the Hilbert A-module used to model random vectors.



Lemma 3 The following equality holds:∥∥∥∥∥
+∞∑
k=0

akεt−k

∥∥∥∥∥
2

ϕ̄

=
+∞∑
k=0

Tr (akΓ0a
′
k) .

Proof.∥∥∥∥∥
+∞∑
k=0

akεt−k

∥∥∥∥∥
2

ϕ̄

= Tr

(〈
+∞∑
k=0

akεt−k,

+∞∑
h=0

ahεt−h

〉
H

)
= Tr

(
+∞∑
k=0

+∞∑
h=0

ak 〈εt−k, εt−h〉H a
′
h

)

= Tr

(
+∞∑
k=0

akΓ0a
′
k

)
=

+∞∑
k=0

Tr (akΓ0a
′
k) .

�

We call generators of Ht(ε) the random vectors
∑

k akεt−k that satisfy the previous

summability requirement. From now on, ε is supposed to be a unit variance white

noise, so that Γ0 is the identity matrix and we rewrite Ht(ε) as

Ht(ε) =

{
+∞∑
k=0

akεt−k : ak ∈ A,
+∞∑
k=0

Tr (aka
′
k) < +∞

}
.

In case m = 1 we retrieve the usual square-summability requirement for univariate

time series.

Proposition 14 Ht(ε) is a closed submodule of H.

Proof. Consider x ∈ H such that there exists a sequence
{
x(n)
}
n
⊂ Ht(ε) such that∥∥x(n) − x

∥∥
ϕ̄
−→ 0.

We show that x ∈ Ht(ε), too. Observe that any x(n) can be written as

x(n) =
+∞∑
k=0

〈
x(n), εt−k

〉
H
εt−k

because, if x(n) =
∑∞

k=0 a
(n)
k εt−k with a

(n)
k ∈ A, we have

〈
x(n), εt−k

〉
H

=

〈
+∞∑
h=0

a
(n)
h εt−h, εt−k

〉
H

=
+∞∑
h=0

a
(n)
h 〈εt−h, εt−k〉H = a

(n)
k .

In addition, the limit x can be decomposed as

x =
+∞∑
k=0

〈x, εt−k〉H εt−k + ν
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with ν ∈ H such that 〈ν, εt−k〉H = 0 for all k ∈ N0. This implies that

〈ν, εt−k〉ϕ̄ = Tr (〈ν, εt−k〉H) = 0.

In consequence,

∥∥x(n) − x
∥∥2

ϕ̄
=

∥∥∥∥∥
+∞∑
k=0

〈
x(n) − x, εt−k

〉
H
εt−k − ν

∥∥∥∥∥
2

ϕ̄

=

∥∥∥∥∥
+∞∑
k=0

〈
x(n) − x, εt−k

〉
H
εt−k

∥∥∥∥∥
2

ϕ̄

+‖ν‖2
ϕ̄.

As
∥∥x(n) − x

∥∥
ϕ̄

is arbitrary small, ‖ν‖ϕ̄ = 0 and so ν = 0. Thus,

x =
+∞∑
k=0

〈x, εt−k〉H εt−k ∈ Ht(ε).

�

Similarly, if x is a weakly stationary vectorial process, we define the closed sub-

module Ht(x) of H by

Ht(x) = cl


+∞∑
k=0

akxt−k : ak ∈ A,

∥∥∥∥∥
+∞∑
k=0

akxt−k

∥∥∥∥∥
ϕ̄

< +∞

 ,

where cl denotes the closure in the ‖ ‖ϕ̄ or ‖ ‖ϕ̄.

Equivalently,

Ht(x) = cl

{
+∞∑
k=0

akxt−k : ak ∈ A,
+∞∑
k=0

+∞∑
h=0

Tr (akΓk−ha
′
h) < +∞

}
.

C Proofs about the Multivariate Classical Wold De-

composition

Statement and proof of Proposition 15

Proposition 15 The operator L is well-defined and it is A-linear and bounded on the

span of generators of Ht(x). Hence, it can be extended to Ht(x) with continuity.

Proof. Consider any generator X =
∑∞

k=0 akxt−k in Ht(x), that is

‖X‖2
ϕ̄ =

+∞∑
k=0

+∞∑
h=0

Tr (akΓk−ha
′
h) < +∞.

By the definition of LX and the weak stationarity of x,

‖LX‖2
ϕ̄ =

+∞∑
k=0

+∞∑
h=0

Tr
(
akΓ(k+1)−(h+1)a

′
h

)
=

+∞∑
k=0

+∞∑
h=0

Tr (akΓk−ha
′
h) = ‖X‖2

ϕ̄ < +∞.
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Therefore, LX belongs to Ht(x) and so L is well-defined.

To show A-linearity, we take two arbitrary generators of Ht(x), that is X =∑∞
k=0 akxt−k, Y =

∑∞
k=0 bkxt−k and a matrix m ∈ A. The element X + mY is

defined by

X +mY =
+∞∑
k=0

(ak +mbk)xt−k.

The lag operator maps X +mY to the vector

L(X +mY ) =
+∞∑
k=0

(ak +mbk)xt−1−k =
+∞∑
k=0

akxt−1−k +m
+∞∑
k=0

bkxt−1−k = LX +mLY

and so L is A-linear.

As for boundedness, we already proved that ‖LX‖ϕ̄ = ‖X‖ϕ̄ for any generator

X ∈ Ht(x). In consequence, L is a bounded operator and it can be extended to the

closed submodule Ht(x) with continuity. Indeed, consider the limit Z ∈ Ht(x) of a

sequence of generators {Zn}n, namely

‖Zn − Z‖ϕ̄ −→ 0.

{Zn}n is a Cauchy sequence and so is the sequence {LZn}n because

‖LZn − LZm‖2
ϕ̄ = Tr (〈LZn − LZm,LZn − LZm〉H)

= Tr (〈Zn − Zm, Zn − Zm〉H) = ‖Zn − Zm‖2
ϕ̄

is arbitrarily small when n,m are big enough. Since Ht(x) is ‖ ‖ϕ̄ complete, there

exists the limit of {LZn}n, that we denote `Z . Such vector does not depend on the

sequence of generators that we choose. Indeed, consider the sequence of generators

{Yn}n convergent to Z. Similarly, LYn tends to a limit `Y . Then, take the sequence

{Xn}n, where Xn equals Zn when n is odd and Yn when n is even. Accordingly, LXn

converges to a limit `X = `Z = `Y . Hence, the extension of L on Z ∈ Ht(x) is unique

and we can define LZ = `Z . In addition, the continuity of ‖ ‖ϕ̄ ensures that the

extended L is A-linear and bounded, too. �

Statement and proof of Proposition 16

Proposition 16 If x is a weakly stationary vectorial process, L is an isometry on the

Hilbert A-module Ht(x) for any t ∈ Z.

Proof. We prove the isometry property just for the generators of Ht(x). Indeed, the

continuity of the extension of L on the closure ensures that the property is satisfied on
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the whole Ht(x). Consider, then, any X =
∑∞

k=0 akxt−k, Y =
∑∞

h=0 bhxt−h in Ht(x).

By the weak stationarity of x, we have

〈LX,LY 〉H =
+∞∑
k=0

+∞∑
h=0

ak〈xt−k−1, xt−h−1〉Hb′h =
+∞∑
k=0

+∞∑
h=0

akΓ(k+1)−(h+1)b
′
h

=
+∞∑
k=0

+∞∑
h=0

akΓk−hb
′
h =

+∞∑
k=0

+∞∑
h=0

ak〈xt−k, xt−h〉Hb′h = 〈X, Y 〉H .

Therefore, L is an isometry on Ht(x). �

Statement and proof of Proposition 17

Proposition 17 For any j ∈ N, LjHt(x) = Ht−j(x).

Proof. We start with showing that LHt(x) = Ht−1(x).

Consider any generator X =
∑∞

k=0 akxt−k of Ht(x). Its image LX belongs to

Ht−1(x) by definition. As for the generic elements of Ht(x), the continuity of the

extension of L and the closure of Ht−1(x) ensure that the whole LHt−1(x) is included

in Ht−1(x).

Conversely, take any generator Y =
∑∞

k=1 bkxt−k of Ht−1(x). Y is the image of the

element X =
∑∞

k=0 bk+1xt−k belonging to Ht(x) because

LX =
+∞∑
k=0

bk+1xt−1−k =
+∞∑
k=1

bkxt−k = Y.

Consequently, the generators of Ht−1(x) are contained in LHt(x). Since L is an isome-

try and Ht(x) is a self-dual Hilbert A-module, by Lemma 2 LHt(x) is a closed submod-

ule of Ht(x) and so, by taking the closures we get that the whole Ht−1(x) is included

in LHt(x).

Following the same steps with the isometric operator Lj : Ht(x) −→ Ht(x) that

acts on generators of Ht(x) as

Lj :
+∞∑
k=0

akxt−k 7−→
+∞∑
k=0

akxt−j−k,

it can be proved that LjHt(x) = Ht−j(x) for any j ∈ N. �

Statement and proof of Proposition 18

Proposition 18 The wandering submodule associated with the isometric operator L

on the Hilbert A-module Ht(x) is

LL
t = span

{
xt − PHt−1(x)xt

}
.
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Proof. We show that

Ht(x) = Ht−1(x)⊕ span
{
xt − PHt−1(x)xt

}
.

Trivially, Ht−1(x)⊕ span
{
xt − PHt−1(x)xt

}
⊂ Ht(x).

Conversely, if Y ∈ Ht(x), there exists a sequence {Yn}n ⊂ Ht(x) of generators such

that ‖Yn − Y ‖ϕ̄ −→ 0 as n goes to infinity. In particular, for any n

Yn =
+∞∑
k=0

a
(n)
k xt−k.

Hence, we can write Yn = Wn + Zn with

Wn = a
(n)
0 PHt−1(x)xt +

+∞∑
k=1

a
(n)
k xt−k, Zn = a

(n)
0

(
xt − PHt−1(x)xt

)
.

Wn belongs to Ht−1(x), while Zn is included in the span of the vector xt −PHt−1(x)xt.

The two addends are orthogonal, thanks to the definition of orthogonal projection on

the closed submodule Ht−1(x).

Observe that Y can be decomposed into its orthogonal projections on the closed

submodules Ht−1(x) and Ht(x)	Ht−1(x), that is

Y = PHt−1(x)Y + PHt(x)	Ht−1(x)Y.

The orthogonality ensures that, for any n ∈ N0,

‖Yn − Y ‖2
ϕ̄ = ‖Wn + Zn − Y ‖2

ϕ̄

=
∥∥(Wn − PHt−1(x)Y

)
+
(
Zn − PHt(x)	Ht−1(x)Y

)∥∥2

ϕ̄

=
∥∥Wn − PHt−1(x)Y

∥∥2

ϕ̄
+
∥∥Zn − PHt(x)	Ht−1(x)Y

∥∥2

ϕ̄

and this quantity converges to zero as n increases. As a result,∥∥Zn − PHt(x)	Ht−1(x)Y
∥∥2

ϕ̄
−→ 0.

Since each Zn belongs to the (closed) span of xt − PHt−1(x)xt, we deduce that

PHt(x)	Ht−1(x)Y ∈ span
{
xt − PHt−1(x)xt

}
.

Hence Y is contained in Ht−1(x)⊕ span
{
xt − PHt−1(x)xt

}
and this shows that Ht(x) ⊂

Ht−1(x)⊕ span
{
xt − PHt−1(x)xt

}
. �
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Statement and proof of Lemma 4

Lemma 4 For any k, j ∈ N0,

LjPHt−k−1(x)xt−k = PHt−k−j−1(x)xt−k−j.

Proof. We prove the result for k = 0 without losing generality. In addition, we show

the property for j = 1 because the general case follows by induction. Precisely, we

prove that

LPHt−1(x)xt = PHt−2(x)xt−1.

Orthogonality of projections on the submodules Ht−2(x) and Ht−1(x) leads to the

following normal equations: for any l ∈ N0,〈
xt−1 − PHt−2(x)xt−1, xt−2−l

〉
H

= 0,
〈
xt − PHt−1(x)xt, xt−1−l

〉
H

= 0.

The first one may be rewritten as

〈xt−1, xt−2−l〉H =
〈
PHt−2(x)xt−1, xt−2−l

〉
H

∀l ∈ N0,

while the second one becomes

〈xt, xt−1−l〉H =
〈
PHt−1(x)xt, xt−1−l

〉
H

∀l ∈ N0.

By using the isometry of the operator L in the last equation,

〈xt−1, xt−2−l〉H =
〈
LPHt−1(x)xt, xt−2−l

〉
H

∀l ∈ N0,

where the left-hand side coincides with the one of the first equation. By matching the

expressions above we obtain〈
LPHt−1(x)xt, xt−2−l

〉
H

=
〈
PHt−2(x)xt−1, xt−2−l

〉
H

∀l ∈ N0,

namely 〈
LPHt−1(x)xt − PHt−2(x)xt−1, xt−2−l

〉
H

= 0 ∀l ∈ N0.

The Hilbert A-module Ht−2(x) is also a Hilbert space with the inner product 〈 , 〉ϕ̄. In

addition, Ht−2(x) is countably generated and so it has a countable complete orthonor-

mal system, that we denote by Et−2. As the last normal equation holds for all vectors

{xt−2−l}l∈N0
, that generate Ht−2(x), the condition is also satisfied by Et−2, namely:〈

LPHt−1(x)xt − PHt−2(x)xt−1, e
〉
H

= 0 ∀e ∈ Et−2.

As Et−2 is a complete orthonormal system, we conclude that

LPHt−1(x)xt − PHt−2(x)xt−1 = 0,

as we wanted to show. �
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Proof of Theorem 1

Since Ht(x) is a Hilbert A-module, by Theorem 6 in Appendix A, it is self-dual. Since,

in addition, L is an isometry on Ht(x), we can apply the Abstract Wold Theorem for

self-dual Hilbert A-modules.59

As for the submodule Ĥt(x), since each LjHt(x) coincides with Ht−j(x) by Propo-

sition 17, we find

Ĥt(x) =
+∞⋂
j=0

LjHt(x) =
+∞⋂
j=0

Ht−j(x).

Now consider the submodule H̃t(x). By the Abstract Wold Theorem for Hilbert

A-modules,

H̃t(x) =
+∞⊕
j=0

LjLL
t ,

where LL
t is the innovation submodule defined by LL

t = Ht(x)	LHt(x). By Proposition

18,

LL
t = span

{
xt − PHt−1(x)xt

}
and Lemma 4 ensures that, for any j ∈ N0,

LjLL
t = span

{
xt−j − PHt−j−1(x)xt−j

}
.

�

Proof of Theorem 2

For any t ∈ Z, the vector xt belongs to Ht(x) and so we apply Theorem 1. We denote

νt the orthogonal projection of xt on the submodule Ĥt(x) and we define the process

ε = {εt}t∈Z by setting, for any t ∈ Z,

εt = S−1
(
xt − PHt−1(x)xt

)
,

where S is the square root matrix of
〈
xt − PHt−1(x)xt, xt − PHt−1(x)xt

〉
H

, i.e.〈
xt − PHt−1(x)xt, xt − PHt−1(x)xt

〉
H

= SS.

Specifically, S is positive definite because x is regular and so
〈
xt − PHt−1(x)xt, xt − PHt−1(x)xt

〉
H

is a symmetric positive definite matrix for any t ∈ Z. Moreover, as discussed in Lemma

4, the isometry of L guarantees that S is not dependent on t.

59See Theorem 7 in Appendix A.
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We call αk the matrix in A that constitutes the projection coefficient of xt on the

submodule generated by εt−k and we find the decomposition

xt =
+∞∑
k=0

αkεt−k + νt,

in which the equality is in norm. We still need to show that αk are not time-dependent.

i) ε has unit variance because, for any t ∈ Z,

E [εtε
′
t] = S−1

〈
xt − PHt−1(x)xt, xt − PHt−1(x)xt

〉
H

(
S−1

)′
= S−1SSS−1 = I.

In addition, for any h 6= k, it is true that E
[
εt−hε

′
t−k
]

= 0 because the vectors εt

belong to orthogonal submodules. Hence, in order to prove that the process ε is

an m-dimensional white noise, we are just left to show that E [εt] = 0 for any t.

To begin with, we show that E
[
PHt−1(x)xt

]
= 0.

In case the projection of xt on Ht−1(x) coincides with a generator of Ht−1(x),

that is

PHt−1(x)xt =
+∞∑
h=0

βhxt−1−h, βh ∈ A,

we immediately see that

E
[
PHt−1(x)xt

]
=

+∞∑
h=0

βhE [xt−1−h] = 0

as x is a zero-mean process.

In general, we can find a sequence {X(n)}n of random vectorsX(n) =
∑∞

h=0 β
(n)
h xt−1−h

that converges to PHt−1(x)xt in norm:∥∥X(n) − PHt−1(x)xt
∥∥
ϕ̄
−→ 0 as n→ +∞.

For any j = 1, . . . ,m let uj be the j-th vector of the canonical basis of Rm.

‖uj‖ϕ̄ = 1 and the Cauchy-Schwartz’ inequality ensures that∣∣∣E [(X(n) − PHt−1(x)xt
)
j

]∣∣∣ = Tr
(
E
[(
X(n) − PHt−1(x)xt

)
u′j
])

=
〈
X(n) − PHt−1(x)xt, uj

〉2

ϕ̄

6
∥∥Xn − PHt−1(x)xt

∥∥2

ϕ̄
‖uj‖2

ϕ̄

6
∥∥Xn − PHt−1(x)xt

∥∥2

ϕ̄
.

Therefore, when n goes to infinity,∣∣E [X(n)
]
− E

[
PHt−1(x)xt

]∣∣ −→ 0.
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On the other hand, for any n ∈ N,

E
[
X(n)

]
=

+∞∑
h=0

β
(n)
h E [xt−1−h] = 0.

Since the limit is unique, we deduce that E
[
PHt−1(x)xt

]
= 0.

Summing up, since S is a matrix of real numbers,

E [εt] = E
[
S−1

(
xt − PHt−1(x)xt

)]
= S−1

(
E [xt]− E

[
PHt−1(x)xt

])
= 0

and we conclude that ε is a multivariate white noise.

ii) Each αk comes from the projection of the random vector xt on the submodule

generated by εt−k. For any k ∈ N0,

〈xt, εt−k〉H = E
[
xtε
′
t−k
]

= E

[(
+∞∑
h=0

αhεt−h + νt

)
ε′t−k

]

=
+∞∑
h=0

αhE
[
εt−hε

′
t−k
]

+ E
[
νtε
′
t−k
]

= αk,

because ε is a unit variance white noise and, in addition, νt and εt−k belong to

orthogonal submodules. Moreover,
∑

k αkεt−k belongs to Ht(x) and so∥∥∥∥∥
+∞∑
k=0

αkεt−k

∥∥∥∥∥
2

ϕ̄

=
+∞∑
k=0

Tr (αkα
′
k) < +∞.

We are left to prove that each matrix αk does not depend on t. By Lemma 4, for

any j, k ∈ N0,

Ljεt−k = LjS−1
(
xt−k − PHt−k−1(x)xt−k

)
= S−1

(
xt−k−j − PHt−k−j−1(x)xt−k−j

)
= εt−k−j.

Given the decomposition of

xt =
+∞∑
k=0

αkεt−k + νt,

we apply the lag operator on both sides to obtain

xt−1 = L

(
+∞∑
k=0

αkεt−k

)
+ Lνt =

+∞∑
k=0

αkLεt−k + Lνt =
+∞∑
k=0

αkεt−k−1 + Lνt,

where we exploited the A-linearity and the continuity of L. Hence, we note that

the projection matrices of xt−1 on the submodules generated by εt−k−1 are the

66



same as the projection matrices of xt on the submodules generated by εt−k, for

all k ∈ N0. In other words, αk is also equal to

αk = E
[
xt−1ε

′
t−k−1

]
.

More generally, by using the operator Lj, we have

αk = E
[
xt−jε

′
t−k−j

]
∀j ∈ N0

and so αk is independent of the time index t, for any k.

iii) By the Abstract Wold Theorem for Hilbert A-modules, νt is the projection of xt

on the submodule Ĥt(x) and 〈νt, εt−k〉H = E
[
νtε
′
t−k
]

= 0 for any k ∈ N0 because

νt and εt−k are in orthogonal submodules of Ht(x). Moreover, ν is zero-mean

because, for any t ∈ Z,

E [νt] = E

[
xt −

+∞∑
k=0

αkεt−k

]
= E [xt]−

+∞∑
k=0

αkE [εt−k] = 0

because both x and ε are zero-mean processes.

Before showing the weak stationarity of ν, we establish that

E
[
xt−kε

′
t−l
]

= 0 ∀l ∈ {0, . . . , k − 1}.

Indeed, the vector xt−k decomposes as

xt−k =
+∞∑
h=0

αhεt−k−h + νt−k =
+∞∑
l=0

βlεt−l + νt−k,

where we defined the matrices

βl =

{
αh if l = k + h for some h ∈ N0,

0 if l ∈ {0, . . . , k − 1}.

The above expression enables us to embed the submoduleHt−k(x) inHt(x). Since

the decomposition of xt−k is unique in Ht(x), it follows that E
[
xt−kε

′
t−l
]

= βl = 0

for all l ∈ {0, . . . , k − 1}.

Now, the last step in order to show that ν is weakly stationary is to prove that

E
[
νt−pν

′
t−q
]

depends at most on the difference p − q, for any p, q ∈ N0. Indeed,
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suppose that q > p+ 1:

E
[
νt−pν

′
t−q
]

= E

[(
xt−p −

+∞∑
k=0

αkεt−p−k

)(
xt−q −

+∞∑
h=0

αhεt−q−h

)′]

= E
[
xt−px

′
t−q
]
− E

[
xt−p

(
+∞∑
h=0

αhεt−q−h

)′]

− E

[
xt−q

(
+∞∑
k=0

αkεt−p−k

)′]
+ E

[(
+∞∑
k=0

αkεt−p−k

)(
+∞∑
h=0

αhεt−q−h

)′]

= Γp−q −
+∞∑
h=0

E
[
xt−pε

′
t−q−h

]
α′h

−
+∞∑
k=0

E
[
xt−qε

′
t−p−k

]
α′k +

+∞∑
k=0

+∞∑
h=0

αkE
[
εt−p−kε

′
t−q−h

]
α′h

= Γp−q −
+∞∑
h=0

αq−p+hα
′
h −

q−p−1∑
k=0

E
[
xt−qε

′
t−p−k

]
αk

−
+∞∑
k=q−p

E
[
xt−qε

′
t−p−k

]
α′k +

+∞∑
k=q−p

αkα
′
p−q+k

= Γp−q −
+∞∑
h=0

αq−p+hα
′
h − 0−

+∞∑
k=q−p

αp−q+kα
′
k +

+∞∑
k=q−p

αkα
′
p−q+k

= Γp−q −
+∞∑
h=0

αq−p+hα
′
h +

+∞∑
k=q−p

(
αkα

′
p−q+k − αp−q+kα′k

)
.

In consequence, E
[
νt−pν

′
t−q
]

depends at most on p − q and so ν is weakly sta-

tionary.

iv) Since

νt ∈ Ĥt (x) =
+∞⋂
j=0

Ht−j(x),

νt is also an element of the closed submodule Ht−1(x) and so we can find a se-

quence of vectors
{
X(n)

}
n
⊂ Ht−1(x) that converges to νt in norm. For instance,

we can set

X(n) =
+∞∑
k=0

β
(n)
k xt−1−k

with

∥∥νt −X(n)
∥∥
ϕ̄

=

∥∥∥∥∥νt −
+∞∑
k=0

β
(n)
k xt−1−k

∥∥∥∥∥
ϕ̄

−→ 0 as n→ +∞.
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Any of the variables xt−1−k has, in turns, a Multivariate Wold Decomposition

xt−1−k =
+∞∑
h=0

αhεt−1−k−h + νt−1−k,

in which the equality is in norm. By combining these facts together, we get∥∥∥∥∥νt −
+∞∑
k=0

β
(n)
k

(
+∞∑
h=0

αhεt−1−k−h + νt−1−k

)∥∥∥∥∥
ϕ̄

6

∥∥∥∥∥νt −
+∞∑
k=0

β
(n)
k xt−1−k

∥∥∥∥∥
ϕ̄

+

∥∥∥∥∥
+∞∑
k=0

β
(n)
k xt−1−k −

+∞∑
k=0

β
(n)
k

(
+∞∑
h=0

αhεt−1−k−h + νt−1−k

)∥∥∥∥∥
ϕ̄

6

∥∥∥∥∥νt −
+∞∑
k=0

β
(n)
k xt−1−k

∥∥∥∥∥
ϕ̄

+
+∞∑
k=0

∣∣∣β(n)
k

∣∣∣ ∥∥∥∥∥xt−1−k −

(
+∞∑
h=0

αhεt−1−k−h + νt−1−k

)∥∥∥∥∥
ϕ̄

=

∥∥∥∥∥νt −
+∞∑
k=0

β
(n)
k xt−1−k

∥∥∥∥∥
ϕ̄

When n goes to infinity, the right-hand side converges to zero. Therefore, also∥∥∥∥∥νt −
+∞∑
k=0

β
(n)
k

(
+∞∑
h=0

αhεt−1−k−h + νt−1−k

)∥∥∥∥∥
ϕ̄

−→ 0.

The last convergence may be rewritten as∥∥∥∥∥νt −
+∞∑
k=0

β
(n)
k νt−1−k −

+∞∑
l=0

(
l∑

k=0

β
(n)
k αl−k

)
εt−1−l

∥∥∥∥∥
ϕ̄

−→ 0.

Observe that the element
+∞∑
l=0

(
l∑

k=0

β
(n)
k αl−k

)
εt−1−l

belongs to H̃t(x), while

νt −
+∞∑
k=0

β
(n)
k νt−1−k

is contained in Ĥt(x). Since H̃t(x) and Ĥt(x) are orthogonal submodules, in the

limit it must hold that ∥∥∥∥∥νt −
+∞∑
k=0

β
(n)
k νt−1−k

∥∥∥∥∥
ϕ̄

−→ 0.
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As a result, we can claim that

νt ∈ cl

{
+∞∑
h=1

ahνt−h ∈
+∞⋂
j=1

Ht−j(x) : ah ∈ A

}
.

D Proofs about the Multivariate Extended Wold

Decomposition

Statement and proof of Proposition 19

Proposition 19 The operator R : Ht(ε) −→ Ht(ε) is well-defined, A-linear and iso-

metric.

Proof. In order to show that the scaling operator R is well-defined on Ht(ε), consider

any element X =
∑∞

k=0 akεt−k ∈ Ht(ε), i.e.

‖X‖2
ϕ̄ =

+∞∑
k=0

Tr (aka
′
k) < +∞.

Our purpose is to prove that RX belongs to Ht(ε) too, namely

‖RX‖2
ϕ̄ =

+∞∑
k=0

Tr

(
ab k

2
c√

2

a′b k
2
c√

2

)
< +∞.

Since index k is either even or odd, the sum actually is

‖RX‖2
ϕ̄ =

+∞∑
k=0

Tr

(
ab k

2
c√

2

a′b k
2
c√

2

)
=

1

2

+∞∑
k=0

Tr
(
ab k

2
ca
′
b k

2
c

)
=

+∞∑
p=0

Tr
(
apa

′
p

)
= ‖X‖2

ϕ̄

and this quantity is finite. As a result, R is well-defined. In addition R is a bounded

operator because ‖RX‖ϕ̄ = ‖X‖ϕ̄.

About the A-linearity of the scaling operator, consider any matrix m ∈ A and

two arbitrary elements X =
∑∞

k=0 akεt−k, Y =
∑∞

k=0 bkεt−k in Ht(ε). The element

X +mY =
∑

k ckεt−k has for coefficients the matrices ck = ak +mbk for every k in N0.

The operator R maps X +mY to the element

R(X +mY ) =
+∞∑
k=0

cb k
2
c√

2
εt−k ∈ Ht(ε), with cb k

2
c = ab k

2
c +mbb k

2
c ∀k ∈ N0.

As a result, R(X +mY ) = RX +mRY , that is the scaling operator is A-linear.

Finally, we prove that the scaling operator is isometric on Ht(ε). Consider any two

elements X =
∑∞

k=0 akεt−k, Y =
∑∞

h=0 bhεt−h in Ht(ε). By exploiting the properties
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of the multivariate white noise ε, we find that

〈RX,RY 〉H =

〈
+∞∑
k=0

ab k
2
c√

2
εt−k,

+∞∑
h=0

bbh
2
c√

2
εt−k

〉
H

=
1

2

+∞∑
k=0

+∞∑
h=0

ab k
2
c 〈εt−k, εt−h〉 b

′
bh

2
c

=
1

2

+∞∑
k=0

ab k
2
cb
′
b k

2
c =

+∞∑
k=0

akb
′
k = 〈X, Y 〉H .

Hence, R is an isometry. �

Statement and proof of Proposition 20

Proposition 20 For any fixed j ∈ N, the process
{
ε

(j)

t−k2j

}
k∈Z

is a unit variance white

noise.

Proof. First of all, we show that
{
ε

(j)

t−k2j

}
k∈Z

is weakly stationary.

i) The vectors εt are the classical Wold innovations of the process x, hence E
[
εt−pε

′
t−q
]

=

0 for all p 6= q and E [εtε
′
t] = I for any t. Therefore, for any k ∈ Z,

E
[
ε

(j)

t−k2jε
(j)

t−k2j

′]
=

1

2j
E

[2j−1−1∑
i=0

εt−k2j−i −
2j−1−1∑
i=0

εt−k2j−2j−1−i


·

2j−1−1∑
i=0

ε′t−k2j−i −
2j−1−1∑
i=0

ε′t−k2j−2j−1−i

]

=
1

2j

2j−1∑
i=0

E [εtε
′
t] =

2j

2j
E [εtε

′
t] = I.

Hence, E
[
ε

(j)

t−k2jε
(j)

t−k2j

′]
is finite and it does not depend on k.

ii) Since E [εt] = 0 for any t, by A-linearity we find that E
[
ε

(j)

t−k2j

]
= 0 for any k ∈ Z

and so the expectation does not depend on k.
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iii) Consider the cross moments matrix in the support S
(j)
t . By taking h 6= k,

E
[
ε

(j)

t−h2jε
(j)

t−k2j

′]
=

1

2j
E

[2j−1−1∑
i=0

εt−h2j−i −
2j−1−1∑
i=0

εt−h2j−2j−1−i


·

2j−1−1∑
l=0

ε′t−k2j−l −
2j−1−1∑
l=0

ε′t−k2j−2j−1−l

]

=
1

2j

{ 2j−1−1∑
i=0

2j−1−1∑
l=0

E
[
εt−h2j−iε

′
t−k2j−l

]
−

2j−1−1∑
i=0

2j−1−1∑
l=0

E
[
εt−h2j−iε

′
t−k2j−2j−1−l

]
−

2j−1−1∑
i=0

2j−1−1∑
l=0

E
[
εt−h2j−2j−1−iε

′
t−k2j−l

]
+

2j−1−1∑
i=0

2j−1−1∑
l=0

E
[
εt−h2j−2j−1−iε

′
t−k2j−2j−1−l

]}
.

Since h 6= k, the sets of indices {h2j, . . . , h2j + 2j−1} and {k2j, . . . , k2j + 2j−1}
are disjoint and so all the last sums are null. In consequence,

E
[
ε

(j)

t−h2jε
(j)

t−k2j

′]
= 0 ∀h 6= k.

To recap,
{
ε

(j)

t−k2j

}
k∈Z

turns out to be weakly stationary on its support S
(j)
t . In partic-

ular, it is a unit variance white noise. �

Statement and proof of Proposition 21

Proposition 21 The adjoint of R is the operator R∗ : Ht(ε) −→ Ht(ε) such that

R∗ :
+∞∑
k=0

akεt−k 7−→
+∞∑
k=0

a2k + a2k+1√
2

εt−k.

In addition, the kernel of R∗ is

ker(R∗) =

{
+∞∑
k=0

b
(1)
k ε

(1)
t−2k ∈ Ht(ε) : b

(1)
k ∈ A

}
.

Proof. To prove that R∗ is well-defined, we take any Y =
∑∞

k=0 akεt−k in Ht(ε), i.e.

‖Y ‖2
ϕ̄ =

∑∞
h=0 Tr (aha

′
h) < +∞. Then,

‖R∗Y ‖2
ϕ̄ =

1

2

+∞∑
k=0

Tr
(
(a2k + a2k+1)

(
a′2k + a′2k+1

))
.
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For any i = 1, . . . ,m, the (i, i)-entry of the matrix aha
′
h is

∑m
j=1

(
a

(i,j)
h

)2

, while the

(i, i)-entry of the matrix (a2k + a2k+1)
(
a′2k + a′2k+1

)
is
∑m

j=1

(
a

(i,j)
2k + a

(i,j)
2k+1

)2

. Hence

Tr (aha
′
h) =

m∑
i=1

m∑
j=1

(
a

(i,j)
h

)2

and

Tr
(
(a2k + a2k+1)

(
a′2k + a′2k+1

))
=

m∑
i=1

m∑
j=1

(
a

(i,j)
2k + a

(i,j)
2k+1

)2

.

Therefore,

‖R∗Y ‖2
ϕ̄ =

1

2

+∞∑
k=0

m∑
i=1

m∑
j=1

(
a

(i,j)
2k + a

(i,j)
2k+1

)2

6
+∞∑
k=0

m∑
i=1

m∑
j=1

{(
a

(i,j)
2k

)2

+
(
a

(i,j)
2k+1

)2
}

=
+∞∑
h=0

m∑
i=1

m∑
j=1

(
a

(i,j)
h

)2

= ‖Y ‖2
ϕ̄.

We deduce that ‖R∗Y ‖2 is finite.

Now we establish the validity of the relation 〈RX, Y 〉H = 〈X,R∗Y 〉H for any vectors

in Ht(ε) as X =
∑∞

h=0 bhεt−h and Y =
∑∞

k=0 akεt−k. By the unit variance white noise

properties, we have

〈RX, Y 〉H =
+∞∑
h=0

+∞∑
k=0

bbh
2
c√

2
〈εt−h, εt−k〉Ha′k =

+∞∑
k=0

bb k
2
c
a′k√

2
=

+∞∑
k=0

bk
a′2k + a′2k+1√

2

=
+∞∑
h=0

+∞∑
k=0

bh〈εt−h, εt−k〉H
a′2k + a′2k+1√

2
= 〈X,R∗Y 〉H .

Therefore, R∗ is the adjoint of the scaling operator.

Finally we prove that

ker(R∗) =

{
+∞∑
k=0

d
(1)
k (εt−2k − εt−2k−1) ∈ Ht(ε) : d

(1)
k ∈ A

}
.

Any element of Ht(ε) as, for instance,

X =
+∞∑
k=0

d
(1)
k (εt−2k − εt−2k−1)
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can be rewritten as X =
∑∞

h=0 ahεt−h with a2k+1 = −a2k for every k ∈ N0, i.e. a2k +

a2k+1 = 0. Consequently, R∗X = 0 and so{
+∞∑
k=0

d
(1)
k (εt−2k − εt−2k−1) ∈ Ht(ε) : d

(1)
k ∈ A

}
⊂ ker(R∗).

Conversely, let X =
∑∞

h=0 ahεt−h belong to ker(R∗). Since ‖R∗X‖ϕ̄ = 0, by Lemma 3,

we have
1

2

+∞∑
k=0

Tr
(
(a2k + a2k+1)(a′2k + a′2k+1)

)
= 0.

As we observed before,

Tr
(
(a2k + a2k+1)

(
a′2k + a′2k+1

))
=

m∑
i=1

m∑
j=1

(
a

(i,j)
2k + a

(i,j)
2k+1

)2

and so
+∞∑
k=0

m∑
i=1

m∑
j=1

(
a

(i,j)
2k + a

(i,j)
2k+1

)2

= 0.

It follows that a
(i,j)
2k+1 = −a(i,j)

2k for any k ∈ N0, i, j = 1, . . . ,m. Therefore, a2k+1 = −a2k

for any k ∈ N0. As a result,

X =
+∞∑
k=0

d
(1)
k (εt−2k − εt−2k−1) ,

with d
(1)
k = a2k and so

ker(R∗) ⊂

{
+∞∑
k=0

d
(1)
k (εt−2k − εt−2k−1) ∈ Ht(ε) : d

(1)
k ∈ A

}
.

�

Statement and proof of Proposition 22

Proposition 22 For any j ∈ N,

Rj−1LR
t =

{
+∞∑
k=0

b
(j)
k ε

(j)

t−k2j ∈ Ht(ε) : b
(j)
k ∈ A

}
.

Proof. As the general case follows by induction, we prove that

RLR
t =

{
+∞∑
k=0

b
(2)
k ε

(2)
t−4k ∈ Ht(ε) : b

(2)
k ∈ A

}
.
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In particular, we show that

RLR
t =

{
+∞∑
k=0

d
(2)
k (εt−4k + εt−4k−1 − εt−4k−2 − εt−4k−3) ∈ Ht(ε) : d

(2)
k ∈ A

}
.

Consider any element Y ∈ RLR
t . As Y is the image of some element X ∈ LR

t , there

exists a sequence of matrices
{
d

(1)
k

}
k

such that

X =
+∞∑
k=0

d
(1)
k (εt−2k − εt−2k−1)

and

Y =
+∞∑
k=0

d
(1)
k√
2

(εt−4k + εt−4k−1 − εt−4k−2 − εt−4k−3) .

As a result,

RLR
t ⊂

{
+∞∑
k=0

d
(2)
k (εt−4k + εt−4k−1 − εt−4k−2 − εt−4k−3) ∈ Ht(ε) : d

(2)
k ∈ A

}
.

Conversely, consider any element Y ∈ Ht(ε) of the kind

Y =
+∞∑
k=0

d
(2)
k (εt−4k + εt−4k−1 − εt−4k−2 − εt−4k−3) .

Then Y belongs to RLR
t too, because it is the image of the element

X =
+∞∑
k=0

√
2d

(2)
k (εt−2k − εt−2k−1) ∈ LR

t .

Consequently,{
+∞∑
k=0

d
(2)
k (εt−4k + εt−4k−1 − εt−4k−2 − εt−4k−3) ∈ Ht(ε) : d

(2)
k ∈ A

}
⊂ RLR

t .

�

Proof of Theorem 3

Ht(ε) is a Hilbert A-module and so, by Theorem 6 in Appendix A, it is self-dual.

Moreover, on Ht(ε) the operator R is isometric by Proposition 19. Thus, we apply the

Abstract Wold Decomposition for Hilbert A-modules, which provides the orthogonal

decomposition Ht(ε) = Ĥt(ε)⊕ H̃t(ε), where

Ĥt(ε) =
+∞⋂
j=0

RjHt(ε),
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H̃t(ε) =
+∞⊕
j=0

RjLR
t with LR

t = Ht(ε)	RHt(ε).

First, we show that Ĥt(ε) is the null submodule. Indeed, the submodules RjHt(ε)

consist of linear combinations of innovations with matrix coefficients equal to each

others 2j-by-2j:

RjHt(ε) =


+∞∑
k=0

c
(j)
k

2j−1∑
i=0

εt−k2j−i

 ∈ Ht(ε) : c
(j)
k ∈ A

 .

Therefore, Ĥt(ε), being the intersection of all RjHt(ε), can just include vectors as∑∞
h=0 cεt−h with c ∈ A. Such vectors must belong to Ht(ε), hence

∞∑
k=0

Tr (cc′) =
+∞∑
k=0

m∑
i=1

m∑
j=1

(
c(i,j)

)2

is finite. Since the addends do not depend on k, it follows that c(i,j) = 0 for all

i, j = 1, . . . ,m and so c is the null matrix. Consequently, Ĥt(ε) = {0} and so the

orthogonal decomposition of Ht(ε) simplifies to Ht(ε) = H̃t(ε).

As for the submodule H̃t(ε),

H̃t(ε) =
+∞⊕
j=0

RjLR
t =

+∞⊕
j=1

Rj−1LR
t ,

where LR
t is the wandering submodule. As the orthogonal complement of RHt(x)

is the kernel of the adjoint operator R∗ (see Proposition 10), by Proposition 21 the

wandering submodule is

LR
t = Ht(ε)	RHt(ε) = ker(R∗) =

{
+∞∑
k=0

b
(1)
k ε

(1)
t−2k ∈ Ht(ε) : b

(1)
k ∈ A

}
.

Moreover, by Proposition 22, for any j ∈ N,

Rj−1LR
t =

{
+∞∑
k=0

b
(j)
k ε

(j)

t−k2j ∈ Ht(ε) : b
(j)
k ∈ A

}

and so the decomposition of the Hilbert A-module Ht(ε) is proved. �

Proof of Proposition 1

To begin with, we show that, for any fixed scale j ∈ N,

g
(j)
t =

+∞∑
k=0

β
(j)
k ε

(j)

t−k2j
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belongs to Rj−1LR
t , that is we assess the convergence of

∥∥∥∑∞k=0 β
(j)
k ε

(j)

t−k2j

∥∥∥
ϕ̄
. By making

the variables ε
(j)

t−k2j explicit with respect to the classical Wold innovations of xt, we

derive that

g
(j)
t =

+∞∑
k=0

2j−1−1∑
l=0

β
(j)
k√
2j
εt−k2j−l −

2j−1−1∑
l=0

β
(j)
k√
2j
εt−k2j−2j−1−l

 .

For any h ∈ N0, we uniquely find k ∈ N0 and l ∈ {0, 1, . . . , 2j−1} such that h = k2j+l.

Consequently, we can express the component g
(j)
t as

g
(j)
t =

+∞∑
h=0

η
(j)
h εt−h,

where the matrices η
(j)
h are defined by

η
(j)
h =


β

(j)
k√
2j

for k ∈ N0, l ∈ {0, . . . , 2j−1 − 1}

−β
(j)
k√
2j

for k ∈ N0, l ∈ {2j−1, . . . , 2j − 1}.

Therefore, we have to check the convergence of the series

+∞∑
h=0

Tr
(
η

(j)
h η

(j)
h

′)
=

+∞∑
k=0

2j−1∑
l=0

Tr

(
β

(j)
k β

(j)
k

′

2j

)
=

+∞∑
k=0

Tr
(
β

(j)
k β

(j)
k

′)
.

As we observed in the proof of Proposition 21,

Tr (αhα
′
h) =

m∑
p=1

m∑
q=1

α2
h(p, q), Tr

(
β

(j)
k β

(j)
k

′)
=

m∑
p=1

m∑
q=1

(
β

(j)
k (p, q)

)2

.
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Note that

+∞∑
k=0

Tr
(
β

(j)
k β

(j)
k

′)
=

+∞∑
k=0

m∑
p=1

m∑
q=1

(
β

(j)
k (p, q)

)2

=
1

2j

+∞∑
k=0

m∑
p=1

m∑
q=1

2j−1−1∑
i=0

αk2j+i(p, q)−
2j−1−1∑
i=0

αk2j+2j−1+i(p, q)

2

6
2

2j

+∞∑
k=0

m∑
p=1

m∑
q=1

2j−1−1∑
i=0

αk2j+i(p, q)

2

+

2j−1−1∑
i=0

αk2j+2j−1+i(p, q)

2

6
2

2j

+∞∑
k=0

m∑
p=1

m∑
q=1

2j−1

2j−1−1∑
i=0

α2
k2j+i(p, q)

+ 2j−1

2j−1−1∑
i=0

α2
k2j+2j−1+i(p, q)


6

2j

2j

+∞∑
k=0

m∑
p=1

m∑
q=1

2j−1∑
l=0

α2
k2j+l(p, q)

=
+∞∑
h=0

m∑
p=1

m∑
q=1

α2
h(p, q)

=
+∞∑
h=0

Tr (αhα
′
h) ,

where
∑∞

h=0 Tr (αhα
′
h) = ‖xt‖2

ϕ̄ is finite because xt belongs to Ht(ε). Observe that we

used twice the inequality(
n∑
i=0

ai

)2

6 (n+ 1)
n∑
i=0

a2
i , n ∈ N.

As a result g
(j)
t belongs to Rj−1LR

t . Furthermore, since
∑∞

k=0 Tr
(
β

(j)
k β

(j)
k

′)
is finite, for

any fixed scale j ∈ N we have that Tr
(
β

(j)
k β

(j)
k

′)
tends to zero as k increases. Hence,

any (p, q)-entry of the matrix β
(j)
k must converge to zero and so limk→∞ β

(j)
k = 0 entry

by entry.

In order to find the exact expression of the matrices β
(j)
k , we exploit the orthogonal

decompositions of the Hilbert A-module Ht(ε) at different scales J ∈ N:

Ht(ε) = RJHt(ε)⊕
J⊕
j=1

Rj−1LR
t .

We call π
(j)
t the orthogonal projection of xt on the submodule RjHt(ε) and we proceed

inductively.

Let us start by the first decomposition xt = π
(1)
t + g

(1)
t coming from scale J = 1:

Ht(ε) = RHt(ε)⊕ LR
t .
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By using the characterization of submodules RHt(ε) and LR
t , as remarked in Section

3.1 and stated in Proposition 21 respectively, we set

π
(1)
t =

+∞∑
k=0

γ
(1)
k

(
εt−2k + εt−(2k+1)

)
,

g
(1)
t =

+∞∑
k=0

β
(1)
k ε

(1)
t−2k =

+∞∑
k=0

d
(1)
k (εt−2k − εt−2k−1)

for some sequences of matrices
{
γ

(1)
k

}
k

and
{
d

(1)
k

}
k
, or equivalently

{
β

(1)
k

}
k
, to deter-

mine in order to have xt = π
(1)
t + g

(1)
t , where we set

√
2d

(1)
k = β

(1)
k . The expressions

above may be rewritten as

xt =
+∞∑
k=0

{(
γ

(1)
k + d

(1)
k

)
εt−2k +

(
γ

(1)
k − d

(1)
k

)
εt−2k−1

}
.

However, from the Multivariate Classical Wold Decomposition of x, we know that

xt =
+∞∑
k=0

{α2kεt−2k + α2k+1εt−2k−1} ,

where we use the same fundamental innovations as before. By exploiting the uniqueness

of writing deriving from the Classical Wold Decomposition, the two expressions for xt

must coincide. As a result, γ
(1)
k and d

(1)
k are the solutions of the linear system{

γ
(1)
k + d

(1)
k = α2k

γ
(1)
k − d

(1)
k = α2k+1,

that is,

γ
(1)
k =

α2k + α2k+1

2
, d

(1)
k =

α2k − α2k+1

2
.

In particular, we find that

β
(1)
k =

α2k − α2k+1√
2

.

Hence,

π
(1)
t =

+∞∑
k=0

α2k + α2k+1

2
(εt−2k + εt−2k−1) , g

(1)
t =

+∞∑
k=0

α2k − α2k+1√
2

ε
(1)
t−2k.

Now, focus on the scale J = 2. We exploit the decomposition of the submodule

RHt(ε) = R2Ht(ε)⊕RLR
t ,

that implies the relation π
(1)
t = π

(2)
t + g

(2)
t . We follow the same track as in the previous

case, by using the features of the elements in R2Ht(ε) and in RLR
t and, finally, by
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comparing the expression of π
(2)
t + g

(2)
t with the (unique) writing of π

(1)
t that we found

before. We easily discover that

γ
(2)
k =

α4k + α4k+1 + α4k+2 + α4k+3

4
, d

(2)
k =

α4k + α4k+1 − α4k+2 − α4k+3

4

and, in particular,

β
(2)
k =

α4k + α4k+1 − α4k+2 − α4k+3

2
.

Consequently,

π
(2)
t =

+∞∑
k=0

α4k + α4k+1 + α4k+2 + α4k+3

4

(
εt−4k + εt−(4k+1) + εt−(4k+2) + εt−(4k+3)

)
,

g
(2)
t =

+∞∑
k=0

α4k + α4k+1 − α4k+2 − α4k+3

2
ε

(2)
t−4k.

As for the generic scale J = j, we conjecture that

γ
(j)
k =

1

2j

2j−1∑
i=0

αk2j+i

 , β
(j)
k =

1√
2j

2j−1−1∑
i=0

αk2j+i −
2j−1−1∑
i=0

αk2j+2j−1+i

 .

In addition, it may be helpful to highlight the expressions of π
(j)
t and g

(j)
t :

π
(j)
t =

+∞∑
k=0

1

2j

2j−1∑
i=0

αk2j+i

2j−1∑
i=0

εt−k2j−i

 ,

g
(j)
t =

+∞∑
k=0

1√
2j

2j−1−1∑
i=0

αk2j+i −
2j−1−1∑
i=0

αk2j+2j−1+i

 ε
(j)

t−k2j .

Proof of Theorem 4

The representation of xt comes from the Wold decomposition of the space Ht(ε),

claimed in Theorem 3. Indeed, by applying the Multivariate Classical Wold Decompo-

sition to the zero-mean, weakly stationary purely non-deterministic process x, we find

that xt belongs to the Hilbert A-module Ht(ε), where ε = {εt}t is the unit variance

white noise of classical Wold innovations of x. Afterwards, by exploiting the orthogo-

nal decomposition of Ht(ε) given by Theorem 3, justified by the fact that the scaling

operator R is isometric on Ht(ε), we know that

Ht(ε) =
+∞⊕
j=1

Rj−1LR
t ,
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where

Rj−1LR
t =

{
+∞∑
k=0

b
(j)
k ε

(j)

t−k2j ∈ Ht(ε) : b
(j)
k ∈ A

}
,

as stated in Proposition 22. Recall that the random vectors ε
(j)
t are defined by

ε
(j)
t =

1√
2j

2j−1−1∑
i=0

εt−i −
2j−1−1∑
i=0

εt−2j−1−i

 .

Hence, by denoting g
(j)
t the orthogonal projections of the vector xt on the submodules

Rj−1LR
t , we find that

xt =
+∞∑
j=1

g
(j)
t ,

where the equality is in norm. Then, by using the characterizations of submodules

Rj−1LR
t , for any scale j ∈ N we can find a sequence of matrices

{
β

(j)
k

}
k

such that

g
(j)
t =

+∞∑
k=0

β
(j)
k ε

(j)

t−k2j

with
∑∞

k=0 Tr
(
β

(j)
k β

(j)
k

′)
< +∞. As a consequence, we can decompose the vector xt as

xt =
+∞∑
j=1

+∞∑
k=0

β
(j)
k ε

(j)

t−k2j ,

where the equality is in norm.

i) As we can see in the definition of vectors ε
(j)
t , the process ε

(j)
t is an MA(2j − 1)

with respect to the fundamental innovations ε of the process x. In addition, as

claimed in Proposition 20, the subprocess
{
ε

(j)

t−k2j

}
k∈Z

is a unit variance white

noise.

ii) For any fixed scale j ∈ N, once the detail process ε(j) is defined, since the

vectors ε
(j)

t−k2j are orthonormal when k varies, the component g
(j)
t has a unique

representation of the kind

g
(j)
t =

+∞∑
k=0

β
(j)
k ε

(j)

t−k2j .

Thus, the matrices β
(j)
k are uniquely defined.

By Proposition 1, β
(j)
k do not depend on t and they can be expressed in terms of

the matrices αh of the Classical Wold Decomposition of xt:

β
(j)
k =

1√
2j

2j−1−1∑
i=0

αk2j+i −
2j−1−1∑
i=0

αk2j+2j−1+i

 .

81



Moreover
∑∞

k=0 Tr
(
β

(j)
k β

(j)
k

′)
< +∞ for any j ∈ N, as explicitly shown in the

proof of Proposition 1. Indeed, it holds that

+∞∑
k=0

Tr
(
β

(j)
k β

(j)
k

′)
6

+∞∑
h=0

Tr (αhα
′
h) < +∞.

iii) First of all, when t is fixed, 〈g(j)
t , g

(l)
t 〉H = E

[
g

(j)
t g

(l)
t

′]
= 0 for all j 6= l because

g
(j)
t and g

(l)
t are, respectively, the projections of xt on the submodules Rj−1LR

t

and Rl−1LR
t which are orthogonal by construction. Now, consider any g

(j)

t−m2j

with m ∈ N0. Clearly, g
(j)

t−m2j belongs to Rj−1LR
t−m2j but, by the definition of

g
(j)
t , we can write

g
(j)

t−m2j =
+∞∑
k=0

β
(j)
k ε

(j)

t−(m+k)2j =
+∞∑
K=0

β
(j)
K ε

(j)

t−K2j ,

where

β
(j)
K =

{
0 if K ∈ {0, . . . ,m− 1},
β

(j)
k if K = m+ k for some k ∈ N0.

As a result, g
(j)

t−m2j belongs to Rj−1LR
t , too. Similarly, at scale l, taken any

n ∈ N0, it is easy to see that g
(l)

t−n2l belongs to Rl−1LR
t . Hence, the orthogonality

of such submodules guarantees that

〈g(j)

t−m2j , g
(l)

t−n2l〉H = E
[
g

(j)

t−m2jg
(l)

t−n2l

′]
= 0 ∀j 6= l, ∀m,n ∈ N0.

As for the more general requirement concerning E
[
g

(j)
t−pg

(l)
t−q
′]

for any j, l ∈ N and

p, q, t ∈ Z, we have that

E
[
g

(j)
t−pg

(l)
t−q
′]

=
+∞∑
k=0

+∞∑
h=0

β
(j)
k E

[
ε

(j)

t−p−k2jε
(l)

t−q−h2l

′]
β

(l)
h

′

=
1√
2j+l

+∞∑
k=0

+∞∑
h=0

β
(j)
k

2j−1−1∑
u=0

2l−1−1∑
v=0

{
E
[
εt−p−k2j−uε

′
t−q−h2l−v

]
− E

[
εt−p−k2j−uε

′
t−q−h2l−2l−1−v

]
− E

[
εt−p−k2j−2j−1−uε

′
t−q−h2l−v

]
+ E

[
εt−p−k2j−2j−1−uε

′
t−q−h2l−2l−1−v

]}
β

(l)
h

′
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and so

E
[
g

(j)
t−pg

(l)
t−q
′]

=
1√
2j+l

+∞∑
k=0

+∞∑
h=0

β
(j)
k

2j−1−1∑
u=0

2l−1−1∑
v=0

{
Γp−q+k2j+u−h2l−v

− Γp−q+k2j+u−h2l−2l−1−v

− Γp−q+k2j+2j−1+u−h2l−v

+ Γp−q+k2j+2j−1+u−h2l−2l−1−v

}
β

(l)
h

′
,

where the matrices β
(j)
k , β

(l)
h do not depend on t, as remarked in ii). Hence, after

the summations over u, v and k, h, the one remaining variables are j, l, p− q. In

other words, E
[
g

(j)
t−pg

(l)
t−q
′]

depends at most on j, l, p− q.

�

Proof of Theorem 5

First, observe that processes g(j) are well-defined. Indeed,

g
(j)
t =

+∞∑
k=0

β
(j)
k ε

(j)

t−k2j =
+∞∑
h=0

1√
2j
β

(j)

b h

2j c
χ(j)(h)εt−h,

where60

χ(j)(h) =

{
−1 if 2j

⌊
h
2j

⌋
∈ {h− 2j + 1, . . . , h− 2j−1} ,

1 if 2j
⌊
h
2j

⌋
∈ {h− 2j−1 + 1, . . . , h} .

Hence,

+∞∑
h=0

Tr

(
1√
2j
β

(j)

b h

2j c
χ(j)(h)

1√
2j
β

(j)

b h

2j c
′
χ(j)(h)

)
=

+∞∑
h=0

1

2j
Tr

(
β

(j)

b h

2j c
β

(j)

b h

2j c
′
)
,

where the last quantity equals
∑+∞

k=0 Tr
(
β

(j)
k β

(j)
k

′)
, which is finite by assumption. As

a result, each g(j) is well-defined.

For any j 6= l, the components g
(j)
t and g

(l)
t belong to orthogonal submodules of

Ht(ε). This ensures the well-definition of xt:

xt =
+∞∑
j=1

g
(j)
t =

+∞∑
j=1

+∞∑
h=0

1√
2j
β

(j)

b h

2j c
χ(j)(h)εt−h =

+∞∑
h=0

(
+∞∑
j=1

1√
2j
β

(j)

b h

2j c
χ(j)(h)

)
εt−h

60We used the identity h = k2j + i, with k =
⌊
h
2j

⌋
and i = h− 2j

⌊
h
2j

⌋
.
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because

+∞∑
h=0

Tr

(
+∞∑
j=1

1√
2j
β

(j)

b h

2j c
χ(j)(h)

+∞∑
l=1

1√
2l
β

(l)

b h

2l c
′
χ(l)(h)

)

=
+∞∑
h=0

+∞∑
j=1

Tr

(
1√
2j
β

(j)

b h

2j c
χ(j)(h)

1√
2j
β

(j)

b h

2j c
′
χ(j)(h)

)

=
+∞∑
j=1

+∞∑
h=0

1

2j
Tr

(
β

(j)

b h

2j c
β

(j)

b h

2j c
′
)

=
+∞∑
j=1

+∞∑
k=0

Tr
(
β

(j)
k β

(j)
k

′)
,

which is finite by assumption.

Now we show that x is a zero-mean weakly stationary multivariate process.

i) The well-definition of xt already ensures that the second moments of each variable

xt,i are finite and not dependent on t.

ii) Since the processes g(j) have zero mean, also xt has zero mean for all t ∈ Z.

iii) For any k ∈ Z consider the cross moments matrix

E
[
xtx
′
t+k

]
= E

[(
+∞∑
j=1

g
(j)
t

)(
+∞∑
l=1

g
(l)
t+k

′
)]

=
+∞∑
j=1

+∞∑
l=1

E
[
g

(j)
t g

(l)
t+k

′]
.

Following the same steps of Theorem 4 iii), we have that E
[
g

(j)
t g

(l)
t+k

′]
depends

at most on j, l, k. Hence, E
[
xtx
′
t+k

]
depends at most on k.

It follows that x is weakly stationary, with zero mean.

As we remarked in the previous lines, each variable xt decomposes as

xt =
+∞∑
h=0

(
+∞∑
j=1

1√
2j
β

(j)

b h

2j c
χ(j)(h)

)
εt−h.

As a result, the decomposition of xt with respect to the process ε turns out to be

xt =
+∞∑
h=0

αhεt−h with αh =
+∞∑
j=1

1√
2j
β

(j)

b h

2j c
χ(j)(h) ∀h ∈ N0.

The process x has null purely deterministic part, therefore it is purely non-deterministic.

�
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