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Abstract 

We develop new likelihood-based methods to estimate factor-based Stochastic Discount 
Factors (SDF) that may accommodate Hidden Markov dynamics in the factor loadings. 
We use these methods to investigate whether it is possible to find a SDF that jointly 
prices the cross-section of eight U.S. portfolios of stocks, Treasuries, corporate bonds, 
and commodities. In particular, we test a range of possible different specification of the 
SDF, including single-state and Hidden Markov models and compare their statistical and 
pricing performances. In addition, we assess whether and to which extent a selection of 
these models replicates the observed moments of the return series, and especially 
correlations. We report that regime-switching models clearly outperform single-state 
ones both in term of statistical and pricing accuracy. However, while a four-state model 
is selected by the information criteria, a two-state three-factor full Vector 
Autoregression model outperforms the others as far as the pricing accuracy is 
concerned. 

Key words: Finance, Commodities, Stochastic Discount Factor, Hidden Markov model. 

1. Introduction

The interest of institutional investors in commodities has significantly increased over the last two 
decades. Over the same period, thanks to the appearance of exchange traded funds, retail investors 
have developed a growing taste for this asset class. This is due to the fact that commodities can 
generate equity-like returns in the long-run, act as risk diversifiers both in the short- and in the 
long-run, and serve as an inflation hedge (see, e.g., Erb and Harvey, 2006; Gorton and Rouwenhorst, 
2006). Despite their growing importance in institutional and retail portfolios, our understanding of 

♣ We would like to thank the Editor for his patience with us throughout the revision and three anonymous 
referees for constructive and stimulating comments. We also thank Alex David, Milena Petrova, Frans 
deRoon, Geert Rouwenhorst, and George Skiadopoulos, and participants to the 2014 European Financial 
Management Association special session on “Commodity Markets: Current Developments” for comments on 
an earlier draft of the paper. Correspondence to Massimo Guidolin, massimo.guidolin@unibocconi.it. 
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this asset class remains unsatisfactory. While the literature is extensive as far as traditional asset 
classes, especially where equities are concerned, there is no consensus on whether there is an asset 
pricing model which can effectively explain both the cross-sectional and the time series variation 
in commodity returns (see, e.g., the discussion in Bakshi, Gao and Rossi, 2014, henceforth BGR). 

Part of the reason of this lack of in-depth understanding of commodities, is that they require 
the development of new methods and operational approaches. Our paper explores such 
combination of novel methods, i.e., Hidden Markov chain models (HMM), to describe time 
heterogeneity (see Dias et al., 2015) in the fundamental pricing measure governing the cross-
section of asset returns. We also develop a methodology to operationalize the estimation of HMM 
stochastic discount factors (henceforth, HMM SDF) that relies on variations of standard 
Expectations-Maximization algorithms to maximize the log-likelihood function.1 

When applied to commodities, the classical asset pricing research issues—for instance the 
nature of the factors driving risk premia and volatility—have been approached in a number of ways: 
some researchers have employed commodity-specific factors (see, e.g., Szymanowska, de Roon, 
Nijman and Goorbergh, 2014; Yang, 2013; BGR, 2014); others have used models designed to price 
all assets (see, e.g., Asness, Moskowitz and Pedersen, 2013; Koijen, Pedersen, Moskowitz and Vrugt, 
2013). The former approach considers commodities as a separate asset class for which specific 
pricing factors are needed; the latter assumes that financial markets are perfectly integrated and 
hence that a unique measure able to price all assets can be found. Moreover, most studies have 
tested asset pricing models on commodity return data in a stand-alone fashion while few others 
have augmented the test asset menu with other asset classes (see e.g., Asness et al., 2013). 

Amid this heterogeneity of approaches, a conclusion as to the best asset pricing model for 
commodities has not been found yet. Following the second strand of literature, we develop a range 
of different specifications of SDFs based on macroeconomic factors, constructed by extracting three, 
five (and to some limited extent, ten) principal components from a broad set of variables concerning 
prices, production, and the labor and housing markets, as in Ludvingson and Ng (2009). Our 
objective is to assess whether there exist one or more specifications of the SDF that jointly prices 
the cross-section of stock, bond, and (spot) commodity returns and that replicates the empirically 
observed moments of returns, with a specific interest for the matrix of correlations among pairs of 
commodities as well as across asset classes. Our tested models include both standard linear 
projections of latent SDFs on the pricing factors and a set of different specification of HMM SDFs 
which incorporate latent regime shifts governed by one ergodic and irreducible Markov chain that 
drives shifts in the coefficients that map the K priced factors into the SDF. 

In our application to commodity research, we use a cross section of eight portfolios of stocks, 
Treasuries, corporate bonds, and commodity indices (the S&P-GS Agriculture and Livestock, 
Precious Metals, Industrial Metals, and Energy indices) over the period January 1989 – December 
2011 as test assets. To test which, if any, model specification(s) is best able to price the cross-section 

1 SDF models are based on the result that in the absence of arbitrage, the price of an asset at time t is the 
expected discounted value of the asset payoff in period t+s, based on information available at time t, when 
discounting and integration are performed under the risk neutral measure implied by the SDF. 
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of the returns of our test assets, we employ a number of different tests. First, we conduct a standard 
specification search by comparing the values of three different information criteria that provide a 
measure of the statistical accuracy of the different models. Second, we test the pricing accuracy of 
our alternative specifications. In particular, we assess whether the in-sample differences between 
the observed and predicted returns implied by each model are statistically significant using a 
standard Chi-squared test. In addition, we adopt Hansen-Jagannathan’s (henceforth HJ) distance 
measure to quantify the distance between the candidate SDFs and what is empirically required to 
price our assets. Finally, we explore whether model-implied moments (mean, standard deviation, 
skewness, kurtosis, and, above all, correlations) are able to match empirical ones.  

To the best of our knowledge, our contribution is original for (at least) two reasons. First, 
when we extend our model to include latent regime shifts governed by one ergodic and irreducible 
Markov chain, we test whether there is evidence of a need of additional parametric flexibility to 
price a range of asset classes that includes commodities. It is generally accepted that financial 
markets follow boom-and-bust cycles that involve both the mean and the volatility of asset returns 
(see Guidolin, 2011). Recently, the awareness that also correlations between returns on different 
asset classes would undergo massive changes has emerged (see Bae et al., 2014). While the 
literature has mainly focused on stocks and bonds (see, e.g., Guidolin and Timmermann, 2006), the 
number of researchers who has applied Hidden Markov models (HMM) to commodities is limited 
(see, e.g., Alizadeh, et al., 2008; Bae et al., 2014; Lee and Yoder, 2007). We contribute to this strand 
of research even though our focus is not simply on the modeling of regimes and time-varying 
moments in commodity returns, but the on-time variation that is induced by the presence of regime 
shifts in the relationships between the SDF and an interpretable set of priced risk factors. 

Our second contribution is that we look for an SDF that not only prices the cross-section of 
stock, bond, and commodity returns, but also replicates their observed correlations. This is 
particularly useful in the light of the recent developments in the commodity markets. While there 
is some evidence that prior to the early 2000s, commodities shared co-movements with stocks (see 
Gorton and Rouwenhorst, 2006) or each other (see Erb and Harvey, 2006), it seems well established 
in the minds of investors and researchers that the commodity markets have recently undergone 
deep changes: commodity prices have experienced booms followed by significant busts and the 
correlation between stock and commodity returns has risen dramatically since mid-2008 (see, e.g., 
Tang and Xiong, 2012; Büyüksahin and Robe, 2014).2 
 Our empirical results can be summarized as follows. First, we find strong evidence that 
HMMs outperform their single-state counterparts both in terms of statistical and pricing accuracy. 
Indeed, not only all the information criteria select HMMs over their (more parsimonious) single 
state counterparts, but also the latter strongly underperforms the former with respect in the pricing 
performance space. Indeed, standard chi-square tests on the differences between model-implied 
and observed returns leads to rejection of the null of equal values for all the single-state SDF 

2 There is no consensus as to the explanations for this evidence but many commentators agree on the 
financialization of commodities as a cause (see, e.g., Basak and Pavlova, 2013; Büyükşahin and Robe, 2014). 
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specification. On the contrary, for four different specifications of HMM SDF we fail to reject the null 
that the predicted returns are different from the observed ones. In particular, a two-state three-
factor full MSVAR model seems to rank first in terms of pricing accuracy. In addition, although 
single-state and HMM models seem to deliver similar performances in terms of matching the 
empirically observed moments of the asset returns, the two-state HMM model more accurately 
matches the pair-wise correlations between commodities and traditional asset classes.  

Second, despite some models (i.e., regime-switching ones) are closer to HJ’s bound than 
others, when we formally test the null of a zero distance, all models—both single-state and HMM—
are rejected. This result may be read in the light of the claim of many researches (see, e.g., 
Szymanowska, de Roon, Nijman and Goorbergh, 2014; BGR, 2014) that commodities are segmented 
from other asset classes and needs to be priced using commodity specific factors. Therefore, we test 
the robustness of our top performing model (namely a two-state three factor full MSVAR) against 
an SDF-version (with obvious goals of comparability) of the linear factor model proposed by BGR 
based on three commodity-specific factors: Average, Carry, and Momentum. We find that the pricing 
performance of our model dominates the one of the benchmark in terms of HJ distance. This 
establishes that a large HJ distance does not exclusively plague our modelling efforts and appears 
to be pervasive even to important benchmarks in the literature. 

The rest of the paper has the following structure. Section 2 introduces SDF models. Linear factor 
SDF models are presented in Section 2.1 and are generalized to the HMM case in Section 2.2. Section 
2.3 presents the maximum likelihood estimation strategy and explains in detail how the Baum-
Welch algorithm can be used to implement it. Section 3 introduces the data used in our application. 
Section 4 contains our application and key empirical findings. Section 5 concludes. 

2. The Methodology: Factor-Based SDF Models 

SDF models provide a general framework for pricing assets: many existing asset pricing methods, 
such as the capital asset pricing model, the general equilibrium, consumption-based, inter-temporal 
capital asset pricing model, and also Black and Scholes’ formula, can all be shown to be 
specializations of SDF models to reflect specific assumptions. One SDF is defined by a simple 
proposition: the price of an asset at time t is equal to the expected payoff of the asset in t+1, based 
on information available at time t: 

  𝑝𝑝𝑖𝑖,𝑡𝑡 = 𝐸𝐸�𝑀𝑀𝑡𝑡+1𝑋𝑋𝑖𝑖,𝑡𝑡+1|ℑ𝑡𝑡�  i = 1, …, n,              (1) 

where 𝑝𝑝𝑖𝑖,𝑡𝑡 is the price of the ith asset at time t, 𝑋𝑋𝑖𝑖,𝑡𝑡+1 is the asset payoff in t+1 (inclusive of future 

sale prices and any cash flows paid between t and t+1), 𝑀𝑀𝑡𝑡+1 is the SDF (a random variable), and 
𝐸𝐸[∙ |ℑ𝑡𝑡] indicates the expectation based on the information available at time t. The existence of an 
SDF is equivalent to the law of one price, its positivity is equivalent to the absence of arbitrage 
opportunities, and its uniqueness is equivalent to market completeness. 

If we divide both sides of equation (1) by 𝑝𝑝𝑖𝑖,𝑡𝑡 , we obtain 

                                                 1 = 𝐸𝐸 �𝑀𝑀𝑡𝑡+1
𝑋𝑋𝑖𝑖,𝑡𝑡+1
𝑝𝑝𝑖𝑖,𝑡𝑡

|ℑ𝑡𝑡� = 𝐸𝐸�𝑀𝑀𝑡𝑡+1�1 + 𝑅𝑅𝑖𝑖,𝑡𝑡+1�|ℑ𝑡𝑡�,     (2) 
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where 1 + 𝑅𝑅𝑖𝑖,𝑡𝑡+1 = 𝑋𝑋𝑖𝑖,𝑡𝑡+1/𝑝𝑝𝑖𝑖,𝑡𝑡 is the gross return of asset i. (2) is the standard Euler condition under 
a generic SDF, Mt+1, derived in a representative agent framework. We define mt+1  lnMt+1, ri,t+1  
ln(1+Ri,t+1) and ui,t+1  mt+1 + ri,t+1. If the random vector yt+1  [mt+1, r1,t+1, r2,t+1, … rn,t+1]’, with Ψ𝑡𝑡 ≡

{𝒚𝒚𝑡𝑡−𝑠𝑠}𝑠𝑠≥0 ⊂ ℑ𝑡𝑡 , has a stationary, homoskedastic multivariate Gaussian distribution, Appendix A 
shows that  

         𝐸𝐸�𝑟𝑟𝑖𝑖,𝑡𝑡+1|Ψ𝑡𝑡� = −𝐸𝐸[𝑚𝑚𝑡𝑡+1|Ψ𝑡𝑡] −
1
2
𝑉𝑉𝑉𝑉𝑉𝑉[𝑚𝑚𝑡𝑡+1] − 1

2
𝑉𝑉𝑉𝑉𝑉𝑉�𝑟𝑟𝑖𝑖,𝑡𝑡+1� − 𝐶𝐶𝐶𝐶𝐶𝐶�𝑟𝑟𝑖𝑖,𝑡𝑡+1,𝑚𝑚𝑡𝑡+1�,           (3) 

which establishes a functional link between conditional risk premia on any asset or portfolio, the 
corresponding first and second moments of the assumed SDF, and the covariance between such an 
operator and the net returns on the very asset. Moreover, this general expression can be specialized 
further when assumptions are imposed on the SDF functional form. In the following, we distinguish 
between two cases, the single- vs. the multi-state, HMM case. Moreover, we do not take a stance as 
to whether the SDF is unique or not, but we focus—under any assumed model structure—to the 
SDF that maximizes some statistical criterion and therefore emerges from the data. Therefore, in 
the case of market incompleteness (as in Marroquìn-Martinez and Moreno, 2013), we assume that 
the portfolios are replicable, so that their equilibrium return does not depend on the SDF selected. 

2.1. Linear Factor SDF Models 

Suppose the SDF has the log-linear structure, 

    𝑀𝑀𝑡𝑡+1 = 𝑒𝑒𝑒𝑒𝑒𝑒 �𝛾𝛾0 + � 𝛾𝛾𝑗𝑗𝑓𝑓𝑗𝑗,𝑡𝑡+1
𝐾𝐾
𝑗𝑗=1 � > 0,                (4) 

where f1,t+1, f2,t+1, …, fK,t+1 are K systematic factors driving the way in which all assets are priced. In 
the following, also for identification purposes when the model is generalized to the HMM case, we 
assume that the K factors are observable. Positivity of 𝑀𝑀𝑡𝑡+1 ensures the absence of arbitrage 
opportunities. Notice that the vector 𝜸𝜸 ≡ [𝛾𝛾0, 𝛾𝛾1, 𝛾𝛾2, … 𝛾𝛾𝐾𝐾]′ restricts the relationship between the 
prices of all assets and the priced risk factors to be homogeneous across assets according to the 
fundamental Euler condition in (2). There is of course considerable latitude in the definition of what 
are the priced risk factors that enter 𝑀𝑀𝑡𝑡+1. Either expanding their number (K → ∞) or by carefully 
selecting their identity, these will improve the fit of the model.3 Although it would be interesting to 
derive (4) from a general equilibrium framework, in this paper we take such a structure of the SDF 
as a primitive but estimable functional form and discuss instead the identity, the number of the 
factors, and (in Section 2.2) the number of hidden states affecting the loadings. 
 At this point, if we assume that the random vector yt+1  [mt+1, f1,t+1, f2,t+1, … fK,t+1, r1,t+1, r2,t+1, 

… rn,t+1]’ expanded to include the factors driving the SDF, has a stationary multivariate Gaussian 
distribution, then Appendix A shows that the asset pricing model 

3 A few special cases may provide meaningful benchmarks. Clearly, when in (4) K = 1 and f1,t+1 is the gross 
return on the the market portfolio, then the SDF becomes the standard CAPM. When K = 1 and f1,t+1 is the log-
consumption growth rate, 𝛾𝛾0 is the subjective rate of discount, and 𝛾𝛾1 is the opposite of the constant 
coefficient of relative risk aversion, we obtain the classical consumption (C)CAPM. De Roon and 
Szymanowska (2010) test whether commodity futures returns vary cross-sectionally due to differences in 
consumption risk and they find that at quarterly horizon, the CCAPM explains about 50% of the cross-
sectional variation in mean futures returns, while the conditional version explains up to 60%. 
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     𝐸𝐸�𝑟𝑟𝑖𝑖,𝑡𝑡+1|Ψ𝑡𝑡� = −𝐸𝐸[𝑚𝑚𝑡𝑡+1|Ψ𝑡𝑡] −
1
2
𝜎𝜎𝑚𝑚2 −

1
2
𝜎𝜎𝑖𝑖2 − 𝜎𝜎𝑖𝑖,𝑚𝑚         (5) 

obtains, where 𝜎𝜎𝑚𝑚2 ≡ 𝑉𝑉𝑉𝑉𝑉𝑉[𝑚𝑚𝑡𝑡+1],𝜎𝜎𝑖𝑖2 ≡
1
2
𝑉𝑉𝑉𝑉𝑉𝑉�𝑟𝑟𝑖𝑖,𝑡𝑡+1�,  and 𝜎𝜎𝑖𝑖,𝑚𝑚 ≡ 𝐶𝐶𝐶𝐶𝐶𝐶�𝑟𝑟𝑖𝑖,𝑡𝑡+1,𝑚𝑚𝑡𝑡+1�. Because it is well 

known that the time t price of a riskless, one-period zero coupon bond equals 1/ 𝐸𝐸[𝑀𝑀𝑡𝑡+1|Ψ𝑡𝑡], and 
that as a result, the continuously compounded riskless return is  

𝑟𝑟𝑡𝑡
𝑓𝑓 = −𝐸𝐸[𝑚𝑚𝑡𝑡+1|Ψ𝑡𝑡]−

1
2
𝜎𝜎𝑚𝑚2 ,                  (6) 

the model is equivalently re-written as: 
         𝐸𝐸�𝑟𝑟𝑖𝑖,𝑡𝑡+1|Ψ𝑡𝑡�+ 1

2
𝜎𝜎𝑖𝑖2 − 𝑟𝑟𝑡𝑡

𝑓𝑓 = −𝜎𝜎𝑖𝑖,𝑚𝑚     (7) 

where 0.5𝜎𝜎𝑖𝑖2 is a standard Jensen's inequality correction and the driving force behind the risk 
premium is therefore −𝜎𝜎𝑖𝑖,𝑚𝑚, as one would expect: the higher the covariance between asset returns 

and the SDF (hence, the higher the covariance between asset returns and marginal utility that is 
high in bad states), the lower the risk premium on the asset. 
 Appendix A also shows that under a rather standard stationary VAR(P) representation for 
the process followed by the factors, the full joint model for the SDF and asset returns is: 

                 𝑚𝑚𝑡𝑡+1 = 𝛾𝛾0 + � 𝛾𝛾𝑗𝑗𝑓𝑓𝑗𝑗,𝑡𝑡+1

𝐾𝐾

𝑗𝑗=1
+ 𝑤𝑤𝑡𝑡+1                                  (𝑤𝑤𝑡𝑡+1 ≡ 𝑚𝑚𝑡𝑡+1 − 𝐸𝐸[𝑚𝑚𝑡𝑡+1|Ψ𝑡𝑡]) 

                 𝑓𝑓𝑗𝑗,𝑡𝑡+1 = 𝜑𝜑𝑗𝑗,0 + � � 𝜑𝜑𝑗𝑗,𝑘𝑘,𝑝𝑝𝑓𝑓𝑘𝑘,𝑡𝑡+1−𝑝𝑝

𝑃𝑃

𝑝𝑝=1

𝐾𝐾

𝑘𝑘=1
+ 𝛿𝛿𝑗𝑗,𝑡𝑡+1,          𝑗𝑗 = 1, … ,𝐾𝐾                                            (8) 

                 𝑟𝑟𝑖𝑖,𝑡𝑡+1 = −�0.5𝜎𝜎𝑚𝑚2 + 0.5𝜎𝜎𝑖𝑖2 + 𝜎𝜎𝑖𝑖,𝑚𝑚������������������
𝜇𝜇𝑖𝑖

−𝑚𝑚𝑡𝑡+1 + 𝑣𝑣𝑖𝑖,𝑡𝑡+1 = 𝜇𝜇𝑖𝑖 − 𝑚𝑚𝑡𝑡+1 + 𝑣𝑣𝑖𝑖,𝑡𝑡+1,    𝑖𝑖 = 1, … ,𝑛𝑛 

which can also be represented as (𝐼𝐼𝐼𝐼𝐼𝐼{∙} is a standard indicator function): 

�
1 𝟎𝟎𝐾𝐾′ 𝟎𝟎𝑛𝑛′
𝟎𝟎𝐾𝐾 𝑰𝑰𝐾𝐾 𝑶𝑶𝐾𝐾×𝑛𝑛
𝟎𝟎𝑛𝑛 𝑶𝑶𝑛𝑛×𝐾𝐾 𝑰𝑰𝑛𝑛

�𝒚𝒚𝑡𝑡+1 = 𝝁𝝁 + ∑ �
0 𝜸̈𝜸𝑙𝑙′𝐼𝐼𝐼𝐼𝐼𝐼{𝑙𝑙=0} 𝟎𝟎𝑛𝑛′

𝟎𝟎𝐾𝐾 𝚽𝚽𝑙𝑙 𝑶𝑶𝐾𝐾×𝑛𝑛
−𝜾𝜾𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼{𝑙𝑙=0} 𝑶𝑶𝑛𝑛×𝐾𝐾 𝑶𝑶𝑛𝑛×𝑛𝑛

�𝑃𝑃−1
𝑙𝑙=0 𝒚𝒚𝑡𝑡+1−𝑙𝑙 + 𝜼𝜼𝑡𝑡+1  or 

𝑨𝑨0𝒚𝒚𝑡𝑡+1 = 𝝁𝝁 + ∑ 𝑨𝑨𝑙𝑙𝑃𝑃−1
𝑙𝑙=0 𝒚𝒚𝑡𝑡+1−𝑙𝑙 + 𝜼𝜼𝑡𝑡+1     𝑤𝑤𝑤𝑤𝑤𝑤ℎ   𝚽𝚽0 =  𝑶𝑶𝐾𝐾×𝐾𝐾                              (9) 

where 𝝁𝝁 ≡ �𝛾𝛾0,𝜑𝜑1,0,𝜑𝜑2,0 , …  𝜑𝜑𝐾𝐾,0 − �0.5𝜎𝜎𝑚𝑚2 (𝜸𝜸) + 0.5𝜎𝜎12 + 𝜎𝜎1,𝑚𝑚�, …− (0.5𝜎𝜎𝑚𝑚2 (𝜸𝜸) + 0.5𝜎𝜎𝑛𝑛2 + 𝜎𝜎𝑛𝑛,𝑚𝑚)�′, or 

𝝁𝝁 ≡ �
𝛾𝛾0
𝝋𝝋0

−0.5𝜎𝜎𝑚𝑚2 (𝜸𝜸) − 0.5𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2:𝑛𝑛+1(𝚺𝚺)− 𝚺𝚺𝒆𝒆1
�      𝜸̈𝜸𝑙𝑙 ≡ �

𝛾𝛾1
𝛾𝛾2
⋮
𝛾𝛾𝐾𝐾

�       𝚽𝚽𝑙𝑙 ≡ �

𝜑𝜑𝑙𝑙,1,1 𝜑𝜑𝑙𝑙,1,2 ⋯ 𝜑𝜑𝑙𝑙,1,𝐾𝐾
𝜑𝜑𝑙𝑙,2,1 𝜑𝜑𝑙𝑙,2,2 ⋯ 𝜑𝜑𝑙𝑙,2,𝐾𝐾
⋮ ⋮ ⋱ ⋮

𝜑𝜑𝑙𝑙,𝐾𝐾,1 𝜑𝜑𝑙𝑙,𝐾𝐾,2 ⋯ 𝜑𝜑𝑙𝑙,𝐾𝐾,𝐾𝐾

� 

and 𝜼𝜼𝑡𝑡+1 ≡ �𝑤𝑤𝑡𝑡+1,𝛿𝛿1,𝑡𝑡+1,𝛿𝛿2,𝑡𝑡+1, … 𝛿𝛿𝐾𝐾,𝑡𝑡+1,𝑣𝑣1,𝑡𝑡+1 − 𝑤𝑤𝑡𝑡+1, … 𝑣𝑣𝑛𝑛,𝑡𝑡+1 − 𝑤𝑤𝑡𝑡+1�′~𝐼𝐼𝐼𝐼𝐼𝐼 𝑁𝑁(0,𝚺𝚺).  

2.2   HMM Factor SDF Models 

One of the explanations sometimes reported for the negative correlation between commodities and 
other asset classes is the different behavior of stocks, bonds and commodities over the business 
cycle (see, e.g., Jensen, Mercer and Johnson, 2002). Indeed, Gorton and Rouwenhorst (2006) find 
that commodity futures perform well in the early stages of a recession, a time when stock returns 
generally disappoint; in later stages of recessions, commodity returns fall off, but this is generally a 
very good time for equities. This suggests that a well-specified model for the SDF ought to account 
for persistent, good and bad states. Moreover, BGR (2014) have noted that conditional pricing 
models that allow for state dependence in the sensitivity of the stochastic discount factor to the risk 
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factors can often outperform their unconditional counterparts. Following their lead, suppose the 
SDF has instead a regime switching log-linear structure: 

𝑀𝑀𝑡𝑡+1(𝑆𝑆𝑡𝑡+1) = 𝑒𝑒𝑒𝑒𝑒𝑒 �𝛾𝛾0,𝑆𝑆𝑡𝑡+1 + � 𝛾𝛾𝑗𝑗,𝑆𝑆𝑡𝑡+1𝑓𝑓𝑗𝑗,𝑡𝑡+1

𝐾𝐾

𝑗𝑗=1
� > 0,             (10) 

where f1,t+1, f2,t+1, …, fK,t+1 are again K  observable, systematic factors driving the way in which all 
assets are priced and St+1 follows a J-state Markov chain. The state-specific vector 𝜸𝜸S𝑡𝑡+1 ≡
�𝛾𝛾0,S𝑡𝑡+1 , 𝛾𝛾1,S𝑡𝑡+1 , 𝛾𝛾2,S𝑡𝑡+1 , … 𝛾𝛾𝐾𝐾,S𝑡𝑡+1�′ restricts the within-regime relationship between the prices of all 

assets and the priced risk factors to be homogeneous across assets according to the standard Euler 
condition in (1). By construction the same regime shifts affect the mapping between all factors and 
the SDF and as such these are transmitted to all priced assets or portfolios. Because of the MS 
structure in (9), the empirical fit of the model to the cross-section of asset returns may be improved 
not only by carefully selecting/expanding the K factors, but also the number of regimes (say, J) or 
the features of the Markov chain driving the shifts in the coefficients loading the factors on the SDF. 

Following steps analogous to those in Appendix A and conditioning on both the state St+1, 
and the past of observable returns and factors, if the random vector yt+1  [mt+1, f1,t+1, f2,t+1, … fK,t+1, 

r1,t+1, r2,t+1, … rn,t+1]’, with Ψ𝑡𝑡 ≡ ({𝒚𝒚𝑡𝑡−𝑠𝑠}𝑠𝑠≥0, 𝑆𝑆𝑡𝑡) ⊂ ℑ𝑡𝑡 , has a conditional multivariate Gaussian 
distribution then the conditional asset pricing model, 

𝐸𝐸�𝑟𝑟𝑖𝑖,𝑡𝑡+1|Ψ𝑡𝑡 , 𝑆𝑆𝑡𝑡� = −�0.5𝜎𝜎𝑚𝑚2 (𝑆𝑆𝑡𝑡+1) + 0.5𝜎𝜎𝑖𝑖2 + 𝜎𝜎𝑖𝑖,𝑚𝑚(𝑆𝑆𝑡𝑡+1)��������������������������
𝜇𝜇𝑖𝑖(𝑆𝑆𝑡𝑡+1)

− 𝐸𝐸[𝑚𝑚𝑡𝑡+1(𝑆𝑆𝑡𝑡+1)|Ψ𝑡𝑡 ,𝑆𝑆𝑡𝑡]

= 𝜇𝜇𝑖𝑖(𝑆𝑆𝑡𝑡+1)− 𝐸𝐸[𝑚𝑚𝑡𝑡+1(𝑆𝑆𝑡𝑡+1)|Ψ𝑡𝑡 ,𝑆𝑆𝑡𝑡]        𝑖𝑖 = 1, … ,𝑛𝑛                                          (11) 

obtains. This is a model in which regimes in the SDF are reflected in expected asset returns both 
directly through the one-step ahead forecast 𝐸𝐸[𝑚𝑚𝑡𝑡+1(𝑆𝑆𝑡𝑡+1)|Ψ𝑡𝑡, 𝑆𝑆𝑡𝑡] and indirectly, via the asset-
specific terms 𝜇𝜇𝑖𝑖(𝑆𝑆𝑡𝑡+1) ≡ −0.5𝜎𝜎𝑚𝑚2 (𝑆𝑆𝑡𝑡+1)− 0.5𝜎𝜎𝑖𝑖2 − 𝜎𝜎𝑖𝑖,𝑚𝑚(𝑆𝑆𝑡𝑡+1) that also reflect state-dependent 

covariances between asset returns and the SDF. Also in this case, even though the forcing, 
observable state variables, f1,t+1, f2,t+1, …, fK,t+1, follow a linear process and may enter linearly the 
model, the latter becomes non-linear because of the role played by the latent Markov state, 𝑆𝑆𝑡𝑡, that 
governs the switches in the parameters appearing in the process of the factors. For instance, the full 
model may be written as: 

                 𝑚𝑚𝑡𝑡+1 = 𝛾𝛾0,𝑆𝑆 + � 𝛾𝛾𝑗𝑗,𝑆𝑆𝑓𝑓𝑗𝑗,𝑡𝑡+1

𝐾𝐾

𝑗𝑗=1
+ 𝑤𝑤𝑡𝑡+1                          (𝑤𝑤𝑡𝑡+1 ≡ 𝑚𝑚𝑡𝑡+1 − 𝐸𝐸[𝑚𝑚𝑡𝑡+1|Ψ𝑡𝑡 , 𝑆𝑆𝑡𝑡]) 

                 𝑓𝑓𝑗𝑗,𝑡𝑡+1 = 𝜑𝜑𝑗𝑗,0 + � � 𝜑𝜑𝑗𝑗,𝑘𝑘,𝑝𝑝𝑓𝑓𝑘𝑘,𝑡𝑡+1−𝑝𝑝

𝑃𝑃

𝑝𝑝=1

𝐾𝐾

𝑘𝑘=1
+ 𝛿𝛿𝑗𝑗,𝑡𝑡+1,          𝑗𝑗 = 1, … ,𝐾𝐾                                         (12) 

                 𝑟𝑟𝑖𝑖,𝑡𝑡+1 = 𝜇𝜇𝑖𝑖(𝑆𝑆𝑡𝑡+1)− 𝐸𝐸[𝑚𝑚𝑡𝑡+1(𝑆𝑆𝑡𝑡+1)|Ψ𝑡𝑡 ,𝑆𝑆𝑡𝑡] + 𝑣𝑣𝑖𝑖,𝑡𝑡+1 = 𝜇𝜇𝑖𝑖 + 𝑚𝑚𝑡𝑡+1 + 𝑣𝑣𝑖𝑖,𝑡𝑡+1,    𝑖𝑖 = 1, … ,𝑛𝑛 

where the vector of K  factors follow a VAR (P) process and that can also be represented as: 

�
1 𝟎𝟎𝐾𝐾′ 𝟎𝟎𝑛𝑛′
𝟎𝟎𝐾𝐾 𝑰𝑰𝐾𝐾 𝑶𝑶𝐾𝐾×𝑛𝑛
𝟎𝟎𝑛𝑛 𝑶𝑶𝑛𝑛×𝐾𝐾 𝑰𝑰𝑛𝑛

�𝒚𝒚𝑡𝑡+1 = 𝝁𝝁(𝑆𝑆𝑡𝑡+1) + ∑ �
0 𝜸̈𝜸𝑙𝑙,𝑆𝑆𝑡𝑡+1

′ 𝐼𝐼𝐼𝐼𝐼𝐼{𝑙𝑙=0} 𝟎𝟎𝑛𝑛′

𝟎𝟎𝐾𝐾 𝚽𝚽𝑙𝑙 𝑶𝑶𝐾𝐾×𝑛𝑛
−𝜾𝜾𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼{𝑙𝑙=0} 𝑶𝑶𝑛𝑛×𝐾𝐾 𝑶𝑶𝑛𝑛×𝑛𝑛

�𝑃𝑃−1
𝑙𝑙=0 𝒚𝒚𝑡𝑡+1−𝑙𝑙+𝜼𝜼𝑡𝑡+1  

                         (13) 
where 𝝁𝝁 ≡ �𝛾𝛾0,𝜑𝜑1,0, …  𝜑𝜑𝐾𝐾,0,−�0.5𝜎𝜎𝑚𝑚2 �𝜸𝜸𝑆𝑆𝑡𝑡+1�+0.5𝜎𝜎12 + 𝜎𝜎1,𝑚𝑚�, …− (0.5𝜎𝜎𝑚𝑚2 �𝜸𝜸𝑆𝑆𝑡𝑡+1�+0.5𝜎𝜎𝑛𝑛2 + 𝜎𝜎𝑛𝑛,𝑚𝑚)�′, or 
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𝝁𝝁(𝑆𝑆𝑡𝑡+1) ≡ �
𝛾𝛾0
𝝋𝝋0

−0.5𝜎𝜎𝑚𝑚2 �𝜸𝜸𝑆𝑆𝑡𝑡+1� − 0.5𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2:𝑛𝑛+1 − 𝚺𝚺�𝜸𝜸𝑆𝑆𝑡𝑡+1�𝒆𝒆1
� 

𝜸̈𝜸𝑙𝑙,𝑆𝑆𝑡𝑡+1 ≡ �

𝛾𝛾1,𝑆𝑆𝑡𝑡+1
𝛾𝛾2,𝑆𝑆𝑡𝑡+1
⋮

𝛾𝛾𝐾𝐾,𝑆𝑆𝑡𝑡+1

�              𝚽𝚽𝑙𝑙 ≡ �

𝜑𝜑𝑙𝑙,1,1 𝜑𝜑𝑙𝑙,1,2 ⋯ 𝜑𝜑𝑙𝑙,1,𝐾𝐾
𝜑𝜑𝑙𝑙,2,1 𝜑𝜑𝑙𝑙,2,2 ⋯ 𝜑𝜑𝑙𝑙,2,𝐾𝐾
⋮ ⋮ ⋱ ⋮

𝜑𝜑𝑙𝑙,𝐾𝐾,1 𝜑𝜑𝑙𝑙,𝐾𝐾,2 ⋯ 𝜑𝜑𝑙𝑙,𝐾𝐾,𝐾𝐾

� 

and 𝜼𝜼𝑡𝑡+1 ≡ �𝑤𝑤𝑡𝑡+1,𝛿𝛿1,𝑡𝑡+1,𝛿𝛿2,𝑡𝑡+1, … 𝛿𝛿𝐾𝐾,𝑡𝑡+1,𝑣𝑣1,𝑡𝑡+1 − 𝑤𝑤𝑡𝑡+1, … 𝑣𝑣𝑛𝑛,𝑡𝑡+1 − 𝑤𝑤𝑡𝑡+1�
′~𝐼𝐼𝐼𝐼𝐼𝐼 𝑁𝑁(0,𝚺𝚺S𝑡𝑡+1).4 For 

simplicity, we assume a time homogeneous Markov chain, although a literature shows that 
generalizations may be fruitful (see e.g., Dias et al., 2015). However, in our case, an element of time 
heterogeneity is already impressed by the fact that the SDF depends on factors characterized by 
potentially rich dynamics, while the HMM modelling truly affects not directly the factors, but the 
loadings with which the factors appear in the SDF, in equation (10). 

2.3 Maximum Likelihood Estimation Strategy 

Our estimation strategy is based on the principle of maximum likelihood under parametric 
assumptions concerning the joint normal distribution of random vector yt+1  [mt+1, f1,t+1, f2,t+1,… 

fK,t+1, r1,t+1, r2,t+1, … rn,t+1]’ and, when appropriate, the Markov state variable St. In the single-state, 
covariance stationary case, because the inverse of the (𝑛𝑛 + 𝐾𝐾 + 1) × (𝑛𝑛 + 𝐾𝐾 + 1) matrix A0 
obviously exists (its determinant is 1), and the corresponding Jacobian is unity, the log of the joint 
density function of the sample, conditioned on the initial values of the variables (y0), is given by5 
𝑙𝑙𝑙𝑙 𝑓𝑓(𝒚𝒚1,𝒚𝒚2, … ,𝒚𝒚𝑇𝑇;𝜽𝜽)

= −
𝑇𝑇
2

ln det(𝚺𝚺)                                                                                                                       (14)

−
1
2��𝑨𝑨0𝒚𝒚𝑡𝑡+1 − 𝝁𝝁 −�𝑨𝑨𝑙𝑙

𝑃𝑃−1

𝑙𝑙=0

𝒚𝒚𝑡𝑡+1−𝑙𝑙�

′𝑇𝑇

𝑡𝑡=1

𝚺𝚺−1 �𝑨𝑨0𝒚𝒚𝑡𝑡+1 − 𝝁𝝁 −�𝑨𝑨𝑙𝑙

𝑃𝑃−1

𝑙𝑙=0

𝒚𝒚𝑡𝑡+1−𝑙𝑙�  

(up to an omitted constant term), when the matrices are replaced by the appropriate objects. 
Maximizing such a log joint density function with respect to the components of 𝜽𝜽 ≡
[𝜸𝜸 𝝋𝝋0 {𝚽𝚽𝑙𝑙}𝑙𝑙=0𝑃𝑃−1 𝛀𝛀]′ will deliver the ML estimates of 𝜽𝜽. Note that the (conditional) residuals used by 
the MLE program, 

𝜼̈𝜼𝑡𝑡+1 ≡ 𝑨̈𝑨0𝒚̈𝒚𝑡𝑡+1 − 𝝁̈𝝁 −� 𝑨̈𝑨𝑙𝑙

𝑃𝑃−1

𝑙𝑙=0

𝒚̈𝒚𝑡𝑡+1−𝑙𝑙

= � 𝑰𝑰𝐾𝐾 𝑶𝑶𝐾𝐾×𝑛𝑛
𝑶𝑶𝑛𝑛×𝐾𝐾 𝑰𝑰𝑛𝑛

� 𝒚̈𝒚𝑡𝑡+1 − �
𝝋𝝋0

−0.5𝜎𝜎𝑚𝑚2 (𝜸𝜸)− 0.5𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2:𝑛𝑛+1(𝚺𝚺)− 𝚺𝚺𝒆𝒆1
�

−�� 𝚽𝚽𝑙𝑙 𝑶𝑶𝐾𝐾×𝑛𝑛
𝑶𝑶𝑛𝑛×𝐾𝐾 𝑶𝑶𝑛𝑛×𝑛𝑛

�
𝑃𝑃−1

𝑙𝑙=0

𝒚̈𝒚𝑡𝑡+1−𝑙𝑙                                                                                      (15) 

imply the impossibility to concentrate the parameters of the log-likelihood function to separate the 
estimable elements of 𝛀𝛀 from those appearing in the conditional residuals 𝜼𝜼𝑡𝑡+1. 

4 HMM dynamics in the covariance matrix of 𝜼𝜼𝑡𝑡+1 derives from regimes in the SDF loadings and therefore 
occurs residually. The assumption of normal shocks is typical of the literature, see Bae et al. (2014). 
5 In what follows 𝜼̈𝜼𝑡𝑡+1 and 𝒚̈𝒚𝑡𝑡+1 are the same as 𝜼𝜼𝑡𝑡+1 and 𝒚𝒚𝑡𝑡+1 but fail to include the first element of both 
vectors as the SDF is by construction unobservable. 
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In the case of the HMM extension introduced in Section 2.2, because the inverse of the matrix 
A0 still exists, and the corresponding Jacobian is unity, the log of the joint density function of the 
sample, conditioned on the initial values of the variables, 

ln 𝑓𝑓(𝒚𝒚1,𝒚𝒚2, … ,𝒚𝒚𝑇𝑇, S0, S1, … , S𝑇𝑇;𝜽𝜽)

= −
𝑇𝑇
2

ln det �𝚺𝚺�𝜸𝜸𝑆𝑆𝑡𝑡+1��

−
1
2� �𝑨𝑨0𝒚𝒚𝑡𝑡+1 − 𝝁𝝁�𝜸𝜸𝑆𝑆𝑡𝑡+1� −� 𝑨𝑨𝑙𝑙

𝑃𝑃−1

𝑙𝑙=0
𝒚𝒚𝑡𝑡+1−𝑙𝑙�

′𝑇𝑇

𝑡𝑡=1
𝚺𝚺�𝜸𝜸𝑆𝑆𝑡𝑡+1�

−1 �𝑨𝑨0𝒚𝒚𝑡𝑡+1

− 𝝁𝝁�𝜸𝜸𝑆𝑆𝑡𝑡+1� −� 𝑨𝑨𝑙𝑙
𝑃𝑃−1

𝑙𝑙=0
𝒚𝒚𝑡𝑡+1−𝑙𝑙� ,                                                                             (16)  

(up to an omitted constant term) is the same as the log-likelihood function for 𝜼𝜼𝑡𝑡+1. It turns out that 
maximizing such a log joint density function with respect to the components of 𝜽𝜽 ≡
�{𝜸𝜸𝑠𝑠}𝑠𝑠=1

𝐽𝐽 ,𝝋𝝋0, {𝚽𝚽𝑙𝑙}𝑙𝑙=0𝑃𝑃−1, {𝚺𝚺(𝜸𝜸𝑠𝑠)}𝑠𝑠=𝟏𝟏
𝐽𝐽 �′ will deliver the ML estimates of 𝜽𝜽. Because the states are latent, 

an application of the iterative Expectation-Maximization (EM) algorithm in which the maximization 
is applied to 

−
1
2� � Pr(𝑆𝑆𝑡𝑡 = 𝑠𝑠|Ψ𝑇𝑇)

𝐽𝐽

𝑠𝑠=1

𝑇𝑇

𝑡𝑡=1
ln det�𝚺𝚺(𝜸𝜸𝑠𝑠)� +

−
1
2� � Pr(𝑆𝑆𝑡𝑡𝑠𝑠|Ψ𝑇𝑇)

𝐽𝐽

𝑠𝑠=1
�𝑨𝑨0𝒚𝒚𝑡𝑡+1 − 𝝁𝝁(𝜸𝜸𝑠𝑠)

𝑇𝑇

𝑡𝑡=1

−� 𝑨𝑨𝑙𝑙
𝑃𝑃−1

𝑙𝑙=0
𝒚𝒚𝑡𝑡+1−𝑙𝑙�

′

𝚺𝚺�𝜸𝜸𝑆𝑆𝑡𝑡+1�
−1 �𝑨𝑨0𝒚𝒚𝑡𝑡+1 − 𝝁𝝁(𝜸𝜸𝑠𝑠)

−� 𝑨𝑨𝑙𝑙
𝑃𝑃−1

𝑙𝑙=0
𝒚𝒚𝑡𝑡+1−𝑙𝑙� ,                                                                                     (17)  

where {Pr (𝑆𝑆𝑡𝑡 = 𝑠𝑠|Ψ𝑇𝑇)}𝑡𝑡=1𝑇𝑇  (s = 1, 2, …, J) are the smoothed probabilities derived with the classical, 
Hamilton-Kim smoothing algorithm (Hamilton, 1994). Maximizing such a smoothed probability-
weighted log joint density function delivers ML estimates of 𝜽𝜽. 

The assumption of normality of returns and finite number of states allows us to employ the 
Baum–Welch algorithm to estimate 𝜽𝜽. The Baum–Welch algorithm is an expectation–maximization 
(EM) algorithm typically applied to HMM. Given an initial set of parameters 𝜽𝜽0 and the realized 
series of observations, {𝒚𝒚𝑡𝑡 , }, the result of this algorithm always converges to a local maximum of 
the likelihood function. In the E-step, we compute the expected value of the T+1 latent Markov 
states (one at each point in the sample) given the observed data and the current, provisional 
estimates of the parameters. In the M-step, standard ML methods are used to update the unknown 
parameter estimates using an expanded data matrix with previous expectations as weights.6 To 
protect against the perils of multiple, local maxima, as in Bae et al. (2014), we use randomly selected 
initial parameters and repeat the parameter estimation for each seed, where each new set of initial 
parameters is drawn from the results of the previous estimation run, assuming a normal 

6 Because the EM algorithm needs to store the JT entries of expectations over the latent space for each data 
pattern, computation time and storage increases exponentially with the number of observations, which 
makes this algorithm impractical. Indeed, for HMM, the special variant of the EM algorithm referred to as the 
forward–backward or Baum–Welch algorithm is needed because the model contains a very large number of 
entries in the joint posterior latent distribution generated by the T+1 latent variables. The Baum-Welch 
algorithm circumvents the computation of this joint posterior distribution making use of the conditional 
independencies implied by the model, see Dias et al. (2015) for a discussion. 
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distribution with mean equal to the estimate and variance equal to the square of the standard error 
obtained from the previous run of the algorithm.7 

3 The Data 

We use a cross-section of eight portfolios of stocks, Treasuries, corporate bonds and commodity 
indices as test assets throughout. In particular, we consider the monthly excess returns of these 
portfolios over the one-month Treasury bill rate from January 1989 to December 2011.  

The stock portfolio is proxied by the CRSP value-weighted index (VW CRSP), which includes 
all the firms incorporated in the U.S. and listed on the NYSE, AMEX, or NASDAQ, obtained from Fama 
and French's data library. Treasuries are proxied by the 10-year constant maturity Treasury yields, 
that is, yields on actively traded non-inflation indexed issues adjusted to constant maturities, 
retrieved from the Federal Reserve of St. Louis FRED data repository. The two corporate bond 
portfolios are proxied by the Moody's seasoned Aaa corporate bond portfolio and the Moody's 
seasoned Baa corporate paper portfolio, respectively, obtained from the Federal Reserve of St. Louis 
FRED data repository. In order to transform yields into returns we use Shiller's (1979) 
approximation, which defines the holding period yield in terms of yield to maturity. The one-month 
Treasury Bill return series is obtained from the Ibbotson SBBI Classic Yearbook. 

Similarly to research by Bae et al. (2014), the four commodity indices included among the 
test assets are all Standard & Poor's-Goldman Sachs (S&PGS) Spot Commodity Indices, namely the 
S&PGS Agriculture and Livestock, the S&PGS Precious Metals, the S&PGS Industrial Metals, and the 
S&PGS Energy indices. The S&PGS Spot Commodity Indices are built using front-end futures to 
exploit the proximity of traded future prices to spot prices. However, we are aware that an index of 
commodity spot prices simply tracks the evolution of the spot prices, and ignores all costs 
associated with the holding of physical commodities (storage, insurance, etc.). It is therefore an 
upper bound on the return that an investor in spot commodities would have earned in real time. 

The macro-based pricing factors are built following an approach similar to Ludvingson and 
Ng (2009). We start from their rich database, containing 132 U.S. macroeconomic variables measu-
red at monthly frequency (see Appendix B). We remove all financial return series and add three 
topical series: the Goldman Sachs Financial Conditions Index (GS-FCI), the Historical News-Based 
Policy Index (see Baker, Bloom, and Davis, 2012) and the Liquidity Factor of Pastor and Stambaugh 
(2003).8 We end up with a set of 112 variables and we use principal component analysis to 
summarize their covariance structure. We extract three, five or ten orthogonal factors that 
summarize 31.4%, 36%, and 52.9% of the variance, respectively. To gain insight on the economic 

7 Random draws of the starting parameter values that violated basic admissibility conditions (e.g., 
combinations of elements in the {𝑨𝑨𝑙𝑙} matrices that made the VAR system non-stationary) were rejected. 
8 The GS Financial Stability Index is a weighted average of US real short-term interest rates, real long-term 
corporate bond yields, the real trade-weighted dollar index, and the ratio of equity market capitalization to 
nominal GDP (see Dudley and Hatzius, 2000). An increase in the GS-FCI indicates tightening of financial 
conditions, while a decrease indicates easing. The Historical News-Based Policy Index measures economic 
policy uncertainty in the U.S. by counting the number of articles published every month that contains the 
words “uncertain” or “uncertainty” in association with terms related to the economic cycle. Finally, Pastor-
Stambaugh’s Liquidity Factor is a cross-sectional average of individual stock liquidity measures. 
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meaning of the factors we investigate the sign of the factor loadings and the R-squares from 
univariate regressions of each of the factors on the macroeconomic variables (see Appendix C). 

The first principal component (F1) is a business cycle, pro-cyclical factor, the value of which 
increases with industrial production, “help wanted”, and employment growth, and decreases with 
changes in the unemployment rate. The second principal component (F2) can be defined as an 
inflation factor that positively loads with relatively high R-squares on most types of price indices 
(including consumers’, producers’, and personal consumption expenditure deflators). The third 
principal component (F3) can be defined as an inventory and new orders factor.  

Table 1 shows summary statistics. The three macro factors are characterized by a mean 
equal to zero and by considerable volatility. This finding is explained by the fact that all factors are 
characterized by large and positive excess kurtosis and non-zero (and highly statistically 
significant, based on unreported tests) skewness. The evidence of non-normality (non-zero 
skewness and excess kurtosis) extends to all the portfolios considered, consistently with the fact 
that for all the series is possible to reject the null of normality in a Jarque-Bera (JB) test. However, 
bonds are characterized by negative excess kurtosis and essentially symmetric empirical 
distributions, and the rejection of the null of normality tends to be relatively weak, with p-values 
between one and five percent. Of course, the HMM methods developed in Section 2 can be 
considered as ways to capture and forecast such pervasive departures from normality, as discussed 
in Buckley et al. (2008) and Dias et al. (2015). Interestingly, commodities show high return volatility 
not always associated to a high mean return: in fact, the Agriculture & Livestock class displays a 
negative mean return despite a standard deviation close to that of stocks. 

Table 1 also shows the correlations among the series. Interestingly, F2 is the pricing factor 
showing the highest correlations with the commodity series, implying that inflation tends to 
simultaneously correlate with all the commodity returns. This finding is consistent with a literature 
that considers commodities as inflation hedges (see, e.g., Erb and Harvey, 2006). The correlations 
among the test assets and the remaining pricing factors are generally low, except for Industrial 
Metals that significantly correlates with Precious Metals and Agriculture and Livestock. However, 
the range of correlations between pairs of commodities indices is wide, from 0.16 between 
agricultural and energy commodities to 0.31 between agricultural and industrial commodities. 

4 Empirical Results  

4.1 Statistical Model Selection Criteria  

In Table 2, we conduct a formal specification search by comparing the values of three different 
information criteria—Akaike (AIC), Bayes-Schwarz (BIC), and Hannan-Quinn (HQIC)—to select the 
model that most likely represents the unknown data generating process. The table is organized 
around four panels. In the first panel, we present single-state models with three and five pricing 
factors and different VAR structures. In particular, with reference to the 𝚽𝚽1 matrix shown in 
equation (9), we present model specifications that consist of a full VAR(1) where 𝚽𝚽1 is a full matrix 
(each factor depends on its own lags, and on past values of both the other factors and of the test 
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assets); a block factor VAR(1), where each factor depends on its own lags and on past values of the 
pricing factors; and lastly, a diagonal factor VAR(1) where each factor depends only on its own past 
values, which is equivalent to stacking K different AR(1) processes (that may be cross-serially 
correlated). 

In the remaining three panels we entertain non-linear, three- and five-factor HMM VAR(1) (i.e., 
MSVAR) models with two, three, and four regimes. Also in this case, we present three competing 
structures of the 𝚽𝚽1matrix (as defined in equation (13)): full MSVAR, block factor MSVAR, and 
diagonal factor MSVAR. In addition, we also display the information criteria for a HMM model with 
ten factors to assess whether including a higher number of macro-related components (which are 
indeed able to explain more than 50% of the total variability of the series in the face of 31.4% and 
36% of the three- and five-component sets) enhance the accuracy of the model. However, because 
a ten-factor HMM requires the estimation of a huge number of parameters, we limit this exercise to 
a three-state block MSVAR model, where “only” 133 parameters need to be estimated.9  

The rationale behind information criteria is to provide a measure of statistical accuracy that 
strikes a balance between goodness of fit and parsimonious specifications of the model.10 The most 
parsimonious BIC selects a three-state, three-factor block MSVAR(1) model, which requires the 
estimation of only 54 parameters and has a saturation ratio (number of observations per 
parameter) of 56. However, both the AIC and the BIC point towards a more richly parameterized 
four-state three-factor block MSVAR(1) model. Although this model requires the estimation of 76 
parameters (i.e., 22 parameters more than its three-state counterpart selected by BIC), it has a 
saturation ratio of approximately 40, which is still considered acceptable in the literature. 

Interestingly, all the criteria select HMM models, in which good and bad states are reflected in 
the dynamics of a non-linear SDF, over single-state models. In a statistical perspective, the only 
uncertainty concerns whether three or four regimes should be specified. Furthermore, additional 
factors do not seem to improve the statistical accuracy of the model. In particular, the ten-factor 
model does not provide any improvement of the fit to the data. 

To provide an idea of the resulting estimates, Table 3 shows the empirical results for the four-
states, three-factor block MSVAR(1) model. As a benchmark, Appendix D presents the estimates for 
the single-state counterparty of this model. For the sake of brevity, we do not report the estimates 
of the three-state, three factor block MSVAR(1) model that is selected by the BIC, but these are 
available upon request from the authors. In particular, Table 3 shows the AR(1) coefficients and the 
intercept for each of the factors in the VAR(1) that describes their dynamics, the loadings of the SDF 
on the factors and its intercept 𝛾𝛾0 in any of the four regimes, and the residual covariance matrix of 
the factors and test assets. Interestingly, in such model the majority of the coefficients is statistically 
significant at all standard levels of confidence. More precisely, the SDF strongly depends on the 

9 We have also estimated VAR and MSVAR models with more than one autoregressive lag but, due to the high 
number of parameters to be estimated, these models are never competitive with their one-lag counterparties. 
Therefore, also to save space, we refrain from including them in Table 2. 
10 All the information criteria are based on a formula built on -2 times the average log likelihood function 
adjusted by a penalty function, φ(𝑇𝑇), multiplied by the number of estimated parameters. In the AIC φ(𝑇𝑇) =
2, while in the BIC φ(𝑇𝑇) = lnT; finally, in the HQIC φ(𝑇𝑇) = 2 ln(𝑙𝑙𝑙𝑙𝑙𝑙). 
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three factors and the corresponding loadings in all regimes are precisely estimated with small, 
practically zero p-values, except for the loading on the first factor (that we have interpreted as a 
business cycle proxy in Section 3), but only in the third regime. 

The four regimes can be interpreted looking at their estimated (residual) variances and at the 
smoothed probabilities presented in Figure 1. Regime 1 is characterized by high variances and a 
low implied duration (on average 3 months). Figure 1 shows some spikes in the smoothed 
probabilities of this state in correspondence to the first half of the 1990s (when a short recession 
took place) and at the beginning of the new millennium, characterized by the burst of the dot-com 
bubble. Therefore, we interpret Regime 1 as a “pre-financialization crisis regime”, referring to the 
fact that most of its occurrences tend to precede the process of “financialization” of commodities, 
i.e., the change in their relationships with traditional assets classes that has (allegedly) occurred 
over the last decade (see, e.g., Tang and Xiong, 2012; Büyüksahin and Robe, 2014). Regime 2 is 
instead a tranquil regime, characterized by a lower variance and a longer implied duration 
(approximately 10 months) vs. regime 1, consistently with the bulk of the empirical asset pricing 
literature (see e.g., Dias et al., 2015, and references therein), that describes the “good”, state as 
highly persistent. Because regime 2 seems to characterize most of the time before 2000, we define 
it as the “pre-financialization bull regime”. Interestingly, regimes 3 and 4 are similar to regimes 2 
and 1, respectively, but almost exclusively occur after the new millenium. Regime 3 is less volatile 
and more persistent, with average duration of 5 months, than regime 2, while regime 4 is a deeply 
turbulent state that tends to characterize the period of 2008-2010, i.e., the recent financial crisis. 
Accordingly, we interpret these two states as the “post-financialization bull regime” and the “post-
financialization crisis regime”, respectively. 

In Table 3, the estimated SDF loads negatively on the business cycle factor during the crises 
regimes 1 and 4. On the opposite, the SDF load coefficient is low but positive in regime 2 and not 
precisely estimated in regime 3. This has some intuitive sense: if we interpret it as a reflection of 
the marginal utility of future wealth (e.g., mt+1 = U’(Wt+1)/U’(Wt) where U(·) is a utility function), the 
SDF tends to be relatively low during economic booms and thus, in general, a positive shock to the 
business cycle in good times should decrease the SDF. However, the impact of a positive shock in 
the business cycle is much more pronounced during recession periods than in an already booming 
economy, when it can even be interpreted as a sign of overproduction and lead to an anticipation of 
a bubble burst. Not surprisingly, the single-state benchmark presented in Appendix D, that cannot 
empirically separate across different states, shows a precisely estimated but small, negative loading 
on the business cycle factor that intuitively “averages” across the regime-specific values in Table 3.  

Finally, we observe that the intercept of the SDF is negative across all regimes, and this 
represents no problem given that (10) expresses the SDF in log-exponential form. However, the 
magnitude (in absolute terms) of this coefficient seems to have structurally increased after the 
“financialization” of the commodities kicked in, from -0.0014 and -0.0029 in regimes 1 and 2, to 
−0.0099 and -0.0074 in regimes 3 and 4, respectively. This suggests that, net of other systematic 
influences, state prices may have decreased as a result of the financialization process and this may 
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reflect structural, systemic contagion risks across different asset markets. Not surprisingly, the SDF 
intercept of the single-state benchmark model is negative and equal to -0.0043, which is close to an 
average of the values observed in each of the four regimes in Table 3. This clearly shows the 
limitations of a single-state model.  
4.2 Pricing Performance 

In this section, we compare the pricing performance of the competing SDFs presented in Table 2. 
Indeed, along with the information criteria, Table 2 reports the Root Mean Square Error (RMSE) in 
pricing, which measures the in-sample difference between the returns predicted by the model and 
the observed ones. More precisely, given the asset pricing model in (5), the RMSE is computed as 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ≡ �
1

𝑇𝑇 − 1��𝑟̂𝑟𝑖𝑖,𝑡𝑡+1ℳ − 𝑟𝑟𝑖𝑖,𝑡𝑡+1�
2,

𝑇𝑇−1

𝑡𝑡=1

                                        (18) 

where 𝑟̂𝑟𝑖𝑖,𝑡𝑡+1ℳ  is the fitted asset i’s return on the basis of model ℳ, i.e., 

𝑟̂𝑟𝑖𝑖,𝑡𝑡+1ℳ = −𝑚𝑚�𝑡𝑡+1ℳ −
1
2𝜎𝜎𝑚𝑚

2,ℳ −
1
2𝜎𝜎𝑖𝑖

2 − 𝜎𝜎𝑖𝑖,𝑚𝑚ℳ                                        (19) 

Clearly, the lowest the RMSE, the less the predicted values differ from the observed ones and the 
highest the pricing accuracy of the model. The two-states, three-factor full MSVAR turns out to be 
the top performing model according to the RMSE, being the one with the minimal average distance 
between observed and predicted values.  

Moreover, to test whether or not the difference between fitted and observed values is 
statistically different from zero, we perform a two-tailed chi-squared test. In particular, the test 
statistic reported in Table 2 is defined as follows. Given the n Euler conditions expressed as 

1 = 𝐸𝐸�𝑀𝑀𝑡𝑡+1�1 + 𝑅𝑅𝑖𝑖,𝑡𝑡+1�|ℑ𝑡𝑡�,           i = 1, 2, …, n                        (20) 

a Wald-type test of the joint validity of the I conditions is: 

�
1

𝑇𝑇 − 1��𝜾𝜾𝐼𝐼 − 𝑀𝑀�𝑡𝑡+1ℳ (𝜾𝜾𝐼𝐼 + 𝑹𝑹𝑡𝑡+1)�
𝑇𝑇−1

𝑡𝑡=1

� ′𝑽𝑽�−1 �
1

𝑇𝑇 − 1��𝜾𝜾𝐼𝐼 − 𝑀𝑀�𝑡𝑡+1ℳ (𝜾𝜾𝐼𝐼 + 𝑹𝑹𝑡𝑡+1)�
𝑇𝑇−1

𝑡𝑡=1

� ,       (21) 

where 𝜾𝜾𝐼𝐼 is a n x 1 vector of ones and V is the covariance matrix of the pricing errors, i.e.,  

𝑽𝑽� =
1

𝑇𝑇 − 1�(𝜾𝜾𝐼𝐼 − 𝑀𝑀�𝑡𝑡+1ℳ (𝜾𝜾𝐼𝐼 + 𝑹𝑹𝑡𝑡+1))(𝜾𝜾𝐼𝐼 − 𝑀𝑀�𝑡𝑡+1ℳ (𝜾𝜾𝐼𝐼 + 𝑹𝑹𝑡𝑡+1))′
𝑇𝑇−1

𝑡𝑡=1

.                (22) 

Noticeably, under mild conditions of stationarity of both asset returns and the SDF and of existence 
of moments of the moment conditions, it turns out that  
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Observing the p-values for the test, reported in Table 2 together with the test statistic, we notice 
that the null of equality between observed and fitted values cannot be rejected for five alternative 
HMM models: the two-state, three- and five-factor full MSVAR models, the three-state, three- and 
five-factor full MSVAR models, and the four-state, five-factor MSVAR model.  

These results are interesting in several ways. First, we notice that in the single-state case, the 
null of no difference between predicted and observed returns is always rejected at any conventional 
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level of significance (the p-values are equal to zero). This signals that the use of a non-linear SDFs 
really makes the difference when it comes to pricing performance. Second, the models that were 
selected by the information criteria are both rejected when their pricing performance is considered. 
Indeed, the hypothesis of accurate pricing performance (no difference between observed and 
predicted returns) is rejected for both the three-state, three-factor block MSVAR and the four-state, 
three-factor block MSVAR models. More generally, as far as the pricing performance is concerned, 
the full MSVAR models are strongly preferred over their more parsimonious block MSVAR 
counterparts. In fact, a full VAR structure, where each pricing factor also depends on the lags of the 
test asset returns, appears to be required to accurately predict future asset returns. 

Because our empirical efforts are devoted to find an SDF that correctly prices a medium-sized 
cross-section of asset returns that includes commodities, it also seems natural to adopt Hansen-
Jagannathan’s (1997) distance measure to quantify (in the appropriate SDF mean-variance space) 
the distance between the candidate SDFs and what is required by our asset return data. In 
particular, HJ propose an in-sample measure of fit defined as a quadratic function of observed 
pricing errors (here, the n x 1 vector 𝜾𝜾𝐼𝐼 − 𝑀𝑀�𝑡𝑡+1ℳ (𝜾𝜾𝐼𝐼 + 𝑹𝑹𝑡𝑡+1) for t = 1, 2, …, T - 1) weighted by the 
inverse of the second moment matrix of gross asset returns, 𝑺𝑺𝑺𝑺 ≡ 𝐸𝐸[(𝜾𝜾𝐼𝐼 + 𝑹𝑹𝑡𝑡+1)(𝜾𝜾𝐼𝐼 + 𝑹𝑹𝑡𝑡+1)′], which 
is positive definite by construction:11 
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The parameter of each SDF model enter 𝐻𝐻𝐻𝐻ℳ through 𝑀𝑀�𝑡𝑡+1ℳ . Hansen and Jagannathan show that for 
a given set of parameters characterizing (24), 𝐻𝐻𝐻𝐻ℳ equals the maximum pricing error generated by 
the model. Obviously, lower values of 𝐻𝐻𝐻𝐻ℳ are then preferable. Such values are reported in the 
rightmost column of Table 2 and reveal that the minimal HJ distance in the SDF mean-variance 
space are achieved by two- and three-state HMM models. In particular, a three-factor, two-state full 
VAR(1) achieves a 𝐻𝐻𝐻𝐻ℳ value of 5.791. More generally, both three- and five-factor models with two 
and three regimes appear to minimize the distance from the SDF that the data imply. 
 For each of the models in Table 2 (i.e., as ℳ changes), we also test the null hypothesis that 
𝐻𝐻𝐻𝐻ℳ = 0. However, the distribution of 𝐻𝐻𝐻𝐻ℳ under the null fails to be standard because the weighting 
matrix that appears in (24) is not optimal in the sense of Hansen (1982). Therefore, the p-value of 
the null 𝐻𝐻𝐻𝐻ℳ = 0 has been computed using 10,000 simulations for a weighted sum of chi-squared 
distributions, exploiting Jagannathan and Wang’s (1996) finding that such a weighted sum 
represents the asymptotic distribution of (𝐻𝐻𝐻𝐻ℳ)2. The results of such a test are not reported in Table 
2 because all the corresponding p-values turned out to be essentially nil, an indication that even 
though some models may be more precise than others are, none of them could be characterized by 
insignificant overall violations of the set of Euler conditions on which our paper was based. This is 

11 Clearly, 𝑺𝑺𝑺𝑺 ≡ 𝐸𝐸[(𝜾𝜾𝐼𝐼 +𝑹𝑹𝑡𝑡+1)(𝜾𝜾𝐼𝐼 + 𝑹𝑹𝑡𝑡+1)′], must be estimated by some empirical, sample construct. In any 
event, such an estimator will differ from 𝑽𝑽� because based only on asset return data and not on pricing errors. 
The 10-factor model HJ distance statistic could not be computed because the number of factors exceeded the 
number of tests assets. 
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of course unsurprising in the light of the results in the literature that tend to report that empirical 
SDF based on macroeconomic variables have a hard time fitting the cross-section of asset returns. 

However, it may be also interesting to ask—given that all estimated SDFs appear to have 
been rejected—whether any models are at least superior, i.e., rejected with a statistically significant 
difference turning in their favor. Unfortunately, the distribution of 𝐻𝐻𝐻𝐻ℳ under the null hypothesis 
is not the same regardless of the model considered. Therefore, to make comparisons possible, we 
have selected the five models with the lowest HJ distance and applied the test proposed by Chen e 
Ludvingson (2009) and based on White’s (2000) “reality check” method. For each of the five models, 
labeled as i = 1, 2, 3, 4, 5, the null hypothesis is: 
                                                                 𝐻𝐻𝑜𝑜: max

𝑗𝑗=2,3,4,5
[(𝐻𝐻𝐻𝐻𝑖𝑖)2 − (𝐻𝐻𝐻𝐻𝑗𝑗)2] ≤ 0                                                   (25) 

In words, under the null, the modeled labeled as i = 1, 2, 3, 4, 5, has a smaller (maximum) pricing 

error vs. all other models. Because the alternative hypothesis is that max
𝑗𝑗=2,3,4,5

[(𝐻𝐻𝐻𝐻𝑖𝑖)2 − (𝐻𝐻𝐻𝐻𝑗𝑗)2] > 0, 

this is a one-sided test. The value of the test statistic for model i is simply: 

                                                                    𝑇𝑇𝑖𝑖 ≡ max
𝑗𝑗=2,3,4,5

√𝑇𝑇[(𝐻𝐻𝐻𝐻𝑖𝑖)2 − (𝐻𝐻𝐻𝐻𝑗𝑗)2]                                               (26) 

The p-value of the test is computed considering the quantile of the distribution of Ti simulated 
according to the reality check procedure with a block bootstrap. 
 
Table 4 – Reality Check Results 

 

Table 4 shows that the 3-factor, full VAR(1) HMM with two regimes provides a superior pricing 
accuracy in the SDF space: when this model is used as a benchmark, the test statistic is negative 
(−40.9) and the null that the corresponding HJ distance is lower than all other models in the Table, 
cannot be rejected with a very high p-value in excess of 95%. Interestingly, also in this case, an 
unrestricted full VAR(1) dynamics is required for an HMM SDF to yield accurate pricing.12 

Therefore a relatively simple, 3-factor, full VAR(1) HMM with two regimes is rejected in the 
HJ SDF space, but is at least the most accurate across all of our models. As already mentioned, this 
model has in fact the lowest possible pricing RMSE and the null hypothesis of correct pricing as 
expressed by a zero overall RMSE cannot be rejected by a chi-square test based on moment 
conditions and the covariance matrix of pricing errors. Table 5 shows the estimates for such a two-
regime model. Also in this case, to save space, we have omitted a large number of coefficients from 
the two 11x11 VAR(1), regime-specific matrices to focus only on key coefficients concerning the 

12 We have also used Chen and Ludvigson (2009)-style reality check methodology to test whether we can 
reject the null of a smaller HJ distance of two-, three-, and four-state HMM SDF models vs. their single regime 
counterparts, given a fixed choice of number of macroeconomic factors. In the cases of two- and three-state 
HMM SDFs, we report that the null of smaller HJ distance vs. the single-state case cannot be rejected. 
Interestingly, the opposite occurs in the case of the four-state block VAR model. This confirms that both in 
the pricing and in the SDF spaces, an unrestricted full VAR dynamic structure plays a key role. 

Model HJ-distance P-value H0: HJ = 0 T Reality check p-value
3 factors, 2 states, full VAR(1) 5.7915 0.0001 -40.937 0.9568
3 factors, 3 states, full VAR(1) 6.0004 0.0001 40.9368 0.8827
5 factors, 3 states, full VAR(1) 6.1350 0.0001 68.0698 0.8395
5 factors, 4 states, block Factor VAR(1) 6.6365 0.0000 174.4687 0.3889
5 factors, single state, full VAR(1) 6.6448 0.0000 176.297 0.3148
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factors and the dynamics of the SDF. In general, most reported conditional mean coefficients are 
statistically significant and vary considerably across the two regimes estimated. This also concerns 
the VAR structure. For instance, the first, business-cycle related factor 1 is much more serially 
correlated in the second state (coefficient of 0.95) than in the first state (0.52). 
 Proceeding first with an interpretation of the two regimes, Figure 2 shows that both Markov 
states are rather persistent, with the second able to single out crisis periods, such as the Summer 
1998 Asian flu crisis, the 2001-2002 Enron and WorldCom scandals, the 2008-2009 great financial 
crisis, a few short bouts of European sovereign jitters, for instance in the Fall of 2011. These 
impressions are confirmed by Table 5, where both regimes are characterized by “stayer” 
probabilities on the main diagonal of the estimated transition matrix well in excess of 0.5 (their 
implicit durations are in fact 15 and 3 months). Even though it less persistent, regime 2 is no way 
irrelevant, as its ergodic, long-run probability is 17%, which seems a sensible assessment of the 
frequency of crisis periods in any long sample of US data. A look at the estimated, regime-specific 
covariance matrices confirms that estimated variances in the second state are considerably higher 
(up to 7 times), which is consistent with a turbulent regime characterization. 

Finally, with reference to the estimated of the coefficients with which the SDF loads on the 
three macroeconomic factors, in Table 5, we note that although the sign of only one coefficient (on 
the third factor) switches across regimes, the absolute value of the coefficients is rather different 
across states. In particular, the overall level—as measured by the estimated intercept—of the SDF 
is higher under the crisis regime, which is sensible because during a crisis we do expect wealth to 
be lower, its certainty equivalent to be perceived as lower (due to increased risk), and hence 
marginal utility of future wealth to be higher. Moreover, the log-SDF loading (hence, the semi-
elasticity of the stochastic discount) is roughly three times more sensitive to business cycle 
conditions under the crisis regime, which is also to be expected. 
 

4.3 Matching Sample Moments with Estimated SDFs  

In this section, we assess to what extent a selection of competing SDFs are able to match the 
empirical mean, standard deviation, skewness, excess kurtosis, and pair-wise cross asset 
correlations, with special emphasis on commodities. Specifically, we check whether each model-
implied moment falls within the 90% confidence interval built around the sample estimate (i.e., 
whether it is lower than the 95% upper band and higher than the 5% lower band computed under 
standard assumptions). If this happens, we consider this sample moment to have been matched by 
a given SDF. The moments implied by an SDF are computed by Monte Carlo simulation, using 20,000 
trials: as such they can be taken to represent population moments implied by any given SDF. In 
particular, we compare three of the competing model specifications discussed in Sections 4.1 and 
4.2 and covered by Tables 2-5, namely, the four-state three-factor block MSVAR, which is the 
winning model according to the information criteria, the two-state, three-factor full MSVAR, the top 
performer in terms of pricing accuracy, and a benchmark single-state three-factor full VAR model.  

Table 6 reports sample and model-implied means, standard deviations, skewness, and 
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excess kurtosis coefficients of the returns on different asset classes. Implied values that fall within 
the 90% confidence interval have been boldfaced. As far as mean returns are concerned, no model 
clearly outperforms the others. While all SDFs match the mean return of the equity index, the four-
regime model does particularly well at matching the means of the commodity series. Moreover, all 
models fail to reproduce the sample mean of bond returns. 

Similar considerations apply to standard deviations, for which all the three models do match 
the volatility of all assets apart from bonds and precious metals. The situation is more 
heterogeneous for what concerns higher-order moments. The block MSVAR framework is quite 
weak at matching skewness, while both the two-state full MSVAR and the single-state SDFs can 
replicate four and five values out of eleven, respectively. Noticeably, the single-state model can 
generate the modest (close to zero) positive skewness of bonds, while the two-state model 
generates too much positive skewness. However, the two-state model outperforms its single-state 
counterpart as far as commodity series are concerned. Finally, as one would expect, both switching 
models are considerably better than the single-state SDF at yielding excess kurtosis, especially in 
the case of commodity returns. Indeed, while the single-state model matches the small and negative 
excess kurtosis of the bond, the two- and four-state models reproduce the positive excess kurtosis 
of all the commodity returns.  

The three SDF models seem to be equally good at reproducing cross-asset pair-wise 
correlations. Indeed, the single-state model matches 18 out of 28 cross-asset pair-wise correlations, 
while the four-state and the two-state models 17 and 19, respectively. Three plots in Appendix E 
graphically display where the model-implied correlations stand with respect to sample ones, 
focusing on the pair-wise correlations of commodities with traditional asset classes and among 
themselves, which are the most interesting sample moments in our analysis. Interestingly, the two-
state model clearly outperforms its single-state benchmark for what concerns the pair-wise 
correlations between commodities and the other asset classes, with a hit ratio of 88% (compared 
to the 69% of the single-state model). This is not surprising considering that the relationships of 
commodities with traditional asset classes has changed in the last decade with the so called 
“financialization” of commodities and only a Markov switching SDF can capture this structural shift.  

In conclusion, the two-state, three-factor full MSVAR model outperforms a simple single-state 
benchmark when it comes to estimate the moments of commodities and their correlations with the 
other asset classes. This supports previous findings in the literature. For example, Lombardi and 
Ravazzolo (2016) find that a bivariate Bayesian dynamic conditional correlation model, which can 
account for time variation in the correlation patterns, produces statistically more accurate density 
forecasts for equity and commodity returns, and gives large economic gains in an asset allocation 
exercise, relative to a benchmark random walk model. In addition, the model previously selected 
by the information criteria, namely the four-state three-factor block MSVAR, is outperformed by the 
two-regime three-factor full MSVAR. This is consistent with the better pricing performance of the 
latter already discussed in Section 4.2. 
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4.4 Comparisons with a Commodity Factor-Based Benchmark 

As a final robustness check, we have also estimated one SDF-version of a benchmark pricing factor 
model proposed by BGR (2014). They propose a linear factor model based on three well-known, 
commodity-specific factors: Average, Carry, and Momentum. The average factor is the excess return 
of a long position in all available commodity futures; the carry factor is the return on an equally-
weighted strategy that buys the five commodities that are most backwardated and shorts the ones 
that are most in contango at each point in time; the momentum factor is the return on an equally-
weighted portfolio that is long in the five commodities with the highest returns over the previous 
six months and short the ones with the lowest returns over the previous six months. In our paper, 
for obvious comparability goals, we work with a single-state, SDF-type implementation of BGR’s 
model in the sense that Average, Carry, and Momentum are used as the factors on which the SDF 
depends on. This strategy of trying to explain the cross-section of commodity returns using 
variables that capture the general conditions of the commodity market has recently become 
popular in a strand of the literature (see, e.g., Daskalaki, et al., 2011, 2014; Szymanowska, de Roon, 
Nijman and Goorbergh, 2014; Yang, 2013).13 

Empirically, the BGR’s SDF yields (unreported, but available upon request) maximum 
likelihood estimates that are weakly statistically significant and characterized by uniformly positive 
loadings, which is consistent with the marginal utility of future wealth increasing as Average, Carry, 
and Momentum increase. However, the loadings of the log-SDF on Momentum and especially Carry 
are not estimated with sufficient accuracy (their p-values are 0.13 and 0.71, respectively). Despite 
the low statistical significance of the estimated loadings, the pricing performance of BGR’s model is 
not completely amiss: for instance, the corresponding chi-square test for zero pricing errors 
delivers a 0.168 p-value. However, such a performance is dominated by all HMM factor-based 
models, regardless of the number of regimes specified. Moreover, also BGR is characterized by a 
relatively high and statistically significant HJ distance (13.20) that leads to a rejection of the model. 
Given that this had also occurred in the case of HMM models, we therefore proceed to use White’s 
(2000) “reality check” method to test the null hypothesis that [(𝐻𝐻𝐻𝐻𝐵𝐵𝐵𝐵𝐵𝐵)2 − (𝐻𝐻𝐻𝐻2 𝑅𝑅𝑅𝑅𝑅𝑅)2] ≤ 0, in words 
that a BGR-inspired SDF implies a a smaller (maximum) pricing error vs. two-state three-factor full 
VAR(1) model that had previously emerged as our “champion” of pricing performance. We find a 
one-sided test statistic T2REG-BGR = 2,336 that strongly rejects the null hypothesis of an inferior HJ 
distance by the BGR’s benchmark vs. the HMM two-state model, with a p-value of essentially zero. 

5. Conclusions 

In this paper we have investigated whether it is possible to find a SDF that jointly prices the cross-

13 Of course, resorting to such a commodity factor-based SDF poses some logical issues even though one the 
key points made by Bakshi et al. is that together, their three factors appear to also forecast economic growth, 
the returns of government bonds and of equities. Note that Bakshi et al.’s paper is framed in terms of linear 
factor/regression representations and not in terms of a structural SDF estimation exercise. However, as 
explained in Cochrane (2008), there is a clear one-to-one mapping between linear factor representations and 
log-linear SDFs. Tabulated statistics for the time series of the three factors are available upon request. Note 
that our analysis spans only half of the overall 1970-2011 sample employed by BGR in their paper. 
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section of eight portfolios of stocks, Treasuries, corporate bonds and commodities and replicates 
the first four empirical moments of (especially, correlations among) these assets. Importantly, 
besides being based on three through ten principal components estimated from a large set of 
macroeconomic indicators, our SDFs are further extended to include latent regime shifts governed 
by an ergodic and irreducible Markov chain. 
 We find that regime-switching models clearly outperform single-state ones both in term of 
statistical and pricing accuracy. However, while a four-state model is selected by standard 
information criteria, a two-state three-factor full VAR(1) model outperforms all others as far as the 
pricing accuracy is concerned. Finally, we notice that, although this model gives rather similar 
results to its single-state counterpart in terms of its ability to match sample moments, its Markov 
switching version outperforms the single-state model when the intra-commodity correlation are 
analyzed. This is not surprising because a literature has noticed that the relationships of 
commodities with traditional assets classes has changed over the last 15-20 years as a result of a so 
called “financialization” process, so that it is sensible that only a Markov switching SDF may be 
flexible enough to capture this structural shift. 
 Given our result that macro factor-based HMM models outperform an SDF implementation 
of BGR’s framework, only based on commodity-specific factors, it would be interesting to further 
explore the econometric nature of the segmentation of commodities and to assess whether there 
exist some joint choice of factors (both macroeconomic and commodity-related) able to price the 
cross-section of returns of all assets. However, we will leave this question for future research. 
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Table 1 

Summary Statistics (January 1989-December 2011) 

The following tables refer to all the series used in the parts of the paper based on the sample January 
31, 1989 - December 30, 2011. Panel A shows mean, median, standard deviation, skewness, excess 
kurtosis, and the p-value of the Jarque-Bera (JB) test. The JB statistic is used to test the hypothesis 
of normality of the series, hence a p-value lower than α% implies the rejection of the null hypothesis 
at α % confidence level. Panel B shows the correlations among the series. 
 

 

 

Mean Median Std. Dev. Skewness Excess Kurtosis JB p-value
Factor 1 0.0000 0.0080 0.4385 -1.6940 4.8482 0.0000
Factor 2 0.0000 0.0014 0.3080 -0.7455 4.2518 0.0000
Factor 3 0.0000 -0.0001 0.2568 0.6517 2.5557 0.0000
HP Factor 0.0036 0.0049 0.0442 -0.1246 1.0115 0.0019
Basis Factor 0.0098 0.0109 0.0448 -0.0093 1.3934 0.0000
Momentum Factor 0.0088 0.0091 0.0503 0.3528 3.3293 0.0000
Agricolture and Livestock -0.0002 0.0003 0.0428 -0.0876 1.5607 0.0000
Precious Metals 0.0030 -0.0024 0.0469 0.0980 1.2784 0.0001
Industrial Metals 0.0008 -0.0007 0.0606 -0.1039 1.4521 0.0000
Energy 0.0071 0.0086 0.0904 0.3851 1.5595 0.0000
10Y Treasury Bonds 0.0023 0.0020 0.0019 0.0016 -0.7515 0.0389
Aaa Corporate Bonds 0.0033 0.0031 0.0019 -0.0005 -0.7615 0.0356
Baa Corporate Bonds 0.0042 0.0039 0.0019 0.0104 -0.7375 0.0437
Value-Weighted Equity CRSP 0.0054 0.0110 0.0447 -0.6165 1.0217 0.0000

Panel B
Factor 1 Factor 2 Factor 3 AL PM IM EN Treasuries Aaa Bonds Baa Bonds VW CRSP

Factor 1 1.00 0.00 0.00 0.08 -0.05 0.19 0.10 -0.08 -0.08 -0.07 0.09
Factor 2 1.00 0.00 0.08 0.24 0.16 0.27 0.03 0.04 0.06 0.04
Factor 3 1.00 0.00 -0.09 0.14 -0.04 0.12 0.13 0.15 0.10
Agricolture and Livestock 1.00 0.29 0.31 0.16 0.12 0.12 0.13 0.22
Precious Metals 1.00 0.26 0.21 0.21 0.21 0.21 0.03
Industrial Metals 1.00 0.29 0.09 0.10 0.12 0.38
Energy 1.00 -0.01 0.00 0.01 0.09
10Y Treasury Bonds 1.00 1.00 1.00 -0.02
Aaa Corporate Bonds 1.00 1.00 -0.01
Baa Corporate Bonds 1.00 0.00
Value-Weighted Equity CRSP 1.00
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Table 2 

Model Selection 

In the table, SIC is the Bayes-Schwarz information criterion, AIC is the Akaike information criterion, and HQIC is the Hannan-Quinn information criterion. 
The Chi-squared test is a joint test applied to the Euler conditions (equation (2) in the text) of the null that they are simultaneously satisfied. We have 
boldfaced the best fitting model according to each of the information criteria and all models not rejected by the Chi-squared pricing test. HJ represents 
the Hansen-Jagannathan distance under the null of correct specification of the SDF. All models are specified with a VAR order of 1. 

  

Max Log-
Likelihood

Avg. Log-
Likelihood

No. 
Obs.

No. 
Parameters

Saturation 
ratio BIC AIC HQIC Pricing 

RMSE
Chi-squared 

test
p-

value
HJ 

distance

3 factors, single state, full VAR model 8056.37 2.66 3025 40 75.63 -5.22 -5.30 -5.27 0.0096 149.14 0.000 6.832
3 factors, single state, block Factor VAR 7964.23 2.63 3025 16 189.06 -5.22 -5.26 -5.24 0.0091 11,913 0.000 6.687
3 factors, single state, diagonal Factor VAR 7828.44 2.59 3025 10 302.50 -5.15 -5.17 -5.16 0.0092 9,392.8 0.000 6.687

5 factors, single state, full VAR model 7537.22 2.11 3575 76 47.04 -4.04 -4.17 -4.13 0.0090 215.92 0.000 6.645
5 factors, single state, block Factor VAR 7432.32 2.08 3575 36 99.31 -4.08 -4.14 -4.12 0.0092 10,932 0.000 6.691
5 factors, single state, diagonal Factor VAR 7187.82 2.01 3575 16 223.44 -3.98 -4.01 -4.00 0.0092 8801.2 0.000 6.687

3 factors, 2 states, full VAR model 8228.45 2.72 3025 82 36.89 -5.22 -5.39 -5.33 0.0054 7.72 0.461 5.791
3 factors, 2 states, block Factor VAR 8218.11 2.72 3025 34 88.97 -5.34 -5.41 -5.39 0.0093 1,937.4 0.000 6.718
3 factors, 2 states, diagonal Factor VAR 8080.99 2.67 3025 22 137.50 -5.28 -5.33 -5.31 0.0093 2,080.0 0.000 6.726

5 factors, 2 states, full VAR model 7866.04 2.20 3575 154 23.21 -4.05 -4.31 -4.22 0.0132 6.87 0.551 7.697
5 factors, 2 states, block Factor VAR 7720.26 2.16 3575 74 48.31 -4.15 -4.28 -4.23 0.0092 2,111.9 0.000 6.699
5 factors, 2 states, diagonal Factor VAR 7513.10 2.10 3575 34 105.15 -4.13 -4.18 -4.16 0.0091 2,454.9 0.000 6.670

3 factors, 3 states, full VAR model 8344.14 2.76 3025 126 24.01 -5.18 -5.43 -5.34 0.0075 4.03 0.854 6.000
3 factors, 3 states, block Factor VAR 8301.35 2.74 3025 54 56.02 -5.35 -5.45 -5.41 0.0086 2,663.5 0.000 6.778
10 factors, 3 states, block Factor VAR 6987.68 1.41 4950 133 37.22 -2.59 -2.77 -2.71 0.0094 1,474.6 0.000 NA
3 factors, 3 states, diagonal Factor VAR 8182.93 2.71 3025 36 84.03 -5.31 -5.39 -5.36 0.0092 2,857.3 0.000 6.712

5 factors, 3 states, full VAR model 7978.98 2.23 3575 234 15.28 -3.93 -4.33 -4.19 0.0092 4.50 0.809 6.135
5 factors, 3 states, block Factor VAR 7821.17 2.19 3575 114 31.36 -4.11 -4.31 -4.24 0.0093 1,918.9 0.000 6.784
5 factors, 3 states, diagonal Factor VAR 7609.888 2.13 3575 54 66.20 -4.13 -4.23 -4.19 0.0095 5,871.4 0.000 6.794

3 factors, 4 states, full VAR model 8006.54 2.65 3025 172 17.59 -4.84 -5.18 -5.06 0.0179 14.35 0.073 9.742
3 factors, 4 states, block Factor VAR 8376.91 2.77 3025 76 39.80 -5.34 -5.49 -5.43 0.0102 3,085.2 0.000 6.849
3 factors, 4 states, diagonal Factor VAR 7932.80 2.62 3025 52 58.17 -5.11 -5.21 -5.17 0.0099 3,231.6 0.000 6.926

5 factors, 4 states, full VAR model 7682.41 2.15 3575 268 13.34 -3.68 -4.15 -3.98 0.0110 7.52 0.482 7.076
5 factors, 4 states, block Factor VAR 7593.78 2.12 3575 108 33.10 -4.00 -4.19 -4.12 0.0090 1,409.6 0.000 6.636
5 factors, 4 states, diagonal Factor VAR 7433.85 2.08 3575 68 52.57 -4.00 -4.12 -4.08 0.0099 2,444.9 0.000 6.930
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Table 3 

Model Estimates- Three-Factor Block VAR(1), Four Regimes 

 
Note: Significant conditional mean coefficients are boldfaced.  

Coefficient Std. Error t-Statistic p-value Coefficient Std. Error t-Statistic p-value

[F1/F1] Coeff. 0.4220 0.028 15.327 0.000 0.3501 0.044 7.911 0.000
[F1/F2] Coeff. -0.0662 0.027 -2.437 0.015 0.6972 0.0544 0.0709 0.0840 0.0757 0.087 0.869 0.385
[F1/F3] Coeff. -0.2126 0.035 -5.994 0.000 0.1715 0.8983 0.0000 0.0000 -0.5066 0.055 -9.258 0.000
F1: Intercept -1.2489 0.136 -9.186 0.000 0.1312 0.0238 0.8002 0.2880 1.3299 0.157 8.455 0.000
[F2/F1] Coeff. 0.0049 0.035 0.139 0.889 0.0002 0.0235 0.1288 0.6280 -0.0747 0.021 -3.485 0.000
[F2/F2] Coeff. -0.5612 0.039 -14.431 0.000 -0.1975 0.043 -4.632 0.000
[F2/F3] Coeff. 0.0369 0.049 0.753 0.451 Regime 1: -0.0484 0.027 -1.814 0.070
F2: Intercept -0.4996 0.127 -3.946 0.000 Regime 2: 0.2989 0.073 4.083 0.000
[F3/F1] Coeff. -0.3382 0.023 -14.483 0.000 Regime 3: -0.2523 0.027 -9.518 0.000
[F3/F2] Coeff. -0.1055 0.024 -4.319 0.000 Regime 4: -0.0360 0.049 -0.727 0.467
[F3/F3] Coeff. 0.3997 0.031 12.778 0.000 0.0620 0.032 1.962 0.050
F3: Intercept -0.5977 0.101 -5.894 0.000 Regime 1: 0.4463 0.110 4.044 0.000
SDF: Loading on F1 -0.0014 0.0001 -26.265 0.000 Regime 2: 0.0002 0.0000 4.752 0.000
SDF: Loading on F2 0.0006 0.0001 11.099 0.000 Regime 3: -0.0016 0.0001 -17.691 0.000
SDF: Loading on F3 -0.0015 0.0001 -20.178 0.000 Regime 4: 0.0014 0.0001 21.009 0.000
SDF: Intercept -0.0014 0.0003 -4.774 0.000 -0.0029 0.0002 -12.226 0.000

Coefficient Std. Error t-Statistic p-value Coefficient Std. Error t-Statistic p-value

[F1/F1] Coeff. 0.6864 0.041 16.816 0.000 0.8857 0.022 39.424 0.000
[F1/F2] Coeff. -0.0561 0.051 -1.102 0.271 0.2592 0.027 9.597 0.000
[F1/F3] Coeff. -0.2928 0.051 -5.768 0.000 -0.1153 0.044 -2.614 0.009
F1: Intercept 0.4702 0.128 3.673 0.000 -0.5730 0.191 -3.008 0.003
[F2/F1] Coeff. -0.1189 0.026 -4.566 0.000 -0.1162 0.040 -2.887 0.004
[F2/F2] Coeff. -0.0373 0.024 -1.533 0.125 -0.1366 0.041 -3.365 0.001
[F2/F3] Coeff. -0.0132 0.025 -0.539 0.590 0.0192 0.066 0.291 0.771
F2: Intercept 0.3016 0.124 2.437 0.015 -1.1753 0.358 -3.279 0.001
[F3/F1] Coeff. -0.4456 0.033 -13.590 0.000 -0.2054 0.022 -9.202 0.000
[F3/F2] Coeff. 0.0056 0.040 0.139 0.889 0.1718 0.026 6.607 0.000
[F3/F3] Coeff. -0.0525 0.040 -1.312 0.190 0.3054 0.042 7.195 0.000
F3: Intercept 0.4066 0.109 3.741 0.000 -0.9587 0.191 -5.013 0.000
SDF: Loading on F1 -0.0001 0.0001 -0.842 0.400 -0.0011 0.0001 -10.943 0.000
SDF: Loading on F2 -0.0027 0.0001 -42.013 0.000 -0.0024 0.0001 -41.559 0.000
SDF: Loading on F3 0.0010 0.0001 13.303 0.000 -0.0025 0.0001 -21.225 0.000
SDF: Intercept -0.0099 0.0004 -24.872 0.000 -0.0074 0.0009 -7.877 0.000

Factor VAR Coefficients and SDF Loadings

0.306
0.366
0.146

Regime 3 Regime 4

Regime 1 Regime 2

Factor VAR Coefficients, SDF Loadings and Estimated Transition Matrix
Transition Matrix

Implied Durations

Ergodic Probs.:

3.30
9.84
1.15
2.69

0.182
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Table 3 (continued) 

Model Estimates- Three-Factor Block VAR(1), Four Regimes 

 
Note: Significant conditional mean coefficients are boldfaced.  

Factor 1 Factor 2 Factor 3 Agr. & Livestock Precious Industrials Energy 10Y Treasuries Aaa Corporate Baa Corporate VW Equity CRSP
Factor 1 6.456|5.951 2.1495 2.5539 -0.0098 -0.0097 -0.0100 -0.0221 -0.0048 -0.0071 0.0429 0.0051
Factor 2 -0.59925 6.259|1.094 1.8393 -0.0006 -0.0006 -0.0011 -0.0277 -0.0263 0.0056 -0.0213 -0.0049
Factor 3 2.69437 -0.3575 3.363|3.002 -0.0059 -0.0057 -0.0062 -0.0022 -0.0125 -0.0018 0.0259 -0.0008
Agricolture & Livestock 0.00650 -0.0023 0.00567 0.00003|0.00001 0.00003 0.00002 0.00002 0.00001 0.00000 -0.00011 -0.00002
Precious Metals 0.00642 -0.0023 0.00560 0.00001 0.00003|0.00001 0.00002 0.00003 0.00000 -0.00001 -0.00011 -0.00001
Industrial Metals 0.00649 -0.0023 0.00569 0.00001 0.00001 0.00002|0.00002 0.00002 0.00001 0.00001 -0.00010 -0.00003
Energy -0.01368 0.0005 -0.00146 -0.00001 0.00000 -0.00002 0.0020|0.0015 -0.00016 -0.00032 0.00026 -0.00136
10Y Treasury Bonds 0.00992 -0.0044 0.00116 0.00001 0.00001 0.00002 0.00008 0.00054|0.0013 0.00007 -0.00025 -0.00033
Aaa Corporate Bonds -0.01413 0.0007 0.00175 0.00000 0.00000 0.00001 -0.00009 0.00005 0.0010|0.0011 -0.00036 0.00079
Baa Corporate Bonds 0.01123 -0.0002 0.00768 0.00002 0.00002 0.00002 -0.00002 0.00018 0.00039 0.0043|0.0014 0.00081
VW Equity CRSP -0.00630 0.0119 -0.02114 -0.00007 -0.00006 -0.00008 0.00017 0.00018 -0.00020 -0.00003 0.01142|0.0063

Factor 1 Factor 2 Factor 3 Agr. & Livestock Precious Industrials Energy 10Y Treasuries Aaa Corporate Baa Corporate Baa Corporate
Factor 1 4.733|9.577 1.41151 1.13496 -0.00245 -0.00244 -0.00241 0.00116 0.00547 0.00403 0.00842 -0.00349
Factor 2 -4.32624 5.874|38.56 -1.14499 -0.01730 -0.01729 -0.01732 -0.02381 -0.00111 0.01706 0.00362 0.05725
Factor 3 7.19695 -2.44773 3.564|9.660 0.00721 0.00721 0.00719 0.01139 0.00378 -0.00863 0.00042 -0.03138
Agricolture & Livestock -0.01906 -0.08629 -0.02670 0.00009|0.00034 0.00008 0.00009 0.00008 0.00002 -0.00006 0.00001 -0.00026
Precious Metals -0.01884 -0.08610 -0.02673 0.00034 0.00008|0.00035 0.00009 0.00008 0.00002 -0.00006 0.00001 -0.00025
Industrial Metals -0.01895 -0.08652 -0.02669 0.00034 0.00034 0.00010|0.00033 0.00008 0.00002 -0.00006 0.00001 -0.00028
Energy -0.01291 -0.04177 0.01790 -0.00004 -0.00004 -0.00003 0.0018|0.0032 0.00054 0.00022 0.00128 -0.00008
10Y Treasury Bonds -0.02481 -0.02036 0.00318 0.00002 0.00002 0.00002 0.00126 0.0017|0.0046 0.00017 0.00063 -0.00045
Aaa Corporate Bonds -0.06913 0.06665 -0.06850 0.00014 0.00016 0.00012 0.00002 0.00279 0.0021|0.0058 0.00046 0.00070
Baa Corporate Bonds 0.03823 0.05599 0.04579 -0.00046 -0.00044 -0.00046 0.00262 0.00288 0.00243 0.0028|0.0081 0.00091
VW Equity CRSP -0.02005 0.20483 0.03212 -0.00080 -0.00081 -0.00080 0.00237 0.00308 0.00156 0.00483 0.0061|0.0093

Residual Covariance Matrix of factors and test assets
(Regime 1 above; Regime 2 below)

(Regime 3 above; Regime 4 below)

25 



Table 5 

Model Estimates- Three-Factor Full VAR(1), Two Regimes 

 
 

 
     Note: Significant conditional mean coefficients are boldfaced.  

Coefficient Std. Error t-Statistic p-value Coefficient Std. Error t-Statistic p-value

[F1/F1] Coeff. 0.5178 0.044 11.757 0.000 0.9524 0.029 33.272 0.000
[F1/F2] Coeff. -0.0093 0.068 -0.137 0.891 0.3173 0.030 10.478 0.000
[F1/F3] Coeff. -0.4335 0.062 -7.046 0.000 Transition Matrix -0.3387 0.050 -6.781 0.000
F1: Intercept -2.3291 0.838 -2.779 0.005 0.9328 0.3265 -2.0790 0.900 -2.309 0.021
[F2/F1] Coeff. -0.0871 0.026 -3.384 0.001 0.0672 0.6735 -0.3484 0.037 -9.494 0.000
[F2/F2] Coeff. -0.2239 0.036 -6.270 0.000 -0.3094 0.036 -8.505 0.000
[F2/F3] Coeff. 0.0767 0.032 2.381 0.017 Implied Durations 0.1776 0.060 2.983 0.003
F2: Intercept -0.8196 0.431 -1.901 0.057 Regime 1: 14.87 1.3048 1.074 1.215 0.224
[F3/F1] Coeff. -0.3077 0.033 -9.253 0.000 Regime 2: 3.06 -0.1368 0.029 -4.707 0.000
[F3/F2] Coeff. 0.0049 0.051 0.095 0.924 0.3051 0.030 10.287 0.000
[F3/F3] Coeff. 0.1083 0.046 2.342 0.019 0.3462 0.049 7.108 0.000
F3: Intercept -1.7211 0.630 -2.734 0.006 Ergodic Probs.: 5.5673 0.878 6.338 0.000
SDF: Loading on F1 -0.0002 0.000 -2.412 0.016 Regime 1: 0.829 -0.0006 0.0001 -5.753 0.000
SDF: Loading on F2 -0.0021 0.000 -17.229 0.000 Regime 2: 0.171 -0.0015 0.0001 -17.103 0.000
SDF: Loading on F3 0.0008 0.000 6.245 0.000 -0.0020 0.0001 -15.773 0.000
SDF: Intercept -0.0049 0.000 -14.864 0.000 -0.0006 0.0009 -0.681 0.496

Regime 2

Factor VAR Coefficients, SDF Loadings and Estimated Transition Matrix

Regime 1

Factor 1 Factor 2 Factor 3 Agr. & Livestock Precious Industrials Energy 10Y Treasuries Aaa Corporate Baa Corporate VW Equity CRSP
Factor 1 5.134|8.322 0.5982 2.1685 -0.0008 -0.0007 -0.0008 -0.0009 0.0070 -0.0055 0.0167 -0.0073
Factor 2 -2.07911 2.798|19.232 0.0988 -0.0069 -0.0069 -0.0069 -0.0038 -0.0063 0.0045 0.0077 0.0252
Factor 3 4.97309 -1.2470 3.017|9.465 0.0018 0.0019 0.0018 0.0022 -0.0044 -0.0051 0.0052 -0.0192
Agricolture & Livestock -0.01494 -0.0254 -0.02358 0.00003|0.00019 0.00002 0.00003 0.00002 0.00003 0.00000 0.00000 -0.00012
Precious Metals -0.01476 -0.0250 -0.02345 0.00020 0.00002|0.00020 0.00003 0.00002 0.00003 0.00000 0.00000 -0.00011
Industrial Metals -0.01483 -0.0260 -0.02395 0.00019 0.00019 0.00003|0.00018 0.00001 0.00004 0.00001 0.00001 -0.00014
Energy -0.05301 -0.0717 0.03395 -0.00007 -0.00007 -0.00006 0.0015|0.0041 0.00014 -0.00005 0.00048 -0.00023
10Y Treasury Bonds -0.04994 0.0077 -0.00821 0.00001 0.00001 0.00001 0.00157 0.0014|0.0040 0.00014 0.00029 -0.00026
Aaa Corporate Bonds -0.05562 0.1264 -0.06096 0.00015 0.00016 0.00014 0.00036 0.00259 0.0016|0.0051 0.00051 0.00045
Baa Corporate Bonds 0.01720 -0.0562 0.03608 -0.00028 -0.00025 -0.00028 0.00300 0.00278 0.00131 0.0028|0.0070 0.00067
VW Equity CRSP -0.03731 0.0440 -0.00052 -0.00057 -0.00060 -0.00055 0.00192 0.00332 0.00160 0.00406 0.0076|0.0089

Residual Covariance Matrix of factors and test assets
(Regime 1 above; Regime 2 below)
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Table 6 
Observed and Implied Moments- Comparing Different Models 

The table reports the observed and the model-implied means, standard deviation, skewness, and 
excess kurtosis of different asset class returns. Implied values that have been boldfaced and 
underlined indicate that the model-implied moment falls within the 90% confidence interval 
formed around the corresponding sample moment. 

  

Lower 
bound 5%

Sample 
observed

Upper 
bound 95%

Single-regime, 3 
Factors, Full VAR(1)

Two-regime, 3 
Factors, Full VAR(1)

Four-regime, 3 
Factors, Block VAR(1)

Factor 1 -0.4355 0.0000 0.4355 -7.6183 -1.3904 0.5493
Factor 2 -0.3059 0.0000 0.3059 1.3638 0.0825 -0.0874
Factor 3 -0.1040 0.0000 0.1040 2.6199 1.1234 -0.2028
Aaa Corp. 0.0021 0.0023 0.0025 0.0051 0.0083 0.0046
Baa Corp. 0.0031 0.0033 0.0035 0.0051 0.0083 0.0046
10Y Treasuries 0.0040 0.0042 0.0044 0.0051 0.0083 0.0046
VW CRSP Equity 0.0009 0.0054 0.0098 0.0044 0.0095 0.0058

Agricolture & Livestock -0.0045 -0.0002 0.0040 0.0041 0.0091 0.0053

Precious Metals -0.0038 0.0030 0.0098 0.0039 0.0092 0.0055
Industrial Metals -0.0052 0.0008 0.0068 0.0036 0.0102 0.0064
Energy -0.0019 0.0071 0.0161 0.0011 0.0121 0.0083

Factor 1 4.0766 4.3852 4.6937 4.9518 4.5825 3.6785
Factor 2 2.8634 3.0801 3.2968 3.0230 5.8184 3.1802
Factor 3 0.9735 1.0471 1.1208 2.7631 5.9967 2.5256
Aaa Corp. 0.0018 0.0019 0.0021 0.0028 0.0093 0.0064
Baa Corp. 0.0018 0.0019 0.0021 0.0027 0.0092 0.0062
10Y Treasuries 0.0018 0.0019 0.0021 0.0033 0.0095 0.0066
VW CRSP Equity 0.0416 0.0447 0.0479 0.0447 0.0447 0.0443

Agricolture & Livestock 0.0398 0.0428 0.0458 0.0428 0.0434 0.0429

Precious Metals 0.0636 0.0684 0.0732 0.0467 0.0479 0.0471
Industrial Metals 0.0563 0.0606 0.0648 0.0602 0.0601 0.0598
Energy 0.0841 0.0904 0.0968 0.0903 0.0892 0.0893

Factor 1 -1.9452 -1.7033 -1.4613 0.0770 -0.1211 -0.2312
Factor 2 -0.9915 -0.7495 -0.5076 -0.0023 -1.5819 -0.4689
Factor 3 1.6964 1.9383 2.1803 -0.0086 2.1427 -0.1774
Aaa Corp. -0.2404 0.0016 0.2436 0.0067 1.5304 0.5880
Baa Corp. -0.2425 -0.0005 0.2414 0.0092 1.6212 0.2759
10Y Treasuries -0.2315 0.0105 0.2524 0.0048 1.3824 0.8507
VW CRSP Equity -0.8619 -0.6199 -0.3779 -0.0065 0.1041 -0.0387

Agricolture & Livestock -0.3300 -0.0880 0.1539 0.0070 0.1351 0.0329

Precious Metals 0.0926 0.3346 0.5765 0.0072 0.1350 0.0438
Industrial Metals -0.3465 -0.1045 0.1375 -0.0078 0.0727 -0.0280
Energy 0.1453 0.3872 0.6292 0.0011 0.0111 -0.0179

Factor 1 4.4274 4.9593 5.4912 1.7618 5.0973 3.3287
Factor 2 3.8200 4.3519 4.8838 1.5328 15.7805 4.5131
Factor 3 46.2694 46.8013 47.3331 18.5047 9.3663 28.5483
Aaa Corp. -1.2751 -0.7432 -0.2113 -0.5312 3.1026 -0.0128
Baa Corp. -1.2853 -0.7534 -0.2215 -0.5324 3.4447 -0.1128
10Y Treasuries -1.2608 -0.7289 -0.1971 -0.5226 2.5976 0.1031
VW CRSP Equity 0.5307 1.0625 1.5944 0.2034 1.1319 0.9294

Agricolture & Livestock 1.0796 1.6115 2.1433 0.4289 1.5492 1.6788

Precious Metals 2.4155 2.9474 3.4793 0.9636 3.4047 2.5107
Industrial Metals 0.9689 1.5008 2.0327 0.3857 1.3416 1.6031
Energy 1.0783 1.6101 2.1420 0.4358 1.1673 1.2445
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Table 7 
Observed and Implied Correlations- Comparing Different Models 

The table reports the observed and the model-implied pairwise correlations for different asset class returns. Implied values that have been boldfaced and 
underlined indicate that the model-implied correlation falls within the 90% confidence interval formed around the corresponding sample moment. 

 

  

Lower 
bound 5%

Sample 
observed

Upper bound 
95%

Single-regime, 3 
Factors, Full VAR(1)

Two-regime, 3 
Factors, Full VAR(1)

Four-regime, 3 Factors, 
Block VAR(1)

Agric. & Livestock - Aaa Corp. 0.0233 0.1223 0.2212 0.1252 0.1946 0.0670
Agric. & Livestock - Baa Corp. 0.0370 0.1357 0.2345 0.1168 0.1914 0.0600
Agric. & Livestock - Treasuries 0.0080 0.1071 0.2062 0.1240 0.1971 0.0731
Agric. & Livestock - VW CRSP Equity 0.1236 0.2209 0.3181 0.2170 0.2231 0.2095
Agric. & Livestock - Precious Metals 0.1969 0.2923 0.3876 0.2905 0.3137 0.2808
Agric. & Livestock - Industrial Metals 0.0605 0.1589 0.2573 0.3018 0.3024 0.2984
Agric. & Livestock - Energy 0.2108 0.3057 0.4006 0.1476 0.1273 0.1319

Precious Metals - Aaa Corp. 0.0943 0.1921 0.2899 0.1211 0.2397 0.0884
Precious Metals - Baa Corp. 0.0984 0.1961 0.2938 0.1333 0.2426 0.0915
Precious Metals - Treasuries 0.1001 0.1978 0.2955 0.1085 0.2373 0.0877
Precious Metals - VW CRSP Equity -0.0735 0.0261 0.1258 0.0254 0.0477 0.0203
Precious Metals - Industrial Metals 0.1136 0.2111 0.3085 0.2518 0.2632 0.2538
Precious Metals - Energy 0.1610 0.2573 0.3536 0.2058 0.1926 0.1951

Industrial Metals - Aaa Corp. -0.1106 -0.0109 0.0887 0.0010 0.0558 0.0165
Industrial Metals - Baa Corp. -0.0905 0.0092 0.1089 0.0192 0.0609 0.0231
Industrial Metals - Treasuries -0.1268 -0.0272 0.0724 0.0072 0.0571 0.0191
Industrial Metals - VW CRSP Equity -0.0094 0.0899 0.1891 0.3747 0.1693 0.3748
Industrial Metals - Energy 0.1913 0.2868 0.3823 0.2802 0.2615 0.2726

Industrial Metals - Aaa Corp. -0.0077 0.0916 0.1908 -0.0841 -0.0681 -0.0938
Industrial Metals - Baa Corp. 0.0268 0.1257 0.2246 -0.0500 -0.0773 -0.0806
Industrial Metals - Treasuries -0.0113 0.0880 0.1873 -0.1036 -0.0098 -0.0106
Industrial Metals - VW CRSP Equity 0.2882 0.3804 0.4726 0.0900 0.0647 0.0821

Energy

Agricoltural Commodities & Livestock

Precious Metals

Industrial Metals

Lower 
bound 5%

Sample 
observed

Upper 
bound 95%

Single-regime, 3 
Factors, Full VAR(1)

Two-regime, 3 Factors, 
Full VAR(1)

Four-regime, 3 
Factors, Block VAR(1)

Aaa Corp. - Baa Corp. 0.9645 0.9828 1.0012 0.9427 0.9946 0.9890
Aaa Corp. - Treasuries 0.9784 0.9914 1.0045 0.9563 0.9940 0.9883
Aaa Corp. - VW CRSP Equity -0.1113 -0.0116 0.0880 0.0099 0.1025 0.0157

Aaa Corp. - Treasuries 0.9627 0.9817 1.0007 0.8184 0.9789 0.9578
Aaa Corp. - VW CRSP Equity -0.0825 0.0172 0.1168 0.0453 0.1133 0.0292

Aaa Corp. - VW CRSP Equity -0.1071 -0.0075 0.0922 0.2170 0.0096 0.0091

Aaa Corporate Bonds

Baa Corporate Bonds

10-Year Treasury Bonds

28 



Figure 1 

Smoothed State Probabilities from Three-Factor Block VAR(1), Four Regimes 
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Figure 2 

Smoothed State Probabilities from Three-Factor Block VAR(1), Two Regimes 
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