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Abstract

We adopt the epistemic framework of Battigalli and Siniscalchi (J. Econ.
Theory 88:188-230, 1999) to model the distinction between a player�s behav-
ior at each node, which is part of the external state, and his plan, which is
described by his beliefs about his own behavior. This allows us to distinguish
between intentional and unintentional behavior, and to explicitly model how
players revise their beliefs about the intentions of others upon observing their
actions. Rational players plan optimally and their behavior is consistent with
their plans. We illustrate our approach with detailed examples and some re-
sults. We prove that optimal planning, belief in continuation consistency and
common full belief in both imply the backward induction strategies and beliefs
in games with perfect information and no relevant ties. More generally, we
present within our framework relevant epistemic assumptions about backward
and forward-induction reasoning, and relate them to similar ones studied in
the previous literature.
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1 Introduction

Players who reason strategically anticipate the moves of others under the assumption
that they are rational and �sophisticated,�i.e., that co-players reason strategically in
some well speci�ed sense. In games where some moves are sequential, henceforth dy-
namic games, players have to interpret past moves in order to predict future moves.
Assumptions about how players would revise their beliefs upon observing unexpected
moves are therefore paramount. According to forward-induction thinking, past moves
are interpreted, if possible, as intentional choices carrying out strategically rational
plans. According to backward-induction thinking, instead, past unexpected moves
are interpreted as deviations from the strategically rational plans ascribed to other
players, but similar deviations are not expected to occur in the future, as in the
trembling-hand story by Selten (1975).
The overarching principle of this paper is that a �exible framework to model

strategic reasoning in dynamic games should allow for the formal distinction between
plan and choice and should allow to model the perception of past moves by others as
intentional or unintentional. Yet, most epistemic models for games con�ate plan and
behavior, as they assume implicitly or explicitly that, at every state of the world,
each player i knows (or at least holds a correct belief about) his behavior.1 Since they
do not have states where plans and behavior do not coincide, such models formally
rule out the possibility that unexpected moves are interpreted as deviations from the
plans ascribed to other players.
In this paper, we use instead the epistemic framework of Battigalli and Siniscalchi

(1999), which allows us to decouple plan and behavior. With this, we can model how
players change their perceptions about the intentions of others, e.g., by assuming that
upon observing an unexpected action of a co-player they think that he deviated from
his plan, or� alternatively� that he must be implementing a plan di¤erent from the
one originally ascribed to him. Players hold (�rst-order) beliefs about the behavior

1See, for example, the surveys on epistemic game theory by Battigalli and Bonanno (1999), or
Dekel and Siniscalchi (2015). To be precise, we consider doxastic and epistemic models of games.
Yet, to be consistent with current use in game theory, we abuse the term �epistemic,�which refers
to the analysis of players� interactive knowledge, and extend it to encompass also the (doxastic)
analysis of interactive beliefs.
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of everybody, including themselves,2 and plans are modeled as beliefs about own
behavior. We use the framework to analyze examples and derive results about the
behavioral implications of di¤erent assumptions on strategic reasoning. Our �rst
main result provides epistemic conditions for the backward-induction strategies and
beliefs. We use three main ingredients, which correspond to events in our framework:

� optimal planning (OP ), which is the result of �folding-back� calculations
given beliefs about the behavior of others for every possible contingency,

� consistency (C), that is, coincidence between plan and behavior, and

� belief in continuation consistency (BCC), that is, upon observing any
history h, each player believes that the co-players�behavior will be consistent
with their plans starting from h, whether or not they had been consistent in
the past.

Rationality is given by the conjunction of optimal planning and consistency
(R = OP \C). Much of the literature on epistemic game theory analyzes the behav-
ioral implications of rationality and some versions of �common belief�in rationality.
To model backward-induction reasoning we instead take a di¤erent route and con-
sider �common belief� in doxastic events, that is, events concerning how players
think, not how they behave. Say that a player fully believes an event E if he
assigns probability 1 to E conditional on every history h. Note that the assumption
of full belief in doxastic events is not problematic because they cannot be falsi�ed by
the observation of behavior in the game. With this, we show the following (Theorem
1):
In games with perfect information and no relevant ties, correct common full belief

in OP\BCC implies the backward-induction plans and beliefs about others; if players
are also consistent, then they are rational and their behavior conforms to backward
induction.
We extend this result to cover all multistage games with observable actions: we

show (Theorem 2) that the aforementioned assumptions imply that players use back-
wards rationalizable strategies (Penta 2015, Perea 2014), which coincide with the
backward-induction strategies in games with perfect information and no relevant
ties.
Moving on to the analysis of forward-induction reasoning, we consider the as-

sumptions of rationality and common strong belief in rationality (RCSBR,

2Of course, players hold higher-order beliefs as well.
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cf. Battigalli and Siniscalchi 2002): players (1) strongly believe (i.e., believe when-
ever possible) that the co-players are rational, (2) strongly believe that� on top of
being rational� the co-players also strongly believe the others are rational, and more
generally strongly believe in the highest order of rationality and mutual strong belief
in rationality consistent with observed behavior. We prove that� in the universal
type structure� the behavioral implications of RCSBR are characterized by strong
rationalizability (Theorem 3).3 We further illustrate our approach showing that the
same behavioral implications obtain under the following assumptions: Let C� denote
the set of states where C (consistency) holds and there is common full belief in C;
with this, we prove that in the universal type structure strong rationalizability char-
acterizes the behavioral implications of OP \C� (a subset of R) and common strong
belief in OP \ C� (Theorem 4). Like us, Battigalli and Siniscalchi (2002) provide
an epistemic justi�cation of strong rationalizability. Di¤erently from us, they use
a framework whereby players only hold beliefs about other players and there is no
separate description of plans and behavior. Our latter result shows that we can in-
terpret their framework as implicitly assuming that players are consistent and there
is common full belief in consistency.
To sum up, backwards rationalizability characterizes the behavioral implications

of our epistemic assumptions on backward-induction reasoning, while strong ratio-
nalizability characterizes the behavioral implications (in the universal type structure)
of RCSBR, which represents forward-induction reasoning. These solution concepts
are di¤erent. In some games they even select disjoint sets of strategy pro�les (see
Section 3.2 and the discussion in Section 7). In both cases co-players are initially
expected to behave as planned, and such di¤erences follow from how backward and
forward-induction reasoning shape players�perceptions of co-players�intentions upon
observing unexpected actions: backward-induction reasoning explains such actions
as one-o¤ deviations from plans, forward-induction reasoning explains them as exe-
cuting unexpected rationalizable plans.
While these results illustrate the expressive power of the adopted framework, we

propose that its usefulness goes well beyond them. For example, decoupling plans
from behavior is essential to correctly model players who intrinsically care about
the intentions of co-players as in the psychological-game models of reciprocity, guilt
aversion, and anger (see Battigalli and Dufwenberg 2020 and references therein).

Related literature The epistemic analysis of backward induction dates back to
Aumann (1995). Other articles with epistemic conditions for either the backward-

3Our terminology is clari�ed and justi�ed in Section 6. Here we just mention in passing that
strong rationalizability is often called �extensive-form rationalizability.�
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induction strategies, or the backward-induction path include Asheim (2002), Batti-
galli and Siniscalchi (2002), Asheim and Perea (2005), Bonanno (2013, 2014), and
Perea (2014). The aforementioned backwards rationalizability solution concept was
independently put forward by Penta (2015) and Perea (2014) as an extension of the
backward induction solution to games with imperfect information. The epistemic
analysis of forward-induction reasoning is due to Battigalli and Siniscalchi (2002)
and is revisited by Battigalli and Friedenberg (2012), who drop the assumption that
the backdrop type structure is universal. Since we provide epistemic justi�cations
of backwards rationalizability and strong rationalizability, our paper is most related
to those of Perea (2014) and Battigalli and Siniscalchi (2002). Note that the for-
mal language of all the aforementioned papers does not allow to decouple plans from
behavior, which is instead essential to express the epistemic assumptions analyzed
here. We brie�y explained above how we relate to Battigalli and Siniscalchi (2002).
For the class of games analyzed here, we can describe the main result by Perea
(2014) as stating that backwards rationalizable behavior follows from the assump-
tion that, conditional on the occurrence of every non-terminal history, players would
be rational in the ensuing subgame and this would be commonly believed. Perea
informally mentions an interpretation in terms of �mistakes.�Since we can decouple
plans from behavior, we make this interpretation precise: �mistakes�are deviations
from planned behavior, the assumption of common full belief in (i) optimal plan-
ning and (ii) belief in continuation consistency implies that unexpected actions are
explicitly interpreted by other players as one-o¤ deviations from plans. We provide
more detailed comments on the related literature in Section 7.

Structure of the paper Section 2 introduces the framework. Section 3 illustrates
it and heuristically introduces the main ideas with two examples. Section 4 analyzes
optimal planning, consistency and rationality. Section 5 contains our epistemic char-
acterization of backward-induction reasoning. Section 6 analyzes forward-induction
reasoning. Finally, Section 7 discusses certain conceptual aspects and possible ex-
tensions of the analysis, and it comments in detail on the related literature. Most of
the proofs are collected in the Appendix.

2 Framework

In this section we present the building blocks of our analysis: �nite games with
observable actions (subsection 2.1), systems of conditional probabilities (subsection
2.2) and type structures (subsection 2.3).
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2.1 Finite games with observable actions

For the sake of notational simplicity, we focus on �nite multistage games with perfect
monitoring of past actions.4 Given some preliminaries about sequences and trees, we
de�ne these games and the external states describing players�behavior.

2.1.1 Sequences and trees

Let N0 be the set of natural numbers including 0, that is, N0 := N [ f0g. Given an
arbitrary nonempty set X, the set of all �nite sequences of elements of X is X<N0 :=
[n2N0Xn, where X0 := f?g and ? denotes the empty sequence. For all x 2 X<N0

and y 2 X<N0 , (x;y) denotes the concatenation of x with y. We write x � x0 if x is
a pre�x of x0, that is, x0 = (x;y) for some y. Note that (?;x) = (x;?) = x, hence
? � x and x � x for every x 2X<N0. We let � denote the asymmetric part of �.
A nonempty set Y � X<N0 is a tree if it is closed with respect to pre�xes, that

is, for every x0 2 Y and every pre�x x of x0, x 2 Y; therefore, ? 2 Y. For every
tree Y � X<N0, we say that a sequence x is terminal in Y if x � x0 implies x0 =2 Y
for all x0 2 X<N0.

2.1.2 Games

A �nite game with observable actions is a structure

� =


I; �H; (Ai; ui)i2I

�
given by the following elements:

� I is a �nite set of players, and, for each i 2 I, Ai is a �nite, nonempty set of
potentially feasible actions.

� �H � A<N0 is a �nite tree of feasible histories, that is, of sequences of action
pro�les a 2 A :=

Q
i2I Ai. We let Z denote the set of terminal histories, and

H := �HnZ is the set of non-terminal histories.

� For each h 2 H, the set of feasible action pro�les

A(h) :=
�
a 2 A : (h; a) 2 �H

	
is such that A(h) =

Q
i2I Ai(h), where Ai(h) is the projection of A(h) on Ai.

4Our framework and techniques can be extended to games with perfect recall.
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� For each i 2 I, ui : Z ! R is the payo¤ (utility) function for player i.

The intended interpretation of � is that, as the game unfolds, each player is
informed of the sequence of action pro�les that has just occurred. Indeed, we assume
more: as soon as a history h occurs it becomes common knowledge that h has
occurred.
Since the restrictions of � and � to �H represent the strict and weak precedence

relations between the histories/nodes of the game tree, we say that h (weakly)
precedes h0 if (h � h0) h � h0; equivalently, we say that h0 (weakly) follows h
and write (h0 � h) h0 � h.
Player i is active at history h 2 H if he has at least two feasible actions (jAi(h)j �

2), and he is inactive otherwise (that is, if jAi(h)j = 1).5 There are simultaneous
moves given h if at least two players are active at h. If there is only one active player
at each h 2 H, we say that the game has perfect information.

2.1.3 External states and behavior

For each i 2 I, let Si :=
Q
h2H Ai(h) and S :=

Q
i2I Si. An external state is a pro�le

s = (si)i2I 2 S, and each si 2 Si is called personal external state of player i. The
set of external states of players other than i is S�i :=

Q
j2Infig Sj.

6 An external state
(si)i2I 2 S is interpreted as an objective description of players�behavior conditional
on the occurrence of each non-terminal history, which may or may not coincide with
what players plan to do.7 For this reason we often call �behavior�the external states.
Note that each si 2 Si corresponds technically to a strategy of player i, but we avoid
this terminology because we call �strategy�what player i plans to do, which is part
of his epistemic type (cf. Section 4).
Each external state s = (si)i2I 2 S induces a terminal history: the �rst element

is s (?), if s (?) =2 Z the second element is s ((s (?))), and so on. Thus, we can
determine a path function � : S ! Z and, for each h 2 H, the set of external
states inducing h:

S (h) := fs 2 S : h � � (s)g .
5When i is not active at h 2 H, think of the unique element of Ai (h) as the �action�of waiting

one�s turn to move.
6In keeping with standard game-theoretic notation, given any pro�le of sets (Xi)i2I , we let

X�i :=
Q
j2InfigXj with typical element x�i := (xj)j 6=i 2 X�i.

7In other words, an external state is a speci�cation of the truth values of all the behavioral
subjunctive conditionals of the form �if h occurred, ai would be chosen� (with h 2 H, i 2 I and
ai 2 Ai (h)).
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The projection

Si (h) := fsi 2 Si : 9s�i 2 S�i; (si; s�i) 2 S (h)g

is the set of external states of i that allow h (that is, do not prevent the realization
of h). Similarly, the projection

S�i (h) := fs�i 2 S�i : 9si 2 Si; (si; s�i) 2 S (h)g

is the set of pro�les of external states of players other than i that allow h. Note that,
in a game with observable actions,

S (h) =
Y
i2I

Si (h)

for every h 2 H.8
Finally,

Ui := ui � � : S ! R
determines the payo¤Ui (s) = ui (� (s)) of player i as a function of the external state
s.

2.2 Conditional beliefs

For every compact metrizable space X, we let �(X) denote the set of probability
measures on the Borel subsets of X, called events. For every � 2 �(X), the
support of � is denoted by supp�. The set �(X) is endowed with the topology of
weak convergence, so that �(X) becomes a compact metrizable space.
We consider arrays of probability measures indexed by elements of a countable

collection C of �conditioning events,� i.e., � := (�(�jC))C2C 2 �(X)C (see Renyi
1955).9

De�nition 1 Let X be a compact metrizable space and C be a countable family of
clopen (i.e., both closed and open) and nonempty subsets of X. A conditional
probability system (CPS) on (X; C) is an array of probability measures � :=
(�(�jC))C2C such that, for all C;D 2 C and events E, �(CjC) = 1 and

E � D � C ) �(EjC) = �(EjD)�(DjC). (2.1)

8In more general games, perfect recall implies the following factorization: S (hi) = Si (hi) �
S�i (hi) for each player i and each information set hi of i.

9For every pair of sets P and Q, QP denotes the set of functions with domain P and codomain Q.
Thus, � is a function from C to �(X). We write �(�jC) to stress the interpretation as a conditional
probability given the conditioning event C 2 C.
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Condition (2.1) is the so-called chain rule of conditional probabilities and it can
be written as follows: if E � D � C, then

�(DjC) > 0) �(EjD) = �(EjC)
�(DjC) .

We write �C (X) for the set of CPSs on (X; C). Under the stated assumptions,
�C (X) is a compact metrizable space (see Lemma 1 in Battigalli and Siniscalchi
1999).
Given compact metrizable spaces X and Y , the set X � Y is endowed with the

product topology. Let C be a countable collection of clopen subsets of X such that
; =2 C. With a small abuse of notation, we write C�Y for the corresponding collection
of clopen �cylinders�in X � Y , that is,

C � Y := fC � X � Y : 9F 2 C; C = F � Y g .

For every probability measure � 2 �(X � Y ), we letmargX� denote the marginal
of � on X. Now consider a CPS � := (�(�jC � Y ))C2C 2 �C�Y (X � Y ). Then the
marginal of � on (X; C) is de�ned as the array of probability measures

margX� := (margX� (�jC � Y ))C2C 2 (� (X))
C .

It can be veri�ed that margX� is a CPS on (X; C). Thus, for every C 2 C, it makes
sense to write margX� (�jC) instead of margX� (�jC � Y ).

2.3 Type structures

We represent a player�s plan, or strategy, as a system of conditional beliefs about his
own behavior. If a player holds conditional beliefs about his own behavior as well as
other players�, �rst-order beliefs are CPSs on (S;S), where S is the common collection
of conditioning events about behavior corresponding to non-terminal histories:

S := fF � S : 9h 2 H;F = S (h)g .

For any i 2 I, let T�i denote the set of possible �types�of the other players, that
is, the set of their possible �ways to think.�Then the conditioning event for i cor-
responding to history h 2 H is S(h) � T�i;10 thus, a CPS for i is an array of
probability measures �i := (�i(�jS(h)� T�i))h2H that satis�es the chain rule and
such that �i(S(h)� T�ijS(h)� T�i) = 1 for each h 2 H.
10We maintain the implicit assumption that players are introspective, hence they know their own

way to think, and that this is commonly believed at every history.
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De�nition 2 A �-based type structure is a tuple

T =
�
S;H; (Ti; �i)i2I

�
such that, for every i 2 I,
(a) the type set Ti is a compact metrizable space,
(b) the belief map �i : Ti ! �S�T�i (S � T�i) is continuous.
A personal state of player i is a pair (si; ti) 2 Si � Ti. A state of the world

is a pro�le (si; ti)i2I 2
Q
i2I (Si � Ti).

A type structure is complete if, for every i 2 I, the belief map �i is onto (surjective).

To ease notation, we will often write �i;h (ti) to denote the beliefs of type ti
conditional on history h, that is,

�i;h (ti) (�) := �i (ti) (�jS (h)� T�i) .

A type structure provides an implicit representation of the �rst-order and higher-
order beliefs of the players. Speci�cally, each type ti in a type structure induces a
corresponding hierarchy of conditional beliefs satisfying an intuitive coherence condi-
tion, where

�
margS�i;h (ti)

�
h2H represents the �rst-order beliefs, that is, beliefs about

behavior. Battigalli and Siniscalchi (1999) show that a canonical type structure can
always be constructed by letting the set of types of each i be the collection of all
possible hierarchies of CPSs that satisfy coherence and common full belief in coher-
ence.11 Such canonical type structure is complete. Furthermore, it is �universal,�or
�terminal� in the sense that every other type structure can be mapped into it in a
unique belief-preserving way. Hence, each type structure is hierarchy-equivalent to
a substructure of the canonical one.
With this in mind, we consider in the next section two illustrative examples with

type structures that are �small,�but nonetheless su¢ ciently rich for the purposes of
our epistemic analysis; that is, the essential epistemic features would not change if
we considered the corresponding belief hierarchies with the backdrop of the canonical
structure.
It is worthwhile to compare the notion of type structure as per De�nition 2 to type

structures that only describe players�beliefs about the behavior and beliefs of other
players. We refer to the latter type structures as �standard,�since they are widely
used in epistemic game theory.12 A �-based standard type structure is a tuple
11Loosely speaking, this means that lower-order beliefs are the marginals of higher-order beliefs

and there is common belief of this conditional on each history.
12See De�nition 12.23 in Dekel and Siniscalchi (2015).
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T =
�
H; (S�i; Ti; �i)i2I

�
where, as in De�nition 2, each Ti is a compact metrizable

space of player i�s types, and each belief map is a (continuous) function �i : Ti !
�S�i�T�i (S�i � T�i), where S�i denotes the collection of conditioning events about
the behavior of players di¤erent from i, i.e., S�i := fF � S�i : 9h 2 H;F = S�i (h)g.
The epistemic approach via standard type structures has the advantage of provid-

ing a parsimonious description of beliefs that can in principle be elicited by observing
choices of side bets.13 Furthermore, the approach is adequate for the analysis of ex-
pected utility maximizing players in dynamic games.14

However, we argue that in the analysis of dynamic games there are conceptual
advantages in introducing players�beliefs about their own behavior. Such beliefs
explicitly represent how a player expects to choose at later histories, which guides
the player�s current choice. Also, they allow to formally distinguish between the
description of the behavior of a player, which is what co-players ultimately care
about, and what this player plans to do and achieve, that is, his intentions. Of
course, intentions do not a¤ect payo¤s, but thinking about the intentions of co-players
helps interpret their past observed actions and predict their future actions, e.g., by
forward or backward-induction reasoning.15 By contrast, when we use standard type
structures, we implicitly assume that the personal external states si (i 2 I) in every
state of the world (si; ti)i2I simultaneously represent players� behavior and their
plans. Since this is true for every state, it is implicitly assumed that it is transparent
(i.e., true and commonly believed at every history) that players execute their plans
and that evidence about behavior is (regarded as) evidence about intentions.

3 Two illustrative examples

In this section we illustrate the framework and informally introduce the building
blocks of our analysis by means of examples based on two well known games.

3.1 Perceived intentions in the Battle of Sexes with Outside
Option

Consider the game depicted in Figure 3.1 (�Battle of Sexes with Outside Option,�
BoSOO) between two players, Ann (a) and Bob (b). If Ann does not choose the

13Under the assumption that players choose rationally complemented by a strong invariance
assumption; see Siniscalchi (2020).
14See the monograph by Perea (2012), and the survey by Dekel and Siniscalchi (2015).
15Furthermore, the theory of psychological games allows intentions, or beliefs about intentions to

a¤ect players�utility. See Battigalli and Dufwenberg (2009), and Battigalli et al. (2020).
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outside option, Ann and Bob play a simultaneous-moves game in which they have
to choose between a concert with music by Chopin or Mozart.

Figure 3.1: The BoSOO game.

The set of non-terminal histories is H = f?; (In)g, while the sets of personal
external states of each player are16

Sa = fIn:C; In:M;Out:C;Out:Mg , Sb = fc;mg .

This game has two pure subgame perfect equilibria, (In:C; c) and (Out:M;m),
where only the former conforms to the standard forward-induction story. We now
exhibit a type structure with types corresponding to both equilibria, where each type
is consistent with a kind of backward-induction condition. For each player i 2 fa; bg,
let Ti = ft1i ; t2i g; the belief maps are shown in Table 1.

�i ? (In)
t1i

�
(In:C; c) ; t1�i

�
; 1

�
(In:C; c) ; t1�i

�
; 1

t2i
�
(Out:M;m) ; t2�i

�
; 1

�
(In:M;m) ; t2�i

�
; 1

Table 1: Type structure for the BoSOO game.

To understand the description of the type structure in Table 1, consider for in-
stance the beliefs of Ann�s type t1a conditional on the empty sequence ?, that is,
�a;? (t

1
a) (f((In:C; c) ; t1b)g) = 1.

At both states of the world�
s1; t1

�
=
��
In:C; t1a

�
;
�
c; t1b

��
and

�
s2; t2

�
=
��
Out:M; t2a

�
;
�
m; t2b

��
16We write X:Y for the personal external state of Ann that describes action X at history ? and

action Y at history (In).
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players �plan optimally� in the following sense: each player plans to take, at each
history where she or he is active, the best action given her or his (conditional) belief,
and this yields a dynamically optimal plan. For example, type t2a of Ann predicts
that� if the proper subgame were reached� Bob would choose m and she would
choose M ; given her conditional belief, M is the expected utility maximizing action;
thus, in a sense, Ann is planning to behave optimally in the subgame. Given her
prediction about what would happen in the subgame, Ann of type t2a plans to stay out
of it, that is, she is initially certain that she is going to choose Out. Overall, the plan
of type t2a is Out:M and� given t2a�s beliefs about Bob� it satis�es a folding-back
property that can be informally stated for general multi-stage games as follows:
Actions planned for the last stage are best replies to the last-stage conditional

beliefs about the other players; given the last-stage predictions, actions planned for
the second-to-last stage are best replies to the second-to-last-stage conditional beliefs,
and so on.
Thus, we say that Ann plans optimally at state (s2; t2). By itself, this is not

enough to deem Ann rational at (s2; t2): we say that a player is rational at a
state (s; t) if she plans optimally and her behavior, as objectively described by si,
corresponds to her plan. In other words, we view the inconsistency between plan and
behavior as a form of irrationality. For example, at any state ((In:C; t2a) ; (sb; t

2
b))

(sb 2 fc;mg) Ann is irrational because� although type t2a satis�es optimal planning
(that is, the folding-back property)� behavior In:C is di¤erent from t2a�s planOut:M .
We say that player i

� strongly believes event E if i assigns probability 1 to E conditional on each
history h that does not contradict E;17

� fully believes event E if i assigns probability 1 to E conditional on each
history h.18

At state (s1; t1) = ((In:C; t1a) ; (c; t
1
b)), Bob�s belief conditional on (In) about

Ann�s plan is that she did what she planned to do, that she intends to continue
with the same plan In:C, and that she will actually behave as planned; that is, Bob
believes in Ann�s rationality also in the subgame. Given the interactive beliefs at
(s1; t1) conditional on (In), one can see that there is common belief in rationality

17See the formal de�nitions in Section 6.
18See the formal de�nition in Section 5. Note that it is impossible to fully believe an event E if

E implies that some history h 2 H cannot be reached. In this case, the event �i fully believes E�
is empty, but it is still well de�ned.
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also in the subgame, which implies that there is rationality and common strong
belief in rationality (RCSBR) at state (s1; t1).
Consider now state (s2; t2) = ((Out:M; t2a) ; (m; t

2
b)). Upon observing In, Bob

could think that Ann�s personal state is (In:C; t1a), thus maintaining his belief in
Ann�s rationality. Instead, at (s2; t2) and conditional on (In), Bob maintains his
belief that Ann�s type is t2a, hence, that her plan was Out:M and she did not follow
through. Thus, Bob does not strongly believe that Ann is rational. However, Bob
also believes that� despite her initial deviation� Ann is going to follow her plan
in the subgame. In other words, Ann�s initial deviation from the plan she was
supposed to hold is not interpreted as evidence that her intentions are di¤erent,
but rather as a �mistake,�and such mistake is not deemed as evidence that further
�mistakes� are likely. Given the behavior and interactive beliefs at (s2; t2), there
cannot be common full belief in rationality, but there is common full belief that
players plan optimally (although deviations from the hypothesized plans would be
acknowledged ex post). Furthermore, conditional on each history, players believe
that everybody�s behavior will be consistent with plan from that point onward, and
there is common belief in such �belief in continuation consistency.�We view
this as an epistemic representation of backward-induction thinking, as the following
example further illustrates.

3.2 Forward and backward-induction reasoning in a perfect
information game

Consider the game with perfect information depicted in Figure 3.2 between Ann (a)
and Bob (b).19

Figure 3.2: A game with perfect information.

19Cf. Reny 1992, Figure 3.
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The set of nonterminal histories is

H = f?; (Ia) ; (Ia; Ib) ; (Ia; Ib; ia)g ,

while the sets of personal external states of each player are

Sa = fIa:ia; Ia:oa; Oa:ia; Oa:oag ,
Sb = fIb:ib; Ib:ob; Ob:ib; Ob:obg .

As is well known, strong rationalizability (Pearce 1984, Battigalli 1997)20 and
backward induction yield the same path, (Oa), but have very di¤erent o¤-path be-
havioral implications: for Bob, the unique strongly rationalizable behavior is Ib:ob,
while backward induction yields Ob:ob. We can formally interpret the di¤erence as
the result of di¤erent hypotheses about how players revise their beliefs about the
plans, or intentions, of co-players. We consider a type structure with types corre-
sponding to forward-induction reasoning (�), or backward-induction reasoning (bi),
plus a �simpleton�type (�) of Ann who plans optimally, but holds naively optimistic
beliefs about Bob. Each belief map is as shown in Table 2.

�a ? (Ia) (Ia; Ib) (Ia; Ib; ia)
t�a

�
(Oa:oa; Ib:ob) ; t

�
b

�
; 1

�
(Ia:oa; Ib:ob) ; t

�
b

�
; 1

�
(Ia:oa; Ib:ob) ; t

�
b

�
; 1

�
(Ia:ia; Ib:ob) ; t

�
b

�
; 1

tbia
�
(Oa:oa; Ob:ob) ; t

bi
b

�
; 1

�
(Ia:oa; Ob:ob) ; t

bi
b

�
; 1

�
(Ia:oa; Ib:ob) ; t

bi
b

�
; 1

�
(Ia:ia; Ib:ob) ; t

bi
b

�
; 1

t�a ((Ia:ia; Ib:ib) ; �) ; 1 ((Ia:ia; Ib:ib) ; �) ; 1 ((Ia:ia; Ib:ib) ; �) ; 1 ((Ia:ia; Ib:ib) ; �) ; 1
�b ? (Ia) (Ia; Ib) (Ia; Ib; ia)

t�b
�
(Oa:oa; Ib:ob) ; t

�
a

�
; 1 ((Ia:ia; Ib:ob) ; t

�
a) ; 1 ((Ia:ia; Ib:ob) ; t

�
a) ; 1 ((Ia:ia; Ib:ob) ; t

�
a) ; 1

tbib
�
(Oa:oa; Ob:ob) ; t

bi
a

�
; 1

�
(Ia:oa; Ob:ob) ; t

bi
a

�
; 1

�
(Ia:oa; Ib:ob) ; t

bi
a

�
; 1

�
(Ia:ia; Ib:ob) ; t

bi
a

�
; 1

Table 2: Type structure for the game of Figure 3.2.

We now explain in detail the features of the type structure.

Ann Type t�a has always the same beliefs about Bob: Bob�s type is t
�
b , he plans

Ib:ob, and he is going to execute his plan. The plan of t�a is Oa:oa in the following
sense: conditional on each history where she is active, t�a assigns probability one to
the corresponding action in Oa:oa (of course, given history (Ia; Ib), Ann of type t�a
20The solution concept of strong rationalizability is also known as �extensive-form rationalizabil-

ity.�We �nd such terminology ambiguous and hence we avoid it, because this solution concept refers
to just one out of several meaningful versions of rationalizability for extensive-form games. We �nd
it semantically and conceptually appropriate to use �strong�for this version of rationalizability in
light of its epistemic foundation, which is based on the notion of strong belief. See Section 6.

15



must acknowledge that she deviated from her plan at the root). Given this, the plan
of t�a is folding-back optimal. See Figure 3.3, where marked arcs of Ann represent
her planned actions, marked arcs of Bob represent expected actions, the number in
parentheses above each node of Bob represents Ann�s expected payo¤s conditional on
reaching it, and the type of Bob in square brackets above each node of Ann represents
Ann�s conditional higher-order beliefs.

Figure 3.3: Plan and beliefs of type t�a of Ann:

Type t�a of Ann is a �simpleton�who always believes that Bob plays Ib:ib and whose
plan is Ia:ia. (The higher-order beliefs of such type are irrelevant for the example,
hence the dot in Table 2.) Given this, the folding-back optimal plan of t�a is indeed
Ia:ia. See Figure 3.4.

Figure 3.4: Plan and (�rst-order) beliefs of t�a.

Type tbia of Ann conforms to backward induction. Speci�cally, �rst-order beliefs yield
the backward-induction pair (Oa:oa; Ob:ob), higher-order beliefs are always concen-
trated on the backward-induction type of Bob.

Bob Type t�b plans Ib:ob, believes at the beginning of the game that Ann�s type is
t�a and that she plays according to her plan Oa:oa; upon observing action Ia, Bob of
type t�b would believe that Ann�s type is the simpleton t

�
a, and that she is playing
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Ia:ia as planned by t�a. See Figure 3.5, where the type of Ann on top of the root
represents the initial higher-order belief of tbib , and types above nodes of Bob represent
his conditional higher-order beliefs.

Figure 3.5: Plan and beliefs of type t�b of Bob.

Finally, it is immediate to check that type tbib of Bob conforms to backward induction.

Rationality Recall that rationality within a type structure is characterized by
folding-back optimality of the subjective plan and consistency between subjective
plan and objective behavior. This implies that if player i believes in the rationality
of co-player �i conditional on observing history h, then i also believes that each
previous move of�i in h was made on purpose, in other words, that it was intentional.
We can verify that a player is rational at each personal state of the extended type
structure of Table 2 where she or he behaves as planned. In particular, Ann is
rational at each (sa; ta) 2

��
Oa:oa; t

�
a

�
;
�
Oa:oa; t

bi
a

�
; (Ia:ia; t

�
a)
	
, and Bob is rational

at each (sb; tb) 2
��
Ib:ob; t

�
b

�
;
�
Ob:ob; t

bi
b

�	
.

Forward induction: Strong belief in optimal planning and consistency
With this, we can further verify that there is (intuitively) RCSBR at state��

Oa:oa; t
�
a

�
;
�
Ib:ob; t

�
b

��
,

that is, at this state players reason by forward induction. Speci�cally, upon observing
the initially unexpected move Ia, type t�b keeps believing that Ann is rational, hence
that action Ia was intentional, although motivated by the rather naive beliefs of type
t�a.

Backward induction: Belief in continuation consistency At state��
Oa:oa; t

bi
a

�
;
�
Ob:ob; ; t

bi
b

��
17



Bob does not strongly believe in Ann�s rationality; hence, RCSBR does not hold.
Yet, there is something that players hold on to at this state: they always believe in
(folding-back) optimal planning, although this means they would give up their belief
in consistency between plan and behavior upon observing unexpected moves. Indeed,
since each type tbii (i = a; b) plans optimally and fully believes that the co-player�s
type is tbi�i, there is common full belief in optimal planning. On top of this, there
is something else these types hold on to: although they interpret unexpected moves
as unintentional mistakes, they expect that, in the continuation game, behavior
will be consistent with plan. Call this epistemic event �belief in continuation
consistency,�or BCC. Then, at state

��
Oa:oa; t

bi
a

�
;
�
Ob:ob; ; t

bi
b

��
there is BCC and

also common full belief in BCC. To sum up, at this state the following epistemic
hypotheses hold: (a) players are rational, i.e., they plan optimally and behavior is
consistent with plan, (b) there is BCC, and (c) there is common full belief in optimal
planning and BCC. We claim that this is an accurate epistemic representation of
backward-induction reasoning. We provide a formal motivation for this claim in
Section 5, where we show that� in each �nite, perfect-information game without
relevant ties� epistemic hypotheses (a)-(c) yield the backward-induction behavior
and beliefs.

4 Beliefs, plans and intentions

We �rst introduce a natural independence assumption that cleanly separates between
plans and beliefs about others (subsection 4.1), next we analyze optimal planning
(subsection 4.2), and �nally we de�ne rationality as the conjunction of optimal plan-
ning and consistency between plan and behavior (subsection 4.3).

4.1 Independence

Recall that S�i�T�i is the collection of observable events about i�s co-players. Sim-
ilarly, let Si :=

�
F 2 2Si : 9h 2 H;F = Si (h)

	
denote the collection of observable

events about i�s behavior.

De�nition 3 We say that type ti in a �-based type structure T satis�es indepen-
dence if there exist two CPSs �i;i (ti) 2 �Si (Si) and �i;�i (ti) 2 �S�i�T�i (S�i � T�i)
such that

8h 2 H; �i (ti) (�jS (h)� T�i) = �i;i (ti) (�jSi (h))� �i;�i (ti) (�jS�i (h)� T�i) . (4.1)
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In words, �i (ti) is the �product�of two independent marginal CPSs: �i;i (ti) is a
CPS about i himself, and �i;�i (ti) is a CPS about the co-players. To better under-
stand this independence condition, note that two distinct histories h and h0 reveal
the same information about the behavior of others� that is, S�i (h) = S�i (h

0)� if
they di¤er only because of actions taken by i. Condition (4.1) implies that i�s be-
liefs about how other players behave and think (as a function of what they observe)
conditional on such histories must be the same; hence, they must be independent
of i�s behavior. A similar condition applies to i�s beliefs about his own behavior: if
h 6= h0 and Si (h) = Si (h

0), then these histories di¤er only because of actions taken
by co-players, and we require that such di¤erences do not a¤ect i�s predictions about
his own behavior.21

Note that from marginal CPSs �i;i (ti) and �i;�i (ti) we can derive a plan

�ti;i 2
Y
h2H

�(Ai (h)) ,

which is� technically� a behavior strategy (see Kuhn 1953), and a system of possibly
correlated measures

�ti;�i 2
Y
h2H

�(A�i (h)) ;

again a behavior strategy if �i is just one player. Formally, for all h 2 H, ai 2 Ai (h),
anda�i 2 A�i (h),

�ti;i (aijh) := �i;i (ti) (Si (h; ai) jSi (h)) ,
�ti;�i (a�ijh) := �i;�i (ti) (S�i (h; a�i)� T�ijS�i (h)� T�i) ,

where Si (h; ai) := fsi 2 Si (h) : si (h) = aig is the set of personal external states of i
consistent with h and choosing ai given h, and S�i (h; a�i) :=

Q
j 6=i Sj (h; aj).

Remark 1 If ti satis�es independence, then

margS�i (ti) (S (h; a) jS (h)) = �ti;i (aijh)� �ti;�i (a�ijh)

for all h 2 H and a = (ai; a�i) 2 A (h).

We take independence to be a precondition for the rationality of player i. Refer
back to the type structure in Table 2. The key feature of types t�a and t

bi
a is that

Ann�s beliefs about the type tb and behavior sb of Bob are independent of what Ann

21Of course, i�s predictions about the actions he is going to choose may depend on the observed
behavior of others, as such dependence may well be part of his plan.

19



does, and in particular do not depend on whether Ann deviated or not from her plan.
Indeed type t�a (resp. t

bi
a ) of Ann initially plans to go out immediately and believes

that Bob�s personal state is
�
Ib:ob; t

�
b

�
(resp.

�
Ob:ob; t

bi
b

�
); upon observing a deviation

to Ia from her own plan, Ann keeps the same belief about Bob.
Next we de�ne the other ingredients of the de�nition of rationality in this paper.

4.2 Optimal planning

For every �-based type structure T , the expected payo¤ of type ti conditional on
observing history h0 2 H is

Vti (h
0) :=

X
s2S(h0)

Ui (s)margS�i (ti) (sjS (h0)) .

For notational convenience also let Vti (z) := ui (z) for each z 2 Z. With this, the
value of taking action ai 2 Ai (h) conditional on h 2 H for a type ti that satis�es
independence can be meaningfully de�ned as follows:

Vti (h; ai) :=
X

a�i2A�i(h)

�ti;�i (a�ijh)Vti (h; (ai; a�i)) .

De�nition 4 Type ti in a �-based type structure T plans optimally if it satis�es
independence and

supp�ti;i (�jh) � arg max
ai2Ai(h)

Vti (h; ai)

for all h 2 H.

In other words, we say that a type satisfying independence plans optimally if his
plan has the one-shot-deviation (OSD) property. Let T �i denote the set of i�s types
that satisfy independence. With this, the set of types satisfying optimal planning is

OP i :=

�
ti 2 T �i : 8h 2 H; supp�ti;i (�jh) � arg max

ai2Ai(h)
Vti (h; ai)

�
.

The corresponding optimal-planning event for i is OPi := Si � OP i. We de�ne
OP :=

Q
i2I OPi, and we can call OPi and OP �events� because they are closed,

hence Borel sets.

Remark 2 OP i and OPi are closed.
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This is a shortcut to de�ne optimality of a plan as the result of folding-back
optimization, as it is well known that the latter is equivalent to the OSD property
in every �nite-horizon decision problem. Intuitively, if h is a �pre-terminal�history,
that is, (h; a) 2 Z for every a 2 A (h), then the OSD property implies the same
maximization at h as folding-back optimality; thus, Vti (h) = V �

ti
(h), where V �

ti
(h)

denotes the value of h obtained by folding back. By backward recursion one can then
prove that Vti (h; ai) = V �

ti
(h; ai) and Vti (h) = V �

ti
(h) for each h 2 H and ai 2 Ai (h).

The following dynamic programming result� which relies on the chain rule and
the independence condition (4.1)� is standard.

Remark 3 Fix a type ti that satis�es independence; ti plans optimally if and only if

supp�i;i (ti) (�jSi (h)) � arg max
si2Si(h)

X
s�i2S�i(h)

Ui (si; s�i)margS�i�i;�i (ti) (s�ijS�i (h))

for all h 2 H.

This is a version of the OSD Principle: the plan of a type ti that satis�es in-
dependence and� as per De�nition 4� the OSD property must also be sequentially
optimal given the beliefs of ti about the co-players. Intuitively, independence implies
that ti�s system of beliefs about co-players satis�es the chain rule; hence, ti does not
change his mind about the relative probabilities of any two s0�i; s

00
�i unless observed

behavior rules one of them out. This implies that ti�s preferences are dynamically
consistent, which is the key condition for the equivalence between the OSD property
and sequential optimality.
Conversely, if independence fails, then ti may change (and� by introspection�

expect to change) his mind about the behavior of co-players, and this may prevent
the existence of a sequentially optimal plan. Suppose, for example, that ta�s marginal
beliefs about Bob in the BoSOO game of Figure 3.1 are such that

�a (ta) (Sa � fcg � TbjSa � Sb � Tb) > 3=4,

�a (ta) (fIn:C; In:Mg � fcg � Tbj fIn:C; In:Mg � Sb � Tb) < 1=3.

Then the folding-back (OSD) plan is Out:M , because Ann predicts that she would
choose M in the subgame and thus prefers to opt Out. But, at the root, she would
like to commit to In:C if she only could. Thus, she has no plan satisfying sequential
optimality.
To sum up, our preferred interpretation of independence and optimal planning

is the following. By strategic reasoning, player i forms a system of beliefs about the
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co-players. Such beliefs� which satisfy the chain rule, hence form a CPS� give rise
to a subjective decision tree. With this, player i devises a strategy by folding-back
planning. The chain rule ensures that such strategy is sequentially optimal in the
subjective decision tree. Furthermore, by construction the resulting beliefs about
everybody satisfy independence between i and �i.

4.3 Consistency and rationality

Recall that a personal state of player i in a �-based type structure T is a pair (si; ti)
that contains two possibly distinct descriptions of the �strategy�of player i: si is
interpreted as an objective description of i�s behavior at each history h 2 H, that is,
what other players have to predict in order to assess the likely consequences of their
actions; focusing on types ti that satisfy independence, �ti;i� derived from �i;i (ti)�
is the subjective plan of i. A consistent player would behave as planned at each
non-terminal history; a rational player plans optimally and is consistent:

De�nition 5 Player i is consistent from history h at personal state (si; ti) of a
�-based type structure T if (ti satis�es independence and) si and �ti;i coincide on the
subgame with root h, that is, �ti;i (si (h

0) jh0) = 1 for all h0 2 H with h � h0; player
i is consistent at (si; ti) if he is consistent from the empty history ?; player i is
rational at (si; ti) if he is consistent at (si; ti) and type ti plans optimally.

To ease notation, for each h 2 H, let

H (h) := fh0 2 H : h � h0g

denote the set of non-terminal histories that weakly follow h. For every �-based type
structure T , the sets of personal states where i is consistent from h, consistent, and
rational are respectively denoted by

C�hi : = f(si; ti) 2 Si � T �i : 8h0 2 H (h) ; �ti;i (si (h0) jh0) = 1g ,
Ci : = C�?i ,

Ri : = Ci \OPi.

Also these sets are events (concerning i), because they are closed, hence Borel sets.

Remark 4 C�hi (h 2 H) and Ri are closed.
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We de�ne the set of all states of the world where each player is consistent as

C :=
Y
i2I

Ci;

by Remark 4, C is a Borel subset of
Q
i2I (Si � Ti).

For example, in the type structure of Section 3 for the game of Figure 3.2, all
types plan optimally, and so the players are rational at all personal states at which
they are consistent and irrational at the other states. Furthermore, all types of Bob
believe at the beginning of the game that Ann is consistent (and rational). But there
is a key di¤erence in epistemic attitudes conditional on the unexpected move Ia of
Ann: forward-induction type t�b of Bob would keep believing that Ann is consistent
also if he observed Ia, hence t�b must change belief about the plan of Ann conditional
on Ia; backward-induction type tbib instead would keep the initial belief in Ann�s plan
to go out and would think� upon observing Ia� that Ann is not (globally) consistent
and yet she will be consistent from history (Ia).
Some remarks on the notion of rationality are in order. First note that the notion

of rationality considered here is richer and stronger than the notion of rationality
usually adopted in epistemic game theory. It is richer because here we distinguish
between plan and objective behavior, and the requirement that they coincide is part
of the rationality conditions. It is stronger because, if i is rational at (si; ti), then si is
optimal given �i;�i (ti) conditional on every history h, not only those consistent with
si itself. There are two related reasons for this stronger requirement. First, here we
take the perspective that players can only (irreversibly) choose actions, rather than
strategies; therefore, the conceptually primary notion of optimization must concern
the choice of actions at di¤erent histories, and a dynamically optimal plan must
satisfy such �action optimality�at every history of i, otherwise early choices of i may
be based on the prediction that i himself would choose irrationally in some future
contingency. Second, we interpret optimality as the result of folding-back planning:
when i is considering what action he would choose, should history h occur, he has
already determined his contingent plan for histories following h, but not yet for those
preceding h.
Finally, note that our notion of consistency requires that players hold determin-

istic plans. It makes sense to consider a weaker notion of consistency whereby si is
in the �support�of �ti;i, that is, �ti;i (si (h) jh) > 0 for all h 2 H.22 But this gener-
alization would not change the substance of our results. Intuitively, it can be shown
by dynamic programming arguments that, given beliefs about others, the value of

22This means that si is in the support of the mixed strategy that corresponds to �ti;i according
to Kuhn�s (1953) transformation.
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any given history is the same for every plan (deterministic or not) satisfying optimal
planning. This is the key condition we need for the essence of our results. However,
considering non-deterministic plans makes the analysis more complex.23

5 Backward-induction reasoning: neglect of per-
ceived deviations

In this section we present epistemic assumptions that� we claim� capture faithfully
the spirit of backward-induction (henceforth BI) reasoning. We �rst show that these
assumptions yield the BI plans and beliefs in perfect-information games without
relevant ties. Next we generalize the result to games with observable actions, showing
that they yield a solution concept called �backwards rationalizability� (cf. Perea
2014, Penta 2015).24

Our notion of type structure allows us to represent subjective plans as beliefs
about own behavior. As we explained, a key assumption about such beliefs, consis-
tency, is that players correctly predict their own behavior, which is a prerequisite of
rationality. Our analysis of strategic thinking focuses instead on what each player
believes about other players. Speci�cally, for any player i 2 I, event E�i � S�i�T�i,
and history h 2 H, we let

Bi;h (E�i) := Si �
�
ti 2 Ti : �i;h (ti) (Si � E�i) = 1

	
denote the event that i believes E�i given h. Thus,

Bi (E�i) :=
\
h2H

Bi;h (E�i)

denotes the event that i fully believes E�i.25 Note that these belief operators satisfy
conjunction and monotonicity. Furthermore, if E�i is closed then each Bi;h (E�i)
(h 2 H) and Bi (E�i) are closed as well. We let B (�) denote the mutual full belief
23For example, in our analysis all the relevant events are closed, hence compact; thus, we can

apply the �nite intersection property. In the more general case, we just have Borel measurability
and the proof of existence results (non-emptiness) is less straightforward.
24A version of our result about BI in games with perfect information can be obtained as a corollary

of the theorem on backwards rationalizability. But we present it �rst as a separate result (with the
proof in the main text) because it is simpler and it allows to better appreciate our framework.
25Battigalli and Siniscalchi (1999) de�ne, for any �xed collection F of histories, the Bi;F belief

operator, where Bi;F (E�i) means that i would believe E�i with probability one conditional on h
for every h 2 F . The operators Bi;h and Bi used here are special cases.
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operator, that is, B (E) :=
Q
i2I Bi (E�i) for each Cartesian event E =

Q
i2I Ei; as

standard, Bm = B�Bm�1 denotes the m-th iteration (m 2 N) of the self-map B, that
is,

Bm (E) := B
�
Bm�1 (E)

�
,

where B0 (E) := E by convention (i.e., B0 is the identity map on the collection of
Cartesian events). We say that an event E =

Q
i2I Ei is transparent at state (s; t) if

(s; t) 2 E (i.e., E is the case) and there is common full belief in E at (s; t); thus, the
set of states where E is transparent is

E \
\
m2N

Bm (E) =
\
n2N0

Bn (E) .

Our representation of BI reasoning is based on the following key assumption:
each player i believes in the continuation consistency of the other players, that
is, for each history h 2 H, i would believe C�h�i :=

Q
j 6=iC

�h
j upon observing h. The

corresponding events are

BCCi : =
\
h2H

Bi;h

�
C�h�i

�
,

BCC : =
Y
i2I

BCCi.

In a sense, a player who believes in continuation consistency may �stubbornly neglect
the past�: he may observe deviations from the plans he ascribes to the co-players,
and yet no evidence of such deviations makes him doubt that in the future they will
follow their plans, as in the �trembling-hand�story by Selten (1975).
Note that, for each h 2 H, C�h�i is a product of closed sets, hence it is closed,

which implies that Bi;h
�
C��i
�
is closed as well. Therefore, BCCi is closed. With this,

de�ne recursively the following epistemic events:

� OP 1i := OPi \BCCi,

� OPm+1i := OPmi \ Bi
�
OPm�i

�
, where OPm�i :=

Q
j 6=iOP

m
j .

For each m 2 N, we de�ne the set OPm �
Q
i2I (Si � Ti) in the usual way, that

is, OPm :=
Q
i2I OP

m
i . Note that, for each i 2 I, OP 1i is closed; furthermore, if OPm�i

is closed, then Bi
�
OPm�i

�
and OPm+1i = OPmi \ Bi

�
OPm�i

�
are closed. It follows by

induction that (OPm)m2N is a well de�ned decreasing sequence of closed sets; thus,
it makes sense to de�ne OP1 := \m2NOPm.
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Remark 5 For each m 2 N,

OPm+1 =
m\
k=0

Bk (OP \BCC) =
 

m\
k=0

Bk (OP )

!
\
 

m\
k=0

Bk (BCC)

!
and

OP1 =
\
m2N0

Bm (OP \BCC) =
 \
m2N0

Bm (OP )

!
\
 \
m2N0

Bm (BCC)

!
.

In words, OP1 is the event that optimal planning and belief in continuation
consistency are transparent.

5.1 Backward induction

Consider a game � that can be solved by BI and let sbi denote its BI external
state, that is, the outcome of the BI algorithm. We claim that optimal planning,
belief in continuation consistency, and common full belief in both imply that players
believe, conditional on each h 2 H, that everybody will play according to sbi in the
subgame with root h. To simplify the exposition, we focus on games with perfect
information (PI games) and without relevant ties, but the result can be extended to
other BI-solvable games, such as �nitely repeated Prisoners�Dilemmas. Recall that
a PI game � is without relevant ties if for all z; z0 2 Z and all i 2 I, if z 6= z0 and i
is the active player at the last common predecessor of z and z0, then ui (z) 6= ui (z

0).
The game of Figure 3.2 is an instance of a PI game without relevant ties.
We �rst note that the aforementioned epistemic assumptions can be satis�ed in

every �nite game.

Remark 6 For every �nite game � with observable actions there exists a �-based
type structure T such that OP1 6= ; and C \OP1 6= ;.

Formally, this follows from Theorem 2 below and the observation that back-
wards rationalizability is a nonempty solution procedure. The result can be easily
understood in the special case when � has a pure subgame perfect equilibrium �s.
Consider the following type structure: The type set of each player is a singleton,
that is, Ti := f�tig for each i 2 I. For each si 2 Si and h 2 H, let shi denote the
minimal modi�cation of si allowing h.26 With this, each belief map is such that
26Note that, for any pair of related histories h0 � h, there is a unique action pro�le �(h0; h) =

(�i(h
0; h))i2I 2 A (h0) such that (h0; �(h0; h)) � h. With this, given si 2 Si and history h 2 H,

shi is de�ned as the personal external state that coincides with si at every history h
0 that does not

precede h and takes action �i (h0; h) at every h0 � h.

26



�i;h (�ti)
�n�

�shj
�
j2I

o
� T�i

�
= 1 for every h 2 H. It is immediate to check that in

this type structure OP1 = S � f�tg and C \OP1 = f(�s; �t)g.
In BI-solvable games with perfect information, the number of steps of the BI

algorithm necessary to obtain belief in the BI continuation behavior in a subgame
with root h is given by the height of h, L (h) := maxz2Z;z�h ` (z)� ` (h), where ` (�)
denotes the length of a sequence. To state the following result it is convenient to
let �ti (ajh) := �i (ti) (S (h; a)� T�ijS (h)� T�i) denote the probability assigned by
type ti to action pro�le a 2 A (h) conditional on h. In a PI game, this is just the
probability assigned by ti to a�(h), the action of the only player � (h) who is active
at h, as every other player has a forced action (that is, to �wait�).

Lemma 1 Fix a �nite PI game � without relevant ties and a �-based type structure
T . For each history h 2 H and each personal state

�
s�(h); t�(h)

�
2 C�(h) \ OPL(h)�(h) of

the player who is active at h, this player believes that the BI behavior will be followed
in the subgame with root h and, furthermore, his behavior conforms to BI in the same
subgame, that is, �t�(h)(s

bi(h0)jh0) = 1 and s�(h) (h0) = sbi�(h) (h
0) for each h0 2 H (h).

Proof. Let

T bi;1i (h) :=
�
ti 2 T �i : 8h0 2 H(h); �ti(sbi(h0)jh0) = 1

	
denote the set of types of i whose �rst-order beliefs conform to BI in the subgame
with root h, and let�

sbii
��h

:=
�
si 2 Si : 8h0 2 H(h); si (h0) = sbii (h

0)
	

denote the set of external states of i that coincide with sbii on H (h). First note that,
for every h 2 H and t�(h) 2 T bi;1�(h)(h),

arg max
a�(h)2A�(h)(h)

Vt�(h)
�
h; a�(h)

�
= sbi�(h)(h),

because of perfect information, no relevant ties and t�(h)�s belief in the BI continuation
after every action. We prove by induction on the height of history h that

OP
L(h)
�(h) � S�(h) � T bi;1�(h)(h),

C�h�(h) \OP
L(h)
�(h) � [sbi�(h)]

�h � T�(h),

for each h 2 H.
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Basis step. Suppose that L(h) = 1. Then, H(h) = fhg, OPL(h)�(h) = OP�(h) \
BCC�(h) and BCC�(h) puts no restriction on beliefs about future moves. Thus,

OP
L(h)
�(h) = OP 1�(h)

= OP�(h) \BCC�(h)

� S�(h) �
�
t�(h) 2 T ��(h) : supp�t�(h);�(h)(�jh) � arg max

a�(h)2A�(h)(h)
Vt�(h)

�
h; a�(h)

��
= S�(h) �

n
t�(h) 2 T ��(h) : �t�(h)(s

bi(h)jh) = 1
o

= S�(h) � T bi;1�(h)(h),

and
C�h�(h) \OP

L(h)
�(h) � [s

bi
�(h)]

�h � T bi;1�(h)(h).

Inductive step. Fix an integer k with 1 � k < L(?). Suppose by way of induction
that, for every history h0 with L(h0) � k;

OP
L(h0)
�(h0) � S�(h0) � T bi;1�(h0) (h

0) ,

C�h
0

�(h0) \OP
L(h0)
�(h0) � [sbi�(h0)]

�h0 � T�(h0).

Consider a history h with L(h) = k + 1. Note that, by de�nition of the sequences�
OPmj

�
m2N (j 2 I),

OP
L(h)
�(h) = OP k+1�(h)

= OP k�(h) \ B�(h)(OP k��(h))
= OP k�(h) \BCC�(h) \ B�(h)(OP k��(h)),

where the latter equality holds because, by de�nition, OP kj � BCCj for each j and
k.
Next note that OP k�(h0) � OP

L(h0)
�(h0) for every h0 � h, because

�
OPmj

�
m2N is a

nested sequence of subsets for each j, and L(h0) � k = L(h) � 1 by assumption.
By de�nition of BCC�(h) and of full belief, by monotonicity, and by the inductive
hypothesis, BCC�(h) \B�(h)(OP k��(h)) implies that �(h) expects his co-players to take
the BI actions at future histories, which must have height k or less. Formally, let
I (h) := fi 2 I : 9h0 2 H (h) ; i = � (h0)g denote the set of players who are active at
some history of the subgame with root h. Note that, for every player i who is not
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active at h (i 6= � (h)), C�hi = \h0�hC�h
0

i . With this,

BCC�(h) \ B�(h)
�
OP k��(h)

�
� B�(h);h

0@0@ Y
i2I(h)nf�(h)g

C�hi \OP ki

1A�
0@ Y
j2In(I(h)[f�(h)g)

Sj � Tj

1A1A
� B�(h);h

0@0@ Y
i2I(h)nf�(h)g

�
[sbii ]

�h � Ti
�1A�

0@ Y
j2In(I(h)[f�(h)g)

Sj � Tj

1A1A
� S�(h) �

n
t�(h) : 8h0 2 H(h); �(h0) 6= �(h)) �t�(h)(s

bi(h0)jh0) = 1
o
,

where the second inclusion follows from the inductive hypothesis (besides monotonic-
ity of B�(h);h). Thus, folding-back optimal planning of �(h) implies that he plans to
choose the BI action at h and every h0 � h with �(h0) = �(h):

OP
L(h)
�(h) � OP�(h) \

�
S�(h) �

n
t�(h) : 8h0 2 H(h); �(h0) 6= �(h)) �t�(h)(s

bi(h0)jh0) = 1
o�

� S�(h) �
n
t�(h) : 8h0 2 H(h); �t�(h)(s

bi(h0)jh0) = 1
o

= S�(h) � T bi;1�(h)(h).

Adding consistency from h, we get that � (h) would indeed take the BI action at each
history in the subgame with root h:

C�h�(h) \OP
L(h)
�(h) � [s

bi
�(h)]

�h � T�(h).

�

Say that player i has the backward-induction plan at personal state (si; ti) if
he plans to follow the BI behavior. This gives the epistemic event

BIPi :=
�
(si; ti) : 8h 2 H; �ti;i(sbii (h)jh) = 1

	
.

We let BIP :=
Q
i2I BIPi denote the set of all states of the world in which each

player has the backward-induction plan at his personal state.

Corollary 1 Fix a �nite PI game � without relevant ties and a �-based type structure
T . Then OPL(?)i � BIPi and OP

L(?)
i \ Ci � fsbii g � Ti for every i 2 I.
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Proof. Let H1
i denote the set of histories where player i is active for the �rst time.

Then fsbii g = \h2H1
i
[sbii ]

�h and \h2H1
i
Si � T bi;1i (h) � BIPi. Also, L(?) � L(h),

Ci = C�?i � C�hi = C�h�(h) and OP
L(?)
i � OP

L(h)
i = OP

L(h)
�(h) for every h 2 H1

i .
Therefore, Lemma 1 implies

OP
L(?)
i \ Ci �

\
h2H1

i

OP
L(h)
i \ C�hi �

\
h2H1

i

[sbii ]
�h � T bi;1i (h)

�
�
fsbii g � Ti

�
\BIPi.

�

Corollary 2 Fix a �nite PI game � without relevant ties and a �-based type struc-
ture T . Then consistency and transparency of optimal planning and of belief in
continuation consistency imply BI behavior:

C \
\
n2N0

Bn (OP \BCC) � fsbig � T .

Proof. By Remark 5,

C \
\
m2N0

Bm (OP \BCC) � C \
L(?)\
n=0

Bn (OP \BCC) = C \OPL(?).

By Corollary 1,
C \OPL(?) � fsbig � T .

�

The previous results allow us to derive the implications of correct common full
belief that (i) players plan optimally given their beliefs about others (OP ) and (ii)
believe in continuation consistency (BCC): in PI games without relevant ties, these
assumptions imply that players plan according to backward induction (BIP ) and,
furthermore, there is common belief of this at every history. Thus, in particular,
every player always believes that each co-player has the BI plan and is going to
execute it in the future, regardless of past deviations from such plan. Hence, players
neglect perceived deviations.
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Theorem 1 Fix a �nite PI game � without relevant ties and a �-based type structure
T . Then transparency of optimal planning and of belief in continuation consistency
implies transparency of BI planning:\

n2N0

Bn (OP \BCC) �
\
n2N0

Bn (BIP ) .

Proof. The mutual full belief operator B (�) satis�es conjunction and (as a conse-
quence) monotonicity. Therefore, one can show by standard arguments that, for all
m 2 N0 and events E;F ,

m\
k=0

Bk(E) � F )
\
n2N0

Bn (E) �
\
n2N0

Bn (F ) .

Remark 5 and Corollary 1 imply that

L(?)�1\
k=0

Bk (OP \BCC) = OPL(?) � BIP .

Therefore, \
n2N0

Bn (OP \BCC) �
\
n2N0

Bn (BIP ) .

�

5.2 Backwards rationalizability

We now show how the foregoing analysis on BI reasoning can be extended to the gen-
eral class of �nite multistage games with perfect monitoring of past actions. Specif-
ically, we show that the behavioral implications of the aforementioned epistemic
assumptions are characterized by the �backwards rationalizability�solution concept
(cf. Penta 2015, Perea 2014), which we introduce next.
Let Q be the collection of all the Cartesian subsets Q =

Q
i2I Qi, where Qi � Si

for every i. For every h 2 H, let �h : Q ! Q be the operator de�ned as follows: for
all Q 2 Q,

�hi (Qi) : = fsi 2 Si (h) : 9�si 2 Qi;8h0 2 H (h) ; si (h0) = �si (h0)g ,
�h (Q) : =

Y
i2I

�hi (Qi) ,

�h�i (Q�i) : =
Y
j 6=i

�hj (Qj) .
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In words, each �hi (Qi) is the set of all si 2 Si (h) whose projection onto H (h) (that
is, continuation in the subgame with root h) coincides with the projection onto H (h)
of some �si 2 Qi. Note that �? (Q) = Q, and �h (S) = S (h) for all h 2 H.
For every CPS �i on (S�i;S�i), we let �i (�i) denote the set of all sequential

best replies to �i, that is,

�i (�i) :=

�
si 2 Si : 8h 2 H; shi 2 arg max

ri2Si(h)
E�i [Ui (ri; �) jh]

�
,

where E�i [Ui (ri; �) jh] denotes the expected payo¤ of ri given �i (�jS�i (h)).27

De�nition 6 Consider the following procedure.

(Step 0) For every i 2 I, let Ŝ0i := Si. Also, let Ŝ0�i :=
Q
j 6=i Ŝ

0
j and Ŝ

0 :=
Q
i2I Ŝ

0
i .

(Step n > 0) For every i 2 I and every si 2 Si, let si 2 Ŝni if and only if there
exists �i 2 �S�i (S�i) such that

1. si 2 �i (�i);

2. �i
�
�h�i

�
Ŝn�1�i

�
jS�i (h)

�
= 1 for every h 2 H.

Also, let Ŝn�i :=
Q
j 6=i Ŝ

n
j and Ŝ

n :=
Q
i2I Ŝ

n
i .

Finally, let Ŝ1 := \n2N0Ŝn. The external states in Ŝ1 are called backwards
rationalizable.

Note, part 2 of the recursive step requires that, at each h 2 H, the CPS about
�i justifying si assign probability 1 to the continuations of behaviors from Ŝn�1�i even
if h is inconsistent with Ŝn�1�i , that is, even if Ŝ

n�1
�i \ S�i (h) = ;. One can show by

standard arguments that backwards rationalizability is a nonempty solution concept:

Remark 7 Ŝ1 6= ;.

We illustrate the above iterative procedure by means of the PI game of Figure
3.2. At the �rst step, we have

Ŝ1 = fIa:ia; Oa:ia; Oa:oag � fIb:ob; Ob:obg .
27Also, recall that shi denotes the minimal modi�cation of si allowing h.
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For Ann, we rule out Ia:oa because Ann plans to choose action oa only if her condi-
tional belief at history (Ia; Ib) assigns su¢ ciently low probability to Ib:ib, speci�cally
�a (Ib:ibj fIb:Ib; Ib:obg) � 1=3; by the chain rule, such conditional belief implies that
Ann assigns a low probability to Ib:ib also at the root, that is, �a (Ib:ibjSb) � 1=3;
thus, the optimal action for Ann at the root is Oa. For Bob, we rule out both Ib:ib
and Ob:ib because action ib is not optimal at history (Ia; Ib; ia).
With this, one can verify that at the second step

Ŝ2 = fOa:oag � fIb:ob; Ob:obg .

In particular, both Ia:ia and Oa:ia are ruled out because action ia is not justi�able at
(Ia; Ib) as Ann believes that Bob would choose ob at (Ia; Ib; ia). The algorithm stops
at the third step:

Ŝ1 = Ŝ3 = fOa:oag � fOb:obg .
Intuitively, Bob is initially certain that Ann�s plan is Oa:oa and she will implement it.
Upon observing Ia, Bob would interpret this as a deviation from Ann�s plan (instead
of evidence that Ann�s plan is di¤erent) and yet would believe that further deviations
will not occur. Formally, upon observing Ia Bob would believe that Ann�s behavior
is described by the only element of �(Ia)a

�
Ŝ2a

�
= fIa:oag.

We can show (see Appendix B.1) that the solution concept of backwards ra-
tionalizability can be given a characterization in terms of the so-called �backwards
procedure�(Penta 2015), which is an extension of the BI algorithm to the class of
�nite multistage games with observable actions. Speci�cally, the �backwards proce-
dure�coincides with the BI algorithm in perfect information games without relevant
ties.28 This implies that in every PI game with no relevant ties Ŝ1 =

�
sbi
	
(cf.

Perea 2014). Instead, in games with simultaneous actions at some histories, back-
wards rationalizability may be very permissive. Consider the BoSOO game depicted
in Figure 3.1. At the �rst step, we have

Ŝ1 = fOut:C;Out:M; In:Cg � fc;mg .

Indeed, the algorithm just rules out In:M for Ann, which is strictly dominated,
whereas both c and m can be justi�ed as best replies of Bob to some belief about
Ann in the subgame. The algorithm stops at the �rst step: Ŝ1 = Ŝ1. The reason
is that Bob may believe that Ann�s plan is Out:M . Upon observing In, he thinks
Ann made a mistake in implementation, but is still going to continue as planned and
choose M in the subgame (cf. Subsection 3.1).

28The two procedures yield the same output Ŝ1, but the backwards procedure may be �slower.�
For example, in the game of Figure 3.2 BI does not delete any sa in the �rst step.
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The following theorem shows that backwards rationalizability characterizes the
behavioral implications of consistency and transparency of optimal planning and of
belief in continuation consistency. Note that, formally, the behavioral implications
of any epistemic event E � S � T are represented by the image of E under the
canonical projection from S � T onto S, that is,

projSE := fs 2 S : 9t 2 T; (s; t) 2 Eg .

Also, recall that a type structure is complete if the belief maps are onto (surjective),
as in the canonical type structure where the belief maps are homeomorphisms.

Theorem 2 Fix a �nite game � and a �-based type structure T . Then,
(i) for every n 2 N, projS (OP n \ C) � Ŝn;
(ii) projS (OP

1 \ C) � Ŝ1.
Furthermore, if structure T is complete these weak inclusions hold as equalities.

6 Forward-induction reasoning: rationalization of
past moves

In Section 3, we have informally claimed that the basic forward-induction reason-
ing step can be modelled by the epistemic assumption of strong belief in rational-
ity, that is, strong belief in consistency and optimal planning. Furthermore, the
whole forward-induction reasoning process is represented by �rationality and com-
mon strong belief in rationality�and its behavioral implications are characterized by
the �strong rationalizability�solution concept. Here we make these informal claims
precise.
A player strongly believes an event E�i about the co-players if he is certain of

E�i at all histories consistent with E�i. Formally, �x a game � and an associated
�-based type structure T . For every i 2 I and event E�i � S�i � T�i, let

SBi (E�i) :=
\

h2H:(S�i(h)�T�i)\E�i 6=;

Bi;h (E�i)

denote the event that i strongly believes E�i. Note that, unlike the conditional
belief operators Bi;h (h 2 H) and the full belief operator Bi, the strong belief operator
SBi is not monotone. The reason is the following: if E�i � F�i, then the collection of
histories consistent with E�i is included in the collection of histories consistent with
F�i; if the inclusion is strict, then SBi (F�i) requires that i believe F�i conditional
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on more histories than SBi (E�i) requires i to believe E�i.29 With this, rationality
and common strong belief in rationality (RCSBR) can be recursively de�ned
as follows.30 For each i 2 I, let R1i := Ri (recall that Ri is the set of personal states
(si; ti) where i is consistent and ti plans optimally: Ri := Ci \OPi); for each n 2 N,
let

Rn+1i := Rni \ SBi
�
Rn�i
�
,

where Rn�i :=
Q
j 6=iR

n
j . A standard inductive argument shows that each set R

n
i is

closed in Si � Ti.31 The set of states consistent with RCSBR is therefore de�ned as

R1 :=
Y
i2I

\
n2N

Rni .

De�nition 7 Consider the following procedure.

(Step 0) For every i 2 I, let S0i := Si. Also, let S0�i :=
Q
j 6=i Sj and S

0 := S.

(Step n > 0) For every i 2 I and every si 2 Si, let si 2 Sni if and only if there
exists �i 2 �S�i (S�i) such that

1. si 2 �i (�i);
2. for every m 2 f0; :::; n� 1g and h 2 H,

Sm�i \ S�i (h) 6= ; ) �i
�
Sm�ijS�i (h)

�
= 1.

Also, let Sn�i :=
Q
j 6=i S

n
j and S

n :=
Q
i2I S

n
i .

Finally, let S1 := \n2N0Sn. The external states in S1 are called strongly
rationalizable.

As for backwards rationalizability, one can show by standard arguments that
strong rationalizability is a nonempty solution concept:

Remark 8 S1 6= ;.
29This explains the di¤erence between the structure of the theorems of this section, which are

stated only for complete type structures, and those of Section 5 (cf. Battigalli and Siniscalchi 2002,
and Battigalli and Friedenberg 2012).
30In Section 7 we compare our analysis of RCSBR with that of Battigalli and Siniscalchi (2002).
31Recall that if E�i � S�i � T�i is closed, so is Bi;h (E�i). Thus, SBi (E�i) is an intersection of

closed sets, hence it is closed. Using this fact and Remark 4, it follows by induction that each set
Rni is closed.
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In Section 7 we will compare strong rationalizability as per De�nition 7 to the
�extensive-form rationalizability�concept put forward by Pearce (1984) and further
analyzed by Battigalli (1997). The following result states that strong rationalizability
characterizes the behavioral implications of RCSBR.

Theorem 3 Fix a �nite game � and a �-based complete type structure T . Then,
(i) for every n 2 N, projS

Q
i2I R

n
i = Sn;

(ii) projSR
1 = S1.

Let us consider the �rst two steps of the strong rationalizability solution procedure
and the epistemic assumptions that justify such steps. To simplify the exposition,
we focus on two-person games. According to Theorem 3, step 1 says that behavior
(personal external state) si can be justi�ed as a sequential best reply to at least one
�rst-order CPS if and only if there is a type ti such that (si; ti) 2 Ri := Ci \ OPi,
that is, the plan of type ti agrees with behavior si and ti plans optimally. Step 2
assumes that, on top of being rational, player i strongly believes in the rationality of
his co-player j = �i. Now, consider a history h that contradicts j�s rationality, that
is, (Sj (h)� Tj) \ Rj = ;. Then, despite his strong belief in j�s rationality, player i
cannot hold on to the assumption that j is rational; yet, he can still hold on to either
Cj (j is implementing his plan), or OPj (j plans optimally). In other words, player i
can give �epistemic priority�to either Cj or OPj, but the assumption of strong belief
in rationality is silent on such epistemic priority. Next we present a modi�ed theory
of forward-induction reasoning whereby it is transparent that players always give
epistemic priority to consistency between co-players�plans and behavior. It turns out
that its behavioral implications are again characterized by strong rationalizability;
hence, they are the same as those of RCSBR.
Let C� := \m2N0Bm (C) denote the set of states where there is transparency of

consistency, that is, consistency holds and there is common full belief in it. One
can show by induction that each Bm (C) (m 2 N0) is a Cartesian product of closed
sets, which implies that the same holds for the intersection, that is, C� =

Q
i2I C

�
i ,

where each C�i := projSi�TiC
� is closed. With this, for each player i 2 I, de�ne

recursively the following events:

R�;1i := C�i \OPi,
and, for each n 2 N,

R�;n+1i := R�;ni \ SBi
�
R�;n�i

�
,

where R�;n�i :=
Q
j 6=iR

�;n
j . A standard inductive argument shows that each set R

�;n
i is

closed in Si � Ti. Event
R�;1 :=

Y
i2I

\
n2N

R�;ni ,
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represents optimal planning and transparency of consistency, and common strong
belief thereof.

Theorem 4 Fix a �nite game � and a �-based complete type structure T . Then,
(i) for every n 2 N, projS

Q
i2I R

�;n
i = Sn;

(ii) projSR
�;1 = S1.

As anticipated in the Introduction, we interpret this theorem as an explicit state-
ment of epistemic assumptions that are implicitly maintained in the analysis of
forward-induction reasoning by means of standard type structures, whereby players�
beliefs concern only the co-players. In such analysis, any element of Si simultane-
ously represents a plan of i (which must be a sequential best reply to his �rst-order
beliefs, if i is rational) and also an external state of i, that is, an objective description
of how i would behave at any history where he is active. Because of this necessary
coincidence, whenever a (non-terminal) history h occurs, the co-players infer that i
must be implementing a strategy in Si (h), which is the premise to give bite to the
assumption of strong belief in rationality. Theorem 4 replaces the implicit assump-
tion of necessary coincidence of plan and behavior with the explicit assumption that
such coincidence (i.e., consistency) is transparent.

7 Discussion

In this section we consider alternative solution concepts and epistemic assumptions,
we discuss extensions of our framework, and we compare our work with the clos-
est related literature. A note on terminology: throughout the discussion, the word
�strategy�will be used in its technical meaning as referred to both plans and con-
tingent behavior.

Forward induction and solution concepts It can be shown that the notion of
strong rationalizability de�ned here is behaviorally equivalent to the �extensive-form
rationalizability� concept put forward by Pearce (1984) and clari�ed by Battigalli
(1997).32 Speci�cally, let

Hi (si) := fh 2 H : si 2 Si (h)g
32In Section 3.2, we explained why we avoid the �extensive-form rationalizability� terminology.

Note also that complete equivalence holds for two-person games (without chance moves). For n-
person games, the literature following Pearce (1984) mostly focused on the �correlated� version,
that can be characterized by iterated conditional dominance (Shimoji and Watson 1998).
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denote the set of non-terminal histories allowed by strategy si. We say that s0i and
s00i are behaviorally equivalent if Hi (s

0
i) = Hi (s

00
i ) and s

0
i (h) = s00i (h) for each

h 2 Hi (s
0
i). Kuhn (1953) shows that s

0
i and s

00
i are behaviorally equivalent if and

only if they are realization equivalent, that is, � (s0i; s�i) = � (s00i ; s�i) for all s�i, which
means they induce the same consequences and are observationally indistinguishable.
A class of behaviorally equivalent strategies is called �plan of action�by Rubinstein
(1991). For example, the plan of Ann to go out at the root of the PI game of Figure
3.2 corresponds to the equivalence class fOa:oa; Oa:iag. In two-person games without
chance moves, Pearce�s solution concept is like the strong rationalizability procedure
(Sn)n2N of De�nition 7 with the best-reply correspondence �i (�) replaced by the
following weaker version: for every �rst-order belief (CPS) �i 2 �S�i (S�i),

��i (�i) :=

�
si 2 Si : 8h 2 Hi (si) ; si 2 arg max

ri2Si(h)
E�i [Ui (ri; �) jh]

�
.

Correspondence ��i captures a notion of forward planning and does not distinguish
between strategies in the same equivalence class. Consider, for example, Ann in the
PI game of Figure 3.2. She can plan to go out (Oa), which requires no further planned
choice, or to go in (Ia), which requires further contingent planning in case Bob also
goes in (Ib); suppose the planned contingent choice is to continue again (ia) to have
the possibility of getting 3 utils. The ex ante value of the �rst plan (Oa) is 2 and the
ex ante value of the second plan (Ia:ia) is 3�a (Ib:ib); since the ex ante value of plan
Ia:oa is �a (fIb:ib; Ib:obg) < 2, Ann wants to implement plan Ia:ia if �a (Ib:ib) > 2=3,
and Oa if �a (Ib:ib) < 2=3.
Let

�
�Sni
�
i2I;n2N denote the solution procedure obtained by replacing �i (�) with

��i (�) in De�nition 7. Much of the literature on epistemic game theory and rational-
izability for dynamic games (including Battigalli and Siniscalchi 2002) refers to this
solution concept. Yet, it is well known that, for every player i, belief �i and strategy
�si, we have that �si 2 ��i (�i) if and only if there is some behaviorally equivalent strat-
egy si such that si 2 �i (�i). Thus, an inductive argument shows that, for all i, n, and
�si, we have that �si 2 �Sni if and only if there is some behaviorally equivalent si 2 Sni .33
To illustrate, in the BoSOO game of Figure 3.1 S1 = �S1 = fIn:Cg�fcg, whereas in
the PI game of Figure 3.2 S1 = fOa:oag�fIb:obg and �S1 = fOa:oa; Oa:iag�fIb:obg.
Our notion of strong rationalizability rules out Oa:ia because, if Ann believes that
the behavior of Bob is Ib:ob, then her folding-back optimal plan is Oa:oa. With for-
ward planning, we just get the equivalence class fOa:oa; Oa:iag, that is, the plan of
going out at the root.

33This is noticed, for example, by Battigalli et al. (2013) and Heifetz and Perea (2015).
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Path predictions of forward and backward induction Let zbi denote the
backward-induction path of any �nite perfect-information (PI) game � without rel-
evant ties. In the universal type structure, we have

� (projSR
1) = � (projSR

�;1) =
�
zbi
	
= � (projS (C \OP1)) ;

that is, forward-induction reasoning� like backward-induction reasoning� yields the
BI path. This result is the analogue of Proposition 8 in Battigalli and Siniscalchi
(2002) and it follows from Theorems 3 and 4, the behavioral equivalence between
(Sni )i2I;n2N and

�
�Sni
�
i2I;n2N, and Theorem 4 in Battigalli (1997).34 This shows that,

while backward- and forward-induction reasoning may yield very di¤erent implica-
tions about plans (as in the game of Figure 3.2), in PI games without relevant ties
they yield the same path. Such partial consistency between forward and backward
induction can be extended to games with imperfect information: building on work by
Chen and Micali (2012), one can show that the path implications of RCSBR (in the
universal structure) re�ne the path implications of C (consistency) and OP1 (com-
mon full belief in OP \ BCC): � (projSR1) � � (projS (C \OP1)). The BoSOO
example shows that in non-PI games the inclusion may be strict.

Common initial belief in rationality The notion of initial, or weak rationaliz-
ability (Battigalli 2003) is an extension to games with observable actions of a solution
concept put forward and analyzed by Ben-Porath (1997) for games with perfect infor-
mation. This solution concept is weaker than strong and backwards rationalizability
because it allows a player to believe anything about the co-players if he is surprised.
For example, in the BoSOO game of Figure 3.1 only strategy In:M is deleted. In PI
games without relevant ties, initial rationalizability is behaviorally equivalent to one
round of elimination of weakly dominated strategies followed by the iterated dele-
tion of strictly dominated strategies (see Ben-Porath 1997). Such equivalence holds
generically in games with observable actions.35

Say that player i initially believes event E if i assigns probability 1 to E at the
beginning of the game. Using arguments similar to those in the proof of Theorem
4, it can be shown� as an analogue of Theorem 3� that the behavioral implications
of rationality and common initial belief in rationality are characterized by initial

34Like a related proof by Reny (1992), Battigalli�s proof relies on properties of stable sets. Heifetz
and Perea (2015), and Perea (2018) provide more transparent proofs.
35Fix a strategy si. There is no �rst-order CPS �i such that si 2 ��i (�i) if and only if si is strictly

dominated conditional on reaching some h 2 Hi (si). The latter condition implies that si is weakly
dominated, and the converse fails only for a negligible set of payo¤ functions ui. See Shimoji (2004)
and Shimoji and Watson (1998).
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rationalizability (cf. Battigalli and Siniscalchi 2007). A similar result holds for
optimal planning, transparency of consistency, and common initial belief in optimal
planning.
Furthermore, in Appendix B.2 we provide an alternative epistemic justi�cation of

initial rationalizability which is closer to the one provided for backwards rationaliz-
ability. Say that player i initially believes in the consistency of the other players
if i believes C�i :=

Q
j 6=iCj at the beginning of the game (of course, the assumption

of initial belief in consistency is weaker than BCC). We show in Appendix B.2 that
initial rationalizability characterizes the behavioral implications of consistency and
transparency of optimal planning and of initial belief in consistency.

Introspective beliefs In this paper, we did not explicitly represent the beliefs of
the players about their own beliefs, because we implicitly assumed that (a) players
are fully introspective, so that they know their own way to think, and (b) that this is
commonly believed at every history. To better understand this implicit assumption,
let us introduce a terminological and conceptual distinction. For any history h,
let [h] denote the event that h occurs. Consider two related histories h0 � h1 (so
that [h1] � [h0]) and the corresponding conditional beliefs of a player � (�j [h0]) and
� (�j [h1]). We say that the player updates his belief from h0 to h1 if � ([h1] j [h0]) > 0
and

� (Ej [h1]) =
� (Ej [h0])
� ([h1] j [h0])

for every event E � [h1]; otherwise, if � ([h1] j [h0]) = 0, we say that the player
revises his belief from h0 to h1. Note that the chain rule

� (Ej [h1])� ([h1] j [h0]) = � (Ej [h0])

(for every event E � [h1]) holds in both cases, although trivially in the latter. We
(like the related papers we cite) implicitly assume that players know both how they
update� i.e., according to the rule of conditional probability� and how they revise.
But we conjecture that the behavioral predictions of our theory can be preserved by
dropping the assumption that they necessarily know how they revise. Thus, play-
ers may be uncertain about their own type. In such modi�ed theory, we envision
a rational player of type ti who plans� w.l.o.g., deterministically� starting with his
�rst-order belief �1ti;? 2 �(S�i) over the behaviors s�i of others, and who performs
folding-back planning from the longest histories h such that �1ti;? (S�i (h)) > 0. This
yields a partial plan (or partial strategy) with domain Hi

�
�1ti;?

�
, the tree of his-

tories he deems possible. At any h such that �1ti;? (S�i (h)) = 0, but the immediate
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predecessor is instead deemed possible, a similar folding-back planning would start
all over again with the revised belief �1ti;h. Thus, the type of a (rational) player
speci�es a full plan. Since rationality also requires consistency, the contingent be-
havior of such player satis�es the same sequential optimality property adopted here,
which is what matters when we assume that other players believe in his rationality.
But the plan (strategy) in the mind of the player at any history h may be partial,
because he may be unable to anticipate how he would revise his beliefs upon ob-
serving unexpected moves. In such a modi�ed theory the external state of a player
and the deterministic plan he has in mind, say, at the beginning of the game, would
be mathematical objects of di¤erent kinds, that is, elements of

Q
h2H Ai (h) andQ

h2Hi(�1ti;?)
Ai (h) respectively.

This approach raises the following issue. Consider two distinct histories h0 =
(h; (a0i; a�i)) and h00 = (h; (a00i ; a�i)). Since h0 and h00 reveal the same behavior
about i�s co-players, S�i (h0) = S�i (h

00). Suppose that �1ti;? (S�i (h)) > 0 and
�1ti;? (S�i (h

0)) = 0, which implies �1ti;? (S�i (h
00)) = 0. Under the implicit assumption

that i is fully introspective, we took for granted that the revised belief of ti given
these two histories h0 and h00 would be the same, a natural form of independence
following from the fact that the �rst-order CPS of ti is de�ned for the collection
of conditioning events S�i =

�
F�i 2 2S�i : 9h 2 H;S�i (h) = F�i

	
. But if player i

is only partially introspective in the aforementioned sense, this requirement is less
compelling. Thus, we may want to allow for the possibility that �1ti;h0 6= �1ti;h00 in the
previous case, i.e., that belief revision depends on i�s behavior. This yields a weaker
form of chain rule, whereby we only compare conditional beliefs at histories related
by precedence. For example, in the previous case, h � h0 and h � h00, which implies
S�i (h

0) � S�i (h) and S�i (h00) � S�i (h); thus, for all E�i � S�i (h
0) = S�i (h

00), we
must have

�1ti;h (E�i) = �1ti;h0 (E�i)�
1
ti;h
(S�i (h

0)) ,

�1ti;h (E�i) = �1ti;h00 (E�i)�
1
ti;h
(S�i (h

00)) ,

but this does not imply �1ti;h0 (E�i) = �1ti;h00 (E�i) because we may have �
1
ti;h0

(E�i) =
�1ti;h00 (E�i) = 0.
Let us call forward CPS an array of �rst-order conditional beliefs

�
�i;h
�
h2H 2Q

h2H �(S�i (h)) such that the chain rule applies for all h; h
0 2 H with h � h0, and

similarly for higher-order beliefs. We can rephrase what we just said as follows: under
the assumption of partial introspection, belief systems should be forward CPSs, but
not necessarily CPSs. Let us note that much of the literature on rationalizability in
sequential games (somewhat implicitly) adopts this weaker form of belief system; see,
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for example, Pearce (1984), Battigalli (1997), and Perea (2014). We can show that
assuming forward CPSs rather than CPSs does not a¤ect behavioral implications
in the class of games analyzed in the main text, that is, multistage games with
observable actions. Yet, so far we have not been able to extend this equivalence
result to backwards rationalizability in games with imperfectly observable actions
and perfect recall. This extension is discussed below.

General games with perfect recall Although the assumption of observable ac-
tions simpli�es our analysis, in Appendix B.3 we extend our results about backward-
induction reasoning by just assuming perfect recall.36 The key is to be able to state
and keep the assumption of belief in co-players�consistency starting from any partic-
ular history/node even though information sets are not singletons. We achieve this
noting that only the nodes in an information set with strictly positive conditional
probability matter for the analysis, and we can determine a well de�ned belief condi-
tional on each one of those nodes. With this, BCC is de�ned by requiring that each
player believe in the co-players� consistency starting from every node x he deems
possible conditional on the information set containing x. This approach allows us to
consider all games with perfect recall, not only those with ordered information sets,
as in Perea (2014). Also, our approach makes the details of our backward rational-
izability solution concept di¤erent from the one analyzed by Perea. So, we have a
partially new solution concept. It is worth noting that we can prove the characteri-
zation theorem for this more general class of games by assuming that belief systems
are forward CPSs, as in Perea (2014). Whether the analysis can be reformulated in
terms of CPSs is an open question.

Extension to dynamically inconsistent and belief-dependent preferences
Our perspective on rationality and the ensuing epistemic approach can be extended
to cover dynamically inconsistent preferences due, for example, to non-exponential
discounting (Frederick et al. 2002), or some versions of ambiguity aversion (Marinacci
2015), as well as belief-dependent preferences, which in turn may be dynamically
inconsistent when preferences over outcomes depend on one�s own plan (Battigalli
and Dufwenberg 2009).37 Given beliefs about other players (or nature), sophisticated

36The analysis of forward-induction reasoning in games with perfect recall already exists in the
literature. We additionally have to account for the decoupling of plans and behavior, which does
not create conceptual or technical di¢ culties.
37In the context of dynamic games, see� for example� Battigalli et al. (2019b) on ambiguity

aversion, and Battigalli et al. (2019a) on the role of emotions and belief-dependent preferences.
Note that own-plan dependence of preferences over outcomes may require non-deterministic plans
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planning is an intra-personal equilibrium condition expressed by the OSD property,
which in this case is not equivalent to sequential optimality.38 Rationality is given by
the conjunction of sophisticated planning and consistency between plan and behavior.
With this, the epistemic assumptions analyzed in this paper can be applied to a much
wider set of interactive situations.
Compared to the traditional multi-self approach to games with dynamically in-

consistent preferences, we bring a di¤erent perspective. The traditional approach
does not really distinguish between the �selves�at di¤erent nodes of di¤erent play-
ers, or the same player: preferences may di¤er in both cases, but belief systems are
presumed to be the same (barring asymmetric information, as we do here); thus
an inter-personal (e.g., sequential) equilibrium is assumed. We instead only main-
tain that each player is introspective and sophisticated, which justi�es intra-personal
equilibrium as a starting point. But we do not assume that players know each other
as they know themselves. Therefore, inter-personal equilibrium can only be a conclu-
sion of the analysis that holds under special circumstances (e.g., games with complete
and perfect information) and epistemic assumptions (e.g., versions of �common belief
in rationality�).

Further comments on the related literature Starting with the seminal con-
tribution of Aumann (1995), various epistemic justi�cations for BI behavior have
been o¤ered in the literature (see the review by Perea 2007).39 Here we outline the
di¤erences between our epistemic conditions for BI (Theorem 1 and Theorem 2) and
those that appear to be conceptually closest, namely Asheim (2002), Asheim and
Perea (2005), Baltag et al. (2009), Bach and Heilmann (2011) and Perea (2014).
Finally, we brie�y comment on other papers where players�plans are modeled as
beliefs.
In Asheim (2002) and Asheim and Perea (2005) type structures do not include

players�beliefs about their own behavior, and beliefs are represented by lexicographic
(conditional) probability systems, rather than CPSs. They obtain su¢ cient epis-
temic conditions for BI strategies based on an approach somewhat similar to ours.
In particular, they assume common �certain belief� (analogous to full belief) of

to satisfy the OSD property given beliefs about others.
38The plan of a sophisticated player with dynamically inconsistent preferences may be �sophisti-

cated�and yet not �optimal� in an obvious sense, because the OSD principle fails. Hence, in this
case it is better to talk about sophisticated, rather than optimal planning.
39The survey by Perea (2007) restricts attention to su¢ cient epistemic conditions for the BI

behavior. By contrast, the result in Battigalli and Siniscalchi (2002) pertains to the BI path. Arieli
and Aumann (2015) adopt a syntactic approach to provide epistemic conditions for BI behavior in
PI games where each player moves at most once.
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events that� absent additional �consistency�conditions� have no implication about
behavior.
Baltag et al. (2009) use a dynamic epistemic-logic formalism related to, but

di¤erent from, the formalism of this paper. Their approach is based on the framework
of the so called �plausibility models,�which can be seen as an extension of standard
knowledge spaces to take into account the dynamics of beliefs and knowledge. They
use this formalism to capture a future-oriented concept of rationality, called �dynamic
rationality�: at any stage of the game, the rationality of a player depends only on
his current beliefs and knowledge; so a player can be dynamically rational at history
h even if he has made �irrational�moves at some history h0 � h. This is somewhat
similar to our event that each player i is consistent from h (C�h) and plans optimally
(OP ). As the authors show, dynamic rationality is a coarsening of Aumann�s (1995)
concept of �substantive rationality�in a belief-revision context;40 then they use the
notion of �stable belief� to show that dynamic rationality and common knowledge
of stable belief in dynamic rationality entails BI behavior in generic PI games.
Bach and Heilmann (2011) consider generic PI games in which each player com-

prises a reasoning agent and a set of game agents (�selves�), each of them corre-
sponding to a unique decision node. In their framework, the reasoning agent plans
before the game, while each game agent is responsible for the actual choice at his
node. A game agent is said to be high-connected if he acts in compliance to the plan
of the reasoning agent. Bach and Heilmann de�ne a condition called �forward belief
in future-high-connectedness�and use it to obtain su¢ cient conditions for backward
induction. Their approach is somewhat similar in spirit to ours, but their epistemic
framework is very di¤erent, which makes a precise comparison di¢ cult. In particular,
we just rely on the resources of epistemic structures à la Battigalli and Siniscalchi
(1999), which have a constructive foundation by means of hierarchies of conditional
beliefs, whereas Bach and Heilmann use a notion of type structure that features
beliefs about others and also posits a map from types to initial plans.
Perea (2014) de�nes �common belief in future rationality�within a standard type-

structure formalism (i.e., without players�beliefs about their own behavior), and he
shows that its behavioral implications are characterized by a version of backwards
rationalizability which is weaker than ours (De�nition 6). As in all analyses based on

40As is well known (see, for instance, Halpern 2001), Aumann�s framework is �static� in the
sense that it does not allow the players to revise their beliefs about co-players�behavior when doing
hypothetical reasoning. Aumann de�nes �substantive rationality�in terms of knowledge, and shows
that common knowledge of �substantive rationality�yields BI. Samet (2013) shows that common
(probability 1) belief of �substantive rationality�yields BI, provided that �substantive rationality�
is de�ned in doxastic terms, that is, in terms of belief.
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standard type structures, it is implicitly assumed by Perea (2014) that the personal
external states si (i 2 I) simultaneously represent players�behavior and their plans.
In particular, the personal external states are de�ned as classes of behaviorally equiv-
alent strategies, hence, maximization is required only at histories h consistent with
the given plan si. Perea�s version of backwards rationalizability is based on best-
reply correspondence ��i (�) rather than �i (�) (cf. our previous discussion of strong
rationalizability). In PI games without relevant ties, backwards rationalizability à
la Perea yields the set of pro�les (si)i2I such that each si is behaviorally equivalent
to sbii : for instance, in the game of Figure 3.2, both (Oa:oa; Ob:ob) and (Oa:ia; Ob:ob)
are backwards rationalizable in Perea�s sense.
Like us, Battigalli et al. (2013) model plans as beliefs about own behavior; but

in their framework� di¤erently from us� the set of external states is Z, i.e., the set
of complete paths. While in our setting the external personal state of a player is
(technically) also a strategy, in theirs the only mathematical objects corresponding
to (behavior) strategies are players�systems of conditional beliefs about their own
actions. This has the advantage of preventing confusion between behavior (external
state) and strategies (in the mind of players). But there is a price to pay: the language
is not rich enough to express beliefs about behavioral subjunctive conditionals, such
as �Ann believes that if she chose In Bob would choose C�(see the BoSOO game
of Figure 3.1). Battigalli et al. (2013) and related works replace such beliefs with
conditional beliefs about behavior, which is analogous to the transformation from
mixed to behavior strategies of Kuhn (1953). On balance, we �nd both approaches
worth pursuing. We conjecture that we could reformulate our analysis having Z as
the set of external states. Battigalli et al. (2020) take steps in this direction while
also allowing for belief-dependent preferences. Another di¤erence with Battigalli et
al. (2013) is that they focus only on forward induction and RCSBR in PI games,
proving a result analogous to Theorem 3; by contrast, we consider more general
games and analyze backward- as well as forward-induction reasoning.
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Appendix A: Proofs omitted from the main text

We �rst record the following result that will be useful for the proofs of Theorems 2
and 4.

Lemma 2 Let X and Y be compact metrizable spaces. If (Em)1m=1 is a decreasing
sequence of nonempty, closed subsets of X � Y , then

projX
1T
m=1

Em =
1T
m=1

projXE
m.

Proof. The inclusion � is obvious. For the other direction, let x 2 \1m=1projXEm.
For each m, let Emx := fy 2 Y : (x; y) 2 Emg. So, we need to establish the existence
of some y 2 Y such that y 2 \1m=1Emx , that is, \1m=1Emx 6= ;. This will imply the
thesis. First note that each Emx is a nonempty closed subset of Y , hence compact.
Speci�cally, non-emptiness of each Emx follows from the fact that x 2 \1m=1projXEm.
Moreover, (Emx )

1
m=1 is a decreasing sequence of sets; therefore, by the �nite intersec-

tion property of compact sets, \1m=1Emx 6= ;. �

Furthermore, the following notation will be used throughout the proofs of Theo-
rems 2 and 4. For any x 2 X, we let �x denote the Dirac measure supported by x.
With this, given si 2 Si, we de�ne

��si :=
�
�shi

�
h2H

2 (� (Si))H

as the array of Dirac measures supported by shi (the minimal modi�cation of si
allowing h); that is, ��si is such that �

�
si

�
shi jSi (h)

�
= 1 for every h 2 H. First, it

can be veri�ed that such array is Si-measurable, because Si (h0) = Si (h
00) implies

sh
0
i = sh

00
i . This can be veri�ed for pairs of histories h

0 = (h; a0) and h00 = (h; a00) with
a0i = a00i , taking into account that, for the other cases in which h

0 6= h00 and Si (h0) =
Si (h

00), player i has a forced move (�wait�) at nodes following the �bifurcation�
(longest common pre�x) and preceding either h0 or h00. Thus, it makes sense to write
��si 2 (� (Si))

Si. Also, it can be veri�ed that ��si satis�es the chain rule for pairs
h; h0 2 H such that h � h0 (note, h � h0 implies Si (h) � Si (h

0)). With this, it can
be shown that ��si is a CPS: �

�
si
2 �Si (Si). We omit the details.

Backward-induction reasoning

For the proof of Theorem 2, we �nd it convenient to introduce further notation and
preliminary results.

46



Fix a �nite game �. Given �h 2 H and �i 2 �S�i (S�i), let

��
�h

i (�i) :=

�
si 2 Si : 8h 2 H

�
�h
�
; shi 2 arg max

ri2Si(h)
E�i [Ui (ri; �) jh]

�
.

The proof of the following remark is immediate by inspection of the de�nition.

Remark 9 Fix �h 2 H and �i 2 �S�i (S�i).
(i) If si 2 �i (�i), then si 2 ��

�h
i (�i).

(ii) If si 2 ��
�h

i (�i), then there exists �si 2 Si such that �si 2 �i (�i) and si (h) =
�si (h) for all h 2 H

�
�h
�
.

Lemma 3 For every i 2 I, h 2 H and n 2 N,

�hi

�
Ŝni

�
=

8><>:
si 2 Si (h) : 9�i 2 �S�i (S�i) ;

1) si 2 ��hi (�i) ;

2) 8h0 2 H;�i
�
�h

0
�i

�
Ŝn�1�i

�
jS�i (h0)

�
= 1

9>=>; .
Proof. Let si 2 �hi (Ŝni ). Then, by de�nition, there exists �si 2 Ŝni such that si (h0) =
�si (h

0) for all h0 2 H (h). Hence �si 2 �i (�i) for some �i 2 �S�i (S�i) satisfying
�i(�

h0
�i(Ŝ

n�1
�i )jS�i (h0)) = 1 for all h0 2 H. Remark 9.(i) entails that �si 2 ��hi (�i),

and since �si coincides with si at all histories weakly following h, we have si 2 ��hi (�i).
For the other direction, pick any si 2 Si (h) such that si 2 ��hi (�i) for some

�i 2 �S�i (S�i) satisfying �i(�
h0
�i(Ŝ

n�1
�i )jS�i (h0)) = 1 for all h0 2 H. By Remark

9.(ii), there exists �si 2 Si such that �si 2 �i (�i) and si (h0) = �si (h0) for all h0 2 H (h).
By De�nition 6, �si 2 Ŝni . Hence si 2 �hi (Ŝni ). �

Lemma 4 Fix i 2 I, �h 2 H and a nonempty set Qi � Si. Then:
(i) for all h 2 H(�h),

�
�h
i (Qi) \ Si (h) � �hi (Qi) ;

(ii) for all h0; h00 2 H(�h) such that h0 =
�
�h; a0

�
, h00 =

�
�h; a00

�
and a0i = a00i ,

�h
0

i (Qi) \ �h
00

i (Qi) 6= ;.

Proof. Part (i): The conclusion is immediate if ��hi (Qi)\Si (h) is empty. So assume
that this set is nonempty. Pick any si 2 �

�h
i (Qi) \ Si (h). Then, by de�nition of

�
�h
i (Qi), there exists �si 2 Qi such that si (h0) = �si (h

0) for all h0 2 H
�
�h
�
. Since
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h 2 H
�
�h
�
, we have si (h0) = �si (h

0) for all h0 2 H (h). Since si 2 Si (h), it follows
from the de�nition of �hi (Qi) that si 2 �hi (Qi).
Part (ii): Note that Si (h0) = Si (h

00) because the two histories reveal the same
behavior of i. Hence,

�
�h
i (Qi) \ Si (h0) = �

�h
i (Qi) \ Si (h00) � �h

0

i (Qi) \ �h
00

i (Qi) ,

where the inclusion follows from part (i). Pick any si 2 �
�h
i (Qi). Then there exists

�si 2 Qi such that si (h) = �si (h) for all h 2 H
�
�h
�
. Since h0; h00 2 H(�h), we have

si (h) = �si (h) for all h 2 H (h0) and si (h) = �si (h) for all h 2 H (h00). Next consider
ŝi 2 Si (h

0) = Si (h
00) de�ned as follows: ŝi (h) = si (h) for each h 2 Hn

�
�h
	
, and

ŝi
�
�h
�
= a0i = a00i . So we have ŝi (h) = �si (h) for all h 2 H (h0) and for all h 2 H (h00),

hence ŝi 2 �h
0
i (Qi) \ �h

00
i (Qi). �

The proof of Theorem 2 relies on Lemma 5 and Lemma 6 below. To ease the
statements and proofs, let OP 0i := Si � Ti for each i 2 I. The sets OP 0 and OP 0�i
are de�ned in the obvious way: OP 0 :=

Q
i2I OP

0
i and OP

0
�i :=

Q
j 6=iOP

0
j .

Lemma 5 Fix a �nite game � and a �-based type structure T . Then, for all n 2 N0
and h 2 H,

�h (projS (OP
n \ C)) � �h

�
Ŝn
�
.

Proof. We �rst prove the following auxiliary result.

Claim 1 Fix n 2 N0 and h 2 H. Then

8i 2 I, �hi
�
projSi (OP

n
i \ Ci)

�
� projSi

�
OP ni \ C�hi

�
\ Si (h) .

Proof of Claim 1. First note that Ci � C�hi and �hi (projSi (OP
n
i \ Ci)) � Si (h) for

each i 2 I. Consequently, if OP ni \ Ci or OP ni \ C�hi are empty, then the result
is immediate. So in what follows we will assume that OP ni \ Ci is nonempty. Pick
any si 2 �hi (projSi (OP

n
i \ Ci)). Then si 2 Si (h), and so we only need to show the

existence of ti 2 Ti such that (si; ti) 2 OP ni \C�hi ; this will imply si 2 projSi(OP ni \
C�hi )\Si (h), as required. By de�nition of �hi (�), there exists �si 2 projSi (OP ni \ Ci)
such that si (h0) = �si (h

0) for every h0 2 H (h). Hence (�si; ti) 2 OP ni \ Ci for some
ti 2 Ti. Optimal planning and consistency at (�si; ti) entails that �si 2 �i (�i), where
�i := margS�i�i (ti). Remark 9.(i) implies that �si 2 ��hi (�i), and since �si (h0) =
si (h

0) for every h0 2 H (h), we obtain si 2 ��hi (�i). Therefore (si; ti) 2 OP ni \ C�hi .
�
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We now prove the following claim:

8i 2 I; 8h 2 H; 8n 2 N0, projSi
�
OP ni \ C�hi

�
\ Si (h) � �hi

�
Ŝni

�
.

With this, the result follows from Claim 1. The proof is by induction on n 2 N0.
Basis step. Note that, for every i 2 I and h 2 H,

projSi

�
OP 0i \ C�hi

�
\ Si (h) = projSi

�
C�hi

�
\ Si (h) � Si (h) = �hi

�
Ŝ0i

�
,

so the result follows immediately.
Inductive step. Assume that the result is true for n � 0. We show that it is also

true for n+ 1.
Fix i 2 I and �h 2 H arbitrarily. Pick any si 2 projSi(OP

n+1
i \ C��hi ) \ Si

�
�h
�
,

so that (si; ti) 2 OP n+1i \ C��hi for some ti 2 Ti. Since OP n+1i � OP ni , it follows
that (si; ti) 2 OP ni \ C�

�h
i , and so, by the inductive hypothesis, si 2 �

�h
i (Ŝ

n
i ). By

Remark 9.(i), si 2 ��
�h

i (�i), where �i := margS�i�i (ti). So, in order to show that

si 2 ��hi (Ŝn+1i ), it is enough to show (by Lemma 3) that �i(�h�i(Ŝ
n
�i)jS�i (h)) = 1 for

every h 2 H.
To this end, �rst note that (si; ti) 2 OP n+1i implies (si; ti) 2 Bi

�
OP n�i

�
:=

\h2HBi;h
�
OP n�i

�
. Note also that (si; ti) 2 BCCi := \h2HBi;h(C�h�i ); hence, by

the conjunction property of the operator Bi;h (�), it follows that, for each h 2 H,

(si; ti) 2 Bi;h
�
OP n�i \ C�h�i

�
= Bi;h0

�Q
j 6=i

�
OP nj \ C�hj

��
. Using this fact, we ob-

tain, for all h 2 H,

�i

�
�h�i

�
Ŝn�i

�
jS�i (h)

�
� �i

 Q
j 6=i
projSj

�
OP nj \ C�hj

�
\ S�i (h) jS�i (h)

!

= �i

 Q
j 6=i
projSj

�
OP nj \ C�hj

�
jS�i (h)

!

= margS�i�i;h (ti)

 Q
j 6=i
projSj

�
OP nj \ C�hj

�!

= �i;h (ti)

 
Si �

Q
j 6=i

�
projSj

�
OP nj \ C�hj

�
� Tj

�!

� �i;h (ti)

 
Si �

Q
j 6=i

�
OP nj \ C�hj

�!
= 1,
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where the �rst inequality follows from the inductive hypothesis, the �rst equality
follows from basic properties of a CPS,41 the second and third equalities follow by
de�nition, and the second inequality is immediate. This shows that �i satis�es the
required properties. Since i 2 I and �h 2 H are arbitrary, the conclusion follows. �

Lemma 6 Fix a �nite game � and a complete �-based type structure T . Then, for
each n 2 N0,

projS (OP
n \ C) = Ŝn.

Proof. First note that
8i 2 I; Si = projSi (Ci) . (7.1)

To see this, pick any si 2 Si, and consider the CPS �si 2 �S�T�i (S � T�i) de�ned
as follows: �x an arbitrary �si;�i 2 �S�i�T�i (S�i � T�i), and, for all h 2 H, let

�si (�jS (h)� T�i) := ��si (�jSi (h))� �si;�i (�jS�i (h)� T�i) .

By completeness, there exists tsi 2 Ti such that �i(tsi) = �si. Then (si; tsi) 2 Ci
because tsi satis�es independence and, for all h 2 H,

�tsi ;i (si (h) jh) � �i;i (tsi)
�
shi jSi (h)

�
= ��si

�
shi jSi (h)

�
= 1,

where the inequality holds because shi 2 Si (h; si (h)). Therefore si 2 projSi (Ci).
We now prove the result by induction on n 2 N0.
Basis step. By (7.1), it follows that, for each i 2 I,

projSi
�
OP 0i \ Ci

�
= projSi (Ci) = Si = Ŝ0i ,

and the result is immediate.
Inductive step. Assume that the result is true for n � 0. To show that it is

also true for n + 1, we need some preliminary de�nitions. First note that, by the
inductive hypothesis, for every i 2 I and every si 2 Ŝni , there exists tsi 2 Ti such
that (si; tsi) 2 OP ni \ Ci. So, for every i 2 I and si 2 Ŝni , we choose and �x
some tsi satisfying the above condition, and we let � i denote the map that associates
each si 2 Ŝni with the corresponding type � i (si) = tsi. For each i 2 I, we let
��i := (� j)j 6=i : Ŝ

n
�i ! T�i.

41Let � be a CPS on (S;S), and �x a conditioning event F 2 S. Then � (F jF ) = 1 implies
� (E \ F jF ) = � (EjF ) for every event E � S.
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Furthermore, for all i 2 I, h 2 H and si 2 �hi
�
Ŝni

�
, we choose and �x some �si 2

Ŝni such that si (h
0) = �si (h

0) for every h0 2 H (h). We let '̂hi : �hi
�
Ŝni

�
! Ŝni denote

the map that associates each si 2 �hi

�
Ŝni

�
with the corresponding '̂hi (si) = �si. In

particular, for each i 2 I, and for all h; h0; h00 2 H such that h0 = (h; a0), h00 = (h; a00)

and a0i = a00i , we require that '̂
h0

i (si) = '̂h
00

i (si) for all si 2 �h
0
i

�
Ŝni

�
\ �h00i

�
Ŝni

�
(by

Lemma 4.(ii), �h
0
i

�
Ŝni

�
\�h00i

�
Ŝni

�
is nonempty). Note that if h = ?, then '̂hi is the

identity map, because �?i
�
Ŝni

�
= Ŝni .

With this, we recursively construct, for all i 2 I and h 2 H, a map 'hi : �hi (Ŝni )!
Ŝni that satis�es some desirable properties. The construction is based on the height
of the histories, starting from the root. For each h 2 Hn f?g, let p (h) denote the
immediate (strict) predecessor of h.
Fix a player i 2 I. For h = ?, let '?i := '̂?i . Next, suppose that '

h
i has been

de�ned for all histories h with height k � L (?). With this, for all h 2 H with
L (h) = k � 1, we de�ne

'hi (si) =

(
'
p(h)
i (si), if si 2 �p(h)i

�
Ŝni

�
\ Si (h),

'̂hi (si), otherwise.

The maps 'hi (h 2 H) satisfy the following property:

Claim 2 Fix i 2 I. For all h; h0 2 H such that h � h0, and for all si 2 �h
0
i

�
Ŝni

�
,

si 2 �hi
�
Ŝni

�
\ Si (h0)) 'hi (si) = 'h

0

i (si) .

Proof of Claim 2. Fix h; h0 2 H such that h � h0. Fix also si 2 �h
0
i

�
Ŝni

�
such that

si 2 �hi
�
Ŝni

�
\ Si (h0). Since

�hi

�
Ŝni

�
\ Si (h0) � �hi

�
Ŝni

�
\ Si (p (h0)) ,

we have si 2 �hi
�
Ŝni

�
\Si (p (h0)). Then, by Lemma 4.(i), si 2 �p(h

0)
i

�
Ŝni

�
. Therefore

si 2 �p(h
0)

i

�
Ŝni

�
\ Si (h0) yields 'p(h

0)
i (si) = 'h

0
i (si). Next, if h = p (h0), we are done.

Otherwise, set �h = p (h0). Repeating the above argument (with h0 replaced by �h),
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we obtain '
p(�h)
i (si) = '

�h
i (si) = 'h

0
i (si). Proceeding this way, it follows by induction

that 'hi (si) = 'h
0
i (si). �

We will make use of Claim 2 below. For all i 2 I and h 2 H, we let 'h�i :=
('hj )j 6=i : �

h
�i(Ŝ

n
�i)! Ŝn�i.

We now provide the proof of the inductive step. Fix a player i 2 I. We prove
that Ŝn+1i � projSi

�
OP n+1i \ Ci

�
. Pick any si 2 Ŝn+1i . We must show the existence

of a type ti 2 Ti such that (si; ti) 2 OP n+1i \ Ci. Since si 2 Ŝn+1i , there exists
�si 2 �S�i (S�i) such that si 2 �i(�si) and �si(�h�i(Ŝn�i)jS�i (h)) = 1 for every h 2 H.
Consider now an array of probability measures �

si ;�i
:= (�

si ;�i
(�jS�i (h)� T�i))h2H

satisfying the following property: for all h 2 H and s�i 2 �h�i(Ŝn�i),
�
si ;�i

��
s�i; ��i

�
'h�i (s�i)

��
jS�i (h)� T�i

�
= �si (s�ijS�i (h)) ,

where, by construction, 'h�i (s�i) 2 Ŝn�i is such that s�i (h0) = 'h�i (s�i) (h
0) for every

h0 2 H (h). In words, conditional on every h 2 H, measure �
si ;�i

(�jS�i (h)� T�i) is
concentrated on the (�nite) set of pro�les

�
s�i; ��i

�
'h�i (s�i)

��
such that the plan of

each type � j('hj (sj)) (j 6= i) coincides with sj for every h0 weakly following h.
Note that the marginal of �

si ;�i
on (S�i;S�i) is �si. We now claim that �si ;�i is a

CPS on (S�i � T�i;S�i � T�i). To this end, �x any h; �h 2 H such that �h � h, which

implies S�i (h) � S�i
�
�h
�
. Consider a pro�le

�
s�i; ��i

�
'
�h
�i (s�i)

��
2 S�i � T�i

where s�i 2 ��h�i
�
Ŝn�i

�
. Suppose further that

�
s�i; ��i

�
'
�h
�i (s�i)

��
2 S�i (h)� T�i.

Then s�i 2 ��h�i
�
Ŝn�i

�
\S�i (h), hence, by Claim 2, '�h�i (s�i) = 'h�i (s�i). Therefore,

�
si ;�i

��
s�i; ��i

�
'
�h
�i (s�i)

��
jS�i (h)� T�i

�
�
si ;�i

�
S�i (h)� T�i

��S�i ��h�� T�i
�

= �
si ;�i

��
s�i; ��i

�
'h�i (s�i)

��
jS�i (h)� T�i

�
�
si ;�i

�
S�i (h)� T�i

��S�i ��h�� T�i
�

= �si (s�ijS�i (h)) �si
�
S�i (h) jS�i

�
�h
��

= �si
�
s�ijS�i

�
�h
��

= �
si ;�i

��
s�i; ��i

�
'
�h
�i (s�i)

�� ��S�i ��h�� T�i

�
,

where the third equality holds because �si is a CPS. Next, �x a history �h. Consider
distinct histories h0; h00 2 H that di¤er only for the last action of player i: h0 =

�
�h; a0

�
,

h00 =
�
�h; a00

�
and a0�i = a00�i. Then S�i (h

0) = S�i (h
00), and, by Lemma 4.(ii) and

Claim 2, it follows that, for all s�i 2 ��h�i
�
Ŝn�i

�
\ S�i (h0) = �

�h
�i

�
Ŝn�i

�
\ S�i (h00),

'h
0

�i (s�i) = 'h
00

�i (s�i) .
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This conclusion also holds for all s�i 2 �h
0
�i

�
Ŝn�i

�
\ �h00�i

�
Ŝn�i

�
, because if s�i =2

�
�h
�i

�
Ŝn�i

�
\ S�i (h0), then 'h

0
�i (s�i) = '̂h

0

�i (s�i) = '̂h
00

�i (s�i) = 'h
00
�i (s�i) by construc-

tion. Note that �si (�jS�i (h0)) = �si (�jS�i (h00)), and

supp�si (�jS�i (h0)) = supp�si (�jS�i (h00)) � �h
0

�i

�
Ŝn�i

�
\ �h00�i

�
Ŝn�i

�
,

since �si
�
�h

0
�i

�
Ŝn�i

�
jS�i (h0)

�
= �si

�
�h

00
�i

�
Ŝn�i

�
jS�i (h00)

�
= 1 by assumption. It

follows that for all s�i 2 �h
0
�i

�
Ŝn�i

�
,

�
si ;�i

��
s�i; ��i

�
'h

0

�i (s�i)
��
jS�i (h0)� T�i

�
= �si (s�ijS�i (h0))

= �si (s�ijS�i (h00)) = �
si ;�i

��
s�i; ��i

�
'h

00

�i (s�i)
��
jS�i (h00)� T�i

�
= �

si ;�i

��
s�i; ��i

�
'h

0

�i (s�i)
��
jS�i (h00)� T�i

�
,

where the �rst equality is by de�nition, the second equality is immediate, the third
equality is by de�nition, and the last equality holds because 'h

0
�i = 'h

00
�i. Thus, �si ;�i

satis�es an �own-action independence�property (besides the chain rule for histories
h; �h 2 H such that �h � h); with this, one can show that �

si ;�i
is a CPS.42

Next, consider the CPS �si 2 �S�T�i (S � T�i) de�ned as follows: for all h 2 H,

�si (�jS (h)� T�i) := ��si (�jSi (h))� �
si ;�i

(�jS�i (h)� T�i) .

By completeness, there exists ti 2 Ti such that and �i (ti) = �si. We show that

(si; ti) 2 OP n+1i \ Ci = OPi \BCCi \
�

nT
m=0

Bi
�
OPm�i

��
\ Ci.

First note that, by inspection of the de�nition of �si, type ti satis�es indepen-
dence; moreover, type ti plans optimally (see Remark 3) because, for all h 2 H,

supp�i;i (ti) (�jSi (h)) =
�
shi
	
� arg max

ri2Si(h)

P
s�i2S�i(h)

Ui (ri; s�i) �si (s�ijS�i (h))

= arg max
ri2Si(h)

P
s�i2S�i(h)

Ui (ri; s�i)margS�i�i;�i (ti) (s�ijS�i (h)) .

Hence (si; ti) 2 OPi. Furthermore, (si; ti) 2 Ci: for all h 2 H,

�ti;i (si (h) jh) � �i;i (ti)
�
shi jSi (h)

�
= ��si

�
shi jSi (h)

�
= 1,

42See the analysis of the Dirac array ��si , where the roles of i and �i are reversed.
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where the inequality holds because shi 2 Si (h; si (h)).
Next, observe the following fact: �x �h 2 H arbitrarily, and consider a pro-

�le (s�i; ��i('
�h
�i (s�i))) 2 S�i � T�i such that s�i 2 �

�h
�i(Ŝ

n
�i). Then we have

(s�i; ��i('
�h
�i (s�i))) 2 OP n�i\C�

�h
�i , since, by de�nition of '

�h
�i, s�i (h) = '

�h
�i (s�i) (h)

for every h 2 H
�
�h
�
. Hence, by de�nition of �

si ;�i
,

8h 2 H;�
si ;�i

�
OP n�i \ C�h�i jS�ih)� T�i

�
= 1; (7.2)

we use this fact to show that (si; ti) 2 BCCi \ Bi
�
OP n�i

�
.

We �rst check that (si; ti) 2 BCCi := \h2HBi;h
�
C�h�i

�
. For every h 2 H, we

have

�i;h (ti)
�
Si � C�h�i

�
= �i (ti)

�
Si � C�h�i jS (h)� T�i

�
= ��si (SijSi (h))�si ;�i

�
C�h�i jS�i (h)� T�i)

�
= 1,

where the third equality follows from (7.2); hence (si; ti) 2 BCCi. Next, we check
that (si; ti) 2 Bi

�
OP n�i

�
:= \h2HBi;h

�
OP n�i

�
; since the sequence

�
OPm�i

�n
m=0

is de-
creasing, monotonicity of operator Bi (�) implies (si; ti) 2 \nm=0Bi

�
OP l�i

�
. By (7.2),

it follows that, for all h 2 H,

�i;h (ti)
�
Si �OP n�i

�
= �i (ti)

�
Si �OP n�ijS (h)� T�i

�
= ��si (SijSi (h))�si ;�i

�
OP n�ijS�i (h0)� T�i

�
= 1.

This concludes the proof that (si; ti) 2 OP n+1i \ Ci.
We therefore have si 2 projSi

�
OP n+1i \ Ci

�
; since si is arbitrary, we can claim

that Ŝn+1i � projSi
�
OP n+1i \ Ci

�
. The converse follows from Lemma 5 (with h = ?).

This concludes the proof of the inductive step. �

We can now provide the proof of Theorem 2.

Proof of Theorem 2. Parts (i)-(ii) of the main statement of the theorem im-
mediately follow from Lemma 5 (with h = ?). The statement about complete
type structures immediately follows from Lemma 6 as long as we consider �nitely
many steps, i.e., n 2 N. To see that it holds also in the limit, �rst note that
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projS (OP
n \ C) = Ŝn 6= ; for every n 2 N, hence OP n \ C 6= ; for every n 2 N.

Then

projS (OP
1 \ C) = projS

1T
n=1

(OP n \ C) =
1T
n=1

projS (OP
n \ C) =

1T
n=1

Ŝn,

where the �rst equality holds by de�nition, the second follows from Lemma 2 (as
(OP n \ C)1n=1 is a decreasing sequence of closed and nonempty sets), and the third
follows from Lemma 6. �

Forward-induction reasoning

We postpone the proof of Theorem 3, because we will show that the epistemic as-
sumptions featured there (RCSBR) have the same behavioral implications as the
epistemic assumptions of Theorem 4. With this, Theorem 3 follows from Theorem
4.
We �rst record some preliminary results.

Remark 10 Fix a �nite game � and a �-based type structure T . Then, for each
i 2 I and n > 1,

Rn+1i = R1i \
�

nT
m=1

SBi
�
Rm�i
��

and R�;n+1i = R�;1i \
�

nT
m=1

SBi
�
R�;m�i

��
.

LetX and Y be compact metrizable spaces, and �x a CPS � := (�(�jC � Y ))C2C 2
�C�Y (X � Y ). We say that � strongly believes a nonempty event E � X � Y if,
for every C 2 C,

E \ (C � Y ) 6= ; ) � (EjC � Y ) = 1.

We say that � strongly believes a sequence of nonempty events (E0; :::; En) in X�Y
if, for each m = 0; :::; n, � strongly believes Em. We say that � fully believes a
nonempty event E � X � Y if � (EjC � Y ) = 1 for every C 2 C.

Lemma 7 Fix a �nite decreasing sequence of closed events (E0; :::; En) in X � Y .
(i) If � 2 �C�Y (X � Y ) strongly believes (Em)

n
m=0, then margX� strongly believes

(projXEm)
n
m=0.

(ii) Let � 2 �C (X). If � fully believes projXE0 and strongly believes (projXEm)
n
m=1,

then there exists � 2 �C�Y (X � Y ) such that (a) � fully believes E0, (b) � strongly
believes (Em)

n
m=1, and (c) margX� = �.
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Proof. Part (i) follows from the marginalization property of strong belief (see Bat-
tigalli and Friedenberg 2012). The proof of part (ii) is very similar to the proof of
Lemma 3 in Battigalli and Tebaldi (2019). �

To prove the following result, we �nd it convenient to de�ne R0 := S � T and
R�;0 := S � T in a �-based type structure T .

Lemma 8 Fix a �nite game � and a �-based complete type structure T . Then, for
every n 2 N0,
(i)
Q
i2I R

�;n
i �

Q
i2I R

n
i , and

(ii) projS
Q
i2I R

n
i = projS

Q
i2I R

�;n
i .

Proof. The proof is by induction on n 2 N0. The basis step (n = 0) trivially holds
by de�nition.
Suppose by way of induction that (IH)

Q
i2I R

�;m
i �

Q
i2I R

m
i and projS

Q
i2I R

m
i =

projS
Q
i2I R

�;m
i for every m � n. Then, for every i, we have R�;ni � Rni and

SBi

�Q
i2I
R�;n�i

�
(IH;def:SBi)=

\
h:S�i(h)\projS�i

Q
i2I R

n
i 6=;

Bi;h

�Q
i2I
R�;n�i

�
(mon:Bi;h)
�

\
h:S�i(h)\projS�i

Q
i2I R

n
i 6=;

Bi;h

�Q
i2I
Rn�i

�
(def:SBi)
= SBi

�Q
i2I
Rn�i

�
,

where the equalities follow from the inductive hypothesis and the de�nition of SBi
(taking into account that, for every event E�i � S�i�T�i, we have (S�i (h)� T�i)\
E�i 6= ; if and only if S�i (h) \ projS�iE�i 6= ;), and the inclusion follows from the
monotonicity of each Bi;h operator. Since R

�;n+1
i = R�;ni \ SBi

�
R�;n�i

�
and Rn+1i =

Rni \ SBi
�
Rn�i
�
, it follows that R�;n+1i � Rn+1i . Thus,

Q
i2I R

�;n+1
i �

Q
i2I R

n+1
i ,

which implies projS
Q
i2I R

�;n+1
i � projS

Q
i2I R

n+1
i .

To prove the converse, �x any personal state (si; ti) 2 Rn+1i . Let �1i;�i (ti) :=�
margS�i�i;h (ti)

�
h2H denote the marginal �rst-order belief of ti about coplayers,

which is a CPS because rationality requires independence. By consistency, �1i;i (ti) =

��si :=
�
�shi

�
h2H

is the CPS concentrated on shi for each h 2 H. The �rst-order CPS
of ti, viz. �

1
i (ti), is the �product�of �

1
i;i (ti) and �

1
i;�i (ti). By Remark 10,

Rn+1i = Ri \
�

nT
m=1

SBi
�
Rm�i
��
.
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By the inductive hypothesis (IH), projS�iR
m
�i = projS�iR

�;m
�i for every m 2 f1; :::; ng.

Thus, for each m 2 f1; :::; ng and every h 2 H, S�i (h) \ projS�iR
�;m
�i 6= ; implies

�1i;�i (ti)
�
projS�iR

�;m
�i
�
= 1. By Lemma 3 in Battigalli and Tebaldi (2019) (cf. Lemma

7), there exists �i;�i :=
�
�i;�i;h

�
h2H 2 �

S�i�T�i (S�i � T�i) such that
(1) �1i;�i (ti) =

�
margS�i�i;�i;h

�
h2H , and

(2) for each m 2 f1; :::; ng and every h 2 H, if S�i (h) \ projS�iR
�;m
�i 6= ; then

�i;�i;h
�
R�;m�i

�
= 1.

Let �i :=
�
�shi � �i;�i;h

�
h2H

2 �S�T�i (S � T�i) the CPS obtained by taking the

�product�of �1i;i (ti) = ��si and �i;�i. By completeness of the type structure, �i is
onto; therefore, there is a type t�i 2 Ti such that �i (t�i ) = �i. With this,

(si; t
�
i ) 2 R�i \

�
nT

m=1

SBi
�
R�;m�i

��
= R�;n+1i ,

where the inclusion holds by construction and the equality holds by Remark 10. This
shows that projS

Q
i2I R

n+1
i � projS

Q
i2I R

�;n+1
i . �

We also need the following facts pertaining to the epistemic events of interest.

Lemma 9 Fix a �nite game � and a �-based type structure T . Fix also i 2 I and
(si; ti) 2 Si�Ti. Then (si; ti) 2 C�i if and only if (si; ti) 2 Ci and �i (ti) fully believes
Si � C��i, where C

�
�i :=

Q
j 6=iC

�
j .

Proof. Note that, by de�nition and the conjunction property of B (�), we have

C� =
T

m2N0
Bm (C) = B0 (C) \

� T
m2N

Bm (C)

�
= C \

� T
m2N0

B (Bm (C))

�
= C \ B

� T
m2N0

(Bm (C))

�
= C \ B (C�) .

So the statement immediately follows. �

Lemma 10 Fix a �nite game � and a complete �-based type structure T . Then, for
all i 2 I and h 2 H,

C�i \ (Si (h)� Ti) 6= ;.

Proof. Note that, for all n 2 N,

Bn (C) =
Q
i2I
Bi
�
projS�i�T�iB

n�1 (C)
�
.
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We show by induction on n 2 N0 that, for each i 2 I and h 2 H,�
projSi�TiB

n (C)
�
\ (Si(h)� Ti) 6= ;.

Since C� := \n2N0Bn (C), this implies the thesis.
Basis step. Fix i 2 I and �h 2 H. Pick any si 2 Si

�
�h
�
, and consider the CPS

�i 2 �S�T�i (S � T�i) de�ned as follows: pick any �i;�i 2 �S�i�T�i (S�i � T�i), and,
for all h 2 H, let

�i (�jS (h)� T�i) := ��si (�jSi (h))� �i;�i (�jS�i(h)� T�i) .

By completeness, there exists ti 2 Ti such that �i(ti) = �i. Then (si; ti) 2 Ci because
ti satis�es independence and, for all h 2 H,

�ti;i (si (h) jh) � �i;i (ti)
�
shi jSi (h)

�
= ��si

�
shi jSi (h)

�
= 1,

where the inequality holds because shi 2 Si (h; si (h)). Hence projSi�TiB
0 (C) \�

Si
�
�h
�
� Ti

�
= Ci \

�
Si
�
�h
�
� Ti

�
6= ;. As i and �h are arbitrary, the proof of

the basis step is complete.
Inductive step. Assume that the result is true for n � 0. We show that it is also

true for n+ 1.
Fix i 2 I and �h 2 H. Pick any si 2 Si

�
�h
�
. By the inductive hypothesis, the

(closed) set projS�i�T�iB
n (C) is nonempty, and for all h 2 H,

projS�i�T�iB
n (C) \ (S�i(h)� T�i) 6= ;.

So there exists �i;�i 2 �S�i�T�i (S�i � T�i) such that �i;�i fully believes event
projS�i�T�iB

n (C). With this, consider the CPS �i 2 �S�T�i (S � T�i) de�ned as
follows: for all h 2 H,

�i (�jS (h)� T�i) := ��si (�jSi (h))� �i;�i (�jS�i(h)� T�i) .

By completeness, there exists ti 2 Ti such that �i(ti) = �i. The same argument as in
the basis step yields (si; ti) 2 Ci. Moreover (si; ti) 2 Bi

�
projS�i�T�iB

n (C)
�
, because

�i;�i (ti) = �i;�i. It follows that (si; ti) 2 projSi�TiBn+1 (C) \
�
Si
�
�h
�
� Ti

�
. Since i

and �h are arbitrary, the conclusion follows. �

With this, we are ready to provide the proof of Theorem 4.

Proof of Theorem 4. Part (i): First note that, by Lemma 10, C�i 6= ; for each
i 2 I. Moreover

8i 2 I; Si = projSi (C
�
i ) . (7.3)
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The inclusion projSi (C
�
i ) � Si is obvious. Conversely, pick any si 2 Si. By Lemma

10, there exists �si;�i 2 �S�i�T�i (S�i � T�i) such that �si;�i fully believes C
�
�i. So

consider the CPS �si 2 �S�T�i (S � T�i) de�ned as follows: for all h 2 H, let

�si (�jS (h)� T�i) := ��si (�jSi (h))� �si;�i (�jS�i (h)� T�i) ,

By completeness, there exists tsi 2 Ti such that �i(tsi) = �si. Then (si; tsi) 2 Ci
because tsi satis�es independence and, for all h 2 H,

�tsi ;i (si (h) jh) � �i;i (tsi)
�
shi jSi (h)

�
= ��si

�
shi jSi (h)

�
= 1,

where the inequality holds because shi 2 Si (h; si (h)). Since �i;�i (ti) := �si;�i fully
believes C��i, Lemma 9 yields (si; tsi) 2 C�i . Therefore si 2 projSi (C�i ).
We now prove the following claim:

8i 2 I; 8n 2 N; projSiR
�;n
i = Sni .

The proof is by induction on n 2 N.
Basis step. Pick any si 2 projSiR

�;1
i , so that (si; ti) 2 R

�;1
i := C�i \ OPi for some

ti 2 Ti. Transparency of consistency at (si; ti) and optimal planning implies that si
satis�es the OSD property given margS�i�i (ti); so the OSD principle (Remark 3)
implies that si 2 �i

�
margS�i�i (ti)

�
. Thus si 2 S1i .

Conversely, pick any si 2 S1i . By de�nition, there exists �i 2 �S�i (S�i) such that
si 2 �i (�i). Part (ii) of Lemma 7 yields the existence of �i;�i 2 �S�i�T�i (S�i � T�i)
such that �i;�i fully believes C

�
�i and margS�i�i;�i = �i. Consider the CPS �i 2

�S�T�i (S � T�i) de�ned as follows: for all h 2 H,

�i (�jS (h)� T�i) := ��si (�jSi (h))� �i;�i (�jS�i (h)� T�i) .

Since �i is surjective, there exists ti 2 Ti such that �i (ti) = �i. We now show that
(si; ti) 2 C�i \ OPi. Player i is consistent at (si; ti) because ti satis�es independence
and

�ti;i (si (h) jh) � �i;i (ti)
�
shi jSi (h)

�
= ��si

�
shi jSi (h)

�
= 1

for all h 2 H. Since �i;�i fully believes C��i, Lemma 9 yields (si; ti) 2 C�i . Moreover,
type ti plans optimally (see Remark 3) because, for all h 2 H,

supp�i;i (ti) (�jSi (h)) =
�
shi
	
� arg max

ri2Si(h)

P
s�i2S�i(h)

Ui (ri; s�i) �i (s�ijS�i (h))

= arg max
ri2Si(h)

P
s�i2S�i(h)

Ui (ri; s�i)margS�i�i;�i (ti) (s�ijS�i (h)) .
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Hence (si; ti) 2 OPi.
Inductive step. Assume that the result is true for each m � n. We show that it

is also true for each m � n+ 1.
Pick any si 2 projSiR

�;n+1
i , so that (si; ti) 2 R�;n+1i for some ti 2 Ti. Then,

by Remark 10, (si; ti) 2 R�;1i \
�
\m�nSBi

�
R�;m�i

��
. Transparency of consistency

at (si; ti) and optimal planning implies that si satis�es the OSD property given
�i := margS�i�i (ti); so the OSD principle (Remark 3) implies that si 2 �i (�i).
Part (i) of Lemma 7 entails that �i strongly believes

�
projS�iR

�;m
�i
�n
m=1

, hence, by
the inductive hypothesis, �i strongly believes

�
Sm�i
�n
m=1

; that is, Condition 2 in the
recursive step of De�nition 7 is satis�ed. Thus si 2 Sn+1i .
Conversely, pick any si 2 Sn+1i . By de�nition, there exists �i 2 �S�i (S�i) such

that si 2 �i (�i) and �i strongly believes
�
Sm�i
�n
m=1

. By the inductive hypothesis,
�i strongly believes

�
projS�iR

�;m
�i
�n
m=1

. Moreover, �i fully believes S�i by de�nition,
and so, by (7.3), �i fully believes projS�iC

�
�i. Hence part (ii) of Lemma 7 yields the

existence of �i;�i 2 �S�i�T�i (S�i � T�i) such that
(a) �i;�i strongly believes

�
R�;m�i

�n
m=1

,
(b) �i;�i fully believes C

�
�i, and

(c) margS�i�i;�i = �i.
Consider the CPS �i 2 �S�T�i (S � T�i) de�ned as follows: for all h 2 H,

�i (�jS (h)� T�i) := ��si (�jSi (h))� �i;�i (�jS�i (h)� T�i) .

Since �i is surjective, there exists ti 2 Ti such that �i (ti) = �i. It remains to show
that (si; ti) 2 R�;n+1i . By Remark 10, this is equivalent to showing that (si; ti) 2
R�;1i \

�
\m�nSBi

�
R�;m�i

��
. Since �i;�i (ti) = �i;�i, it immediately follows that (si; ti) 2

\m�nSBi
�
R�;m�i

�
. The proof that (si; ti) 2 R�;1i is the same as that of the basis step.

Therefore (si; ti) 2 R�;n+1i .
Part (ii): Note that

�Q
i2I R

�;n
i

�
n2N is a decreasing sequence of compact sets.

Part (i) implies that
Q
i2I R

�;n
i 6= ; for every n 2 N. Hence, by the �nite intersection

property, R�;1 6= ;. By part (i) and Lemma 2, it follows that projSR�;1 = S1, as
required. �

Proof of Theorem 3. Part (i) follows from Lemma 8 and Theorem 4. Part (ii)
follows from the same argument as in the proof of Theorem 4 (ii). �
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Appendix B: Supplementary material

This appendix provides a formal analysis of some results mentioned in the main
text that are not stated there as formal theorems. First, in Appendix B.1 we show
how backwards rationalizability can be given a characterization in terms of the so-
called �backwards procedure�(Penta 2015). Second, Appendix B.2 provides a formal
epistemic analysis of initial rationalizability in terms of the epistemic notions as
(informally) de�ned in the main text. Finally, Appendix B.3 illustrates a possible
way to extend the epistemic analysis of backwards rationalizability to the general
class of �nite games with perfect recall.

Appendix B.1: An algorithmic characterization of backwards
rationalizability

Penta (2015) shows that backwards rationalizability can be given an algorithmic
characterization by a procedure, called �backwards procedure,�which is a general-
ization of the BI algorithm to a wide class of games. In what follows, we will formally
introduce the �backwards procedure� for the games considered in this paper; then
we show that the solution concept of backwards rationalizability� as per De�nition
6� yields a subset of the pro�les surviving the backwards procedure; we show that
the equivalence between the two concepts obtains if the notion of CPS is replaced by
the weaker notion of forward CPS (see Section 7). We have to introduce additional
notation and de�nitions. To ease language, in this appendix we slightly modify our
terminology (cf. Section 7). Since the elements si that we call �personal external
states of i�mathematically correspond to the strategies of player i, even though they
do not represent the plan in i�s mind, we call them �objective strategies.�
Fix a game �. The set of objective sub-strategies of player i in the sub-tree with

root h 2 H is denoted by S�hi , that is,

S�hi :=
Q

h02H(h)
Ai(h

0).

A generic element of S�hi is denoted by s�hi . For each h 2 H, the objective sub-
strategy induced by s�hi 2 S�hi in the sub-tree with root �h � h is denoted by

(s�hi j�h) := (s
�h
i (h

0))h02H(�h) 2 S�
�h

i .

For each i 2 I and h 2 H, let �hi : Si ! S�hi be the map that associates each
si 2 Si with the induced objective sub-strategy in the sub-tree with root h, that is,
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�hi (si) = (sijh). Clearly, each map �hi : Si ! S�hi is onto. Moreover, for every i 2 I
and h 2 H, we let �h�i : S�i ! S�h�i denote the �product�of the maps �

h
j (j 6= i),

that is, �h�i (s�i) =
�
�hj (sj)

�
j 6=i. The map �

h : S ! S�h is de�ned in the usual way:

�h (s) =
�
�hj (sj)

�
j2I for each s = (sj)j2I 2 S.

Recall that
Ui := ui � � : S ! R

is the utility of player i as a function of the external state. Following Penta (2015),
we de�ne (objective) strategic-form payo¤ functions for continuations from a given
history. For each h 2 H, de�ne the path function � (�jh) : S�h ! Z. Note: if
s 2 S (h), then �

�
�h (s) jh

�
= � (s), i.e., � (sjh) is the terminal history induced by

pro�le s from history h. With this,

Ui (�jh) := ui � � (�jh) : S�h ! R

is the utility of player i as a function of pro�le s�h =
�
s�hi

�
i2I
. Finally, for each

�i 2 �
�
S�h�i

�
, let

BRhi (�i) := arg max
s�hi 2S�hi

P
s�h�i 2S

�h
�i

Ui

�
s�hi ; s�h�i jh

�
�i

�
s�h�i

�
.

If h = ?, we simply write BRi (�i).
Next, recall that L(h) denotes the height of the sub-tree starting at h 2 �H, that

is, L(h) := maxz2Z(h) `(z)�`(h), where `(h) denotes the length of h. For convenience,
we let K := L(?) denote the �height of the game.�We also �nd it convenient to use
the following notation: for every k 2 f1; :::; Kg,

Hk := fh 2 H : L(h) = kg

is the set of all histories of height k. Next, �x some k > 1. For each h 2 Hk,

Hk�1 (h) :=
�
h0 2 Hk�1 : h0 � h

	
is the set of all histories of height k � 1 that strictly follow h.
We can formally introduce the �backwards procedure,�which starts by consid-

ering �rst all histories of height 1, and then proceeds recursively for all histories of
height k > 1.

De�nition 8 Consider the following procedure.
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(k = 1) For every i 2 I and every h 2 H1, let

P 1;0i (h) : = S�hi ,

P 1;0�i (h) : =
Q
j 6=i

S�hj ,

and, for all n 2 N,

P 1;ni (h) : =
n
s�hi 2 P 1;n�1i (h) : 9�i 2 �

�
P 1;n�1�i (h)

�
; s�hi 2 BRhi (�i)

o
,

P 1;n�i (h) : =
Q
j 6=i

P 1;nj (h) .

Also, for every i 2 I and every h 2 H1, let

P 1;1i (h) : =
T
n2N0

P 1;ni (h) ,

P 1;1�i (h) : =
Q
j 6=i

P 1;1j (h) .

(k > 1) For every i 2 I and every h 2 Hk, let

P k;0i (h) : =
n
s�hi 2 S�hi : 8h0 2 Hk�1 (h) ; (s�hi jh0) 2 P

k�1;1
i (h0)

o
,

P k;0�i (h) : =
Q
j 6=i

P k;0j (h) ,

and, for all n 2 N,

P k;ni (h) : =
n
s�hi 2 P k;n�1i (h) : 9�i 2 �

�
P k;n�1�i (h)

�
; s�hi 2 BRhi (�i)

o
,

P k;n�i (h) : =
Q
j 6=i

P k;nj (h) .

Also, for every i 2 I and every h 2 Hk, let

P k;1i (h) : =
T
n2N0

P k;ni (h) ,

P k;1�i (h) : =
Q
j 6=i

P k;1j (h) .

We say that s 2 S survives the backwards procedure if s 2 PK;1 (?) :=
Q
i2I P

K;1
i (?).

The �rst main result of this section is the following:
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Proposition 1 Fix a �nite game with observable actions �. Then

Ŝ1 � PK;1 (?) .

To prove the result, we �rst record an ancillary result that will be used also in
the proof of Proposition 2 below.

Lemma 11 Fix i 2 I, �h 2 H and a nonempty set Qi � Si. Then, for every
h 2 H(�h),

�hi

�
�
�h
i (Qi)

�
� �hi (Qi)

and
�hi
�
�hi (Qi)

�
= �hi (Qi) .

Proof. Fix some h 2 H(�h). To show the �rst inclusion, pick any s�hi 2 �hi
�
�
�h
i (Qi)

�
.

We show the existence of �si 2 Qi such that (�sijh) = s�hi . By de�nition, there exists
si 2 ��hi (Qi) such that (sijh) = s�hi . Moreover, since si 2 �

�h
i (Qi), there exists �si 2 Qi

such that si (h0) = �si (h0) for all h0 2 H
�
�h
�
. Since h 2 H(�h), we obtain (�sijh) = s�hi ,

as required.
We now prove that �hi

�
�hi (Qi)

�
= �hi (Qi). Note that the inclusion �

h
i

�
�hi (Qi)

�
�

�hi (Qi) follows from the �rst one (with h = �h). For the converse, �x some s�hi 2
�hi (Qi). We show the existence of si 2 �hi (Qi) such that (sijh) = s�hi . By de�nition,
there exists ŝi 2 Qi such that (ŝijh) = s�hi . Next, pick any s

�
i 2 Si (h), and de�ne

si 2 Si as follows: for all h0 2 H,

si (h
0) :=

�
ŝi (h

0), if h0 2 H(h),
s�i (h

0), otherwise.

We have si 2 Si (h), and si (h0) = ŝi (h
0) for all h0 2 H (h); it follows that si 2 �hi (Qi).

Therefore, (sijh) = (ŝijh) = s�hi . �

Proof of Proposition 1. We will prove the following claim:

8i 2 I; 8k 2 f1; :::; Kg ;8h 2 Hk; si 2 Ŝ1i ) (sijh) 2 P k;1i (h) .

The proof is by induction on the height of histories.
(Step k = 1) Fix any h 2 H1. We prove that, for all i 2 I and n 2 N0, if si 2 Ŝ1i

then (sijh) 2 P 1;ni (h). The proof is by induction on n 2 N0. For n = 0 the result
is immediate. Then suppose that the result is true for n � 0. We show that it is
true for n + 1. Pick any si 2 Ŝ1i , so that there exists a CPS �i 2 �S�i (S�i) such
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that si 2 �i (�i) and �i
�
�h

0
�i

�
Ŝ1�i

�
jS�i (h0)

�
= 1 for all h0 2 H. Lemma 11 yields

�h�i

�
�h�i

�
Ŝ1�i

��
= �h�i

�
Ŝ1�i

�
; hence it follows from the inductive hypothesis that

�h�i (s�i) 2 P 1;n�i (h) provided that s�i 2 Ŝ1�i. We can therefore de�ne a probability
measure �i 2 �

�
P 1;n�i (h)

�
as follows: for all s�h�i 2 S

�h
�i ,

�i

�
s�h�i

�
:= �i

��
�h�i
��1 �

s�h�i

�
jS�i (h)

�
.

That is, �i is the image measure of �i (�jS�i (h)) on S�h�i under the map �h�i : S�i !
S�h�i . The conclusion that (sijh) 2 BRhi (�i) follows from the fact that si 2 �i (�i)

and (shi jh) = (sijh). Hence (sijh) 2 P
1;n+1
i (h).

(Step k > 1) Suppose that the statement has been proved to hold for all histories
of height l = 1; :::; k � 1. Fix any h 2 Hk. We show that, for all i 2 I and n 2 N0, if
si 2 Ŝ1i then (sijh) 2 P k;ni (h). The argument proceeds by induction on n 2 N0.
(n = 0) Pick any si 2 Ŝ1i . By the inductive hypothesis on the height of histories,

it follows that (sijh0) 2 P k�1;1i (h0) for all h0 2 Hk�1 (h). Hence, by de�nition,
(sijh) 2 P k;0i (h).
(n � 0) Suppose that the result is true for n � 0. We show that it is true

for n + 1. The argument proceeds in the same way as in step k = 1. Pick any
si 2 Ŝ1i . Then, by de�nition, there is a CPS �i 2 �S�i (S�i) such that si 2 �i (�i)

and �i
�
�h

0
�i

�
Ŝ1�i

�
jS�i (h0)

�
= 1 for all h0 2 H. Using again Lemma 11 and the

inductive hypothesis, we obtain that �h�i (s�i) 2 P k;n�i (h) for all s�i 2 Ŝ1�i. We can

de�ne a probability measure �i 2 �
�
P k;n�i (h)

�
as the image measure of �i (�jS�i (h))

on S�h�i under the map �
h
�i : S�i ! S�h�i . Hence, the same argument as above entails

that (sijh) 2 BRhi (�i). �

We now show that the equivalence between the backwards procedure and back-
wards rationalizability holds provided that the notion of CPS is replaced by forward
CPS (cf. Section 7).

De�nition 9 A forward CPS is an array of probability measures �i = (�i (�jh))h2H 2
(� (S�i))

H such that:
(i) �i (S�i (h) jh) = 1 for all h 2 H; and
(ii) for all h; h0 2 H such that h � h0, and for all E�i � S�i (h

0),

�i (E�ijh) = �i (E�ijh0)�i (S�i (h0) jh) .
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Let
�eSn�

n2N0
be the solution procedure obtained by replacing, in the de�nition

of backwards rationalizability (De�nition 6), CPSs with forward CPSs. The second
main result of this section is the following:

Proposition 2 Fix a �nite game with observable actions �. Then

eS1 = PK;1 (?) .

Proof. The proof showing that eS1 � PK;1 (?) is analogous to the one in Propo-
sition 1. Thus, we prove that PK;1 (?) � eS1. We do this by showing that
PK;1 (?) � eSn for all n 2 N0. For n = 0, the result is immediate because eS0 = S.
Thus, suppose that the result is true for n � 0. We prove the result for n+ 1.
We �rst record a consequence of the inductive hypothesis.

Claim 3 For every i 2 I, k 2 f1; :::; Kg and h 2 Hk,

P k;1i (h) = �hi

�
PK;1i (?)

�
� �hi

�eSni � = �hi

�
�hi

�eSni �� .
Proof of Claim 3. The �rst equality follows from the de�nition of the backwards
procedure, while the set inclusion follows from the inductive hypothesis. Lemma 11
yields the last equality. �

We make use of this result to construct, for each h 2 H, a pro�le of maps�
'hi : S

�h
i ! Si

�
i2I
satisfying some desirable properties.

Fix i 2 I and h 2 H. There exists k 2 f1; :::; Kg such that h 2 Hk. Claim 3

yields, for each s�hi 2 P k;1i (h), the existence of si 2 �hi

�eSni � such that �hi (si) =
s�hi . Hence, for every s

�h
i 2 P k;1i (h), we choose and �x some si 2 �hi

�eSni � such
that �hi (si) = s�hi ; we also choose an arbitrary s

0
i 2 Si, and we de�ne the map

'hi : S
�h
i ! Si as follows:

'hi

�
s�hi

�
:=

�
si, if s�hi 2 P k;1i (h),
s0i , otherwise.

By construction, each map 'hi satis�es '
h
i

�
P k;1i (h)

�
� �hi

�eSni �, which in turn
implies

P k;1i (h) �
�
'hi
��1 �

�hi

�eSni �� . (7.4)
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For every i 2 I and h 2 H, we let 'h�i : S�h�i ! S�i denote the �product�of the

maps 'hj (j 6= i), that is, 'h�i
�
s�h�i

�
:=
�
'hj

�
s�hj

��
j 6=i
for all s�h�i =

�
s�hj

�
j 6=i
2 S�h�i .

Having done these preparations, we are now ready to provide the proof of the
inductive step. Let si 2 PK;1i (?). We show the existence of a forward CPS �i 2
(� (S�i))

H such that si 2 �i (�i) and �i
�
�h�i

�eSn�i� jh� = 1 for all h 2 H. For every
k 2 f1; :::; Kg and every h 2 Hk, there exists �hi 2 �

�
P k;1�i (h)

�
such that s�hi 2

BRhi
�
�hi
�
. We carefully select some of these probability measures to construct a

forward CPS �i 2 (� (S�i))
H that satis�es the required properties. The construction

goes as follows.
For all h 2 H such that �?i (S�i (h)) > 0, and for all E�i � S�i, let

�i (E�ijh) :=
�?i (E�i \ S�i (h))

�?i (S�i (h))
.

Next, consider some h0 = (h; a) 2 Hk (k 6= K) such that �?i (S�i (h)) > 0 and
�?i (S�i (h

0)) = 0. In this case, for all E�i � S�i, let

�i (E�ijh0) := �h
0

i

��
'h

0

�i

��1
(E�i)

�
,

and, for all h00 � h0 such that �h
0
i

��
'h

0
�i
��1

(S�i (h
00))
�
> 0, let

�i (E�ijh00) :=
�h

0
i

��
'h

0
�i
��1

(E�i \ S�i (h00))
�

�h
0
i

��
'h

0
�i
��1

(S�i (h00))
� .

For all other histories, we proceed as above, in order to obtain an array of probability
measures �i = (�i (�jh))h2H such that the chain rule holds for all h; h0 2 H such that
h � h0; hence �i is a forward CPS.

We now show that �i
�
�h�i

�eSn�i� jh� = 1 for all h 2 H. To this end, pick any

h0 2 H. There exists a unique k0 2 f1; :::; Kg such that h0 2 Hk0. By construction of
�i, there exists h 2 H such that h0 2 H(h) (hence h 2 Hk where k � k0) and such
that

�i (�jh) = �hi

��
'h�i
��1

(�)
�

67



and �hi
��
'h�i
��1

(S�i (h
0))
�
> 0. We get that

�i

�
�h

0

�i

�eSn�i� jh0� =
�hi

��
'h�i
��1 �

�h
0
�i

�eSn�i� \ S�i (h0)��
�hi

��
'h�i
��1

(S�i (h0))
�

�
�hi

��
'h�i
��1 �

�h�i

�eSn�i� \ S�i (h0) \ S�i (h0)��
�hi

��
'h�i
��1

(S�i (h0))
�

=
�hi

��
'h�i
��1 �

�h�i

�eSn�i� \ S�i (h0)��
�hi

��
'h�i
��1

(S�i (h0))
�

=
�hi

��
'h�i
��1 �

�h�i

�eSn�i�� \ �'h�i��1 (S�i (h0))�
�hi

��
'h�i
��1

(S�i (h0))
�

=
�hi

��
'h�i
��1

(S�i (h
0))
�

�hi

��
'h�i
��1

(S�i (h0))
�

= 1,

where the �rst equality is by de�nition, the inequality follows from Lemma 4, the
second and third equalities are obvious, while the fourth equality follows from the
following fact: since �hi 2 �

�
P k;1�i (h)

�
, it follows from (7.4) that

�hi

��
'h�i
��1 �

�h�i

�eSn�i��� = 1;
using the fact that �hi

��
'h�i
��1

(S�i (h
0))
�
> 0, the fourth equality follows.

Finally, the conclusion si 2 �i (�i) is immediate by construction of �i. Hence
si 2 eSn+1i , as required. �

Remark 11 The proof of Proposition 2 is analogous to the proof of Proposition 6
in Penta (2015). It should be noted that Penta adopts CPSs as form of belief system
(Penta 2015, Appendix A.2). Yet, his proof of Proposition 6 yields a forward CPS
as output (see Penta 2015, pp. 306-307).
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Appendix B.2: Epistemic analysis of initial rationalizability

The following notion of initial, or weak rationalizability is an extension to games
with observable actions of a solution concept put forward and analyzed by Ben-
Porath (1997) for games with perfect information.

De�nition 10 Consider the following procedure.

(Step 0) For every i 2 I, let W 0
i := Si. Also, let W 0

�i :=
Q
j 6=i Sj and W

0 := S.

(Step n > 0) For every i 2 I and every si 2 Si, let si 2 W n
i if and only if there

exists �i 2 �S�i (S�i) such that

1. si 2 �i (�i);
2. �i

�
W n�1
�i jS�i

�
= 1.

Also, let W n
�i :=

Qn
j 6=iW

n
j and W

n :=
Q
i2IW

n
i .

Finally, let W1 := \n2N0W n. The pro�les in W1 are called initially rational-
izable.

One can show by standard arguments that initial rationalizability is a nonempty
solution concept:

Remark 12 W1 6= ;.

Fix a game � and an associated �-based type structure T . For each i 2 I, let
R1i;? := Ri, and, for each n 2 N, de�ne Rn+1i;? recursively by

Rn+1i;? := Rni;? \ Bi;?
�
Rn�i;?

�
,

where Rn�i;? :=
Q
j 6=iR

n
j;?. The set of states consistent with rationality and common

initial belief in rationality (RCIBR) is therefore de�ned as

R1? :=
Q
i2I
R1i;?,

where R1i;? :=
T
n2N

Rni;? for every i 2 I.

For each i 2 I, let R̂1i;? := C�i \OPi, and, for each n 2 N, de�ne R̂n+1i;? recursively
by

R̂n+1i;? := R̂ni;? \ Bi;?
�
R̂n�i;?

�
,
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where R̂n�i;? :=
Q
j 6=i R̂

n
j;?. For each i 2 I, let R̂1i;? :=

T
n2N

R̂ni;?. Then

R̂1? :=
Q
i2I
R̂1i;?

is the set of states in which there is optimal planning, transparency of consistency,
and common initial belief in optimal planning.

Remark 13 Event R̂1? is the set of states in which
(a) there is optimal planning and transparency of consistency,
(b) there is common initial belief in (a).
To see this, note that event C� is self-evident, i.e., C� � B (C�), and full belief

in C� implies initial belief in C�.

Theorem 5 Fix a �nite game � and a �-based complete type structure T . Then,
(i) for every n 2 N, projS

Q
i2I R̂

n
i;? = projS

Q
i2I R

n
i;? = W n;

(ii) projSR̂
1
? = projSR

1
? = W1.

The proof of this result is a simpli�ed version of the proof of Theorem 4 and
so it is omitted. We instead provide an alternative epistemic justi�cation of initial
rationalizability which is closer to the one provided for backwards rationalizability.
In what follows, �x a �nite game � and a �-based type structure T . We say that

each player i initially believes in the consistency of the other players if i believes
C�i :=

Q
j 6=iCj at the beginning of the game. The corresponding events are

IBCi : = Bi;? (C�i) ,

IBC : =
Q
i2I
IBCi.

Note that BCC � IBC, that is, a player who believes in continuation consistency
also initially believes in consistency of the co-players. Since each C�i is a product of
closed sets, hence itself closed, IBCi is closed as well.
With this, de�ne recursively the following epistemic events:

� dOP 1i := OPi \ IBCi,

� dOPm+1i :=dOPmi \ Bi �dOPm�i�, wheredOPm�i :=Qj 6=i
dOPmj .
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For eachm 2 N, we de�ne the setdOPm �Qi2I (Si � Ti) in the usual way, that is,dOPm :=Qi2I
dOPmi . Note that eachdOP 1i is closed (i 2 I); furthermore, if eachdOPmi

(i 2 I) is closed, then Bi
�dOPm�i� and dOPm+1i = dOPmi \ Bi �dOPm�i� are closed. It

follows by induction that
�dOPmi �

m2N
is a well de�ned decreasing sequence of closed

sets.
Finally, letdOP1 := \m2NdOPm. Then

dOP1 \ C
is the set of states in which there is consistency and transparency of optimal planning
and of initial belief in consistency.

Theorem 6 Fix a �nite game � and a �-based type structure T . Then,
(i) for every n 2 N, projS

�dOP n \ C� � W n;

(ii) projS
�dOP1 \ C� � W1.

Furthermore, if structure T is complete these weak inclusions hold as equalities.

The proof of Theorem 6 relies on Lemma 12 below. To ease the statement and

proof, letdOP 0i := Si � Ti for each i 2 I. The setsdOP 0 anddOP 0�i are de�ned in the
obvious way: dOP 0 :=Qi2I

dOP 0i anddOP 0�i :=Qj 6=i
dOP 0j .

Lemma 12 Fix a �nite game � and a �-based type structure T . The following
statements hold:
(i) for all n 2 N0,

projS

�dOP n \ C� � W n;

(ii) if T is complete, then, for all n 2 N0,

projS

�dOP n \ C� = W n.

Proof. Part (i): We prove the following claim:

8i 2 I; 8n 2 N0; projSi
�dOP ni \ C� � W n

i .

The proof is by induction on n 2 N0.
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Basis step. Note that, for every i 2 I,

projSi

�dOP 0i \ Ci� = projSi (Ci)

� Si

= W 0
i ,

so the result follows immediately.
Inductive step. Assume that the result is true for n � 0. We show that it is also

true for n+ 1.
Fix i 2 I. Pick any si 2 projSi

�dOP n+1i \ Ci
�
, so that (si; ti) 2dOP n+1i \ Ci for

some ti 2 Ti. Since dOP n+1i � dOP ni , it follows that (si; ti) 2 dOP ni \ Ci, and so, by
the inductive hypothesis, si 2 W n

i . Hence si 2 �i (�i), where �i denotes the marginal
of �i (ti) on (S�i;S�i). So, in order to show that si 2 W n+1

i , we have to show that
�i
�
W n
�ijS�i

�
= 1.

To this end, �rst note that (si; ti) 2 dOP n+1i implies (si; ti) 2 Bi

�dOP n�i� :=
\h02HBi;h0

�dOP n�i�. Note also that (si; ti) 2 IBCi := Bi;? (C�i); hence, by the con-
junction property of the operator Bi;? (�), it follows that (si; ti) 2 Bi;?

�dOP n�i \ C�i�.
Using this fact, we get that

�i
�
W n
�ijS�i

�
� �i

 Q
j 6=i
projSj

�dOP nj \ Cj� jS�i
!

= margS�i�i;? (ti)

 Q
j 6=i
projSj

�dOP nj \ Cj�
!

= �i;? (ti)

 
Si �

Q
j 6=i

�
projSj

�dOP nj \ Cj�� Tj

�!

� �i;? (ti)

 
Si �

Q
j 6=i

�dOP nj \ Cj�
!
= 1,

where the �rst inequality follows from the inductive hypothesis, the �rst and second
equalities follow by de�nition, and the second inequality is immediate. This shows
that �i satis�es the required properties. Since i 2 I is arbitrary, the conclusion
follows.
Part (ii): Let T be complete. We prove the following claim: for every i 2 I and

n 2 N0,
W n
i = projSi

�dOP ni \ Ci� .
72



The proof is by induction on n 2 N0.
Basis step. Note that, for every i 2 I,

projSi

�dOP 0i \ Ci� = projSiCi = Si = W 0
i ,

where the �rst equality holds because dOP 0i := Si � Ti, the second equality follows
from (7.1) in Appendix A, and the last equality holds by de�nition.
Inductive step. Assume that the result is true for n � 0. That is, the inductive

hypothesis is
8i 2 I;W n

i = projSi

�dOP ni \ Ci� . (7.5)

To show that the result is also true for n+1, we �rst establish� as a consequence of
the inductive hypothesis� the existence of a pro�le of maps ('i)i2I satisfying some
desirable properties.
By (7.5), it follows that, for each i 2 I, if si 2 W n

i then there exists tsi 2 Ti such
that (si; tsi) 2dOP ni \ Ci. Thus, for each i 2 I and si 2 W n

i , we choose and �x some
tsi satisfying this property. We also �x an arbitrary type �ti 2 Ti and we de�ne the
map  i : Si ! Si � Ti as

 i (si) :=

�
(si; tsi), if si 2 W n

i ,
(si; �ti), if si 2 SinW n

i .

So, the pro�le of maps ( i)i2I satis�es the following property:

8i 2 I;  i (W n
i ) �dOP ni \ Ci. (7.6)

Moreover, Remark 12 and (7.5) imply that dOP ni 6= ; for every i 2 I. Since the
de�nition of the sets dOP ni (i 2 I) puts restrictions only on the type sets, we have
that

8i 2 I; Si = projSidOP ni .
This implies that, for each i 2 I and each si 2 Si, there exists tsi 2 Ti such that
(si; tsi) 2 dOP ni . Hence, for each i 2 I and si 2 Si, we choose and �x some tsi
satisfying this property. For each i 2 I, we let i : Si ! Si � Ti denote the map
that associates each si 2 Si with the chosen type tsi. So, the pro�le of maps (i)i2I
satis�es the following property:

8i 2 I; i (Si) �dOP ni . (7.7)
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We can now de�ne, for each i 2 I, the map 'i : Si ! Si � Ti as follows:

'i (si) :=

�
 i(si), if si 2 W n

i ,
i(si), if si 2 SinW n

i .

It follows from (7.6) that 'i (W
n
i ) � dOP ni \ Ci for every i 2 I. Furthermore, (7.6)

and (7.7) entail that 'i (Si) � dOP ni for every i 2 I. Hence, we record, for future
reference, the following properties of the pro�le of maps ('i)i2I :

8i 2 I;W n
i � ('i)

�1
�dOP ni \ Ci� , (7.8)

and
8i 2 I; Si = ('i)

�1
�dOP ni � . (7.9)

Having done these preparations, we can now provide the proof of the inductive
step.
Fix i 2 I. Part (i) gives that projSi

�
OP n+1i \ Ci

�
� W n+1

i . For the converse,
pick any si 2 W n+1

i . By de�nition, there exists �si 2 �S�i (S�i) such that si 2 �i(�si)
and �si

�
W n
�ijS�i

�
= 1. Consider the CPS �

si ;�i
2 �S�i�T�i (S�i � T�i) de�ned as

follows: for all events E�i � S�i � T�i and h 2 H,

�
si ;�i

(E�ijS�i (h)� T�i) := �si

��
'�i
��1

(E�i) jS�i (h)
�
,

where '�i :=
�
'j
�
j 6=i. Note that this is a well de�ned CPS on (S�i � T�i;S�i � T�i)

whose marginal on (S�i;S�i) is �si. Furthermore, CPS �si ;�i satis�es the following
properties:

8h 2 H;�
si ;�i

�dOP n�ijS�i (h)� T�i

�
= 1, (7.10)

and
�
si ;�i

(C�ijS�i � T�i) = 1. (7.11)

To see why (7.10) holds, note that, for all h 2 H,

�
si ;�i

�dOP n�ijS�i (h)� T�i

�
= �si

��
'�i
��1 �dOP n�i� jS�i (h)�

= �si (S�ijS�i (h))
= 1,
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where the �rst equality holds by de�nition, and the second equality follows from
(7.9). Moreover, (7.11) holds because

�
si ;�i

(C�ijS�i � T�i) = �si

��
'�i
��1

(C�i) jS�i
�

� �si

��
'�i
��1 �dOP n�i \ C�i� jS�i�

� �si
�
W n
�ijS�i

�
= 1,

where the �rst equality holds by de�nition, the �rst inequality is obvious, and the
second one follows from (7.8).
Consider the CPS �si 2 �S�T�i (S � T�i) de�ned as follows: for all h 2 H,

�si (�jS (h)� T�i) := ��si (�jSi (h))� �
si ;�i

(�jS�i (h)� T�i) .

By completeness, there exists ti 2 Ti such that �i (ti) = �si.
We now show that

(si; ti) 2dOP n+1i \ Ci = OPi \ IBCi \
�

nT
l=0

Bi

�dOP l�i�� \ Ci.
The proof showing that (si; ti) 2 OPi\Ci is the same as that in Lemma 6 of Appendix
A. Next, we check that (si; ti) 2 IBCi := Bi;? (C�i):

�i;? (ti) (Si � C�i) = �i (ti) (Si � C�ijS � T�i)

= ��si (SijSi)� �
si ;�i

(C�ijS�i � T�i)

= 1,

where the third equality follows from (7.11) and from the de�nition of ��si. It re-

mains to show that (si; ti) 2 Bi
�dOP n�i� := \h2HBi;h

�dOP n�i�; since the sequence�dOP l�i�
l=0;1;:::;n

is decreasing, monotonicity of the operator Bi (�) implies (si; ti) 2

\nl=0Bi
�dOP l�i�. By (7.10), we obtain, for all h 2 H,
�i;h (ti)

�
Si �dOP n�i� = �i (ti)

�
Si �dOP n�ijS (h)� T�i

�
= ��si (SijSi (h

0))� �
si ;�i

�dOP n�ijS�i (h)� T�i

�
= 1.
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Therefore (si; ti) 2 dOP n+1i \ Ci, and so si 2 projSi
�dOP n+1i \ Ci

�
. Since i 2 I is

arbitrary, the proof of the inductive step is complete. �

We can now provide the proof of Theorem 6.

Proof of Theorem 6. Parts (i)-(ii) of the main statement of the theorem imme-
diately follow from Lemma 12 (i). The statement about complete type structures
immediately follows from Lemma 12 (ii) as long as we consider �nitely many steps,

i.e., n 2 N. To see that it holds also in the limit, �rst note that projS
�dOP n \ C� =

W n 6= ; for every n 2 N, hencedOP n \ C 6= ; for every n 2 N. Then
projS

�dOP1 \ C� = projS 1T
n=1

�dOP n \ C� = 1T
n=1

projS

�dOP n \ C� = 1T
n=1

W n,

where the �rst equality holds by de�nition, the second follows from Lemma 2 in

Appendix A (as
�dOP n \ C�1

n=1
is a decreasing sequence of closed and nonempty

sets), and the third follows from Lemma 12. �

Appendix B.3: Dynamic games with perfect recall

B.3.1 Games with perfect recall

A �nite game with perfect recall is a structure

I; �X; �; (Ai; ui; Hi)i2I

�
given by the following elements:

� I is a nonempty �nite set of players.

� For each i 2 I, Ai is a nonempty �nite set of potentially feasible actions. For
each nonempty subset J � I, we let AJ :=

Q
i2J Ai denote the set of action

pro�les for players in J .

� �X is a �nite set of �nite sequences of action pro�les, that is,

�X �
 S
;6=J�I

AJ

!<N0
.
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�X is closed with respect to the pre�x-of relation: for every y 2 �X, and every
x � y, x 2 �X; thus, ? 2 �X. Elements of �X are called histories. A history is
a sequence of action pro�les �x := (a1; :::; an) such that, for every m = 1; :::; n,
am = (ami )i2J 2 AJ for some nonempty J � I.

� � : �X ! 2I is the alert-player correspondence, and it is such that�
a1; :::; an�1; an

�
2 �X

only if � (a1; :::; an�1) 6= ; and an 2 A�(a1;:::;an�1). Furthermore, the set of feasible
action pro�les at any x 2 �X, viz. A�(x) (x) :=

�
a�(x) :

�
x; a�(x)

�
2 �X

	
, is a

Cartesian product:
A�(x) (x) =

Q
i2�(x)

Ai (x) ,

where Ai (x) := projAiA�(x) (x) is the set of feasible actions of i 2 � (x) at
x. We say that i is alert at x if i 2 � (x). The reason is that we allow
the set of feasible actions Ai (x) to be a singleton; in this case, i is alert but
not active at x. If jAi (x)j � 2, then i is active at x. We assume that all
players are alert at the empty history (the beginning of the game): � (?) = I.
We let Z :=

�
�x 2 �X : � (�x) = ;

	
denote the set of terminal histories, and

X := �XnZ is the set of nonterminal histories.

� For each i 2 I, ui : Z ! R is the payo¤ function of player i.

� For each i 2 I, Hi is i�s information partition of the set

Xi := fx 2 X : i 2 � (x)g

of histories where i is alert; Hi is such that the feasibility correspondence
x 7! Ai (x) is Hi-measurable: for all hi 2 Hi and x; y 2 hi, Ai (x) = Ai (y).
With this, we let Ai (hi) denote the set of feasible actions of i given information
set hi.

We assume that each Hi satis�es the perfect recall property: For every x 2 Xi,
let expi (x) denote i�s experience along history x; that is, expi (x) is the ordered list
of all information sets hi 2 Hi encountered along the history x, and the actions i
played there. Perfect recall requires that, for all hi 2 Hi and x; y 2 Xi, if x; y 2 hi,
then expi (x) =expi (y).
Note, it has to be the case that f?g 2 Hi for each i. Indeed, by assumption

each i is alert at ?; hence, ? 2 hi for some hi 2 Hi; with this, perfect recall implies
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hi = f?g. Our interpretation (which justi�es our notation) is that hi is determined
by a personal history, that is, a sequence of actions played by i and messages about
previous play received by i. A player who receives a message about previous play is
alert. The commonly known rules of the game determine how messages are generated
by previous play. Thus, a player who perfectly recalls (when alert) the sequence of
actions he played and messages he received can infer what sequences of action pro�les
x are consistent with such personal history; his information set hi comprises such
histories. It follows that Hi has to satisfy the perfect recall property.

We let H := [i2IHi, with typical element h 2 H. We endow H with the strict
precedence relation � inherited from tree X. Thus, given h; h0 2 H, we say that
h0 strictly follows h, and we write h � h0 or h0 � h, if for every y 2 h0 there
exists x 2 h such that x � y. We say that h and h0 are simultaneous if there is
a history x 2 X such that x 2 h \ h0. We say that h0 weakly follows h, and we
write h � h0 or h0 � h, if either h � h0 or h and h0 are simultaneous. Note that �
is not antisymmetric on H: that is, even if h � h0 and h0 � h, h and h0 may not
be simultaneous� see the game in Figure B.1 below. However, by perfect recall, the
restriction of � on each Hi is antisymmetric: for every hi; h0i 2 Hi, if hi � h0i and
h0i � hi, then hi = h0i.
Structure



I; �X; �; (Ai; ui; Hi)i2I

�
is a multistage game if H has the following

property: for every h 2 H and x; y 2 h, x and y must have the same length. This
means that the players always know how many action pro�les have already been
chosen. If each h 2 H is a singleton, then



I; �X; �; (Ai; Hi)i2I

�
is a game structure

with observable actions.43

B.3.2 External states

For each i 2 I, let Si :=
Q
hi2Hi Ai(hi) and S :=

Q
i2I Si. An external state is a

pro�le s = (si)i2I 2 S, and each si 2 Si is called personal external state of player
i. The set of external states of players other than i is S�i :=

Q
j2Infig Sj.

Each external state s = (si)i2I 2 S induces a terminal history. Thus, we can
de�ne a path function � : S ! Z associating each external state with the cor-
responding terminal history. With this, we �nd it convenient to de�ne the set of
external states reaching a nonterminal history. For each x 2 X, let S (x) denote the
set of external states inducing x:

S (x) := fs 2 S : x � � (s)g .
43The de�nition of game with observable actions in the main text is a special case, as it is assumed

that players are always alert.
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The projection

Si (x) := fsi 2 Si : 9s�i 2 S�i; (si; s�i) 2 S (x)g

is the set of external states of i that allow x. Similarly, the projection

S�i (x) := fs�i 2 S�i : 9si 2 Si; (si; s�i) 2 S (x)g

is the set of pro�les of external states of players other than i that allow x. Note that,
for every x 2 X,

S (x) =
Q
i2I
Si (x) .

Similarly, for each h 2 H, let S (h) denote the set of external states inducing h:

S (h) :=
S
x2h

S (x) = fs 2 S : 9x 2 h; x � � (s)g ,

while the projections

Si (h) : =
S
x2h

Si (x) ,

S�i (h) : =
S
x2h

S�i (x) ,

are, respectively, the sets of pro�les of external states of i and of his co-players that
allow h.44

Perfect recall implies the following factorization: for each player i and each in-
formation set hi 2 Hi,

S (hi) = Si (hi)� S�i (hi) .

That is, the information about behavior encoded in hi 2 Hi can be decomposed into
information about own behavior and information about the co-players� behavior,
because i remembers what he knew and did at earlier histories. Furthermore, perfect
recall also implies the following property: for all i 2 I, hi 2 Hi and x; y 2 hi,

Si (x) = Si (y) .

44The following equalities are immediate by inspection of de�nitions:

Si (h) = fsi 2 Si : 9s�i 2 S�i; (si; s�i) 2 S (h)g ,
S�i (h) = fs�i 2 S�i : 9si 2 Si; (si; s�i) 2 S (h)g .
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As in the main text,
Ui := ui � � : S ! R

determines the payo¤Ui (s) = ui (� (s)) of player i as a function of the external state
s.
The following example illustrates a game with imperfect monitoring of past ac-

tions and without a multistage structure. Consider the game � represented in Figure
B.1.

Figure B.1: A game with unobservable actions

At the beginning of the game, Indi chooses Left (L) or Right (R). If she chooses
L (resp. R), then Ann (resp. Cora) is called to make a choice. Both Ann and
Cora can choose between two possible actions, Across and Down� such actions are
denoted by Aa and Da for Ann, and by Ac and Dc for Cora.
However, Indi�s action is not observable. For instance, if Ann is called to choose,
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then she does not know the sequence of action pro�les: the �rst possibility is that
Indi chose L, so that Ann is the second player to move in the game. The other
possibility is that Indi chose R: in this case, if Cora chose Dc, then Bob can choose
between Across (Ab) and Down (Db); and if Bob chose Db, then Ann is the player
that is called to move. Analogous considerations hold for Cora.
The information partitions of Ann and Cora are, respectively, Ha = ff?g ; hag

and Hc = ff?g ; hcg, where
ha = f(L) ; (R;Dc; Db)g and hc = f(R) ; (L;Da; Db)g .

The information partition of Bob is Hb = ff?g ; hbg, where
hb = f(L;Da) ; (R;Dc)g ;

in words, if he is called to move, Bob does not know if the second player was Ann or
Cora. Note that hi � hj for every i; j 2 fa; b; cg such that i 6= j, but they are not
simultaneous.
Indi�s payo¤s do not appear in Figure B.1 (she is indi¤erent). The numbers in

the column vectors associated with terminal histories are the payo¤s of Ann, Bob
and Cora; for instance, at history (R;Dc; Db; Aa), Ann gets 1, Bob gets 2, and Cora
gets 0. Note that Aa and Ac are dominant actions; see Figure B.1, where underlined
arcs of Ann and Cora represent their optimal planned actions. Hence, if Bob is called
to choose, then he is certain that either Ann or Cora deviated from the optimal plan.

B.3.2 Conditional beliefs and type structures

First-order beliefs of player i are CPSs on (S;Si), where Si is the collection of con-
ditioning events about behavior corresponding to information sets:

Si := fF � S : 9hi 2 Hi; F = S (hi)g .
For any i 2 I, let T�i denote the set of possible �types�of the other players; then
the conditioning event for i corresponding to hi 2 Hi is S (hi)� T�i.
With this, a �-based type structure is a tuple

T =
�
S; (Si; Ti; �i)i2I

�
such that, for every i 2 I, the type set Ti is a compact metrizable space, and the belief
map �i : Ti ! �Si�T�i (S � T�i) is continuous. As in the main text, a personal
state of player i is a pair (si; ti) 2 Si � Ti, and a state of the world is a pro�le
(si; ti)i2I 2

Q
i2I (Si � Ti). Moreover, we will write �i;hi (ti) to denote the beliefs of

type ti conditional on information set hi 2 Hi, that is,

�i;hi (ti) (�) := �i (ti) (�jS (hi)� T�i) .
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B.3.3 Independence, optimal planning and rationality

The notion of independence given in the main text naturally extends to the current
framework. To see this, we �rst introduce some notation. Let Si;�i denote the
collection of conditioning events for player i about the behavior of the co-players;
similarly, let Si;i denote the collection of conditioning events about i�s behavior.
Formally,

Si;�i : = fF � S�i : 9hi 2 Hi; F = S�i (hi)g ,
Si;i : = fF � Si : 9hi 2 Hi; F = Si (hi)g .

A type ti in a �-based type structure T satis�es independence if there are two CPSs
�i;i (ti) 2 �Si;i (Si) and �i;�i (ti) 2 �Si;�i�T�i (S�i � T�i) such that

8hi 2 Hi; �i (ti) (�jS (hi)� T�i) = �i;i (ti) (�jSi (hi))� �i;�i (ti) (�jS�i (hi)� T�i) .

We do not restate de�nitions and concepts introduced in Sections 4.1-4.3 for
this environment, since the only required changes are easy to identify; essentially,
histories need to be replaced by information sets. We describe in detail only those
few cases where extra care is required in the notation.
For each x 2 X and each i 2 I, we let

H�
i (x) := fhi 2 Hi : 9y 2 hi; x � yg

denote the set of information sets of player i that weakly follow history x.
Fix a �-based type structure T . We say that player i is consistent from history

x at personal state (si; ti) of a �-based type structure T if ti satis�es independence
and �ti;i (si (hi) jhi) = 1 for all hi 2 H

�
i (x); player i is consistent at (si; ti) if he is

consistent from the empty history ?; player i is rational at (si; ti) if he is consistent
at (si; ti) and type ti plans optimally.
The sets of personal states where i is consistent from history x, consistent, and

rational are respectively denoted by

C�xi : =
�
(si; ti) 2 Si � Ti : 8hi 2 H�

i (x) ; �ti;i (si (hi) jhi) = 1
	
,

Ci : = C�?i ,

Ri : = Ci \OPi.

Note: if H�
i (x) = ;, then C

�x
i = Si � T �i , where T �i denotes the set of i�s types that

satisfy independence; this occurs when player i is not alert at x and at every history
y � x. As in the main text, it can be shown that these sets are events, because they
are closed.
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B.3.4 Backwards rationalizability

We introduce the solution concept of backwards rationalizability for the class of
games with perfect recall. For every x 2 X, let �x : Q ! Q be the operator de�ned
as follows: for all i 2 I and Q 2 Q, if H�

i (x) = ;, then

�xi (Qi) := Si (x) ;

if H�
i (x) 6= ;, then

�xi (Qi) :=
�
si 2 Si (x) : 9�si 2 Qi;8hi 2 H�

i (x) ; si (hi) = �si (hi)
	
.

With this, let

�x�i (Q�i) : =
Q
j 6=i

�xj (Qj) ,

�x (Q) : =
Q
i2I
�xi (Qi) .

In words, ifH�
i (x) 6= ;, then each �xi (Qi) is the set of all si 2 Si (x) whose projection

onto H�
i (x) coincides with the projection onto H

�
i (x) of some �si 2 Qi. Note that

�? (Q) = Q because H�
i (?) = Hi 6= ; for every i 2 I, and �x (S) = S (x) for all

x 2 X.

De�nition 11 Consider the following procedure.

(Step 0) For every i 2 I, let Ŝ0i := Si. Also, let Ŝ0�i :=
Q
j 6=i Ŝ

0
j and Ŝ

0 :=
Q
i2I Ŝ

0
i .

(Step n > 0) For every i 2 I and every si 2 Si, let si 2 Ŝni if and only if there
exists �i 2 �Si;�i (S�i) such that

1. si 2 �i (�i);
2. for every hi 2 Hi and every x 2 hi,

�i (S�i (x) jS�i (hi)) > 0)
�i

�
�x�i

�
Ŝn�1�i

�
jS�i (hi)

�
�i (S�i (x) jS�i (hi))

= 1.

Also, let Ŝn�i :=
Q
j 6=i Ŝ

n
j and Ŝ

n :=
Q
i2I Ŝ

n
i .

Finally, let Ŝ1 := \n2N0Ŝn. The pro�les in Ŝ1 are called backwards rational-
izable.
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De�nition 11 is a generalization of the de�nition of backwards rationalizability
given in the main text (De�nition 6). The di¤erence relies on Condition 2 of the
recursive step. To elaborate, consider an arbitrary hi 2 Hi. Every �i justifying
si 2 Ŝni must satisfy the following requirement: if a history x 2 hi is considered
possible under �i (i.e., if �i (S�i (x) jS�i (hi)) > 0), then, conditional on x, CPS �i
assigns probability 1 to the continuations of behaviors from Ŝn�1�i . To see this, note
that

�i

�
�x�i

�
Ŝn�1�i

�
jS�i (hi)

�
�i (S�i (x) jS�i (hi))

=
�i

�
�x�i

�
Ŝn�1�i

�
\ S�i (x) jS�i (hi)

�
�i (S�i (x) jS�i (hi))

= 1,

since, by de�nition, �x�i
�
Ŝn�1�i

�
is a subset of S�i (x). In other words, only the

histories/nodes in an information set with strictly positive conditional probability
matter, and we can determine a well de�ned belief conditional on each one of those
nodes. This belief assigns probability 1 to the continuation from Ŝn�1�i conditional
on such nodes.
If � is a multistage game with observable actions and the players are always alert,

then each information set hi is a singleton, and Hi is identi�ed with X; in this case,
De�nition 11 coincides with De�nition 6.
To illustrate the procedure, refer back to the game in Figure B.1. The set of

backwards rationalizable pro�les is

Ŝ1 = fL;Rg � fAag � fAb; Dbg � fAcg .

Indi is indi¤erent, while Aa and Ac are dominant actions for Ann and Cora, re-
spectively. Hence, if Bob is called to move, then he is certain that either Ann or
Cora deviated from the optimal plan. To see why both Ab and Db are backwards
rationalizable, let us formally write the conditioning event for Bob as follows:

S�b (hb) = [x2hbS�b (x)
= S�b (L;Da) [ S�b (R;Dc)

= (fLg � fDag � fAc; Dcg) [ (fRg � fAa; Dag � fDcg) .

Consider a CPS �b such that

�b (S�b (L;Da) jS�b (hb)) = �b (f(L;Da; Ac)g jS�b (hb)) > 0,
�b (S�b (R;Dc) jS�b (hb)) = �b (f(R;Aa; Dc)g jS�b (hb)) > 0.

Then �b satis�es part 2 of the recursive step in De�nition 11, because �
(L;Da)
�b

�
Ŝ1�b

�
=

f(L;Da; Ac)g and �(R;Dc)�b

�
Ŝ1�b

�
= f(R;Aa; Dc)g.
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Let �� := �b (S�b (L;Da) jS�b (hb)). Then,

E�b [Ub (Ab; �) jhb] = 3 (1� ��) ,
E�b [Ub (Db; �) jhb] = ��+ 2 (1� ��) .

If �� < 1=2, then Ab is optimal under �b; if �� � 1=2, then Db is optimal under �b.
Therefore, both Ab and Db are backwards rationalizable.
Consider a small modi�cation of the game in Figure B.1. That is, the only

change is that, at history (R;Dc; Db; Aa), the payo¤ for Bob is 4. In this case,
Ab is not backwards rationalizable. Indeed, every CPS �b such that �� > 0 yields
E�b [Ub (Db; �) jhb] = �� + 3 (1� ��) > 3 (1� ��) = E�b [Ub (Ab; �) jhb], and Ab is not
optimal under a CPS �b such that �� = 0.

We now show that backwards rationalizability� as per De�nition 11� is always
consistent with epistemic assumptions that generalize those stated in the main text.
Fix a �-based type structure T . We say that player i believes at state (si; ti) in
the continuation consistency of the other players if, for every hi 2 Hi and every
x 2 hi,

�i;hi (S (x)� T�i) > 0)
�i;hi (ti)

��
Si � C�x�i

�
\ (S (x)� T�i)

�
�i;hi (S (x)� T�i)

= 1,

where C�x�i :=
Q
j 6=iC

�x
j . In words, player i believes in the co-players�consistency

starting from every history/node x he deems possible conditional on the information
set containing x. If � is a multistage game with observable actions and the players
are always alert, then each information set hi is a singleton, and Hi is identi�ed with
X; in this case, the above de�nition of belief in continuation consistency coincides
with the one given in the main text.
We let BCCi denote the set of personal external states of player i where belief

in continuation consistency holds, and

BCC :=
Q
i2I
BCCi.

Remark 14 BCC is an event of S � T .

Proof. Fix hi 2 Hi and x 2 hi arbitrarily. We �rst show that the following sets are
events:

Ex : =
�
�i 2 �Si (S � T�i) : �i (S (x)� T�ijS (hi)� T�i) > 0

	
,

Fx : =

�
�i 2 �Si (S � T�i) :

�i
��
Si � C�x�i

�
\ (S (x)� T�i) jS (hi)� T�i

�
= �i (S (x)� T�ijS (hi)� T�i)

�
.
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Recall that if O is an open subset of a metrizable space X, then

f� 2 �(X) : � (O) > 0g

is an open subset of �(X) (see Aliprantis and Border 2006, Corollary 15.6). This
implies that, if O is an open subset of X, then

f� 2 �(X) : � (O) = 0g

is a closed subset of �(X). Since S (x)� T�i is (cl)open in S � T�i,n
�i 2 (� (S � T�i))

Si
: �i (S (x)� T�ijS (hi)� T�i) > 0

o
is open, hence Ex is open in (the relative topology of) �Si (S � T�i). Next, de�ne
the following sets:

Mx : =
�
Si � C�x�i

�
\ (S (x)� T�i) ,

Nx : = S (x)� T�i.

Clearly Mx � Nx, and Mx is a closed subset of S � T�i, because C
�x
�i is closed in

S�i�T�i. As Nx is (cl)open in S�T�i, we conclude that NxnMx is open in S�T�i.
Note that Fx can be written as

Fx =
�
�i 2 �Si (S � T�i) : �i (NxnMxjS (hi)� T�i) = 0

	
.

Since n
�i 2 (� (S � T�i))

Si
: �i (NxnMxjS (hi)� T�i) = 0

o
is closed, it follows that Fx is closed in (the relative topology of) �Si (S � T�i).
Hence Gx = Ex \ Fx is Borel in �Si (S � T�i).
With this, we can now claim that \x2hiGx is a Borel subset of �Si (S � T�i);

continuity of the belief map implies that the set

BCCi =
T

hi2Hi

�
Si �

��
�i;hi

��1� T
x2hi

Gx

���

= Si �
T

hi2Hi

(
ti 2 Ti :

8x 2 hi;
�i;hi (S (x)� T�i) > 0)

�i;hi (ti)((Si�C
�x
�i )\(S(x)�T�i))

�i;hi (S(x)�T�i)
= 1

)
is Borel in Si � Ti. Thus, BCC is a Borel subset of S � T . �

We can therefore de�ne recursively the following epistemic events. First, let
OP 0i := Si � Ti for each i 2 I. The sets OP 0 and OP 0�i are de�ned in the obvious
way: OP 0 :=

Q
i2I OP

0
i and OP

0
�i :=

Q
j 6=iOP

0
j . Then:
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� OP 1i := OPi \BCCi,

� OPm+1i := OPmi \ Bi
�
OPm�i

�
, where OPm�i :=

Q
j 6=iOP

m
j .

For each m 2 N, we de�ne the set OPm �
Q
i2I (Si � Ti) in the usual way, that

is, OPm :=
Q
i2I OP

m
i . Finally, we let OP

1 := \m2NOPm.
We have a partial analogue of Theorem 2.

Theorem 7 Fix a �nite game � and a �-based type structure T . Then,
(i) for every n 2 N, projS (OP n \ C) � Ŝn;
(ii) projS (OP

1 \ C) � Ŝ1.

To prove Theorem 7, we need to adapt the results in Appendix A. For the reader�s
convenience, we provide a self-contained proof of Theorem 7, with all the required
modi�cations of the results in Appendix A.
Fix a �nite game �. For a given x 2 X, let

��xi (�i) :=

�
si 2 Si : 8hi 2 H�

i (x) ; s
hi
i 2 arg max

ri2Si(hi)
E�i [Ui (ri; �) jhi]

�
,

where shii denotes the minimal modi�cation of si that allows hi. Note that �
�?
i (�i) =

�i (�i).

Remark 15 Fix x 2 X and a CPS �i on (S�i;Si;�i).
(i) If si 2 �i (�i), then si 2 ��xi (�i).
(ii) If si 2 ��xi (�i), then there exists �si 2 Si such that �si 2 �i (�i) and si (hi) =

�si (hi) for all hi 2 H�
i (x).

Lemma 13 For every i 2 I, x 2 X and n 2 N,

�xi

�
Ŝni

�
=

8>>><>>>:
si 2 Si (x) : 9�i 2 �Si;�i (S�i) ;

1) si 2 ��xi (�i) ;
2) 8hi 2 Hi;8y 2 hi;
�i (S�i (y) jS�i (hi)) > 0)

�i(�y�i(Ŝ
n�1
�i )jS�i(hi))

�i(S�i(y)jS�i(hi))
= 1

9>>>=>>>; .

Proof. Pick any si 2 �xi

�
Ŝni

�
. Then, by de�nition, there exists �si 2 Ŝni such that

si (hi) = �si (hi) for all hi 2 H�
i (x). Hence �si 2 �i (�i) for some �i 2 �Si;�i (S�i)

satisfying condition 2 in De�nition 11. Remark 15.(i) entails that �si 2 ��xi (�i), and
since �si coincides with si at all hi 2 H�

i (x), we have si 2 �
�x
i (�i).
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For the other direction, pick any si 2 Si (x) such that si 2 ��xi (�i) for some
�i 2 �Si;�i (S�i) satisfying condition 2 in De�nition 11. By Remark 15.(ii), there
exists �si 2 Si such that �si 2 �i (�i) and si (hi) = �si (hi) for all hi 2 H�

i (x). By

De�nition 11, �si 2 Ŝni . Hence si 2 �xi
�
Ŝni

�
. �

The following lemma is the analogue of Lemma 5.

Lemma 14 Fix a �nite game � and a �-based type structure T . Then, for all n 2 N0
and x 2 X,

�x (projS (OP
n \ C)) � �x

�
Ŝn
�
.

Proof. We �rst prove the following auxiliary result:

Claim 4 Fix n 2 N0 and x 2 X. Then

8i 2 I; �xi
�
projSi (OP

n
i \ Ci)

�
� projSi

�
OP ni \ C�xi

�
\ Si (x) .

Proof of Claim 4. First note that Ci � C�xi and �xi
�
projSi (OP

n
i \ Ci)

�
� Si (x)

for each i 2 I. Consequently, if OP ni \ Ci or OP ni \ C�xi are empty, then the
result is immediate. So in what follows we will assume that OP ni \ Ci is nonempty.
Pick any si 2 �xi

�
projSi (OP

n
i \ Ci)

�
. Then si 2 Si (x), and so we only need to

show the existence of ti 2 Ti such that (si; ti) 2 OP ni \ C�xi ; this will imply si 2
projSi

�
OP ni \ C�xi

�
\ Si (x), as required. By de�nition of �xi (�), there exists �si 2

projSi (OP
n
i \ Ci) such that si (hi) = �si (hi) for all hi 2 H�

i (x). Hence (�si; ti) 2
OP ni \ Ci for some ti 2 Ti. Optimal planning and consistency at (�si; ti) entail that
�si 2 �i (�i), where �i :=margS�i�i (ti). Remark 15.(i) implies that �si 2 ��xi (�i),
and since �si (hi) = si (hi) for every hi 2 H�

i (x), we obtain si 2 ��xi (�i). Therefore
(si; ti) 2 OP ni \ C�xi . �

We now prove the following claim:

8i 2 I; 8x 2 X;8n 2 N0; projSi
�
OP ni \ C�xi

�
\ Si (x) � �xi

�
Ŝni

�
.

With this, the result follows from Claim 4. The proof is by induction on n 2 N0.
Basis step. Note that, for every i 2 I and x 2 X,

projSi
�
OP 0i \ C�xi

�
\ Si (x) = projSi

�
C�xi

�
\ Si (x) � Si (x) = �xi

�
Ŝ0i

�
,

so the result follows immediately.
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Inductive step. Assume that the result is true for n � 0. We show that it is also
true for n+ 1.
Fix i 2 I and x 2 X arbitrarily. Pick any si 2 projSi

�
OP n+1i \ C�xi

�
\ Si (x),

so that (si; ti) 2 OP n+1i \ C�xi for some ti 2 Ti. Since OP n+1i � OP ni , it follows

that (si; ti) 2 OP ni \ C�xi , and so, by the inductive hypothesis, si 2 �xi

�
Ŝni

�
. By

Remark 15.(i), si 2 ��xi (�i), where �i :=margS�i�i (ti). So, in order to show that

si 2 �x
�
Ŝn+1i

�
, it is enough to show (by Lemma 13) that

�i

�
�y�i

�
Ŝn�i

�
jS�i (hi)

�
�i (S�i (y) jS�i (hi))

= 1

for every hi 2 Hi and for every y 2 hi such that �i (S�i (y) jS�i (hi)) > 0.
To this end, �rst note that (si; ti) 2 OP n+1i implies (si; ti) 2 Bi

�
OP n�i

�
:=

\hi2HiBi;hi
�
OP n�i

�
. Note also that (si; ti) 2 BCCi, hence

�i;hi (ti)
��
Si �

�
OP n�i \ C

�y
�i

��
\ (S (y)� T�i)

�
�i;hi (ti) (S (y)� T�i)

= 1

for every hi 2 Hi and for every y 2 hi such that �i;hi (ti) (S (y)� T�i) > 0. Using
this fact, for every hi 2 Hi and for every y 2 hi such that �i;hi (ti) (S (y)� T�i) > 0,
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we have

�i

�
�y�i

�
Ŝn�i

�
jS�i (hi)

�
�i (S�i (y) jS�i (hi))

�
�i

 Q
j 6=i

�
projSj

�
OP nj \ C

�y
j

�
\ Sj (y)

�
jS�i (hi)

!
�i (S�i (y) jS�i (hi))

=

margS�i�i;hi (ti)

 Q
j 6=i

�
projSj

�
OP nj \ C

�y
j

�
\ Sj (y)

�!
margS�i�i;hi (ti)

�
projS�i (S (y)� T�i)

�

=

�i;hi (ti)

 
Si �

 Q
j 6=i

�
projSj

�
OP nj \ C

�y
j

�
� Tj

�
\
Q
j 6=i
(Sj (y)� Tj)

!!
�i;hi (ti) (S (y)� T�i)

�
�i;hi (ti)

 
Si �

 Q
j 6=i

�
OP nj \ C

�y
j

�
\
Q
j 6=i
(Sj (y)� Tj)

!!
�i;hi (ti) (S (y)� T�i)

�
�i;hi (ti)

��
Si �

�
OP n�i \ C

�y
�i

��
\ (S (y)� T�i)

�
�i;hi (ti) (S (y)� T�i)

= 1,

where the �rst inequality follows from the inductive hypothesis, the �rst and second
equalities follow by de�nition, the second inequality is immediate, and the third
inequality holds because S (y) � Si�S�i (y). This shows that �i satis�es the required
properties. Since i 2 I and x 2 X are arbitrary, the conclusion follows. �

Proof of Theorem 7. Immediate from Lemma 14 (with x = ?). �
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