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Abstract

We develop a general framework to study source-dependent preferences in economic

contexts. We behaviorally identify two key features. First, we drop the assumption

of uniform uncertainty attitudes and allow for source-dependent attitudes. Second,

we introduce subjective prices to compare outcomes across different sources. Our

model evaluates profiles source-wise, by computing the source-dependent certainty

equivalents; the latter are converted into the unit of account of a common source and

then aggregated into a unique evaluation. By viewing time and location as instances

of sources, we show that subjective discount factors and subjective exchange rates are

emblematic examples of subjective prices. Finally, we use the model to explore the

implications on optimal portfolio allocations and home bias.

Key words: source preference, source-dependent uncertainty attitudes, subjective

prices, competence hypothesis, home bias

1 Introduction

1.1 Reductionisms

In applications the consequences of different courses of action are often summarized

through basic quantitative indicators, like amounts of money or casualties. Though conve-

nient, these succinct expressions are reduced forms of genuine, but often complicated and

elusive to come by, consequences that record “anything that may happen to the person”

as Savage (1954, p. 13) prescribes. In the classic Savagean paradigm, utility functions are

defined over such all inclusive consequences, and expected utilities are computed relative

to a subjective probability on states of nature that captures agents’ beliefs. Reduced-form

∗Cerreia-Vioglio gratefully acknowledges the financial support of ERC (grant SDDM-TEA), Marinacci

of ERC (grant INDIMACRO), and Minardi of the Investissements d’Avenir (ANR-11-IDEX-0003/Labex

Ecodec/ANR-11-LABX-0047).
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consequences may give rise to problematic issues within this standard setting. As Smith

(1969, p. 325) eloquently writes, “[...] if a man loses a dice game bet he and his associates

might consider that he was merely the victim of bad luck [...]. But if he loses from incor-

rectly predicting a rise in the Dow-Jones, he may perceive that his colleagues feel that he

should have known better. [...] the utility of money or other rewards is not independent of

the circumstances under which it is obtained.” A reduced-form consequence is, by its very

nature, a crude description of all the relevant outcomes of a course of action. Altogether

different consequences may, for example, end up being translated in the same amount of

money, so in the same reduced-form consequence.1

This “consequence reductionism” impacts on another key feature of Savage’s approach,

that is, the reduction of uncertainty to risk: expected utilities are, effectively, computed

with respect to the distributions on consequences (lotteries) induced by the subjective

probability via the actions. Risk attitudes are determined with respect to these induced

distributions, regardless of the underlying state spaces. As Smith’s quote indicates, this

“risk reductionism” becomes questionable when combined with reduced-form consequences

that might well receive multiple evaluations according to the kind of contingencies that

deliver them.

Source dependence We address this issue by extending the expected utility framework

to accommodate source-dependent preferences. In line with the literature, a source is

a collection of contingencies that correspond to the same “mechanism” of uncertainty;

different sources correspond to different domains of uncertainty.2 A paradigmatic example

is the classic two-urn Ellsberg experiment where the two urns identify distinct sources that

differ in the stochastic nature of the uncertainty faced.

Our framework allows us to go beyond this classic example by encompassing an array

of factors that may account for the presence of multiple sources in a decision problem.

First of all, sources may vary in the personal implications of the material consequences

involved. For example, losing a certain amount of money can be accompanied by a sense of

bad luck or of incompetence, depending on the attributes attached to such loss, as evoked

by Smith. According to the competence hypothesis (Heath and Tversky, 1991, and Fox

and Tversky, 1995), an individual may prefer gaining a certain amount of money in the

domain of judgment rather than in the domain of chance if, in the former case, the gain

is accompanied by a feeling of credit.3 Source-dependent preferences may also arise in a

1Throughout the paper, the terms “consequence” and “outcome” are used interchangeably.
2Originally introduced by Tversky and Fox (1995) and Tversky and Wakker (1995), the notion of source

preference is the object of study of more recent works including Chew and Sagi (2008), Abdellaoui, Baillon,

Placido, and Wakker (2011) and Gul and Pesendorfer (2015).
3“Psychic payoffs of satisfaction or embarrassment can result from self-evaluation or from an evaluation

by others. [...] In the domain of chance, both success and failure are attributed primarily to luck. The

situation is different when a person bets on his or her judgment.” (Heath and Tversky, 1991, pp. 7-8)
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deterministic setting. For instance, the possibly distinct social implications of the same

material consequence may be rationalized in terms of different (deterministic) sources. A

policy maker may evaluate differently the threats to public security of different categories,

even if they involve the same number of casualties. Slovic (1999, p. 691) puts this in clear

terms: “Are the deaths of 50 passengers in separate automobile accidents equivalent to

the deaths of 50 passengers in one airplane crash?” While the relevance of this type of

queries for policy making is obvious, it begs the question of how one compares prospects

that depend on different sources. Moreover, any answer involves inevitably a subjective

assessment: different individuals would most likely provide different reasons as to whether

or not the above two source-dependent outcomes are equivalent.4

Dates and locations Some insights about how to address source dependence may sur-

prisingly come from seemingly unrelated contexts. Indeed, emblematic examples of sources

that do not involve uncertainty are rooted in standard economic settings: in particular,

sources can be identified by the different dates or locations at which a material conse-

quence is delivered. The idea that time and location constitute formal attributes to be

taken into account in the evaluation of a good dates back, at least, to Debreu (1959), who

argues that “a commodity is a good or a service completely specified physically, tempo-

rally, and spatially.” These classic analyses arm us with familiar tools to evaluate the same

outcome at different dates or locations — namely, the discount factor and the exchange

rate in temporal and allocation contexts, respectively. Importantly, these tools identify

the subjective value of an outcome in relative terms. Thus, they can be referred to as

the subjective prices of receiving a monetary outcome at a given date or location from

the perspective of another date or location. We will see that subjective discount factors

and subjective exchange rates are just two instances of a more encompassing notion of

subjective price which lies at the core of our general theory of source dependence.

1.2 Source-dependent attitudes and subjective prices

Our goal is to develop a unifying framework for the study of source dependence. We

provide an axiomatic foundation for a general model which shows that the multifaceted

nature of source dependence can be reduced to two behavioral features that identify intra-

source and inter-source tastes.

First, source dependence may originate from a multidimensional perception of uncer-

tainty. The Ellsberg paradox is a clear example in which agents display source-dependent

uncertainty attitudes. More generally, evidence from different contexts indicates that indi-

viduals may not exhibit uniform attitudes toward uncertainty.5 We thus dispense with the

4Note that according to Savage, these outcomes would correspond to distinct consequences arising from

different full descriptions.
5Such awareness has reached out policy makers, as suggested by the European Securities and Markets
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standard assumption that there exist universal risk attitudes, portable across sources. We

recognize, instead, that such attitudes may depend on the underlying source of uncertainty.

Within the expected utility framework, this means that the von Neumann-Morgenstern

utility functions are themselves allowed to be source dependent. Formally, we adopt the

standard notion of certainty equivalent to identify the uncertainty attitude on each source.

Consider a collection I = {1, . . . , n} of sources and let fi stand for an uncertain prospect

dependent on source i ∈ I. The certainty equivalent ci(fi) corresponds to the monetary

consequence that the agent finds equivalent to the uncertain prospect fi on source i.6 It

identifies the intra-source tastes and can be interpreted as capturing the agent’s degree of

familiarity about the underlying source of uncertainty. The traditional approach continues

to hold in comparing prospects that depend on the same source, but no longer otherwise.

This leads us to the second distinguishing feature of source dependence. After having

factored out uncertainty through certainty equivalents, the evaluation of a deterministic

outcome may still be source dependent. To compare actions that depend on different

sources, we thus need to convert units on one source into units on another source via a

subjective conversion rate. Such a rate can be viewed as a subjective price that identifies

inter-source tastes by expressing the relative value of a deterministic consequence on one

source in terms of its equivalent value on another source (for instance, reflecting agents’

different competence on them).

More formally, given any prospects fi and gj on two sources i and j, our agent first

computes the source-dependent certainty equivalents, ci(fi) and cj(gj), then applies a

rate δij(cj(gj)) that converts cj(gj) into the unit of account of source i. This rate is the

subjective price of cj(gj) on source i. Our agent prefers fi to gj if and only if ci(fi) ≥
δij(cj(gj)). Note that in the two-urn Ellsberg experiment, the two sources differ only in

terms of their stochastic nature while being perfectly comparable otherwise; in this case,

the subjective price is given simply by the identity function. However, this does not hold in

general, as suggested by Slovic (1999) in the context of casualties. Furthermore, our theory

analyzes a richer domain of preferences which involves not only comparisons between

source-dependent prospects, but also between streams of source-dependent prospects of

the form f = (f1, . . . , fn). According to our general model, a stream f is evaluated by

converting each source-dependent certainty equivalent ci(fi) into the unit of account of

a common source o, and then by aggregating the o-normalized valuations δoi(ci(fi)) as

Wo(δo1(c1(f1)), . . . , δon(cn(fn))). We will focus on the prominent case of quasi-arithmetic

aggregators and apply it to revisit both temporal and allocation settings.

Authority (May 2014): “We propose to clarify, with respect to clients’ risk-bearing capacity, that any

particular consumer has not only one and overall risk attitude but different risk attitudes towards different

investment targets.”
6Because of their economic relevance, throughout the paper we focus on monetary consequences, so on

“monetary reductionism”.
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Temporal settings We will show that temporal decision problems can be viewed as

instances of decision problems with source dependence, with standard criteria being char-

acterized as special cases of our general model.7 More specifically, f = (f1, . . . , fn) can be

interpreted as a temporal stream of consumption where source i ∈ {1, . . . , n} identifies the

date at which bundle fi is consumed. The temporal setting is an important special case

of our theory for at least two reasons. First, it offers a classic example of conversion rate

as given by the discount factor — the subjective price of consumption in the next period

in terms of consumption in the current period. Second, the source-dependent certainty

equivalents act as time-dependent utilities and give rise to time-dependent uncertainty

attitudes. Thus, temporal sources suggest a behavioral basis to explain the empirical ev-

idence that risk aversion may be domain-dependent and vary with the time horizon and

with the age.8 Recognizing such dependence may help explaining some puzzling findings

in asset pricing.9

Allocation settings Evoking Debreu’s (1959) ideas, standard allocation problems in

international economics can also be viewed as instances of decision problems with source

dependence: different locations at which the same material consequence can be delivered

correspond to different sources. We apply our model to a simple portfolio allocation

problem and show that our conversion rate plays the role of a subjective exchange rate

that captures the subjective value of consumption on one market in terms of consumption

on another market. We view it as the agent’s relative degree of familiarity about the

value of an outcome on different markets. Our result on optimal allocation uncovers a

relationship between the subjective exchange rate and the (market) real exchange rate

which is the spatial counterpart of the well-known relationship between the subjective

discount factor and the real interest rate in temporal settings.

Moreover, source dependence may help explaining the large empirical evidence on

under-diversification and home bias in capital markets.10 Our theoretical results point to

a recent empirical literature suggesting that one driving factor for under-diversification

might be a familiarity bias: individual investors prefer local securities because they feel

7Note that the simple setup based on comparisons of outcome-source pairs encompasses the standard

framework of time preferences in which agents compare reward-time pairs.
8Baucells and Heukamp (2010), Abdellaoui, Diecidue, and Onculer (2011), and Eisenbach and Schmalz

(2016) report evidence on increasing risk aversion as the source of risk approaches in time. On age, see,

e.g., Deakin, Aitken, Robbins, and Sahakian (2004), and Dohmen et al. (2011).
9For instance, contrary to the standard predictions, van Binsbergen, Brandt, and Koijen (2012), An-

dries, Eisenbach, Schmalz, and Wang (2015), Andries, Eisenbach, and Schmalz (2018), and Weber (2018)

report evidence in favor of a downward-sloping term structure of equity returns.
10This phenomenon has been initially documented by French and Poterba (1991). Pointing to Heath

and Tversky’s competence hypothesis, they recognize that (p. 225) “Investors may not evaluate the risk of

different investments based solely on the historical standard deviation of returns. They may impute extra

“risk” to foreign investments because they know less about foreign markets, institutions, and firms.” For

a comprehensive survey, see, e.g., Campbell (2006).
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more knowledgeable about nearby markets, even if this sense of competence cannot be

attributed to superior information.11 Note that this notion of familiarity bias is distinct

from the preference for familiarity arising from effective knowledge about the underlying

mechanism of uncertainty. The latter notion corresponds to Heath and Tversky’s compe-

tence hypothesis and is controlled by the source-dependent ambiguity attitudes (captured

by the certainty equivalents). Thus, our model accommodates both forces and allows us

to analyze the impact of each of them on home bias.

Outline The rest of the paper is organized as follows. Next subsection discusses the

related literature. The next section presents the formal setup. Section 3 states the basic

axioms and representation results of preferences over prospect-source pairs. Section 4

contains our general characterization result of preferences over prospect profiles, as well

as two prominent special cases: the well-known quasi-arithmetic specification and the

temporal setting. Section 5 provides a comparative statics analysis of what it means for one

agent to have a higher preference for source smoothing than another. Section 6 introduces

source dependence into a standard allocation problem and studies the implications in

terms of portfolio diversification and home bias. Section 7 concludes with some remarks

on how one could extend our setup to allow for certain forms of interdependence between

sources. All proofs are collected in appendix.

1.3 Related literature

There is by now a sizable body of theoretical and experimental works which recognize

the dependence of choice behavior on sources of uncertainty. Klibanoff, Marinacci, and

Mukerji (2005), Nau (2006), Ergin and Gul (2009), and Seo (2009) start the modern

literature on source dependence by considering two “hierarchical” sources.12 The focus

has then moved toward nuanced comparisons involving sources for which agents exhibit

different degrees of uncertainty. The closest works to the present paper are Chew and

Sagi (2008), Abdellaoui, Baillon, Placido, and Wakker (2011), and Gul and Pesendorfer

(2015). These papers identify a source by a restricted collection of events with respect

to which the agent exhibits a uniform degree of ambiguity attitude. The key novelty is

the recognition that preferences can be compatible with a single probability distribution

as long as acts depend on the same source; thus, probabilistic sophistication holds within

each source but not necessarily across sources. By suitably extending de Finetti’s notion

of exchangeability, Chew and Sagi (2008) provide sufficient axiomatic conditions for prob-

11Among others, Grinblatt and Keloharju (2001), Huberman (2001), Zhu (2002), Goetzmann and Kumar

(2008), Graham, Harvey, and Huang (2009), Seasholes and Zhu (2010), and Boyle, Garlappi, Uppal, and

Wang (2012) find that familiarity is unlikely to be driven by access to superior information about local

markets.
12See Marinacci (2015) for an analysis of two-stage decision models.
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abilistic sophistication to hold locally, within each source referred to as a “small world.”

Abdellaoui et al. test for the empirical relevance of source dependence by developing an

experimental method which assumes probabilistic sophistication on each source, and it is

based on the estimate of three parameters: a utility index, a subjective probability over

states, and a source function which transforms probabilities into decision weights. As in

Chew and Sagi, only the latter is source dependent. They find robust experimental evi-

dence in support of source-dependent uncertainty attitudes in different decision problems.

Gul and Pesendorfer (2015) characterize a special form of α-maxmin preferences which al-

lows for source dependence. A source is subjectively identified by a non-atomic probability

measure over a restricted σ-algebra of events relative to which probabilistic sophistication

holds. Similarly to Abdellaoui et al., the act-induced lotteries are evaluated according

to rank-dependent expected utility with a source-dependent probability transformation

function identifying the uncertainty attitude toward specific sources.

In addition to Abdellaoui et al., the above theoretical findings are supported by sub-

stantial empirical evidence pointing to domain-dependent uncertainty attitudes. In par-

ticular, there has been a growing interest in studying not only attitudes toward artificial

sources, such as the two Ellsberg urns, but also toward natural sources (e.g., the temper-

ature in different cities or different stock indices).13

The present paper contributes to the above literature in two main directions. First,

we introduce a focal element given by the notion of subjective price. Acting as rates of

conversion, subjective prices allow us to compare source-dependent prospects as well as

entire streams of source-dependent prospects. Moreover, they offer a novel behavioral

perspective to study some classic applied settings and related empirical findings.

Second, our model accommodates not only source-dependent probability distortions

(i.e., weighting of probabilities that depends on sources) but also source-dependent utili-

ties (i.e., weighting of consequences that depends on sources). While the aforementioned

works adopt the former approach, the latter one is in line with some early discussions

of the Ellsberg paradox (notably, Roberts, 1963, and Smith, 1969), and the literature on

domain dependence of risk aversion. Our model thus incorporates alternative approaches

by putting them into perspective.

2 Setup

The basic elements of a decision problem with source dependence are a set X of outcomes

and a collection I of sources of uncertainty which affect the outcomes resulting from the

agent’s choices.

13See, e.g., Fox and Tversky (1998), Kilka and Weber (2001), Weber, Blais, and Betz (2002), Baillon

and Bleichrodt (2015), Abdellaoui, Bleichrodt, Kemel, and l’Haridon (2017), Baillon, Huang, Selim, and

Wakker (2018), and Li, Müller, Wakker, and Wang (2018).
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We assume that X is a non-singleton interval of the real line containing the null

outcome 0. In particular, having X = R is natural when outcomes are monetary payoffs.

On the other hand, if they represent quantities of a homogeneous good (or casualties),

it is natural to allow only for non-negative real numbers. Note that here outcomes are

state-independent. We thus abstract from state-dependence, a classic issue in decision

making under uncertainty (see Karni, 1985, and Dreze, 1987). On the other hand, our

setup can be viewed as a “space-dependent” one – where the spaces are given by the Si’s

or the Σi’s described below.

For simplicity, let I = {1, . . . , n} be a finite set. A source of uncertainty i ∈ I is

a collection of contingencies that correspond to a common mechanism of uncertainty.

A source-dependent prospect describes how these contingencies affect the outcomes of

a chosen alternative. Next, we present two ways of modeling sources (and, therefore,

source-dependent prospects) according to how such contingencies are formalized.

2.1 Sources and source-dependent prospects

Naive definitions As a first way of describing sources of uncertainty, consider a col-

lection {Si}i∈I of finite sets of contingencies. Each source i ∈ I identifies a set Si, with

generic element denoted by si, that can be thought of as the set of contingencies which

features the common source of uncertainty i. A prospect dependent on source i is a func-

tion fi : Si → X which yields outcome fi (si) ∈ X if contingency si occurs. We denote

by Fi := XSi the set of all prospects that depend on source i. When no confusion arises,

we denote by x both the outcome x in X (a scalar) and the constant source-dependent

prospect x1Si ∈ Fi (a function) yielding x in every contingency in Si.

A prospect profile is a vector f = (f1, . . . , fn), or shortly f = (fi)i∈I , that specifies for

each source i the corresponding source-dependent prospect fi. Let F := ×i∈IFi denote

the set of all prospect profiles. With little abuse, we denote by x both the outcome profile

x = (xi)i∈I ∈ XI and the corresponding profile (xi1Si)i∈I of constant prospects in F .

For example, in the Ellsberg two-urn context, I = {1, 2} is the set of urns, Si =

{Redi,Blacki} is the set of contingencies for each i ∈ I, and a prospect profile is a “port-

folio” of bets

f = ((Red1, x1; Black1, y1) , (Red2, x2; Black2, y2))

that describes the payoffs of an agent who (potentially) gambles on both urns.

If fj = 0 for all j 6= i, then the prospect profile f depends only on source i and it is

denoted by (fi, i). Let Pi := {(fi, i) : fi ∈ Fi} be the family of all these prospects. Thus,

P = ∪i∈IPi is the family of all prospects that may yield non-zero outcomes on only one

source at a time; we refer to these prospects as prospect-source pairs. For example, in the

Ellsberg two-urn context, (fi, i) corresponds to a bet fi on urn i, and the famous paradox

involves comparisons of bets that depend only on one urn at a time.
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Agent’s preferences are described by a binary relation % on the set F of all prospect

profiles. Throughout, we will often focus on the restriction of % to the smaller set P of all

prospect-source pairs. In particular, the further restriction of % to Pi induces a preference

%i on Fi defined by

fi %i gi ⇐⇒ (fi, i) % (gi, i) for all i ∈ I.

Sophisticated definitions As a second way of describing sources of uncertainty, con-

sider a collection {Σi}i∈I of finite algebras on a given state space S.14 Each source i

corresponds to an algebra Σi of subsets of S. In turn, the atoms of each algebra can be

thought of as the set of contingencies featured by a given source. A prospect dependent

on source i is now a Σi-measurable function fi : S → X that yields outcome fi (s) ∈ X if

state s occurs. We denote by Fi the collection of all these prospects. The definitions of

F , (fi, i), Pi, and P are formally unchanged.15

The relation with the previous framework is straightforward: it is sufficient to set

S = ×i∈ISi, consider the algebras

Σi = {Ai × S−i : Ai ⊆ Si} for all i ∈ I,

and observe that the value fi (s) of an element of Fi depends only on the i-th component

si of s.

Throughout we adopt this framework since it is more general than the naive one and

preserves tractability. However, our axiomatic derivation and related results do not depend

on the specific formulation adopted.

3 Preferences and basic representation results

We refer to %i on Fi for i ∈ I as intra-source preferences and to % on P as inter-source

preferences. The entire relation % on F describes preferences over prospect profiles.

3.1 Intra-source preferences

We first study preferences within sources. For every source i, we impose the following

basic assumption on %i over Fi.

Axiom A. 1 For every i ∈ I and fi, gi, hi ∈ Fi,

(i) if fi ≥ gi, then fi %i gi. Moreover, if both fi and gi are constant and fi > gi, then

fi �i gi;
14We consider finite algebras for convenience. Our results can be extended to infinite algebras.
15This approach is adopted by Chew and Sagi (2008), Abdellaoui et al. (2011), and Gul and Pesendorfer

(2015).
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(ii) if fi �i gi �i hi, then there exist α, β ∈ (0, 1) such that

(1− α) fi + αhi �i gi �i (1− β) fi + βhi.

These properties have an obvious interpretation since only prospects depending on

a given source i are considered. Condition (i) is a standard monotonicity assumption

stating that the agent should prefer a source-dependent prospect that dominates another

in every state. Moreover, the converse holds, as well, if the prospects at hand are constant.

Condition (ii) is a standard Archimedean property that guarantees the continuity of each

preference %i.

Definition 1 For every i ∈ I, a monotone and continuous functional ci : Fi → X is a

certainty equivalent for %i if, for all x ∈ X, x = ci(x) and, for all fi ∈ Fi,

fi ∼i ci (fi) .

The following routine lemma shows that Axiom A.1 guarantees the existence of a

unique certainty equivalent.

Lemma 2 For every i ∈ I, let %i be a binary relation on Fi. The following conditions

are equivalent:

(i) %i is a weak order that satisfies Axiom A.1;

(ii) there exists a unique certainty equivalent functional ci : Fi → X for %i. In this case,

for all fi, gi ∈ Fi,
fi %i gi ⇐⇒ ci (fi) ≥ ci (fi) .

Certainty equivalents play a key role in our analysis of source dependence. Not only

they provide a utility representation of intra-source preferences; more importantly, they

allow us to identify the agent’s attitude toward uncertainty on each source. As argued

earlier, we can distinguish between source-dependent probabilities — consistent with the

evidence on non-uniform ambiguity attitudes — and source-dependent utilities — consis-

tent with the evidence on the multidimensionality of risk. The following classic examples

illustrate this point by presenting alternative functional specifications.

Example 3 (Source-dependent expected utility) For every i ∈ I, there are a strictly

increasing and continuous function ui : X → R and a probability measure pi on (S,Σi)

such that, for all fi ∈ Fi,
ci (fi) = u−1

i (Epi [ui (fi)]) . (1)

10



In the above expression, ci (fi) is the ui-mean of fi with respect to pi. It corresponds

to a basic example of a Chisini mean (1929, p. 113). More precisely, the means of this

kind are called quasi-linear Chisini mean16 and their characterization dates back to de

Finetti (1931). Axiom A.2 guarantees the existence of a certainty equivalent functional

as in (1). There exist different ways of expressing this standard assumption in terms of

binary relations. As they are all well known, we omit their formal exposition and refer to

the literature.17

Axiom A. 2 For every i ∈ I, there exists a quasi-linear Chisini mean ci : Fi → X that

represents %i.

The above axiom amounts to say precisely that the agent is an expected utility maxi-

mizer source-by-source.

A popular generalization of (1) considers a source function wi that transforms prob-

ability measures into decision weights. This approach gives rise to a rank-dependent

formulation of source dependence in the same spirit as Abdellaoui et al. (2011).

Example 4 (Source-dependent probability-weighting) For every i ∈ I, there are a

probability measure pi on (S,Σi) and an increasing and onto function wi : [0, 1] → [0, 1]

such that, for all fi ∈ Fi,
ci (fi) = u−1

(
Ewi(pi)[u (fi)]

)
, (2)

where u : X → R is a source-independent strictly increasing and continuous function.

Naturally, many other examples are possible: all is needed, up to now, for our theory of

source dependence is the existence of certainty equivalent functionals to represent intra-

source preferences. Thus, any model that admits certainty equivalents can be adopted

to specify the functional form of ci. For instance, one could use models of ambiguity-

sensitive behavior. Below we suggest a source-dependent version of rational preferences

under ambiguity (Cerreia-Vioglio et al., 2011).

Example 5 (Source-dependent preferences under ambiguity) For every i ∈ I, there

are a strictly increasing and continuous function ui : X → R and a monotone, normalized,

and continuous function Ii : ui(X)→ R such that, for all fi ∈ Fi,

ci (fi) = u−1
i (Ii (ui (fi))) . (3)

16Appendix A studies the link between the notion of Chisini mean and the preference representations

proposed in this paper. See, e.g., Bullen (2003) and Grabisch, Marichal, Mesiar, and Pap (2011) for a

modern treatment of Chisini means.
17See, e.g., Savage (1954) and Wakker (1988, 1989) for infinite and finite algebras Σ, respectively.
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This general structure encompasses various models of decision-making under ambigu-

ity. For instance, a special case of (3) is given by the following source-dependent specifi-

cation of the maxmin model (Gilboa and Schmeidler, 1989):

ci (fi) = min
pi∈Ci

u−1
i (Epi [ui (fi)]) ,

where Ci is a compact set of probabilities. According to this criterion, the agent can

exhibit different attitudes toward ambiguity depending on sources. For instance, he can be

more ambiguity averse on one source than on another;18 he may as well exhibit ambiguity

neutrality on some source i if the set Ci consists of a single probability.

Our approach allows also to study source dependence in models that focus on non-

expected utility features that are distinct from ambiguity. For instance, if we replace

the utility ui in Example 3 with a compact set of utilities Ui, we obtain the following

source-dependent specification of the cautious expected utility model (Cerreia-Vioglio,

Dillenberger, and Ortoleva, 2015):

ci (fi) = min
ui∈Ui

u−1
i (Epi [ui (fi)]) .

The multiplicity of utilities reflects agent’s uncertainty about his risk attitudes within each

source. The relevant aspect in the above formulation lies in the heterogeneity of the utility

sets across sources, reflecting both source-dependent risk attitudes as well as uncertainty

about his own risk attitude on each source. An individual might be fully confident in a

single utility function for a specific source, thereby behaving as a standard expected utility

maximizer over that source.

3.2 Inter-source preferences

Before turning to the overall relation % on F , we focus on its restriction to the space

P := {(fi, i) : fi ∈ Fi}. This subsection provides a characterization of preferences between

prospect-source pairs in P. Next axiom is the key in relating monetary outcomes generated

by distinct sources.

Axiom B. 1 (Inter-source tastes) For every i, j ∈ I and x ∈ X, there exists y ∈ X such

that (x, i) ∼ (y, j).

This is a comparability assumption across sources. It requires that, for any two sources

i and j, and any sure outcome x generated by source i, the agent is always able to identify

a sure outcome y generated by source j which is equivalent to x. For example, a policy

maker may evaluate differently the same number of (sure) casualties due to a terror attack

18By applying the comparative notion of Ghirardato and Marinacci (2002), we can say that an agent

is more ambiguity averse on source i than on source j if Ci ⊇ Cj , provided that ui and uj are cardinally

equivalent.
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or to a seasonal flu: he may regard, say, 100 sure casualties from the first source as having

the same impact as 1, 000 sure casualties from the second (see, e.g., Slovic, 1999, for similar

examples). In terms of the representation, these inter-source comparisons will be captured

by functions dubbed rates, as defined next.

Definition 6 A self-map δij : X → X is a rate if it is strictly increasing, with δik =

δij ◦ δjk and δii = idX , for all i, j, k ∈ I.

For any x ∈ X, the rate δij(x) ∈ X identifies the outcome on source i that makes

the agent indifferent to outcome x on source j. With this notion, we can now state our

behavioral characterization of preferences over prospect-source pairs.

Proposition 7 Let % be a binary relation on P. The following conditions are equivalent:

(i) % is a weak order that satisfies Axioms A.1 and B.1;

(ii) there exist

(a) a family (ci)i∈I of certainty equivalents for (%i)i∈I ,

(b) a family (δij)i,j∈I of rates,

such that, for all i, j ∈ I, fi ∈ Fi and gj ∈ Fj,

(fi, i) % (gj , j) ⇐⇒ ci (fi) ≥ δij (cj (gj)) . (4)

Moreover, the elements of (ci)i∈I and (δij)i,j∈I are unique.

Representation (4) suggests a two-step procedure to compare prospect-source pairs.

First, the pairs (fi, i) and (gj , j) are independently evaluated by computing their certainty

equivalents, ci (fi) and cj (gj), respectively. For every source i, the function ci can be

viewed as a unit of account for that source. Second, the certainty-equivalent evaluations

are converted into the unit of account of one source. Such conversion is carried out by the

function δij which reflects the rate of substitution of outcomes between sources i and j.

In particular, representation (4) guarantees that, for any x, y ∈ X and i, j ∈ I,

(x, i) ∼ (y, j) ⇐⇒ x = δij(y) ⇐⇒ y = δji(x).

Hence, δij plays precisely the role of an inter-source rate of substitution. Moreover, ob-

serve that preferences over prospect-source pairs are uniquely determined by the source-

dependent certainty-equivalents and the rates. In turn, both of them can be easily elicited

from choice behavior (e.g., experimental data).

The essential contribution of Proposition 7 lies in recognizing that source dependence

requires a distinction between intra-source and inter-source tastes. Intra-source tastes
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correspond to a standard notion of preferences under uncertainty and are easily determined

because they are monotone within each source (and X ⊆ R). The notion of inter-source

tastes, instead, is novel and lies at the core of our model. It arises from the fact that

different sources affect the desirability of outcomes, so that an individual may prefer

receiving outcome x on source i rather than the same outcome on another source j.

Representation (4) states that inter-source tastes are identified by the rates (δij)i,j which

provide a measure of how the agent values a certain outcome on a certain source in terms

of an equivalent outcome on a different source. Thus, (δij)i,j play the role of subjective

prices.

Finally, note that a source-dependent certainty equivalent depends only on the un-

certainty attitude on that source because intra-source tastes are monotone. Therefore,

representation (4) provides a separation between inter-source tastes and attitudes toward

uncertainty (including risk and ambiguity).

3.2.1 The expected utility case

An interesting special case occurs when the sure outcome x is on source j equivalent to

itself on source i.

Axiom B. 2 (Pecunia non olet) For every i, j ∈ I and x ∈ X, (x, i) ∼ (x, j).

This axiom requires that, when deterministic outcomes are concerned, the agent does

not discriminate between the sources generating them. Any difference in the evaluations of

uncertain prospects must be due solely to the agent holding different uncertainty attitudes

toward different sources. That is, the only perceived difference between sources is the

quality of the information about the stochastic nature of the states of the world.

When monetary payoffs are involved, the fact that deterministic outcomes are unaf-

fected by the stochastic nature of the underlying source rules out any consideration about

the agent’s competence, thus making this assumption particularly transparent. Its behav-

ioral content can be summarized by the time-honored claim of Vespasian that pecunia non

olet — money has no smell. For instance, the value of a monetary outcome is the same

on both Ellsberg urns, as shown below. That said, one can think of situations in which

this assumption would be too restrictive: it is likely that a person would not be indiffer-

ent between receiving the same monetary profit from legal versus illegal entrepreneurial

activities.19

Replacing Axiom B.1 with Axiom B.2 in Proposition 7 is immediately seen to corre-

spond to δij = idX for all i, j ∈ I. Then, representation (4) reduces to

(fi, i) % (gj , j) ⇐⇒ ci (fi) ≥ cj (gj) . (5)

19As mentioned earlier, Slovic (1999) contains various examples, mostly in the context of casualties.
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In view of the importance of expected utility, we next provide a special case of Propo-

sition 7 in which certainty equivalents can be directly compared – without the mediation

of the rates δij – and, at the same time, they conform to subjective expected utility.

Proposition 8 Let % be a binary relation on P. The following conditions are equivalent:

(i) % is a weak order that satisfies Axioms A.2 and B.2;

(ii) there exist

(a) a family (ui)i∈I of strictly increasing and continuous functions ui : X → R,

(b) a family (pi)i∈I of probability measures pi on Σi,

such that, for all i, j ∈ I, fi ∈ Fi and gj ∈ Fj,

(fi, i) % (gj , j) ⇐⇒ u−1
i

(∫
S
ui (fi) dpi

)
≥ u−1

j

(∫
S
uj (gj) dpj

)
. (6)

Moreover, the elements of (ui)i∈I are cardinally unique and those of (pi)i∈I are unique,

provided that, for each i ∈ I, there are at least two non-null states in Si.
20

According to representation (6), source dependence manifests only in the potentially

different uncertainty attitudes, whereas the value of a deterministic outcome is source

independent. This is an important special case of our model as it offers a formal treat-

ment of the utility approach to source dependence in alternative to the more traditional

probability-weighting approach. We next illustrate the differences between these two ap-

proaches by applying them to resolve the classic two-urn Ellsberg paradox that originally

sparked the economic interest on source-dependent preferences.

Two-urn Ellsberg experiment As anticipated in Section 2, we denote by I = {1, 2}
the set of urns and by Si = {Redi,Blacki} the set of states for each i ∈ I. Urn 1 contains

50 red and 50 black balls, while Urn 2 has unknown composition. Denote by fi (resp.,

gi) the bet that pays $100 if the ball drawn from urn i ∈ I is red (resp., black) and $0

otherwise. The typical pattern is f1 ∼ g1 � g2 ∼ f2. Most subjects are indifferent between

betting on red or on black from either urn; yet, they strictly prefer to bet on Urn 1 rather

than on Urn 2.

Source preferences generate a ‘paradox’ because indifference between betting on red or

on black from either urn suggests that the two states are perceived as equally likely; but,

if subjects assign also the same utilities to the same consequences generated by different

20As usual, a state s ∈ Si is null if indifference holds between any two profiles that differ only in state

s, that is, if x{s}fi ∼i y{s}fi for all fi ∈ Fi and x, y ∈ X.
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sources, then the certainty equivalents of all the four bets must be the same. This is

clearly inconsistent with a preference for betting on the known urn.

The source-dependent utility criterion developed in Proposition 8 can rationalize the

observed pattern by maintaining the same equal probability of the states, while allowing

for utilities to depend on sources as follows:

c1 (f1) = u−1
1

[
1

2
u1 (100) +

1

2
u1 (0)

]
6= u−1

2

[
1

2
u2 (100) +

1

2
u2 (0)

]
= c2 (f2) ,

explaining the pattern if u1 is less concave than u2. Early discussions of this approach

appear in Fellner (1961), Roberts (1963), Smith (1969), and, more recently, in Chew, Li,

Chark, and Zhong (2008). On the other hand, the dominant approach in the literature

follows the seminal papers of Kahneman and Tversky (1979) and Schmeidler (1989) by

focussing on source-dependent probability distortions as follows:

c1 (f1) = u−1

[
w1

(
1

2

)
u (100) + w1

(
1

2

)
u (0)

]
6= u−1

[
w2

(
1

2

)
u (100) + w2

(
1

2

)
u (0)

]
= c2 (f2) ,

explaining the pattern if w1 > w2.

3.3 Preferences over prospect profiles

It remains to study the preferences % over the entire domain F of prospect profiles. We

assume that they satisfy the following basic axiom.

Axiom C. 1 The binary relation % on F is a weak order such that:

(i) (Monotonicity) if f ,g ∈ F and fi %i gi for all i ∈ I, then f % g;

(ii) (Strict Monotonicity) if both x and y in XI are constant and x > y, then x � y;

(iii) (Archimedean Continuity) if x,y, z ∈ XI and x � y � z, then there exist α, β ∈
(0, 1) such that

(1− α) x + αz � y � (1− β) x + βz.

Axiom C.1 can be viewed as the analogue of Axiom A.1 over the richer domain of

prospect profiles. Properties (i) and (ii) are monotonicity assumptions. Property (i)

maintains that the agent should prefer a profile f to another profile g whenever f consists

of better source-dependent prospects than g, source-by-source. Property (ii) is a form

of strict monotonicity imposed on fully constant prospect profiles. Finally, property (iii)

is a standard continuity property which, together with the other assumptions in Axiom

C.1, guarantees that, for any f ∈ F , the agent can find a fully constant profile x which is

indifferent to f .
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4 Representation results

This section provides behavioral characterizations of source-dependent preferences over

prospect profiles — the domain of central interest of our theory. We start with a general

utility structure that captures the essential features of source-dependent preferences.

4.1 General representation result

The following terminology will be useful to state our results.

Definition 9 A monotone and continuous functional D : XI → X is

(i) an aggregator if it is normalized, that is, D(x1I) = x for all x ∈ X;

(ii) an aggregator at the numeraire i ∈ I if it is i-normalized, that is, D(x1i) = x

for all x ∈ X.

We are now ready to state our general representation result. It disentangles the two

behavioral features that may give rise to source dependence, namely intra-source and

inter-source tastes, within the rich domain of prospect profiles.

Theorem 10 Let % be a binary relation on F . The following conditions are equivalent:

(i) % satisfies Axioms A.1, B.1, and C.1;

(ii) there exist

(a) a family (ci)i∈I of certainty equivalents for (%i)i∈I ,

(b) a family (δij)i,j∈I of rates,

such that, for all i, j ∈ I, fi ∈ Fi, and gj ∈ Fj,

(fi, i) % (gj , j) ⇐⇒ ci (fi) ≥ δij (cj (gj)) ,

(c) an aggregator at the numeraire o ∈ I, Wo : XI → X, such that, for every

f = (fi)i∈I ,

Vo (f) = Wo (δo1 (c1 (f1)) , . . . , δon (cn (fn))) (7)

represents % on F .

According to representation (7), a prospect profile is first evaluated source-wise, with

each source i’s own unit of account given by the certainty equivalent functional ci. Each of

these evaluations is then converted into the unit of account of a posited numeraire source

o by applying the conversion rates δoi. Finally, this profile of evaluations is aggregated in

17



a unique evaluation given by Wo which preserves the normalization to source o. Thus, Wo

is an aggregator of source-dependent deterministic payoffs evaluated through the lens of

the numeraire o.21

By Theorem 10, we can represent a binary relation % on F that satisfies Axioms

A.1, B.1, and C.1 by a triple ((ci)i∈I , (δij)i,j∈I ,Wo). We will refer to such a triple as a

source-dependent representation of %. Our utility representation has standard uniqueness

properties, as shown next.

Proposition 11 Let % be a binary relation on F that satisfies the assumptions of Theo-

rem 10. Then, the following statements are true:

(i) for every o ∈ I, the source-dependent representation ((ci)i∈I , (δij)i,j∈I ,Wo) of % is

unique;

(ii) if o 6= ō and ((ci)i∈I , (δij)i,j∈I ,Wo) and ((ci)i∈I , (δij)i,j∈I ,Wō) are two source-

dependent representations of %, then Wo = δoō (Wō).

Theorem 10 serves mainly the purpose of providing a general framework for the analysis

of source dependence. It encompasses numerous special cases which vary in the functional

specifications of the aggregator Wo and the rates δij (as well as the forms of the certainty

equivalents, as illustrated in Examples 3-5). For instance, one could think of non-additive

aggregators (in the spirit of Choquet expected utility (Schmeidler, 1989) or maxmin pref-

erences (Gilboa and Schmeidler, 1989) to introduce considerations of ambiguity in the

process of evaluating sources. In what follows, we turn attention to important special

cases.

4.2 Quasi-arithmetic aggregators

Theorem 10 develops an axiomatic foundation that captures the core features of source-

dependent preferences over prospect profiles. A set of mild axioms is shown to be equiv-

alent to a utility representation characterized by a minimal number of uniquely derived

parameters. In this respect, it offers a flexible setting to study source dependence and

understand its driving forces. On the other hand, the theorem does not suggest an op-

erational criterion to adopt in applied decision problems. Indeed, the aggregator Wo, as

well as the certainty equivalents, can take different functional forms, as previously ar-

gued. We address this issue by recognizing that Wo can be viewed as a mean. Then, one

natural possibility consists of letting Wo be an arithmetic mean of the source-dependent

certainty equivalents.22 This section considers a slightly more structured specification and

21In Appendix B.2, Theorem 22 provides an alternative utility representation according to which the

agent evaluates prospect profiles without committing to a specific numeraire.
22This specification is typical of multi-criteria decision analyses.
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focuses on the well-known special case of quasi-arithmetic means. We will see that the

class of quasi-arithmetic aggregators is analytically tractable and accommodates classic

utility specifications used in applied economic settings.

In the remaining results of this section, we assume that X = R and impose few

additional properties on % restricted to the domain of constant prospect profiles. We

begin with a standard continuity assumption.

Axiom D. 1 (Continuity) For each x ∈ XI , the sets{
y ∈ XI : y % x

}
and

{
y ∈ XI : x % y

}
are closed.

Next axiom is a classic consistency property. It is a form of separability (in particular,

a strengthening of the standard Coordinate Independence property) that is needed to

obtain the desired quasi-arithmetic aggregator.23

Axiom D. 2 (Tradeoff consistency) For each a, b, c, d ∈ XI , each x, y, z, w ∈ X, and

each i, j ∈ I, the condition

b−iy % a−ix a−iz % b−iw c−jx % d−jy

implies c−jz % d−jw.

Next proposition shows that Axioms D.1 and D.2, together with the basic properties of

the general theorem, deliver the desired representation. The proposition thus extends the

classic quasi-arithmetic representation by introducing source dependence and, therefore,

recognizing the multidimensionality of risk attitudes observed in the data.

Proposition 12 Let % be a binary relation on F that satisfies the axioms of Theorem

10. The following conditions are equivalent:

(i) % satisfies Axioms D.1 and D.2;

(ii) there exist a collection of strictly positive weights {αi}i∈I ⊆ ∆ (I) and a strictly

increasing, continuous function v : X → R with v (0) = 0 and v (1) = 1, such that,

for all f ∈ F ,

Vo (f) = v−1

(
1

αo

∑
i∈I

αiv (ci (fi))

)
. (8)

Moreover, the collection {αi}i∈I is unique and the function v is unique.

23Continuous subjective expected utility and quasi-arithmetic mean models are characterized by Wakker

(1988, Theorem 6.2).
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By this proposition, quasi-arithmetic source-dependent preferences are uniquely rep-

resented by triples ((ci)i∈I , {αi}i∈I , v). As before, the certainty equivalents reflect the

uncertainty attitude on each source. However, now they are aggregated by means of a

weighted sum of utilities. Each weight αi can be viewed as a measure of the relevance

of source i. Note that αi > 0 for all i and, hence, all sources affect the evaluation albeit

with a different degree. Furthermore, all weights αi are normalized with respect to some

source o, so the overall evaluation of any prospect profile is computed using the unit of

account of that source. Observe that representation (8) is a special case of representation

(7) where the rates and the aggregator have the following form:

δij (x) = v−1

(
αj
αi
v (x)

)
and Wo

(
(xi)i∈I

)
= v−1

(∑
i∈I

v (xi)

)
,

for all x ∈ X and all (xi)i∈I ∈ XI . Finally, the form of the utility v captures a preference

for smoothing across sources, as shown by our comparative statics analysis later on.

Before moving on, let us recall that the class of quasi-arithmetic means is closely related

to classic utility models in economics. Indeed, representation (8) conforms essentially to

subjective expected utility if the certainty equivalent functionals are quasi-linear as in

Example 3, and the utilities ui’s in that example are such that ui = v for all i ∈ I.

Standard temporal and allocation settings can be cast as special cases of the quasi-

arithmetic source-dependent model. Importantly, we will see that in these applied settings

the numeraire earns precise economic content. We next turn to study these special cases.

4.3 Temporal sources

By viewing consumption dates as temporal sources, this section studies intertemporal

preferences within our framework of source dependence. A key advantage of taking a

source perspective is to allow for time-dependent uncertainty attitudes. The same source

of risk (e.g., financial risk) evaluated at different ages or time horizons may affect agents

in different ways; this may naturally generate different risk attitudes in a way consistent

with the empirical evidence, as argued in the Introduction.

Formally, let I = {0, 1, . . . , T} be interpreted as a set of dates. Then, a prospect

profile f = (f0, . . . , fT ) is a temporal stream of consumption where ft denotes the bundle

consumed at time t ∈ I. We impose the following stationarity assumption on inter-source

preferences.

Axiom D. 3 (Stationarity) If s, t ∈ I\ {T} and x, y ∈ X, then

(x, s) ∼ (y, t) =⇒ (x, s+ 1) ∼ (y, t+ 1) .

The above axiom preserves the well-known behavioral content of stationarity: the

indifference between two time-dependent consequences hinges on the dates s and t, whereas
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it is not affected by postponing consumption of both consequences by the same amount of

time. We next show that familiar exponential discounting utility models can be recovered

as special cases of our quasi-arithmetic source-dependent representation.

Proposition 13 Let % be a binary relation on F that satisfies the axioms of Theorem

10. The following conditions are equivalent:

(i) % satisfies Axioms D.1, D.2, and D.3;

(ii) there exist a scalar β > 0 and a strictly increasing, continuous function v : X → R
with v (0) = 0 and v (1) = 1, such that, for all f ∈ F ,

V0 (f) = v−1

(
T∑
t=0

βtv (ct (ft))

)
. (9)

Moreover, β and v are unique.

According to representation (9), the agent evaluates a prospect profile f by first com-

puting the time-t certainty equivalent of each component ft. Time-t certainty equiva-

lent captures the risk attitude exhibited over time-t horizon. Then, the utility of each

time-t certainty equivalent is evaluated from the perspective of time 0 by applying the

conversion rate βt. The overall evaluation is given by the discounted sum of utilities of

(time-dependent) certainty equivalents.

From our source perspective, the discount factor is a classic example of subjective

price that converts the value of outcomes from a given date to another one. Moreover,

the choice of the numeraire o is simple since, as usual in applied temporal contexts, the

value of a stream is discounted at time 0. Indeed, representation (9) is a special case of

representation (7) where

δij (x) = v−1
(
βj−iv (x)

)
and W0

(
(xi)i∈I

)
= v−1

(∑
i∈I

v (xi)

)
,

for all x ∈ X and all (xi)i∈I ∈ XI . The aggregator W0 (x) can be thought of as the value

of a perpetuity that is exactly as good as x itself.

Note that representation (9) reduces to standard discounted utility over constant

prospect profiles. Furthermore, one can specify the certainty equivalents as in Exam-

ple 3 and set ct (ft) = u−1
t

(∫
S ut (ft) dpt

)
, where ut is a utility function on X and pt is a

probability measure on S for all t = 0, ..., T . In the extreme case in which ut = v for all

t = 0, ..., T , we recover the standard discounted expected utility criterion with no source

effects and constant risk aversion:

V0 (f) = u−1

(
T∑
t=0

βt
∫
S
u (ft) dpt

)
.
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We conclude this section by briefly relating our model to some existing works on

horizon-dependent risk attitudes. If we consider a set I = {0, 1} of only two dates,

representation (9) can be rewritten as

v−1 ((1− β) v (c0 (f0)) + βv (c1 (f1))) ,

which corresponds essentially to the model studied in Andries et al. (2018) who distinguish

between two levels of risk aversion toward immediate and delayed uncertainty, respectively.

By allowing for levels of risk aversion that are decreasing with the time horizon, they

generate predictions consistent with the empirical evidence on the term structure of equity

returns.

5 Comparative attitudes

The additional structure of the quasi-arithmetic model allows us to develop a comparative

statics analysis of the effects of inter-source smoothing on choice behavior.

Consider an agent with quasi-arithmetic source-dependent preferences represented by

((ci)i∈I , {αi}i∈I , v). We say that the agent has a preference for source smoothing if, for

any x = (xi)i∈I ∈ XI , the agent prefers the profile that yields the quasi-arithmetic v-mean

of x on all sources to x itself. That is, if we denote by z = v−1
(

1
αo

∑
i∈I αiv (xi)

)
∈ X

such mean, we must have (z, z, . . . , z) % x.24 This definition is reminiscent of the classic

notion of risk aversion with an important caveat: our notion of source smoothing applies

to prospect profiles that do not involve any risk as they are constant within each source.

Risk aversion, instead, is a property of intra-source tastes and is captured by the source-

dependent certainty equivalents. The latter do not play any role here and will therefore

be omitted in the following analysis.

We now apply the above notion to develop a comparative definition of source smooth-

ing. Consider two agents with respective preference relations given by %1 and %2. We

posit that %1 has a higher preference for source smoothing than %2 if and only if, for all

x ∈ XI and z ∈ X,

x %1 (z, z, ..., z) =⇒ x %2 (z, z, ..., z) .

In words, %1 has a higher preference for source smoothing than %2 if, whenever %1

prefers a non-constant outcome profile across sources to a constant one, then the same

is true for %2. Next result provides a behavioral characterization and shows that the

comparative attitudes toward source smoothing are controlled by the function v.

Proposition 14 Let %1 and %2 be two quasi-arithmetic source-dependent preferences rep-

resented by (
{
α1
i

}
i∈I , v1) and (

{
α2
i

}
i∈I , v2), respectively. The following conditions are

equivalent:

24Here (z, z, . . . , z) ∈ XI is the constant profile that yields outcome z on all sources.
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(i) %1 has a higher preference for source smoothing than %2;

(ii)
{
α1
i

}
i∈I =

{
α2
i

}
i∈I and v1 = ψ ◦ v2 for some concave, strictly increasing, and con-

tinuous transformation ψ : v2(X)→ v1(X).

This proposition states that higher preferences for source smoothing are characterized

by more concave utility functions v. As anticipated earlier, this result reminds the standard

comparative characterization of risk aversion.25 In turn, our result captures a form of

aversion to the variance of outcomes across sources.

When I = {0, 1, . . . , T} is interpreted as a set of dates, the notion of higher preference

for source smoothing corresponds to the familiar notion of higher preference for intertem-

poral smoothing. As an immediate corollary of the above proposition, we conclude that in

the intertemporal setting of Proposition 13, %1 has a higher preference for intertemporal

smoothing than %2 if and only if β1 = β2 and v1 is more concave than v2.

6 A portfolio allocation problem

This section adopts our quasi-arithmetic model to introduce source dependence into a

simple financial allocation problem. We examine the implications on the optimal portfolio

allocation and the relationship with some well-known empirical puzzles.

6.1 Market and subjective prices

Consider an agent who faces the following investment problem: there are two assets (f1, f2)

in two different markets, say Eurozone and US, with prices (p1, p2) ∈ R2
++ and he has to

decide how to allocate his wealth w = (w1, w2) ∈ R2
++ across these two assets (prices

and wealth are denominated in the local currencies). Each asset is modeled as a random

variable fi : Si → [0,∞) that pays in the local currency and depends on a local source of

uncertainty. In view of our theory, we can set I = {1, 2}, where source 1 (resp., source

2) identifies the Eurozone market (resp., the US market). Each asset fi corresponds to a

source-dependent prospect and f = (f1, f2) is the resulting prospect profile.

The agent can buy ξi ≥ 0 units of asset i (short-sales are not possible), forming in

this way a portfolio ξ = (ξ1, ξ2). He can move money from one market to the other, once

converted in the same currency through a market exchange rate. We denote by ρij the

market (nominal) exchange rate from currency j to currency i; that is, ρ12 says how many

euros the market trades for 1 dollar. In particular, ρ12ρ21 = 1. The budget constraints

are then:

ξ1p1 + t ≤ w1 and ξ2p2 ≤ w2 +
1

ρ12
t. (10)

25See, e.g., Wakker (1989, Definition VII.6.4).
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The scalar t is the quantity of money that the agent transfers either from the Eurozone to

the US if t ≥ 0 or vice versa if t ≤ 0. Here the relevant real exchange rate is e12 = ρ12p2/p1,

which states how many units of the Eurozone asset the market trades for 1 unit of the US

asset.

Each portfolio ξ determines the random profile (ξ1f1, ξ2f2). The agent evaluates each

payoff ξifi separately, according to

ci (ξifi) = u−1
i

(∫
Si

ui (ξifi) dqi

)
, (11)

where each ui is strictly increasing and continuous, and qi is a probability measure on

Si. The utility functions ui may be different, so attitudes toward uncertainty are source-

dependent. As seen next, we posit that each ui has a CRRA form so that ci (ξifi) =

ξici (fi).
26 Using the quasi-arithmetic criterion of Proposition 12, the agent aggregates

the evaluations in (11) according to the function W : R2
+ → R given by

W (ξ1, ξ2) = v−1 (α1v (ξ1c1 (f1)) + α2v (ξ2c2 (f2))) ,

where α1, α2 ∈ (0, 1) and α1 + α2 = 1. We assume that the functions ui’s and v have a

CRRA form and are strictly concave. Specifically, for each i, there exists γi ∈ (0, 1) such

that

ui(x) =
x1−γi

1− γi
for all x ≥ 0,

and there exists k ∈ (0, 1) such that

v(x) =
x1−k

1− k
for all x ≥ 0.

Let δ21 = δ21 (1) stand for how many dollars are subjectively equivalent to a payoff of

1 euro for the agent. That is, δij is a subjective price and we refer to it as the (nominal)

subjective exchange rate. By quantifying the subjective value of one currency in terms

of the other, δij can be interpreted, for instance, as a measure of familiarity toward one

market relative to another (which in turn determines how monetary rewards are evaluated

in the two markets). Our first result shows that subjective exchange rates play a key role

in determining the optimal portfolio allocation.

Proposition 15 The unique optimal portfolio ξ̂ = (ξ̂1, ξ̂2), provided it is an interior so-

lution, is such that

p1ξ̂1

ρ12p2ξ̂2

=

(
e12

δ21c1 (f1)

c2 (f2)

) 1−k
k

, (12)

where δ21 =
(
α1
α2

) 1
1−k

. Moreover, ∂W
∂ξ2

(ξ̂)
/
∂W
∂ξ1

(ξ̂) = ρ12p2/p1 = e12.

26To make the problem nontrivial, we also assume that c1 (f1) , c2 (f2) > 0.
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The left-hand side of (12) is the ratio of the optimal investments in each market,

expressed in euros via the nominal exchange rate. The right-hand side is a function of

the product, also expressed in euros, of the objective e12 and subjective δ21c1 (f1) /c2 (f2)

terms of trade between the two assets. In particular, δ21c1 (f1) /c2 (f2) is the ratio of the

subjective values of each euro invested in each market.

The relation between subjective and market exchange rates in (12) reminds the classic

relation between subjective discount rates and market interest rates that characterizes

Euler equations in intertemporal consumption problems. Indeed, (12) is a spatial counter-

part of the classic temporal relation. Across time or space, optimality imposes a tradeoff

between market prices and subjective traits.

6.2 Comparative analysis and home bias

The last proposition derives the optimal portfolio allocation of an agent with quasi-

arithmetic source-dependent preferences and formalizes the way subjective exchange rates

affect financial decisions. In the special case δ21 = 1, the agent perceives a payoff of 1

euro as subjectively equivalent to a payoff of 1 dollar and, therefore, he is equally familiar

about the value of euros versus dollars. This means that he may still exhibit source-

dependent uncertainty attitudes, reflected in the certainty equivalents c1 and c2; however,

once uncertainty is factored out, he finds monetary outcomes generated by either source

as perfectly comparable, analogously to what we have seen in the two-urn Ellsberg exper-

iment.27 Condition (12) then reduces to

p1ξ̂1

ρ12p2ξ̂2

=

(
e12

c1 (f1)

c2 (f2)

) 1−k
k

, (13)

and the ratio of the optimal investments depends only on the market exchange rate e12.

On the other side, if δ21 > 1, then a payoff of 1 euro is worth more for the agent than a

payoff of 1 dollar. By comparing (12) to (13), we conclude that, ceteris paribus, the more

δ21 exceeds 1, the more the agent will invest in asset 1. As argued in the Introduction,

this is a key observation which suggests an explanation of the evidence on home bias and

under-diversification in terms of familiarity. Taking the perspective of a Eurozone investor,

the higher is the degree of familiarity for the Eurozone in comparison to the US zone (i.e.,

the higher δ21 is), the higher will be the inclination to invest in the Eurozone asset.

The role of δ21 is analogous to the one played by a subjective discount factor β in

temporal settings. As well known, a discount factor less than 1 indicates that the investor

values more the present in comparison to the future. The lower the discount factor is, the

higher the (market) real interest rate must be to compensate for the investor’s impatience.

Here, the higher the subjective exchange rate δ21 is, the lower the (real) market exchange

27Note that having δ21 = 1 does not necessarily imply that the market (nominal) exchange rate ρ21 is

1, as well.
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rate e12 needs to be to compensate for the familiarity bias toward the Eurozone. In a vein

akin to the classic temporal Euler equation, these opposing forces can be seen in action in

condition (12).

We conclude this section with a comparative statics analysis that studies how each

parameter of the problem affects the optimal portfolio allocation. First, the coefficient k

is an index of the agent’s preference for source smoothing. Indeed, note that the higher k

is, the more concave the function v is. By Proposition 14, we can then say that, ceteris

paribus, the higher k is, the more the agent prefers constant profiles across sources.

Now, denote by

ξ̃i =
ξ̂i

w1 + ρ12w2

the optimal share of asset i which measures the fraction of wealth invested in asset i. From

expression (12) it can be easily observed that ξ̃i depends on the weight αi on source i, the

coefficient of uncertainty aversion γi within source i, and the price pi. Next proposition

studies how the optimal share ξ̃i of asset i is affected by each of these parameters, keeping

everything else equal.

Proposition 16 Let ξ̂ = (ξ̂1, ξ̂2) be the unique optimal portfolio satisfying condition (12)

of Proposition 15 and ξ̃ = (ξ̃1, ξ̃2) be the resulting vector of asset shares. Then,

∂ξ̃i
∂αi

> 0,
∂ξ̃i
∂γi

< 0, and
∂ξ̃i
∂pi

< 0 for i = 1, 2.

A higher αi can be interpreted as reflecting a stronger familiarity bias for source i. In

turn, a higher weight αi on source i yields a higher share of asset i. Moreover, a higher

coefficient of uncertainty aversion γi within source i yields a lower share of asset i. Finally,

a higher price pi for asset i yields a lower share of asset i.

7 Concluding remarks

This paper shows that source preference may originate from two behavioral features rep-

resented by source-dependent certainty equivalents (intra-source tastes) and subjective

prices (inter-source tastes). The notion of subjective price is a key novelty. It has a

precise economic meaning and allows us to characterize preferences over entire prospect

profiles. We develop a unifying framework that incorporates existing approaches to study

choice under uncertainty in the presence of multiple sources, as discussed in Section 3.

We highlight the economic relevance of our theory by showing that classic settings of

intertemporal and allocation choices can be viewed as special cases.

We close by noting that our setup does not explicitly account for source-dependent

prospects that depend simultaneously on multiple sources. This is compatible with many

contexts (notably with intertemporal settings), but it can be restrictive in other circum-

stances. Though a systematic analysis of this issue is beyond the scope of this paper, our
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setup can easily be extended to accommodate some forms of multiple dependence. For

instance, consider the allocation problem of last section where an agent has to decide how

to allocate his wealth between a Eurozone asset f1 and a US asset f2. In that application

each asset is a source-dependent prospect that depends only on one source, the Eurozone

market (source 1) or the US market (source 2). Suppose that an additional source, say

the Asian market (source 3), influences the performance of both assets. Indeed, a finan-

cial crisis in Asia is likely to affect both the Eurozone and the US. This issue can be

addressed within our setup by viewing it as a form of interdependence between sources.

Let Ŝi = Si × S3 stand for the set of effective contingencies for market i = 1, 2. That

is, Ŝi describes the relevant uncertainty on market i by taking into account all possible

combinations of contingencies featured by the local source i and the Asian source. Asset

i is then defined as f̂i : Ŝi → [0,∞) for i = 1, 2. As before, f̂i pays in the local currency,

but now it depends on the interactions between the local source (Eurozone or US) and

the external source (Asia) that together determine the payoff structure of the asset. Such

interdependence directly affects the underlying mechanism of uncertainty and, hence, may

alter the source-dependent uncertainty attitudes: the certainty equivalent in (11) is now

computed with respect to a probability measure defined on the extended set of contingen-

cies Ŝi. The definition of the remaining parameters is formally unchanged. In particular,

all exchange rates are still defined between euros and dollars. Any influence of the Asian

source on the Eurozone and the US is captured by the respective certainty equivalents and

assessed using one of the two currencies. Hence, the analysis of the last section remains

valid within this extended setup. A natural direction for future research is the study of

more complicated forms of interdependence and their potential impact on the familiarity

perception of markets as captured by subjective prices.

Appendix

A Preliminaries on Chisini means

This section introduces the notion of Chisini mean and provides preliminary results relating

this notion to our preference representations. The results of this section will be useful to

prove the representation theorems in Appendix B.

We start with some terminology. Let Ω be a nonempty set (in this appendix, Ω can

be either S or I), Σ an algebra of subsets of Ω (in this appendix, Σ can be either one of

the Σi’s or the power set ℘ (I)), F = B0 (Ω,Σ, X) the space of all simple Σ-measurable

functions f : Ω→ X, (endowed with the supnorm topology ‖ · ‖), and Fc = {x1Ω : x ∈ X}
the set of constant elements of F .

A functional V : F → R is said to:

• be monotone if f ≥ g implies V (f) ≥ V (g);
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• be normalized if V (x1Ω) = x for all x ∈ X;

• represent a binary relation % on F if

V (f) ≥ V (g) ⇐⇒ f % g.

Denote by V the class of all functionals V : F → R with the following two properties:

(χ.1) the restriction of V to Fc is one-to-one;

(χ.2) V is monotone and continuous.

Remark 17 First note that

xn1Ω → x1Ω in B0 (Ω,Σ, X) ⇐⇒ ‖xn1Ω − x1Ω‖ → 0 ⇐⇒ xn → x in R.

Therefore property (χ.1) is equivalent to require the function

v : X → R
x 7→ V (x1Ω)

to be one-to-one on X. Together with property (χ.2), this implies that v is strictly increas-

ing and continuous. Moreover, denoting by f and f the pointwise maximum and minimum

of any function f ∈ F on Ω, monotonicity of V guarantees that v
(
f
)
≤ V (f) ≤ v

(
f
)
.

Hence, V (F ) = v (X).

Definition 18 Given V ∈ V, a Chisini mean of an element f ∈ F with respect to V is

the (unique) number M = MV (f) such that

V (M1Ω) = V (f) .

That is, M ∈ X is the unique solution

MV (f) = v−1 (V (f))

of the equation v (M) = V (f).

The next simple proposition is a characterization of Chisini means:

Proposition 19 The following conditions are equivalent for a functional C : F → X:

• there exists V ∈ V such that

C (f) = MV (f) ∀f ∈ F ; (14)

• the functional C is monotone, normalized, and continuous.
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Moreover, V is unique up to strictly increasing and continuous transformations.28

Proof of Proposition 19. If there exists V ∈ V such that C = MV , then

f ≥ g =⇒ V (f) ≥ V (g) =⇒ MV (f) = v−1 (V (f)) ≥ v−1 (V (g)) = MV (g)

and so C is monotone. As to normalization, note that, for all x ∈ X,

C (x1Ω) = v−1 (V (x1Ω)) = v−1 (v (x)) = x.

Moreover, continuity of C follows directly from continuity of V .

Conversely, if C is monotone, normalized, and continuous, then C ∈ V, that is, it

satisfies properties (χ.1) and (χ.2). Define c : X → X as c(x) = C (x1Ω). Then, c (x) = x

for all x ∈ X, implying that

MC (f) = c−1 (C (f)) = C (f) ∀f ∈ F.

Hence, C is a Chisini mean with respect to itself.

Finally, assume W is another element of V such that C = MW . Then, for all f ∈ F ,

v−1 (V (f)) = MV (f) = MW (f) = w−1 (W (f)) =⇒ W (f) =
(
w ◦ v−1

)
(V (f)) .

By Remark 17, both v−1 : v (X) = V (F )→ X and w : X → R are strictly increasing and

continuous, so is τ = w ◦ v−1. Conversely, let τ : V (F ) → R be strictly increasing and

continuous, and W = τ ◦ V . Then, for all x ∈ X,

w (x) = W (x1Ω) = τ (V (x1Ω)) = τ (v (x)) (15)

is strictly increasing and continuous because v and τ are. Thus, W satisfies property

(χ.1). Monotonicity of W follows immediately from that of V through τ , so that W

satisfies property (χ.2). Finally, (15) implies that τ = w ◦ v−1. Hence, for all f ∈ F ,

MW (f) = w−1 (W (f)) = w−1 (τ (V (f))) = w−1
((
w ◦ v−1

)
(V (f))

)
= v−1 (V (f)) = MV (f)

as desired. �

Lemma 20 Let % be a binary relation on F . The following conditions are equivalent:

(i) there exists a Chisini mean C : F → X that represents %;

(ii) the binary relation % has the following properties:

(π.1) % is complete and transitive;

28Another element W ∈ V is such that C = MW if and only if there exists a strictly increasing and

continuous transformation τ : V (F ) → R such that W = τ ◦ V . In particular, C is the only normalized

element of W ∈ V such that C (f) = MW (f) for all f ∈ F .
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(π.2) if f, g ∈ F and f ≥ g then f % g. The converse is true if both f and g are

constant;

(π.3) if f, g, h ∈ F and f � g � h, then there exist α, β ∈ (0, 1) such that (1− α)h+

αg � f � (1− β)h+ βg.

Moreover, C is the unique Chisini mean representing % on F and it is such that

f ∼ C (f) 1Ω ∀f ∈ F. (16)

When the elements of F are interpreted as single uncertain payoffs (in this paper,

when F = Fi), equation (16) says that the Chisini mean C (f) of f is the single sure

payoff which is equivalent to f , that is C is a certainty equivalent.

When the elements of F are interpreted as streams of sure payoffs (in this paper, when

F = XI), equation (16) says that the Chisini mean C (f) of f is the constant payoff a

stream of which is equivalent to f , that is C is an aggregator.29

Proof of Lemma 20. (i) implies (ii). Let C be a Chisini mean that represents % on F .

By Proposition 19, the functional C is monotone, normalized, and continuous. Since X

is a convex subset of R, we can apply Proposition 1 of Cerreia-Vioglio et al. (2011), and

immediately conclude that % satisfies properties (π.1) and (π.3). Moreover, monotonicity

of C implies that

h ≥ g =⇒ C (h) ≥ C (g) =⇒ h % g.

If h = x1Ω and g = y1Ω are constant, we have, by normalization of C, that

h % g =⇒ C (x1Ω) ≥ C (y1Ω) =⇒ x ≥ y =⇒ h ≥ g.

Hence, property (π.2) holds, too.

(ii) implies (i). We claim that, for all f ∈ F , there exists a unique xf ∈ X such that

f ∼ xf1Ω. Assume f ∼ x1Ω and f ∼ y1Ω. Then, by transitivity, x1Ω ∼ y1Ω, and, by

property (π.2), it must be that x1Ω = y1Ω, i.e., x = y. This proves uniqueness.

We next prove existence. For all f ∈ F , let f, f ∈ X be such that f1Ω ≥ f ≥ f1Ω.

Then, property (π.2), again, yields f1Ω % f % f1Ω. If either f ∼ f1Ω or f ∼ f1Ω existence

is guaranteed; otherwise, f1Ω � f � f1Ω. The set

Xf = {x ∈ X : x1Ω % f}

contains f but not f and, if y ∈ Xf all elements x ≥ y also belong to Xf (by property

(π.2) and transitivity). Let xf = inf Xf . If xf1Ω � f , then xf1Ω � f � f1Ω and,

by property (π.3), there exists α ∈ (0, 1) such that (1− α)xf1Ω + αf1Ω � f � f1Ω.

29Note however that being a Chisini mean is a property of the functional unrelated to whether the

functional represents a preference. Instead being a certainty equivalent is indissolubly tied to the existence

of a corresponding preference relation.
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Hence, (1− α)xf + αf ∈ Xf . But, by property (π.2), we have xf > f , which implies

(1− α)xf +αf < xf , contradicting the fact that xf is a lower bound of Xf . If f � xf1Ω,

then f1Ω � f � xf1Ω and, by property (π.3), there exists β ∈ (0, 1) such that f1Ω � f �
(1− β) f1Ω + βxf1Ω; but, by property (π.2), f > xf , so (1− β) f + βxf > xf . On the

other hand, for every x ∈ Xf , x1Ω % f � (1− β) f1Ω + βxf1Ω. Thus, transitivity and

property (π.2) imply x > (1− β) f1Ω + βxf , contradicting the fact that xf is the greatest

lower bound of Xf . In conclusion, it must be the case that f ∼ xf1Ω.

Next, we show that there exists a Chisini mean that represents %. Let x, y ∈ X be

such that x1Ω � y1Ω. Then, property (π.2) implies that x > y and, by convexity of X, we

have that (αx+ (1− α)z)1Ω > (αy + (1− α)z)1Ω for all z ∈ X and α ∈ (0, 1). Again by

property (π.2), we obtain (αx+(1−α)z)1Ω � (αy+(1−α)z)1Ω, and so, % restricted to Fc

satisfies Independence. Thus, the axioms of Proposition 1 in Cerreia-Vioglio et al. (2011)

are satisfied, implying that there exists a monotone, normalized and continuous functional

C : F → R that represents % on F . Since C is normalized and monotone, C(F ) = X. We

conclude, by Proposition 19, that the functional C : F → X is a Chisini mean.

It remains to prove the uniqueness of C. For all f ∈ F and x ∈ X, normalization of

C implies that f ∼ x1Ω if and only if C(f) = C(x1Ω) = x. By the above argument, for

all f ∈ F , there exists a unique xf ∈ X such that f ∼ xf1Ω. Hence, f ∼ C(f)1Ω for all

f ∈ F . �

B Proofs and related analysis

B.1 Proofs of the results of Section 3

Proof of Lemma 2. It follows directly from Lemma 20 by letting Ω = S and F = Fi in

that lemma. �

Proof of Proposition 7. (i) implies (ii). Since % satisfies Axiom A.1, it follows from

Lemma 2 that there exists a family (ci)i∈I of certainty equivalents for (%i)i∈I .

Next, fix i, j ∈ I. By Axiom B.1, for every x ∈ X, there exists y ∈ X such that

(x, i) ∼ (y, j). Note that the number y is unique. In fact, by transitivity of % on P, if

ŷ ∈ X were such that (x, i) ∼ (ŷ, j), then (ŷ, j) ∼ (y, j). That is, (ŷ, j) ∼j (y, j), yielding

that y = cj (y) = cj (ŷ) = ŷ. By the same reasoning, note that if i = j, then y = x. Thus,

we can define a function δji : X → X as

δji (x) = y where y is such that (x, i) ∼ (y, j). (17)

Note that if i = j, then δii = idX . Since i, j ∈ I were arbitrarily chosen, we have that

δji : X → X, defined as in (17), is a well-defined function. Next, we show that, for all

i, j ∈ I, δji is a rate and, hence, it satisfies the properties described in Definition 6.
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• If x > z, then (x, i) � (z, i) by Axiom A.1(i) and the definition of %i. By contra-

diction, assume that δji (x) ≤ δji (z). Again, by Axiom A.1(i), it would follow that

(δji (z) , j) % (δji (x) , j). At the same time, by construction, we would have that

(z, i) ∼ (δji (z) , j) % (δji (x) , j) ∼ (x, i),

yielding, by transitivity, that (z, i) % (x, i), a contradiction. This proves that δji is

strictly increasing.

• By construction, for every y ∈ X, (y, j) ∼ (δij (y) , i), that is, y = δji (δij (y)). Thus,

δji is onto (and δij = δ−1
ji ).

• By construction, for every x ∈ X and k ∈ I, (x, i) ∼ (δji (x) , j) and (δji (x) , j) ∼
(δkj (δji (x)) , k). By transitivity, this implies that (x, i) ∼ (δkj (δji (x)) , k), that is,

δkj (δji (x)) = δki (x). Thus, δki = δkj ◦ δji.

Now, let i, j ∈ I, fi ∈ Fi, and gj ∈ Fj . By the previous part of the proof, we have

(fi, i) ∼ (ci (fi) , i) , (gj , j) ∼ (cj (gj) , j) , and (cj (gj) , j) ∼ (δij (cj (gj)) , i).

By transitivity of % on P and Lemma 2, we obtain that

(fi, i) % (gj , j) ⇐⇒ (ci (fi) , i) % (cj (gj) , j)

⇐⇒ (ci (fi) , i) % (δij (cj (gj)) , i) ⇐⇒ ci (fi) ≥ δij (cj (gj)) ,

(ii) implies (i). Let i ∈ I and fi, gi ∈ Fi. Then,

(fi, i) % (gi, i) ⇐⇒ ci (fi) ≥ δii (ci (gi)) ⇐⇒ ci (fi) ≥ ci (gi) .

Since i was arbitrarily chosen, it follows that % on P is a complete binary relation. Next,

if (fi, i) % (gj , j) and (gj j) % (hk, k), then representation (4) implies that

ci (fi) ≥ δij (cj (gj)) and cj (gj) ≥ δjk (ck (hk)) .

Since δij is increasing and onto and δki = δkj ◦ δji, we have

ci (fi) ≥ δij (cj (gj)) ≥ δij (δjk (ck (hk))) = δik (ck (hk)) ,

that is, (fi, i) % (hk, k), proving that % on P is transitive, too.

Since ci is a certainty equivalent functional, we can apply Lemma 2 and directly con-

clude that %i on Fi satisfies Axiom A.1.

Finally, for every i, j ∈ I and x ∈ X, let y = δji (x). Then,

cj (y) = y = δji (x) = δji (ci (x)) ,
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proving that (y, j) ∼ (x, i). Thus, Axiom B.1 is satisfied.

The uniqueness of (ci)i∈I follows from Lemma 2. Next, assume that (δ̂ji)j,i∈I is another

family of functions that, together with (ci)i∈I , represents % on P as in (4). Fix i, j ∈ I.

It follows that, for all x ∈ X,

(x, i) ∼ (δji (x) , j) and (x, i) ∼ (δ̂ji (x) , j).

By transitivity of %, we have (δji (x) , j) ∼ (δ̂ji (x) , j) which, by using the representation,

implies δji (x) = δ̂ji (x). Since i and j were arbitrarily chosen, it follows that δij = δ̂ij for

all i, j ∈ I. �

Proof of Proposition 8. (i) implies (ii). By Axiom A.2, for every i ∈ I, there are

a strictly increasing and continuous function ui : X → R and a probability measure pi

on (S,Σi) such that ci : Fi → X represents %i where ci(fi) = u−1
i

(∫
S ui (fi) dpi

)
for all

fi ∈ Fi. Fix arbitrary i, j ∈ I, fi ∈ Fi, and gj ∈ Fj and suppose that (fi, i) % (gj , j). By

Axiom A.2, we have (fi, i) ∼ (ci(fi), i) and (gj , j) ∼ (cj(gj), j). By Axiom B.2, (ci(fi), i) ∼
(ci(fi), j). Then, transitivity implies (ci(fi), j) % (cj(gj), j), that is, ci(fi)1Sj %j cj(gj)1Sj .

Since cj represents %j , we conclude that ci(fi) ≥ cj(gj).

It is immediate to verify that (ii) implies (i). The uniqueness part follows from standard

arguments (see, e.g., Wakker, 1989). �

B.2 Proofs of the results of Section 4

In the rest of the appendix, we will refer to

Fc = {f ∈ F : f = (xi1Si)i∈I for xi ∈ X}

as the set of constant prospect profiles. We endow Fc with the product topology. Define

the map P : Fc → XI by

P (f) = ϕ where fi = xi1Si and ϕi = xi ∀i ∈ I,

and note that P is a well-defined affine homeomorphism.

Then, we can define a binary relation < on XI as

ϕ < ψ ⇐⇒ f % g, (18)

where f , g ∈ Fc, ϕ = P (f), and ψ = P (g).

We will also make use of the following notion for an aggregator.

Definition 21 Let D : XI → X be an aggregator.

(i) For every i ∈ I, define Di : X → X as Di(x) = D(x1i) for all x ∈ X. We say that

Di is a component of D.

33



(ii) We say that D : XI → X is a commensurable aggregator if Di is strictly increasing

and Di(X) = Dj(X) for all i, j ∈ I.

Next, we present an alternative formulation of Theorem 10 in which the aggregator is

not normalized with respect to a specific source. We then show that Theorem 10 follows

from Theorem 22.

Theorem 22 Let % be a binary relation on F . The following conditions are equivalent:

(i) % satisfies Axioms A.1, B.1, and C.1;

(ii) there exist

(a) a family (ci)i∈I of certainty equivalents for (%i)i∈I ,

(b) a family (δij)i,j∈I of rates,

such that, for all i, j ∈ I, fi ∈ Fi, and gj ∈ Fj,

(fi, i) % (gj , j) ⇐⇒ ci (fi) ≥ δij (cj (gj)) ,

(c) a commensurable aggregator D : XI → X, such that, for all f ,g ∈ F ,

f % g ⇐⇒ D (c1 (f1) , . . . , cn (fn)) ≥ D (c1 (g1) , . . . , cn (gn)) .

In this case, δij = D−1
i ◦Dj for all i, j ∈ I. Moreover, the elements of (ci)i∈I and (δij)i,j∈I

are unique, and so is D.

Proof of Theorem 22. (i) implies (ii). Parts (a) and (b) follow from Proposition 7.

Define the map T̃ : F → Fc such that f 7→ f̃ where f̃i = ci (fi) 1Si for all i ∈ I. Clearly, T̃

is onto. Since % on F satisfies Axiom C.1(i), we have that, for all f ,g ∈ F ,

f % g ⇐⇒ f̃ % g̃. (19)

Define the map T = P ◦ T̃ : F → XI and note that it is also onto. Moreover,

T (f) = T (g) ⇐⇒ ci (fi) = ci (gi) ∀i ∈ I.

Since % satisfies Axioms A.1 and C.1, it follows that T (f) = T (g) implies f ∼ g. Hence,

T is a well-defined function.

Using conditions (18) and (19), we obtain that, for all f ,g ∈ F ,

f % g ⇐⇒ T̃ (f) % T̃ (g) ⇐⇒ T (f) < T (g). (20)

Next, we show that < on XI satisfies properties (π.1)-(π.3) of Lemma 20. Set F = XI in

that lemma. Clearly, < satisfies property (π.1) as % on F is a weak order. Let x,y ∈ XI
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such that xi ≥ yi for all i ∈ I. Then, Axiom A.1(i) yields xi1Si %i yi1Si for all i ∈ I, and

Axiom C.1(i) together with (18) imply x < y. Thus, the first part of property (π.2) is

satisfied. If x,y ∈ XI are constant and x < y, then Axiom C.1(ii) gives x ≥ y. Hence,

property (π.2) holds, too. Property (π.3) follows directly from Axiom C.1(iii).

By Lemma 20, there exists a Chisini mean D : XI → X that represents < on XI and

such that x ∼ D(x)1I for all x ∈ XI . Together with condition (20), it implies that

f % g ⇐⇒ D(T (f)) ≥ D(T (f)) ∀f ,g ∈ F .

By Proposition 19, D is monotone, normalized, and continuous. Thus, D is an aggregator.

It remains to show that D is commensurable and that δij = D−1
i ◦Dj for all i, j ∈ I.

Let x, y ∈ X such that x > y and fix an arbitrary i ∈ I. By Axiom A.1(i), we have

x1Si �i y1Si . Then, D(0, . . . , x, . . . , 0) > D(0, . . . , y, . . . , 0), that is, Di(x) > Di(y), which

proves that Di is strictly increasing for all i ∈ I.

Let x ∈ X and i, j ∈ I. Parts (a) and (b) give (x, j) ∼ (δij(x), i). Then,

Dj(x) = D(0, . . . , x, . . . , 0) = D(0, . . . , δij(x), . . . , 0) = Di(δij(x)).

We conclude that δij = D−1
i ◦ Dj . Finally, since δij is onto, it directly follows that

Di(X) = Dj(X) = X for all i, j ∈ I. Part (c) is now proven.

(ii) implies (i). By Proposition 7, parts (a) and (b) imply that % satisfies Axioms A.1

and B.1. Since for every f ∈ F , we can compute D((ci(fi))i∈I), it follows from part (c)

that % on F is a weak order. Next, if f ,g ∈ F are such that fi %i gi for all i ∈ I, then parts

(a) and (b) imply that ci (fi) ≥ ci (gi) for all i ∈ I. Since D is monotone, we can conclude

that D((ci(fi))i∈I) ≥ D((ci(gi))i∈I), that is, f % g. Thus, % satisfies Axiom C.1(i). Now,

let x and y in XI be constant and such that x > y. Then, x = D(x) > D(y) = y,

implying that x � y, and Axiom C.1(ii) holds, too. Since D is a Chisini mean, we can

apply Lemma 20 with F = XI and directly conclude that % satisfies Axiom C.1(iii).

Finally, the uniqueness of the elements of (ci)i∈I and (δij)i,j∈I follows from Proposi-

tion 7. The functional D is unique by Lemma 20. �

We now prove Theorem 10 as a corollary of Theorem 22.

Proof of Theorem 10. (i) implies (ii). Parts (a) and (b) follow from Theorem 22. Fix

o ∈ I and define T̃o : F → Fc such that f 7→ f̃ where f̃i = δoi(ci(fi))1Si for all i ∈ I. Since

each δoi is onto, it follows that T̃o is also onto. Define the map To = P ◦ T̃o : F → XI and

note that To is onto. Since each δoi is strictly increasing, we have

To (f) = To (g) ⇐⇒ ci (fi) = ci (gi) ∀i ∈ I.

Since % satisfies Axioms A.1 and C.1, we have that To (f) = To (g) yields f ∼ g. Thus, the

map To is well defined. By Axiom C.1(i) and condition (18), it follows that f % g ⇐⇒
To(f) < To(g), for all f ,g ∈ F .
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By Theorem 22, there exists a commensurable aggregator D : XI → X such that

f % g ⇐⇒ D(To(f)) ≥ D(To(g)) ∀f ,g ∈ F .

Since D is commensurable, we have that D−1
o is strictly increasing. Define Wo : XI → X

as Wo(x) = (D−1
o (D(x)). Then,

f % g ⇐⇒ Wo(To(f)) ≥Wo(To(g)) ∀f ,g ∈ F .

Note that Wo is monotone because D is monotone. Moreover, for any x ∈ XI such that

xj = 0 for all j 6= o, we have that Wo(x) = D−1
o (D(x)) = xo Thus, Wo is o-normalized.

(ii) implies (i). Omitted as it is analogous to the proof of the sufficiency part of

Theorem 22. �

Proof of Proposition 11. (i) Let ((ci)i∈I , (δij)i,j∈I ,Wo) and ((c′i)i∈I , (δ
′
ij)i,j∈I ,W

′
o) be

two source-dependent representations of %. By Proposition 7, it follows that c′i = ci and

δij = δ′ij for all i, j ∈ I. Moreover, uniqueness of Wo follows directly by construction.

Indeed, recall that Wo = D−1
o ◦D and the aggregator D is unique by Theorem 22.

(ii) Let o 6= ō and consider ((ci)i∈I , (δij)i,j∈I ,Wo) and ((ci)i∈I , (δij)i,j∈I ,Wō). By con-

struction, we have that Wo = D−1
o ◦ D and Wō = D−1

ō ◦ D. Since δoō = D−1
o ◦ Dō by

Theorem 22, we conclude that Wo = δoō(Wō). �

Proof of Proposition 12. (i) implies (ii). Note that XI is a convex set. Moreover, since

for each i ∈ I, x ≥ y if and only if x1Si %i y1Si , it follows that each component is essential

(non-null). By Wakker (1988), there exist a collection {αi}i∈I ⊆ ∆(I) and a continuous

function v : X → R such that, for all f ,g ∈ Fc,

f % g ⇐⇒ ϕ < ψ ⇐⇒
I∑
i=1

αiv (xi) ≥
I∑
i=1

αiv (yi) ,

where fi = xi1Si , gi = yi1Si , ϕi = xi, and ψi = yi for all i ∈ I. After a positive and affine

transformation, we can normalize v by setting v(0) = 0 and v(1) = 1. Using condition

(20), we can conclude that, for arbitrary f ,g ∈ F ,

f % g ⇐⇒ T̃ (f) % T̃ (g) ⇐⇒ T (f) < T (g) ⇐⇒
I∑
i=1

αiv (ci (fi)) ≥
I∑
i=1

αiv (ci (gi)) ,

where T and T̃ are the maps defined in the Proof of Theorem 22. Let i ∈ I. Observe that

x ≥ y ⇐⇒ x1Si %i y1Si ⇐⇒ x1Si % y1Si ⇐⇒ αiv (x) ≥ αiv (y) .

Since αi ∈ [0, 1], it follows necessarily that αi > 0. This implies that

x ≥ y ⇐⇒ αiv (x) ≥ αiv (y) ⇐⇒ v (x) ≥ v (y) .
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Since i was arbitrarily chosen, we have that v is strictly increasing and {αi}i∈I ⊆ ∆ (I) is

a collection of strictly positive weights. Define γj = 1
αj
∈ (0,∞) for some j ∈ I. It follows

that

f % g ⇐⇒ γj

I∑
i=1

αiv (ci (fi)) ≥ γj
I∑
i=1

αiv (ci (gi)) . (21)

Finally, define Ŵj : XI → X as

Ŵj (ϕ) = v−1

(
γj

I∑
i=1

αiv (ϕi)

)
∀ϕ ∈ XI .

Given (21), it is immediate to verify that Ŵj is j-normalized, monotone, and Vj = Ŵj ◦T
is a utility function for %.

(ii) implies (i). We omit it as it follows from routine arguments.

By applying standard results (see, e.g., Wakker, 1989), the collection {αi}i∈I is unique

and the function v is unique up to positive affine transformations. Moreover, the normal-

ization v(0) = 0 and v(1) = 1 implies that v must be unique. �

Proof of Proposition 13. (i) implies (ii). By Proposition 7 and since % satisfies Axiom

D.3, we have that, for every i, j ∈ I\ {T} and every x, y ∈ X,

δji (x) = y ⇐⇒ (x, i) ∼ (y, j) =⇒ (x, i+ 1) ∼ (y, j + 1) =⇒ δj+1 i+1 (x) = y = δji (x) ,

that is, δj+1 i+1 = δji. If we set j = t and i = t+ 1, we have that, for each t ∈ I\ {T},

δ01 (x) = δ12 (x) = ... = δt t+1 (x) ∀x ∈ X.

In particular, set δ̂ = δ01 (1) = δ12 (1) = ... = δt t+1 (1). Recall also that for every

i, j ∈ I and for every x ∈ X the number δji (x) is the unique element in X such that

(x, i) ∼ (δji (x) , j). (22)

By Proposition 12, there exist a collection of strictly positive weights {αi}i∈I ⊆ ∆ (I)

and a continuous and strictly increasing function v : X → R with v (0) = 0 and v (1) = 1,

and γ0 > 0 such that

V0 (f) = v−1

(
γ0

T∑
t=0

αtv (ct (ft))

)
∀f ∈ F (23)

is a utility function for %. Let x = 1. For every i, j ∈ I, we have

(δji (1) , j) ∼ (1, i) ⇐⇒ αjv (δji (1)) = αiv (1) ⇐⇒ αjv (δji (1)) = αi.

By setting i = t+ 1 and j = t, we have

αt+1 = αtv (δt t+1 (1)) ∀t ∈ I\ {T} .

37



Since δt t+1 (1) = δ01 (1) = δ̂ > 0 for all t ∈ I\ {T}, we can define β = v
(
δ̂
)
> 0 and

obtain30

αt+1 = αtβ ∀t ∈ I\ {T} .

It follows that αt+1 = α0β
t+1 for all t ∈ I\ {T}. By the proof of Proposition 12, we have

that γ0 = 1
α0

. Thus, we can conclude that

V0 (f) = v−1

(
γ0

T∑
t=0

αtv (ct (ft))

)
= v−1

(
T∑
t=0

γ0αtv (ct (ft))

)

= v−1

(
T∑
t=0

γ0α0β
tv (ct (ft))

)

= v−1

(
T∑
t=0

βtv (ct (ft))

)
,

proving the statement.

(ii) implies (i). We omit it as it is routine.

Finally, β and v are unique by the uniqueness properties of Proposition 12. �

B.3 Proofs of the results of Sections 5 and 6

Proof of Proposition 14. (i) implies (ii). Using the implication with the same name in

Wakker (1989, Theorem VII.6.5), observe that the fact that {αji}i∈I ⊆ ∆ (I) for j = 1, 2 is a

collection of strictly positive weights prevents case (i.b) in that theorem; moreover, the fact

that v2 is strictly increasing prevents case (i.c) there. We conclude that {α1
i }i∈I = {α2

i }i∈I
and that there exists a convex, nondecreasing, and continuous ϕ : v1 (X) → R such that

v2 = ϕ ◦ v1. Note that, for each x ∈ X, v2 (x) = v2

(
v−1

1 (v1 (x))
)
. Then, for each

t = v1 (xt) ∈ v1 (X),

ϕ (t) = ϕ (v1 (xt)) = v2 (xt) = v2

(
v−1

1 (v1 (xt))
)

= v2

(
v−1

1 (t)
)

and ϕ = v2 ◦ v−1
1 . As a consequence, ϕ : v1 (X) → v2 (X) is bijective, strictly increasing,

continuous and so is its inverse ψ = v1 ◦ v−1
2 : v2 (X)→ v1 (X), which satisfies v1 = ψ ◦ v2.

Convexity of ϕ implies

ϕ (αt+ (1− α) z) ≤ αϕ (t) + (1− α)ϕ (z) ∀t, z ∈ u1 (X) , α ∈ [0, 1]

⇐⇒

αt+ (1− α) z ≤ ϕ−1 (αϕ (t) + (1− α)ϕ (z)) ∀t, z ∈ u1 (X) , α ∈ [0, 1] .

30Note that αt+1 = αtv (δt t+1 (1)) = αtv
(
δ̂
)

implies

v
(
δ̂
)

=
αt+1

αt
> 0.

Since v (0) = 0 and v is strictly increasing, we have that δ̂ > 0.
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Now, taking any x, y ∈ v2 (X), set t = ψ (x) , z = ψ (y) ∈ v1 (X) so that, for each α ∈ [0, 1],

αψ (x) + (1− α)ψ (y) ≤ ψ (αϕ (ψ (x)) + (1− α)ϕ (ψ (y))) = ψ (αx+ (1− α) y) .

Thus, ψ = v1 ◦ v−1
2 : v2 (X)→ R is concave, strictly increasing, continuous, and such that

v1 = ψ ◦ v2.

(ii) implies (i). Assume that
{
α1
i

}
i∈I =

{
α2
i

}
i∈I and v1 = ψ ◦ v2 for some concave

transformation ψ. For each i ∈ I, let αi := α1
i = α2

i . Consider x ∈ XI and z ∈ X such that

x %1 (z, z, ..., z). By using the representation in Proposition 12,
∑

i∈I αiv1 (xi) ≥ v1(z).

Since v1 = ψ ◦ v2, we have
∑

i∈I αiψ (v2 (xi)) ≥ ψ (v2(z)). By concavity of ψ, it follows

that ψ
(∑

i∈I αiv2 (xi)
)
≥ ψ (v2(z)). Hence, we conclude that x %2 (z, z, ..., z). �

Proof of Proposition 15. For i = 1, 2, assume ui (x) = x1−γi/ (1− γi) for all x ≥ 0,

where γi ∈ (0, 1). To maximize W , given the constraints, is equivalent to maximize W̃ :

R2
+ → R defined by W̃ (ξ1, ξ2) = α1v (ξ1c1 (f1)) + α2v (ξ2c2 (f2)) subject to (10). Since

W̃ is continuous, strictly monotone, and strictly concave,31 W̃ has a unique maximum

ξ̂ which satisfies (10) with equalities, which is easily seen to be equivalent to the single

constraint

ξ1, ξ2 ≥ 0, ξ1p1 + ξ2ρ12p2 = w1 + ρ12w2. (24)

To ease notation, let ρ = ρ12. Set up the Lagrangian

L (ξ1, ξ2, s, λ1, λ2, µ1, µ2) = W̃ (ξ1, ξ2)+λ1ξ1+λ2ξ2+µ1 (w1 − ξ1p1 − s)+µ2

(
w2 +

1

ρ
s− ξ2p2

)
,

and find ξ̂ and λ̂ and µ̂ that satisfy the following conditions:

(i) αiv
′
(
ξ̂ici (fi)

)
ci (fi) + λ̂i − µ̂ipi = 0 for i = 1, 2;

(ii) −µ̂1 + 1
ρ µ̂2 = 0;

(iii) λ̂i ≥ 0, µ̂i ≥ 0 and λ̂iξ̂i = 0 for i = 1, 2 as well as ξ̂1p1 + s = w1 and ξ̂2p2 = w2 + 1
ρs.

Then, ξ̂ is the maximizer we are looking for. We start our search by assuming λ̂1 =

λ̂2 = 0 and µ̂1, µ̂2 > 0. Next, since v (x) = x1−k

1−k , we have that for i = 1, 2,

αi

(
ξ̂ici (fi)

)−k
ci (fi) + λ̂i = µ̂ipi ⇐⇒ ξ̂ki =

αici (fi)
1−k

µ̂ipi

⇐⇒ ξ̂i =

(
αici (fi)

1−k

µ̂ipi

) 1
k

.

Observe also that µ̂2 = ρµ̂1. We thus have that

ξ̂1 =

(
α1c1 (f1)1−k

µ̂1p1

) 1
k

and ξ̂2 =

(
α2c2 (f2)1−k

ρµ̂1p2

) 1
k

.

31To avoid technicalities, we also assume that ci (fi) > 0.
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Call µ̂1 = µ̂, c1 (f1) = c1 , and c2 (f2) = c2. We have that(
α1c

1−k
1

µ̂p1

) 1
k

p1 + s = w1 and

(
α2c

1−k
2

ρµ̂p2

) 1
k

p2 = w2 +
1

ρ
s.

It follows that

s = w1 −

(
α1c

1−k
1

µ̂p1

) 1
k

p1 and

(
α2c

1−k
2

ρµ̂p2

) 1
k

p2 = w2 +
1

ρ
s

=⇒

(
α2c

1−k
2

ρµ̂p2

) 1
k

p2 = w2 +
1

ρ
w1 −

1

ρ

(
α1c

1−k
1

µ̂p1

) 1
k

p1

=⇒

(
α1c

1−k
1

µ̂p1

) 1
k

p1 + ρ

(
α2c

1−k
2

ρµ̂p2

) 1
k

p2 = w1 + ρw2

=⇒
(

1

µ̂

) 1
k

=
w1 + ρw2(

α1c
1−k
1
p1

) 1
k

p1 + ρ

(
α2c

1−k
2

ρp2

) 1
k

p2

We can conclude that

ξ̂1 =

(
α1c

1−k
1

p1

) 1
k w1 + ρw2(

α1c
1−k
1
p1

) 1
k

p1 + ρ

(
α2c

1−k
2

ρp2

) 1
k

p2

> 0 (25)

and

ξ̂2 =

(
α2c

1−k
2

ρp2

) 1
k w1 + ρw2(

α1c
1−k
1
p1

) 1
k

p1 + ρ

(
α2c

1−k
2

ρp2

) 1
k

p2

> 0. (26)

This implies that

ξ̂1

ξ̂2

=

(
α1c1−k

1
p1

) 1
k

(
α2c

1−k
2

ρp2

) 1
k

=

(
α1ρp2c

1−k
1

α2p1c
1−k
2

) 1
k

=

(
α1

α2

ρp2

p1

) 1
k
(
c1

c2

) 1−k
k

.

Thus, we have

ξ̂1

ξ̂2

=

(
α1

α2

ρp2

p1

) 1
k
(
c1

c2

) 1−k
k

. (27)

Finally, recall that by Proposition 12, δ21(x) = v−1
(
α1
α2
v(x)

)
and v−1(x) = ((1− k)x)

1
1−k .

Hence, δ21 := δ21(1) =
(
α1
α2

) 1
1−k

. It follows that

ξ̂1

ξ̂2

=

(
δ21

c1

c2

) 1−k
k
(
ρp2

p1

) 1
k

, (28)
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proving condition (12).

Now, let us recall that for i ∈ {1, 2},

∂W̃

∂ξi

(
ξ̂
)

= αici

(
ξ̂ici

)−k
.

Hence,

∂W̃
∂ξ2

(
ξ̂
)

∂W̃
∂ξ1

(
ξ̂
) =

α2c2

(
ξ̂2c2

)−k
α1c1

(
ξ̂1c1

)−k =
α2

α1

(
c2

c1

)1−k
(
ξ̂2

ξ̂1

)−k
.

Using (28) and rearranging, we obtain that

∂W̃
∂ξ2

(
ξ̂
)

∂W̃
∂ξ1

(
ξ̂
) =

ρp2

p1
.

Since W = g ◦ W̃ where g is such that g (x) = [(1− k)x]
1

1−k for all x ∈ R, it follows that

∂W

∂ξi

(
ξ̂
)

= g′
(
W̃
(
ξ̂
)) ∂W̃

∂ξi

(
ξ̂
)

∀i ∈ {1, 2} .

Note that W̃
(
ξ̂
)
> 0, thus g′

(
W̃
(
ξ̂
))

> 0. We can conclude that

∂W
∂ξ2

(
ξ̂
)

∂W
∂ξ1

(
ξ̂
) =

g′
(
W̃
(
ξ̂
))

∂W̃
∂ξ2

(
ξ̂
)

g′
(
W̃
(
ξ̂
))

∂W̃
∂ξ1

(
ξ̂
) =

ρp2

p1
,

proving the second part of the proposition. �

Proof of Proposition 16. The optimal portfolio allocation ξ̂ = (ξ̂1, ξ̂2) is given by

expressions (25) and (26) in the proof of Proposition 15. Then, the optimal portfolio

share ξ̃i = ξ̂i
w1+ρ12w2

for each asset i is given by

ξ̃1 =

(
α1c1−k

1
p1

) 1
k

(
α1c

1−k
1
p1

) 1
k

p1 +

(
α2c

1−k
2

ρp2

) 1
k

ρp2

and ξ̃2 =

(
α2c

1−k
2

ρp2

) 1
k

(
α1c

1−k
1
p1

) 1
k

p1 +

(
α2c

1−k
2

ρp2

) 1
k

ρp2

To ease notation, set d =

(
α1c

1−k
1
p1

) 1
k

p1 +

(
α2c

1−k
2

ρp2

) 1
k

ρp2 and note that d > 0. Then

∂ξ̃1

∂α1
=

1

d2

1

k
α

1−k
k

1

(
c1−k

1

p1

) 1
k

d− 1

k
α

1−k
k

1

(
c1−k

1

p1

) 1
k

p1

(
α1c

1−k
1

p1

) 1
k


=

1

d2

1

k

(
α1−k

1 c1−k
1

p1

) 1
k
(
α2c
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Since ∂c1
∂γ1

< 0, we have that

∂ξ̃1

∂γ1
=

1

d2

[
k

1− k
c
2k−1
1−k

1

(
α1k

p1

) 1
1−k
(
kα2c

k
2

ρp2

) 1
1−k

ρp2

]
∂c1
∂γ1

< 0.

Analogously, it can be shown that ∂ξ̃2
∂α2

> 0 and ∂ξ̃2
∂γ2

< 0.
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