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Abstract
We provide both an axiomatic and a neuropsychological characterization of the de-

pendence of choice probabilities on time in the softmax (or Multinomial Logit Process)
form

pt (a;A) =
e�(t)u(a)P
b2A e

�(t)u(b)
(MLP)

where: pt (a;A) is the probability that alternative a is selected from the set A of feasible
alternatives if t is the time available to decide, u is a utility function on the set of all
alternatives, and � is an accuracy parameter on a set of time points.
MLP is the most widely used model of preference discovery in all �elds of decision mak-

ing, from Quantal Response Equilibrium to Discrete Choice Analysis, from Psychophysics
and Neuroscience to Combinatorial Optimization. Our axiomatic characterization of soft-
max permits to empirically test its descriptive validity and to better understand its concep-
tual underpinnings as a theory of agents�rationality. Our neuropsychological foundation
provides a computational model that may explain softmax emergence in human behav-
ior and that naturally extends to multialternative choice the classical Di¤usion Model
paradigm of binary choice. These complementary approaches provide a complete per-
spective on softmaximization as a model of preference discovery, both in terms of internal
(neuropsychological) causes and external (behavioral) e¤ects.

Keywords: Discrete Choice Analysis, Drift Di¤usion Model, Luce Model, Metropolis Al-
gorithm, Multinomial Logit Model, Quantal Response Equilibrium
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1 Introduction

Both human and machine decisions must be often made under external time constraints (dead-
lines). Introspection and empirical evidence agree that time scarcity leads to mistakes, even
when the agent�s objectives are clearly de�ned.
In this paper, we provide both an axiomatic and a neuropsychological characterization

of the dependence of choice probabilities on time in the softmax (or Multinomial Logit Process)
form

pt (a;A) =
e�(t)u(a)P
b2A e

�(t)u(b)
(MLP)

where:

� pt (a;A) is the probability that alternative a is selected from the set A of feasible alter-
natives if t is the time available to decide,1

� u : X ! R is a utility function on the set X of all alternatives,

� � : T ! (0;1) is an accuracy parameter on a set T of time points.

For each �xed time t, our theory coincides with the one of Luce (1959), that is,

pt (a;A) =
vt (a)P
b2A vt (b)

where vt is a function from X to (0;1). Our axiomatic contribution consists in characteriz-
ing, in terms of observables, the time dynamics of the functions vt that corresponds to MLP.
Speci�cally, by observing choice frequencies, we are able to establish whether there exist a
time-independent utility u and a time-dependent accuracy parameter � such that

vt (x) = e
�(t)u(x) 8 (x; t) 2 X � T

and, if so, to identify them. Moreover, for T = (0;1) we show under which conditions � is
increasing and bijective. In this case, when the agent has no time to decide, all alternatives
become equiprobable

lim
t!0

pt (a;A) =
1

jAj 8a 2 A

and choice is completely random. In contrast, longer times allow for greater di¤erences in the
selection probability for alternatives that di¤er in their utilities until, without time pressure,
only the utility maximizing ones survive

lim
t!1

pt (a;A) =

8><>:
1

jargmaxA uj
if a 2 argmaxA u

0 else

and so choice is perfectly rational.

1Or the experience level of the agent, see below.
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On the other hand, for each pair fa; bg of alternatives, our neuro-computational model
delivers the same selection probabilities as the (unbiased) Drift Di¤usion Model (DDM) of
Ratcli¤ (1978). Indeed,

pt (a; fa; bg) =
e�(t)u(a)

e�(t)u(a) + e�(t)u(b)

is the probability with which the Brownian motion Za;b (�) = [u (a)� u (b)] �+
p
2W (�) reaches

the decision threshold � (t) before reaching the dual threshold �� (t).2 Our neuropsycholog-
ical contribution consists in presenting a testable and easy to simulate computational model
that extends the DDM to multialternative choice tasks. Our approach builds on the premise
that multialternative choice procedures are composed primarily of sequential pairwise compar-
isons, in which actual evaluative processing takes place, and that agents�exploration strategies
are based on the similarity and proximity of available alternatives (Russo and Rosen, 1975, and
Reutskaja, Nagel, Camerer, and Rangel, 2011). Speci�cally, we show that combining Markov-
ian exploration à la Metropolis of menu A and DDM pairwise comparison of its alternatives
leads to selection probabilities that are described by MLP. Moreover, the fact that � (t) is the
decision threshold of the DDM con�rms, from a completely di¤erent perspective relative to the
axiomatic one, its interpretation in terms of accuracy.

As we further discuss below, softmax is the most widely used model of preference discovery
in all �elds of decision making, from Quantal Response Equilibrium to Discrete Choice Analysis,
from Psychophysics and Neuroscience to Combinatorial Optimization. Our axiomatic charac-
terization of MLP permits to empirically test its descriptive validity and to better understand
its conceptual underpinnings as a theory of agents�rationality. Our neuropsychological founda-
tion provides a computational model that may explain softmax emergence in human behavior
and that naturally extends to multialternative choice the classical Di¤usion Model paradigm of
binary choice. These complementary approaches provide a complete perspective on softmax-
imization as a model of preference discovery, both in terms of internal (neuropsychological)
causes and external (behavioral) e¤ects.

1.1 More on softmax and on our contribution

1.1.1 Discovered Preference Hypothesis and Quantal Response Equilibrium

On the theoretical side, softmax can be regarded as a formalization of the Discovered Prefer-
ence Hypothesis (DPH) outlined in Plott (1996). According to the DPH, agents acquire an
understanding of how their basic needs are satis�ed by the di¤erent alternatives in the choice
environment through a process of re�ection and practice. A process which, in the long run,
leads to optimizing behavior. In our model, both re�ection and practice are synthesized by the
passage of time. This is best seen by considering the two aspects separately:

� If t represents the time limit within which an alternative a must be chosen from a feasible
set A, then discovery occurs by re�ection only.

2In the DDM, Za;b (�) represents, at each � in (0;1), the net accumulated evidence in support of alternative
a against alternative b, �Za;b (�) = Zb;a (�) the net accumulated evidence in support of b against a, and the
�rst alternative supported by at least � (t) evidence is chosen. See, e.g., Bogacz et al. (2006).
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� If t represents the number of times the agent has been facing choice problem A and a is
an action to be taken, then discovery mainly occurs by practice. In this case, the fact
that � is increasing captures the dynamics of exploration in earlier decision stages and
exploitation in later ones.

MLP is the form that the DPH takes in the logit speci�cation of Quantal Response Equi-
librium (McKelvey and Palfrey, 1995). In this case, t is the experience level of the player, that
is, the number of times he played the game,3 u (a) is the expected payo¤ of action a, and �
captures the player�s degree of rationality. From the original data analysis of McKelvey and
Palfrey (1995),4 to the recent Agranov, Caplin, and Tergiman (2015), evidence seems to suggest
that, for sophisticated players, � increases as time passes and the decision making environment
is better understood.5

Our axiomatic and neuropsychological characterizations of softmax can thus be seen as two
alternative foundations of Quantal Response Equilibrium theory.

1.1.2 Discrete Choice Analysis and Multinomial Logit Model

On the empirical side,6 the most widely used model of Discrete Choice Analysis is the Multino-
mial Logit Model

M =

�
e�u(a)P
b2A e

�u(b)
: a 2 A

�
�2(0;1)

(MNL)

This model is popular because for each � 2 (0;1), called scale parameter, we have

e�u(a)P
b2A e

�u(b)
= Pr

n
u (a) +

�a
�
> u (b) +

�b
�

for all b 2 A n fag
o

(MLF)

where f�xgx2X is any random �eld of independent and identically distributed errors with type
I extreme value distribution.7 That is, MLF describes the probability of choosing a from A by
an agent who is maximizing the random utility

~u� (x) = u (x) +
�x
�

with systematic component u (x) and disturbance �x=�. In this case, the variance of distur-
bance is independent of the alternative x and inversely proportional to �2, so that it vanishes
as � diverges.8 In discrete choice experiments comprising a panel of repeated choice tasks,
the estimation of di¤erent values of � in early, middle, and late phases of the experiment is
used to reveal preference learning (decreasing variance �increasing �) and fatigue (increasing
variance �decreasing �).9 In the deadlined-choice perspective of this paper, MLF shows that

3Our use of the pronoun �he�is completely nature-neutral, our agents might be algorithms.
4See also the discussion of Plott (1996) of the Centipede Game experiment of McKelvey and Palfrey (1992).
5Interestingly, in Agranov, Caplin, and Tergiman (2015), t is not the experience level but the time the player

had to contemplate the altenatives in A before choosing.
6See Ben-Akiva and Lerman (1985), Louviere, Hensher, and Swait (2000), and Train (2009).
7Pr f�x � "g = exp (�e�"�
) for all x 2 X, where 
 is the Euler-Mascheroni constant (see McFadden, 1973).
8Speci�cally, Var [~u� (x)] = Var

�
��1�x

�
= �2=6�2, also notice that u (x) = E [~u� (x)], for all x 2 X.

9See Savage and Waldman (2008) and Campbell, Boeri, Doherty, and Hutchinson (2015).
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a Multinomial Logit Process describes an agent who is trying to maximize u over A, but �
because of time scarcity �makes mistakes in evaluating the utility of the various alternatives,
with standard deviation which is inversely proportional to � (t).
Our axiomatic characterization of the Multinomial Logit Model allows to test for model

misspeci�cation. Moreover, we also provide simple techniques to directly obtain parameters
from data (see Proposition 9).

1.1.3 Psychophysics and Neuroscience

In discrimination tasks where pairs A = fa; bg of alternatives are compared, MNL is called
�logistic psychometric function family� and is the most used parameterization of response
probabilities.10 In this case, � is the slope of the psychometric function and it measures accuracy
of discrimination or � in the neuroscienti�c study of choice behavior � sensitivity to utility
di¤erences.11

Figure 1: pt (a; b) = pt (a; fa; bg) plotted as a function of u = u (a), for �xed u (b).12

The neuropsychological foundation for the use of this family is the Drift Di¤usion Model of
Ratcli¤ (1978), according to which decisions are made by accumulating stochastic information
about the alternatives a and b until the net evidence in favor of one, call it �the winner,�exceeds
threshold �, at which point the winner is chosen.13 In a DPH perspective, it is important to
observe that the DDM does not assume u (a) and u (b) to be known to the agent. Indeed, the
sign of the utility di¤erence u (a) � u (b) is discovered by accumulating (noisy) evidence until
the threshold � is reached.
10See Falmagne (1985) and Iverson and Luce (1998).
11Rangel (2009), Dovencioglu, Ban, Scho�eld, and Welchman (2013), and Tsunada, Liu, Gold, and Cohen

(2016) are recent neuroscience works that use this speci�cation of the psychometric function and adopt the
corresponding interpretation of the parameter �.
12Geometrically, � (t) =4 is the slope of the tangent to the graph at (u (b) ; 1=2).
13See Bogacz et al. (2006), Webb (2017), and Section 4 of this paper.
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Milosavljevic et al. (2010) are the �rst to analyze the DDM in the realm of value based
choice of consumption. They �nd that choices are sped up under time pressure by decreasing the
threshold � and making it easier to reach it. More in general, from the pioneering experiments
of Cattel (1902) on perceived intensity of light to the recent study of ALQahtani et al. (2016) on
the e¤ect of time pressure on diagnostic decisions, evidence has been systematically con�rming
that accuracy is an increasing function of the time available to discriminate. In particular,
Ortega and Stocker (2016) calibrate softmax and �nd that � is approximately linear in log-
time, a special case that we are able to characterize as a corollary of our main result (see
equation LSP).
Our neuropsychological foundation extends, in a novel way based on sequential pairwise

comparisons, the scope of the DDM to multialternative choice tasks, while maintaining its dis-
covered preference interpretation. Our axiomatic characterization allows to externally validate
the proposed computational model.

1.1.4 Combinatorial Optimization

The Simulated Annealing algorithm of the seminal Kirkpatrick, Gelatt, and Vecchi (1983) builds
on the limit properties of softmax.14 The main idea behind this algorithm is to construct a
machine that randomly explores the set A, sequentially selecting alternatives and evaluating
their utilities so that, at predetermined periods ft0; t1; :::g, the selection frequencies are approx-
imately given by MLP. Through this procedure, global optima are discovered with increasing
probability as the sequence f� (t0) ; � (t1) ; :::g diverges. In other words, for T = ftngn2N and
� = f� (tn)gn2N, a Multinomial Logit Process can be regarded as describing the ideal behavior
of a Simulated Annealing machine.
Our computational model can be seen as the script according to which this machine explores

the environment and compares the alternatives on the basis of acquired evidence. Our axioms
then describe the observable choice behavior of the machine itself.

14Uniformity (i.e., exploration) for small � (t) and optimality (i.e., exploitation) for large � (t).
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1.2 Related literature

An important distinction in the axiomatic modelling of stochastic choice processes is whether
the �nal decision time t is exogenous (the time limit set by the experimenter or by the envi-
ronment) or endogenous �the actual response time of a subject who chooses when to make
his decision without external time pressure. This paper considers exogenous deadlines and the
present discussion of the literature focuses on models with this feature. In Economics, models
where decision time is endogenously � say, optimally � chosen are the subject of an active
literature and we refer the reader to Woodford (2014), Steiner, Stewart, and Matejka (2017),
and Fudenberg, Strack, and Strzalecki (2017) for updated perspectives. In Psychology, these
models have a long history, arguably beginning with Laming (1968). We refer to Bogacz et al.
(2006) for more recent developments.
Natenzon (2017) proposes a Multinomial Bayesian Probit model with the aim of jointly

accommodating similarity e¤ects, attraction e¤ects, and compromise e¤ects in a preference
learning perspective. According to Natenzon�s model, when facing a menu of alternatives, the
decision maker (who has a priori i.i.d. standard normally distributed beliefs the on the possible
utilities of alternatives) receives a random vector of (joint normally distributed) signals that
represents how much he is able to learn about the ranking of alternatives before making a choice
(say within time t). The decision maker updates the prior according to Bayes�rule and chooses
the option with the highest posterior mean utility. Conceptually, both Natenzon�s model and
ours can be seen as formal embodiments of the Discovered Preference Hypothesis. Natenzon�s
Multinomial Bayesian Probit predates ours and gains descriptive power by abandoning the
random utility paradigm and augmenting the number of parameters. At the same time, our
model is easier to falsify thanks to its axiomatic nature and because of the abundance of routine
techniques to estimate it. From a neuropsychological viewpoint, both approaches belong to the
di¤usion models� tradition that started with the seminal works of Ratcli¤, Busemeyer, and
coauthors (see the reviews of Rieskamp, Busemeyer, and Mellers, 2006, Fehr and Rangel, 2011,
Ratcli¤, Smith, Brown, and McKoon, 2016).
In a general Random Expected Utility perspective, Lu (2016) captures preference learning

through increasingly informative priors on the set of probabilistic beliefs of the decision maker,
while in Caplin and Dean (2011) preference learning occurs through sequential search.
Fudenberg and Strzalecki (2015) axiomatize a discounted adjusted logit model. Di¤erently

from the present work and the ones discussed above, their paper studies stochastic choice in
a dynamic setting where choices made today can in�uence the possible choices available to-
morrow, and consumption may occur in multiple periods. Frick, Iijima, and Strzalecki (2017)
characterize its general random utility counterpart. Finally, Caplin and Dean (2013) and Mate-
jka and McKay (2015) identify the Multinomial Logit Model in terms of optimal information
acquisition, while Saito (2017) obtains several characterizations of the Mixed Logit Model.

As to the neuropsychological modelling of choice tasks with n > 2 alternatives, the vast
majority of extensions of the DDM considers simultaneous evidence accumulation for all the
n alternatives in the menu. In these models, the choice task is assumed to simultaneously
activate n accumulators, each of which is preferentially sensitive to one of the alternatives and
integrates evidence relative to that alternative; choices are then made based on absolute or
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relative evidence levels. See, e.g., Roe, Busemeyer, and Townsend (2001), Anderson, Goeree,
and Holt (2004), McMillen and Holmes (2006), Bogacz, Usher, Zhang, and McClelland (2007),
Ditterich (2010), and Krajbich and Rangel (2011).
Alternatively, Reutskaja, Nagel, Camerer, and Rangel (2011) propose three two-stage mod-

els in which subjects randomly search through the feasible set during an initial search phase,
and when this phase is concluded they select the best item that was encountered during the
search, up to some noise. This approach can be called quasi-exhaustive search in that the pres-
ence of a deadline may terminate the search phase before all alternatives have been evaluated
and introduces an error probability.
Here, instead, we focus on sequential pairwise comparison as advocated by Russo and Rosen

(1975) in a seminal eye �xation study (see especially their concluding section). The computa-
tional model we adopt is the basic version of the Metropolis-DDM decision procedures studied
in Baldassi, Cerreia-Vioglio, Maccheroni, and Marinacci (2017). Although di¤erent from the
models considered by Reutskaja, Nagel, Camerer, and Rangel (2011), our model is consistent
with some of their experimental �ndings about the menu-exploration process and shares the
classical choice theory approach according to which multialternative choice relies on binary
comparison and elimination.

1.3 Paper outline

Section 2 of this paper presents the mathematical setup and extends the Luce Model by re-
moving the assumption of full support. This is technically important for the proofs of our
representation results and it contributes to the theoretical literature on static random choice
(see Echenique and Saito, 2017, on this speci�c topic). In Section 3, we axiomatically charac-
terize Multinomial Logit Processes as well as several special cases (starting with the classical
Multinomial Logit Model with a¢ ne u). Section 4 shows how softmax distributions emerge
from a neuropsychologically inspired decision procedure that combines Markovian search of the
menu (à la Metropolis et al., 1953) and DDM binary comparisons of its alternatives. The �nal
Section 5 concludes and proofs are relegated to the appendix.

2 Random choice rules

Let A be the collection of all non-empty �nite subsets A of a universal set X of possible
alternatives. The elements of A are called choice sets (or menus, or choice problems). We
denote by �(X) the set of all �nitely supported probability measures on X and, for each
A � X, by �(A) the subset of �(X) consisting of the measures assigning mass 1 to A.

De�nition 1 A random choice rule is a function

p : A ! �(X)

A 7! pA

such that pA 2 �(A) for all A 2 A.
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Given any alternative a 2 A, we interpret pA (fag), also denoted by p (a;A), as the proba-
bility that an agent chooses a when the set of available alternatives is A. More generally, if B
is a subset of A, we denote by pA (B) or p (B;A) the probability that the selected element lies
in B.15 This probability can be viewed as the frequency with which an element in B is chosen.
As usual, given any a and b in X, we set

p (a; b) = p (a; fa; bg) ; r (a; b) =
p (a; b)

p (b; a)
; ` (a; b) = ln r (a; b)

So, r (a; b) denotes the odds for a against b and ` (a; b) the log-odds.16

2.1 Luce�s Model

The classical assumptions of Luce (1959) on p are:

Positivity p (a; b) > 0 for all a; b 2 X.

Choice Axiom p (a;A) = p (a;B) p (B;A) for all B � A in A and all a 2 B.

The latter axiom says that the probability of choosing an alternative a from menu A is the
probability of �rst selecting B from A, then choosing a from B (provided a belongs to B).
As observed by Luce, formally this assumption corresponds to the fact that fpA : A 2 Ag is
a conditional probability system in the sense of Renyi (1956).17 Remarkably, Luce�s Choice
Axiom is also equivalent to:

Independence from Irrelevant Alternatives

p (a; b)

p (b; a)
=
p (a;A)

p (b; A)
(IIA)

for all A 2 A and all a; b 2 A such that p (a;A) =p (b; A) is well de�ned.18

This axiom says that the odds for a against b are independent of the available alternatives
that are di¤erent from a and b themselves.

Theorem 1 (Luce) A random choice rule p : A ! �(X) satis�es Positivity and the Choice
Axiom if and only if there exists v : X ! (0;1) such that

p (a;A) =
v (a)P
b2A v (b)

(LM)

for all A 2 A and all a 2 A.
In this case, v is unique up to a strictly positive multiplicative constant.

15Formally, x 7! p (x;A) for all x 2 X is the discrete density of pA, but notation will be abused and
pA (�) identi�ed with p (�; A).
16The advantage of using log-odds for a against b is that they are strictly positive if and only if odds are

favorable to a. Indeed, p (a; b) > p (b; a) () r (a; b) > 1 () ` (a; b) > 0.
17See Lemma 2 of Luce (1959) and Lemma 12 in the appendix.
18That is, di¤erent from 0=0. See Lemma 3 of Luce (1959) for the case in which Positivity holds and our

Lemma 12 in the appendix for the general case.
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This fundamental result in random choice theory also shows that, under the Choice Axiom,
Positivity is equivalent to the stronger assumption that pA has full support for all A 2 A.19

Full Support p (a;A) > 0 for all A 2 A and all a 2 A.

2.2 Luce�s Choice Axiom without Positivity

The next result generalizes Theorem 1 by maintaining the behavioral assumption of Indepen-
dence from Irrelevant Alternatives while removing the technical assumption of Full Support.
In our softmax analysis it will allow us to distill the utility function u starting from choice
frequencies. In reading it, recall that a choice correspondence is a map � : A ! A such that
� (A) � A for all A 2 A. It is rational when satis�es the Weak Axiom of Revealed Preference
of Arrow (1959), that is,

B � A 2 A and � (A) \B 6= ? imply � (B) = � (A) \B (WARP)

Theorem 2 A random choice rule p : A ! �(X) satis�es the Choice Axiom if and only if
there exist a function v : X ! (0;1) and a rational choice correspondence � : A ! A such
that

p (a;A) =

8><>:
v (a)P

b2�(A) v (b)
if a 2 � (A)

0 else

(GLM)

for all A 2 A and all a 2 A.
In this case, � is unique and � (A) = supp pA for all A 2 A.

The relation % generated by a rational choice correspondence � is de�ned by

a % b () a 2 � (fa; bg)

It is a weak order such that � (A) = fa 2 A : a % b for all b 2 Ag. A two-stage decision process
thus appears in formula GLM: �rst rational selection via � from menu A, then Lucean ran-
domization to choose among the selected alternatives. In other words, Theorem 2 allows us
to regard randomization as a tie-breaking mechanism that takes place after a �rst stage of
optimization has selected a subset � (A) among the available alternatives.
In this two-stage perspective, the simplest tie-breaking rule is the one in which all selected

alternatives have the same probability of being chosen, corresponding to a constant v in GLM.
Formally, a random choice rule is uniform if and only if

p (a;A) =

8><>:
1

jsupp pAj
if a 2 supp pA

0 else

for all A 2 A and all a 2 A.
19The support of pA is de�ned by supp pA = fa 2 X : p (a;A) > 0g for all A 2 A. It coincides with

fa 2 A : p (a;A) > 0g because pA (A) = 1.
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Corollary 3 A uniform random choice rule p : A ! �(X) satis�es the Choice Axiom if and
only if supp p : A ! A is a rational choice correspondence.
In this case, the relation % generated by supp p, is characterized by

a % b () p (a; b) > 0 () p (a; b) � p (b; a)

These results show how Luce�s Choice Axiom seamlessly extends Arrow�s traditional pos-
tulate of deterministic rationality (WARP) to random choice behavior, thus paving the way to
an economic theory based on stochastic rationality.20

Finally, our Theorem 2 shows that the random choice rules satisfying Independence from Ir-
relevant Alternatives (but not necessarily Full Support) are a special case of the rules character-
ized by Echenique and Saito (2017). These rules take the form GLM where v : X ! (0;1), but
the choice correspondence � does not necessarily satisfy WARP. Echenique and Saito achieve
such a general characterization with four axioms that, in our special case, can be replaced by
Luce�s one.

3 Random choice processes

Let T � (0;1) be a �discrete or continuous �set of points of time.

De�nition 2 A random choice process is a collection fptgt2T of random choice rules.

For each t, we interpret pt (a;A) as the probability that an agent chooses alternative a from
menu A if t is the maximum amount of time he is given to decide.21

An important alternative interpretation of t, especially when T is discrete and panel data
are considered, is the number of times that the agent has been facing choice problem A, called
experience level by McKelvey and Palfrey (1995).
We maintain the following assumptions:

Positivity pt satis�es Positivity for all t 2 T .

Choice Axiom pt satis�es the Choice Axiom for all t 2 T .

By Luce�s Theorem, for each t 2 T there exists ut : X ! R such that

pt (a;A) =
eut(a)P
b2A e

ut(b)
8a 2 A 2 A

Moreover, each of the ut�s is unique up to an additive constant, so that time-dependent utility
di¤erences are signi�cant and captured by log-odds.22

20See Cerreia-Vioglio, Maccheroni, Marinacci and Rustichini (2017).
21E.g., by an experimenter, or by a script, or by a spouse. See Agranov, Caplin, and Tergiman (2015) for a

simple protocol that allows to observe these probabilities for human agents.
22In fact, `t (a; b) = ut (a)� ut (b) for all a; b 2 X and all t 2 T .
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3.1 The Multinomial Logit Model

We start with the characterization of the special case of softmax corresponding to T = (0;1)
and � (t) = t for all t 2 T . To this end, we add a few axioms.

Continuity limt!s pt (a;A) exists for all A 2 A, all a 2 A, all s 2 [0;1], and it coincides
with ps (a;A) if s 2 (0;1).

Continuity guarantees that, as t tends to either 0 or 1, two limit random choice rules p0
and p1 are de�ned that extend the domain of the random choice process fptg to [0;1]. Notice
that these rules satisfy the Choice Axiom if fptg does, but they do not necessarily inherit the
Positivity property.

Consistency Given any a; b 2 X,

pt (a; b) > pt (b; a) =) ps (a; b) > ps (b; a)

for all s > t > 0.

Consistency means that favorable odds for a against b remain favorable, formally

rt (a; b) > 1 =) rs (a; b) > 1 0 < t < s � 1

This is coherent with the idea that correct, yet noisy, evidence is accumulating to inform the
decision maker�s choice between the two alternatives.

Asymptotic Uniformity Given any a; b 2 X,

p1 (a; b) 6= 0; 1 =) p1 (a; b) = 1=2

Asymptotic Uniformity postulates that, if the decision maker is unable to make up his mind
between alternatives a and b irrespectively of the time available to do so, then he will choose
by �ipping a fair coin. This is a classical notion of indi¤erence that can be traced back to the
early days of experimental economics (see Davidson and Marschak, 1959).

Boundedness Given any a; b 2 X,

sup
t;s2(0;1)

jrt+s (a; b)� rt (a; b) rs (a; b)j <1

Boundedness requires that the time variation of odds be not exponentially unbounded. It
is a �grain of exponentiality�in odds�dynamics.23

Theorem 4 A random choice process fptgt2(0;1) satis�es Positivity, the Choice Axiom, Con-
tinuity, Consistency, Asymptotic Uniformity, and Boundedness if and only if there exists u :
X ! R such that

pt (a;A) =
etu(a)P
b2A e

tu(b)
(MNL)

for all A 2 A, all a 2 A, and all t 2 (0;1).
In this case, u is unique up to an additive constant.

23See Frederic, Di Bacco, and Lad (2012) for a formal interpretation of the product of odds in terms of
combination of evidence.
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Although here t is interpreted as a time index, Theorem 4 yields a completely general
characterization of the Multinomial Logit Model with scale parameter t and utility u.24 For
this reason, we call the process fptg a Multinomial Logit Model with utility u. This model is
the workhorse of Discrete Choice Analysis, where it is typically also assumed that

X � Rn and u (x) = � � x for some � 2 Rn

The following proposition characterizes this fundamental special case.25

Proposition 5 Let X be a convex set and fptgt2(0;1) be a Multinomial Logit Model with utility
u. The following conditions are equivalent:

1. u is a¢ ne;

2. there exists t 2 (0;1) such that

pt (a; b) = p t
�
(�a+ (1� �) b; b)

for all a; b 2 X and all � 2 (0; 1);

3. given any t 2 (0;1) and any c 2 X,

pt (a;A) = p t
�
(�a+ (1� �) c; �A+ (1� �) c)

for all A 2 A, all a 2 A, and all � 2 (0; 1).

In Discrete Choice Analysis, the elements of X are often viewed as vectors of attributes.26

The equivalence between points 1 and 3 above thus shows that the a¢ nity of u corresponds to
an inverse relation between the proximity of attribute levels and the degree of choice accuracy.
To �x ideas, assume A = fa; bg with u (a) > u (b). Shrinkage by a factor � = 1=2 of attribute
levels in the direction of c then doubles the time to achieve the same probability of choosing
the optimal alternative.

3.1.1 Stochastic dominance

Consider a Multinomial Logit Model with utility u and an arbitrarily �xed A 2 A. For each
t 2 (0;1), by selecting alternatives according to pt (�; A), the agent�s payo¤s (in utils) are
described by the random variable

Ut : A ! R
a 7! u (a)

The next proposition shows that Us �rst order stochastically dominates Ut for all s � t, that is,
the random process fUtgt2(0;1) of payo¤s is increasing with respect to stochastic dominance.
24In the random utility interpretation of Multinomial Logit Models discussed in Section 1.1.2, u is called

�systematic component of the utility�.
25As well as the case in which X is a set of mixed actions and u (x) is the expected payo¤ of x.
26For example, in a typical travel demand application the components x0 and x1 of x represent travel time

and travel cost of alternative x, respectively (Ben-Akiva and Lerman, 1985, and Train, 2009).
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Proposition 6 Let fptgt2(0;1) be a Multinomial Logit Model with utility u. Then

ps (fa 2 A : u (a) � hg ; A) � pt (fa 2 A : u (a) � hg ; A) 8h 2 R

for all s > t in (0;1) and all A 2 A.

3.1.2 Curiosum: Statistical Physics

The Boltzmann distribution law says that if the energy associated with some state or condition
a of a system A is " (a) then the frequency with which that state or condition occurs, or the
probability of its occurrence, in equilibrium, is

p� (a;A) =
e�

1
k�
"(a)P

b2A e
� 1
k�
"(b)

where � is the system�s absolute temperature and k is the Boltzmann constant. Therefore, by
identifying time with inverse temperature and utility with negative energy, Theorem 4 can be
seen as a characterization of equilibrium distributions in large physical systems. The restate-
ment of the axioms directly in terms of temperature �rather than time �is straightforward.

3.2 Continuous Multinomial Logit Processes

Every Multinomial Logit Process, with T = (0;1) and increasing bijective �, satis�es all the
hypotheses of Theorem 4, except possibly Boundedness. A natural direction of investigation
then consists in weakening this assumption. We start with an ordinal version of Boundedness.

Ordinal Boundedness Given any a; b 2 X,

sup
t;s2(0;1)

��rw(t+s) (a; b)� rw(t) (a; b) rw(s) (a; b)�� <1 (OB)

for some increasing bijection w : (0;1)! (0;1).

Ordinal Boundedness requires that time can be rescaled so that the corresponding variation
of odds is not exponentially unbounded. It reduces to Boundedness when w (t) = t for all t.27

Our main representation results show that:

� replacing Boundedness with Ordinal Boundedness in Theorem 4 delivers representa-
tion MLP (Theorem 7);

� although an existential quanti�er appears in its statement, Ordinal Boundedness is falsi-
�able using the primitive data fptg (Proposition 9).

27Ordinal Boundedness stands to Boundedness as the Ordinal IIA assumption of Fudenberg, Iijima, and
Strzalecki (2015) stands to IIA.
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But, before formally stating the theorems, we introduce an alternative angle that delivers
the separation of accuracy and utility by requiring the speed of preference discovery to be
independent from the alternatives being compared.

Independence from Compared Alternatives Given any a; b; x; y 2 X,

r� (a; b) > rt (a; b) rs (a; b) =) r� (x; y) > rt (x; y) rs (x; y) (ICA)

for all s; t; � 2 (0;1) such that r� (a; b) > 1 and r� (x; y) > 1.

A strengthening of Consistency is required for ICA to replace Ordinal Boundedness in our
main result.

Discovered Preference Axiom Given any a; b 2 X,8<:
r0 (a; b) = 1

rt (a; b) > 1 =) rs (a; b) > rt (a; b)

rt (a; b) � 1 =) rs (a; b) � rt (a; b)

for all s > t in (0;1) :

This axiom captures the spirit of the Discovered Preference Hypothesis of Plott (1996):
discernment is born from re�ection/practice, so it is impossible at t = 0 and increases over
time. As evidence accumulates, favorable odds become more favorable, non-favorable ones
become more so.

Theorem 7 Let fptgt2(0;1) be a random choice process. The following conditions are equiva-
lent:

1. fptg satis�es Positivity, the Choice Axiom, Continuity, Consistency, Asymptotic Unifor-
mity, and Ordinal Boundedness;

2. fptg satis�es Positivity, the Choice Axiom, Continuity, the Discovered Preference Axiom,
Asymptotic Uniformity, and Independence from Compared Alternatives;

3. there exists u : X ! R and an increasing and bijective � : (0;1)! (0;1) such that

pt (a;A) =
e�(t)u(a)P
b2A e

�(t)u(b)
(MLP)

for all A 2 A, all a 2 A, and all t 2 (0;1).

In this case, u is cardinally unique, and � is unique given u unless the latter is constant.

In this subsection, we call such a process a Multinomial Logit Process with utility u and
accuracy �. As anticipated in the introduction, these processes admit limit random choice
rules

p0 (a;A) =
1

jAj and p1 (a;A) =
1

jargmaxA uj
�a (argmaxA u)

for all A 2 A and all a 2 A. So they yield pure randomness of choice as t ! 0 and hard
maximization of utility as t!1.
The next simple proposition characterizes the case of constant utility u.
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Proposition 8 Let fptgt2(0;1) be a Multinomial Logit Process with utility u and accuracy �.
The following conditions are equivalent:

1. u is constant;

2. pt (a;A) = 1= jAj for all A 2 A, all a 2 A, and all t 2 (0;1);

3. there are no a; b 2 X and t 2 (0;1) such that rt (a; b) > 1.

The importance of point 3 above is that, contrapositively, if there are â; b̂ 2 X and t̂ 2
(0;1) such that rt̂(â; b̂) > 1, then u is non-constant and � identi�ed (up to a strictly positive
multiplicative constant). The next proposition shows that identi�cation is straightforward,28

and guarantees the direct falsi�ability of Ordinal Boundedness.

Proposition 9 Let fptgt2(0;1) be a Multinomial Logit Process for which there exist â; b̂ 2 X
and t̂ 2 (0;1) such that rt̂(â; b̂) > 1. Then setting8><>:

�̂ (t) = `t(â; b̂) 8t 2 (0;1)

û (x) =
`t̂(x; b̂)

`t̂(â; b̂)
8x 2 X

the function �̂ : (0;1)! (0;1) is increasing, bijective, and

pt (a;A) =
e�̂(t)û(a)P
b2A e

�̂(t)û(b)
8a 2 A 2 A 8t 2 (0;1) ([MLP)

Moreover, fptgt2(0;1) satis�es Ordinal Boundedness with respect to the inverse ŵ of �̂.

Operationally, one can choose â; b̂ 2 X such that pt̂(â; b̂) > pt̂(b̂; â) for some t̂ 2 (0;1),
and test Ordinal Boundedness against ŵ. Then, if all the other hypotheses of Theorem 7 are
satis�ed, it must be the case that [MLP holds.
Theoretically, Proposition 9 reveals the inverse relation between � and w for Multinomial

Logit Processes with non-constant utility. For example, logarithmic ��s, which appear both in
Combinatorial Optimization and Psychophysics,29 correspond to Exponential Boundedness,30

and give softmax the special form

pt (a;A) =
(1 + kt)u(a)P
b2A (1 + kt)

u(b)
8a 2 A 2 A 8t 2 (0;1) (LSP)

where k is a strictly positive constant.
Finally, it is easy to see that the stochastic dominance statement of Proposition 6 holds

unchanged for Multinomial Logit Processes with utility u and accuracy �, while Proposition 18
in the appendix shows how to modify Proposition 5 in order to obtain a¢ nity of u even in the
non-linear accuracy case.
28Estimation of u and � is standard, typically carried out by maximum likelihood. See, e.g., Ben-Akiva and

Lerman (1985) on the econometric side and McKelvey and Palfrey (1995) on the game theoretic one.
29See, e.g., Romeo and Sangiovanni-Vincentelli (1991) and Ortega and Stocker (2016).
30That is, Ordinal Boundedness with w (t) = (et � 1) =k for some strictly positive constant k yields � (t) =

ln (1 + kt) in MLP.

16



3.3 General Multinomial Logit Processes

We close with the general case in which the index set T of the random choice process fptgt2T
is any non-singleton subset of (0;1), for example a sequence T = ftngn2N or a time interval
(0; � ].

Log-odds Ratio Invariance Given any t; s 2 T ,

`t (a; c)

`t (b; c)
=
`s (a; c)

`s (b; c)

for all a; b; c 2 X such that either ratio is well de�ned.

Since log-odds capture time-dependent utility di¤erences, this axiom requires that relative
utilities be time invariant. Recall that here T can also be a discrete set. For this reason, in our
�nal theorem below, Continuity will be completely dispensed with. Accordingly, Consistency
has to be weakened as follows:

Weak Consistency Given any a; b 2 X,

pt (a; b) > pt (b; a) =) ps (a; b) > ps (b; a)

for all s > t in T .

Notice that if T = (0;1) this requirement is equivalent to the one of Consistency except
for the limit value s =1.

Theorem 10 A random choice process fptgt2T satis�es Positivity, the Choice Axiom, Weak
Consistency, and Log-odds Ratio Invariance if and only if there exist u : X ! R and � : T !
(0;1) such that

pt (a;A) =
e�(t)u(a)P
b2A e

�(t)u(b)
(MLP)

for all A 2 A, all a 2 A, and all t 2 T .
In this case, u is cardinally unique, and � is unique given u unless the latter is constant.

This result delivers in full generality the softmax representation that we discussed in the
introduction. Inter alia, the possible non-monotonicity of � allows us to capture fatigue in
discrete choice experiments.31 Finally, it is easy to see that the estimation technique [MLP
continues to hold.
31At the same time, simple variations on the Discovered Preference Axiom permit to characterize increasing

and decreasing ��s. Moreover, replacement of the clause �s > t� with the clause �s and t� in the Weak
Consistency axiom permits to consider non-ordered index sets T (see Theorem 19 in the appendix).
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4 Decision making procedures

So far, we regarded the components pt of a random choice process fptg as the output of a
black box: our axioms characterize Multinomial Logit Processes, but remain silent about what
decision procedure may generate the corresponding choice probabilities. In this �nal section, we
address this issue by combining Markovian search of the menu and DDM pairwise comparison
of its alternatives. As we anticipated in the introduction, the �rst assumption is in line with
the experimental �nding of Reutskaja, Nagel, Camerer, and Rangel (2011) that exploration is
independent of alternatives�values, the second with the one of Russo and Rosen (1975) that
the choice process is a sequence of pairwise comparisons.
Speci�cally, we consider a decision maker, with utility u : X ! R, who aims to choose an

optimal alternative from a menu A 2 A within a stringent deadline t.
In what follows we �rst introduce the di¤erent parts of the decision procedure, we then

assemble them. Notation is streamlined by assuming, without loss of generality, that A =

f1; 2; :::; jAjg, with jAj � 2, and by identifying elements � of �(A) with vectors in RjAj.

4.1 Exploration

Exploration of menu A has a classic Metropolis et al. (1953) format. The agent starts with a
�rst (automatically accepted) candidate solution b drawn from an initial distribution � 2 �(A).
Then, given an incumbent solution b, the agent considers an alternative candidate solution a 6= b
with probability Q (a j b). The only requirements we make on the probability transition matrix
Q are irreducibility and symmetry (see, e.g., Madras, 2002). The independence of � and Q from
the utility function u are the formal counterparts of the aforementioned eye-tracking evidence.
A natural assumption that simultaneously guarantees both irreducibility and symmetry of

Q is that the subjective distance which the decision maker perceives between alternatives be
described by a perceptual semimetric d on A, and that Q (a j b) be a strictly positive function
of d (a; b).32 For example, d can be the discrete metric if A is a set of abstract alternatives, the
Euclidean metric if A is a set of multiattribute alternatives (like transportation modes), the
shortest-path distance if A is a connected graph (like a wine rack or a vending machine). For
instance, Baldassi, Cerreia-Vioglio, Maccheroni, and Marinacci (2017) consider the latter case
and the following parametric form

Q (a j b) = 1

jAj � 1
1

d (a; b)�
8a 6= b in A

where � 2 (0;1) is an exploration aversion parameter: for very large �, the agent basically
explores only the nearest neighbours of the incumbent solution; for very small �, Q (� j b) is
essentially the uniform distribution on A n fbg.33

32A semimetric has all the properties of a metric except the triangle inequality. It can be either a physical
distance mechanically a¤ecting attention or a psychological distance describing the mental landscape in which
the decision maker organizes the elements of A (possibly incorporating similarity considerations), or a mix of
the two. See Russo and Rosen (1975) and Roe, Busemeyer, and Townsend (2001).
33As usual, Q (b j b) is residually de�ned by 1�

P
c2AnfbgQ (c j b).
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4.2 Binary comparison

Once proposed, alternative a is compared with the incumbent b via the Drift Di¤usion Model of
Ratcli¤ (1978). According to this model, an alternative is selected as soon as the net evidence in
its favor reaches a posited decision threshold z 2 (0;1), which in our case depends on the time
constraint t via z = � (t).34 Speci�cally, the comparison of a and b is believed to activate two
neuronal populations whose activities (�ring rates) provide evidence for the two alternatives.
If their mean activities are u (a) and u (b), and each experiences instantaneous independent
white noise �uctuations, then evidence accumulation in favor of a and b is represented by two
uncorrelated Brownian motions with drift Va (�) = u (a) �+Wa (�) and Vb (�) = u (b) �+Wb (�)

de�ned on a sample space 
. With this,

� the net evidence in favor of a against b is given by the di¤erence

Za;b (�; !) = [u (a)� u (b)] � +
p
2W (�; !) 8 (�; !) 2 (0;1)� 
 (DDM)

where W is the Wiener process (Wa �Wb) =
p
2;

� the comparison ends when Za;b (�) reaches either the threshold z or �z; so the response
time is the random variable

RTza;b (!) = min f� 2 (0;1) : jZa;b (�; !)j = zg 8! 2 


� at which time, if the upper bound z has been reached, the agent accepts proposal a;
otherwise, the lower bound �z has been reached, the proposal a is rejected and the agent
maintains the incumbent b; so, the comparison outcome is the random variable

COza;b (!) =

(
a if Za;b

�
RTza;b (!) ; !

�
= z

b if Za;b
�
RTza;b (!) ; !

�
= �z

The acceptance probability for a given b is then

�z (a j b) = Pr
�
! 2 
 : COza;b (!) = a

	
while the rejection probability is 1��z (a j b). As well known,35 this quantity can be computed
and has the logistic form

�z (a j b) = ezu(a)

ezu(a) + ezu(b)

4.3 Decision

We now combine Metropolis exploration and DDM pairwise comparison. The resulting pro-
cedure describes an agent who �given time t to decide �automatically adjusts z = � (t) and
begins exploring the menu according to Q and comparing alternatives according to COz. His
search continues until the deadline is reached, at which point he chooses the incumbent solution.
34See Milosavljevic et al. (2010) and Karsilar, Simen, Papadakis, and Balci (2014, especially p. 14) for a

discussion of the possible e¤ects of deadlines on threshold reduction in the DDM.
35See, e.g., the original Ratcli¤ (1978), Bogacz et al. (2006), Smith and Ratcli¤ (2015), and Webb (2017).
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Metropolis-DDM Algorithm

Input: Given t 2 (0;1) and z = � (t) 2 (0;1) .
Start: Draw a from A according to � and

� set �0 = 0,
� set b0 = a;

Repeat: Draw a from A according to Q (� j bn) and compare it to bn via the DDM, so:
� set �n+1 = �n +RTza;bn,
� set bn+1 = COza;bn;

until �n+1 > t.

Stop: Set b� = bn.

Output: Choose b� from A.

Since the evaluation of the signs of utility di¤erences is performed according to the DDM,
the algorithm we propose maintains intact the interpretation of preference discovery that we
discussed for the DDM itself in the introduction.
At each iteration of the �repeat-until loop�, proposal a is accepted as bn+1 with the softmax

probability

��(t) (a j bn) =
e�(t)u(a)

e�(t)u(a) + e�(t)u(bn)
= pt (a; bn)

while a is rejected and bn is maintained as bn+1 with the complementary probability pt (bn; a).36

Therefore, the choice behavior described by our procedure is the softmax counterpart of the
one induced by random Brute-Force Optimization. The latter corresponds to the limit case
of in�nite accuracy � (t) = 1 in which no mistakes are allowed in comparing a and bn at
the acceptance stage.37 In contrast, the adoption of the Drift Di¤usion Model with a �nite
threshold z = � (t) entails an error probability 1=

�
1 + e�(t)ju(a)�u(bn)j

�
.38

By implementing the Metropolis-DDM algorithm, the resulting probability of selecting a
given incumbent b is

Pt (a j b) = Q (a j b)��(t) (a j b) 8a 6= b in A

This transition probability combines the stochasticity of the proposal mechanism and that of
the acceptance/rejection rule. Speci�cally, after n iterations of the �repeat-until loop�, the
probability that b� = a is the a-th component of the vector P nt �.

36The acceptance/rejection probabilities �z (a j b) induced by the DDM coincide with the ones used by Barker
(1965) to apply the Metropolis algorithm in the context of Plasma Physics, where the reciprocal 1=z of the
evidence threshold z is called temperature (for the reasons we exposed in Section 3.1.2).
37The candidate a is accepted with probability 1 if u (a) > u (bn), 1=2 if u (a) = u (bn), and 0 if u (a) < u (bn).
38A mistake consists in either accepting an inferior proposal or rejecting a superior one �events with probabil-

ities 1=
�
1 + e�(t)(u(bn)�u(a))

�
when u (bn) > u (a) and 1=

�
1 + e�(t)(u(a)�u(bn))

�
when u (a) > u (bn), respectively.
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Proposition 11 Let t 2 (0;1) and � (t) 2 (0;1). If Q is irreducible and symmetric, then Pt
is aperiodic, irreducible, and its stationary distribution is the softmax

pt (a;A) =
e�(t)u(a)P
b2A e

�(t)u(b)
8a 2 A (MLP)

In particular, limn!1 P
n
t � = pt (�; A) for all � 2 �(A).

This �nal result completes the interpretation of Multinomial Logit Processes as a theory of
the Discovered Preference Hypothesis by presenting softmax as the ideal behavior of a decision
maker that follows the Metropolis-DDM algorithm. Proposition 11 also suggests a neurobehav-
ioral counterpart of Simulated Annealing: if accuracy � (t) diverges slowly enough as the time
t available to decide increases, then the algorithm approximates the softmax distribution with
increasing precision, asymptotically approaching the hardmax one

p1 (a;A) =
1

jargmaxA uj
�a (argmaxA u) 8a 2 A

This is, indeed, the heuristics by which the celebrated algorithm of Kirkpatrick, Gelatt, and
Vecchi (1983) searches for global optima within menu A, so our agents can be seen as de facto
implementing it. We refer interested readers to Baldassi, Cerreia-Vioglio, Maccheroni, and
Marinacci (2017) for an in-depth computational analysis of procedures of this kind.39

5 Concluding remarks

Summing up, in this paper we:

� Extend Luce�s Model by maintaining the Independence from Irrelevant Alternatives as-
sumption without requiring Full Support (Theorem 2).

� Provide an axiomatic foundation of the Multinomial Logit Model

M =

�
e�u(a)P
b2A e

�u(b)
: a 2 A

�
�2(0;1);A2A

(MNL)

(Theorem 4) and characterize the linearity of u, which is the typical assumption of Discrete
Choice Analysis when the set of possible alternatives consists of multiattribute vectors
(Proposition 5).40

� Characterize Multinomial Logit Processes

pt (a;A) =
e�(t)u(a)P
b2A e

�(t)u(b)
8a 2 A 2 A t 2 T (MLP)

that is, processes fptgt2T of random choice rules that have Multinomial Logit distributions
with t-dependent scale parameter � (t) (Theorems 7, 10, and 19 in the appendix).

39Inter alia, they show that the possible asymmetry of thresholds does not a¤ect stationarity of softmax and
the same applies to the canonical discretization of the DDM (the Random Walk Model); they also formalize the
sense in which � (t) must increase slowly with respect to t in order to guarantee convergence of the algorithm
and provide a faster-than-the-clock simulation technique.
40Notice that, since u in MNL is unique up to an additive constant, a¢ nity is equivalent to linearity.

21



We already observed that when t is the experience level of an agent and u is the expected
payo¤, MLP gives the logit speci�cation of agents�mixed strategies in Quantal Response Equi-
librium. Here we remark that, if instead u is the log-expected payo¤, then MLP coincides
with the Power Luce Model of Goeree, Holt and Palfrey (2016). Notice that in both cases u
is independent of �, thus permitting the separation of actions�payo¤s and agents�degrees of
rationality. In other words, Weak Consistency and Log-odds Ratio Invariance are as essential
as Full Support and Independence from Irrelevant Alternatives for the basic laws of motions of
selection probabilities in Quantal Response Equilibrium theory.
The same considerations apply to Discrete Choice Analysis whenever it is assumed that the

systematic component u of utility is invariant across agents or dates while error variance is
allowed to vary, that is, scale is heterogeneous (see Fiebig, Keane, Louviere, and Wasi, 2010).

Finally, in the paper we also:

� Show that softmax distributions emerge as stationary selection probabilities of a search
algorithm à la Metropolis in which the acceptance/rejection rule is dictated by the Drift
Di¤usion Model, thus providing a neurophysiological foundation for the MNL.

The Metropolis-DDM algorithm that we present here relies on the simplest versions of
Markovian exploration and of the Drift Di¤usion Model. A natural extension of our neuropsy-
chological analysis consists in considering more general two-alternatives forced-choice models,
such as the ones discussed in Diederich and Busemeyer (2003), Ratcli¤ and Smith (2004), Bo-
gacz et al. (2006), Krajbich, Armel, Rangel (2010), Rustichini and Padoa-Schioppa (2015).41

This goes well beyond the scope of the present paper, whose objective is building a �rst bridge
between the axiomatic and the neuro-computational approaches to random choice. But it is
the object of current research (see also Baldassi, Cerreia-Vioglio, Maccheroni, and Marinacci,
2017).

An important extension of our axiomatic model consists in considering, rather than time, t
as a type; for example, Cognitive Skill, or Intelligence, or Age, or Nationality. In its simplest
mathematical form, this extension is obtained in Theorem 19 of the appendix where also the
assumption that T � (0;1) is dropped. A more challenging problem is the axiomatic modelling
of the situation in which alternatives are multidimensional, for example, consumption streams
or multiattribute vectors, and the speed of discovery is di¤erent across di¤erent dimensions. To
illustrate, assume that X consists of pairs (x0; x1) indicating present and future consumption,
and the speed of learning is di¤erent across the two, so that the inner product

�0 (t)u0 (x0) + �1 (t)u1 (x1)

replaces the scalar product � (t) [u0 (x0) + u1 (x1)]. In an application of this richer choice setup
to repeated games, actions a¤ect current payo¤s and continuation payo¤s, and the type t of the
decision maker (for example, Intelligence) a¤ects discovery in these two dimensions in di¤erent
ways (see Proto, Rustichini, and So�anos, 2017).

41Also the modelling of menu exploration can be made more realistic, for example, by taking into account
the visual saliency of alternatives (see Milosavljevic, Navalpakkam, Koch, and Rangel, 2012).
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A Proofs

A.1 Proofs of the results of Section 2

Lemma 12 Let p : A ! �(X) be a random choice rule. The following conditions are equiva-
lent:

1. p is such that, pA (C) = pB (C) pA (B) for all C � B � A in A;

2. p satis�es the Choice Axiom;

3. p is such that p (b; B) p (a;A) = p (a;B) p (b; A) for all B � A in A and all a; b 2 B;

4. p satis�es Independence from Irrelevant Alternatives;

5. p is such that p (Y \B;A) = p (Y;B) p (B;A) for all B � A in A and all Y � X.

Moreover, in this case, p satis�es Positivity if and only if it satis�es Full Support.

Proof 1 implies 2. Choose as C the singleton a appearing in the statement of the axiom.
2 implies 3. Given any B � A in A and any a; b 2 B, by the Choice Axiom, p (a;A) =

p (a;B) p (B;A), but then p (b; B) p (a;A) = p (a;B) p (b; B) p (B;A) = p (a;B) p (b; A) where
the second equality follows from another application of the Choice Axiom.
3 implies 4. Let A 2 A and arbitrarily choose a; b 2 A such that p (a;A) =p (b; A) 6= 0=0.

By 3,

p (b; a) p (a;A) = p (b; fa; bg) p (a;A) = p (a; fa; bg) p (b; A) = p (a; b) p (b; A)

three cases have to be considered:

� p (b; a) 6= 0 and p (b; A) 6= 0, then p (a;A) =p (b; A) = p (a; b) =p (b; a);

� p (b; a) = 0, then p (a; b) p (b; A) = 0, but p (a; b) 6= 0 (because p (a; b) =p (b; a) 6= 0=0),
thus p (b; A) = 0 and p (a;A) 6= 0 (because p (a;A) =p (b; A) 6= 0=0); therefore

p (a; b)

p (b; a)
=1 =

p (a;A)

p (b; A)

� p (b; A) = 0, then p (b; a) p (a;A) = 0, but p (a;A) 6= 0 (because p (a;A) =p (b; A) 6= 0=0),
thus p (b; a) = 0 and p (a; b) 6= 0 (because p (a; b) =p (b; a) 6= 0=0); therefore

p (a;A)

p (b; A)
=1 =

p (a; b)

p (b; a)

4 implies 3. Given any B � A in A and any a; b 2 B:

� If p (a;A) =p (b; A) 6= 0=0 and p (a;B) =p (b; B) 6= 0=0, then by IIA

p (a;A)

p (b; A)
=
p (a; b)

p (b; a)
=
p (a;B)

p (b; B)
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� If p (b; A) 6= 0, then p (b; B) 6= 0 and p (b; B) p (a;A) = p (a;B) p (b; A).
� Else p (b; A) = 0, then p (b; B) = 0 and again p (b; B) p (a;A) = p (a;B) p (b; A).

� Else, either p (a;A) =p (b; A) = 0=0 or p (a;B) =p (b; B) = 0=0 and in both cases

p (b; B) p (a;A) = p (a;B) p (b; A)

3 implies 5. Given any B � A in A and any Y � X, since p (B;B) = 1, it follows
p (Y;B) = p (Y \B;B). Therefore

p (Y \B;A) =
X

y2Y \B
p (y; A) =

X
y2Y \B

 X
x2B

p (x;B)

!
p (y; A) =

X
y2Y \B

 X
x2B

p (x;B) p (y; A)

!

[by 3] =
X

y2Y \B

 X
x2B

p (y;B) p (x;A)

!
=
X

y2Y \B
p (y;B)

 X
x2B

p (x;A)

!
=
X

y2Y \B
p (y;B) p (B;A) = p (Y \B;B) p (B;A) = p (Y;B) p (B;A)

5 implies 1. Take Y = C.
Finally, let p satisfy the Choice Axiom. Assume �per contra �Positivity holds and p (a;A) =

0 for some A 2 A and some a 2 A. Then A 6= fag and, for all b 2 A n fag, the Choice Axiom
implies 0 = p (a;A) = p (a; fa; bg) p (fa; bg ; A) = p (a; b) (p (a;A) + p (b; A)) = p (a; b) p (b; A)

whence p (b; A) = 0 (because p (a; b) 6= 0), contradicting p (A;A) = 1. Therefore Positivity
implies Full Support. The converse is trivial. �

If p : A ! �(X) is a random choice rule, denote by �p (A) the support of pA, for all A 2 A.

Lemma 13 If p : A ! �(X) is a random choice rule that satis�es the Choice Axiom, then
�p : A ! A is a rational choice correspondence.

Proof Clearly, ? 6= �p (A) � A for all A 2 A, then �p : A ! A is a choice correspondence.
Let A;B 2 A be such that B � A and assume that �p (A) \B 6= ?.
We want to show that �p (A) \ B = �p (B). Since p satis�es the Choice Axiom, if a 2

�p (A)\B, then 0 < p (a;A) = p (a;B) p (B;A). It follows that p (a;B) > 0, that is, a 2 �p (B).
Thus, �p (A)\B � �p (B). As to the converse inclusion, let a 2 �p (B), that is, p (a;B) > 0. By
contradiction, assume that a =2 �p (A)\B. Since a 2 B, it must be the case that a =2 �p (A), that
is, p (a;A) = 0. Since p satis�es the Choice Axiom, we then have 0 = p (a;A) = p (a;B) p (B;A).
Since p (a;B) > 0, it must be the case that p (B;A) = 0, that is, �p (A) \ B = ?. This
contradicts �p (A) \B 6= ?; therefore, a belongs to �p (A) \B. Thus, �p (B) � �p (A) \B. �

Lemma 14 The function p : A ! �(X) is a random choice rule that satis�es the Choice
Axiom if and only if there exist a function v : X ! (0;1) and a rational choice correspondence
� : A ! A such that, for all x 2 X and A 2 A

p (x;A) =

8><>:
v (x)P

b2�(A) v (b)
if x 2 � (A)

0 else

(1)
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and p (Y;A) =
P

y2Y p (y; A) for all Y � X.
In this case, � is unique and coincides with �p.

Proof If. Let p be given by (1) with � a rational choice correspondence and v : X ! (0;1). It
is easy to check that p is a well de�ned random choice rule and p (Y;A) =

P
y2Y \�(A)

v (y)P
d2�(A) v (d)

for all Y � X. Let A;B 2 A be such that B � A and a 2 B. We have two cases:

(i) If � (A) \B 6= ?, since � satis�es WARP, � (A) \B = � (B).

� If a 2 � (B), then a 2 � (A) and p (a;B) = v (a) =
P

b2�(B) v (b), it follows that

p (a;A) =
v (a)P

d2�(A) v (d)
=

v (a)P
b2�(B) v (b)

P
b2�(A)\B v (b)P
d2�(A) v (d)

= p (a;B) p (B;A)

� Else a =2 � (B), and since a 2 B, it must be the case that a =2 � (A), so p (a;A) =
0 = p (a;B) = p (a;B) p (B;A).

(ii) Else � (A)\B = ?. It follows that a =2 � (A) and p (B;A) = 0 = p (a;A); again, we have
p (a;A) = p (a;B) p (B;A).

Cases (i) and (ii) prove that p satis�es the Choice Axiom.
Only if. Let p : A ! �(X) be a random choice rule that satis�es the Choice Axiom and,

given any a; b 2 X, set a % b () a 2 �p (fa; bg). By Lemma 13, �p is a rational choice
correspondence. Therefore, % is a weak order on X and its symmetric part � is an equivalence
relation such that

a � b () p (a; b) > 0 and p (b; a) > 0 () r (a; b) 2 (0;1)

Moreover, by Theorem 3 of Arrow (1959), it follows that

�p (A) = fa 2 A : a % b 8b 2 Ag 8A 2 A (2)

in particular, all elements of �p (A) are equivalent with respect to �, and

�p (S) = S (3)

for all S 2 A consisting of equivalent elements.
Let fXi : i 2 Ig be the family of all equivalence classes of � in X. Choose ai 2 Xi for all

i 2 I. For each x 2 X, there exists one and only one i = ix such that x 2 Xi, set

v (x) = r (x; ai) (4)

Since x � ai, then r (x; ai) 2 (0;1); and so v : X ! (0;1) is well de�ned. Given any x � y
in X and any S 2 A consisting of equivalent elements and containing x and y, by (3) and the
Choice Axiom,

0 < p (x; S) = p (x; y) p (fx; yg ; S)
0 < p (y; S) = p (y; x) p (fx; yg ; S)
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yielding that

p (x; y) p (y; x) p (x; S) p (y; S) > 0 and
p (x; S)

p (y; S)
=
p (x; y)

p (y; x)
= r (x; y) (5)

We are ready to conclude our proof, that is, to show that (1) holds with � = �p. Let a 2 X
and A 2 A. If a =2 �p (A), then p (a;A) = 0 because �p (A) is the support of pA. Else,
a 2 �p (A), and, by (2), all the elements in �p (A) are equivalent with respect to � and
therefore they are equivalent to some ai with i 2 I. It follows that �p (A) [ faig 2 A and it
is such that �p (A) [ faig � Xi. By (3), we have that �p (�p (A) [ faig) = �p (A) [ faig, that
is, p (x; �p (A) [ faig) > 0 for all x 2 �p (A) [ faig and p (�p (A) ; �p (A) [ faig) > 0. By the
Choice Axiom and, since p (�p (A) ; A) = 1, it follows that

p (a;A) = p (a; �p (A)) p (�p (A) ; A) = p (a; �p (A)) =
p (a; �p (A) [ faig)

p (�p (A) ; �p (A) [ faig)
=

p(a;�p(A)[faig)
p(ai;�p(A)[faig)

p(�p(A);�p(A)[faig)
p(ai;�p(A)[faig)

applying (5) to the pairs (x; y) = (a; ai) and (x; y) = (b; ai), with b 2 �p (A), in S = �p (A) [
faig � Xi, we can conclude that

p(a;�p(A)[faig)
p(ai;�p(A)[faig)

p(�p(A);�p(A)[faig)
p(ai;�p(A)[faig)

=

p(a;�p(A)[faig)
p(ai;�p(A)[faig)P

b2�p(A)
p(b;�p(A)[faig)
p(ai;�p(A)[faig)

=
r (a; ai)P

b2�p(A) r (b; ai)
=

v (a)P
b2�p(A) v (b)

as wanted.
As for the uniqueness part, it is clear that, by (1), � = �p. �

Theorem 2 and Corollary 3 follow immediately.

A.2 Proofs of the results of Section 3

Lemma 15 Let fptgt2(0;1) be a random choice process that satis�es Positivity, the Choice
Axiom, Continuity, Consistency, and Asymptotic Uniformity. Then:

(i) the relation de�ned on X by a % b if and only if p1 (a; b) > 0 is a weak order, and

a % b () p1 (a; b) � p1 (b; a)

(ii) given any a; b 2 X, the function 'a;b : (0;1)! (0;1) de�ned by

'a;b (t) = rt (a; b) 8t 2 (0;1)

is continuous and either constantly equal to 1 (if a � b), or divergent at 1 as t!1 (if
a � b), or vanishing as t!1 (if b � a);

(iii) if fptgt2(0;1) further satis�es the Discovered Preference Axiom, then 'a;b (t)! 1 as t! 0

and it is strictly monotonic when not constant (increasing if a � b and decreasing if
b � a).
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Proof (i) By Theorem 1, for each t 2 (0;1), there exists vt : X ! (0;1) such that

pt (a;A) =
vt (a)P
b2A vt (b)

8a 2 A 2 A (6)

While p1 satis�es the Choice Axiom because it is de�ned by Continuity and pt satis�es the
Choice Axiom for all t 2 (0;1). By Theorem 2, there exist v : X ! (0;1) and a rational
choice correspondence � : A ! A such that

p1 (a;A) =

8><>:
v (a)P

b2�(A) v (b)
if a 2 � (A)

0 else

for all A 2 A and all a 2 A; moreover, � (A) = supp (p1)A for all A 2 A. Given any A 2 A and
any a; b 2 supp (p1)A = � (A), we have that p1 (a;A) ; p1 (b; A) 6= 0 and so p1 (a;A) =p1 (b; A)
is well de�ned. By Lemma 12 (the equivalence of the Choice Axiom and Independence from
Irrelevant Alternatives), we have that

v (a)

v (b)
=
p1 (a;A)

p1 (b; A)
=
p1 (a; b)

p1 (b; a)

If a 6= b, since v (a) ; v (b) 2 (0;1), it must be the case that p1 (a; b) 6= 0; 1, then, by Asymptotic
Uniformity, p1 (a; b) = 1=2 = p1 (b; a) and so v (a) = v (b). Since the choice of A 2 A and
a; b 2 supp (p1)A was arbitrary, it follows that v is constant on � (A) for all A 2 A, and so p1
is a uniform random choice rule. But then Corollary 3 guarantees that the relation de�ned on
X by

a % b () p1 (a; b) > 0 () p1 (a; b) � p1 (b; a) (7)

is a weak order.42

(ii) Given any t 2 (0;1),

'a;b (t) = rt (a; b) =
pt (a; b)

pt (b; a)
=
vt (a)

vt (b)
2 (0;1)

for all a; b 2 X, thus 'a;b : (0;1) ! (0;1) is well de�ned. Moreover, by Continuity, 'a;b is
continuous on (0;1) too.

� If a � b, and per contra 'a;b (t) 6= 1 for some t 2 (0;1), then

� either 'a;b (t) > 1, thus pt (a; b) > pt (b; a) and, by Consistency with s = 1,
p1 (a; b) > p1 (b; a), contradicting a � b,

� or 'a;b (t) < 1, thus pt (a; b) < pt (b; a) and, by Consistency with s =1, p1 (a; b) <
p1 (b; a), contradicting a � b,

so we can conclude 'a;b (t) = 1 for all t 2 (0;1).
42And a � b if and only if p1 (a; b) = p1 (b; a), while a � b if and only if p1 (a; b) > p1 (b; a).
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� If a � b, by (7) it follows p1 (b; a) = 0 and p1 (a; b) = 1, then

lim
t!1

'a;b (t) = lim
t!1

pt (a; b)

pt (b; a)
=
p1 (a; b)

p1 (b; a)
=1

thus 'a;b diverges at 1 as t!1.

� If b � a, then (since 'a;b = 1='b;a for all a; b 2 X)

lim
t!1

'b;a (t) =1 =) lim
t!1

'a;b (t) = lim
t!1

1

'b;a (t)
= 0

thus 'a;b is vanishing as t!1.

(iii) By Continuity, and the Discovered Preference Axiom,

lim
t!0

'a;b (t) = lim
t!0

pt (a; b)

pt (b; a)
=
p0 (a; b)

p0 (b; a)
= r0 (a; b) = 1

Moreover, if 'a;b is not constant, then either a � b or b � a. In the �rst case (a � b), 'a;b
diverges at1 as t!1, if �per contra �there are s > t in (0;1) such that 'a;b (s) � 'a;b (t),
then by the Discovered Preference Axiom 'a;b (t) � 1, by the Discovered Preference Axiom
again 'a;b (�) � 'a;b (t) for all � 2 (t;1), contradicting divergence. While, in the second case
(b � a), 'b;a is strictly increasing by the previous argument, thus 'a;b is strictly decreasing. �

Lemma 16 A random choice process fptgt2(0;1) satis�es Positivity, the Choice Axiom, Conti-
nuity, Consistency, Asymptotic Uniformity, and Ordinal Boundedness if and only if there exist
u : X ! R and an increasing bijective � : (0;1)! (0;1) such that

pt (a;A) =
e�(t)u(a)P
b2A e

�(t)u(b)
(8)

for all A 2 A, all a 2 A, and all t 2 (0;1).
In this case,

(i) p0 (a;A) =
1

jAj for all A 2 A and all a 2 A;

(ii) p1 (a;A) =
1

jargmaxA uj
�a (argmaxA u) for all A 2 A and all a 2 A;

(iii) u is cardinally unique;

(iv) if u is non-constant, then � is unique given u;

(v) w = ��1 is increasing, bijective, and r��1(t+s) (a; b) = r��1(t) (a; b) r��1(s) (a; b) for all
a; b 2 X and all s; t 2 (0;1), thus w realizes OB.
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Proof Let fptg be a random choice process that satis�es Positivity, the Choice Axiom, Con-
tinuity, Consistency, Asymptotic Uniformity, and Ordinal Boundedness. As in Lemma 15, we
de�ne, for all a; b 2 X,

'a;b (t) = rt (a; b) 8t 2 (0;1)
and we show that, thanks to the additional assumption of Ordinal Boundedness,

'a;b (w (t+ s)) = 'a;b (w (t))'a;b (w (s)) 8t; s 2 (0;1) (9)

Three cases have to be considered, depending on whether a � b, a � b, or b � a according to
the weak order % de�ned in Lemma 15.

� If a � b, then 'a;b (t) = 1 for all t 2 (0;1) and (9) holds.

� If a � b, then 'a;b is unbounded above and so is 'a;b �w : (0;1)! (0;1). Moreover, by
Ordinal Boundedness, there exists M > 0 such that

j'a;b (w (t+ s))� 'a;b (w (t))'a;b (w (s))j < M 8t; s 2 (0;1) (10)

But (0;1) is a semigroup with respect to addition and 'a;b � w is unbounded above.
Therefore, Baker (1980, Theorem 1) implies that (9) holds.

� Else, b � a, then the previous point shows

'b;a (w (t+ s)) = 'b;a (w (t))'b;a (w (s))

for all t; s 2 (0;1), but then

'a;b (w (t+ s)) =
1

'b;a (w (t+ s))
=

1

'b;a (w (t))'b;a (w (s))
= 'a;b (w (t))'a;b (w (s))

for all t; s 2 (0;1), and (9) holds also in this case.

We conclude that the functional equation (9) holds for all a; b 2 X. Continuity of 'a;b � w,
its strict positivity, and (9), imply that

'a;b (w (t)) = e
h(a;b)t 8t 2 (0;1)

for a unique h (a; b) 2 R (see, e.g., Aczel, 1966, Theorem 2.1.2.1, p. 38). Setting � = w�1 it
follows that 'a;b (s) = eh(a;b)�(s) for all s 2 (0;1), and � is an increasing bijection like w.
Now �x some a� 2 X and de�ne u : X ! R by u (x) = h (x; a�) for all x 2 X. Given any

t 2 (0;1) and any x; y 2 X, by (6),

'x;y (t) =
vt (x)

vt (y)
=
vt (x)

vt (a�)

vt (a
�)

vt (y)
=
'x;a� (t)

'y;a� (t)
=
eh(x;a

�)�(t)

eh(y;a�)�(t)
=
eu(x)�(t)

eu(y)�(t)

Therefore, for every t 2 (0;1), A 2 A, and a 2 A, arbitrarily choosing y 2 A,

pt (a;A) =
vt (a)P
b2A vt (b)

=

vt(a)
vt(y)P
b2A

vt(b)
vt(y)

=
eu(a)�(t)

eu(y)�(t)P
b2A

eu(b)�(t)

eu(y)�(t)

=
e�(t)u(a)P
b2A e

�(t)u(b)

and (8) holds.
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Annotation 1 Notice that from the axioms we derived (8) with � = w�1.

Since p0 and p1 are de�ned by Continuity and � vanishes as t ! 0 while it diverges at 1
as t!1, then (8) implies (i) and (ii).
As to uniqueness of u and �, notice that, if also �u and �� represent fptg in the sense of (8),

then

e�(t)(u(a)�u(b)) =
e�(t)u(a)

e�(t)u(b)
= rt (a; b) =

pt (a; b)

pt (b; a)
= e

��(t)(�u(a)��u(b))

for all t 2 (0;1) and all a; b 2 X. Therefore � (t) (u (a)� u (b)) = �� (t) (�u (a)� �u (b)) for all
t 2 (0;1) and all a; b 2 X. Choose t = 1 and arbitrarily �x b� 2 X to conclude that

�u (a) =
� (1)
�� (1)

(u (a)� u (b�)) + �u (b�) = ku (a) + h 8a 2 A

with k > 0 and h 2 R. Point (iii) follows. If u is not constant, by choosing a; b 2 X with
u (a) 6= u (b), the previous argument, yields � (t) (u (a)� u (b)) = �� (t) (ku (a)� ku (b)) for all
t 2 (0;1), so that �� = k�1�. If �u = u is given, then k = 1 and �� = �. This proves point (iv).
Clearly, ��1 is increasing and bijective, and by (8)

r��1(t+s) (a; b) = r��1(t) (a; b) r��1(s) (a; b) 8a; b 2 X 8t; s 2 (0;1)

which implies point (v).
The rest is trivial. �

Lemma 17 Let fptgt2(0;1) be a random choice process that satis�es Positivity, the Choice Ax-
iom, Continuity, the Discovered Preference Axiom, Asymptotic Uniformity, and Independence
from Compared Alternatives. Then:

(i) fptgt2(0;1) satis�es Consistency;

(ii) if â; b̂ 2 X and t̂ 2 (0;1) are such that rt̂(â; b̂) > 1, the function

� (t) = `t(â; b̂) 8t 2 (0;1)

is an increasing bijection from (0;1) to (0;1) such that

r��1(t+s) (a; b) = r��1(t) (a; b) r��1(s) (a; b) 8a; b 2 X 8t; s 2 (0;1)

(iii) fptgt2(0;1) satis�es Ordinal Boundedness.

Proof (i) Let a; b 2 X and t 2 (0;1) be such that rt (a; b) > 1. Then the Discovered
Preference Axiom implies rs (a; b) > rt (a; b), whence rs (a; b) > 1, for all s 2 (t;1). By the
same argument, t < � < s <1 implies r� (a; b) > 1 and the Discovered Preference Axiom again
implies rs (a; b) > r� (a; b). Therefore rt (a; b) > 1 implies � 7! r� (a; b) is strictly increasing on
[t;1); by Continuity r1 (a; b) = lim�!1 r� (a; b) � rt (a; b) > 1. Thus, we have that rt (a; b) > 1
implies rs (a; b) > 1 for all s 2 (t;1] and Consistency holds.43
(ii) Lemma 15 guarantees that, given any a; b 2 X, the function 'a;b : (0;1) ! (0;1)

satis�es one and only one of the following conditions:44

43Notice that this argument does not use ICA.
44Trichotomy follows from the fact that % is a weak order.
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a � b) 'a;b is continuous and strictly increasing with limt!0 'a;b (t) = 1 and limt!1 'a;b (t) =1.
In particular, 'a;b (0;1) = (1;1).

a � b) 'a;b is constantly equal to 1. In particular, 'a;b (0;1) = f1g.

b � a) 'a;b is continuous and strictly decreasing with limt!0 'a;b (t) = 1 and limt!1 'a;b (t) = 0.
In particular, 'a;b (0;1) = (0; 1).

If rt̂(a; b) > 1 (resp., = 1) for some t̂ 2 (0;1), then we are in the �rst (resp., second) case.
Therefore, if â; b̂ 2 X and t̂ 2 (0;1) are such that rt̂(â; b̂) > 1, then 'â;b̂ : (0;1)! (1;1)

is an increasing bijection, and

� (t) = `t(â; b̂) = ln rt(â; b̂) = ln'â;b̂ (t) 8t 2 (0;1)

de�nes an increasing bijection from (0;1) to (0;1).
Moreover, given any t; s 2 (0;1), we have

`��1(t+s)(â; b̂) = �
�
��1 (t+ s)

�
= t+ s = �

�
��1 (t)

�
+ �

�
��1 (s)

�
= `��1(t)(â; b̂) + `��1(s)(â; b̂)

thus
`��1(t+s)(â; b̂) = `��1(t)(â; b̂) + `��1(s)(â; b̂) 8t; s 2 (0;1) (11)

Next we show that (11) and Independence from Compared Alternatives imply

`��1(t+s) (a; b) = `��1(t) (a; b) + `��1(s) (a; b) 8a; b 2 X 8t; s 2 (0;1) (12)

exponentiation can then be used to conclude the proof of this point.
By ICA, given any c; d; x; y 2 X and any s; t; � 2 (0;1) such that r� (c; d) > 1 and

r� (x; y) > 1, it follows

r� (c; d) > rt (c; d) rs (c; d) () r� (x; y) > rt (x; y) rs (x; y)

(the roles of (c; d) and (x; y) are symmetric). As observed above, if rt̂ (c; d) > 1 and rŝ (x; y) > 1
for some t̂; ŝ 2 (0;1), then r� (c; d) > 1 and r� (x; y) > 1 for all � 2 (0;1). Therefore, under
the other assumptions of this lemma, ICA implies that: given any c; d; x; y 2 X,

� if rt̂ (c; d) > 1 and rŝ (x; y) > 1 for some t̂; ŝ 2 (0;1), then, given any s; t; � 2 (0;1), it
follows

r� (c; d) � rt (c; d) rs (c; d) () r� (x; y) � rt (x; y) rs (x; y)

and, by passing to the logarithms, we have

`� (c; d) � `t (c; d) + `s (c; d) () `� (x; y) � `t (x; y) + `s (x; y) (13)

Moreover, as we have shown above, the functions f (t) = `t(c; d) and g (t) = `t(x; y) are
increasing bijections from (0;1) to (0;1) and (13) implies

� � f�1 (f (t) + f (s)) () � � g�1 (g (t) + g (s))
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for all s; t; � 2 (0;1). But then f�1 (f (t) + f (s)) = g�1 (g (t) + g (s)) for all s; t 2 (0;1).
Hence, for all s; t; � 2 (0;1),

� = f�1 (f (t) + f (s)) () � = g�1 (g (t) + g (s))

Therefore:

� if rt̂ (c; d) > 1 and rŝ (x; y) > 1 for some t̂; ŝ 2 (0;1), then, given any s; t; � 2 (0;1), it
holds

`� (c; d) = `t (c; d) + `s (c; d) () `� (x; y) = `t (x; y) + `s (x; y)

� if rt̂ (c; d) > 1 and rŝ (x; y) < 1 for some t̂; ŝ 2 (0;1), then, rŝ (y; x) > 1 and, given any
s; t; � 2 (0;1), it holds

`� (c; d) = `t (c; d) + `s (c; d) () `� (y; x) = `t (y; x) + `s (y; x)

() �`� (y; x) = �`t (y; x)� `s (y; x)
() `� (x; y) = `t (x; y) + `s (x; y)

� if rt̂ (c; d) > 1 and rŝ (x; y) = 1 for some t̂; ŝ 2 (0;1), then, as we observed above,
r� (x; y) = rt (x; y) = rs (x; y) = 1, for all s; t; � 2 (0;1), thus , given any s; t; � 2 (0;1),
it holds

`� (c; d) = `t (c; d) + `s (c; d) =) `� (x; y) = `t (x; y) + `s (x; y)

Summing up, if â; b̂ 2 X and t̂ 2 (0;1) are such that rt̂(â; b̂) > 1, then, given any s; t; � 2
(0;1)

`� (â; b̂) = `t(â; b̂) + `s(â; b̂) =) `� (x; y) = `t (x; y) + `s (x; y) 8x; y 2 X (14)

which yields the desired relation between (11) and (12).
(iii) If there exist â; b̂ 2 X and t̂ 2 (0;1) such that rt̂(â; b̂) > 1, and the increasing bijection

� : (0;1) ! (0;1) de�ned in the previous point is considered, then w = ��1 realizes OB.
Otherwise, rt(a; b) = 1 for all a; b 2 X and all t 2 (0;1),45 and Boundedness is satis�ed (a
fortiori Ordinal Boundedness is satis�ed too). �

Theorem 7 follows immediately, Theorem 4 is obtained as the special case in which
w (t) = t for all t 2 (0;1),46 Propositions 8 and 9 are simple corollaries of Theorem 7 (we
leave the routine proofs to the reader).

The next proposition provides the form Proposition 5 takes in the more general case of
Multinomial Logit Processes. In reading it notice that points 2 and 3 can be equivalently stated
in terms of � or w = ��1.

Proposition 18 Let X be a convex set and fptgt2(0;1) be a Multinomial Logit Process with
utility u and accuracy �. The following conditions are equivalent:

45If rt̂(â; b̂) < 1 for some â; b̂ 2 X and t̂ 2 (0;1), then rt̂(b̂; â) > 1.
46See Annotation 1.
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1. u is a¢ ne;

2. there exists t 2 (0;1) such that

pt (a; b) = p��1(�(t)� )
(�a+ (1� �) b; b) (15)

for all a; b 2 X and all � 2 (0; 1);

3. given any t 2 (0;1) and any c 2 X,

pt (a;A) = p��1(�(t)� )
(�a+ (1� �) c; �A+ (1� �) c)

for all A 2 A, all a 2 A, and all � 2 (0; 1).

Proof 2 implies 1. Let t 2 (0;1) be such that (15) holds, then for all a 6= b in X, and all
� 2 (0; 1),

p
��1(�(t)� )

(b; �a+ (1� �) b) = 1� p
��1(�(t)� )

(�a+ (1� �) b; b)

= 1� pt (a; b)
= pt (b; a)

whence

e
�(t)
�
[u(�a+(1��)b)�u(b)] = r

��1(�(t)� )
(�a+ (1� �) b; b)

= rt (a; b) = e
�(t)[u(a)�u(b)]

so

1

�
[u (�a+ (1� �) b)� u (b)] = u (a)� u (b)

u (�a+ (1� �) b) = �u (a) + (1� �)u (b)

which delivers a¢ nity of u.
1 implies 3. Given any t 2 (0;1) and any c 2 X, we have that, for all A 2 A, all a 2 A,

and all � 2 (0; 1),

p
��1(�(t)� )

(�a+ (1� �) c; �A+ (1� �) c) = e
�(t)
�
u(�a+(1��)c)P

b2A e
�(t)
�
u(�b+(1��)c)

=
e
�(t)
�
�u(a)+

�(t)
�
(1��)u(c)P

b2A e
�(t)
�
�u(b)+

�(t)
�
(1��)u(c)

=
e�(t)u(a)P
b2A e

�(t)u(b)
= pt (a;A)

3 implies 2 is trivial. �

Proof of Proposition 6 Arbitrarily choose A 2 A. If we prove that, given any h 2 R such
that ? ( fc 2 A : u (c) � hg ( A, it holds

d

dt
pt (fc 2 A : u (c) � hg ; A) > 0 8t 2 (0;1) (16)
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then the statement follows. Indeed, in this case, the function t 7! pt (fc 2 A : u (c) � hg ; A) is
strictly increasing on (0;1) for all h 2 R such that ? ( fc 2 A : u (c) � hg ( A, while it is
constantly equal to 0 or 1 if h is such that fc 2 A : u (c) � hg = ? or fc 2 A : u (c) � hg = A.
Next we show that (16) holds. Set [u � h] = fc 2 A : u (c) � hg, assume h 2 R is such

that ? ( [u � h] ( A, and notice that in this case [u < h] must be non-empty. Given any
t 2 (0;1), with the abbreviation

P
u(c)�h

=
P

c2A:u(c)�h
, we have

0 <
d

dt

0B@
P

u(c)�h
etu(c)P

b2A
etu(b)

1CA =

�P
b2A
etu(b)

� P
u(c)�h

u (c) etu(c) �
P

u(c)�h
etu(c)

�P
b2A
u (b) etu(b)

�
�P
b2A
etu(b)

�2
() 0 <

X
u(c)�h

u (c) etu(c)
X
u(b)<h

etu(b) �
X
u(c)<h

u (c) etu(c)
X
u(b)�h

etu(b)

() 0 <

P
u(c)�h

u (c) etu(c)P
u(b)�h

etu(b)
�

P
u(c)<h

u (c) etu(c)P
u(b)<h

etu(b)

() 0 <
X
u(c)�h

u (c)

0B@ etu(c)P
u(b)�h

etu(b)

1CA� X
u(c)<h

u (c)

0B@ etu(c)P
u(b)<h

etu(b)

1CA
() 0 <

X
c2[u�h]

u (c) pt (c; [u � h])�
X

c2[u<h]

u (c) pt (c; [u < h])

and this concludes the proof, because �in the last step above �the minuend is an average (i.e.,
a convex combination) of values u (c) � h, so it cannot be smaller than h itself, the subtrahend
is an average of values u (c) < h, so it is strictly smaller than h itself, hence the di¤erence on
the right hand side is strictly positive, irrespectively of the value of t. �

Proof of Theorem 10 Only if. Since fptgt2T satis�es Positivity and the Choice Axiom, by
Theorem 1, for each t 2 T , there exists ut : X ! R such that

pt (a;A) =
eut(a)P
b2A e

ut(b)
8a 2 A 2 A (17)

Arbitrarily choose �c 2 X and replace each ut with ut�ut (�c). With this, ut (�c) = 0 for all t 2 T
and (17) still holds.
If, for all t 2 T , ut is constant, then MLP holds (e.g., with u (x) = 0 for all x 2 X).

Otherwise, there exists �t 2 T such that u�t is not constant, so that u�t
�
�b
�
6= 0 = u�t (�c) for some

�b 2 X. This implies that
`�t (a; �c)

`�t
�
�b; �c
� = u�t (a)� u�t (�c)

u�t
�
�b
�
� u�t (�c)

=
u�t (a)

u�t
�
�b
�

is a well de�ned real number for all a 2 X. By Log-odds Ratio Invariance, `t (a; �c) =`t
�
�b; �c
�
is

well de�ned too, and

ut (a)

ut
�
�b
� = `t (a; �c)

`t
�
�b; �c
� = `�t (a; �c)

`�t
�
�b; �c
� = u�t (a)

u�t
�
�b
� 2 R 8 (a; t) 2 X � T
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Therefore, ut
�
�b
�
6= 0 = ut (�c) for all t 2 T , and

ut (a) =
ut
�
�b
�

u�t
�
�b
�u�t (a) 8 (a; t) 2 X � T: (18)

Consider the case in which u�t
�
�b
�
> 0 = u�t (�c). If t > �t, then (17) and Weak Consistency imply

p�t
�
�b; �c
�
> p�t

�
�c;�b
�
=) pt

�
�b; �c
�
> pt

�
�c;�b
�
=) ut

�
�b
�
> ut (�c) = 0

thus ut
�
�b
�
=u�t
�
�b
�
> 0. This is clearly true also if t = �t. Else t < �t, assume per contra

ut
�
�b
�
< 0 = ut (�c), then (17) and Weak Consistency imply

pt
�
�c;�b
�
> pt

�
�b; �c
�
=) p�t

�
�c;�b
�
> p�t

�
�b; �c
�
=) u�t

�
�b
�
< u�t (�c) = 0

a contradiction. Thus ut
�
�b
�
=u�t
�
�b
�
> 0 holds for all t 2 T provided u�t

�
�b
�
> 0. It is easy to

show that the same is true if u�t
�
�b
�
< 0.47 This shows that

� : T ! (0;1)
t 7! ut(�b)

u�t(�b)

is well de�ned. Moreover, the function u = u�t : X ! R is non-constant and relation (18)
implies

ut (a) = � (t)u (a) 8 (a; t) 2 X � T

which together with (17) shows that the axioms imply representation MLP.
If. It is easy to verify that the converse implication holds too. For the sake of complete-

ness, we check that representation MLP implies Log-odds Ratio Invariance. Let t; s 2 T and
a; b; c; x; y 2 X. Notice that

`t (x; y) = � (t) [u (x)� u (y)]

so that `t (x; y) = 0 if and only if u (x) = u (y), and the same considerations hold with s in
place of t. Assume `s (a; c) =`s (b; c) is well de�ned:

� If `s (b; c) = 0, then u (b) = u (c) and `s (a; c) 6= 0, so u (a) 6= u (c), then

� `s (a; c) = � (s) [u (a)� u (c)] 6= 0 and since � (s) > 0, then

`s (a; c)

`s (b; c)
=
� (s) [u (a)� u (c)]

0
=
u (a)� u (c)

0

47If t > �t, then, by (17) and Weak Consistency, we have

u�t
�
�b
�
< 0 = u�t (�c) =) p�t

�
�c;�b
�
> p�t

�
�b; �c
�
=) pt

�
�c;�b
�
> pt

�
�b; �c
�
=) ut

�
�b
�
< ut (�c) = 0

thus ut
�
�b
�
=u�t

�
�b
�
> 0. This is clearly true also if t = �t. Else t < �t, assume per contra ut

�
�b
�
> 0 = ut (�c), then

(17) and Weak Consistency imply

pt
�
�b; �c
�
> pt

�
�c;�b
�
=) p�t

�
�b; �c
�
> p�t

�
�c;�b
�
=) u�t

�
�b
�
> u�t (�c) = 0

a contradiction. Thus ut
�
�b
�
=u�t

�
�b
�
> 0 holds for all t 2 T .
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� `t (b; c) = � (t) [u (b)� u (c)] = 0, because u (b) = u (c),
� `t (a; c) = � (t) [u (a)� u (c)] 6= 0, because u (a) 6= u (c), and since � (t) > 0, then

`t (a; c)

`t (b; c)
=
� (t) [u (a)� u (c)]

0
=
u (a)� u (c)

0
=
`s (a; c)

`s (b; c)

� Else `s (b; c) 6= 0, then u (b) 6= u (c) and `t (b; c) = � (t) [u (b)� u (c)] 6= 0, so that

`s (a; c)

`s (b; c)
=
� (s) [u (a)� u (c)]
� (s) [u (b)� u (c)] =

u (a)� u (c)
u (b)� u (c) =

� (t) [u (a)� u (c)]
� (t) [u (b)� u (c)] =

`t (a; c)

`t (b; c)

The case in which `t (a; c) =`t (b; c) is well de�ned is analogous.
As to uniqueness of u and �, notice that, if also �u and �� represent fptgt2T in the sense of

MLP, then
e�(t)(u(a)�u(b)) = rt (a; b) = e

��(t)(�u(a)��u(b))

for all t 2 T and all a; b 2 X. Therefore � (t) (u (a)� u (b)) = �� (t) (�u (a)� �u (b)) for all t 2 T
and all a; b 2 X. Arbitrarily choose t� 2 T and b� 2 X to conclude that

�u (a) =
� (t�)
�� (t�)

(u (a)� u (b�)) + �u (b�) = ku (a) + h 8a 2 X

with k > 0 and h 2 R. Since the converse is also true,48 cardinal uniqueness of u follows.
Moreover, if u is not constant, choosing a; b 2 X with u (a) 6= u (b), the previous argument
yields � (t) (u (a)� u (b)) = �� (t) (ku (a)� ku (b)) for all t 2 T , so that �� = k�1� if �u = ku+ h.
Finally, if �u = u is given, so that k = 1, it follows �� = �. �

Inspection of the proof shows that it is possible to obtain the softmax representation for
any non-singleton index set T by replacing Weak Consistency with:

Strong Consistency Given any a; b 2 X,

pt (a; b) > pt (b; a) =) ps (a; b) > ps (b; a)

for all s and t in T .

As discussed in Section 5, in the theorem below we read t as type.

Theorem 19 A collection fptgt2T of random choice rules satis�es Positivity, the Choice Ax-
iom, Strong Consistency, and Log-odds Ratio Invariance if and only if there exist u : X ! R
and � : T ! (0;1) such that

pt (a;A) =
e�(t)u(a)P
b2A e

�(t)u(b)
(softmax)

for all A 2 A, all a 2 A, and all t 2 T .
In this case, u is cardinally unique, and � is unique given u unless the latter is constant.

48That is, if �u = ku+ h with k > 0 and h 2 R, then �u and �� = k�1� represent fptgt2T in the sense of MLP.
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A.3 Proofs of the results of Section 4

Proof of Proposition 11 This result is essentially due to Barker (1965), here we report a
simple proof for completeness. Given any t; � (t) 2 (0;1), the explicit form of Pt is

Pt (a j b) =

8>><>>:
Q (a j b) e�(t)u(a)

e�(t)u(a) + e�(t)u(b)
if a 6= b

1�
P

c2AnfbgQ (c j b)
e�(t)u(c)

e�(t)u(c) + e�(t)u(b)
if a = b

and so Pt is irreducible because Q is. Moreover, again by irreducibility of Q,X
c2Anfbg

Q (c j b) > 0 8b 2 A

(otherwise it would follow Q (b j b) = 1 for some b 2 A, violating irreducibility). But then
Pt (b j b) > 0 for all b 2 A, which implies aperiodicity of Pt.
Next we show stationarity of pt (�; A). Notice that, for all a 6= b in A,

Pt (a j b) pt (b; A) = Q (a j b)
e�(t)u(a)

e�(t)u(a) + e�(t)u(b)
e�(t)u(b)P
x2A e

�(t)u(x)

=
Q (a j b)P
x2A e

�(t)u(x)

e�(t)(u(a)+u(b))

e�(t)u(a) + e�(t)u(b)
= Pt (b j a) pt (a;A)

while if a = b, then Pt (a j b) pt (b; A) = Pt (b j a) pt (a;A) is obvious, thus

Pt (a j b) pt (b; A) = Pt (b j a) pt (a;A) 8a; b 2 A

Therefore, Pt is reversible with respect to pt (�; A) and a fortiori Ptpt (�; A) = pt (�; A) (see, e.g.,
Madras, 2002, Proposition 4.4).
Finally, since Pt is aperiodic and irreducible, then stationarity of pt (�; A) implies P nt � !

pt (�; A) as n!1 for all � 2 �(A) (see, e.g., Madras, 2002, Theorem 4.2). �

37



References

Aczel, J. (1966). Lectures on functional equations and their applications. Academic Press.

Agranov, M., Caplin, A., and Tergiman, C. (2015). Naive play and the process of choice in
guessing games. Journal of the Economic Science Association, 1, 146-157.

Anderson, S. P., Goeree, J. K., and Holt, C. A. (2004). Noisy directional learning and the logit
equilibrium. The Scandinavian Journal of Economics, 106, 581-602.

Arrow, K. J. (1959). Rational choice functions and orderings. Economica, 26, 121-127.

ALQahtani, D. A., Rotgans, J. I., Mamede, S., ALAlwan, I., Magzoub, M. E. M., Altayeb, F.
M., Mohamedani MA, and Schmidt, H. G. (2016). Does time pressure have a negative e¤ect
on diagnostic accuracy? Academic Medicine, 91, 710-716.

Baldassi, C., Cerreia-Vioglio, S., Maccheroni, F., and Marinacci, M. (2017). Simulated decision
processes. Mimeo.

Baker, J. A. (1980). The stability of the cosine equation. Proceedings of the American Mathe-
matical Society, 80, 411-416.

Barker, A. A. (1965). Monte Carlo calculations of the radial distribution functions for a proton-
electron plasma. Australian Journal of Physics, 18, 119-134.

Ben-Akiva, M. E., and Lerman, S. R. (1985). Discrete choice analysis: theory and application
to travel demand. MIT Press.

Bogacz, R., Brown, E., Moehlis, J., Holmes, P., and Cohen, J. D. (2006). The physics of optimal
decision making: a formal analysis of models of performance in two-alternative forced-choice
tasks. Psychological Review, 113, 700-765.

Bogacz, R., Usher, M., Zhang, J., and McClelland, J. L. (2007). Extending a biologically
inspired model of choice: multi-alternatives, nonlinearity and value-based multidimensional
choice. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 362,
1655-1670.

Cattell, J. M. (1902). The time of perception as a measure of di¤erences in intensity. Philosophis-
che Studien, 19, 63-68.

Campbell, D., Boeri, M., Doherty, E., and Hutchinson, W. G. (2015). Learning, fatigue and
preference formation in discrete choice experiments. Journal of Economic Behavior and Orga-
nization, 119, 345-363.

Caplin, A., and Dean, M. (2011). Search, choice, and revealed preference. Theoretical Eco-
nomics, 6, 19-48.

Caplin, A., and Dean, M. (2013). Behavioral implications of rational inattention with Shannon
entropy. NBER Working Paper 19318.

Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M., and Rustichini, A. (2017). Law of demand
and stochastic choice. Mimeo.

38



Davidson, D., and Marschak, J. (1959). Experimental tests of a stochastic decision theory. In
Marschak, J. (Ed.) (1974). Economic information, decision, and prediction (pp. 133-171).
Reidel Publishing Company.

Diederich, A., and Busemeyer, J. R. (2003). Simple matrix methods for analyzing di¤usion
models of choice probability, choice response time, and simple response time. Journal of Math-
ematical Psychology, 47, 304-322.

Ditterich, J. (2010). A comparison between mechanisms of multi-alternative perceptual decision
making: ability to explain human behavior, predictions for neurophysiology, and relationship
with decision theory. Frontiers in Neuroscience, 4.

Dovencioglu, D., Ban, H., Scho�eld, A. J., and Welchman, A. E. (2013). Perceptual integration
for qualitatively di¤erent 3-D cues in the human brain. Journal of Cognitive Neuroscience,
25(9), 1527-1541.

Echenique, F., and Saito, K. (2017). General Luce model. Mimeo.

Falmagne, J. C. (1985). Elements of psychophysical theory. Oxford University Press.

Fehr, E., and Rangel, A. (2011). Neuroeconomic foundations of economic choice� recent ad-
vances. The Journal of Economic Perspectives, 25, 3-30.

Fiebig, D. G., Keane, M. P., Louviere, J., and Wasi, N. (2010). The generalized multinomial
logit model: accounting for scale and coe¢ cient heterogeneity. Marketing Science, 29, 393-421.

Frederic, P., Di Bacco, M., and Lad, F. (2012). Combining expert probabilities using the
product of odds. Theory and Decision, 73, 1-15.

Frick, M., Iijima, R., and Strzalecki, T. (2017). Dynamic random utility. Mimeo.

Fudenberg, D., Iijima, R., and Strzalecki, T. (2015). Stochastic choice and revealed perturbed
utility. Econometrica, 83, 2371-2409.

Fudenberg, D., Strack, P., and Strzalecki, T. (2017). Speed, accuracy, and the optimal timing
of choices. Mimeo.

Fudenberg, D., and Strzalecki, T. (2015). Dynamic logit with choice aversion. Econometrica,
83, 651-691.

Goeree, J. K., Holt, C. A., and Palfrey, T. R. (2016). Quantal response equilibrium: a stochastic
theory of games. Princeton University Press.

Iverson, G., and Luce, R. D. (1998). The representational measurement approach to psy-
chophysical and judgmental problems. In Birnbaum, M. H. (Ed.). Measurement, judgment,
and decision making (pp. 1-79). Elsevier

Karsilar, H., Simen, P., Papadakis, S., and Balci, F. (2014). Speed accuracy trade-o¤ under
response deadlines. Frontiers in Neuroscience, 8, Article 248.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing.
Science, 220, 671-680.

39



Krajbich, I., Armel, C., and Rangel, A. (2010). Visual �xations and the computation and
comparison of value in simple choice. Nature neuroscience, 13, 1292-1298.

Krajbich, I., and Rangel, A. (2011). Multialternative drift-di¤usion model predicts the relation-
ship between visual �xations and choice in value-based decisions. Proceedings of the National
Academy of Sciences, 108, 13852-13857.

Laming, D. R. J. (1968). Information theory of choice-reaction times. Wiley.

Louviere, J. J., Hensher, D. A., and Swait, J. D. (2000). Stated choice methods: analysis and
applications. Cambridge University Press.

Lu, J. (2016). Random choice and private information. Econometrica, 84, 1983-2027.

Luce, R. D. (1959). Individual choice behavior: a theoretical analysis. Wiley.

Madras, N. N. (2002). Lectures on Monte Carlo methods. American Mathematical Society.

Matejka, F., and McKay, A. (2015). Rational inattention to discrete choices: A new foundation
for the multinomial logit model. American Economic Review, 105, 272-298.

McFadden, D. (1973). Conditional logit analysis of qualitative choice behavior. In Zarembka,
P. (Ed.). Frontiers in econometrics (pp. 105-142). Academic Press.

McKelvey, R. D., and Palfrey, T. R. (1992). An experimental study of the centipede game.
Econometrica, 60, 803-836.

McKelvey, R. D., and Palfrey, T. R. (1995). Quantal response equilibria for normal form games.
Games and Economic Behavior, 10, 6-38.

McMillen, T., and Holmes, P. (2006). The dynamics of choice among multiple alternatives.
Journal of Mathematical Psychology, 50, 30-57.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953).
Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21,
1087-1092.

Milosavljevic, M., Malmaud, J., Huth, A., Koch, C., and Rangel, A. (2010). The drift di¤usion
model can account for the accuracy and reaction time of value-based choices under high and
low time pressure. Judegment and Decision Making, 5, 437-449.

Milosavljevic, M., Navalpakkam, V., Koch, C., and Rangel, A. (2012). Relative visual saliency
di¤erences induce sizable bias in consumer choice. Journal of Consumer Psychology, 22, 67-74.

Natenzon, P. (2017). Random choice and learning. Mimeo.

Ortega, P, and Stocker, A. A. (2016). Human decision-making under limited time. Proceedings
of the NIPS 2016 Conference. MIT Press.

Plott, C. R. (1996). Rational individual behavior in markets and social choice processes: the
discovered preference hypothesis. In Arrow, K., Colombatto, E., Perlaman, M., and Schmidt,
C. (Eds.). The rational foundations of economic behavior (pp. 225-250). Macmillan.

Proto, E., Rustichini, A., and So�anos, A. (2017). Intelligence, personality and gains from
cooperation in repeated interactions. Journal of Political Economy, forthcoming.

40



Rangel, A. (2009). The neuroeconomics of simple goal-directed choice. In Gazzaniga, M. (Ed.).
The cognitive neurosciences IV. MIT Press.

Ratcli¤, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59-108.

Ratcli¤, R., and Smith, P. L. (2004). A comparison of sequential sampling models for two-choice
reaction time. Psychological review, 111, 333-367.

Ratcli¤, R., Smith, P. L., Brown, S. D., and McKoon, G. (2016). Di¤usion decision model:
current issues and history. Trends in Cognitive Sciences, 20, 260-281.

Renyi, A. (1956). On conditional probability spaces generated by a dimensionally ordered set
of measures. Theory of Probability and Its Applications, 1, 55-64.

Reutskaja, E., Nagel, R., Camerer, C. F., and Rangel, A. (2011). Search dynamics in consumer
choice under time pressure: An eye-tracking study. The American Economic Review, 101,
900-926.

Rieskamp, J., Busemeyer, J. R., and Mellers, B. A. (2006). Extending the bounds of rationality:
evidence and theories of preferential choice. Journal of Economic Literature, 44, 631-661.

Roe, R. M., Busemeyer, J. R., and Townsend, J. T. (2001). Multialternative decision �eld
theory: A dynamic connectionst model of decision making. Psychological Review, 108, 370.

Romeo, F., and Sangiovanni-Vincentelli, A. (1991). A theoretical framework for simulated
annealing. Algorithmica, 6, 302-345.

Russo, J. E., and Rosen, L. D. (1975). An eye �xation analysis of multialternative choice.
Memory & Cognition, 3, 267-276.

Rustichini, A., and Padoa-Schioppa, C. (2015). A neuro-computational model of economic
decisions. Journal of Neurophysiology, 114, 1382-1398.

Saito, K. (2017). Axiomatizations of the Mixed Logit Model. Mimeo.

Savage, S. J., and Waldman, D. M. (2008). Learning and fatigue during choice experiments: a
comparison of online and mail survey modes. Journal of Applied Econometrics, 23, 351-371.

Smith, P. L., and Ratcli¤, R. (2015). An introduction to the di¤usion model of decision making.
In Forstmann, B. U., and Wagenmakers E-J. (Eds.) (2015). An introduction to model-based
cognitive neuroscience (pp. 49-70). Springer New York.

Steiner, J., Stewart, C., and Matejka, F. (2017). Rational inattention dynamics: inertia and
delay in decision-making. Econometrica, 85, 521-553.

Train, K. E. (2009). Discrete choice methods with simulation. Cambridge University Press.

Tsunada, J., Liu, A. S., Gold, J. I., and Cohen, Y. E. (2016). Causal contribution of primate
auditory cortex to auditory perceptual decision-making. Nature Neuroscience, 19, 135.

Webb, R. (2017). The (neural) dynamics of stochastic choice, Management Science, forthcom-
ing.

Woodford, M. (2014). Stochastic choice: an optimizing neuroeconomic model. American Eco-
nomic Review, 104, 495-500.

41


	wp615cover.pdf
	Multinomial logit processes and preference discovery: inside and outside the black box
	S. Cerreia-Vioglio, F. Maccheroni, M. Marinacci, and A. RustichiniWorking Paper n. 615


