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Abstract

We review recent models of choices under uncertainty that have been proposed

in the economic literature. The framework that we propose is general and may be

applied in many different fields of environmental economics. To illustrate, we provide

a simple application in the context of an optimal mitigation policy. Our objective is to

offer guidance to policy makers who face uncertainty when designing climate policy.

1 Introduction

Uncertainty is pervasive. If this assertion is true for most decision problems, it is of

particular importance when considering decisions with global, long-lasting and potentially

irreversible consequences. The environmental challenge faced by humanity concerning

global climate change illustrates particularly well the importance of considering uncertainty

when making a decision. In this case indeed, decisions have to be made in the presence

of uncertainty concerning both the science of climate and some basic socio-economic and

technology drivers.

There is a growing awareness that the uncertainty encountered when dealing with

problems like climate change goes well beyond the classical notion of “risk” typically used

by economists. Put simply, the term risk refers to situations in which the probabilities of

events’ occurrence can be assumed to be known, while the notion of uncertainty is broader

and refers to situations in which this may not be the case. Most decisions have indeed to be

made in situations in which some events do not have an obvious, unanimously agreed upon,

probability assignment. This might be the case because too little information is available,

∗We are grateful to Valentina Bosetti, Laurent Drouet, Johannes Emmerling and Phoebe Koundouri for
helpful comments and discussions. We acknowledge audiences at the annual conference of the European
Association of Environmental and Resource Economists for their helpful comments. The research leading
to these results has received funding from European Research Council (grants 336703 and 670337) and
from the French Agence Nationale de la Recherche (ANR-17-CE03-0008-01).
†IESEG School of Management, LEM-CNRS 9221, Fondazione Eni Enrico Mattei (FEEM),

Euro-Mediterranean Center on Climate Change (CMCC) and Università Bocconi. E-mail address:
l.berger@ieseg.fr
‡Department of Decision Sciences and IGIER, Università Bocconi.
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or because different predictions exist –resulting from different models or datasets, or from

different experts’ opinions.

Evaluation of climate policies is generally performed using models that do not make

the distinction between risk and uncertainty, but actually reduce any kind of uncertainty

to risk. The standard framework of expected utility theory developed by von Neumann

and Morgenstern (1947) and Savage (1954) has been then used to explore rational decision

making.

As the treatment of uncertainty has recently received a greater deal of attention in cli-

mate policy,1 an increasing number of concerns have been raised about the use of standard

techniques, originally developed to deal with risk, in problems involving uncertainty. For

instance, the IPCC (2007) wrote:

“In most instances, objective probabilities are difficult to estimate. Further-

more, a number of climate change impacts involve health, biodiversity, and

future generations, and the value of changes in these assets is difficult to cap-

ture fully in estimates of economic costs and benefits. Where we cannot mea-

sure risks and consequences precisely, we cannot simply maximize net benefits

mechanically. This does not mean that we should abandon the usefulness of

cost-benefit analysis, but it should be used as an input, among others in cli-

mate change policy decisions. The literature on how to account for ambiguity

in the total economic value is growing, even if there is no agreed standard.”

As a result, recent calls have been made for using alternative tools and methods de-

veloped in other disciplines such as economics and statistics. One of them is made by

Kunreuther at al. (2013):

“The selection of climate policies should be an exercise in risk management

reflecting the many relevant sources of uncertainty. Studies of climate change

and its impacts rarely yield consensus on the distribution of exposure, vulner-

ability or possible outcomes. Hence policy analysis cannot effectively evaluate

alternatives using standard approaches, such as expected utility theory and

benefit-cost analysis. [...] For most issues relevant to policy choices, the solu-

tion is to use more robust approaches to risk management that do not require

unambiguous probabilities. Risk management strategies designed to deal with

the uncertainties that surround projections of climate change and their impacts

can thus play an important role in supporting the development of sound policy

options.”

1See, for example, Pindyck (2007, 2013b), Heal and Miller (2014) and Convey and Wagner (2015) in
recent issues of this journal.

2



In a recent Science article by Burke et al. (2016), twenty eight climate scientists out-

lined three areas where research progress on climate change economics was sorely needed.

One of them consists in refining the estimates of the so-called social cost of carbon (SCC)

to improve the way they are used in policy.2 To achieve this objective, the authors high-

lighted different research directions, among which the treatment of uncertainty. They

note:

“The treatment of uncertainty in integrated assessment models needs improve-

ment, with research needed on the computational challenges of explicitly in-

cluding decision-making under uncertainty.”

While the treatment of uncertainty has typically not received a particular attention in

the environmental economic literature, the field is moving forward and several attempts

have been made in the past few years to answer the aforementioned calls. These include,

but are not limited to, Lange and Treich (2008) and Berger (2016) who provide com-

parative statics results of the role played by ambiguity in a simple two-period analytical

model; Millner et al. (2013), Lemoine and Traeger (2016) who propose numerical climate-

economic models under ambiguity aversion; Berger et al. (2017) who consider explicitly

the presence of uncertainty concerning catastrophic climate events in both an analytical

model and a numerical application; Athanassoglou and Xepapadeas (2012), Rudik (2016),

Xepapadeas and Yannacopoulos (2017), who use robust control approach developed by

Hansen and Sargent (2001, 2008) in either analytical control problems or in integrated

assessment contexts; Drouet et al. (2015) who numerically disentangle model uncertainty

and risks about mitigation costs, climate dynamics, and climate damages using the re-

sults of the most recent assessment of the Intergovernmental Panel on Climate Change

(IPCC); Chambers and Melkonyan (2017) who compare three alternative decision criteria

for climate change cost-benefit analysis in the presence of uncertainty; and Bradley et al.

(2017), who deal with the uncertainty as presented by the IPCC by applying a recent

model of Hill (2013) in which the confidence in the different models is not represented by

a standard probability measure quantifying the uncertainty, but has rather a qualitative,

ordinal, structure assessing DM’s confidence in the probability judgements.

In this paper, we review recent models of choices under uncertainty that have been

proposed in the economic literature and apply them to a simple climate change decision

problem. While the framework we propose is general and may be applied in many different

fields of environmental economics, we provide a simple illustrative application and example

in the context of an optimal mitigation policy. Our objective is to offer guidance to policy

2The SCC is the damages caused by emitting carbon. In the words of Burke et al. (2016), the SCC
estimates the “monetized change in social welfare over all future time from emitting one more tonne of
carbon today, conditional on a specific trajectory of future global emissions and economic and demographic
growth.”
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makers who face uncertainty when designing climate policies. In this regard, a recent

related paper is Brock and Hansen (2017), who address, with a long term uncertainty

perspective, some important climate policy issues by considering recent decision theoretic

models.

Uncertainty can be decomposed into distinct layers: (i) aleatory or physical uncertainty,

(ii) model uncertainty or model ambiguity, and (iii) model misspecification.3

Before elaborating on the key distinctions between these layers, let us have a closer look

at the notion of “model uncertainty” since it may have different meanings depending on

the field of analysis. In its colloquial sense, a “model” is generally viewed as a stylized –so,

approximate but tractable– representation of a phenomenon of interest which a natural or

social scientist wants to study. Models are used as tools that provide a logically consistent

way to organize our thinking about the relationships among variables of interest, and help

us understand the implications of those relationships (Maki, 2011, Pindyck, 2015, and

Beck and Krueger, 2016). In environmental and climate change economics, a distinction

is generally made between scientific models (climate and impact models), which inform us

about the consequences of increased greenhouse gas (GHG) concentrations and emissions

on the climate system as well as about the scale and nature of what might happen to

lives and livelihoods, and economic models, which are used for cost-benefit analysis and

policy assessments of alternative actions. A hybrid class of models, known as integrated

assessment models (IAMs), combines the key elements of both economic and scientific

models. They are generally used to calculate the SCC or to evaluate fiscal and abatement

policies. These SCC estimates or evaluations (known as model runs) are then used directly

by policy makers in cost-benefit analyses of climate change mitigation policies (Stern et

al., 2016). There exist many models in all the different categories. Each model has its own

advantages and limits, its own complexity, and its own key relationships and parameter

values. Model uncertainty in the climate change literature is, therefore, usually associated

with the fact that different models may provide different responses to the same external

forcing (for instance, as a result of differences in physical and numerical formulations; cf.

Deser, 2012).

The approach that we follow in this paper is, in part, different. We consider a gen-

eral decision problems in which consequences depend on states of the environment that

are viewed as realizations of an underlying economic or physical generative mechanism

(Marinacci, 2015). A model is a probability distribution induced by such a mechanism.

It describes states’ variability by combining a structural component based on theoretical

knowledge (say, economic or physical) and a random component coming, for example, from

measurement errors or from minor omitted explanatory variables (cf. Koopmans, 1947,

and Marschak, 1953). We assume that decision makers posit a collection of such mod-

3See Arrow (1951), Hansen (2014), Marinacci (2015), and Hansen and Marinacci (2016).
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els. Model uncertainty therefore results from the uncertainty about the true underlying

mechanism: within the posited collection, there is uncertainty about which model actually

governs states’ realizations. Once a model is specified, we still have the aleatory uncer-

tainty about which specific state will actually obtain; this is the notion of risk typically

considered in economics. Finally, we have a third layer of uncertainty, model misspecifi-

cation, when the true model might not belong to the posited collection of models, so all

posited models have an inherent approximate nature.4

An important instance of a similar approach in climate change economics concerns

the estimations of climate sensitivity –the temperature change in response to increased

atmospheric CO2 concentration– presented in Millner et al. (2013) and Heal and Millner

(2014). As these authors mention, climate sensitivity is an important metric for the study

of climate change, yet it is difficult to estimate. Different complex scientific “models”

attempt to predict its value but often do not agree one another. Each scientific model

therefore delivers its own probability model for climate sensitivity (see Fig. 1 in Millner

et al., 2013). Model uncertainty arises as uncertainty about the most correct scientific

model, so about the true probability distribution for climate sensitivity.

The remainder of this paper is organized as follows. We first present a general decision

problem under uncertainty framed in the context of climate change and discuss the different

notions of uncertainty. We then present different models of choice that may be used to

find the optimal climate policy, before applying them to a concrete example. We finish the

paper with a discussion on the status of non-expected utility models in assessing climate

policy.

2 The decision problem

2.1 Setup

An important challenge faced by environmental policy makers is to choose a mitigation

strategy. Put simply, they have to decide how much GHG emissions should be allowed to

avoid the climate system to reach damaging temperature levels. Reducing GHG emissions

is costly, but it enables to limit the damages associated with global temperature increases.

The cumulative level of GHG emissions an economy can reach over a given period of

time (e.g., the twenty-first century) is called the carbon budget. It is a variable which is

supposed to be directly under the control of the policy maker and is strictly related to

global warming and climate targets (Meinshausen et al., 2009, Drouet et al., 2015). So,

it is a decision (or control) variable –an action in the decision theory terminology– that

represents a policy that the policy maker (or decision maker, hereafter DM) can perform.

4The notion of “true model” is, clearly, methodologically delicate. Pragmatically, here we consider the
way such notion has been traditionally used in statistics.
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At this point, it may useful to put some more structure on the decision problem under

uncertainty. Formally, the problem that the DM faces is to choose an action a among a set

A of possible alternatives, whose consequences c (within a consequence space C) depend

on the realization of a state of the environment s (within a state space S) which is outside

DM’s control. The relationship between consequences, actions and states is described by

a consequence function ρ : A× S → C, with

c = ρ(a, s). (1)

In words, this function details the consequence c of action a if the state that obtains is

s. DMs have a complete and transitive preference % over actions that describes how they

rank the different alternative actions. In particular, we write a % b if the DM prefers

action a to action b –i.e., either strictly prefers action a to action b, a � b, or is indifferent

between the two, a ∼ b.
The quintet (A,S,C, ρ,%) characterizes the decision problem under uncertainty. Before

a decision is taken, ex ante, the DM knows the different elements of the quintet. After the

decision, ex post, the DM observes the consequence ρ(a, s) that obtained.5 The objective

of the DM is to select the action â that is optimal according to her preference in the sense

that â % a for all actions a ∈ A.

Preferences are often assumed to admit a numerical representation via a decision cri-

terion V : A→ R such that

a % b⇐⇒ V (a) ≥ V (b)

for all actions a, b ∈ A. The value V (a) attained by an action a is often interpreted in

welfare terms, so V is in turn viewed as a welfare criterion. However, here V is just a

numerical representation of the underlying preference % that permits to formulate the

decision problem as an optimization problem

max
a

V (a) sub a ∈ A. (2)

Coming back to the climate policy example, in principle the policy maker would like to

set a global temperature increase to a level that maximizes a defined decision criterion.

Global temperature, however, is not a decision variable under the control of the policy

maker. In practice, what the policy maker controls is the level of emissions through an

abatement policy that is put in place.

5Possibly not the state that obtained. In a dynamic setting, ex post observability becomes a key
modelling issue (Battigalli et al., 2017).
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2.2 Uncertainty

Decisions concerning the climate change phenomenon that our planet is undergoing are

generally taken in situations of uncertainty. Think, for example, of a policy maker who

has to choose the optimal emission pathway to be followed by an economy. It is reasonable

to expect that the policy maker does not know, for example, how the climate system –in

particular, global mean temperature– will respond to the targeted level of emissions, as

well as how the socio-economic system will be affected by an increase in the global mean

temperature. In that sense, the selection of the optimal action (level of emissions) is an

exercise which is performed in a situation of uncertainty. The classical study of decision

under uncertainty dates back to Savage (1954), while its modern study began with the

behavioral paradoxes of Ellsberg (1961) and the theoretical analysis of Schmeidler (1989),

with some key insights going back to Keynes (1921, 1936) and Knight (1921). Following

the decomposition of climate change uncertainty according to its sources proposed by Heal

and Millner (2014), the decision problem faced by our policy maker has to be performed in

the presence of both a scientific and a socio-economic component. The next two examples

will illustrate.

Scientific uncertainty A first source of uncertainty comes from the science of climate.

While most scientists agree on the fact that climate change is a reality and that humans are

primarily responsible for the unprecedented changes in global temperature that we have

now been experiencing for several decades (Hansen et al., 2006; IPCC, 2013), the exact

relationship between anthropogenic emissions of GHG into the atmosphere and climate

change remains uncertain. Based on the available observations and on the current scientific

state of knowledge, the scientific community has tried to construct precise climate models

to predict and quantify the impact of human activity on global temperatures. Different

metrics have been proposed to measure the global temperature response to increases in

atmospheric emissions or concentrations. However, despite our knowledge about the phys-

ical laws governing the climate system,6 a large degree of uncertainty still surrounds the

estimates of these constructed climate metrics. For example, different scientific models

typically provide different probabilistic assessments of the value of some key climate pa-

rameters (Meinshausen et al., 2009; IPCC, 2013; Millner et al., 2013). As a consequence,

for instance we still do not know with certainty how much the global climate will exactly

respond to changes in future atmospheric conditions, nor do we know the precise timing

at which this change will take place.

The carbon-climate response (CCR) is an intuitive metric that has recently been pro-

posed by Matthews et al. (2009) to provide policy-useful information about the allowable

6These laws for example enable us to narrow the scope of possible interactions between emissions and
temperature increases.
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level of emissions for a given temperature target. As illustrated in the next figure, this

metric synthesizes the global temperature response to anthropogenic emissions. Formally,

LETTERS

The proportionality of global warming to cumulative
carbon emissions
H. Damon Matthews1, Nathan P. Gillett2, Peter A. Stott3 & Kirsten Zickfeld2

The global temperature response to increasing atmospheric CO2 is
often quantified by metrics such as equilibrium climate sensitivity
and transient climate response1. These approaches, however, do not
account for carbon cycle feedbacks and therefore do not fully
represent the net response of the Earth system to anthropogenic
CO2 emissions. Climate–carbon modelling experiments have
shown that: (1) the warming per unit CO2 emitted does not depend
on the background CO2 concentration2; (2) the total allowable
emissions for climate stabilization do not depend on the timing
of those emissions3–5; and (3) the temperature response to a pulse
of CO2 is approximately constant on timescales of decades to
centuries3,6–8. Here we generalize these results and show that the
carbon–climate response (CCR), defined as the ratio of temper-
ature change to cumulative carbon emissions, is approximately
independent of both the atmospheric CO2 concentration and its
rate of change on these timescales. From observational constraints,
we estimate CCR to be in the range 1.0–2.1 6C per trillion tonnes of
carbon (Tt C) emitted (5th to 95th percentiles), consistent with
twenty-first-century CCR values simulated by climate–carbon
models. Uncertainty in land-use CO2 emissions and aerosol
forcing, however, means that higher observationally constrained
values cannot be excluded. The CCR, when evaluated from climate–
carbon models under idealized conditions, represents a simple yet
robust metric for comparing models, which aggregates both
climate feedbacks and carbon cycle feedbacks. CCR is also likely
to be a useful concept for climate change mitigation and policy; by
combining the uncertainties associated with climate sensitivity,
carbon sinks and climate–carbon feedbacks into a single quantity,
the CCR allows CO2-induced global mean temperature change to
be inferred directly from cumulative carbon emissions.

We propose a new measure of the climate response to anthro-
pogenic carbon dioxide emissions: the ‘carbon–climate response’

(CCR). The CCR is illustrated schematically in Fig. 1, which shows
the progression from carbon emissions to climate change. The CCR
incorporates the standard concept of climate sensitivity (the temper-
ature response to increased atmospheric CO2), in addition to a
‘carbon sensitivity’ (the amount by which atmospheric CO2 concen-
trations increase in response to CO2 emissions, as mediated by
natural carbon sinks, and including also the effect of feedbacks
between climate change and carbon uptake).

The CCR thus represents the net climate response to CO2 emis-
sions, and can be defined as DT/ET, where DT is the global mean
temperature change over some period of time, and ET is the total
cumulative carbon dioxide emitted over that period. We assign units
of trillion tonnes of carbon to ET (1 Tt 5 1 teratonne, or 1018 grams,
of carbon, which is equivalent to 3.7 trillion tonnes of CO2), so the
CCR as defined here carries units of uC per Tt C emitted. CCR can be
written as:

CCR 5DT/ET

5 (DT/DCA) 3 (DCA/ET)

where DCA is the change in atmospheric carbon (in Tt C). Written in
this way, CCR represents the product of the temperature change per
unit atmospheric carbon increase (DT/DCA) and the airborne frac-
tion of cumulative carbon emissions (DCA/DET). If defined under
conditions of constant doubled pre-industrial atmospheric CO2, DT
is equal to the equilibrium climate sensitivity, and if defined under
doubled CO2 conditions in a simulation in which CO2 increases at
1% per year, DT is equal to the transient climate response1.

Both the airborne fraction of cumulative emissions and the tem-
perature change per unit atmospheric carbon increase are dependent
on the atmospheric CO2 concentration and its rate of increase;
however, the CCR (as the product of the two) shows a remarkable
constancy with time. This can be seen in Fig. 2, which shows three
model simulations using the University of Victoria Earth System
Climate Model9 (UVic ESCM, see Methods), an intermediate-
complexity coupled climate–carbon model. In all simulations, we
prescribed atmospheric CO2 concentrations and used the model’s
interactive carbon sinks to diagnose the implied anthropogenic
CO2 emissions consistent with the prescribed concentration
changes10. In the first simulation (Fig. 2a) we increased atmospheric
CO2 by 1% per year for 70 years; in the second and third simulations
(Fig. 2b), atmospheric CO2 was doubled (solid lines) or quadrupled
(dashed lines) instantaneously and held constant for 1,000 years. In
all simulations, the airborne fraction of cumulative emissions
decreased over time, whereas the temperature change per unit change
in atmospheric carbon increased with time. After an initial adjust-
ment period of about a decade, the CCR remained almost constant at
,1.7 uC per Tt C emitted.

1Department of Geography, Planning and Environment, Concordia University, 1455 de Maisonneuve Blvd W., Montreal, Quebec, H3G 1M8, Canada. 2Canadian Centre for Climate
Modelling and Analysis, Environment Canada, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada. 3Met Office Hadley Centre, FitzRoy Road, Exeter, Devon, EX1 3PB, UK.

CO2 concentrationCO2 emission Climate change

Carbon sensitivity Climate sensitivity

Climate–carbon feedbacks

Carbon–climate response (CCR)

Figure 1 | Schematic representation of the progression from CO2 emissions
to climate change. We define ‘carbon sensitivity’ as the increase in
atmospheric CO2 concentrations that results from CO2 emissions, as
determined by the strength of natural carbon sinks. ‘Climate sensitivity’ is
shown here as a general characterization of the temperature response to
atmospheric CO2 changes. Feedbacks between climate change and the
strength of carbon sinks are shown as the upper dotted arrow
(climate–carbon feedbacks). The CCR aggregates the climate and carbon
sensitivities (including climate–carbon feedbacks) into a single metric
representing the net temperature change per unit carbon emitted.
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Figure 1: Schematic representation of the progression from CO2 emissions to climate
change.7

the CCR is defined as the ratio of temperature change to cumulative carbon emissions.

It aggregates the well-known concept of climate sensitivity (the temperature change in

response to increased atmospheric CO2) and of ‘carbon sensitivity’ (the increase in atmo-

spheric CO2 concentrations resulting from CO2 emissions as mediated by natural carbon

sinks), while accounting for climate carbon cycle feedbacks. The CCR is claimed to be di-

rectly policy relevant, especially for climate change mitigation decisions. It combines the

uncertainties associated with climate sensitivity, carbon sinks and climate-carbon feed-

backs into a single metric.

Based on available historical data and observations, the CCR has been estimated by

Matthews et al. (2009) to belong to the interval 1.0-2.1◦C per trillion tones of carbon

(TtC) for the period 1990-1999, with a best estimate of 1.5◦C per TtC. The observational

estimates of CCR are illustrated in the next figure. As can be observed, even when data

Figure 2: Observational estimates of CCR.8

about emissions and temperature changes are available, the exact relationship between

7Reprinted by permission from Macmillan Publishers Ltd: Nature 459: 829–832, copyright 2009.
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the two cannot be established with certainty. We posit a stochastic linear relationship

between emissions E and temperature increases T given by

T = θTE + εT . (3)

Here θT is a structural CCR parameter and εT is a random component that models the

statistical performance of the underlying climate model due to measurement errors and to

possible shocks.9 It represents the unexplained variation caused by –possibly many– minor

explanatory variables that we are “unable and unwilling to specify” (Marschak, 1953). The

value of the CCR parameter has been shown to be remarkably constant within a given cli-

mate model, though it may varies across models due to differences in the way climate and

carbon sensitivities are integrated. Figure 3 below reports the results of estimated CCR

from eleven coupled climate-carbon cycle models participating in a model inter-comparison

project (Friedlingstein et al., 2006). The figure presents the global temperature change

as a function of cumulative carbon emissions. The relationship is remarkably linear for

almost all the different models, thus justifying the linear form posited in (3). In this case,

the CCR parameter θT for each model is nothing but the slope of the line that represents

the intrinsic value of temperature change per unit of carbon emitted.

be used as an estimate of the centennial-scale temperature legacy of
these emissions. As a result, our estimates of CCR can be inverted to
estimate the total allowable anthropogenic carbon emissions per
degree of long-term temperature change.

From our model-based estimate of CCR, we estimate allowable
emissions of 1.25 TtC (range, 0.95–2TtC) for 2 uC warming relative
to pre-industrial temperature; our observationally based best estimate
of allowable emissions for 2 uC of warming is 1.4 TtC (5–95% con-
fidence interval, 1.0 to 1.9 TtC). Given total CO2 emissions until now
of approximately 0.5Tt C from fossil fuels and land-use change14,15,
this implies that total future carbon emissions consistent with 2 uC of
warming must be restricted to a best estimate of about 0.8Tt C
(0.7 Tt C based on themodel ensemblemean; 0.9 TtC based on obser-
vational constraints).

We emphasize, however, that the calculated uncertainty on this
number is quite large (0.4 to 1.5 Tt C). Furthermore, we are unable to
exclude the possibility of higher values of CCR (and consequently
lower values of allowable emissions), owing particularly to poorly

quantified uncertainties in historical land-use change emissions and
structural uncertainties in the simulated sulphate aerosol response.
For example, the allowable emissions for a particular warming
target calculated by ref. 5 were lower, because they used a higher
observational estimate of CO2-attributable warming as well as a
climate–carbon model which simulated non-negligible zero emis-
sions commitment under conditions of high climate sensitivity.
We note also that our analysis of allowable emissions applies specif-
ically to CO2-induced warming, and does not account for the effects
of other greenhouse gases or aerosols.

The CCR is a simple, yet robust representation of the global tem-
perature response to anthropogenic CO2 emissions, and as such is
directly relevant to current policy negotiations surrounding inter-
national climatemitigation efforts. The EuropeanUnionhas proposed
restricting global warming to less than 2 uC above pre-industrial tem-
peratures16; however, large uncertainty in equilibrium climate sensi-
tivity17 prevents confident estimates of the CO2 stabilization level
required to avoid 2 uCwarming, and climate sensitivity alone provides
no policy-useful information about the allowable CO2 emissions for a
given stabilization level. The CCR represents a synthesis of previous
efforts to quantify the temperature response to anthropogenic CO2

emissions by aggregating the uncertainties associated with climate
sensitivity, carbon sinks and climate–carbon feedbacks into a single
well-constrained metric of climate change that is related directly to
cumulative carbon emissions.

METHODS SUMMARY
For the idealized model experiments (1% per year CO2 increase; doubled/quad-
rupled CO2) we used the UVic ESCM version 2.8 (refs 9, 18–20). The UVic
ESCM is a computationally efficient coupled climate–carbon model, with inter-
active representations of three-dimensional ocean circulation, atmospheric
energy and moisture balances, sea ice dynamics and thermodynamics, dynamic
vegetation and the global carbon cycle (including land and both inorganic and
organic ocean carbon). Version 2.7 of the UVic ESCM was one of the 11 par-
ticipating models in C4MIP11, in which models were driven by a common CO2

emissions scenario and carbon sinks and atmospheric CO2 concentrations were
calculated interactively until the year 2100. From the C4MIP simulations, we
estimated CCR using globally averaged temperature change and accumulated
carbon emissions at the year of CO2 doubling in each simulation.
Our observational estimate of CCR was derived using estimates of CO2-attri-

butable warming and cumulative CO2 emissions for each decade of the twentieth
century relative to 1900–09. We estimated CO2-attributable warming using an
estimate of greenhouse-gas-attributable warming12, scaled by the ratio of CO2 to
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Figure 4 | Observational estimates of CCR. CCR was estimated for each
decade of the twentieth century after 1910 by scaling an observationally
constrained estimate of greenhouse-gas-attributable warming relative to
1900–09 by the ratio of CO2 forcing to total greenhouse gas forcing, and
dividing by cumulative anthropogenic carbon emissions over the same
period. This observationally constrained estimate of CCR is both stable in
time and consistent with the estimates derived from model simulations.
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Figure 3 | CCRestimated from theC4MIP simulations11. a, Decadal-average
temperature change plotted as a function of cumulative carbon emissions,
showing a near-linear relationship for both individual models (coloured
lines) and the ensemble mean (black line). b, Temperature change per
cumulative carbon emitted for each decade from 1900 to 2100 relative to the
first decade of each model simulation. Over most of the twenty-first century
portion of the simulations, CCR values in each model are remarkably
constant in time.

NATURE |Vol 459 | 11 June 2009 LETTERS

831
 Macmillan Publishers Limited. All rights reserved©2009

Figure 3: CCR estimated from different coupled climate-carbon simulation models.10

The value of the CCR for each model are presented in Table 1. As can be observed,

9A probability model quantifies the physical part of uncertainty, using “analogies with canonical random
mechanisms that serve as benchmark” (Marinacci, 2015). So, we can regard random mechanisms as the
thermometers of probability.
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Model name CCR (◦C/TtC) Model name CCR (◦C/TtC)

BERN-CC 1.1 IPSL-CM4-LOOP 1.9
CSM-1 1.0 LLNL 1.4
CLIMBER2-LPJ 1.5 MPI 1.9
FRCGC 1.7 UMD 1.6
HADCM3LC 2.1 UVIC-2.7d 1.9
IPSL-CM2C 1.7 Mean 1.6

Table 1: Values of the estimated CCR parameters from the eleven coupled climate-carbon
models participating in the C4MIP project

model-based estimates of CCR range from 1.0 to 2.1◦C per TtC.11 Note that the un-

certainty about the correct linear model (3), so about the CCR parameter, is epistemic.

Within each such specification, there is still a layer of risk via the term εT .

Socio-economic uncertainty The second source of uncertainty faced by policy makers

in the context of climate change concerns the relationship between global temperature

increases and economic impacts. In an ideal world, physical and economic sciences should

provide a theoretical underpinning for such relationship. In reality, the economic impact of

global warming is complex and hard to predict (Pindyck, 2007). In the language of climate

change economics, we have little information about the damage function d that represents

this relationship between an increase in temperature T and the economic damage D or

loss (usually expressed as fraction of GDP, see Pindyck 2013a, 2015). In other words, we

do not have any economic or physical theory to help us assessing the “correct” functional

form of this relationship. Moreover, since climate change mainly concerns events that we

have never encountered so far, little data or empirical information can be used to assess

both the degree of steepness of the damage function and the point where steepness begins.

Traditionally, what integrated models of climate have been doing to deal with this problem

is to use arbitrary functions to describe how GDP goes down when temperature increases.

These functions, that rely on strong assumptions, have been subject to substantial criticism

(Pindyck, 2013a; Howard et al., 2014; Howard, 2014), yet constitute the best approximation

policy makers have at disposal. A typical damage function that has been used in this

literature is the quadratic damage function

D = θDT
2 + εD. (4)

11The differences observed in the projection of the climate response to CO2 emissions are due to different
reasons such as different transient climate responses or carbon sensitivities as explained in the Supplemen-
tary Information of Matthews et al. (2009).
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which is for example used in the DICE model of Nordhaus (1993); Nordhaus and Sztorc

(2013).12 The standard approach to calibrate this function has been to concentrate on the

domain of relatively small increases in temperature, which is the only one for which we

have some information at disposal. In the past few years, several studies have attempted

to assess the impacts of global warming (or equivalently, the benefits from reducing GHG

emissions).13 These studies have used different methods –expert elicitation, enumeration,

statistical methods, etc.– and have looked at different warming scenarios (usually within

the range 1.0-3.0◦C warming). The results of these studies, summarized in Table SM10-1 of

IPCC (2014a), currently represent the best available information we have on the potential

impacts resulting from climate change.

The lack of theoretical or empirical foundations concerning the damage function and

its “correct” functional form does not matter too much when looking at relatively small

temperature increases since there is a wide consensus that damages will be low at these

levels. This is no longer the case for higher increases in temperature, which are associated

with much stronger degrees of uncertainty. We have for example almost no idea of what

damage to expect if temperature increases reach +5◦C relative to preindustrial levels.

Considering a temperature increase of T = 5 in (4) may therefore be misleading when

analyzing climate policy given that calibration has been realized with data limited to small

fluctuations in temperature taking place over relatively short periods of time (Pindyck,

2013a).

In a recent contribution, Drouet et al. (2015) summarize the information concerning

total damages from global warming coming from the last IPCC report. These authors use

twenty estimates of total economic effects of climate change to fit three different probabilis-

tic damage functions. The results are presented in the next figure. Aggregating Drouet

et al.’s (2015) specifications, the damage function can be represented by the following

expression:

D = θ1DT + θ2DT
2 + θ3DT

6 + θ4D(e−θ5DT
2 − 1) + εD, (5)

for which three specifications of parameters are considered. When θ3D = θ4D = 0, the

damage function has a quadratic form (first column of the figure) analogous to the one used

in DICE and in most IAMs. When θ1D = θ2D = θ3D = 0 and θ4D = 1 (second column of

the figure), we obtain a probabilistic version of the exponential damage function proposed

by Weitzman (2009). This functional form is clearly steeper. It excludes the possibility of

12DICE stands for Dynamic Integrated Climate and Economy. To be precise, the damage function
presented in equation (4) is the one used in the latest version of the DICE code (Nordhaus and Sztorc,
2013). It is a slight variant of the version of the quadratic form presented in the theoretical description
of DICE, in which climate damages are bounded to 100% (i.e., climate change is assumed to only reduce
current income, but may not destruct pre-existing assets). At low temperature increases, the two versions
of the quadratic damage function are virtually identical.

13For an overview of these studies, see for example Pindyck (2013a); Heal and Millner (2014).
14Reprinted by permission from Macmillan Publishers.
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Supplementary Figure S7: Probabilistic economic damage functions of temper-
ature increase: quadratic, exponential and sextic. The brown dots are the 20
estimates of the global economic loss expressed in % of the gross world production,
the confidence interval is also indicated when available. The plain black line is
the fitted curve of the estimates. The two colored areas around the fitted curves
represent the distribution of the economic loss, respectively around the 25th-75th
and the 10th-90th quantiles.

12

Figure 4: Probabilistic economic damage functions of temperature increase.14

potential benefits from climate change and allows for higher damages when temperature

increases reach 4◦C and 5◦C. Finally, when θ1D = θ4D = 0 (third column of the figure),

the damage function has the sextic form proposed by Weitzman (2012). According to this

specification, high temperature increases are disastrous.

To illustrate the difference among the possible specifications of the damage function,

consider Table 2 below. It presents the mean damages (and the 5th-95th percentiles) asso-

ciated with global warming expressed as percentages of world GDP, and obtained under

the previous three different specifications of the damage function. The first row presents

the results if temperature increases above preindustrial level reach +2◦C. This is, indeed,

the threshold that 195 countries have agreed to struggle for at the COP21. The second

row presents the possible economic damages if the temperature increases reach +3◦C. This

level of warming roughly corresponds to the median 2100 temperature increase projection

if “nationally determined contributions” (NDCs; i.e., climate pledges that each country

made to tackle the problem of climate change) are implemented as planned (Bosetti et al.,

2017).15 Finally, the last two rows concern the more extreme temperature increases of

+4◦C and +5◦C. These levels of warming roughly determine the bounds of the temper-

ature changes we could expect under a business-as-usual situation (i.e., if no additional

effort are made to constrain emissions; IPCC, 2014b).

These three damage functions do not have a clear theoretical underpinning, they just

fit the best data currently available on potential losses using different specifications. The

15Models used for projections of future temperature increases are the ones whose results on transient
climate response are reported in the IPCC fifth assessment report. The hypothesis that current NDCs are
projected beyond 2030 is here made for these projections. See Bosetti et al. (2017) for more details.
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Temperature increase
Type of damage function

since preindustrial level Quadratic Exponential Sextic

2◦ C
1.01 0.54 0.49

[0.74; 2.09] [0.44; 0.63] [0.37; 0.90]

3◦ C
2.42 1.66 1.93

[2.04; 3.81] [1.28; 2.02] [1.72; 2.73]

4◦ C
4.45 4.68 8.5

[3.96; 6.00] [3.34; 6.14] [8.04; 10.49]

5◦ C
7.07 14.09 30.54

[6.49; 8.63] [8.93; 20.56] [29.40; 36.14]

Notes: Mean damages, 5th-95th confidence interval in brackets

Table 2: Economic damages from climate change (in % of world GDP)

random component εD accounts for omitted variables and measurement errors. There

is, therefore, a high degree of structural uncertainty regarding the “correctness” of the

functional form representing this relationship. This uncertainty is of the epistemic nature:

the policy maker does not know which is the most accurate model to describe the rela-

tionship between global warming and GDP among the three potential models proposed

by economists. The probability that may be attached to each model is therefore a repre-

sentation of the policy maker’s degree of belief. Yet, a layer of risk is also present within

each model via the term εD.

2.3 Decision under uncertainty

Let us now go back to the decision problem faced by our policy maker, who has to

choose the action representing the level of emissions –i.e., a = E– knowing that it will

affect global temperatures via the carbon-climate equation (3) which, in turn, will affect

the economic output via a damage function.

To simplify the computation, let us assume that damages are represented by the

quadratic equation (4). As we argued in the previous section, the relevant scientific and

socio-economic relationships may be summarized by the following nonlinear system:{
T = θTE + εT

D = θDT
2 + εD

(6)

States have, in general, both random and structural components, so they have the form

s = (ε, θ).
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In our decision problem, the vector ε = (εT , εD) represents the pair of random shocks

affecting the climate and economic systems, while the vector θ = (θT , θD) specifies the

structural coefficients, parametrizing via θT a model climate system and via θD a model

economy. By substitution from the system (6), the damage function has thus the form

d (E, ε, θ) = θDθ
2
TE

2 + θDε
2
T + 2θDEεT + εD.

For each policy E, the consequence function

ρ (E, ε, θ) = −d (E, ε, θ)− c (E)

specifies the overall monetary outcome in terms of some economic variable of interest –e.g.,

consumption or GDP– given the random components and the monetary cost c (E) of the

policy itself.

We suppose that, following the ex ante scientific and socio-economic information, the

policy maker is able to posit a set of potential models M describing the likelihoods of

the different states. This set of models is taken as a datum of the decision problem: the

policy maker behaves as if she knows that states are generated by a probability model m

that belongs to the collection M . We thus abstract from model misspecification, which of

course would magnify the issues that we will discuss.

The positive scalar m (ε, θ) gives the joint probability of shock ε and parameter θ. It

is natural to adopt the factorization m = q × δθ, that is,

m
(
ε, θ′

)
=

{
q (ε) if θ′ = θ

0 else
(7)

where q (ε) is the probability of ε and δθ is the probability distribution concentrated on θ.16

Each model corresponds to a shock distribution q of the vector ε and to a model climate

system/economy θ. In this factorization,17 two kinds of model uncertainties emerge. First,

there is uncertainty about the economic and physical theories that underpin the models:

different θs correspond to different such theories. Second, there is uncertainty about the

statistical performance of such theories, due to shocks and to measurement errors: different

q correspond to different such performances. We may call, respectively, theoretical model

uncertainty and stochastic model uncertainty the two types of uncertainty. The former

is more fundamental than the latter because it reflects the scientific (natural and social)

views of policy makers. For this reason, we assume that the shocks’ distribution q is known

and common across models. If so, the only epistemic uncertainty that remains is about

the structural component θ. Different models thus correspond to different specifications

16That is, δθ (θ) = 1 and δθ (θ′) = 0 if θ′ 6= θ.
17In a monetary policy context, a similar factorization was assumed in Battigalli et al. (2016).
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of the structural component, so we can index the models via the structural parameters

mθ = q × δθ

and write M = {mθ}θ∈Θ, where mθ parametrizes model (7).18 Given a structural pa-

rameter θ, aleatory uncertainty is quantified by the known distribution q. To address the

epistemic uncertainty about θ, the DM may have a subjective prior probability distribution

µ that quantifies her belief –based on her personal information– about the true structural

parameter. So, µ(θ) is the DM’s subjective belief that θ is the true parameter, that is,

that mθ is the true model.

Now that all the elements of the decision problem under uncertainty have been intro-

duced, let us turn to the way they can be combined to make the best possible decision.

For this purpose, we describe different decision criteria developed in economic theory that

may be used for problems of decision under uncertainty.

3 Classical subjective expected utility

We start with the description of the decision criterion that, for several decades, has

been viewed as the standard way to consider rational decision making under uncertainty.

This criterion, which dates back to the seminal works of von Neumann and Morgenstern

(1947), Wald (1950), Savage (1954), and Marschak and Radner (1972), has recently been

revisited by Cerreia-Vioglio et al. (2013) to accommodate explicitly the presence of model

uncertainty.

Let us consider the decision problem (A,S,C, ρ,%) defined in Section 2. Assume that a

von Neumann-Morgernstern utility function u : C → R translates economic consequences,

measured in monetary terms, into utility levels. As is well-known, this function captures

risk attitudes (i.e., attitudes towards aleatory uncertainty). For each action a and each

model mθ characterizing a combination of climate/economy environment, it is therefore

possible to compute the expected reward (or payoff ) associated with a given action:

R(a, θ) =
∑
s∈S

u (ρ(a, s))mθ(s). (8)

For instance, under risk neutrality we have

R (E, θ) = −θDθ2
TE

2 − θD − c(E)

18If we drop the assumption that q is known, we have mχ,θ = qχ × δθ where χ parametrizes the possible
distributions q. In this case, the belief is over two parameters, that is, µ (χ, θ). An intermediate case
is when the distribution q is assumed to be know but may vary across models. In this case, we have
mθ = qθ × δθ so the belief is still on a single parameter, that is, it has the form µ (θ).
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provided the random components have zero mean and unit variance.

Given that different models exist and that the DM does not know which is the correct

one, she considers the expected payoff of each possible model and aggregates them out

by performing a weighted average according to the relative weights that she associates

with each of them (i.e., her prior probability µ). The classical subjective expected utility

decision criterion is:

Veu(a) =
∑
θ∈Θ

R (a, θ)µ(θ). (9)

The optimal policy therefore consists in choosing the action â that maximizes this crite-

rion.19 Formally, this amounts to solving the optimization problem (2), which here takes

the form

max
a

∑
θ∈Θ

R (a, θ)µ(θ) sub a ∈ A (10)

Optimal actions therefore depend on DM’s preferences via the utility function u and the

prior probability µ. If the prior distribution is uniform, criterion Veu consists in an average

of the expected rewards R(a,mθ) where all the models are equally weighted. The optimal

policy maximizes such average expected payoff.

Criterion (9) is a Bayesian two-stage criterion that describes both layers of uncertainty,

risk and model uncertainty, via standard probability measures. It is possible to write it à

la Savage (1954) as a single stage criterion:

Veu(a) =
∑
s∈S

u (ρ(a, s)) m̄(s), (11)

where m̄ (s) =
∑

θ∈Θmθ (s)µ(θ) is the so-called predictive distribution on states. Under a

uniform prior, in our example m̄ would correspond to the model that features the mean

CCR and the mean damage. In words, the equality between expressions (9) and (11) tells

us the following: considering a collection of models M and aggregating them is the same as

considering a unique average model. This is made possible only because the same attitude

is considered towards both risk and model uncertainty (see Marinacci, 2015). To see this,

note that criterion (9) may be rewritten as

Veu(a) =
∑
θ∈Θ

(
u ◦ u−1

)
(R (a, θ))µ(θ)

=
∑
θ∈Θ

u
(
u−1 (R (a, θ))

)
µ(θ)

19To ease matters, we restrict our attention to finite state and model spaces. Integrals with respect to
probability density functions would arise without such assumption.
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in which it is made clear that the outer u represents attitude towards model uncertainty,

while the inner one –entering the monetary certainty equivalent u−1 (R (a, θ))– represents

risk attitude. In that sense, criterion (9) overshadows the DM’s reaction to the variability

that may exists across models. Considering equally the different CCRs or a single CCR=

1.6 on which everyone would agree, for example leads exactly to the same optimal emission

policy. Indeed, these very different scenarios reduce to the same predictive model m̄.

Criterion (9) therefore presupposes that the policy maker has the same attitude towards

aleatory and epistemic uncertainty.

Before relaxing, in Section 6, the assumption of equal treatment between the different

layers of uncertainty, let us consider two important special cases of criterion (9). First,

suppose that the DM considers (wrongly, possibly) only a parameter to be the correct one,

so there is a 100% weight on it; formally, µ(θ) = 1. The two-stage criterion (9) then reduces

to Veu (a) = R(a, θ). In this case, model uncertainty is still part of the decision problem,

but the DM is dogmatic about a specific model being the correct one and therefore does not

take into account any other model. Second, suppose that there is only one parameter in

the collection Θ, for instance there is no scientific uncertainty about the value of the CCR

parameter nor economic uncertainty about the correct damage function. In this case, the

DM knows that θ is the correct parameter. Epistemic uncertainty is not anymore present

in the decision problem, which is a decision problem under risk –as represented by model

mθ. In this case, criterion (9) reduces to Veu (a) = R (a, θ) interpreted as a von Neumann-

Morgenstern risk criterion. This is typically what is implied by the rational expectations

hypothesis often adopted in economics, which assumes that DMs know the correct model.

We now move beyond the classical subjective expected utility criterion (9) and discuss

alternative decision criteria under uncertainty.20

4 Unanimity preferences

One way to deal with uncertainty is to allow for preferences to be incomplete. Be-

cause of the lack of knowledge concerning both the science of climate and the impact of

climate change on the economy, the policy maker might not be able to rank some pairs of

alternative actions. If this is the case, the preference % is no longer complete (as so far

assumed) but incomplete. Assume, following the classic analysis of Bewley (2002), that

the DM knows her tastes and is able to rank any pair of consequences, so there is a well

defined utility function u. Imagine, however, that the DM is unable to rank some pairs

of actions because of insufficient information about them. Because of its incompleteness,

the preference % cannot be represented via a numerical decision criterion V , but via a

non-numerical unanimity rule:

20Note that these decision criteria have axiomatic behavioral foundations that clarify their nature. We
refer interested readers to Gilboa and Marinacci (2013).
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a � a′ ⇐⇒ R(a, θ) ≥ R(a′, θ) ∀θ ∈ Θ. (12)

In words, action a is preferred to another action a′ if and only if, according to all the

probability models mθ, the expected reward associated with action a is higher than that

associated with action a′.21 In our emission example, this would be the case if and only if

policy a is better than policy a′ according to all the different climate/economy models.

A unanimity criterion is often unable to specify what the DM should do. This is

the case for example if a policy (say, a low level of emission policy) performs better

than another policy (say, a high level of emissions policy) according to some models, but

performs worse according to other models. If, nevertheless, a decision has to be made,

one needs to “complete” the criterion when it remains silent. A possibility is to adopt

a default decision rule that relies on a status quo action that remains the default action

until it is replaced by an alternative action that is unanimously better. In climate change

economics, this status quo situation has typically consisted in the “wait-and-see” policy,

and uncertainty has long been seen as an excuse for inaction in climate policy. Other

approaches suggest to complete preferences with one of the criteria that are presented

below (Gilboa et al., 2010, Cerreia-Vioglio, 2016), so to take care of the burden of choice

in a less ad hoc manner than status quo.

In sum, the unanimous criterion (12) may turn out to be useless in situations where

a choice has to be made. In the next sections, we will present alternative criteria that

preserve completeness, so the numerical nature of the decision criterion. In particular,

we will relax the assumption of the classical subjective expected utility theory according

to which risk and model uncertainty attitudes are both captured by the same function

u. In principle, there is indeed no reason to expect these two attitudes to be equal. A

policy maker might well be more prone to be confronted with the risk due to the intrinsic

randomness of some events than to be confronted to the model uncertainty due to a lack

of, say scientific, knowledge. Recent experimental evidence on both students and real-life

policy makers shows that this is indeed the case (Berger and Bosetti, 2017). A policy

maker fulfilling this condition is said to be more averse to model uncertainty than to risk,

and consequently exhibits uncertainty (or ambiguity) aversion. This latter behavioral

characteristic, first highlighted by Ellsberg (1961), has been shown to robustly describe

the behavior of individuals in situations of uncertainty.

21The unanimity criterion (12) is based on the general form of Bewley’s model studied by Gilboa et al.
(2010), but it is conceptually different in that here Θ is posited.
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5 Classical analysis

The maxmin criterion of Wald (1950) is a first decision criterion that considers attitudes

towards risk and model uncertainty differently. This criterion is extremely cautious because

it makes the DM to consider only the model giving her the lowest expected payoff. In our

examples, this means that only the “worst” out of the possible climate/economy models

is considered when choosing the optimal climate policy. Prior probabilities do not play

any role here, so we are in a classical statistics setting. Formally, the maxmin decision

criterion is:

Vmxm(a) = min
θ∈Θ

R (a, θ) . (13)

Choosing the optimal policy under this criterion corresponds to finding the value of a

that maximizes the minimal expected payoff obtained over the set of possible probability

models (this is why this criterion is called “maxmin”). This criterion has, for example,

recently been used by Rezai and van der Ploeg (2017) to study the impact of scientific

uncertainty regarding the “correct” climate models to be used in the context of integrated

assessment models.

6 Uncertainty averse preferences

6.1 Bayesian analysis

Another way to distinguish attitudes to model uncertainty and to risk is to adapt the

smooth ambiguity model developed by Klibanoff et al. (2005). In that case, the smooth

decision criterion to be maximized is:

Vsmt(a) =
∑
θ∈Θ

φ (R (a, θ))µ(θ), (14)

where φ ≡ v ◦ u−1 represents the attitude towards uncertainty that results from the

combination of attitudes towards model uncertainty v and towards risk u. Concavity of φ

reflects uncertainty aversion that, in this setup, amounts to a stronger aversion to model

uncertainty than to risk –i.e., v is more concave than u (cf. Marinacci, 2015).

Like (9), also the smooth ambiguity criterion (14) is a two-stage Bayesian criterion in

which both layers of uncertainty are described by standard probability measures. It may

be written as
∑

θ∈Θ v
(
u−1 (R (a, θ))

)
µ(θ) and interpreted as follows. In the first stage, the

DM evaluates the expected payoff of policy a per each possible model mθ and expresses

it in monetary terms through a certainty equivalent cθ ≡ u−1 (R(a,mθ)). The certainty

equivalents cθ represent the amount of the economic variable of interest –e.g., GDP or

consumption– which would make the DM indifferent between getting such amount for
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sure and facing the risk that model θ involves. A certainty equivalent cθ may be computed

per each model. It depends on risk attitude via the function u: the more risk averse the

DM is, the lower cθ is. In the second stage the DM addresses model uncertainty, the

decision theoretic scope of which is described by the collection {cθ : θ ∈ Θ} of certainty

equivalents. The DM summarizes the welfare impact of policy a by evaluating an overall

expected payoff
∑

θ∈Θ v(cθ)µ(θ) across the certainty equivalents by using her attitude

towards model uncertainty v and her prior belief µ. This is exactly what represents the

two-stage decision criterion (14).

As before, if the prior distribution is uniform, the certainty equivalents are given the

same weight in computing the overall expected welfare. If model uncertainty in the second

stage is evaluated using risk attitude u, so u = v, we are back to the classical subjective

expected utility criterion (9), which corresponds to a situation of ambiguity neutrality

(function φ is linear in this case, thus the overall expected welfare is the average of the

expected rewards). Interestingly, the maxmin criterion (13) is a limit case of the smooth

decision criterion (14) when model uncertainty tends to infinity (see Klibanoff et al., 2005).

For instance, if φλ(x) = −e−λx we have22

lim
λ→+∞

φ−1
λ

(∑
θ∈Θ

φλ (R (a, θ))µ(θ)

)
= min

θ∈suppµ
R (a, θ) ,

which reduces to (13) when µ has full support, i.e., suppµ = Θ. As here uncertainty

aversion results from higher aversion to model uncertainty than to risk, it should be clear

that the maxmin criterion corresponds to an extreme aversion to model uncertainty relative

to risk.

In a recent contribution, Berger et al. (2017) explicitly made the distinction between

attitudes towards aleatory and epistemic uncertainty while using the smooth criterion to

study the impact of scientific uncertainty regarding the possibility of a particular climate

catastrophe on the optimal level of GHG emissions. Another example of application of this

criterion in climate change economics may be found in the work of Millner et al. (2013).

6.2 Non Bayesian analysis

We already performed non Bayesian analysis when presenting Wald’s maxmin crite-

rion, where priors play no role. Yet, a different departure from the Bayesian framework

originates in the work of Gilboa and Schmeidler (1989).

Multiple priors The multiple priors approach relaxes the assumption that the DM’s

information about model uncertainty is quantified through a single probability distribution

22See Klibanoff et al. (2005), who interpret the coefficient λ can be interpreted in terms of absolute
coefficient of ambiguity aversion.
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µ. Instead, it allows for the possibility that it is quantified by a set C of them because the

DM does not have sufficient information to specify a single prior over the different models.

The multiple priors decision criterion is

Vmp(a) = min
µ∈C

∑
θ∈Θ

R (a, θ)µ(θ). (15)

Contrary to Wald’s extreme criterion –with which it is sometimes confused– the multiple

priors criterion of Gilboa and Schmeidler (1989) considers the least favorable among all

the classical subjective expected utilities determined by each prior µ in C. In our climate

policy example, a particular prior distribution may be the uniform that gives equal weight,

µ(θ) = 1/|M |, to all the possible models, while another prior may for example not consider

some values of the CCR as plausible (in which case, some µ(θ) have a value 0). The classical

subjective expected utilities is then computed for each prior distribution, with the optimal

policy being the one that maximizes the expected payoff obtained with the “worst prior”.

Criterion (15) has also often been called the maxmin criterion, yet it is less extreme

than it may appear at a first glance. The set C of possible priors incorporates both the

attitude towards uncertainty and an information component: a smaller set C may reflect

both better information and/or less uncertainty aversion. In any case, a more general and

less extreme α-version of this model has been axiomatized by Ghirardato et al. (2004) in

which both the “max” and the “min” appear with weights α and 1−α. This more general

form

Vα-mp(a) = αmin
µ∈C

∑
θ∈Θ

R (a, θ)µ(θ) + (1− α) max
µ∈C

∑
θ∈Θ

R (a, θ)µ(θ)

may accommodate milder, even positive, attitudes toward uncertainty.

Two criteria that we have already encountered are special cases of the multiple priors

model. First, the classical subjective expected utility criterion (9) is recovered when the

set C is singleton (i.e., it contains only one element). Second, we return to Wald’s maxmin

criterion (13) when the set C is maximal in that it consists of the set ∆ (Θ) all possible

prior probabilities. Indeed, we have

min
µ∈∆(Θ)

∑
θ∈Θ

R (a, θ)µ(θ) = min
θ∈Θ

R (a, θ) .

So, Wald’s maxmin can be interpreted as the extreme case of maximal “prior uncertainty”.

Robustness Another criterion, known as the variational decision criterion, has been

axiomatized by Maccheroni et al. (2006). It is written as:

Vvr(a) = min
µ∈∆(Θ)

∑
θ∈Θ

R (a, θ)µ(θ) + c (µ)
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Under this criterion, priors are weighted by a convex function c. Importantly, if c is strictly

convex, the criterion Vvr becomes differentiable. This criterion has a penalization form

familiar from robust control theory. In particular, if c is dichotomous, being 0 if µ belongs

to some set C and +∞ otherwise, we are back to the multiple priors criterion (15). In

contrast, if c has the relative entropy form λ−1R (µ ‖ ν) with respect to a reference prior

ν and a coefficient λ > 0, we have the multiplier decision criterion

Vrb(a) = min
µ∈∆(Θ)

∑
θ∈Θ

R (a, θ)µ(θ) +
1

λ
R (µ ‖ ν)

of Hansen and Sargent (2001, 2008). Because of a convex analysis equality (Dupuis and

Ellis, 1997, p. 27), the multiplier decision criterion can be equivalently written in the

smooth ambiguity form

Vrb(a) = φ−1
λ

(∑
θ∈Θ

φλ (R (a, θ))µ(θ)

)
= − 1

λ
log
∑
θ∈Θ

e−λR(a,mθ)µ (θ)

Indeed, as noted by Hansen and Sargent (2007) and Cerreia-Vioglio et al. (2011), the

multiplier decision criterion is, essentially, the intersection of smooth ambiguity averse

and variational representations.23

Examples of applications in climate change economics of the multiplier decision crite-

rion may, for example, be found in the works of Athanassoglou and Xepapadeas (2012),

Rudik (2016), and Xepapadeas and Yannacopoulos (2017).

6.3 Other approaches

The approaches discussed so far have a normative motivation. They assume that DMs

have to cope with uncertainty without expecting to reduce everything to risk, a pretension

that tacitly presumes a much better information than they typically have. Making decision

under a fictitious, even delusional, state of information seems hardly a rational way to

proceed. That said, other approaches have been proposed with a descriptive motivation.

These include, for example, prospect theory (see Wakker, 2010). However, their descriptive

motivation make them less relevant for the climate policy problem that we consider.

Finally, note that another criterion known as minmax regret and due to Savage (1951)

is also sometimes used in the environmental literature. Because it violates the indepen-

dence of irrelevant alternatives, a basic rationality tenet, we however do not discuss this

criterion here and refer the interested reader to a discussion provided in Marinacci (2015).

23These “robust” criteria can be set also in a classical setting, without priors. For instance, the variational
decision criterion becomes V (a) = minθ∈Θ R (a, θ) + c(θ) in a classical setting.
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6.4 Summing up

To sum up, we can represent the previous numerical decision criteria in the following

diagram.

Vrb Vmp

Vvr

Vmxm

Vsmt

Veu

Vmp Vα−mp

Bayesian numerical
decision criteria non Bayesian numerical decision criteria

differentiable

possibly differentiable

non differentiable

special case
limiting case

Figure 5: Representation of alternative decision criteria

7 Application

To illustrate the differences in terms of optimal climate policy among the distinct cri-

teria that we presented, let us go back to our example of a policy maker looking for the

optimal mitigation policy to put in place. For the sake of simplicity, let us assume that

her objective is to choose the level of GHG emissions maximizing the net level of output

of the economy. This level simply corresponds to the level of output net of the damages

due to climate change and of the costs necessary to reduce emissions (the so-called abate-

ment costs). Because of the presence of scientific and socio-economic uncertainties, the net

level of output is itself uncertain.24 Thanks to the best available scientific and economic

information at her disposal, the policy maker knows that thirty three climate/economy

“models” may potentially describe the impact of climate change on the economy. These

models come from the combination of the eleven CCR values describing the possible rela-

tionship between GHG emissions and temperatures, and the three different relationships

between temperature increases and economic damages (see Section 2.2). Each model con-

24The gross level of output and the abatement cost are also potentially uncertain. However, since we
want to focus on the type of uncertainty described above, here we do not consider these additional sources
of uncertainty.
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tains an aleatory component. For each of these thirty three models mθ that we index by

θ, it is possible to compute the expected reward R (E, θ) associated with any emission

policy.25 We can then express these thirty three reward functions in monetary terms by

computing the certainty equivalents c (a, θ) = u−1 (R(E, θ)). These certainty equivalents

are represented in Figure 6.
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Figure 6: Certainty equivalents of output (net of climate damages and of abatement
costs) as functions of cumulative emissions, for different CCR values and different damage
functions: quadratic (1st column), exponential (2nd column) and sextic (3rd column)

The certainty equivalent represent, for each of the thirty three models and each level of

cumulative anthropogenic emission, the certain amount of net output that a policy maker

deems worth as much as the risky net output. In other words, each certainty equivalent

represents a measure of net output that integrates the attitude towards the aleatory part

of uncertainty. The policy maker, however, does not know which is the correct certainty

equivalent. The certainty equivalent is, in that sense, itself uncertain since it depends

on the values of the different structural parameters used. There are thus thirty three

potential certainty equivalents, depending on whether the damage function is quadratic

(first column), exponential (second column) or sextic (third column), and on the value of

the CCR parameter (represented by different colors in Figure 6). For each particular model

representing the impact of climate policy on economic output, it is possible to determine

the optimal action to put in place. This is achieved by finding the level of cumulative

25In this example, the consequence function is simply the net output computed as ρ(E, s) =
Ygross−C(E)

1+D(E,s)
,

where Ygross is the gross output, D(E, s) represents the damages associated with climate change, and C(E)
is the abatement cost. Both damages and costs depend on the action taken (E represents the level of GHG
emissions). The damage function is uncertain as represented by the presence of s, encompassing both a
random and a structural components. The abatement cost function is assumed to be nearly cubic as in
Nordhaus and Sztorc (2013). The von Neumann-Morgernstern utility function u used is a power function,
with a constant relative risk aversion coefficient of 1.5.
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emissions maximizing the certainty equivalents (represented by the dashed vertical lines).

These optimal levels of cumulative GHG emissions since preindustrial levels range from

1.54 TtC to 2.26 TtC, depending on the model considered. Unsurprisingly, lower carbon-

climate response parameters induce higher optimal levels of emissions, while the use of a

sextic damage function to characterize the impact of climate change tends to favor lower

emission policies.

Since the ranking of the certainty equivalents is the same as that of the expected

utilities,26 we can first analyze the results of Figure 6 in the light of the unanimity criterion.

As can be observed, up to the level of 1.54 TtC any level of cumulative emissions is

unanimously better than any inferior level of emissions. To see this, consider for example

the climate policy aiming at 1.5 TtC of cumulative emissions. For any of the thirty

three models presented in Figure 6, it might be checked that this policy dominates –i.e.,

it leads to a higher level of certainty equivalent– any other policy with a lower level of

cumulative emissions (say for example 1 TtC). Analogously, for emission levels superior to

2.26 TtC, a policy aiming at a specific level of cumulative emissions is always unanimously

dominated by any policy aiming at a lower level. For levels of cumulative emissions between

these thresholds 1.54-2.26 TtC, it is however impossible to find any policy satisfying the

unanimity condition. The incompleteness of unanimity preferences therefore prevents any

decision to be taken in such a situation, so other decision criteria need to be followed if

the policy maker has to make a choice.

If the policy maker decides to behave extremely precautionary by taking into account

only the model giving her the lowest expected reward, she only considers the combination

CCR= 2.1/sextic damage, and fixes the level of cumulative emissions to 1.54 TtC. This

policy maker is extremely uncertainty averse in that she uses Wald’s maxmin criterion

(13) illustrated in black in Figure 7. Alternatively, if the policy maker considers aleatory

and model uncertainty the same way, she aggregates the expected rewards by taking a

weighted average over them, where the weights represent her degree of belief in each

specific model. In practice, this means that an overall certainty equivalent aggregating

the different certainty equivalents associated with each specific model may be computed.

This overall certainty equivalent incorporates the policy maker’s attitude towards model

uncertainty exactly in the same way as it incorporates her attitude towards risk. The

overall certainty equivalent under a uniform prior over the possible models –µ(θ) = 1/33

for all θ– is represented in blue in Figure 7. The decision criterion in this case is the classical

subjective expected utility (SEU) criterion (9). The optimal decision is a cumulative level

of emissions of 1.85 TtC since preindustrial levels, which corresponds to the solution of

problem (10).

Instead, if the policy maker is averse to uncertainty, so dislikes more epistemic uncer-

26A certainty equivalent is nothing but a monotonic transformation of an expected utility.
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Figure 7: Decision making criteria and optimal decisions under uncertainty

tainty than risk, but is not as precautionary as a maxmin policy maker, she may compute

an overall certainty equivalent by means of a function v –more concave than function

u–representing her attitude towards model uncertainty. An example of such overall cer-

Criterion used
Optimal decision

[in cumulative emissions since predindustrial levels (TtC)]

Vmxm a∗mxm = 1.54
Veu a∗eu = 1.85
Vsmt a∗smt = 1.81
Vmp a∗mp = 1.77

Table 3: Example of optimal policies under uncertainty

tainty equivalent is represented in red in Figure 7.27 In this case, the decision criterion is

the smooth one (14), and the optimal level of cumulative emissions is lower than under

expected utility. It approximately corresponds to 1.81 TtC since preindustrial levels.

Finally, if the policy maker follows the multiple priors approach (15), she considers

different probability measures over the models, compute the expected utility for each of

them, and considers only the one giving her the lowest level of expected reward. An exam-

ple of such overall certainty equivalent is represented in purple in Figure 7. It represents

the minimum expected reward obtained for two distinct priors: the uniform one where all

the thirty three models are weighted equally, and one which considers the lower values of

CCR as implausible (and therefore puts a weight 0 to them and a uniform prior over the

27In this example the model uncertainty aversion function v is also a power function, with a constant
relative model uncertainty aversion coefficient of 15. The prior distribution remains the uniform one.
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remaining models). The optimal level of cumulative emissions under the multiple priors

model in this situation is lower than under the expected utility one. It corresponds to

1.77 TtC since preindustrial levels. The optimal decisions for each of these criteria is

summarized in Table 3.

8 Discussions and conclusion

While the application we presented in the previous section may be too simplistic to

be actually used by policy makers to design climate policies, it enables us to illustrate

the differences between alternative decision criteria that can be used in the presence of

uncertainty.

When it comes to making a choice in the presence of uncertainty, which is then the

criterion one should adopt? As argued above, the standard line of reasoning that has

traditionally been followed in climate policy is that, to make coherent choices, the policy

maker should use either von Neumann-Morgenstern expected utility if she knows the true

model or, otherwise, Savage’s subjective expected utility with respect to her subjective

probabilities over alternative models. In the context of our example, what this approach

implicitly assumes is that, if epistemic uncertainty is present, it is treated in the same way

as aleatory uncertainty, so the policy maker uses the “predictive” model (11). For a long

time, the expected utility theory has been seen as the only convincing approach to make

rational choices under uncertainty. Following this idea, Broome (2012) for example writes

that, in the context of policy decisions regarding global warming:

“The lack of firm probabilities is not a reason to give up expected value theory.

You might despair and adopt some other way of coping with uncertainty; you

might adopt some version of the precautionary principle, say. That would be

a mistake. Stick with expected value theory, since it is very well founded, and

do your best with probabilities and values.”

While the axiomatic foundations of the expected utility approach appear at a first

glance compelling, the claim that they constitute a necessary condition for rationality in

decision making has, however, been challenged at least since Ellsberg (1961). For example,

recently Gilboa et al. (2008, 2009, 2012); Gilboa and Marinacci (2013) argue that behav-

ing in accordance with Savage’s axioms raises several difficulties and that relaxing the

assumption that decision makers are Bayesian might well be rational. It does not mean

that decision makers are unable to think probabilistically or fail to compute probabilities

correctly, but rather that they acknowledge that expected utility requires more informa-

tion than they actually have, so its use would require some arbitrary assumptions that

supplement the limited information.
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The decision frameworks that we present in this paper are consistent with such an

interpretation of rationality, so they are compatible with a normative assessment of optimal

climate policies. In a context in which a variety of alternative models exist –each implying

a different stochastic forecast– but where information about the accuracy of each of them

is limited, such alternative decision frameworks may prove to be desirable. Indeed, the

decision adopted is robust in the sense that the selected action does reasonably well across

a range of models (Mukerji, 2009). This property seems particularly valuable when the

consequences of the actions taken have long-lasting and global impacts, as it is the case

with climate change.

When being asked to take actions under uncertainty, policy makers might well feel it

is more rational to use these alternative criteria than to follow a standard expected utility

approach. All too often, uncertainty has been used as an excuse for insufficient action

in climate policy making. The most important –but potentially most difficult– thing to

do is to acknowledge that there are things which we just do not know and then act in

consequence.
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