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bDepartment of Economics and Finance, Università Cattolica, Milan, Italy
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Abstract

Consider a set of agents who play a network game repeatedly. Agents may not know the

network. They may even be unaware that they are interacting with other agents in a network.

Possibly, they just understand that their optimal action depends on an unknown state that

is, actually, an aggregate of the actions of their neighbors. Each time, every agent chooses

an action that maximizes her instantaneous subjective expected payoff and then updates her

beliefs according to what she observes. In particular, we assume that each agent only observes

her realized payoff. A steady state of the resulting dynamic is a selfconfirming equilibrium

given the assumed feedback. We characterize the structure of the set of selfconfirming equilibria

in the given class of network games, we relate selfconfirming and Nash equilibria, and we analyze

simple conjectural best-reply paths whose limit points are selfconfirming equilibria.

JEL classification codes: C72, D83, D85.

Keywords: Learning; Selfconfirming equilibrium; Network games; Observability by active

players; Shallow conjectures.

∗We thank Federico Bobbio, Davide Bordoli, Yann Bramoullé, Ben Golub, Sebastiano Della Lena, Nicolò Generoso,
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1 Introduction

Social networks can be quite complex. Think about friendship networks, networks of people inter-

acting online (such as Twitter, Facebook, Instagram, and so on), or networks of firms (input-output

or R&D networks). These networks often consist of thousands (or millions) of agents or firms in-

teracting, and agents rarely know how the network is shaped.1 In this paper, we provide a novel

approach to analyze how incomplete information about the network affects behavior and learning

processes. We propose a framework in which agents may ignore how the network affects their

payoffs, how the network is shaped, or even that they are interacting in a network.

The standard solution concept used to study the behavior of agents in network games is Nash

equilibrium, with the motivation that learning and adaptation converge to a profile of actions in

which every player best responds to the actions of the other players. Nash equilibrium action

profiles are limit outcomes of learning paths when agents have perfect feedback about the payoff

relevant aspects of others’ behavior. Yet, as we shall argue, such perfect feedback hypothesis may

be too strong for some social networks applications and, if learning is based on imperfect feedback,

non-Nash action profiles may result as the steady-state limits of learning paths. Indeed, such limits

under (possibly) imperfect feedback are characterized by the selfconfirming equilibrium concept.

With this, we analyze the effects of milder conditions on information feedback. To illustrate,

we consider examples where many agents interact and it is plausible to assume that they cannot

perfectly observe, whatever action they take, the payoff-relevant aspects of the actions of the others.

In our analysis we assume that the only feedback players receive is their realized payoff. This

implies that they do not always observe the payoff-relevant aspects of the actions of others, repre-

sented by a payoff state. Yet, each one of them understands how the payoff state and her action

determine her payoff and the feedback she is going to receive ex post. We analyze how agents use

the feedback they receive to update their conjectures about the payoff state and best respond to

them, and we characterize limit behavior under different settings of local and global externalities.

1.1 Introductory example

To be more specific about our modelling approach, let us introduce an example that will guide us

through the whole discussion. Consider an online social network with many users, like Twitter,

and a simultaneous-moves game in which each user i decides her level of activity ai ≥ 0 in the

social network.2 The payoff that agents get from their activity depends on the social interaction.

1For example, Breza et al. (2018) provide evidence from Indian rural villages on the fact that people have actually

limited knowledge about the social networks of personal relations in which they are embedded, at odds with many

of the existing theoretical models of strategic interactions in networks.
2Even if online social networks are now ubiquitous and relevant, there is a very scarce literature based on game

theory that models the incentives of people to be active and interact on these platforms. We are aware of some

attempts by computer scientists, stemming from the early era of this form of interaction, such as Fu et al. (2007). In

2



We start considering the case in which only local externalities are at play, eventually extending the

model to the case in which there are also global externalities. In particular, active user i receives

idiosyncratic externalities—that can be positive or negative—from the other users with whom she

is in contact in the social network. The externality from user j to user i is proportional to the time

that they both spend on the social network, ai and aj . Sticking to a quadratic specification, that

yields linear best replies, we assume that the payoff function of i is3

ui(ai,a−i) = αiai −
1

2
a2
i +

∑
j∈I\{i}

zijaiaj . (1)

In equation (1), I is the set of agents, or individuals, in the social network, ai is the level of activity

of i ∈ I, a−i is the profile of activities of all the other users in I, and αi > 0 represents the individual

pleasure of i from being active on the social network in isolation, which results in the bliss point

of activity in autarchy. For each j ∈ I\ {i}, parameter zij represents the intensity (absolute value)

and type (sign) of the externality from j to i. We say that j affects i, or that j is a peer (or a

neighbor) of i, if zij 6= 0.

The network described by the matrix Z of all the zij ’s is assumed to be exogenous. As a first

approximation, this fits a directed online social network like Twitter or Instagram, where users do

not have full control on who follows them.

Consider payoff as expressed in equation (1) (and in (2) below in the introduction). An en-

dogenous directed network in which player i decides who to follow (the zji entries of matrix Z) but

not who is following her (the zij entries of matrix Z) seems to us in line with our assumption of

exogenous network. That is because, in this modification of our model, a player affects the payoff

of those that she follows but her payoff is not affected by their choices, including, if the network

were endogenous, who they follow. So, endogenizing Z would mean to endogenize choices (link

choices) that are payoff irrelevant for the players.

Under this interpretation, i receives positive or negative externalities from those who follow her

proportional to her activity. We do not assume that player i knows all the zij ’s. She may not know

them either because she cannot observe who is following her,4 or because she knows her followers

but she does not know the sign or intensity of their externality. The payoff of i represents both

the pleasure that i gets from participating in the platform and what i can indirectly observe about

her own popularity. We consider that i cannot choose the style of what she writes, since she just

the economic literature, the only paper we are aware of on this topic is Tarbush and Teytelboym (2017), which does

not focus on the activity of users, but rather on the endogenous formation of contacts.
3This is the class of linear–quadratic network games originally analyzed by Ballester et al. (2006), as we discuss

in the next section. We use boldface symbols to denote vectors (in this case, action profiles) and matrices.
4There are online social networks, like Reddit, which actually do not provide this information at all to their users.

Reddit, in particular, provides a measure to each user, called karma, which is apparently based on how many other

people follow, and how much they like, what that user posts. However, the algorithm on which this measure is based

is not public.
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follows her exogenous nature. In this interpretation, ai represents both the amount of time that i

passes on the platform and the amount of posts that i writes, and this can make her more or less

appreciated, according to how her style combines with the (typically unobserved) tastes of each of

her followers. In our setting, player i may also set ai = 0. Indeed, we interpret Z as a network of

opportunities of interaction, with players deciding endogenously whether they want to be active or

inactive. When they are inactive, not only the network becomes irrelevant for them, but they also

become irrelevant for the payoffs of other players.

The feedback received by agents who have payoff given by (1) is such that, if a player i decides

to be inactive (ai = 0), then she cannot learn anything about the game and about what the others

are doing, whereas if she is active (ai > 0) it is as if she had perfect feedback: indeed, knowing

ai and the shape of ui, she can infer from her realized payoff the aggregate activity of her peers∑
j∈I\{i} zijaj (the payoff-relevant aspect of the behavior of others) and understand whether ai was

a best reply to it. Inactive players, instead, cannot observe whether inactivity was a best reply to

peers’ activity. This simplified framework mimics the fact that, for example, in an online social

network active users are surrounded by enough information to have a quasi-perfect feedback about

what happens, whereas inactive agents, because they opt out from the network, are likely to ignore

relevant information.

We specify what agents observe after their choices because this affects how they update their

beliefs, and we are going to analyze learning dynamics and their steady states. To fix ides, we

shall refer to the social network Twitter. Twitter user i, typically, does not observe the sign of

the externalities and the activity of others. However, she gets indirect measures of her level of

appreciation that come, for instance, from her conversations and experiences in the real world,

where her activity on Twitter affects her social and professional real life. If the players are small

firms using Twitter for advertising, they will observe their actual profits. Players of this game may

have wrong beliefs about the details of the game they are playing (e.g., the structure of the network,

or the value of the parameters) and about the actions of other players. Consequently, they update

their beliefs in response to the feedback they receive, which is assumed to be their payoff, and

maximize their instantaneous expected payoff given such updated beliefs. This updating process

yields learning paths that do not necessarily converge to a Nash equilibrium of the game.

Next we also consider an extra global term in the payoff function:

ui(ai,a−i) = αiai −
1

2
a2
i +

∑
j∈I\{i}

zijaiaj + γ
∑

k∈I\{i}

ak. (2)

We can interpret this extra term γ
∑

k∈I\{i}

ak as an additional utility that i gets, regardless of being

active or inactive. In this case, what agents can learn from being active or inactive radically changes

with respect to the previous case without global externalities, because even an active player may

not be able to disentangle what is the contribution of the global term.
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We propose an online social network as our leading example, but there are other possible

cases in which incomplete information about the network is key. For example, a network of firms,

where the feedback is observed profit and actions are levels of production, posted prices, or R&D

activities.5 Many firms are competitors, experiencing local substitutabilities in their choices, some

are complementors, and for some of them it may not be clear what kind of strategic interaction

is at play. Sometimes, the firm does not know of the set of all its competitors or complementors.

Moreover, firms often tend to hide their investment plans and R&D choices to some of their partners,

while each firm observes its own profits. In this case, firms ignore important aspects of the network

and do not observe ex post the actions of other firms. So, incomplete information plays a critical

role and, as we are going to argue, objectively suboptimal choices may be implemented even in a

long-run steady state.6

1.2 Preview of the model and results

Although we let agents largely ignore the nature and extent of network externalities, we rely on

the following minimal maintained assumption: each agent knows how her payoff (utility) and

information feedback depend on her action and on a payoff state, which in turn depends on

neighbors’ actions in the given network (but the agent may ignore the latter dependence). With

this, each agent best responds to her conjecture about the payoff state, observes her realized

payoff, and—in equilibrium—her conjecture must be consistent with the feedback received, that is,

confirmed. Note that conjectures may be confirmed without being correct. A profile of actions and

conjectures satisfying these requirements forms a selfconfirming equilibrium, whereby agents

best respond to conjectures that can be wrong, but are nonetheless believed to be true, as they are

consistent with the available evidence.

In our analysis, we assume that agents observe only their realized payoff. Given the assumed

properties of the payoff functions, it follows that there exists a discontinuity in what agents learn

from their feedback about their neighborhood depending on whether they are active (choosing

a strictly positive action) or inactive (choosing a null action). In particular, if externalities are

only local (i.e., positive or negative peer effects), active players are always able to exactly infer

from the feedback the realized payoff state, even if they may have a wrong conjecture about how

5These applications have been considered in the literature, each with specific assumptions and different approaches

from ours. For example, Bimpikis et al. (2019) consider Cournot competition, while Nermuth et al. (2013), Lach

and Moraga-González (2017), and Heijnen and Soetevent (2018) consider Bertrand competition on multiple markets,

modelling the environment as a network with local externalities. This is the same approach that Westbrock (2010)

and König et al. (2019) use to model R&D local interactions between firms.
6Anyway, incomplete information is not the only reason for non-Nash steady states. As we formally argue in

Appendix B, complete information (i.e., common knowledge of the game) and strategic sophistication imply Nash

behavior in games with strategic complementarities and a unique Nash equilibrium, but not otherwise.
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many neighbors they have or what their neighbors choose. Indeed, we say that in a selfconfirming

equilibrium active agents have correct shallow conjectures about the payoff state, but possibly

wrong deep conjectures about the parameters and the actions of others. Actually, agents may even

be unaware that the payoff state is determined by others within an interactive network structure; in

this case, they do not hold deep conjectures. Given that network games without global externalities

are easier to analyze and relevent in their own right, we first study this special case and then extend

the analysis to games with both local and global externalities.

Absent global externalities, an inactive agent receives uninformative feedback. If—given her

conjecture—she finds it subjectively optimal to be inactive, such lack of information about the payoff

state creates an “inactivity trap”, allowing her possibly wrong conjecture to persist. This has impor-

tant consequences for selfconfirming equilibrium action profiles. If being inactive is dominated—

e.g., because local externalities are positive and this is known—, then Nash and selfconfirming

equilibrium action profiles coincide. However, if there are agents for whom being inactive is not

dominated—e.g., due to some negative local externalities—, then any subset of this set of agents

may be inactive in some selfconfirming equilibrium. In this case inactivity is a best reply to con-

firmed, but possibly false conjectures. Specifically, under the assumption that externalities are

only local, we characterize selfconfirming equilibrium action profiles as Nash equilibrium profiles

of fictitious reduced games where inactive players are absent, augmented by the null actions of the

inactive players. We also discuss how the structure of the network adjacency matrix (which may

be unknown to the players) determines the existence of such equilibria.

We then study “conjectural best-reply paths” whereby each agent best responds to a shallow

conjecture that coincides with the payoff state of the previous period, if it was revealed, or with

the confirmed conjecture of the previous period, if the payoff state was not revealed. It follows

that the set of inactive agents can only increase, because once an agent becomes inactive she gets

uninformative feedback and the conjecture to which she is best replying persists. If such a process

converges, the limit must be a selfconfirming equilibrium. Conversely, every selfconfirming equi-

librium is—trivially—the limit of a constant conjectural best-reply path. More interestingly, we

provide conditions on the adjacency matrix for convergence and stability of such paths. Again,

what we find is the possibility of “inactivity traps.” Consider the case of online social networks. If

an agent experiences a negative payoff because some of her followers whose externalities toward her

are negative played high actions (hence, giving negative feedback online), then she may choose to

abstain from interacting. Later, platform conditions may improve, making it objectively profitable

to be active, but the now inactive agent cannot observe it.7

7Actually, for the application to online social networks, such inactivity trap seems to be perceived by the platforms,

to the point that many of them, after some period of inactivity of agents, start sending emails about what is happening

on the online social network to provide a positive signal and make agents more prone to be active again.
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Models of games on networks have mainly focused on the impact of local externalities, since

global ones just change welfare without affecting the best-reply functions. However, when agents

observe only their realized payoff, the presence of global externalities may impact the way in which

conjectures are confirmed or revised. Recall that in our setting a game is not solely characterized by

the best-reply functions, but also by the structure of the payoff/feedback functions. This implies that

additional selfconfirming equilibrium (SCE) action profiles are possible compared to the case with

only local externalities. Indeed, we show that the SCE action profiles studied for the latter special

case correspond to the equilibria of games with local and global externalities, in which agents have

correct conjectures about the global aggregate. But there are other SCEs in which conjectures

about global aggregates are wrong. For the sake of simplicity, we focus on the case of positive local

and global externalities, in which being inactive is dominated. Even in this simple case, agents may

have a continuum of confirmed conjectures about the relative size of the two externalities. Indeed,

there are multiple SCEs because, even if they are active, players may have false but confirmed

conjectures making them choose actions that are not objective best replies. In detail, we find that

active agents are not able to perfectly infer the size of the local externality due to the confound

induced by the global externality: the realized payoff, a one-dimensional feedback, does not allow

to retrieve a two-dimensional (local-global) externality. In particular, since we assume positive

externalities, we show that agents’ perception of their role in the network determines whether in a

selfconfirming equilibrium they are more or less active than predicted by a Nash equilibrium. Thus,

overall activity and (possibly) welfare are higher if agents think that (externalities are positive and

that) they are more linked than in reality. If we consider the example of online social networks, this

may help explain why firms always try to send to their users messages to make them believe that

they are very connected, so as to increase their level of activity. When considering a network of

investing firms, we may have under(over)–investment with respect to what would be the optimal, as

firms may under(over)–estimate what their neighbors do, without being corrected by the feedback

they receive. Even though this equilibria multiplicity can shed light on some interesting phenomena

of games with global externalities, we also find an interesting relationship linking the equilibrium

action profiles of games with only local externalities and also global ones. In details, the SCE action

profiles of a game with only local externalities selects the SCE action profiles of the corresponding

game with also global externalities in which conjectures about global externalities are correct.

The paper is structured as follows. In Section 2 we discuss the related literature. Section 3

presents the basic framework and equilibrium concept. In Section 4 we analyze network games with

only local externalities, whereas in Section 5 we analyze a more general model that accounts for

global externalities. Section 6 concludes.

We devote appendices to proofs and technical results. Appendix A analyzes properties of

feedback and selfconfirming equilibria in a class of games including as a special case the linear–

quadratic network games that we consider in the main text. In Appendix B we study how equilibria
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are affected when when the network (or some aspects of it) is commonly known and players are

strategically sophisticated. Appendix C reports existing and novel results in linear algebra, that we

use to find sufficient conditions for unique and interior Nash equilibria in network games. Appendix

D contains the proofs of the results presented in the main text.

2 Related literature

We model interactions through linear–quadratic network games. We focus on this class of games

because it has well-known properties, and it has been used for modelling a variety of environments

where strategic interaction is local and can be described by a network structure, as surveyed by

Zenou (2016) and Bramoullé and Kranton (2016). Moreover, these games belong to the larger class

of nice games (Moulin, 1984), for which we provide in Appendix A some general results. Bramoullé

et al. (2014) show that other payoff functions lead to the same best-reply functions, hence, to

the same Nash equilibria of linear–quadratic network games. However, we focus on selfconfirming

equilibria (SCE), and, since realized payoffs affect feedback, the entire payoff function is relevant,

not just the corresponding best-reply function. Thus, we rely in our analysis on the specific original

payoff function of network games, as introduced in the economic literature by Ballester et al. (2006).

We call “selfconfirming equilibria” the steady states of learning processes when static or dynamic

games are played recurrently, independently of the specific assumptions about feedback (monitor-

ing) at the end of each one-period play (see also Battigalli et al., 1992). This concept encompasses

what used to be called “conjectural equilibrium” as well as the original “selfconfirming equilibrium”

of Fudenberg and Levine (1993). In an SCE, agents best respond to confirmed conjectures that

may be inconsistent with sophisticated strategic reasoning. The latter has been added to SCE

relating it to rationalizability. See Section IV of Battigalli et al. (2015) and the relevant references

therein for a more detailed discussion of different versions of these concepts. Here we focus on SCE,

while we analyze SCE with rationalizable conjectures in Appendix B. Lipnowski and Sadler (2019)

apply a concept akin to rationalizable SCE of games where feedback about the behavior of others

is described by a network topology: agents have correct conjectures about the strategies of their

peers (neighbors), but their payoff may depend on the whole strategy profile and it is not observed

ex post.8 We instead assume that agents observe (only) their realized payoff and that the network

describes how the payoff of each agent is affected by the actions of other her neighbors (with global

externalities, there is also an influence of other players on own payoffs not mediated by the network

structure).

8We interpret the recent model of Bochet et al. (2020) as another interesting application of the SCE concept to

a network game where agents observe, besides their realized payoff, the behavior of their neighbors. In this game

agents play a Tullock contest with incomplete information about the structure of externalities. We note that the

equilibrium is, actually, a refinement of SCE whereby agents wrongly believe that they compete for a local rather

than a global resource.
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McBride (2006) applies SCE to games of network formation with asymmetric information. In

his model, agents observe (only) the private information of other agents they link to, and possibly

of agents to whom they are indirectly linked. We instead assume that the network is exogenous and

actions are activity levels. We allow for information incompleteness, but—with the partial exception

of Section 5—we do not assume that agents are necessarily aware of the states of nature (e.g., the

possible network structures), hence we do not assume that agents necessarily reason about them.9

Frick et al. (2022) apply a refinement of rationalizable SCE to analyze a model with asymmetric

information and assortative matching. The refinement is obtained by assuming that agents neglect

the assortativity of matching when they make inferences from feedback. Foerster et al. (2018)

share elements of Lipnowski and Sadler (2019) and of McBride (2006). As in the former, agents

observe the behavior of those with whom they are linked; furthermore, they also observe public

links. As in the latter, theirs is a model of network formation. They assume that beliefs satisfy a

kind of rationalizable SCE condition. Unlike those papers, however, Foerster et al. (2018) do not

explicitly analyze the equilibria of a non-cooperative game, but rather adopt a reduced-form notion

of stability akin to Jackson and Wolinsky (1996).

3 Framework

3.1 Network games

Consider a finite set of agents (or players) I, with cardinality n = |I| and generic element i. Agents

are located in a network Z ∈ Z ⊂ RI×I , where Z is the compact set of all possible weighted

networks, here expressed as adjacency matrices. Each agent i ∈ I chooses an action ai from a

compact interval Ai = [0, āi].
10 For each i ∈ I, A−i := ×j 6=iAj denotes the set of feasible action

profiles a−i = (aj)j∈I\{i} for players different from i. For each i ∈ I, we posit two compact intervals

Xi := [xi, x̄i] ⊂ R and Yi := [0, ȳi] ⊂ R+ of payoff states for i, with the interpretation that i’s

payoff is determined by her action ai, the interaction between ai and state xi, and the additive

term yi according to the quadratic utility function

vi : Ai ×Xi × Yi → R,

(ai, xi, yi) 7→ αiai − 1
2a

2
i + aixi + yi.

(3)

Payoff state xi is determined by the actions of i’s neighbors—the agents with non-zero weight

9De Mart́ı and Zenou (2015) consider network formation games where players do not know the externalities in the

network, which are random, but their analysis concerns Bayesian-Nash equilibria, and players have correct ex–ante

beliefs.
10Note that in the network literature it is common to assume Ai = R+. For the case of local externalities with

complementarities, we consider constraints on the parameters so that assuming an upper bound on actions is without

loss of generality for the analysis of Nash equilibria and of selfconfirming equilibria without global externalities. When

externalities are global the upper bound may become binding, and we discuss this issue below in the paper.
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in adjacency matrix Z—according to the parameterized linear aggregator11

`i : A−i ×Z → Xi,

(a−i,Z) 7→
∑

j 6=i zijaj .
(4)

Since the codomain of `i is [xi, x̄i], we are effectively assuming that

xi ≤
∑
j∈N−i

zij āj , x̄i ≥
∑
j∈N+

i

zij āj

for every Z ∈ Z, where N−i := {j ∈ I : zij < 0} denotes the set of neighbors of player i that have

a negative effect on the payoff state of i, and N+
i := {j ∈ I : zij > 0} denotes the set of neighbors

of player i that have a positive effect on the payoff state of i.

We also posit a compact set G ⊂ R+ of nonnegative global externality parameter values. Payoff

state yi is a non-strategic global externality determined by all the co-players’ actions according to

the proportional aggregator:

gi : A−i × G → Yi

(a−i, γ) 7→ γ
∑
j 6=i

aj . (5)

Since the codomain of gi is [0, ȳi], we are assuming that

maxG
∑
j 6=i

āj ≤ ȳi

The special case of no global externalities obtains if ȳi = 0.

With this, we derive the parameterized payoff function

ui : Ai ×A−i ×Z × B → R,

(ai,a−i,Z, γ) 7→ vi (ai, `i (a−i,Z) , gi (a−i, γ)).

Since yi does not interact with ai, xi = `i (a−i,Z) is the payoff-relevant state that i has to guess in

order to choose a subjectively optimal action. We let

ri (xi) =


0, if xi ≤ −αi,
αi + xi, if −αi < xi < āi − αi,
āi, if xi ≥ āi − αi.

(6)

denote the continuous and piecewise linear best-reply function of player i ∈ I. Note that, since

αi > 0, we may have ri (xi) = 0 only if xi < 0.

We assume that the game is repeatedly played by agents maximizing their instantaneous payoff.

Each agent i knows her utility function vi : Ai × Xi × Yi → R as specified in eq. (3), hence also

11In principle we can allow for non–linear aggregators, as in Feri and Pin (2020). However, in this paper, we focus

on the linear case. In Appendix A we provide results for the non-linear case.
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its domain Ai ×Xi × Yi = [0, āi]× [xi, x̄i]× [0, ȳi] and the “stand-alone” parameter αi, but we do

not assume that the aggregators parameters (Z, γ) are known. Actually, for most of our analysis

it does not even matter that agents understand that payoff states aggregate the actions of others

according to eq.s (4) and (5). After each play, agents get an imperfect feedback about the payoff

states. Specifically, we assume that each agent observes only her realized utility/payoff. What

agent i learns in a given period after choosing action ai and observing her realized payoff v̂i is that

(xi, yi) ∈ {(x′i, y′i) : vi (ai, x
′
i, y
′
i) = v̂i}, that is,

(xi, yi) ∈

{
{(x′i, y′i) : y′i = v̂i}, if ai = 0,{

(x′i, y
′
i) : αiai − 1

2a
2
i + aix

′
i + y′i = v̂i

}
, if ai > 0.

In words, if i is inactive she can infer yi but has no clue about xi, if she is active she obtains joint

information about yi and xi that she cannot disentangle.

If there are no global externalities, that is, if ȳi = 0, then being inactive reveals nothing, because

vi (0, xi) = 0 independently of xi, while being active reveals that

xi =
v̂i − αiai + 1

2a
2
i

ai
=
v̂i
ai
− αi +

1

2
ai.

With this assumption about feedback, the interactive situation is represented by the mathematical

structure

NG =
〈
I,Z,G, (Ai, Xi, Yi, vi, `i, gi)i∈I

〉
,

determined by eq.s (3), (4), and (5), which we call (parameterized) linear-quadratic network

game with just observable payoffs, or simply network game. This structure is summarized

in equation (2).

To choose an action, a subjectively rational agent i must have some deterministic or probabilistic

conjecture about the payoff state xi. Yet, her post-feedback update about xi depends on what she

thinks about yi, because she gets imperfect joint feedback about both. Therefore, we model how i

forms conjectures about xi and yi. We refer to conjectures about the states xi and yi as shallow

conjectures, as opposed to deep conjectures, which concern the specific network topology Z,

the global externality parameter γ (when present), and the actions of other players a−i. In our

equilibrium analysis, given the continuity of the best-reply function and the connectedness of Xi and

Yi, it is sufficient to focus on deterministic shallow conjectures. Indeed, for each i ∈ I and every

probabilistic conjecture µi ∈ ∆ (Xi × Yi), there exists a corresponding deterministic conjecture

(x̂i, ŷi) ∈ Xi × Yi that justifies the same action a∗i as the unique best reply.12 Deep conjectures are

relevant for the analysis of strategic thinking based on common belief in rationality (see Appendix

B), but our equilibrium concept does not rely on strategic thinking.

12See the analysis in Appendix A.1
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3.2 Selfconfirming equilibrium

We analyze a notion of equilibrium that characterizes the steady states of learning dynamics and

therefore relaxes the mutual-best-reply condition of the Nash equilibrium concept. Recall that

our approach allows for the possibility of agents being unaware of many aspects of the game.

In equilibrium, agents best respond to (deterministic)13 shallow conjectures consistent with the

feedback that they receive given the true parameter values (Z, γ).

Definition 1. A profile (a∗i , x̂i, ŷi)i∈I ∈ ×i∈I (Ai ×Xi × Yi) of actions and (shallow) deterministic

conjectures is a selfconfirming equilibrium (SCE) at (Z, γ) if, for each i ∈ I,

1. (subjective rationality) a∗i = ri (x̂i),

2. (confirmed conjecture) vi (a∗i , x̂i, ŷi) = vi
(
a∗i , `i

(
a∗−i,Z

)
, gi
(
a∗−i, γ

))
.

The two conditions require that: 1) each agent best responds to her own conjecture; 2) the con-

jecture in equilibrium must belong to the ex post information set, so that the expected payoff (feed-

back) coincides with the realized payoff (feedback) given a∗i , xi = `i
(
a∗−i,Z

)
, and yi = gi

(
a∗−i, γ

)
.

We say that a∗ = (a∗i )i∈I is a selfconfirming action profile at (Z, γ) if there exists a correspond-

ing profile of conjectures (x̂i, ŷi)i∈I such that (a∗i , x̂i, ŷi)i∈I is a selfconfirming equilibrium at (Z, γ),

and we let ASCE
Z,γ denote the set of such action profiles; in the special case of no global externalities,

we write ASCE
Z to ease notation. Also, for any Z ∈ Z, we denote by ANE

Z the set of (pure) Nash

equilibria of the game determined by Z neglecting the non-strategic global externalities, that is,

ANE
Z :=

{
a∗ ∈ ×i∈IAi : ∀i ∈ I, a∗i = ri

(
`i
(
a∗−i,Z

))}
.

Since, for each Z, the joint best-reply function a∗ 7→
(
ri
(
`i
(
a∗−i,Z

)))
i∈I is a continuous self-map

on the compact and convex subset ×i∈I [0, āi] ⊆ RI , Brower Fixed Point Theorem implies that

a Nash equilibrium exists. Hence, we obtain the existence of selfconfirming equilibria for each

(Z, γ) ∈ Z × B. Indeed, a Nash equilibrium a∗ corresponds to a selfconfirming equilibrium with

correct conjectures (a∗i , x̂i, ŷi)i∈I =
(
a∗i , `i

(
a∗−i,Z

)
, gi
(
a∗−i, γ

))
i∈I . To summarize:

Remark 1. For every Z ∈ Z and γ ∈ G, there is at least one Nash equilibrium at Z, and every

Nash equilibrium at Z is a selfconfirming action profile at (Z, γ):

∀ (Z, γ) ∈ Z × G, ∅ 6= ANE
Z ⊆ ASCE

Z,γ .

In the next sections we study selfconfirming equilibria and learning, first when there are only

local externalities, and then when also global externalities are considered.

13Without essential loss of generality.
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4 Local externalities

In this section, we analyze the set of selfconfirming equilibria and the learning paths in linear-

quadratic network games with just observable payoffs and without global externalities. Several

proofs are derived from the results in Appendix A, which refers to the case of generic network

games with feedback, and from the results in Appendix C. The proofs themselves are collected in

Appendix D. In subsection 4.1 we relate selfconfirming equilibria to the Nash equilibria of auxiliary

reduced games and we classify equilibria according to the set of active agents. In subsection 4.2 we

provide properties of Z that imply uniqueness of active agents’ equilibrium actions. In subsection

4.3 we analyze learning paths.

4.1 Nash equilibrium and structure of the SCE set

Let I0 denote the set of players for whom being inactive is justifiable (that is, undomi-

nated):14

I0 := {i ∈ I : ∃ xi ∈ Xi, ri (xi) = 0} = {i ∈ I : αi + xi ≤ 0} .

Also, for each Z ∈ Z and non-empty subset of players J ⊆ I, let ANE
J,Z denote the set of Nash

equilibria of the auxiliary game with player set J obtained by imposing ai = 0 for each i ∈ I\J ,

that is,

ANE
J,Z =

{
a∗J ∈ ×j∈JAj : ∀j ∈ J, a∗j = rj

(
`j

(
a∗J\{j},0I\J ,Z

))}
,

where 0I\J ∈ RI\J is the profile that assigns 0 to each i ∈ I\J . If J = ∅, let ANE
J,Z = {∅} by

convention, where ∅ is the pseudo-action profile such that (∅,0I) = 0I .
15 We relate the set of

selfconfirming equilibria to the sets of Nash equilibria of such auxiliary games.

Proposition 1. In a linear-quadratic network game with just observable payoffs, for each Z ∈ Z,

the set of selfconfirming action profiles is

ASCE
Z =

⋃
J :I\J⊆I0

ANE
J,Z ×

{
0I\J

}
,

that is, in each selfconfirming action profile a∗, a subset I\J of players for whom being inactive is

justifiable choose 0, and every other player chooses the best reply to the actions of her co-players.

14This definition is motivated by Lemma 1 in Appendix A, in which we analyze also the more general case of

probabilistic conjectures and we explain why restricting attention to deterministic conjectures is without loss of

generality.
15As we do in set theory with the empty set, when we consider functions whose domain is a subset J of some index

set I, it is convenient to have a symbol for the pseudo-function with empty domain. For example, if J ⊆ I = N, such

functions are (finite and countably infinite) sequences and ∅ denotes the empty sequence.
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Therefore, in each selfconfirming action profile a∗ and for each player i ∈ I,

a∗i = 0⇒ xi ≤ −αi,

a∗i > 0⇒

αi +
∑
j∈I

zija
∗
j > 0 ∧ a∗i = min

āi, αi +
∑
j∈I

zija
∗
j


 . (7)

Suppose for simplicity that, in every restricted auxiliary game with player set J , Nash equi-

librium actions are strictly positive (Proposition 2 below provides sufficient conditions). Then in

every SCE we can partition the set of agents in two subsets. Agents in J ⊆ I are active, while

agents in I \ J choose the null action. Start by considering the latter group of agents. They must

belong to the set of agents for whom inactivity is justifiable; as such, they choose 0 as a best reply

to a possibly wrong conjecture, and get null payoff independently of others’ actions. Since every

conjecture is consistent with this payoff, their conjecture is (trivially) consistent with their feedback.

As for agents in J , since they choose a strictly positive action, they receive a message that enables

them to infer the true payoff state; with this, they necessarily choose the objective best reply to

their neighbors’ actions, whether or not they are aware of them. Note that, if being inactive is

justifiable for every agent (I0 = I), then 0I ∈ ASCE
Z for every Z ∈ Z. In the polar opposite case,

being inactive is unjustifiable for every agent (I0 = ∅) and SCE coincides with Nash equilibrium.

For example, assume that Z = wZ0, with w > 0 and that Z0 ∈ {0, 1}I×I . In this context it is

natural to also assume that minXi ≥ 0, which implies that being inactive is unjustifiable (recall,

αi > 0). This represents the standard case of local complementarities studied by Ballester et al.

(2006). If w (n− 1) < 1, there is a unique Nash equilibrium which is also interior and coincides

with the unique SCE action profile.

Thus, the SCE set can be characterized by means of the Nash equilibria of the auxiliary games

in which only active agents are considered. If, for example, for every given set J ⊆ I there is

a unique Nash equilibrium of the corresponding auxiliary game (Proposition 2 provides sufficient

conditions), then |ASCE
Z | = 2|I0|, because for each J with I\J ⊆ I0 there is exactly one SCE where

the set of active agents is J . Since each auxiliary game has at least one Nash equilibrium (see

Remark 1), 2|I0| is a lower bound on the number of SCE’s. If we assume strategic substitutes, then

the Nash equilibria for each auxiliary game in which only agents in J ⊆ I may be active, can be

characterized as in Bramoullé et al. (2014). Note that in this case, some of the agents in J can be

active and some inactive. Appendix A.3 discusses the equilibrium characterization for the general

case of non linear-quadratic network games.

Example 1. Consider Figure 1, representing a network with 4 nodes/players. We set αi = 0.1 for

every i. First assume that each arrow represents a positive externality of 0.2 (and arrows point to

the source of the externality), but we allow agents to believe that links may also be a source of

negative externality. Then, agents may find it justifiable to be inactive. In this case we have one
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Nash equilibrium (NE)16, but 16 possible SCE’s, one for each subset of the players that we allow to

be active. Table 1 reports the actions of players in each case (we omit redundant doubletons and

singletons). Note that player 3, when active, always plays the same action a3 = 0.1, because she is

not affected by any externality. Other players, instead, when active, play differently according to

who else is active.

Figure 1: A network with 4 nodes. Every arrow identifies an externality of equal magnitude and sign.

All {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2} {1, 3} {1, 4} . . . ∅

a1 0.1292 0.1 0.125 0.1292 0 0.1 0.1 0.125 0

a2 0.1750 0.14 0.15 0 0.144 0.12 0 0 0

a3 0.1 0.1 0 0.1 0.1 0 0.1 0 0

a4 0.1458 0 0.125 0.1458 0.12 0 0 0.125 0

Table 1: Selfconfirming equilibria of the network from Figure 1, with all positive externalities of 0.2.

Columns are for the subsets of active players. The unique Nash Equilibrium is in bold.

Consider now the same network, but assume that each arrow represents a negative externality of

−0.6. In this case we have more NE’s (there is no NE where all players are active, but there are

3 NE’s), but less than 16 SCE’s (there are 13), because for some subset J of players (such as

J = I = {1, 2, 3, 4}) there is no SCE in which all its agents are active. Table 2 reports the actions

of players in each case (we omit redundant doubletons and singletons).

4.2 Relative uniqueness

We list below some properties of the weighted adjacency matrix Z that will be used throughout

the text but are not maintained assumptions.17 In what follows, we will assume some of these

16Note that with positive externalities the unique Nash equilibrium is the only rationalizable action profile, i.e.,

the only one consistent with common knowledge of the game, rationality, and common belief in rationality.
17That is, they appear explicitly among the hypotheses of some of the subsequent propositions.
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{1,2,4} {2,3,4} {1, 2} {1,3} {1, 4} . . . ∅

a1 0.0625 0 0.1 0.1 0.0625 0

a2 0.025 0.016 0.04 0 0 0

a3 0 0.1 0 0.1 0 0

a4 0.0625 0.04 0 0 0.0625 0

Table 2: Selfconfirming equilibria of the network from Figure 1, with all negative externalities of −0.6.

Columns are for the subsets of active players. Nash Equilibria are in bold.

properties to retrieve sufficient conditions for the existence and stability of selfconfirming equilibria.

In particular, they imply the uniqueness of selfconfirming equilibrium actions relative to any given

set J of active players. We refer to Appendix C for a deeper discussion on these assumptions and

their implications.

Assumption 1. Matrix Z of size n has bounded values, i.e., for each i, j ∈ I, |zij | < 1
n .

Assumption 2. Matrix Z has the same sign property, i.e., for each i, j ∈ I, sign(zij) = sign(zji),

where the sign function can have values −1, 0 or 1.18

Assumption 3. Matrix Z is negative, i.e., for each i, j ∈ I, zij < 0.

We recall here that the spectral radius ρ(Z) of Z is the largest absolute value of its eigenvalues.

Assumption 4. Matrix Z is limited, i.e., ρ(Z) < 1.

In some cases, we can write Z = WZ0, where W is a diagonal matrix, and Z0 ∈ {0, 1}I×I is

the basic underlying topology of the network. Whenever this is the case, matrix Z represents a

basic network combined with an additional idiosyncratic effect by which every agent i weights the

effects of others on her. These effects are modeled by the parameter wi.
19 The next assumption

adds a symmetry condition on Z0.

Assumption 5. Matrix Z is symmetrizable, i.e., it can be written as Z = WZ0, with W diagonal

and Z0 symmetric. Moreover, W has all strictly positive entries in the diagonal.

Note that if Z is symmetrizable then all its eigenvalues are real. Moreover, since W has all

strictly positive entries, Assumption 5 implies that the sign condition (Assumption 2) holds.

Our final assumption is discussed in Bramoullé et al. (2014) and combines Assumptions 4 and 5

above.
18The sign condition is the one used in Bervoets et al. (2019) to prove convergence to Nash equilibria in network

games, under a particular form of learning.
19Then the payoff of i ∈ I at a given profile a of the original game is

ui (a,Z) = αiai −
1

2
a2i + aiwi

∑
j∈I

z0,ijaj = αiai −
1

2
a2i + ai

∑
j∈I

zijaj .
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Assumption 6. Z = WZ0 is symmetrizable-limited, i.e., Z is symmetrizable and the matrix Z̄,

whose entries are defined, for each i, j ∈ I, as z̄ij = z0,ij
√
wiwj, is limited.

Our previous results, about the characterization of selfconfirming equilibria, state that we can

choose any subset J ⊆ I0 of agents and have them inactive in an SCE. However, we cannot ensure

that the other agents are active, because their best response in the reduced game could be to stay

inactive, since the Nash equilibrium of the reduced game in which only agents in I\J are considered

may have both active and inactive agents. The next result goes in the direction of specifying under

what sufficient conditions this does not happen. Given the matrix Z, and given J ⊆ I, we call ZJ

the submatrix which has only rows and columns corresponding to the elements of J .

Proposition 2. Consider a linear-quadratic network game and a subset of players J ⊆ I, such

that I\J ⊆ I0 (that is, αi + xi ≤ 0 for each i /∈ J ). Suppose that ZJ satisfies at least one of the

three conditions below:

1. it has bounded values (Assumption 1);

2. it is negative and limited (Assumptions 3 and 4);

3. it is symmetrizable–limited (Assumption 6).

Then, we have the following two results:

• the auxiliary game with player set J has a unique and strictly positive Nash equilibrium:

ANE
ZJ

=
{
aNEJ

}
with aNEj > 0 for all j ∈ J ;

• (aNEJ ,0I\J) is a selfconfirming equilibrium at Z.

Proposition 2 provides sufficient conditions to have arbitrary sets of active and inactive players

in a selfconfirming equilibrium. In particular, if any of the three conditions is satisfied for every

subset of I, and if for all players being inactive is justifiable (I0 = I), then the set of SCE’s has the

same cardinality as the power set 2I , that is 2n. The first sufficient condition about (sub)matrix

ZJ is novel, while the other two were obtained respectively by Ballester et al. (2006) and Stańczak

et al. (2006), and by Bramoullé et al. (2014).

We provide here below two examples, one with all positive externalities, the other with mixed

externalities.

Example 2. Consider n players, and a randomly generated network between them, of the type

Z = WZ0, obtained from the following generating process. Z0 is undirected, generated by an Erdos

and Rényi (1960) process for which each link is i.i.d., and such that its expected number of overall

links (i.e., counted in both directions) is k · n, for some k ∈ R+. This means that the expected
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number of links for each player is k. It is well known that this model predicts, as n goes to infinity,

that Z0 will have null clustering and, with k ≥ 2, a connected giant component.

W is a diagonal matrix, such that each element wi in the diagonal is strictly positive and is

generated by some i.i.d. random process with mean µ and variance σ2. In this case, Füredi and

Komlós (1981) prove that the expected highest eigenvalue of Z, as n grows, is

E[λ1] = kµ+
σ2

µ
+O

(
1√
n

)
.

Under Assumption 6, as n tends to infinity, Z is symmetrizable–limited if E[λ1] < 1, which is

equivalent to
µ− σ2

µ2
> k .

Clearly, a necessary condition for the previous inequality is that µ > σ2. When this is the case, as

n grows to infinity, there always exists a unique NE of the game where all players are active, as

stated by Proposition 2.

Note that, since the expected clustering of Z0 goes to 0, this limiting result excludes the possibility

that there is a subset J of players forming a dense sub–network, and a high realization of wi’s, such

that there does not exist a∗ ∈ ASCE
Z , for which a∗ =

{
aNEJ

}
×
{
0I\J

}
. In fact, if this were the

case, since there are only positive externalities, we would not have an all-active equilibrium for the

whole population of n agents.

Example 3. Proposition 2 provides alternative sufficient conditions for an interior NE in the

auxiliary game with player set J . Figure 2 provides an example of game that does not satisfy any

of them, but still has a unique interior NE. We set αi = 0.1 for each player i. Every blue arrow

represents a positive externality of intensity 0.2 (so, the blue arrows represent the first case from

Example 1). The two red arrows represent negative externalities of intensity −0.2. This network

game has a unique NE, and 16 SCE’s. Table 3 shows them all (redundant doubletons and singletons

are omitted).

All {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2} {1, 3} {1, 4} {2, 3} . . . ∅

a1 0.1257 0.1 0.125 0.128 0 0.1 0.1 0.125 0 0

a2 0.1603 0.1346 0.15 0 0.144 0.12 0 0 0.1154 0

a3 0.0412 0.731 0 0.720 0.1 0 0.1 0 0.0729 0

a4 0.1336 0 0.125 0.14 0.12 0 0 0.125 0 0

Table 3: Selfconfirming equilibria of the network from Figure 2, with positive (resp., negative) externalities

of intensity 0.2 (resp.,−0.2). Columns correspond to subsets of active players. The unique Nash Equilibrium

is in bold.
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Figure 2: A network with 4 nodes. Blue (resp., red) arrows represent positive (resp., negative) externalities.

4.3 Learning paths

Definition 1 of selfconfirming equilibrium and the characterization stated in Proposition 1 identify

steady states: if agents’ conjectures are confirmed (not contradicted) by the feedback they receive,

these conjectures will not change in the next interactions. However, we may wonder how agents

get to play SCE action profiles and if these profiles are stable.20

We first point out that SCE has solid learning foundations.21 The following result is specifically

relevant for this paper (see Gilli, 1999 and Chapter 7 of Battigalli et al., 2022). Consider a temporal

sequence (path) of action profiles (at)
∞
t=0. Then, if (at)

∞
t=0 is consistent with adaptive learning22

and at → a∗, it follows that a∗ must be a selfconfirming action profile.

To ease the analysis we consider conjectural best-reply paths for shallow conjectures. For each

network Z, each period t ∈ N, and each agent i ∈ I, ai,t = ri (x̂i,t) is the best reply to x̂i,t. After

actions are chosen, given the feedback received, agents update their conjectures. If conjectures

are confirmed then an agent keeps her previous conjecture, otherwise she updates it using as new

conjecture the one that would have been correct in the previous period. Thus,

x̂i,t+1 =

{
x̂i,t if ai,t = 0,

`i (a−i,t,Z) if ai,t > 0,
(8)

20Throughout all our analysis, players perform adaptive learning given an exogenously fixed (but possibly unknown)

network. For models in which players adaptively change also their links, with a quadratic payoff function analogous

to ours, and the overall network evolve endogenously, see König and Tessone (2011) and König et al. (2014).
21See, for example, Battigalli et al. (1992), Battigalli et al. (2019), Fudenberg and Kreps (1995), and the references

therein.
22In a finite game, a path of play (at)

∞
t=0 is consistent with adaptive learning if for every t̂, there exists some T

such that, for every t > t̂ + T and i ∈ I, ai,t is a best reply to some deep conjecture µi that assigns probability

1 to the set of action profiles a−i consistent with the feedback received from t̂ through t − 1. The definition for

compact-continuous games is a bit more complex (see Milgrom and Roberts, 1990, who assume perfect feedback).
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and, from (6) we obtain

ai,t+1 = ri (x̂i,t+1) =


0, if x̂i,t ≤ −αi,
āi, if x̂i,t+1 ≥ āi − αi,
αi + x̂i,t+1, otherwise.

We will consider the possibility that the upper bound āi is reached only in the analysis of diverging

dynamics. Given our assumptions about feedback, being inactive is an absorbing state: if an agent

is inactive at time t she will remain so also at time t + 1. If instead the agent is active (ai,t > 0),

feedback is such that the agent can perfectly infer the payoff state xi,t = `i (a−i,t,Z), and so she

updates conjectures according to (8), which becomes the updated conjectures. This is a conjectural

best-reply path. The result cited above implies that if the path described above converges, then it

must converge to a selfconfirming equilibrium, i.e., a rest point where players keep repeating their

choices.

In this subsection, we analyze the local stability of such rest points (cf. Bramoullé and Kranton,

2007).

Definition 2 (Conjectural best-reply paths). A sequence of profiles of actions and shallow deter-

ministic conjectures (at, x̂t)t∈N0 is a conjectural best-reply path if it has the following features:

1. Each player i ∈ I starts at time 0 with a belief, and beliefs are represented by a profile of

shallow deterministic conjectures x̂0 = (x̂i,0)i∈I .

2. In each period t, players best reply to their conjectures: for each i ∈ I, ai,t = max{αi+x̂i,t, 0}.

3. At the beginning of each period t+1, each player i keeps her period–t shallow conjecture if she

was inactive, and updates her conjecture to period–t revealed payoff state if she was active,

that is, x̂i,t+1 = ui(at,Z)
ai,t

− αi + 1
2ai,t.

Observe that the system is deterministic and the initial conditions completely determine the

paths. From conditions (7) and (8), the system is not linear because, for each i ∈ I and t ∈ N0,

x̂i,t+1 =

{
x̂i,t if x̂i,t ≤ −αi ,∑

j∈I zijaj,t if x̂i,t > −αi .

Clearly an SCE of the game is always a rest point of these learning paths. Indeed, every SCE

(a∗, x̂) is—trivially—the limit of the constant conjectural best-reply path starting at (a0, x̂0) =

(a∗, x̂). Furthermore, the set of inactive agents in a conjectural best-reply path can only increase:

I0 (x̂t) ⊆ I0 (x̂t+1) ,

where I0 (x̂) denotes the set of inactive agents given profile of conjectures x̂ = (x̂i)i∈I .

We now consider the stability of such rest points. Say that a profile of conjectures x̂ justifies

action profile a∗ if, for each i ∈ I, a∗i = ri (x̂i).

20



Definition 3. A profile a∗ ∈ ASCE
Z is locally stable if there exists a profile of conjectures x̂ such

that (a∗, x̂) is a selfconfirming equilibrium, and if there exists an ε > 0 such that, for each x̂0 with

‖x̂0 − x̂‖ < ε (where ‖·‖ is the Euclidean norm), the conjectural best-reply path, starting at x̂0, has

a limit and it is such that limt→∞ at = a∗.

Since (at, x̂t)t∈N0 is determined by the initial conjectures x̂0, we analyze stability with respect

to perturbations of x̂0. Our notion of stability with respect to conjectures relates to the standard

notion of stability with respect to actions in the following way. First of all, since played actions are

justified by some conjectures, the only reason for these actions to change is a perturbation of the

justifying conjectures, but this is not a sufficient condition. If all agents are active, the two defini-

tions have the same consequences in terms of stability, since a perturbation with respect to actions

happens if and only if every agent’s conjecture is perturbed. Indeed, each active agent i has perfect

feedback about xi, and always chooses the best reply to neighbors’ actions in previous time step.

However, consider an SCE with inactive agents, who choose the null action as a corner solution,

that is, whose subjective expected marginal utility for increasing activity is strictly negative. For

such agents a small perturbation of their conjectures would not change their null subjective best

reply. This is so because inactive agents have imperfect feedback and cannot infer the value of the

local externality aggregator. This implies that if an action profile is locally stable with respect to

action perturbations, then it is also locally stable under conjectures perturbations, but the converse

does not hold. Specifically, forcing inactive agents to be active may lead some of them to be active

forever. The two definitions would be equivalent under perfect feedback for all agents. Note finally

that a temporary perturbation of shallow conjectures x̂0 has the same effect of a temporary shock

in the parameter α. By looking at the first order conditions, they both induce the same effect on

agents’ best reply and on payoffs.

Each SCE is characterized by a set of active agents. So, given an action profile a = (ai)i∈I , let

Ia := {i ∈ I : ai > 0} denote the set of active players at profile a. Also let I∗0 := {i ∈ I : αi + xi < 0}
(a subset of I0) denote the set of agents for whom being inactive is a “corner solution” for a set

of conjectures with nonempty interior. For each action profile a, ZIa denotes the sub–matrix with

rows and columns corresponding to players who are active in a. The following result provides

sufficient conditions for a selfconfirming equilibrium to be locally stable.

Proposition 3. The action profile in a selfconfirming equilibrium (a∗, x̂) such that x̂i 6= αi for

each i ∈ I, is locally stable if

• Assumption 4 holds for matrix ZIa∗ ;

• I\Ia∗ ⊆ I∗0 .

Intuitively, consider a sufficiently small perturbation of players’ conjectures. The first condition

ensures that active players keep being active and their actions converge back to the unique Nash
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equilibrium of the auxiliary game with player set Ia∗ . The second condition ensures that inactive

players keep being inactive. Next, we provide alternative sufficient conditions that allow to find

the subsets of active agents associated to SCE’s.

Proposition 4. Consider the action profile a∗ in a selfconfirming equilibrium (a∗, x̂) such that

I\Ia∗ ⊆ I∗0 and x̂i 6= αi for each i ∈ I. If ZIa∗ satisfies at least one of the three conditions below:

1. it has bounded values (Assumption 1),

2. it is negative and limited (Assumptions 3 and 4),

3. it is limited and symmetrizable (Assumptions 4 and 5),

then a∗ is locally stable. Moreover, for every J ⊆ Ia∗such that I\J ⊆ I∗0 , a∗∗ = (aNEJ ,0I\J) is a

locally stable SCE action profile, where aNEJ is the unique and strictly positive Nash equilibrium

action profile of the auxiliary game restricted to player set J .

The proof is based on results from linear algebra. In fact, if an adjacency matrix satisfies one of

the conditions from Proposition 4, then also every submatrix of that matrix satisfies that property.

We know that there may be SCE’s that are not Nash equilibria, because some agents are inactive

even if this is not a best response to the actions of others. Proposition 4 provides an additional

observation. Under the stated conditions, for any given SCE action profile a∗ with set of active

agents Ia∗ , any subset J ⊆ Ia∗ of those agents such that I\J ⊆ I∗0 is associated to a stable SCE

where all agents in J are active, and the other agents are inactive.

The following example shows that we can reach SCE’s that are not NE’s also if the initial beliefs

induce strictly positive actions for all agents at the beginning of the learning paths.

Example 4. Consider the case of 4 players, with the network matrix Z ∈ {−0.2, 0, 0.2}I×I shown

in Figure 2, and, for every i, αi = 0.1. This is a case of externalities that can be positive or

negative. Figure 3 shows the learning paths of actions that start from different initial conditions.

In one case (left panel) the path converges to the unique Nash equilibrium of this game (the dotted

lines), in the other (right panel) the path makes a player inactive after two rounds and converges

to a selfconfirming equilibrium which is not Nash.

The next example (which does not satisfy the local stability conditions of Proposition 4) shows

that convergence may not occur even in a simple case of positive externalities.

Example 5. Go back to the 4-node network of Example 1 (Figure 1). Even if there are only

positive externalities, convergence depends on the magnitude of w. If w < 1, there is convergence.

If instead w ≥ 1, there is divergence. Figure 4 shows two cases, with w = 0.9 and w = 1 respectively,

starting from the same initial beliefs. Note that the actions of nodes/players 1 and 4 reinforce each

other’s beliefs, and this gives rise to an oscillating path of their beliefs. The case of w = 1, where

the amplitude of oscillations remains constant, is actually non–generic.
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Figure 3: Positive and negative externalities. Starting from different conjectures, given the same network

(from Figure 2), the learning process may converge to the unique Nash equilibrium (left panel – dotted lines

are the Nash equilibrium) or to an SCE which is not a Nash equilibrium (right panel). For active players,

actions are just an upward shift of conjectures of amount αi. In the right panel, for the inactive player 3 the

action is 0 from step 2 on.

Figure 4: Positive externalities only. Given a network structure (from Figure 1), starting from the same

conjectures, the learning path may converge or not depending on the size of w: w = 0.9 in the left panel;

w = 1 in the right panel. Actions are an upward shift of conjectures, of amount αi.
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5 Local and global externalities

In many applications the feedback that active players receive is not enough to find out the ob-

jectively optimal response. Users of online platforms may not understand ex post the objective

best response to others’ activityand a firm in a complex market may not be able to infer optimal

investment plans by just observing prices. In our context, this means that perfect feedback may

not hold even for active players. In particular, this is the case if players just observe their realized

payoffs, but there are global externalities, which introduce a confounder. This implies there may

be other equilibria besides those analyzed above. Assuming that local externalities are positive,

the following analysis yields two important observations. First, players may be more active if they

think that they are more linked in the network than they actually are, and this can be welfare im-

proving for the whole society. Second, agents with excessive perceived connectedness may have the

effect of preventing the convergence of conjectural best-reply paths to non-corner solutions. Recall

Definition 1 (of selfconfirming equilibrium), based on general linear-quadratic network games with

just observable payoff (see equations (2)-(5)). We can characterize the set of SCE’s as follows:

Proposition 5. A profile of actions and conjectures (a∗i , x̂i, ŷi)i∈I ∈ ×i∈I (Ai ×Xi × Yi) in a

linear–quadratic network game with just observable payoffs and global externalities is a selfconfirm-

ing equilibrium at (Z, γ) if and only if, for every i ∈ I,

1. a∗i = 0 implies x̂i ∈ [xi,−αi] and ŷi = γ
∑

j 6=i a
∗
j ;

2. a∗i > 0 implies a∗i = min{αi + x̂i, āi} and ŷi = γ
∑

k 6=i a
∗
k + a∗i

(∑
j 6=i zija

∗
j − x̂i

)
.

We discuss how the presence of the global externality term in the utility function changes the

characterization of selfconfirming equilibria. Although we maintain the assumption of just observ-

able payoffs, with global externalities it is not anymore the case that active players have perfect

feedback about the payoff state. Indeed, for all i ∈ I and for all pairs of realized externalities

(xi, yi), vi (0, xi, yi) = yi; thus, inactive players have correct conjectures about the global external-

ity, but may have incorrect conjectures about the local externality. Active players, on the other

hand, are not able to determine precisely the relative magnitude of the local effects with respect

to the global effects. Given any strictly positive action a∗i , the confirmed conjectures condition

yields (ŷi − yi) = a∗i (xi − x̂i). Then, in equilibrium, if agent i overestimates (underestimates) the

local externality, she must compensate this error by underestimating (overestimating) the global

externality. Compared to the case of only local externalities, we have that: (i) active agents choose

a best response to a (possibly) wrong conjecture about the payoff state; thus, (ii) it is not possible

to completely characterize the set of SCE’s by means of Nash equilibria of the auxiliary games

restricted to the active players.

Yet, the analysis of Section 4 allows to identify a subset of selfconfirming equilibria, those where

agents have correct (shallow) conjectures about the global payoff state.
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Remark 2. Fix Z and γ. The set SCE action profiles of the network game with only local exter-

nalities is contained in the set of SCE action profiles of the game with local and global externalities,

that is, ASCE
Z ⊆ ASCE

Z,γ . Specifically, if (a∗i , x̂i)i∈I is an SCE of the game with only local external-

ities, then (a∗i , x̂i, ŷi)i∈I with ŷi = γ
∑

k 6=i a
∗
k for each i ∈ I is an SCE of the game with local and

global externalities.

Indeed, by Proposition 1, in profile (a∗i , x̂i)i∈I each inactive player has a (trivially) confirmed

conjecture that makes her choose 0, and each active player must have a correct conjecture about

the local externality. In profile (a∗i , x̂i, ŷi)i∈I conjectures (ŷi)i∈I about the global externalities are

correct by assumption. Thus, by Proposition 5, (a∗i , x̂i, ŷi)i∈I is an SCE.

To ease the following analysis, in the remainder of this whole Section, we assume that (i) each

agent i has the same stand-alone parameter α > 0 and upper bound ā, and (ii) γ > 0. We assume

also that (iii) each matrix Z ∈ Z is non–negative, and (iv) either condition 1. or 3. of Proposition

2 is satisfied, so that there exists a unique NE. Finally, (v) we assume that the admissible range of

possible best replies for any player has no negative elements and does contain the upper bound ā.

Understanding how conjectures are shaped in a SCE also allows us to shed some light on the

efficiency properties of the SCE’s. First of all note that the problem of finding a maximizer of the

sum of the utilities is a concave quadratic problem and there exists a bliss point. The presence of

positive externalities makes the unique NE Pareto-dominated by other actions profiles. Moreover

the presence of a bliss point makes an arbitrary increase of agents’ actions not always welfare

improving. Let us analyze these issues in detail.

Given the presence of global externalities, it is straightforward to see that the Nash equilibrium

is inefficient. Now, consider an SCE action profile aSCE (possibly aNE). This action profile is

justified by some profile of confirmed conjectures (x̂i, ŷi)i∈I . Then, we can find another SCE,

a′SCE ≥ aSCE , such that a′SCE yields a higher aggregate payoff than aSCE . A possible way to find

such an equilibrium is to decrease, for each i ∈ I, the global externality (shallow) conjecture ŷi. To

keep the confirmation condition, it is necessary to increase the local (shallow) conjectures (x̂i)i∈I ,

and thus to increase the best-reply actions. This, in turn, makes the local and global externalities

increase. However, this makes it necessary that the local conjectures are further increased, which

induces another increase in actions, and so on. The following proposition imposes a condition for

the existence of an interior SCE.

Proposition 6. If, for every pair of agents (i, j) and for every profile of local conjectures x̂, the

following inequality is satisfied∑
k∈I\{i,j}

zik (α+ x̂k)− zij
∑

h∈I\{i,j}

(α+ x̂h)α ≥ 0 , (9)

then, for every profile of global conjectures ŷ with ŷi < ā
(
α
∑

k∈I\{i}

zij + γn
)

for every i, there exists

a unique SCE with local conjectures x̂ and action profile a∗, with a∗i < ā.
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The condition of the proposition imposes concavity on some fixed point equations derived from

the best replies functions, and then ensure existence and uniqueness of this fixed point. Note that

the condition is always satisfied if α ≤ 1 and Z = wZ0, with w > 0, that is: every strictly positive

zij has the same value for each pair of agents i and j in I. Otherwise, the larger the number of

agents, the more likely it is that the condition is violated for some pair (i, j) for which zij is high.

If the network is composed of just two agents, this condition is always satisfied. The following

example illustrates some of the issues just analyzed.

Example 6. Consider a simple network composed of two agents. Let zijzji = δ. For simplicity

we assume that α = γ = δ = 0.1. Figure 5 represents several features of this examples. On the

axes we report x̂1 and x̂2, respectively. The curve ŷ1 = 0 represents all the possible (x̂1, x̂2), such

that agent 1 thinks about a null global externalities. Since we know that, in a SCE, ŷ1 ≥ 0, then

all the feasible conjectures are on the left of this curve, since on the right of ŷ1 = 0, we would

have negative conjectured global externalities. For the very same reason, only pairs (x̂1, x̂2) below

ŷ2 = 0 are consistent with positive conjectured global externality for agent 2. As a result, in a

SCE only pairs (x̂1, x̂2) between the two curves can be observed. The dashed lines show the NE

conjectures. As is easy to observe, SCE allows for much higher (and lower too) conjectures, so that

larger actions are allowed.

The dashed line represents all the pairs of conjectures delivering the same welfare as the NE. Above

this dashed line the welfare is larger than in NE, below this line it is smaller. In this example the

SCE with the highest welfare is the top-right kink with the highest possible conjectures (note

that, in this case, the bliss point for the welfare is x̂1 = x̂2 = 0.275, that is out of the confirmed

conjectures area.

y2 = 0

y1 = 0

x1
NE

x2
NE

0.05 0.10 0.15 0.20 0.25
x1

0.05

0.10

0.15

0.20

0.25

x2

Figure 5: SCE’s for a network of two agents. Parameterization α = γ = δ = 0.1.
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To better understand the structure of the equilibrium set, we introduce additional assumptions

about what agents know or think they know about the strategic environment. This is a way to

restrict their conjectures. We provide some insights along two different dimensions: i) what happens

if agents know something about the magnitude of the externalities ? ii) What happens if agents

have definite beliefs about the relative size of local with respect to global externality? This last

case, that we call perceived centrality will be crucial for the learning dynamics.

5.1 Knowledge of externalities parameters

We assume that Z = wZ0, where w > 0, and Z0 ∈{0, 1}I×I is the unweighted network. This means

that there is a homogeneous positive externality w between all connected players, so that equation

(2) becomes:

ui(ai,a−i,Z) = αiai −
1

2
a2
i + aiw

∑
j∈I\{i}

z0,ijaj + γ
∑

k∈I\{i}

ak . (10)

We do not impose any further restriction over the network structure Z0, but we assume that

all agents understand they interact in a network and know w and γ. Given these assumptions, we

need to slightly modify what aggregators and conjectures are. In detail, aggregators about local

and global externalities do not internalize w and γ, respectively, and the conjectures concern the

aggregate actions of the neighbors (local) and of all other players (global).

Consider the case in which Z = wZc0, where Zc0 is the matrix of the complete basic network

(i.e., z0,ij = 1 for all non-diagonal entries). Note that if the agents conjecture that the network

is a complete one, then, for each i ∈ I, x̂i = ŷi, and this ensures uniqueness of the SCE. Then

the SCE can just be indexed by the conjecture about the local externality.23 Given (w, γ), let

(aci (w, γ), x̂ci (w, γ))i∈I denote the unique SCE in which, for each i ∈ I, x̂ci (w, γ) is the (confirmed)

shallow conjecture induced by µ̄ci ∈ {Zc0} ×A−i, that is, a (confirmed) deep conjecture in which i

thinks she belongs to a complete network.

Proposition 7. Consider a linear quadratic network game with global externalities, with 0 < w <
1

n−1 , and where all agents know w and γ. Let aNEZ0
and aNEZc0

be the unique Nash equilibria of the

game played on (wZ0, γ) and (wZc0, γ), respectively. Then, (1) aci (w, γ) is increasing in the ratio
γ
w ; (2) lim γ

w
→0 ac(w, γ) = aNEZ0

; and (3) lim γ
w
→∞ ac(w, γ) = aNEZc0

.

So, independently of the basic network Z0, if all players believe to be more linked than they

actually are and γ
w is large, then the action profile approaches what they would choose in the NE

of the game played on the complete network, where every player is linked to every other player.

As it will be clear from Section 5.2, this result implies that the learning paths are self–reinforcing.

Players maintain wrong conjectures about the network structure and they infer `i
(
a∗−i,Z

)
from the

payoff that they receive as feedback, using (10). This implies that, converging to an SCE, as they

23The discussion below about conjectured ratios will make this point clear.
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increase their own action they infer a higher `i
(
a∗−i,Z

)
and a lower gi

(
a∗−i, γ

)
, to which they will

respond with an even higher action. Nevertheless, this process does not diverge to hit the upper

bounds of the action profiles, and it reaches the NE on the complete network.

Proposition 7 is a limiting result. However, for some networks where NE’s and SCE’s can be

easily computed analytically, we can show that the actions of an SCE converge rapidly to the actions

of the NE for the complete network as γ/w becomes large. Figure 6 shows how this happens when

every player has the same number of links (regular network) and when there is a central player and

every other player is linked only to her (star network).

Figure 6: The panels show the SCE common activity level as a function of parameter γ when each agent

thinks she is connected to every other agent. Both cases have parameters α = 0.1, w = 0.04 and n = 20.

The left panel is for the regular network with common degree 8: in blue we have the action that would be

played in the NE of the complete network; in yellow the NE of the regular network; in green the SCE action.

The right panel is for the star network: in blue we have the action that would be played in the NE of the

complete network; in yellow and purple the NE action profiles for the center and the spokes, respectively, in

the star network; in green and red the SCE action profile for the center and the spokes, respectively.

In the Introduction we discussed the possible application of our model to online social networks,

where the provider may have the possibility to affect the beliefs of the consumers. The previous

result applies to the case where consumers know the value of the parameters w and γ, and their

overall number n. If we further assume that the profits of the provider are positively correlated with

the overall activity on the platform, the provider may have an incentive to make people feel more

connected than they actually are. So, if γ
w is large (that is, in our interpretation, most of the payoff

for the consumers is obtained from using the platform per se, and not from actual interaction), and

if these parameters are known to the users, companies make more profit by letting players think

that they have a lot of followers. With this application in mind, in the end of this section we will

extend the discussion about the implications of biased beliefs on aggregate welfare.

Proposition 7 is based on the assumption that players know the values of γ and w. However, if

they have wrong beliefs about γ, overestimating it, their actions would even exceed those of the NE

of the complete network. This is shown in the next example, where agents do not know the true
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value of γ and, overestimating the ratio between local and global externalities, they play actions

that are much above the action that they would play in the NE of the complete network.

Example 7. Consider three agents in a star network (i.e., a line). Let agent 2 be the center. Then,

for every SCE, `2
(
a∗−2,Z

)
is proportional to g2

(
a∗−2, γ

)
, always with the same ratio γ

w , while this

is not true for agents 1 and 3. We assume that each agent thinks that the network is complete,

so every i ∈ I thinks that `i
(
a∗−i,Z

)
is proportional to gi

(
a∗−i, γ

)
. In this case agents 1 and 3

believe to be more linked than they actually are. Table 4 provides the Nash equilibria for the

actual network and for the complete network, and the selfconfirming equilibrium actions for for

some specification of the parameters.

Line NE Complete Network NE SCE

a1 0.130 0.167 1.569

a2 0.152 0.167 1.679

a3 0.130 0.167 1.569

Table 4: Simulations for the case of α = 0.1, w = 0.2, and γ = 1. Columns refer to 1) Nash Equilibrium of

the line network; 2) Nash equilibrium of complete network; 3) SCE in the line network in which each i ∈ I
believes that `i

(
a∗
−i,Z

)
= γ

wgi
(
a∗
−i, γ

)
.

This numerical exercise shows that, when agents overestimate the impact of local externalities,

we get a multiplier effect that makes SCE actions increase at a level even larger than what would

be predicted in a complete network by Nash equilibrium. This follows from how agents misinter-

pret their feedback. In particular, thinking to be in a complete network makes agents 1 and 3

overestimate local externalities. Take for instance agent 1. Given any a−1, she chooses a subjec-

tive best reply higher than the objective best reply since she overestimates the local externality.

This high action has the effect of increasing the global externality term for agent 3. Agent 3, by

overestimating the local externality, partly attributes this higher global externality to the local

externality term, and chooses an action larger than predicted by Nash equilibrium. The choice of

agent 3 increases in turn the global externality perceived by agent 1, and so on. At the same time

agent 2, as neighbors choose higher actions, increases her own action level. This effect goes on and

gives rise to a multiplier effect. The limit of such a conjectural best reply path is selfconfirming

equilibrium in which actions are almost ten times larger than the complete network NE actions

We call ci := x̂i
ŷi

the conjectured ratio of player i with respect to local and global externalities.

Then, given a profile (ci)i∈I , one can rewrite the SCE conditions as a non-linear system of n

equations in n unknowns solved either for (x̂i)i∈I or (ŷi)i∈I , and characterize the set of SCE’s given

the imposed restrictions. This is what we will use in the next section when studying the learning

paths.
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We can think of conjectured ratio ci as the perceived centrality of player i. For each player,

this parameter describes what she thinks to be the share of the activity in her neighborhood with

respect to the sum of all the actions of the population. This perceived share has a strong relationship

with the Bonacich centrality. If there is a unique Nash equilibrium a∗ of the game, where all actions

are strictly positive, we have, for each i ∈ I,

a∗i = α+ xi = α+
∑

j∈I\{i}

zija
∗
j .

The profile of Bonacich centrality measures b is the unique solution of the linear system24

∀i ∈ I, bi = α+
∑

j∈I\{i}

zijbj .

So, when beliefs are correct, as in the Nash equilibrium, we have that, for each i ∈ I, bi = a∗i ,

yi = γ
∑

k∈I\{i}

a∗k and ci = bi−α
yi

.

Now, in the Nash equilibrium we have also that, for each i and j, 1
yi
− 1

yj
= γ

a∗i−a∗j
yiyj

. If the number

n of players is large, for each i and j, yi and yj grow and the difference 1
yi
− 1

yj
approaches 0 faster

than 1
yi

and than 1
yj

. We can express this writing 1
yi
' 1

yj
, because as n grows both 1

yi
and 1

yj
are

of another order of magnitude with respect to 1
yi
− 1

yj
, and so every ci is roughly the same linear

rescaling of bi. Our perceived centrality can then be interpreted, with a good approximation, as

the belief that player i has, as a node in a large network, about her Bonacich centrality.

5.2 Learning with global externalities

We now study conjectural best reply paths with global externalities. To simplify the analysis we

assume, for each agent, a fixed conjectured ratio. Differently from Section 5.1, we do not assume

agents to know anything about the parameters characterizing the strategic environment.

At each time, there are infinitely many profiles of feasible pairs (x̂i,t, ŷi,t)i∈I consistent with feedback.

For each i ∈ I, and each time t ∈ N, let mi,t = fi (ai,t, xi,t, yi,t) = ui(ai,t,a−i,t,Z, γ) be the message

agent i receives. Then, given message mi,t−1, and considering that agents perfectly recall their

past actions, ŷi,t is uniquely determined as a function of x̂i,t. In particular, if at each time period t

agent i’s conjectures x̂i,t and ŷi,t are consistent with the message received at the previous period,

we obtain

ŷi,t+1 = mi,t − αai,t +
1

2
(ai,t)

2 − ai,tx̂i,t+1 .

Then, we can focus on the path of x̂i,t, given by

24In general, independently of any game defined on the network, Bonacich centrality is a network centrality measure

that depends on parameter α > 0. It is defined exactly as the solution of that same linear system. For a detailed

discussion on this see Dequiet and Zenou (2017).
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x̂i,t+1 =
mi,t − ŷi,t+1

ai,t
− α+

1

2
ai,t . (11)

In this case, active agents do not have perfect feedback, because players test a two–dimensional

conjecture with a feedback, the payoff, that has a single dimension. This brings also indeterminacy

to the updating rule that players use. To avoid bifurcations at each time period t, we need to use

simplifying assumptions on conjectures. We define for each i ∈ I and every t ∈ N0

ci,t :=
x̂i,t
ŷi,t

, 25 (12)

and in the following we assume that this conjectured ratio is constant along paths of learning

dynamics for each player i.

Assumption 7. For each i ∈ I and for each t ∈ N, ci,t = ci,t+1 = ci.

From equation (11), and expressing the message as the observed payoff, we get the following

learning path, for each agent at each time period:

x̂i,t+1 = xi,t +
yi,t
ai,t
− ŷi,t+1

ai,t
, (13)

where xi,t and yi,t are the true realized values of the payoff states. Plugging in ci =
x̂i,t
ŷi,t

we get, for

each t and i,

x̂i,t+1 =
ci

1 + ciai,t
(ai,txi,t + yi,t) . (14)

Note that the true ratio of player i at time t is

c′i,t :=
xi,t
yi,t

,

with c′i,t ∈
[
0,

∑
j 6=i zij
γ

]
. For this reason, we also assume that the conjectured ratio of each player

i is such that ci ∈
(

0,
∑
j 6=i zij
γ

]
, and this specifies the set of all admissible conjectured ratios.

The learning dynamic from (13), then, can be written as

x̂i,t+1 = ciyi,t
a∗i,tc

′
i,t + 1

a∗i,tci + 1
, (15)

which implies that the conjecture x̂i,t+1 is correct only when ci = c′i,t.

We look at best responses ai,t+1 = α + x̂i,t+1, and study the existence and characterization of

the steady state of this learning process. Recall that yi,t = γ
∑

j 6=i aj,t. To find a fixed point we

look at the system of n equations, one for each i,

Hi(a
∗, c, γ,Z) := α+ ci

γ∑
j 6=i

a∗j

 a∗i c
′
i + 1

a∗i ci + 1
− a∗i = 0 . (16)

25In doing so, we implicitly assume that players think there are active co-players. This is a reasonable assumption,

because under positive externalities any best response should be at least α.
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For comparison, we also study the system of equations that provide the Nash Equilibrium of this

network game, that is, for each i:

Fi(a
∗,Z) := α+

∑
j 6=i

zija
∗
j − a∗i = 0 . (17)

Let A ⊂ [α,∞)I denote the set of the solutions of system (16). We have the following result.

Proposition 8. If the system defined by (17) admits a solution a∗ with non-negative entries, then

for each profile c of conjectured ratios also the system defined by (16) admits a solution. Moreover,

there is a homeomorphism Φ between the set of all profiles c and A. The homeomorphism Φ is

strictly monotone with respect to the lattice order of the domain of all profiles c and the codomain

A.

The assumption of non-negative solutions implies a unique NE of the game, and we refer to

Proposition 2 for sufficient conditions for uniqueness. This result provides information only on the

steady states of our learning paths. It is important because it establishes a one–to–one function

between profiles of conjectured ratios and SCEs: there is one and only one SCE strategy profile for

each profile c but there may SCEs that do not result from the hypothesized learning paths. The

homeomorphism also provides continuity on the initial parameters, as a marginal change in the

conjectured ratios will result in a marginal change in the resulting SCE, even if this function may

be highly non–linear, as shown in the example below.

Example 8. Under the conditions of Proposition 9, we use equation (14) to express learning paths

converging to the SCE implicitly defined by (16). This allows us to provide a graphical illustration

of Proposition 8, for the case of three nodes. We do this for the case of a line network (where each

of the two links is bidirectional), and for the case of a complete network. We consider equation

(10), with γ = 1 and w = 0.2. Figure 7 shows the results. We can start from any pattern of

conjectured ratios for the three nodes. The left panel shows the profile of conjectured ratios when

at least one node has maximal conjectured ratio (the three faces of the cube have different colors,

according to which node has the maximal centrality). The central panel shows the corresponding

SCE conjecture profile x̂ when the network is a line (the node that has conjectured ratio 1 in the red

dots is the central node). The right panel shows the corresponding SCE conjecture profile x̂ when

the network is a complete triangle. The figure suggests that homeomorphism Φ (from Proposition

8) is highly non–linear, because of the self-reinforcement process in beliefs that we discussed in

Example 7. The figure also shows that, as stated by Proposition 8, homeomorphism Φ respects the

lattice order on the two sets.

Monotonicity implies that increasing the conjectured ratio of one player will have a weakly

monotonic effect on all the actions of that player and other players in the corresponding SCE. A
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Figure 7: Simulations showing the homeomorphism of Proposition 9 for the case of 3 nodes, as discussed in

Example 8. The left panel shows vectors of conjectured ratios. The central panel shows the corresponding

SCE conjecture profile x̂ when the network is a line (the node that has conjectured ratio 1 in the red dots is

the central node). The right panel shows the corresponding SCE conjecture profile x̂ when the network is a

complete triangle.

final caveat to remember is that the homeomorphism is implied by the particular learning path

that we are assuming, which is based on constant conjectured ratios. Considering the paths in this

special case, in the following proposition we show that if local and global externalities are not too

large, the learning paths always converge.

Proposition 9. If, for each player i ∈ I, 0 < ciγ(n− 1) <
∑

j 6=i zij < 2, then the paths defined by

the learning paths (15) always converge to the unique solution of (16), which is locally stable.26

It should be noted that, in a game with just local externalities, where γ = 0, the assumptions

of Proposition 9 are more general than assuming that |
∑

j 6=i zij | < 1, which in turn implies that

26Definition 3 of local stability extends naturally to the case of learning with global externalities with paths of the

form (at, x̂t, ŷt)t∈N0 .
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Assumption 4 holds and hence that the learning paths converge. That is because we are focusing

on a precise learning path in which players act as if global externalities were present. Moreover,

in a game with γ > 0, if for some players the conjectured ratios are too high, the learning paths

defined by (16) may not converge to an interior solution, but may hit instead the upper boundaries

of the feasible action profiles.

Proposition 8 tells us that a non-negative shift in each conjectured ratio will always result in

a non-negative shift of each agent’s action in the resulting SCE. However, Proposition 9 gives an

implicit warning. Too high conjectured ratios may imply that the sufficient conditions for stability

are lost, and convergence to the corresponding SCE may not occur. Note also that, summing up

equation (2) for all the players, the aggregate welfare is maximized if a∗ solves the following linear

system of equalities

∀i ∈ I, a∗i = α+ (n− 1)γ +
∑

j∈I\{i}

(zij + zij)a
∗
j .

To better understand this aspect, consider the online social networks application we often

referred to. The results of this last subsection apply to the case where consumers do not know the

parameters of the model and their own total number, but have only a conjecture about the ratio of

the benefits from just using the platform, and from the actual strategic interaction on the platform.

Social platforms like Facebook and Twitter often provide information to users about the activity of

their peers. The social platform Reddit does not show to users their followers, but only a measure

of popularity called karma. A rationale for this marketing strategy may be that these companies

want to change the beliefs of players, making them feel more important (i.e., more followed) in the

social network. Even a benevolent social planner may want to set the conjectured ratios to the level

for which the social optimum is achieved. However, according to our model, if conjectured ratios

are too high, the learning paths may diverge. For example, in the context of the model and from

the assumptions of Proposition 9 a conjectured ratio is too high as soon as ci ≥
∑
j 6=i zij

γ(n−1) , because

in this case learning can lead to SCE where the activity of some player i hits her upper bound ai

and the strategy profile is inefficiently high for the players.

This is shown in the following example.

Example 9. We replicate the same exercise that we did in Example 8, but only for the case of

the complete triangle. However we do it for a wider range of conjectured ratios. Figure 8 shows

that in this case there may be combinations of conjectured ratios that prevent convergence of the

learning paths to interior equilibria.

6 Conclusion

In this paper we offer a novel approach to network games. A key application of network games is

in modelling large societies with millions of nodes and non regular distributions of connections. It
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Figure 8: Simulations showing the homeomorphism of Proposition 9 for the case of 3 nodes, as discussed

in Example 9. The left panel shows vectors of conjectured ratios. With respect to Figure 7, we allow for

higher values of conjectured ratios. Black dots represent cases for which the learning dynamics diverge. The

right panel shows the corresponding SCE conjecture profile x̂ when the network is a complete triangle, and

when the learning dynamics are converging.

is natural to assume that players may ignore the complete structure of the network; this prevents

them from performing sophisticated strategic reasoning possibly leading to a Nash equilibrium.

Instead, they just best respond to some subjective beliefs affected by the information feedback they

receive. We analyze simple conjectural best-reply paths and show that in some cases they converge

to stable Nash equilibria. However, we also characterize those situations in which stable action

profiles are not Nash equilibria, but rather selfconfirming equilibrium action profiles in which some

(if not all) players have wrong beliefs and yet the feedback they receive is consistent with such

beliefs. We also show that, in the presence of global externalities, simple biases in the perception of

position in the network may lead players to play action profiles that are far from the Nash equilibria

of the game.

One natural application of this approach is to directed online social platforms like Twitter

and Instagram, where links need not to be reciprocated. Using a linear–quadratic structure for

the payoff function we have also laid the ground for a tractable welfare analysis of the model.

However, policy implications are not straightforward if we want to consider the long run benefits

of connections and not only the instantaneous payoffs of the users of those platforms.

The analysis in Appendix B also provides a first account of the strategic reasoning that agents

can perform given some commonly known features of the network. For example, we use known
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results about rationalizability to show that, if the network game has strategic complementarities,

there is common knowledge of the game, and the Nash equilibrium is unique, then sophisticated

strategic reasoning leads to the unique NE, whereas the results differ when actions are strategic

substitutes.27

27On rationalizability in nice games with strategic complementarities see, e.g., Chapter 5 of Battigalli et al. (2022)

and the references therein.
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A Selfconfirming equilibria in parameterized nice games with ag-

gregators

In this section we develop a more general analysis of selfconfirming equilibria in a class of games

that contains the linear-quadratic network games with just observable payoffs studied in the main

text. To ease reading, we make this section self-contained, repeating some definitions from the

main text. We write this section focusing on local externalities. This because the analysis that

follows mainly concerns best-replys, that are not affected by the presence of global externalities, so

that all the considerations about best-replys in this section also apply to the case of the presence

of global externalities.

A parameterized nice game with aggregators and feedback is a structure

G =
〈
I,Z, (Ai, `i, vi, fi)i∈I

〉
where

• I is the finite players set, with cardinality n = |I| and generic element i.

• Z ⊆ Rm is a compact parameter space.

• Ai = [0, āi] ⊆ R+, a compact interval, is the action space of player i with generic element

ai ∈ Ai.

• Xi = [xi, x̄i] ⊆ R, a compact interval, is the space of payoff states for i.

• `i : A−i × Z → Xi (where A−i = ×j∈I\{i}Aj) is a continuous parameterized aggregator of

the actions of i’s co-players such that its range `i (A−i ×Z) is connected.28

• vi : Ai×Xi → R is the utility function of player i, which is strictly quasi-concave in ai and

continuous,29 and from which we derive the parameterized payoff function

ui : Ai ×A−i ×Z → R,

(ai,a−i,Z) 7→ vi (ai, `i (a−i,Z)).

Thus, xi = `i (a−i,Z) is the payoff–relevant state that i has to guess in order to choose a

subjectively optimal action. With this, for each Z ∈ Z,
〈
I, (Ai, ui,Z)i∈I

〉
is a nice game (cf.

Moulin 1984), and
〈
I,Z, (Ai, ui)i∈I

〉
is a parameterized nice game. We let

ri : Xi → Ai

xi 7→ arg max
ai∈Ai

vi (ai, xi)

28Since the range of each section `i,Z must be a compact interval, we require that the union of the compact intervals

`i,Z (A−i) (Z ∈ Z) is also an interval, which must be compact because Z is compact and `i continuous.
29That is, vi is jointly continuous in (ai, xi) and, for each xi ∈ [xi, x̄i], the section vi,xi : [0, āi] → R has a unique

maximizer a∗i (that typically depends on xi), it is strictly increasing on [0, a∗i ], and it is strictly decreasing on [a∗i , āi].

Of course, the monotonicity requirement holds vacuously when the relevant sub–interval is a singleton.
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denote the best-reply function of player i. The Maximum theorem implies that ri is

continuous.

• Let M ⊆ R be a set of “messages,” fi : Ai×Xi →M is a continuous feedback function that

describes what i observes (a “message,” e.g., a monetary outcome) after taking any action ai

given any payoff state xi.

On top of the formal assumptions stated above, we maintain the following minimal informal

assumption about players’ knowledge of the game:

• Each player i knows vi and fi.

Unless we explicitly say otherwise, we instead do not assume that i necessarily knows Z, or

function `i, or even that i understands that her payoff is affected by the actions of other players.

However, since i knows the feedback function fi : Ai ×Xi → M and the action she takes, what i

infers about the payoff state xi after she has taken action ai and observed message m is that

xi ∈ f−1
i,ai

(m) :=
{
x′i : fi

(
ai, x

′
i

)
= m

}
.

A.1 Conjectures

If player i only knows the feedback function fi, but does not know how the payoff state xi is

determined, then she just forms a conjecture about xi. If instead i knows that xi is determined by

the actions of others given parameter Z through the aggregator `i, then i forms a conjecture about

(a−i,Z).

Definition 4. A shallow conjecture for i ∈ I is a probability measure µi ∈ ∆ (Xi). A deep

conjecture for i is a probability measure µ̄i ∈ ∆ (A−i ×Z). An action a∗i is justifiable if there

exists a shallow conjecture µi such that

a∗i ∈ argmax
ai∈Ai

∫
Xi

vi (ai, xi)µi (dxi) ;

in this case we say that µi justifies a∗i . Similarly, we say that deep conjecture µ̄i ∈ ∆ (A−i ×Z)

justifies a∗i if the shallow conjecture induced by µ̄i (µi = µ̄i ◦ `−1
i ∈ ∆ (Xi)) justifies a∗i .

The following lemma summarizes well known results about nice games (see, e.g., Battigalli

et al., 2022) and some straightforward consequences for the more structured class of nice games

with aggregators considered here. We include the proof to make the exposition self-contained.

Lemma 1. The best-reply function ri : Xi → Ai is continuous, hence its range ri (Xi) is a compact

interval, just like Xi. Furthermore, for each a∗i ∈ Ai, the following are equivalent:

• a∗i is justifiable,
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• a∗i ∈ ri (Xi) (that is, a∗i is justified by a deterministic shallow conjecture),

• there is no ai such that vi (a∗i , xi) < vi (ai, xi) for all xi ∈ Xi (that is, a∗i is not dominated by

any other pure action).

Proof. With a slight abuse of notation, we let ri (µi) denote the set of best replies to (shallow)

conjecture µi:

ri (µi) := arg max
ai∈Ai

∫
Xi

vi (ai, xi)µi (dxi) .

By the Maximum theorem µi 7→ ri (µi) has a closed graph, which—under the stated assumptions—

is equivalent to upper hemi-continuity. By strict quasi-concavity, the restriction of the best-reply

correspondence to the domain Xi of deterministic conjectures is single-valued; hence, it must be a

continuous function.

Fix any closed (hence, compact) sub-interval C ⊆ Xi. Let NDi,p (C) denote the set of actions

that are not strictly dominated by other pure actions. By inspection of the definitions, it

holds that

ri (C) ⊆ ri (∆ (C)) ⊆ NDi,p (C) .

We prove that NDi,p (C) ⊆ ri (C), that is, Ai\ri (C) ⊆ Ai\NDi,p (C), which therefore implies the

thesis. Since ri is a continuous function on Xi ⊇ C and C is compact and connected, ri (C) is

compact and connected as well, hence, it is a compact interval. Therefore, it is enough to show

that all the actions below min ri (C) or above max ri (C) are dominated. Fix any ai < min ri (C),

by strict quasi-concavity,

∀xi ∈ C, vi (ai, xi) < vi (min ri (C) , xi) ≤ vi (ri (xi) , xi) .

Therefore, every ai < min ri (C) is strictly dominated by min ri (C). A similar argument shows

that every ai > max ri (C) is strictly dominated by max ri (C). Since there are no other actions

outside ri (C), this concludes the proof. �

Corollary 1. Suppose that the aggregator `i is onto. Then, an action of player i is justifiable if

an only if it is justified by a deterministic (Dirac) deep conjecture.

Proof. The “if” part is trivial. For the “only if” part, fix a justifiable action a∗i arbitrarily. By

Lemma 1, there is some xi ∈ Xi such that a∗i = ri (xi). Since the aggregator `i is onto, there is

some (a−i,Z) ∈ `−1
i (xi) such that

a∗i ∈ arg max
ai∈Ai

ui (ai,a−i,Z) .

Hence a∗i is justified by the deep conjecture δ(a−i,Z), that is, the Dirac measure supported by

(a−i,Z). �

With this, from now on we mostly restrict our attention to (shallow, or deep) deterministic

conjectures.
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A.2 Feedback properties

Definition 5. Feedback fi satisfies observable payoffs (OP) relative to vi if there is a function

v̄i : Ai ×M → R such that

vi (ai, xi) = v̄i (ai, fi (ai, xi))

for all (ai, xi) ∈ Ai×Xi; if the section v̄i,ai is injective for each ai ∈ Ai, then we say that fi satisfies

just observable payoffs (JOP) relative to vi. Game G satisfies (just) observable payoffs if, for

each player i ∈ I, feedback fi satisfies (J)OP relative to vi.

If fi satisfies JOP, we may assume without loss of generality that fi = vi, because, for each

action ai, the partitions of Xi induced by the preimages of vi,ai and fi,ai coincide:

Remark 3. Feedback fi satisfies JOP relative to vi if and only if

∀ai ∈ Ai,
{
v−1
i,ai

(u)
}
u∈vi,ai (Xi)

=
{
f−1
i,ai

(m)
}
m∈fi,ai (Xi)

. (18)

Proof. (Only if) Fix ai ∈ Ai. Since fi satisfies JOP relative to vi, vi,ai (Xi) = (v̄i,ai ◦ fi,ai) (Xi)

(by OP), for each u ∈ vi,ai (Xi) there is a unique message mai,u = v̄−1
i,ai

(u) (by injectivity of v̄i,ai),

and

v−1
i,ai

(u) = {xi ∈ Xi : vi (ai, xi) = u}

= {xi ∈ Xi : v̄i (ai, fi (ai, xi)) = u}

= {xi ∈ Xi : fi (ai, xi) = mai,u} = f−1
i,ai

(mai,u) ,

which implies eq. (18).

(If) Suppose that eq. (18) holds. For every ai ∈ Ai and m ∈ fi,ai (Xi) select some ξi (ai,m) ∈
f−1
i,ai

(m). Let

D :=
⋃
ai∈Ai

{ai} × fi,ai (Xi) .

With this,

ξi : D → Xi

is a well defined function. Domain D is the set of action-message pairs for which the definition of

v̄i matters. Define v̄i as follows:

v̄i (ai,m) =

{
vi (ai, ξi (ai,m)) if (ai,m) ∈ D,

0 otherwise.

By construction, eq. (18) implies that

∀ (ai, xi) ∈ Ai ×Xi, v̄i (ai, fi (ai, xi)) = vi (ai, xi) .
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Hence, OP holds. Furthermore, for all ai ∈ Ai, m′,m′′ ∈ fai (Xi),

m′ 6= m′′ ⇒ ξi (ai,m
′) 6= ξi (ai,m

′′)

⇒ vi (ai, ξi (ai,m
′)) 6= vi (ai, ξi (ai,m

′′))

⇒ v̄i (ai,m
′) 6= v̄i (ai,m

′′)

where the first and the second implications follow from eq. (18) (ξi (ai,m
′) and ξi (ai,m

′′) belong

to different cells of the coincident partitions, hence yield different utilities), and the third holds by

construction. Therefore, v̄i,ai is injective for every ai, which means that JOP holds. �

Definition 6. Feedback fi satisfies observability if and only if i is active (OiffA) if section

fi,ai is injective for each ai > 0 and constant for ai = 0. Game G satisfies observability by active

players if OiffA holds for each i.

Remark 4. If a network game is linear-quadratic and satisfies just observable payoffs, then it

satisfies observability by active players.

Proof. By Remark 3 JOP implies that, for each ai ∈ Ai,{
v−1
i,ai

(u)
}
u∈vi,ai (Xi)

=
{
f−1
i,ai

(m)
}
m∈fi,ai (Xi)

.

The linear-quadratic form of vi implies that, for every xi ∈ Xi,

v−1
i,0 (vi,0 (xi)) = Xi ,

∀ai > 0, v−1
i,ai

(vi,ai (xi)) = {xi} .

These equalities imply that fi,0 is constant and fi,ai is injective for ai > 0, that is, NG satisfies

observability by active players. �

Definition 7. Feedback fi satisfies own-action independence (OAI) of feedback about the state

if, for all justifiable actions a∗i , a
o
i and all payoff states x̂i, xi,

fi (a∗i , x̂i) = fi (a∗i , xi)⇒ fi (aoi , x̂i) = fi (aoi , xi) .

Game G satisfies own-action independence of feedback about the state if, for each player i ∈ I,

feedback fi satisfies OAI.

In other words, OAI says that if player i cannot distinguish between two payoff states x̂i and

xi when she chooses some given justifiable action a∗i , then she cannot distinguish between these

two states when he chooses any other justifiable action aoi . This is equivalent to requiring that

the partitions of Xi of the form
{
f−1
i,ai

(m)
}
m∈fi,ai (Xi)

coincide across justifiable actions, i.e. across

actions ai ∈ ri (Xi) (see Lemma 1).

The following lemma—which holds for any game, not just nice games—states that, under payoff

observability and own-action independence, an action is justified by a confirmed conjecture if and

only if it is a best reply to the actual payoff state:
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Lemma 2. If fi satisfies observable payoffs relative to vi and own-action independence of feedback

about the state, then for all (a∗i , xi) ∈ Ai ×Xi the following are equivalent:

1. there is some x̂i ∈ Xi such that a∗i ∈ arg maxai∈Ai vi (ai, x̂i) and fi (a∗i , x̂i) = fi (a∗i , xi),

2. a∗i ∈ arg maxai∈Ai vi (ai, xi).

Proof. (Cf. Battigalli et al., 2015, Battigalli et al., 2022) It is obvious that 2 implies 1 indepen-

dently of the properties of fi. To prove that 1 implies 2 under the stated assumptions, suppose

that fi satisfies OP-OAI and let x̂i be such that 1 holds. Let aoi be a best reply to the actual state

xi. We must show that also a∗i is a best reply to xi. Note that both a∗i and aoi are justifiable; hence,

by OAI, fi (a∗i , x̂i) = fi (a∗i , xi) implies fi (aoi , x̂i) = fi (aoi , xi). Using OP, condition 1, and OAI as

shown in the following chain of equalities and inequalities, we obtain

vi (a∗i , xi)
(OP)
= v̄i (a∗i , fi (a∗i , xi))

(1)
= v̄i (a∗i , fi (a∗i , x̂i))

(OP)
= vi (a∗i , x̂i)

(1)

≥

vi (aoi , x̂i)
(OP)
= v̄i (aoi , fi (aoi , x̂i))

(1,OAI)
= v̄i (aoi , fi (aoi , xi))

(OP)
= vi (aoi , xi) .

Since ao is a best reply to xi and vi (a∗i , xi) ≥ vi (aoi , xi), it must be the case that also a∗i is a best

reply to xi. �

Corollary 2. Suppose that the parameterized nice game with aggregators and feedback G satis-

fies observable payoffs and own-action independence of feedback about the state, then the sets of

selfconfirming action profiles and Nash equilibrium action profiles coincide for each Z:

∀Z ∈ Z, ASCE
Z = ANE

Z .

Proof By Remark 1, we only have to show that ASCE
Z ⊆ ANE

Z . Fix any a∗ = (a∗i )i∈I ∈ ASCE
Z and

any player i. By definition of SCE and by Lemma 1, there is some x̂i ∈ Xi such that a∗i ∈ ri (x̂i)

and fi (a∗i , x̂i) = fi
(
a∗i , `i

(
a∗−i,Z

))
. By Lemma 2 a∗i ∈ ri

(
`i
(
a∗−i,Z

))
. This holds for each i, hence

a∗ ∈ ANE
Z . �

Corollary 2 provides sufficient conditions for the equivalence between SCE and NE action pro-

files. Next, we give sufficient conditions that allow a characterization of ASCE
Z by means of Nash

equilibria of auxiliary games.

A.3 Equilibrium characterization

If ai ∈ [0, āi] is interpreted as an activity level (e.g., effort) by player i, then it makes sense to say

that i is active if ai > 0 and inactive otherwise. Let I0 denote the set of players for whom

being inactive is justifiable. Note that, by Lemma 1,

I0 = {i ∈ I : min ri (Xi) = 0} .
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Also, for each Z ∈ Z and non-empty subset of players J ⊆ I, let ANE
J,Z denote the set of Nash

equilibria of the auxiliary game with players set J obtained by letting ai = 0 for each i ∈ I\J , that

is,

ANE
J,Z =

{
a∗J ∈ ×j∈JAj : ∀j ∈ J, a∗j = rj

(
`j

(
a∗J\{j},0I\J ,Z

))}
,

where 0I\J ∈ RI\J is the profile that assigns 0 to each i ∈ I\J . If J = ∅, let ANE
J,Z = {∅} by

convention, where ∅ is the pseudo-action profile such that (∅,0I) = 0I .

Lemma 3. Suppose that the parameterized nice game with aggregators and feedback G satisfies

observability by active players. Then, for each Z, the set of selfconfirming action profiles is

ASCE
Z =

⋃
J :I\J⊆I0

ANE
J,Z ×

{
0I\J

}
.

Proof Fix a∗ and let J be the set of players i such that a∗i > 0. Fix Z ∈ Z arbitrarily. Suppose

that a∗ ∈ ASCE
Z and fix any i ∈ I. If a∗i = 0, then 0 is justifiable for i, that is i ∈ I0. If a∗i > 0,

observability by active players implies that fi,a∗i is injective, that is, action a∗i reveals the payoff

state, which implies that the (shallow) conjecture justifying a∗i is correct: a∗i = ri
(
`i
(
a∗−i,Z

))
.

Hence a∗J ∈ ANE
J,Z . Thus, a∗ =

(
a∗J ,a

∗
I\J

)
is such that a∗i = 0 for each i ∈ I\J ⊆ I0, and

a∗j = rj

(
`j

(
a∗J\{j},0I\J ,Z

))
> 0 for each j ∈ J . Hence,

a∗ =
(
a∗J ,a

∗
I\J

)
∈ ANE

J,Z ×
{
0I\J

}
with I\J ⊆ I0.

Let I\J ⊆ I0 and
(
a∗J ,a

∗
I\J

)
∈ ANE

J,Z ×
{
0I\J

}
. Since G satisfies observability by active players,

for each i ∈ I\J , any conjecture justifying a∗i = 0 (any x̂i ∈ r−1
i (0)) is trivially confirmed. For each

j ∈ J , a∗j > 0 is by assumption the best reply to the correct, hence confirmed, shallow conjecture

x̂j = `i

(
a∗J\{j},0I\J ,Z

)
. Hence,

(
a∗J ,a

∗
I\J

)
=
(
a∗J ,0I\J

)
∈ ASCE

Z . �

B Knowledge of the network and strategic reasoning

The SCE concept does not rely, either explicitly or implicitly, on strategic reasoning. Thus, some

SCE’s may be supported by confirmed conjectures that are inconsistent with the assumption that

other agents are rational and think strategically. In this section we consider the behavioral conse-

quences of agents in a network game with feedback using the common information they have about

the network to reason strategically, thus forming (deep) conjectures about the relevant unknowns,

that is, actions of others and parameters. We model strategic reasoning by means of the assumption

of common belief in rationality. Thus, we analyze which SCE’s are consistent with common belief

in rationality, which may help in selecting some SCE’s when there is a multiplicity of equilibria

(see Battigalli 1987, Battigalli and Guaitoli 1997, Battigalli and Bordoli 2022). More specifically,

when agents have some information about the network, it is reasonable to assume that they use it
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to determine how they should act. Indeed, using one step of reasoning, every agent may try to infer

which actions her direct neighbors may play, restricting own conjectures accordingly. Depending

on the knowledge about the strategic interactions she is exposed to, the agent determines the set of

her own actions that are best replies to conjectures satisfying said restrictions, i.e., consistent with

neighbors’ rationality. Going further, she can take into account that her neighbors actions should

be best replies to conjectures consistent with the rationality of her neighbors’ neighbors, and so on.

This yields a notion of rationalizability of conjectures, and a corresponding definition of selfcon-

firming equilibrium with rationalizable conjectures, which is the object of our analysis in

this section. We obtain results for the cases analyzed in the previous sections of the paper, that is

positive local externalities, arbitrary local externalities, and positive local externalities joint with

positive global externalities.

We can distinguish among different elements that can be the object of knowledge: (i) the pure

topological structure of the network (who is linked with whom); (ii) the kind of local interaction

(positive or negative local externality) that operates on each link; (iii) the intensity of this inter-

action. Here we focus on two extreme cases, common knowledge of the network Z, or common

knowledge of only some aspects of the network captured by the common exogenous uncertainty

space Z, e.g., whether there are positive local externalities. Thus, we ignore other intermediate

cases that could be analyzed within our framework. In particular, we ignore the possibility that

agents have private information about the network, which simplifies the analysis.

A characterization of SCE Here we simply characterize the set ASCE
Z of selfconfirming equi-

librium action profiles at Z.

Proposition 10. Consider a network game such that, for every i ∈ I and for every x̂i ∈ Xi,

ri (x̂i) > 0. Then, for each Z ∈ Z, ASCE
Z = ANE

Z .30

Proof. Since NG is linear-quadratic and satisfies just observable payoffs, then it satisfies ob-

servability by active players. Since being inactive is unjustifiable (dominated) for every player,

observability by active players implies own-action independence of the feedback about the state.

Then, the result follows from Corollary 2 in Appendix A. �

Knowledge and deep conjectures As defined in the previous sections, Z ⊆ [w, w̄]I×I is the

set of possible weighted networks. Formally, we assume that the compact set Z is also connected.

Informally, we assume that Z is common knowledge, and that there is common knowledge of the

payoff functions parametrized by Z. For the purposes of this analysis, we consider two possible

cases: i) Z = {Z}, so that the network is common knowledge; ii) Z ⊆ [0, w̄]I×I , so that the

network Z may be unknown, but it is common knowledge that links are positive and bounded by

30Given the stated assumptions about feedback, the same result holds also for non–linear and continuous aggregators

`i and continuous strictly quasi-concave utility functions vi.
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w̄. Besides common knowledge of Z, we have to consider deep conjectures, that is, conjectures

about the network Z and the actions of other agents in the network. For each agent i ∈ I, deep

conjectures are defined as probability measures µ̄i ∈ ∆(A−i × Z) (see definition 4 in A.1). Notice

that, if Z is a singleton, the only uncertainty agents have is about actions of others.

Rationalizability Given common knowledge of the parameterized game
〈
I,Z, (Ai, ui)i∈I

〉
, we

can characterize the behavioral implications of rationality and common belief in rationality (RCBR),

i.e., the set of action profiles consistent with these (so called) epistemic assumptions. A formal

expression of these epistemic assumptions and a characterization of their behavioral implications in

a class of games that contains those considered here is given, for example, in Battigalli and Tebaldi

(2019) (see also Battigalli et al., 2022, for a more intuitive explanation). In our setting, an action

profile is consistent with RCBR if and only if, given Z, for every i ∈ I, it survives the following

procedure of iterated elimination of non-best replies:

• A0
i = Ai,

• An+1
i =

{
a∗i ∈ Ai : ∃µ̄i ∈ ∆(An

−i ×Z), a∗i ∈ arg max
ai∈Ai

Eµ̄i [ui(ai, ·, ·)]
}

,

• A∞i =
⋂
n∈N

Ani .

Definition 8. An action ai of player i is rationalizable if ai ∈ A∞i . A deep conjecture µ̄i of player

i is rationalizable if µ̄i ∈ ∆(A∞−i ×Z).

Remark 5. For every Z ∈ Z every Nash equilibrium at Z (every a∗ ∈ ANE
Z ) is a profile of

rationalizable actions.

A compactness-continuity argument yields the following:

Remark 6. An action is rationalizable if and only if it is a best reply to a rationalizable conjecture.

As we did for the case of shallow conjectures, for each agent i ∈ I, we can restrict our attention

to deterministic deep conjectures (â−i, Ẑi) ∈ A−i × Z. We are allowed to use deterministic deep

conjectures because, for each i ∈ I, A−i and Z are compact and connected and thus, given the

continuity of ui and strict quasi-concavity of each section ui,a−i,Z, for every probabilistic deep con-

jecture there exists a deterministic deep conjecture that delivers the same best reply (see Appendix

A and Battigalli et al., 2022). This implies that if An
−i is compact and connected, then An+1

i is the

compact interval of best replies to deterministic conjectures over An
−i (see Lemma 1). With this,

the following result follows from Lemma 1 and a straightforward induction argument: each set An

of n-rationalizable action profiles is a “box,” or order-interval :
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Theorem 1. In a parametrized nice game with aggregators (with Z connected)

An = ×i∈I [minAni ,maxAni ]

for all n ∈ N∪{∞}.

Selfconfirming equilibrium with rationalizable conjectures Focusing on the case consid-

ered in the main body of the paper, linear-quadratic network games with just observable payoffs,

we refine the definition of selfconfirming equilibrium adding the requirement of rationalizability of

conjectures.

Definition 9. A profile
(
a∗i , â−i, Ẑi

)
i∈I
∈ ×i∈I (Ai ×A−i ×Z) of actions and deterministic deep

conjectures is a selfconfirming equilibrium at Z with rationalizable conjectures (SCER) of

a game G with just observable payoffs if, for each player i ∈ I,

1. (best reply) a∗i ∈ ri
(
`
(
â−i, Ẑi

))
;

2. (confirmed conjectures, given just observable payoffs) ui

(
a∗i , â−i, Ẑi

)
= ui

(
a∗i ,a

∗
−i,Z

)
;

3. (rationalizable conjectures) (â−i, Ẑi) ∈ A∞−i ×Z.

We denote by ASCER
Z,Z the set of SCE actions profiles at Z justified by rationalizable confirmed

conjectures, given the commonly known parameter space Z. Similarly, if Z = {Z}, we let ASCER
Z

denote the set of SCE actions profiles justified by rationalizable confirmed conjectures, given the

commonly known network Z. Note, this is the set of action profiles consistent with the following

assumptions: (a) players are rational, (b) players’ conjectures are confirmed (given Z), and (c)

there is common belief of (a). A stronger notion of “rationalizable selfconfirming equilibrium” for

games with complete information (due to Rubinstein and Wolinsky, 1994) is based on the following

assumptions: (a) players are rational, (b) players’ conjectures are confirmed, and (c*) there is

common belief of (a) and (b).31 We limit our analysis to the weaker SCER concept for two reasons:

(i) it is simpler; (ii) to our knowledge, there is no learning foundation of rationalizable SCE à la

Rubinstein and Wolinsky, whereas one can justify our concept by considering learning paths like

those analyzed in this paper, assuming that players always hold rationalizable conjectures because

there is common belief in rationality. Note that such belief cannot ever be falsified by what players

observe, given that they best respond to rationalizable conjectures, and therefore always choose

rationalizable actions (see Battigalli and Bordoli, 2022).

We now discuss how SCER actions are shaped depending on the type of strategic interaction

in the given network.

31See Esponda (2013) for games with incomplete information.
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Positive local externalities The first case analyzed in the previous sections of the paper is

when there are local complementarities or mild substitutabilities. For simplicity of exposition,

we only consider the case of positive local externalities: if the actual network is unknown, then

Z ⊆ [0, w̄]I×I is not a singleton, if it is commonly known then Z = {Z} with Z ∈ [0, w̄]I×I .

Common knowledge of Z implies that Xi = `i (A−i ×Z) for each i. Thus, the hypotheses of

Proposition 10 are satisfied, because xi = 0 and min ri (Xi) = ri (0) = αi > 0 for each i. Given

positive local externalities, it follows that the set of SCE action profiles at Z coincides with the

set of Nash equilibrium profiles at Z (Proposition 2 provides sufficient conditions for uniqueness).

Consequently, adding rationalizability on top of the SCE requirements does not change the result,

because every Nash equilibrium action profile is rationalizable.

Corollary 3. For every linear-quadratic network game with just observable payoffs, if Z ∈
[0, w̄]I×I , then ASCE

Z = ASCER
Z = ASCER

Z,[0,w̄]I×I
= ANE

Z .32

Even if, with positive local externalities, adding rationalizability does not change the set of

SCE’s, it is still interesting to understand how rationalizability works in a linear–quadratic network

game, and more generally in nice games with strategic complementarities.

Given the finite index set K, the vector space RK is endowed with the standard partial order:

v′ ≤ v′′ if and only if v′k ≤ v′′k for each k ∈ K. With this, our assumptions imply that Z ⊆ RI×I is

a complete lattice, which implies that also A×Z is a complete lattice. We let Z and Z̄ respectively

denote the smallest and largest elements of Z. Let Xi = `i (A−i ×Z). A function vi : Ai×Xi → R
has increasing differences if, for all a′i, a

′′
i ∈ Ai, x′i, x′′i ∈ Xi such that a′i ≤ a′′i and x′i ≤ x′′i

vi
(
a′′i , x

′
i

)
− vi

(
a′i, x

′
i

)
≤ vi

(
a′′i , x

′′
i

)
− vi

(
a′i, x

′′
i

)
.

Definition 10. A linear-quadratic network game NG has strategic complementarities if Z ⊆
[0, w̄]I×I is a complete lattice and, for each i ∈ I, vi has increasing differences.

Remark 7. If a linear-quadratic network game NG has strategic complementarities, then each

game
〈
I, (Ai, ui,Z)i∈I

〉
with Z ∈ Z is supermodular.

It is well known that the set of Nash equilibria of a supermodular game is a complete lattice

(e.g., Milgrom and Roberts, 1990). With this, for any linear-quadratic network game with strategic

complementarities, we let aNEZ and āNE
Z̄

respectively denote the smallest Nash equilibrium of game〈
I,
(
Ai, ui,Z

)
i∈I

〉
and the largest Nash equilibrium of game

〈
I,
(
Ai, ui,Z̄

)
i∈I

〉
. The “box,” or order-

interval in RI determined by aNEZ and āNE
Z̄

is

[
aNEZ , āNEZ̄

]
:= ×i∈I

[
aNEi,Z , ā

NE
i,Z̄

]
.

32As we noted for Proposition 10, the same result holds also for a non–linear and continuous aggregator `i and a

generic continuous and strictly quasi-concave utility function vi.
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Proposition 11. Consider a linear-quadratic network game NG with strategic complementari-

ties. The set of rationalizable action profiles is A∞ =
[
aNEZ , āNE

Z̄

]
, that is, the set of rationalizable

actions of each player is the interval between the smallest Nash equilibrium action in the game deter-

mined by the smallest parameter Z and the largest Nash equilibrium action in the game determined

by the largest parameter Z̄.

Proof Consider an auxiliary game Ĝ where an indifferent pseudo-player chooses Z ∈ Z, and the

action sets and payoff functions of each i ∈ I are those specified in the network game NG given

Z. It is easy to verify that the auxiliary game Ĝ is supermodular and every Z ∈ Z is a Nash

equilibrium action for the indifferent pseudo-player, that is, the set of Nash equilibria of Ĝ is⋃
Z∈Z

ANE
Z × {Z} .

It is also easy to check that the set of rationalizable profiles of Ĝ is A∞×Z, and Theorem 1 implies

that A∞ is an order-interval. Finally, Theorem 5 in Milgrom and Roberts (1990) implies that the

smallest element of A∞×Z is
(
aNEZ ,Z

)
and the largest element of A∞×Z is

(
āNE
Z̄

, Z̄
)
; therefore,

A∞ =
[
aNEZ , āNE

Z̄

]
. �

Proposition 11 characterizes the set of rationalizable action profiles for a generic complete

lattice Z. It is straightforward to see that if the network Z is common knowledge, i.e., Z̄ = Z,

and there is a unique Nash equilibrium aNEZ (e.g., if the assumptions of Proposition 2 hold), then

aNEZ = āNE
Z̄

= aNEZ and A∞ =
{
aNEZ

}
. Thus, in this particular case, the Nash equilibrium concept

is justified by assuming that information is complete and players are strategically sophisticated, i.e.,

there is rationality and common belief in rationality.

Positive and negative local externalities We consider now the case in which a network also

allows for strictly negative weights, so that Z ⊆[w, w̄]I×I with w < 0 and w̄ > 0. The SCE analysis

for this case performed in Section B shows that a selfconfirming equilibrium with shallow conjec-

tures may allow any arbitrary set of agents to be inactive as long as this is not dominated. Here

we show that common knowledge of the network and strategic reasoning may refine the SCE set,

even if one does not necessarily get rid of all the non-Nash SCE’s. Indeed, when negative local

externalities (hence, strategic substitutabilities) are at work, the set of rationalizable action pro-

files is typically larger than the set of Nash equilibria. Here, we characterize the set of SCE’s with

rationalizable conjectures.

Consider the following two matrices. Z−, with all the negative elements of Z, is such that

zij,− < 0 if zij < 0, and zij,− = 0 otherwise. Z+, with all the positive elements of Z, is such

that zij,+ > 0 if zij > 0, and zij,+ = 0 otherwise. Then, Z = Z− + Z+. Define a sequence

of pairs of action profiles (an, ān)n∈N0 as follows: a0 = 0, ā0 = (āi)i∈I and, for every n ∈ N,
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an = α + Z+an−1 + Z−ān−1 and ān = α + Z+ān−1 + Z−an−1. Then, at the nth step of iterated

deletion of dominated strategies, the interval of actions agent i ∈ I can play is Ani = [ani , ā
n
i ]. Indeed,

for each i ∈ I, ani is the best reply to the “most pessimistic” conjecture consistent with n− 1 steps

of strategic reasoning, which is given by (i) the largest possible actions of neighbors towards whom

i experiences negative externalities (strategic substitution) that can be rationalized in n− 1 steps,

and (ii) the smallest possible actions that can be rationalized in n − 1 steps of neighbors towards

whom i experiences positive externalities (strategic complementarities). Similarly, āni is the best

reply to the “most optimistic” conjecture consistent with n− 1 steps of strategic reasoning, which

is given by (i) the largest possible actions that can be rationalized in n − 1 steps of neighbors

towards whom i experiences positive externalities, and (ii) the smallest possible actions that can

be rationalized in n− 1 steps of neighbors towards whom i experiences negative externalities. Let

I∞0 := {i ∈ I : lim
n→∞

minAni = 0} = {i ∈ I : lim
n→∞

ani = 0}

denote the set of agents for whom being inactive is rationalizable. Relying on Proposition 12, we

can characterize ASCER
Z as the set of SCE’s in which only players in I∞0 can be inactive.

Proposition 12. Consider a linear-quadratic network game with just observable payoffs and com-

mon knowledge of the network (Z = {Z}). Then,

ASCER
Z =

⋃
J :I\J⊆I∞0

ANE
J,Z ×

{
0I\J

}
.

Proof. Recall from Proposition 1 that

ASCE
Z =

⋃
J :I\J⊆I0

ANE
J,Z ×

{
0I\J

}
,

where I0 ⊇ I∞0 denotes the set of players for whom being inactive is undominated.

First we prove by induction that, if I\J ⊆ I∞0 then ANE
J,Z ×

{
0I\J

}
⊆ An for every n; hence,

ANE
J,Z ×

{
0I\J

}
⊆ A∞. Indeed, for each profile

(
aJ ,0I\J

)
∈ ANE

J,Z ×
{
0I\J

}
and each player i ∈ J ,

action ai is the best reply to
(
aJ\{i},0I\J

)
and for each i ∈ I\J , action ai = 0 is rationalizable;

thus, ANE
J,Z ×

{
0I\J

}
⊆ A1. Suppose by way of induction that, for some n ≥ 2, ANE

J,Z ×
{
0I\J

}
⊆

An−1. Then, for each profile
(
aJ ,0I\J

)
∈ ANE

J,Z ×
{
0I\J

}
and each player i ∈ J , action ai is the

best reply to
(
aJ\{i},0I\J

)
∈ An−1

−i and for each i ∈ I\J , action ai = 0 is rationalizable; thus,

ANE
J,Z ×

{
0I\J

}
⊆ An. With this, for each action profile in ANE

J,Z ×
{
0I\J

}
, each player i ∈ J is best

replying to the co-players’ actions, hence to a rationalizable confirmed conjecture, and each player

i ∈ I\J ⊆ I∞0 is rationalizably inactive, hence, she is best replying to a rationalizable conjecture

(Remark 6), which is trivially confirmed. Thus, I\J ⊆ I∞0 implies ANE
J,Z ×

{
0I\J

}
⊆ ASCER

Z .

If instead (I\J) * I∞0 , for each action profile a ∈ ANE
J,Z ×

{
0I\J

}
there is some i ∈ I\J such that

ai = 0 is not rationalizable, hence it is not a best reply to any rationalizable conjecture (Remark

6). This implies that a /∈ ASCER
Z . �
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Finally, we note that even if the network is not common knowledge, but it is common knowledge

that local externalities are mild, then there is a unique SCER, which—necessarily—coincides with

the unique Nash equilibrium. This is the case, for example, if − α
(n−1)ā < w and w̄ < ā−α

(n−1)α , and

this is common knowledge, then rationalizability yields the unique interior Nash equilibrium. One

can get intermediate results by changing the threshold for just one of w and w̄.

Local and global externalities We consider now the case of both local and global externalities.

As discussed in Section 5, we restrict our attention to situations in which local externalities are

positive. In this case, there is a continuum of SCE’s, one for each vector of conjectured ratios.

We now study whether strategic reasoning helps in selecting some SCE’s. The main result is that,

if there is common knowledge of the network, strategic reasoning expressed as common belief in

rationality selects the unique Nash equilibrium among the infinitely many SCE’s.

Proposition 13. Consider a linear-quadratic network game with just observable payoffs, positive

local externalities, global externalities, common knowledge of the network (Z = {Z}), and a unique

Nash equilibrium. Then ASCER
Z = ANE

Z

Proof. The result follows from Proposition 11. Indeed the game we are considering has strategic

complementarities. Then, A∞ =
[
aNEZ , āNE

Z̄

]
. Since Z is common knowledge, and there exists a

unique Nash equilibrium, viz aNEZ , it follows that A∞ =
{
aNEZ

}
. Then, ASCER

Z =
{
aNEZ

}
. �

We can alternatively prove this result by showing how step-by-step strategic reasoning works

in this case, assuming for simplicity that the unique Nash equilibrium is interior. Recall that if

the network is common knowledge and local externalities are positive, then agents can only have

positive justifiable actions. Consider a0 = α = (αi)i∈I and ā0 = ā = (āi)i∈I . If the network is

common knowledge, then

a1 =α + Zα, ā1 =α + Zā

a2 =α + Z(α + Zα), ā1 =α + Z(α + Zā)

=α + Zα + Z2α, =α + Zα + Z2ā

a3 =α + Zα + Z2α + Z3α, ā3 =α + Zα + Z2α + Z3ā

. . . . . .

an =α
n∑
t=0

Zt, ān =α
n−1∑
t=0

Zt + Znā

Since the game is assumed to have a unique Nash equilibrium that is also interior, then limn→∞
∑n

t=0 Zt

exists and it is finite, and limn→∞ Zn = 0. Then a∞ = ā∞ = aNE . Since A∞Z = ANE
Z = {aNE} ⊇

ASCE
Z , it follows that ASCER

Z = A∞Z ∩ASCE
Z = ANE

Z .
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C Interior Nash equilibria

Proposition 1 shows that, given our maintained assumptions about the network game with feedback,

selfconfirming action profiles can be characterized as Nash equilibria of auxiliary games with a

restricted set of players, which must include all those for whom being inactive is unjustifiable

(dominated), but may leave out any player for whom inactivity is justifiable (undominated). We

now provide some results about existence of these SCE’s that will be useful in proving Proposition

2. We first present sufficient conditions that are present in the literature for the existence and

uniqueness of interior Nash equilibria, then we provide some original results.

In this appendix we formulate the problem with the approach of linear algebra. We consider a

square matrix Z ∈ Rn×n such that zii = 0 for all i ∈ {1, . . . , n}. We denote by I the identity matrix,

λmax(Z) the maximal eigenvalue of Z, ρ(Z) the spectral radius of Z (i.e., the largest absolute value

of its eigenvalues), 1 the vector of all 1’s, 0 the vector of all 0’s, and � the strict partial ordering

between vectors (meaning that all the entries in the first vector are coordinatewise strictly greater

than the entries in the second vector). With this notation, the condition for the existence of a

unique Nash equilibrium which is also interior is (I− Z)−1 · 1� 0.

Proposition 14. Consider a square matrix Z ∈ Rn×n such that (i) ρ(Z) < 1, (ii) for each i ∈ I,

zii = 0, and (iii) for each j 6= i, zij ≤ 0. Then (I− Z)−1 · 1� 0.33

Some results can be provided also when the sign of the externalities are mixed. Recall that

matrix Z is symmetrizable if there exists a diagonal matrix W and a symmetric matrix Z0 such

that Z = WZ0. Note that, if Z is symmetrizable, then all its eigenvalues are real. If for all i,

zii = 0, and Z is symmetrizable, we define the symmetric matrix Z̃ to be such that z̃ij = zij
√
wiwj .

Proposition 15. Consider a square matrix Z ∈ Rn×n such that (i) for each i ∈ I, zii = 0, (ii) Z

is symmetrizable, and (iii) |λmax(Z̃)| < 1. Then (I− Z)−1 · 1� 0.34

Finally, we provide below a novel alternative condition.

Proposition 16. Consider a square matrix Z ∈ Rn×n such that (i) for each i ∈ I, zii = 0 and (ii)

for each i 6= j, |zij | < 1
n . Then (I− Z)−1 · 1� 0.

Proof: Let B := (I− Z). First of all, by Gershgorin circle theorem, B has all eigenvalues, possibly

complex, with real part strictly between 0 and 2, so det(B) 6= 0.

33This is Theorem 1 in Ballester et al. (2006). The same result is in Appendix A in Stańczak et al. (2006).
34See Section VI of Bramoullé et al. (2014), generalizing Proposition 2 therein. Note that in their payoff specification

externalities have a minus sign, while in (3) we have a plus sign: this is why we have a condition on the maximal

eigenvalue and not on the minimal eigenvalue.
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Consider the n vectors b1, . . . ,bn given by the n rows of B, and take the hyperplane in Rn

passing by those n points:

H := {h ∈ Rn : ∃α ∈ Rn,α′ · 1 = 1 ∧ h = B′α} .

Now, consider the following vector

v := B−11 .

vi is exactly the sum of the entries in ith row of B−1. However, v is also a vector perpendicular to

H. This is because for any h ∈ H we have, for some α ∈ Rn,

h · v =
(
B′α

)′ ·B−11

= α′1

=

n∑
i=1

αi = 1 ,

which is a constant.

Now, we want to show that H does not pass through the convex region of vectors with all

negative elements: H ∩ (−∞, 0]n = ∅. In fact, it is impossible to find w ∈ Rn, such that w′ ·
1 = 1 and B′w � 0. Suppose, by way of contradiction, that such vector w exists. Let k :=

arg maxi∈{1,...,n}{wi} (wk > 0 because
∑n

i=1wi = 1), then (calling bk the kth row of matrix B)

bk ·w = wk +
∑
j 6=k

wjbjk > wk −
∑
j 6=k
|wj ||zjk| > wk

1−
∑
j 6=k
|zjk|

 > 0 ,

which is a contradiction.

Finally, we show that if a hyperplane H satisfies H ∩ (−∞, 0]n = ∅, then its perpendicular

vector from the origin has all strictly positive entries, and this concludes the proof .

We do so by induction on n.

1. n = 2: This is easy to show graphically. In the Cartesian plane the hyperplane is a line. Not

passing by (−∞, 0]2, it will cross both axes in their strictly positive part: call these intersection

points A and B. So, the segment that from the origin crosses this line perpendicularly will

cross it in a point C that lies on the line between A and B.

2. Induction hypothesis: Suppose it is true for n− 1.

3. Inductive step: a hyperplane H ⊂ Rn that satisfies H∩(−∞, 0]n = ∅ does not pass through

the origin. So, it has an orthogonal vector v such that v ∈ H. By assumption on H, v cannot

have all elements non strictly positive. So, there exists i ∈ {1, . . . , n} such that vi > 0. Let
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us take P¬i = {p ∈ Rn : pi = 0}. Call H¬i the intersection of H with P¬i. Take the vector

v¬i that is the projection of v on P¬i. This vector has all entries equal to v, except for entry

i which is null. Also, v¬i is perpendicular to H¬i.

By assumption on H, H¬i ∩ (−∞, 0]n−1 = ∅. Moreover, because of the induction hypothesis,

v¬i has all strictly positive entries, except from entry i. Finally, since also vi > 0, we have

the proof.

Notice that, if Z satisfies the conditions of Proposition 16, then it must also hold that |λmax(Z)| <
1, because of Gershgorin circle theorem. However, the condition that |λmax(Z)| < 1 is in general

not sufficient to guarantee that (I− Z)−1 1� 0. �

D Proofs of Propositions

Proposition 1 (page 13)

Proof. By Remark 4, NG satisfies observability by active players. Hence, Lemma 3 in Appendix

A and the best-reply equation yield the result. �

Proposition 2 (page 17)

Proof. Conditions 1, 2, and 3 correspond, respectively, to the conditions in Propositions 16, 14,

and 15 from Appendix C. �

Proposition 3 (page 21)

Proof. Let us consider separately the two sets I\Ia∗ and Ia∗ of inactive and active agents.

For every i ∈ I\Ia∗ , αi + xi < 0; thus, a∗i = 0 is a best reply to every conjecture x̂i ∈ (xi,−αi)
and a sufficiently small perturbation of x̂i does not make i become active.

Now, let us focus on the subset Ia∗ of active agents. For each i ∈ Ia∗ , a perturbation in x̂i

induces a change in the corresponding best reply. Let us focus on perturbations that are small

enough so that all actions of agents in Ia∗ remain strictly positive. Since ρ(Z) < 1 is a strict

inequality, Assumption 4 guarantees that the limiting points of the discrete path system defined

for actions by (7) and (8) are locally stable, because the non–null eigenvalues and eigenvectors of

the Jacobian of this system are the same eigenvalues and eigenvectors of ZIa∗ .

Thus, there is ε > 0 such that the perturbation of beliefs given by any x0 with ‖x0 − x̂‖ < ε

is small enough so that inactive agents keep being inactive and all actions of active agents in Ia∗

remain strictly positive.

In this way, the discrete system defined for actions by (7) and (8) converges back to a∗. �
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Proposition 4 (page 22)

Proof. For all the action profiles considered in the proposition the inactive players are choosing

a best response for an open set of conjectures; thus, being inactive is robust to small perturbations

of justifying non-falsified conjectures. With this, we can focus on the active agents. Note that if we

take an active agent i from Ia∗ and we make him inactive, then the new matrix ZIa∗\{i} for active

players is a sub–matrix of ZIa∗ obtained deleting the row and the column corresponding to agent

i. This process can be repeated removing more active agents, which means that if we remove a

subset J ⊂ Ia∗ of the active agents, then the new matrix ZIa∗\J is a sub–matrix of ZIa∗ obtained

deleting all the rows and the columns corresponding to every agent j ∈ J .

So, given the results from Propositions 2 and 3, to prove the statement, we need to prove that if

an adjacency matrix satisfies one of the three conditions, then also every sub–matrix of that matrix,

which is obtained deleting one row and one column with the same index, satisfies that condition.

By induction this will be true for every sub–matrix of that matrix, which is obtained deleting any

subset of rows and columns with the same indices.

For Point 1 the result is clear, because a property that holds for all the elements of a matrix

will hold also for all the elements of a sub–matrix of that matrix.

Point 2 is based on two assumptions. Assumption 3 is still valid if we remove one column

and one row of a matrix because it is a property of all the elements of that matrix. To check

for Assumption 4, let us consider the following implications of the Perron–Frobenius theorem (see,

e.g., Savchenko, 2003): (i) for a matrix with all positive entries, there exists a real eigenvalue (often

called the Perron root) which is equal to its spectral radius; (ii) the Perron root of any principal

submatrix of such a matrix does not exceed that of the original matrix. In our case, Assumption

3 implies that our matrix can be seen as a matrix with all positive elements with a minus sign in

front, and this proves the statement.

Point 3 holds because of a generalization of the Cauchy interlace theorem applied to symmetriz-

able matrices (see Kouachi, 2016 and McKee and Smyth, 2020). We know that the magnitude of

the eigenvalues of the sub–matrix of a symmetrizable matrix, obtained deleting one row and one

column with the same index, are between the magnitudes of the minimal and the maximal eigen-

values of the old matrix. So, the sub–matrix of a limited matrix, which is obtained deleting one row

and one column with the same index, is limited. The resulting sub–matrix is also symmetrizable.

That is because the original matrix was obtained as the product of a diagonal and a symmetric

matrix, and to obtain the sub–matrix we can delete the corresponding rows and columns in those

diagonal and symmetric matrices: the two matrices will maintain their properties and the result

will be our sub–matrix. �
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Proposition 5 (page 24)

Proof. A selfconfirming equilibrium is such that, for all i ∈ I, rationality implies

a∗i = min{max{0, αi + x̂i}, āi},

where x̂i is the conjecture of i about the payoff state. Each agent then thinks that

m∗ = αia
∗
i −

1

2
(a∗i )

2 + a∗i x̂i + ŷi ,

so that

ŷi = m∗ − αia∗i +
1

2
(a∗i )

2 − a∗i x̂i . (19)

Substituting the expression of the true actual payoff

m∗ = αia
∗
i −

1

2
(a∗i )

2 + a∗ixi + yi

into (19), we get the dependence between ŷi and x̂i:

ŷi = yi + a∗i (xi − x̂i) .

The first and second items in the proposition are derived, respectively, if a∗i = 0 or if a∗i > 0. �

Proposition 6 (page 25)

By substituting, for each i ∈ I, the subjectively rational choice into the confirmed conjecture

condition, we get the following:

(α+ x̂i)

x̂i − ∑
j∈I\{i}

zij (α+ x̂j)

 =

γ ∑
k∈I\{i}

(α+ x̂k)− ŷi

 . (20)

This condition holds for each i ∈ I, so that we have a non-linear system of n equations and 2n

unknowns. Still, from (20) we can provide useful insights to understand how conjectures are shaped

in a SCE.

First of all, note that (20) is linear in ŷi. Thus, given any profile (x̂i)i∈I , there exists a unique profile

(ŷi)i∈I consistent with the confirmed conjectures condition. Moreover, we can also compute a bound

for each ŷi. Indeed, for each i ∈ I, x̂i > 0. Then, since ai = α + x̂i ≤ ā, for each i ∈ I, and given

other agents’ conjectures, it must be that yi ≤ α
∑

j∈I\{i}

zijaj + γ
∑

k∈I\{i}

ak ≤ ā
(
α
∑

k∈I\{i}

zij + γn
)
.

Given a profile
(
ŷi
)
i∈I , condition (20), also allows us to characterize the corresponding SCE profile(

x̂i
)
i∈I . Solving the second-order polynomial, we get that the only positive solution for each x̂i is

given by

x̂i =
1

2

 ∑
j∈I\{i}

zij (α+ x̂j)− α+

√√√√√
 ∑
j∈I\{i}

zij (α+ x̂j) + α

2

+ 4γ
∑

k∈I\{i}

(α+ x̂j)− 4ŷi


(21)
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Note that, at an SCE, each x̂i is increasing in others’ beliefs about local externality, and decreasing

in own ŷi. Indeed, given ŷi, an increase in any x̂j increases j’s action and thus it increases the global

externality. Given that only positive externalities are considered, if ŷi is kept fixed, at SCE i has

no other option than having a higher x̂i. On the contrary, if ŷi increases keeping fixed
(
x̂j
)
j∈I\{i},

then actual local and global externalities for i are unchanged. However, if i thinks yi to be higher,

she necessarily needs to decrease x̂i. Given that equilibrium x̂i is monotonically decreasing in ŷi,

we can also easily compute an upper bound for x̂i by simply letting ŷi = 0 in (21).

By taking the second derivative of the right hand side of (21), with respect to x̂j , we obtain

∂2x̂i
∂x̂2

j

= − 2γ√
Γ(x̂j)

3/2

zij
 ∑
k∈I\{i,j}

zik (α+ x̂k)− zij
∑

h∈I\{i,j}

(α+ x̂h) + α

+ γ


where Γ(x̂j) is an always positive quadratic expression of x̂j . If, for every couple of agents i and j

in I, the inequality ∑
k∈I\{i,j}

zik (α+ x̂k)− zij
∑

h∈I\{i,j}

(α+ x̂h) + α ≥ 0 , (22)

is satisfied, then x̂i is concave in each x̂j . So, there is always a unique finite solution to the system

where each player has the higher possible belief about x̂j . In this solution, as we assume that either

condition 1. or 3. of Proposition 2 is satisfied, we derive a unique
(
a∗i
)
i∈I with a∗i < ā for each i. If,

x̂i is convex in some x̂j , then the process may self-reinforce and it is possible that a corner solution

is reached. �

Proposition 7 (page 27)

Proof. Before proving the result we need to consider a slight modification of aggregator and

conjectures.

Let
˜̀
i,Z0 : A−i → X̃i,

a−i 7→
∑

j 6=i z0,ijaj
(23)

and
g̃i : A−i → Ỹi

a−i 7→
∑
j 6=i

aj (24)

be the equivalent of `i,Z and gi, when we do not incorporate the parameters on which there is

mutual knowledge. Similarly, let ˆ̃xi and ˆ̃yi be the shallow conjectures about x̃i and ỹ, respectively.

@[Skip def and just brief discussion how to adapt standard definition.]@ Then, we need to provide

a definition of selfconfirming equilibrium coherent with the hypotheses about the knowledge of the

agents.

56



Definition 11. A profile
(
a∗i ,

ˆ̃xi, ˆ̃yi

)
i∈I
∈ ×i∈I

(
Ai × X̃i × Ỹi

)
of actions and (shallow) deter-

ministic conjectures is a selfconfirming equilibrium at (Z0, ω, γ) of a network game with global

externalities with mutual knowledge of (ω, γ) if, for each i ∈ I,

1. (subjective rationality) a∗i = ri

(
ˆ̃xi

)
;

2. (confirmed conjecture) fi

(
a∗i ,

ˆ̃xi, ˆ̃yi;ω, γ
)

= fi

(
a∗i ,

˜̀
i

(
a∗−i,Z0

)
, g̃i
(
a∗−i
)

;w, γ
)

.

We are now ready to prove the result.

Consider first the Nash equilibrium of the game with payoff function (10) played on a complete

network. For each i ∈ I, aNEZc,i
= ri(w

∑
k∈I\{i} a

NE
Zc,k

). Because of symmetry, for each i ∈ I,

aNEZc,i
= αi

1−(n−1)w .

Given a selfconfirming equilibrium action profile ac, each player i, by perfect recall of her own

action, can correctly infer that

aciwx̃i + γỹi = aiw
∑

j∈I\{i}

z0,ijaj + γ
∑

k∈I\{i}

ak , (25)

so that, her shallow conjectures must be such that

aciw ˆ̃xi + γ ˆ̃yi = aiw
∑

j∈I\{i}

z0,ijaj + γ
∑

k∈I\{i}

ak . (26)

At the same time, since by deep conjecture µ̄ci each player i thinks to be linked with all the

other players, then it must be ˆ̃xi = ˆ̃y = ˆ̃xci , and her shallow conjectures are such that

aciw ˆ̃xi + γ ˆ̃yi = (aiw + γ)ˆ̃xci . (27)

So, by (26)-(27) we have that

ˆ̃xci =

aiw
∑

j∈I\{i}

z0,ijaj + γ
∑

k∈I\{i}

ak

aiw + γ
.

As externalities are positive and ai > 0, γ and aiw are just weights in a weighted average. If
γ
w = 0, then ˆ̃xci =

∑
j∈I\{i} z0,ija

c
j , i.e., conjecture ˆ̃xci is correct, so that ac = aNEZ0

. Finally,

lim γ
w
→∞ ˆ̃xci =

∑
k∈I\{i} a

c
k so that at this limit we have ac = aNEZc

. �

Proposition 8 (page 32)

Proof. First, we derive some properties. Recall that we assumed a common bliss point in

isolation: αi = α for each i ∈ I, and that ci is the conjectured ratio of i. Each equation in the
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system given by (16) can be written as an upward parabola b1a
2
i + b2ai + b3 = 0, in the following

way

Hi(a, c, γ,Z) = ci︸︷︷︸
:=b1

a2
i +

1− αci − ci

∑
j∈I

zijaj,t


︸ ︷︷ ︸

:=b2

ai

−

1 + ci

γ∑
j 6=i

aj,t


︸ ︷︷ ︸

:=b3

= 0 . (28)

So, for each i ∈ I, the solution a∗i is such that Hi(a, c, γ,Z) = 0 lays in the right–arm of an upward

parabola, where dHi
dai

∣∣∣
ai=a∗i

> 0. Each Hi(a, c, γ,Z) is linear in ci.

Equation (28) holds in the unique positive solution (because b3 > 0):

a∗i =
−b2 +

√
b22 + 4b1b3

2b1
, (29)

so that a∗i can be seen as a continuous function of b1, b2 and b3. Considering that a∗i is increasing in

b1 (which is bounded by 1), decreasing in b2 and increasing in b3, it follows that each a∗i increases

in each aj , with j 6= i. Moreover, each a∗i increases in ci, so that

dai
dci

∣∣∣∣
ai=a∗i

> 0 .

If b2 is bounded (from below), then a∗i is bounded above by

lim
b1→1

−b2 +
√
b22 + 4b1b3

2b1
=
−b2 +

√
b22 + 4b3

2
,

which is in turn bounded above by
√
b3 (because if a and b are positive,

√
a+ b ≤

√
a+
√
b).

Second, we show that there is a homeomorphism. There is a continuous function that

assigns to each c ∈ [0, 1]n an element a∗ ∈ A, that is because

• either ci = 0 and then a∗i = α, with (from (29)):

lim
ci→0

a∗i = α ;

• or ci > 0 and then each a∗i is continuously increasing in each aj with j 6= i. b2 is bounded

(from below), because the system defined by (17) admits a solution, and then also any linear
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transformation of this system will admit a finite solution, which means that b2 is limited.

Since b2 is bounded (from below), then a∗i is bounded above by√√√√√1 + ci

γ∑
j 6=i

aj,t

 .

But this upper limit is sub–linear, and then the system defined by (16) admits a finite solution.

So, applying system (16), for each c ∈ [0, 1]n, we obtain a unique profile a∗ ∈ A, and this

function is continuous because (29) is continuous.

To analyze the relation between a∗ and c, we already know that each a∗i is increasing in ci and

in all the other a∗j , with j 6= i, which in turn are increasing in cj . This shows that a∗i is strictly

monotone with respect to the lattice order of the domain of all profiles c ∈ [0, 1]n.

Strict monotonicity and continuity imply that the function from a ∈ A to c ∈ [0, 1]n is invertible.

�

Proposition 9 (page 33)

Proof. As resting points of the paths defined by (15), we consider the system derived from (16)

for each i:

Hi(a, c, γ,Z) = α+ ci

γ∑
j 6=i

aj,t

 ai,tc
′
i,t + 1

aici + 1
− ai = 0 ,

with c′i,t =
∑
j∈I zijaj,t

γ
∑
j 6=i aj,t

. We can compute its Jacobian, with respect to a. We know from the proof

of Proposition 8 that each entry of this Jacobian is strictly positive. If we prove that each row of

this Jacobian sums to less than 1, by the Gershgorin circle theorem we will have that the Jacobian

is limited (as defined in Assumption 4), so that the process is always a contraction and the resting

points are stable (see, e.g., Galor, 2007). The Jacobian J is such that, for each i, j ∈ I:{
Jij = ci

aici+1 (γ + aizij) , for j 6= i

Jii = ci

(
γ
∑

j 6=i aj

)(
c′i

aici+1 − ci
aic
′
i+1

(aici+1)2

)
− 1 , otherwise.

The sum of each row of the Jacobian is∑
j∈I

Jij =
ci

aici + 1

γ
∑
j 6=i

aj

(c′i − ciaic′i + 1

aici + 1

)
+ ai

∑
j 6=i

zi,j

+ γ(n− 1)

− 1 . (30)

Let us analyze expression (30) with respect to ai, for any ai ≥ 0.

First note that

lim
ai→∞

∑
j∈I

Jij =
∑
j 6=i

zij − 1 , (31)

59



whose absolute value is less than one by assumption.

Moreover,

lim
ai→0

∑
j∈I

Jij = ciγ

∑
j 6=i

aj

(c′i − ci)+ (n− 1)

− 1 . (32)

An interior maximum or minimum of the numerical expression (30), with respect to ai, must satisfy

first order condition

−
(

ci
aici + 1

)2
γ

∑
j 6=i

aj

(c′i − ciaic′i + 1

aici + 1

)
+ ai

∑
j 6=i

zij

+ γ(n− 1)


+

ci
aici + 1

γ
∑
j 6=i

aj

( ci
aici + 1

)(
c′i − ci

aic
′
i + 1

aici + 1

)
+

∑
j 6=i

zij

 = 0 .

The last expression can be simplified and results in

ciγ(n− 1) =
∑
j 6=i

zij ,

which is independent of ai. So, the only candidates for being minima or maxima for expression

(30) are its values in the extrema, namely (31) and (32).

Also, the sign of the first derivative of (30) with respect to ai is equal to the sign of
∑

j 6=i zij −
ciγ(n− 1). So, if ciγ(n− 1) <

∑
j 6=i zij we have that (30) is strictly increasing in ai, and then (31)

is strictly greater than (32).

The value of (31) is between −1 and 1, by assumption, because 0 <
∑

j 6=i zij < 2.

The quantity in (32) is minimized by ci → 0; and c′i → 0. In this case (32) goes to −1 from

the right, and for any ci > 0 it will be greater than −1. This completes the proof, because we have

shown that any row of the Jacobian J sums to a number between −1 and 1. �
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Erdos, P. and A. Rényi (1960): “On the evolution of random graphs,” Publ. Math. Inst. Hung.

Acad. Sci, 5, 17–60.

Feri, F. and P. Pin (2020): “Externalities aggregation in network games,” International Eco-

nomic Review, 61, 1635–1658.

61



Foerster, M., A. Mauleon, and V. J. Vannetelbosch (2018): “Shadow links,” Available at

SSRN 3255412.

Frick, M., R. Iijima, and Y. Ishii (2022): “Dispersed Behavior and Perceptions in Assortative

Societies,” American Economic Review, accepted.

Fu, F., X. Chen, L. Liu, and L. Wang (2007): “Social dilemmas in an online social network:

the structure and evolution of cooperation,” Physics Letters A, 371, 58–64.

Fudenberg, D. and D. Kreps (1995): “Learning in extensive-form games I. Self-confirming

equilibria,” Games and Economic Behavior, 8, 20–55.

Fudenberg, D. and D. K. Levine (1993): “Self-confirming equilibrium,” Econometrica, 523–

545.
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