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Abstract	

We use monthly data on the US riskless yield curve for a 1982-2015 sample to show that 
mixing simple regime switching dynamics with Nelson-Siegel factor forecasts from time 
series models extended to encompass variables that summarize the state of monetary 
policy, leads to superior predictive accuracy. Such spread in forecasting power turns out 
to be statistically significant even controlling for parameter uncertainty and sample 
variation. Exploiting regimes, we obtain evidence that the increase in predictive accuracy 
is stronger during the Great Financial Crisis in 2007-2009, when monetary policy 
underwent a significant, sudden shift. Although more caution applies when transaction 
costs are accounted for, we also report that the increase in predictive power owed to the 
combination of regimes and of monetary variables that capture the stance of 
unconventional monetary policies is tradeable. We devise and test butterfly strategies 
that trade on the basis of the forecasts from the models and obtain evidence of risk-
adjusted profits both per se and in comparisons to simpler models. 

 
Key words: Term structure of interest rates, Dynamic Nelson-Siegel factors, regime 
switching, butterfly strategies, unconventional monetary policy. 

 

1.	INTRODUCTION	

Understanding and forecasting the dynamics of the shape of the yield curve is crucial for many 

tasks, from pricing and valuation, to risk management and portfolio allocation. In the past thirty 
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years, an ever expanding literature has investigated the riskless term structure using a wide 

variety of models and methods. The most basic problem faced by these models is to synthesize 

the yield behaviour across different maturities. To this purpose, Nelson-Siegel (1987, henceforth 

NS) provide a parsimonious and flexible factor approach to fitting the cross section of yields that 

has become a dominant benchmark in applied work by academics, market practitioners, and 

central bankers (see Bank for International Settlements, 2005; European Central Bank, 2008). 

Interestingly however, NS approach is self-referential: past yield curve information enters the 

definition of the factors (level, slope, and curvature) which are then exploited to forecast the 

dynamics of yield curve, typically by using the simple but robust methods first illustrated by 

Diebold and Li (2006), that capture any structure in the time variation in the factors. Even though 

since the seminal work by Diebold, Rudebusch, and Aruoba (2006), we understand how to extend 

NS approach to observable macroeconomic variables, the evidence on whether these may 

improve the forecasting power of the typical dynamic NS (henceforth, DNS) models remains 

somewhat mixed (see Duffee, 2011). Oddly enough, such a lack of evidence that macroeconomic 

information ought to allow us to predict interest rates extends to monetary indicators as well, 

such policy rates, the base money aggregates, and the very size and maturity composition of the 

central bank’s balance sheet, that has been recently the key lever of the so-called balance sheet 

policies used worldwide to tackle the effects of the Great Financial Crisis (see, e.g., Gambacorta, 

Hofmann, and Peersman, 2014). 

In this paper, we use monthly data on the US riskless yield curve for a 1982-2015 sample to show 

that mixing a simple regime switching framework with DNS forecasts from time series models 

extended to encompass variables that summarize the stance of monetary policy leads to superior 

predictive accuracy. we also investigate the economic value that the forecasts may generate in 

trading strategies popular with prop trading desks, focussing on short, one-month prediction 

horizons that have proven to be more elusive in the literature that ignores regime shifts in DNS 

factors (see, e.g., Hordal, Tristani, and Vestin, 2006; Moench, 2008) Such spread in forecasting 

power often turns out to be statistically significant even controlling for parameter uncertainty 

and for sample variation. Exploiting regimes, we obtain evidence that the increase in predictive 

accuracy is stronger during the Great Financial Crisis (GFC, 2007-2009) when the methods and 

scope of monetary policy underwent a significant, sudden shift, as required by unsettled financial 

markets and spiralling deflationary dynamics. Although more caution needs to be used and 

transaction costs may severely affect these results, we also report that—especially with reference 

to the GFC sample and when trading consists of placing bets on the predicted changes in the slope 

of the yield curve—the increase in forecasting power owed to the combination of regimes and of 
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monetary variables that capture the state of quantitative easing and of other unconventional 

monetary policies is also tradeable, to some extent. We devise and test commonly used butterfly 

strategies (combinations of well-known barbell and bullet trades) that trade on the basis of the 

forecasts derived by our models and obtain evidence of risk-adjusted profits that are sometimes 

statistically significant, per se and in comparisons to simpler models. 

The economic intuition of our key result stems from the plain observation that during the, GFC 

the US Treasury yield curve has been subject to unprecedented shifts; such dramatic twists and 

turns have come at a time in which the Fed has adopted unprecedented measures aimed at 

stabilizing financial markets and at supporting and re-inflating the economy to avoid a liquidity 

trap (what Borio and Disyatat, 2010, call balance	 sheet	policies). It is hard to rationalize the 

thought that such measures—also because these were often driven by the very disorderly state 

of equity and bond markets in the US—may have not come to represent a major driver of the 

shape of the yield curve and its dynamics. Yet, if unconventional monetary policies (such as the 

maturity extension program, MEP, and several waves of quantitative easing, QE) came to become 

drivers of the yield curve in a causal sense, then it is legitimate to expect that one or more 

observable quantities capturing the stance of monetary policy during the GFC may have come to 

predict its movements. This is exactly what we test in this paper, finding that—especially during 

the GFC but to some extend also between 2009 and 2014—several measures related to MEP and 

QE do predict the level, slope, and/or curvature of US interest rates. In particular, our analysis 

tests a range of alternative variables, all representing imperfect proxies of unconventional 

monetary policies: two variables meant to proxy for the size of	the	Fed’s	balance	sheet, to capture 

the effect of QE (the Fed’s total assets and a Divisia monetary aggregate index); two variables that 

would like to measure the composition	of	the	Fed’s	balance	sheet, to capture the impact of the MEP 

(the percentage of Treasuries on the Fed’s total assets and the average maturity of the Fed’s 

portfolio of Treasuries); we also use a typical measure of the Fed’s	interest	rate	policy to proxy for 

the conventional monetary policy (the Effective Fed funds rate, FFR) and make sure that it is just 

unconventional policies that should have mattered during the GFC (also because the FFR hardly 

represented a policy tool available to policy-makers). 

We contribute to at least three strands of literature. First, there is a literature that has spurred 

from Diebold and Li’s (2006, henceforth DL) seminal paper, to show that DNS factors contain a 

rich time series structure that can be modelled and predicted using a simple, low-order AR 

process, which can be interpreted as restricted vector autoregressions (VAR). Levant and Ma 

(2017) introduce regimes in factor loadings and in volatility in the DNS framework. They also 

experiment with one specification in which the regimes are characterized by a latent Markov 
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switching component which turns into the fourth latent factor. They find that the model with 

switching loading parameters gives the most accurate timing of regime duration in the term 

structure over their sample. Yet, both models provide a statistically superior in-sample fit vs. a 

single-state DNS VAR model. Chib and Kang (2013), Levant and Ma (2016) and Xiang and Zhu 

(2013) have recently extended DL’s framework to account for Markov regimes. The former paper 

proposes linear affine term structure models (which nest DNS framework, as shown in 

Christensen, Diebold, and Rudebusch, 2011) with observable macroeconomic factors subject to 

non-recurrent structural breaks and employs Bayesian MCMC methods to show that the 

predictive performance of the model improves when regimes are taken into account. Levant and 

Ma incorporate regimes in the factor loadings of DL’s model while we follow the strategy of the 

latter paper in which the DL’s VAR model is subject to regime shifts. With reference to US data 

similar to the ones used in our paper, Xiang and Zhu report a significant improvement in 

forecasting performance deriving from the inclusion of regimes. We show that DL’s forecasting 

results can be improved not only by just modelling regimes, but especially by combining Markov 

regime dynamics with a VAR framework that gives the state of monetary policy an explicit role. 

Moreover, something that had been harder without using data from the GFC (post-2008), we 

show that the predictive benefits from modelling regimes is exalted by the application of 

recursive pseudo out-of-sample (henceforth, OOS) designs that include the global crisis. Byrne, 

Cao, and Korobilis (2017) and Van Dijk, Koopman, Van der Wel, and Wright (2014) have 

incorporated up to 15 financial and macro variables in a large scale, time-varying VAR with 

stochastic volatility that represents a more general case than ours. Using Bayesian, dynamic 

model averaging techniques, they report that both parameter uncertainty and model uncertainty 

are important and in total account for one third of predictive variance and that macro-finance 

information is important to improve forecasting performance during recessions. Even though it 

is similar in spirit, we adopt a regime-switching view and look for evidence of predictability 

through economically-motivated loss function. 

Second, there is a literature that has included macroeconomic variables into both structural and 

empirical models of the term structure.1 One of the seminal papers is Ang and Piazzesi (2003), 

                                                 
1 The question as to the actual usefulness of macro variables in forecasting (as opposed to modelling and 
understanding) the US riskless yield curve does not seem to have been settled. While Coroneo, Modugno, 
and Giannone (2016) and Kim and Park (2013) (for unspanned macroeconomic risk) show that a term 
structure model augmented with a broad macro-finance information set can provide superior forecasts, 
Dewachter and Iania (2012) report that financial factors are more prominent than macro variables per se, 
Hordal, Tristani, and Vestin (2006) and Moench (2008) (for spanned macroeconomic risk factors) find 
that expanding the DNS factors to macro variables improves forecasting performance only for 
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who have analyzed the joint dynamics of yields and macroeconomic variables under no arbitrage 

restrictions, to show that models with macro factors are able to forecast better than models with 

only unobservable factors. Ang, Dong, and Piazzesi (2007) and Evans and Marshall (2007) allow 

for bidirectional macro-finance links and find that the amount of in-sample yield variation that 

can be attributed to macro factors depends on whether the system allows for bidirectional 

linkages indeed: only when the interactions are bidirectional the system attributes over half of 

the variance of long yields to macro factors. Diebold, Rudebusch, and Aruoba (2006) have 

estimated single-state DNS models in which the yield curve is described by a latent factor model 

integrated by a simple, nonstructural VAR representation of the observable macroeconomy, 

(manufacturing capacity utilization, the federal funds rate, and inflation). They reject both the 

hypothesis of ‘‘no macro to yields’’ and the hypothesis of ‘‘no yields to macro’’ links, which 

represents clear statistical evidence in favor of a bidirectional link between the macroeconomy 

and the yield curve. Yet, the stop short from comparing the predictive performance of “yield-only” 

vs. macro-extended models as they focus on the in-sample fit of the model.2 At least with 

reference to the GFC and for the DNS-class of models, our paper sweeps away all existing doubts 

and distinctions as to whether any macroeconomic factors may matter to forecast the yield curve: 

monetary variables, especially those able to capture the direct effects of MEP and QE on the 

structure and size of the Fed’s balance sheet, do matter.3 Doshi, Jacobs, and Liu (2018) study the 

impact of long-run and short-run components of output growth and inflation on the term 

structure of yields in a no-arbitrage, linear affine framework. While in-sample, they use variance 

decompositions to show that the relative importance of macroeconomic predictors critically 

depends on the maturity of the bonds and the horizon, their OOS analysis focuses on the 

predictability of bond excess returns (which are approximately linear transformations of changes 

in yields) to demonstrate that incorporating long-run components in standard predictive 

regressions improves the performance relative the information in the current yield curve only. 

We develop instead a genuine OOS design for yield level forecasts in a DNS framework. 

                                                 
intermediate and long prediction horizons, and Ullah, Tsukuda, and Matsuda (2013) find mixed evidence 
on Japanese data. See the reviews in Duffee (2013) and Gürkaynak and Wright (2012).  
2 Levant and Ma (2016) have extended these results to UK data also by explicitly accounting for a structural 
break during the early 90s at the time the UK exited the European Monetary System. Rudebusch and Wu 
(2007) have extended this modelling strategy to include a small-scale structure model that features a 
monetary policy reaction function, an output Euler equation, and an inflation equation within an affine, 
no-arbitrage dynamic specification. 
3 However, as we shall document in Sections 5 and 6, which specific Markov switching VAR model actually 
delivers the most accurate forecasts and profitable trading signals may itself be subject to some time 
variation.  
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More generally, there is a third literature, which finds its roots in the classical work by Eugene 

Fama on the efficient markets hypothesis, on the actual and purported links between 

macroeconomic variables and asset prices. The modelling of the riskless yield curve has long been 

a typical example of the disconnect between the macro and finance literatures, see e.g., Estrella 

and Hardouvelis (1991) and more recently, Hordal, Tristani, and Vestin (2006): in this body of 

research, it would be sensible to look for predictive signals of future macroeconomic conditions 

in the yield curve (e.g., the classical term spread indicator), but not the opposite—current macro 

variables would not have any forecasting bite for interest rates, see for instance the discussion in 

Balfoussia and Wickens (2007). Duffee (2011) uncovers a “hidden” factor that has opposite 

effects on expected future interest rates and bond risk premia, large impact on the dynamics of 

yields but on which any snapshot of the time-t yield curve conveys no information. Such a factor 

is shown to explain half of the dynamics of interest rates but measures of macroeconomic activity 

explain only a small fraction of its variation; similarly, the ability of the hidden factor to forecast 

excess returns is not captured by any macroeconomic variables. Although debating these classical 

questions does not represent our main goal, a Reader may use our results to argue that—at least 

with reference to the US term structure and during the unconventional monetary policy 

experiment—regimes exist in which at least monetary factors predict the yield curve which, as a 

result, would fail to include all relevant information on the future path of the economy. 

The rest of the paper is structured as follows. Section 2 describes the empirical methodologies 

adopted in the paper and its research design. Section 3 introduces the data, provides summary 

statistics and deals in some details with pros and cons of our proxy for unconventional monetary 

policy. Section 4 reports on model selection and sketches the most notable features of the (very 

heavy volume of) estimation results. Section 5 is the key step of the paper and reports on 

comparative forecasting performance and on tests of equal predictive accuracy. Section 6 tests 

whether the predictive performances described in Section 5 can be used to support profitable 

trading strategies, also when realistic transaction costs are applied, and may be read as an 

extension of Section 5 to a more realistic, directly relevant (at least to traders) loss function, in 

spirit of Leitch and Tanner (1991). Section 6 concludes and outlines a few directions for 

extensions and additional research. 

 
2.	ECONOMETRIC	METHODOLOGY	

2.1. Baseline	Dynamic	Nelson‐Siegel	mode	

Our starting point to model and forecast the yield curve is represented by the now classical DL’s 
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(2006) two-step approach.4 By applying restrictions on the factor loadings DL re-write the 

classical Nelson–Siegel Laguerre’s approximation (for the forward rates) as 

                                    𝑦௧ሺ𝜏ሻ ൌ 𝛽ଵ௧  𝛽ଶ௧ ቀ
ଵିషഊഓ

ఒఛ
ቁ  𝛽ଷ௧ ቀ

ଵିషഊഓ

ఒఛ
െ 𝑒ିఒఛቁ,                                    (1) 

where 𝑦௧ሺ𝜏ሻ is the yield to the maturity 𝜏 at time t	and 𝛽ଵ௧, 𝛽ଶ௧, 𝛽ଷ௧ are latent factors that entirely 

determine the dynamics of 𝑦௧ሺ𝜏ሻ for all τ; 1, 
ଵିషഊഓ

ఒఛ
, and 

ଵିషഊഓ

ఒఛ
െ 𝑒ିఒఛ are the factor loadings that 

instead define the cross section of the yield curve for any t; 𝜆 is a fixed decay parameter that 

affects the shape of the curve. Because the factor loading associated to 𝛽ଵ௧ is constant at 1, as the 

maturity 𝜏 tends to infinity, all yields tend to 𝛽ଵ௧. Hence 𝛽ଵ௧  is often thought of as a long-term 

factor. The loading on 𝛽ଶ௧ starts instead at 1 (as 𝜏 → 0 from the right) and decays monotonically 

to zero: therefore 𝛽ଶ௧ has a maximum impact at short maturities and a minimal one on long 

maturities, so it can be interpreted as a short-term factor. Finally, it can be checked that the 

loading on 𝛽ଷ௧ starts at zero, then increases and finally decays to zero, with the global maximum 

depending on the coefficient 𝜆; because for the typical values of 𝜆 estimated in the literature, its 

loading reaches such a maximum at intermediate maturities, we can refer to 𝛽ଷ௧ as a medium-

term factor. 

To emphasize the interpretation of the DNS factors, as in DL (2006), we rename them according 

to their effect on the shape of the yield curve: 𝛽ଵ௧ is referred to as the Level factor (𝐿௧ሻ,	𝛽ଶ௧ as the 

(the negative of the) Slope factor (𝑆௧ሻ, and 𝛽ଷ௧ as the Curvature factor (𝐶௧). Finally, the parameter 

𝜆	represents the rate of change of the factor loadings with maturity. Because of its critical role as 

well as its tricky econometrics (see, e.g., Diebold, Rudebusch, and Aruoba, 2006, who anyway 

estimate a similar value of 0.077 close to DL’s original calibration; Moench, 2012, reports a 

Bayesian MCMC posterior mode estimate of 0.067; Xiang and Zhu, 2013, report a slightly lower 

mean estimate, between 0.04 and 0.05), we follow Byrne, Cao, and Korobilis (2017), Coroneo, 

Modugno, and Giannone (2016), Diebold and Li (2006), and Van Dijk, Koopman, Van der Wel, and 

                                                 
4 Of course, it would be sensible to extend our research to arbitrage-free DNS models, à la Christensen, 
Diebold, and Rudebusch (2009). Our choice not to follow an arbitrage-free approach is supported by two 
main arguments. Firstly, Diebold, Rudebusch, and Aruoba (2006) have argued, if the market were to 
generate arbitrage-free data, then the DNS curve should capture this feature reasonably well even without 
imposing theoretical restrictions on the model. Moreover, there may be a loss of efficiency in not imposing 
the restriction of no arbitrage if it is valid, but this must be weighed against the possibility of 
misspecification if transitory arbitrage opportunities are not immediately traded away. In addition, the 
literature shows that unrestricted DNS models often have better forecasting power than arbitrage-free 
ones especially over	short	prediction	horizons, see Duffee (2002, 2008), Diebold and Rudebusch (2013), 
and when compared to random walk forecasts, see Carriero and Giacomini (2011) and Guidolin and 
Thornton (2018). Moreover, Coroneo, Nyholm and Vidova-Koleva (2011) and Tu and Chen (2018) have 
emphasized that when estimated on US data, a standard DNS model may be close to being arbitrage-free 
even when it does not explicitly impose these restrictions. 
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Wright (2014) and fix 𝜆 at 0.0609. In correspondence to such a value, the loading on the 

Curvature factor is maximized at exactly 30 months, which seems reasonable and appears 

consistent with the arguments in Yu and Zivot (2011).5 

As it has been recognized since Diebold, Rudebusch and Aruoba (2006), DL’s model can be re-

written in state-space form. Such a form emphasizes the distinction between the measurement 

equations (which relate the cross-section of yields to the three latent factors), a set of transition 

equations (which describes the time evolution of the factors), and give a role to potential 

measurement and specification errors (to account for time-varying liquidity, credit risk, and 

mispricing factors), 𝜀௧,ఛ. In particular, the vector of measurement equations is 

                                

⎣
⎢
⎢
⎡
𝑦௧,ఛభ

𝑦௧,ఛమ

⋮
𝑦௧,ఛಿ⎦

⎥
⎥
⎤

ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡1

1 െ 𝑒ିఒఛభ

𝜆𝜏ଵ

1 െ 𝑒ିఒఛభ

𝜆𝜏ଵ
െ 𝑒ିఒఛభ

1
1 െ 𝑒ିఒఛమ

𝜆𝜏ଶ

1 െ 𝑒ିఒఛమ

𝜆𝜏ଶ
െ 𝑒ିఒఛమ

⋮ ⋮ ⋮

1
1 െ 𝑒ିఒఛ

𝜆𝜏ே

1 െ 𝑒ିఒఛಿ

𝜆𝜏ே
െ 𝑒ିఒఛಿ

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝐿௧

𝑆௧

𝐶௧

  

⎣
⎢
⎢
⎡
𝜀௧,ఛభ

𝜀௧,ఛమ

⋮
𝜀௧,ఛಿ⎦

⎥
⎥
⎤
,                          ሺ2ሻ 

where N is the number of available maturities (𝜏ଵ, 𝜏ଶ, … , 𝜏ேሻ and the N×1 vector 𝜺௧ collects 

maturity-specific errors and is also interpretable as an idiosyncratic source of maturity-specific 

risks. We assume that 𝜺௧ is IID over time and simultaneously cross-sectionally uncorrelated (as 

in Diebold, Rudebusch, and Aruoba, 2006; Levant and Ma, 2016), even though this assumption 

may be weakened, if desirable. With three factors, the vector of transition equations specifies the 

dynamics of Level, Slope, and Curvature over time. In our baseline analysis, we generalize DL’s 

set up to the case in which the factors follow a multivariate Gaussian VARሺ𝑝ሻ process: 

𝒇௧ାଵ ൌ 

𝐿௧ାଵ

𝑆௧ାଵ

𝐶௧ାଵ

 ൌ 

𝜇

𝜇ௌ

𝜇

   ൦

𝜙ଵଵ
 𝜙ଵଶ

 𝜙ଵଷ


𝜙ଶଵ
 𝜙ଶଶ

 𝜙ଶଷ


𝜙ଷଵ
 𝜙ଷଶ

 𝜙ଷଷ


൪



ୀଵ



𝐿௧ାଵି

𝑆௧ାଵି

𝐶௧ାଵି

  

𝜂,௧ାଵ

𝜂ௌ,௧ାଵ

𝜂,௧ାଵ

              

ൌ 𝝁   𝚽𝒇௧ାଵି



ୀଵ

 𝜼௧ାଵ                                                                                     ሺ3ሻ 

where 𝝁 is the vector of intercept terms, 𝚽 is a 3×3 matrix that governs the factor dynamics, and 

𝜼 is an innovation vector process, such that 𝜼௧ାଵ~𝑁ሺ0, 𝚺ሻ.  Because 𝚺	 is potentially a full matrix, 

                                                 
5 Yu and Zivot (2011) have examined the OOS performance of one-step state-space vs. two-step dynamic 
DL models to find that, surprisingly, a formal state-space approach that encompasses the estimation of 𝜆 
fails to improve the OOS predictions for Treasury yields. This result is confirmed by Coroneo, Modugno, 
and Giannone (2016) when latent macroeconomic are introduced in the model. Within a wide range of 
values, Nelson and Siegel (1987) find that the goodness-of-fit of the yield curve is not very sensitive to the 
specific value of 𝜆. 
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shocks to different factors may carry a non-zero contemporaneous correlation—in this we differ 

from Xiang and Zhu (2013). 

The estimation of the model in (2)-(3) is performed through the two-step procedure introduced 

by DL (2006), who in fact specialize on a restricted version of (3) in which p = 1 and 𝚽ଵ	 is 

diagonal. However, the economic value results in Caldeira, Moura, and Santos (2016) emphasize 

that an unrestricted 𝚽ଵ	may offer benefits. Although other, single-step approaches (for instance, 

based on the Kalman filter) have been developed, because of its simplicity, convenience and 

numerical reliability the two-step estimation maintains a strong appeal.6 In the first step, we 

estimate the latent factors via OLS to fit at each point in time the (cross-sectional) riskless yield 

curve. We thus obtain a three-dimensional time series of yield factors, ൛𝐿௧, 𝑆መ௧, 𝐶መ௧ ൟ ௧ୀଵ
் . In the 

second step, we model the factors’ time series as driven by a VARሺ𝑝ሻ process.7 

 
2.2.	Markov	switching	vector	autoregressive	models	

A literature has recognized that allowing for regime switching dynamics may be of key 

importance to correctly capture the dynamics of riskless interest rates and thus obtain more 

accurate forecasts, see, among others, Ang and Bekaert (2002), Bansal and Zhou (2002), Chib and 

Kang (2013), Dai, Singleton, and Yang (2007), Gray (1996), Guidolin and Timmermann (2009), 

Hamilton (1988), Rudebusch and Wu (2007), Smith (2002), and Startz and Tsang (2010). 

Markov-switching vector autoregressions (MSVAR(p)) generalize the framework in (2)-(3) to the 

case in which a (latent) discrete state variable 𝑆௧ାଵ ൌ 1, … , 𝐾 may cause shifts in the vectors and 

matrices of parameters of the econometric model of the DNS factors:8 

        𝒇௧ାଵ ൌ 𝝁ௌశభ
  𝚽,ௌశభ

𝒇௧ାଵି



ୀଵ

 𝚺ௌశభ

ଵ ଶ⁄ 𝒛௧ାଵ      𝒛௧ ≡ 𝚺ௌశభ

ିଵ ଶ⁄ 𝜼௧ାଵ~𝐼𝐼𝐷 𝑁ሺ0, 𝐈ሻ.         ሺ4ሻ 

Because in (4), the vector of intercepts, the matrix of vector autoregressive coefficients, and the 

(Choleski factorization of the) covariance matrix all depend on 𝑆௧ାଵ (as in Levant and Ma, 2016), 

we call this framework a MSIAH(K, p) model, where the I stands for the fact that 𝝁ௌశభ
 is regime 

switching, A for the fact that 𝚽,ௌశభ
 is regime switching, and H refers to 𝚺ௌశభ

ଵ ଶ⁄ . Note that 

                                                 
6 The one-step, state-space methods imply potentially challenging optimization problems and are 
characterized by a large number of parameters to be estimated which sometimes makes optimization 
unstable (see, among others, Diebold and Rudebush, 2013). 
7 As a result, we obtain that 𝐶𝑜𝑣ሾ𝜀௧,ఛ

, 𝜂ሺ∙ሻ,௧ሿ ൌ 0 for all factors and yields, but this is in any case one of the 
assumptions required for the optimality of the Kalman filter also in single-step, state space estimation. 
8 Hevia, Gutierrez, Sola, and Spagnolo (2015) and Levant and Ma (2016) have instead maintained a simpler 
VAR dynamics for the factors but instead jointly estimated a regime switching process for 𝜆. 
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𝚺ௌశభ

ଵ ଶ⁄ ሺ𝚺ௌశభ

ଵ ଶ⁄ ሻ′ ൌ 𝑉𝑎𝑟ሾ𝜼௧ାଵ|𝑆௧ାଵሿ. As it is well known (see Guidolin and Pedio, 2018), in a MSIAH(K, 

p) with K > 1 and p   1, the potential of the conditional mean parameters (𝝁ௌశభ
 and 𝚽,ௌశభ

) to 

move across regimes in ways that synchronize the direction of change of the conditional mean 

makes it possible to capture non-linear patters of association of the series of factors over time 

and beyond cross- and own-serial correlation (measured by 𝚽,ௌశభ
) and cross simultaneous 

correlation (estimated as 𝚺ௌశభ

ଵ ଶ⁄ ሺ𝚺ௌశభ

ଵ ଶ⁄ ሻ′), i.e., simple, classical linear association patterns. 

Moreover, time variation in the covariance matrix makes it possible for (4) to capture patterns of 

volatility clustering and thin/fat tails, which are all well-known features of time series of interest 

rates (see, e.g., Hess and Kamara, 2005; Koopman, Mallee, and van der Wel, 2010; Startz and 

Tsang, 2010). 

In particular, in the time-homogeneous hidden Markov state specification of regime switching 

models, the latent regime variable 𝑆௧ାଵ is generated by a discrete, time homogeneous, irreducible 

and ergodic first-order Markov chain such that Pr ቀ𝑆௧ ൌ 𝑗|൛𝑆ൟ
ఛୀଵ

௧ିଵ
, ሼ𝒇ሽୀଵ

௧ିଵ ቁ ൌ Prሺ𝑆௧ ൌ 𝑗|𝑆௧ିଵ ൌ

𝑖ሻ ൌ 𝑝,, where 𝑝, is the generic [i, j] element of the K	×	K transition matrix, P. The irreducible 

nature of the chain means that there is a non-zero-probability of transitioning from any state to 

any other over time and this implies that the vector of ergodic, unconditional probability implied 

by the process is positive element-by-element, 𝛏ത  0.	Finally, it is of the first	order because the 

current state is only affected by the state of the previous period. 

Even in their time-homogeneous Markov implementation (similarly to Xiang and Zhu, 2013), 

MSVAR models tend to be richly parameterized. If we let M be the number of variables collected 

in 𝒇௧ (e.g., M = 3 but below we shall examine cases on which the vector is expanded to include 

four or five variables), then the general MISIAHሺ𝐾, 𝑝ሻ specification in (4) implies the estimation 

of a number of parameters equal to: 

                                                K ቈM  𝑝𝑀ଶ 
𝑀ሺ𝑀  1ሻ

2
 ሺ𝐾 െ 1ሻ.                                             ሺ5ሻ 

Reducing the number of parameters that are regime-dependent allows not only to simplify the 

estimation but also to make it more reliable and tends to provide a better basis in forecasting 

applications. Especially when the number of parameters returned by (5) is large relative to the 

total number of available observations (MT), or equivalently when the saturation	ratio given by 

MT divided by the number of parameters in (5) is inferior to 20 (or at least a two-digit threshold), 

besides avoiding specifications with K exceeds two or three regimes, imposing restrictions on the 

rich structure in (4) may pay off. One restricted version of (4) that turns out to be important in 

our empirical analysis is the MSIH(K)-VAR(p) model, 
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           𝒇௧ାଵ ൌ 𝝁ௌశభ
  𝚽𝒇௧ାଵି



ୀଵ

 𝚺ௌశభ

ଵ ଶ⁄ 𝒛௧ାଵ      𝒛௧ ≡ 𝚺ௌశభ

ିଵ ଶ⁄ 𝜼௧ାଵ~𝐼𝐼𝐷 𝑁ሺ0, 𝐈ሻ.           ሺ6ሻ 

which obtains when the VAR matrices are time-homogeneous, as in Xiang and Zhu (2013). In this 

case, the number of parameters to be estimated declines to 𝑝𝑀ଶ  K ቂM 
ெሺெାଵሻ

ଶ
 ሺ𝐾 െ 1ሻቃ. 

As customary in the time series literature, in the frequentist domain, the estimation of MSVAR 

models is performed by maximum likelihood, using the Expectation Maximization (EM) 

algorithm first applied to MS models by Hamilton (1990). As by a product, this technique also 

allows an iterative calculation of the one-step ahead forecast of the Kx1 state probabilities vector 

𝛏୲ାଵ|୲ given the entire information set at time t. These will be used in Sections 4 and 5 to follow to 

compute factor and hence yield predictions. 

 
2.3.	Extending	Models	to	Monetary	Policy	Indicators	

The third logical step of our methodology extends both the linear model in (3) and the non-linear 

frameworks encompassed by (4) and (6) to include one or more variables describing the stance 

of monetary policy over and beyond what the past history of the factors subsumes, to be collected 

in a Qx1 vector time series 𝒎௧ାଵ.  In general, the variables in 𝒎௧ାଵ are allowed to both affect the 

dynamics of the DNS factors and, on their turn, to be predicted by such factors, if the data so 

require. The literature abounds of indications of the fact that slope (see Levant and Ma, 2016; Wu, 

2001) and curvature (see Bekaert, Cho, and Moreno, 2010; Dewachter and Lyrio, 2006) DNS 

factors are affected by monetary policy, not to mention the obvious linkages between the FFR 

controlled by the Fed and the level factor. For instance, in the case of a MSIAH(K, p) model, if we 

collect all the variables of interest in the Mx1 vector 𝒙௧ାଵ ≡ ሾ𝒇′௧ାଵ 𝒎′௧ାଵሿ′ (where M = Q + 3) we 

obtain: 

                     𝒙௧ାଵ ൌ 𝒄ௌశభ
  𝐀,ௌశభ

𝒙௧ାଵି



ୀଵ

 𝛀ௌశభ

ଵ ଶ⁄ 𝝊௧ାଵ          𝝊௧~𝐼𝐼𝐷 𝑁ሺ0, 𝐈ሻ.                  ሺ7ሻ 

When the VAR matrices, in some or all states and at some or all lags, display a block-diagonal 

structure, this means that the monetary policy variables constitute an autonomous sub-system 

inside the overall MSVAR framework; in this case, monetary conditions impact on the DNS factors 

only through simultaneous shocks (when 𝛀ௌశభ
 is itself not block-diagonal) and/or through the 

information they reveal on the Markov chain variable governing regimes. As emphasized by 

Chada, Turner, and Zampolli (2013) with reference to the yield curve effects of the maturity 

composition of the net public debt held outside the Fed’s balance sheet, a regime switching 

framework offers the key advantage of including pre-crisis data in the estimation at the same 
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time allowing the novel, unconventional nature of the monetary policies pursued since 2008 to 

affect the relative predictive performance of different models. 

When the VAR matrices, in some or all states and at some or all lags, display an upper block-

triangular structure, this means that while the monetary policy variables predict future DNS 

factors, the opposite is not the case, i.e., monetary policy promptly incorporates all information 

in the factors, but monetary conditions gradually propagate over time, also through the factors, 

to the shape of the riskless yield curve, as in Ang and Piazzesi (2002). In this case, financial 

markets are unlikely to be (weakly) informationally efficient. When the VAR matrices, in some or 

all states and at some or all lags, display a lower block-triangular structure, this means that while 

the current DNS factors and hence the shape of the yield curve predict subsequent monetary 

policy reactions, the opposite does not hold, i.e., the US Treasury markets are efficient enough to 

account already of all available information on the stance of monetary policy, as featured in the 

seminal paper by Estrella and Hardouvelis (1991). This case is compatible with policymakers 

learning about the state of the economy from the features of the riskless yield curve.9 Of course, 

when 𝐀,ௌశభ
 fails to display any special structure (it is potentially full) in at least one regime, then 

we are facing the case of bi-direction feedbacks already uncovered by Diebold, Rudebusch, and 

Aruoba (2006) or by Kozicki and Tinsley (2005). 

 
3.	THE	DATA	

3.1.	Treasury	bond	yields	

To infer the DNS factors implicit in the Treasury yield curve using the DNS model, we summarize 

the Treasury term structure using a set of yields of different maturities: the 3-month, 6-month, 

1-, 2-, 3-, 5-, 7-, 10-, and 30-year constant maturity yields for a January, 1982 - July, 2015 monthly 

sample, retrieved from FRED, at the Federal Reserve Bank of St. Louis.10. These yields are 

interpolated from daily yield curve data based on the closing market bid prices for actively traded 

Treasuries on the over-the-counter market.11 Through such interpolation, we obtain yields in 

correspondence to fixed maturity points on the yield curve even when there are no outstanding 

bonds with that particular time-to-maturity, which is rather likely for tenors past 1-year. 

                                                 
9 Of course, also in the block-triangular cases, it remains possible for monetary conditions to be related to 
the DNS factors simultaneously, via cross-correlation in the shocks and/or through the information they 
reveal on the Markov chain variable governing the regimes of the whole system. 
10 The 30-year yields are unavailable between February 2002 and August 2006. For this period, following 
Hamilton and Wu (2012), we use instead the 20-year rate minus 21 bps, which is the amount by which the 
20-year rate exceeded the 30-year rate both immediately before and after the gap. 
11 For details on the interpolation of the Constant Maturity Treasury yields, see www.treasury.gov. 
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In Figure 1, we plot the constant maturity yields, whereas in Table 1 we present summary 

statistics. Both reveal features that are consistent with commonly known facts about the US term 

structure. For instance, a comparison of mean yields across different maturities confirms that the 

yield curve is on average increasing and concave; moreover, the sample standard deviations of 

the yields generally decrease with maturity. In addition, from these statistics we obtain pervasive 

evidence of non-normality in the data, mostly (with the exception of the 10-year and 30-year 

maturities) caused by a negative excess kurtosis (i.e., tails thinner than under a Gaussian 

distribution). In fact, a Jarque-Bera test confirms that the null hypothesis of a normal distribution 

can be rejected for all of the series at a 5% size level. As it can be seen from Panel B of Table 1 and 

from Figure 1, the correlations among the series are high and tend to be the highest for adjacent 

maturities, ranging between 0.90 and 0.99.  

 
4.2.	Monetary	policy	indicators	

To test whether and how much the variables that capture the stance of monetary policy may add 

predictive power to the standard DNS factors, we select/construct five observable series to 

represent a range of features that may characterize policy, with particular emphasis to the 

unconventional measures adopted by the Fed during the GFC (i.e., balance sheet policies). The 

five variables are: two variables meant to proxy for the size of	the	Fed’s	balance	sheet (the level of 

the Fed’s total Assets and a Divisia money aggregate index); two variables that measure the 

composition of the Fed’s balance sheet (the percentage of Treasuries on the Fed’s total assets and 

the average maturity of the Fed’s portfolio of Treasuries), and a measure of the Fed’s	interest	rate	

policy (the Effective FFR). We describe each of the variables in detail and explain why these have 

been associated to specific aspects of monetary policy actions. Figure 2 shows the five series 

under investigation. 

The level of the Fed’s total Assets is available from the Federal Reserve’s weekly H41 release. 

However, for the purpose of our analysis we consider the level in correspondence to the last week 

of each month.12 Because the data are available only from July 1996, we are forced to perform 

our analysis on a shorter sample for this variable (i.e., July 1996-July 2015). This variable is 

selected to reflect the growth in the Fed’s balance sheet as a consequence of the LSAP and QE (1 

                                                 
12 Particularly, we use the natural logarithm of the level of total assets as suggested in Gambacorta, 
Hofmann, and Peersman (2014). Gambacorta and Hofmann (2012) have argued that, although other 
variables, mainly monetary base, seem to be affected by QE policies, the partial sterilization made by 
central banks on base money should make assets a better gauge to measure unconventional monetary 
policy during the GFC. 
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through 3) programs enacted between 2008 and 2014.13 Figure 2 shows that the log of Assets 

increased dramatically between October 2008 and March 2009 as a consequence of the Fed’s 

purchases of Treasuries and other longer term securities for an exceeding one trillion USD. In the 

following years, an additional series of large-scale asset purchases (LSAPs) led the Fed’s total 

assets to grow even more (by about 3.5 trillion dollars in total). 

As an alternative proxy for the total aggregate monetary base, and hence of the size of Fed’s 

balance sheet, we follow the classical literature on the advantages of the Divisia Index.14 In 

particular, we use the log level of the Divisia MZM Index published by the Federal Reserve Bank 

of St. Louis. 15 The sample for this series starts in January, 1982, as the constant maturity Treasury 

series. Figure 2 shows the natural log of the Divisia MZM aggregate (but our empirical estimates 

also use growth rates defined as differences in logs). The growth rate accelerated in 2007 and 

2008 in response to the unconventional Fed policies; in particular, it picked up in December 2008, 

after the announcement of the LSAP program. Subsequently, it slowed during 2009 (this can be 

seen as a consequence of the substantial outflows experienced by money market funds) and 

strengthened again during 2010, in response to further quantitative easing policies (see 

Anderson and Jones, 2011, for details). 

The percentage of Treasuries on the Fed’s total assets is intended as a way to measure any 

variations in the composition of the Fed’s balance sheet. This series is calculated by dividing the 

                                                 
13 Between 2008 and 2010, the Fed has more than doubled the size of its balance sheet through asset 
purchases. In November 2008, the Fed announced the purchase of up to $100 billion agency debt and up 
to $500 billion agency mortgage-back securities (original LSAP program). In March 2009, to improve 
conditions in private credit markets, it announced the intention to purchase additional $850 billion agency 
debt and up to $300 billion of long-term Treasury securities (the so-called QE1). Furthermore, on 
November 2010, the Fed announced an additional expansion by purchasing a further $600 billion of long-
term Treasuries (QE2). In September 2012, the Fed announced it would buy $40 billion per	month in 
mortgage-backed securities until occupational figures would have improved (QE3). In December 2012, the 
FOMC announced an increase in the amount of the purchases from $40 to $85 billion per month. 
14 Belongia and Ireland (2012) have extended the classical Bernanke and Blinder (1988) to show that 
monetary aggregates still possess a significant explanatory power for monetary policy provided the 
aggregates are built not to be simple sum indexes because these cannot internalize pure substitution 
effects, like Divisia indices. The Divisia index of money weighs different assets by the value of the monetary 
services they provide, see, e.g., Barnett (1982). However, Gambacorta, Hofmann, and Peersman, 2014) 
have argued that in the US, in the aftermath of the GFC standard indicators of monetary growth fail to 
capture the full thrust of monetary policies. 
15 MZM stands for “money-zero maturity”: it corresponds to M2, less small time deposits, plus Institutional 
Money Market Mutual Funds (MMMFs). It contains items that are immediately convertible, without 
penalty, to some form of medium of exchange. As emphasized by Belongia and Ireland (2012), the choice 
between different levels of aggregation (i.e., between M1, M2, and MZM) does not seem relevant. Their 
empirical analysis shows that the information content of the Divisia MZM and other Divisia Indexes is very 
similar, whereas important differences exist between Divisia and simple sum aggregates. 



15 

total amount of Treasuries on the Fed’s portfolio by the Fed’s total assets. Because with reference 

to the amount of Treasuries held	the Federal Reserve’s weekly H41 release is the only source of 

data and it is available from July 1996, we use a 1996 – 2015 also for this variable. The variable 

is meaningful because it has been generally observed that the size of the Fed balance sheet alone 

may fail to account for the impact of the credit policies implemented by the Fed.16 Effectively, 

because an extensive use of credit policy took place especially during the initial (sometimes 

referred to sub-prime or credit crunch) stages of the GFC, it seems appropriate to also make use 

of such a variable. Borio and Disyatat (2010) emphasize that the main channel trough which 

balance sheet policies operate is by altering the composition of the portfolios in the private 

sector; for instance, through the purchase of less liquid or risky assets the Fed can reduce yields 

and ease financing constraints.17 Figure 2 confirms that this variable is suitable to proxy for 

shocks in the composition of the Fed’s portfolio resulting from the LSAP program and the policies 

undertaken between late 2007 and 2008 when—to lower borrowing costs and ease credit flows 

in the private sector—the Fed departed from its practice to only trade Treasury securities 

through open market operations and started instead to extend credit to the private sector and 

government agencies. Consequently, the Treasuries portfolio, that used to represent around 90% 

of the entire Fed’s portfolio until May 2008, dropped dramatically to almost 20% during the 

following 6 months, to settle back to a steady level after December 2008. This pattern reflects the 

purchase of a large amount of mortgage-backed securities and agency debt during 2008. 

The average maturity of the FED’s portfolio of Treasuries is the variable selected to summarize 

the effects of MEP.18 Because MEP is a sterilized operation in which the proceeds from the sales 

of short-term Treasuries are used to buy long-term Treasury securities, this operation is balance 

sheet neutral (i.e., it does not affect any of the variables listed so far).19 Hence, the only way to 

                                                 
16 According to the definition in Goodfriend (2011), we refer to credit policy as a policy that shifts the 
composition of the Fed’s asset portfolio between Treasury securities and credit to the private sector (or to 
non-Treasury government entities), holding the total fixed. 
17 Such policies may produce real effects if the assets exchanged are not perfect substitutes, as in 
Modigliani and Sutch’s preferred-habitat theory, recently revived by Vayanos and Vila (2009). 
18 Hamilton and Wu (2012) have stressed that the maturity structure of the government debt issued to the 
public may be expected to affect the pricing of Level, Slope, and Curvature risk. Because Treasuries of 
different maturities carry different risk, and this is priced by the market, replacing long-term debt with 
short-term debt in private sector portfolios would affect equilibrium yields. For instance, Kuttner (2006) 
finds that shifts in Federal Reserve holdings of government debt toward long maturities lower the risk 
premia of two-, three-, four-, and five-year bonds. Greenwood and Vayanos (2014) have reported a positive 
correlation between the maturity structure of the US government debt and the riskless term structure. 
19 In September 2011, the FOMC announced it would buy Treasuries with maturities between 72 and 360 
months and sell an equal amount of securities with remaining maturities of 3 to 36 months, for an amount 
up to $667 billion. In contrast to the earlier Large-Scale Asset Purchase operations, at that time the MEP 
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capture the effect of this type of policy is to measure the average maturity of the Treasuries 

portfolio. The New York Fed database provides System Open Market Account (SOMA) holdings 

from 2003 to the present, divided by rough maturity breakdowns (less than 15 days, 16-90 days, 

91 days to 1 year, over 1 year to 5 years, over 5 years to 10 years, and over10 years). We use 

these data to calculate the average maturity of the Fed’s Treasuries portfolio for each end of 

month between January 2003 and July 2015. Moreover, to cover the same sample period as the 

constant maturity yields, we obtain data for the period January 1982 - December 2002 using the 

average maturity of the Fed’s Treasury holdings as calculated in Kuttner (2006).20 From 

inspection of Figure 2, we have confirmation that this variable has been strongly affected by the 

Fed’s unconventional policies: the average maturity doubled in 2008, because of the QE1 

program and it especially picked up after September 2011, after the MEP was launched. 

Finally, the Effective FFR is meant to act as a proxy for the conventional, interest rate policy 

typically enacted by the Fed. We include this variable into our analysis to control whether and to 

what extent the standard monetary policy instrument may strengthen the predictability of the 

term structure, especially with MSVAR set ups that may endogenously account for sequences of 

monetary policy regimes. The data on the FFR are obtained from Bloomberg for the entire 

sample. To be consistent with the other variables, we download the effective rate in 

correspondence to the last trading day of each month. As shown in Figure 2, the variability in the 

FFR had been substantial before 2008. Then, after the lower bound of the target rate was cut to 

zero in December 2008 (i.e., the zero lower bound had been reached), the escalating recession 

forced the Fed to maintain its target rate at a zero level for a long time and to credibly 

communicate such an intention. Therefore, since then, no significant changes in the FFR have 

occurred for the rest of the sample. This suggests that, at least during the crisis and in its 

aftermath, the FFR may have turned insufficient to explain the monetary policy of the Fed and 

have lost any earlier predictive power. 

 
4.	EMPIRICAL	RESULTS	

In this Section, we first estimate the time series of the factors fitting the static NS model to the 

yield curve in each period; next, we capture the dynamic structure of the extracted Level, Slope 

and Curvature factors using the models described in Section 2. We start the analysis with a 

baseline single-state, VARሺ1ሻ model for the DNS factors only. Then, we introduce regimes in the 

                                                 
explicitly aimed to increase the average maturity of the Fed’s Treasury holdings without increasing the 
overall size of the central bank’s balance sheet. 
20 Data are available at http://econ.williams.edu/people/knk1/research. 
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model obtaining six MSVAR models (some of them will also generate a few variants described 

below): the first includes only the three yield curve factors, whereas the others are augmented 

by alternative variables, each representing the stance of monetary policy. 

 
4.1.	The	DNS	factors	

As described earlier, DL’s version of Nelson-Siegel’s model has been estimated at each time t by 

standard OLS applied to the cross section of yields, holding 𝜆 fixed at 0.0609. Cross-sectional 

estimation has been recursively repeated over time, between January 1982 and July 2015 

obtaining a set of 403 sequential estimates of the three unobservable factors 𝐿௧, 𝑆መ௧, 𝐶መ௧. In Figure 

3, we plot 𝐿௧, 𝑆መ௧, 𝐶መ௧, along with the observable counterparts of level, slope and curvature of the 

yield curve. The empirical counterparts of the factors are proxies derived as in DL (2006): we 

define the observable Level as the 10-year yield, Slope as the difference between 10-year and 3-

month yields, and Curvature as twice the 2-year yield minus the sum of the 3-month and 10-year 

yields. The correlations between the estimated factors and their empirical counterparts are very 

high, ranging between 0.98 and 0.99. These findings confirm our interpretation that the DNS 

factors largely correspond to the empirical level, slope, and curvature of the term structure and 

reassure us of the fact that we shall be working with factors with a similar nature and 

interpretation as in earlier literature. 

Table 2 presents the key summary statistics of the estimated DNS factors. As we would expect, 

Level is on average positive and largely follows the path of the long term bond yields (10- and 30-

year rates). On the contrary, Slope is on average negative: this is not surprising because the NS 

loading on Slope is designed in such a way that negative values of the Slope factor corresponds 

to the typical upward sloping yield curve. In turn, positive, null and even small negative values of 

the Curvature correspond to the typical concave yield curve; therefore, the slightly negative mean 

of the factor is compatible with the empirical fact that the term structure is on average concave. 

Moreover, from the standard deviations, it emerges that the Curvature is the most volatile among 

the factors, followed by Level; Slope is the least volatile factor. Finally, while Level and Slope are 

largely uncorrelated, Curvature is positively correlated with all other factors, meaning that when 

rates are relatively high and the term structure positively sloped, then concavity emerges. 

 

4.2.	𝑉𝐴𝑅ሺ1ሻ	models	

As a benchmark, we model the dynamics in the NS factors using a standard VARሺ𝑝ሻ as in (3). We 

experiment with p = 1, 2, and 3, but we find that all information criteria (see Section 4.3 for 

definitions) as well as many of the adjusted R-square coefficients (on a equation-by-equation 
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basis) decline when the number of lags is set at 2 or a higher value. To the contrary, and 

consistently with DL (2006), p = 1 is required although simple LR tests reject the null hypothesis 

that 𝚽ଵ	should be diagonal, as it is instead assumed by DL. 

Table 3 reports the parameter estimates of the VARሺ1ሻ model applied to the factors. All factors 

are very persistent; however, Level is the most persistent (𝚽 ଵሾ1,1ሿ ൌ 0.989) factor, followed by 

Slope (𝚽 ଵሾ2,2ሿ ൌ0.934), and Curvature (𝚽 ଵሾ3,3ሿ ൌ0.916). These results are in line, in spite of a 

longer sample that encompasses the GFC and the unconventional policy measures ensuing from 

it, with the literature. Moreover, our findings are consistent with the commonly reported pattern 

that yield dynamics (that in DNS framework is approximated by the Level factor) is more 

persistent than the spread dynamics (in our case, approximated by the Slope factor). The vast 

majority of the estimated coefficients is significant at least at a 5% level. In particular, all factors 

have significant forecasting power for Slope and Curvature, but not for Level; if anything, 𝚽 ଵ	 is 

upper triangular, not diagonal, which is consistent with the unconditional correlations in panel B 

of Table 2. As has already been documented in DL (2006) and Diebold, Rudebusch, and Aruoba 

(2006), the VAR(1), pure DNS factor model explains the cross-sectional variation of interest rates 

of different maturities very well over time, with R-squares exceeding 99% for intermediate 

maturities. Finally, in a single-state model, the residual correlations are small and not statistically 

significant, i.e., the covariance matrix of the shocks is close to diagonal, which is a case explored 

by Diebold, Rudebusch, and Aruoba (2006).21 

 

4.3.	Markov	switching	VAR	models	

On the basis of earlier literature on the presence of regimes in monetary policy and its 

connections to the yield curve, we have a prior that a single-state VAR(1) model may be 

insufficient to capture all features of the term structure. Therefore we proceed to estimate a range 

of K-state MSVAR models, both limited to the three DNS factors and extended to include one or 

two (simultaneously) additional variables to represent the stance of monetary policy (i.e., the 

first difference in the log of the assets in the Fed’s balance sheet, the first difference in the log of 

the Divisia index, the percentage of the Fed’s balance sheet assets represented by Treasuries, the 

average maturity of the Fed’s Treasury portfolio, and the effective Fed funds rate). Of course, 

dealing with the case of Q = 1 offers the advantage of emphasizing the specific predictive role 

                                                 
21 We have estimated restricted, block diagonal and upper triangular VAR(1) models in which the macro 
variables carry no cross-serial correlations with DNS factors or in which past macro variables forecast 
future DNS factors but not the opposite. All these restrictions were rejected by LR tests. We have also 
estimated a range of VAR(1) models for vectors of variables that include macroeconomic variables. These 
are not specifically commented, but they are used as benchmarks in Section 5. 
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played by each of the variables in isolation, and tends to maximize their forecasting power. The 

occasional inspection of a few cases in which two variables were simultaneously used (Q = 2) did 

allow us to test whether two different variables may contain different and complementary 

information on the stance of monetary policy. Because of data limitations, we only experiment 

with K = 2 and 3. Although other models (e.g., with constant covariance matrix of the shocks) 

were estimated, in the following we discuss the two types of models already emphasized, i.e., the 

MSIAH(K, 1) and MSIH(K)-VAR(1) frameworks.22 

4.3.1.	Model	selection	

As a first step, we conduct a specification search to select the model that best describes the 

underlying dynamics of the yield curve. First, we want to assess whether a multi-state framework 

is truly required by the data. Second, if that were to be the case, we aim at selecting the most 

appropriate MSVAR model among the various specifications presented in Section 2. In such a 

framework we define a model by selecting the VAR order, the appropriate number of regimes, 

and which are the parameters subject to regime switching. 

To assess whether a multi-state framework is appropriate, we apply a corrected LR test as the 

standard version of the test is not valid in this case (it fails to have an asymptotically chi-square 

distribution) because of a nuisance parameter problem (see Garcia, 1998). Table 4 presents the 

LR linearity test—i.e., the null hypothesis is K = 1 vs. a composite alternative of K’ > 1—along with 

Davies’ (1977) adjusted p-values in parenthesis.23 Visibly, for all sets of variables (as defined by 

the identity of the monetary variable added to the DNS factors, if any), all selections of K’	= 2 and 

3, and all MSVAR models, the LR test always rejects the null hypothesis of 𝐾 ൌ 1 at any confidence 

level. We conclude that our US interest rate data require regimes, consistently with earlier 

literature (see e.g., Ang and Bekaert, 2002; Bansal and Zhou, 2002; Dai, Singleton, and Yang, 2007; 

Rudebusch, and Wu, 2007; Startz and Tsang, 2010; Xiang and Zhu, 2013). 

Once we establish that 𝐾  1 is the appropriate number of states, we have to select the most 

suitable model within the MSVAR class. We analyze two possible specifications, MISIHሺ𝐾ሻ-

                                                 
22 Estimating MSIAH(K,p) models with p equal to or exceeding 2 turned out to be unfeasible. We limit 
ourselves to Q = 1 or 2 because richer MSVAR models imply a substantial loss of degrees of freedom, or 
equivalently, very low saturation ratios that either prevent outright convergence of the EM estimation 
routines, or in any event make us extremely skeptical about the reliability of the resulting estimates. In 
fact, Table 4 reports the estimation outputs for only one such model with Q = 2 (i.e., for a M= 5 variable 
MSVAR), for which we managed to obtain reliable convergence statistics, that is yet characterized by as 
many as 141 parameters and hence by a saturation ratio below 5. 
23 Davies (1977) provides an upper bound for the significance level of the LR test under nuisance 
parameters. 
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VAR(1) and a MISIAHሺ𝐾, 1ሻ. In fact, it is known that when the data require a regime switching 

structure, especially when K  3 is considered, it is common to find that 𝑝  1 becomes 

redundant, see e.g., Guidolin and Timmermann (2006). To select one of the four models among 

MISIHሺ2ሻ-VAR(1), MISIHሺ3ሻ-VAR(1), MISIAHሺ2,1ሻ, and MISIAHሺ3,1ሻ, we resort to three 

information criteria: the Akaike information criterion (AIC), the Hannan-Quinn criterion (HQ), 

and the Schwarz criterion (SIC). As can be seen from Table 4, none of the criteria suggests 

MSIH(2)-VAR(1) or MSIAH(2,1) as the best models, hence the selection is restricted to models 

with three regimes. Among them, for three out of seven models all the information criteria 

uniformly select a MISIH(3)-VAR(1). In three cases, while AIC advises a richly parameterized 

MSIAH(3,1) model, the more parsimonious H-Q and SIC criteria point towards a MSIH(3)-VAR(1) 

specification. As observed before in a variety of applications, it is typical of information criteria 

to provide heterogeneous indications, especially when the AIC is compared to H-Q and SIC (see, 

e.g., Fenton and Gallant, 1996). In only one case—a model in which the three DNS factors are 

augmented by the FFR—all criteria point towards a MSIAH(3,1). However, in all cases in which 

the information criteria selected a MSIAH(3,1) model, this was characterized by either 96 o 141 

parameters to be estimated (with a total number of observations ranging between 684 and 1,608, 

depending on M) and, as a result, by saturation ratios well below a suggested, healthy threshold 

of 10-20:24 12.5 in three cases, 7.1 in one case, when the series on the size of the Fed’s balance 

sheet is added to the DNS factors. Because in a majority of cases a more parsimonious MSIH(3)-

VAR(1) had been selected by the information criteria, because this model leads to acceptable 

saturation ratios between 10.7 and 28.7, and because of a strong prior from earlier literature (see 

Xiang and Zhu, 2013), we settle on a uniform use of MSIH(3)-VAR(1) models for all sets of 

variables under analysis.25 

4.3.2. Three‐state	MSIH	VAR	models	

The selected MISHሺ3,1ሻ-VAR(1) framework has been estimated for seven specifications: one for 

the three DNS factors only and other six for four-variable models built as described in Section 2. 

                                                 
24 The saturation ratio is defined as the ratio between the total number of observations and the total 
number of parameters to be estimated in a model. Values of this ratio below 10 are considered deeply 
unsatisfactory because they may lead to inaccurate forecasts and unstable optimization, much dependent 
on starting conditions. 
25 In Table 4, we present also ML estimation statistics for a 5-variable Markov switching model 
including both the rate of growth of the size of the Fed’s balance sheet and its average maturity. This 
was the only case in which we could achieve convergence and stable estimates for all four MSVAR 
models in the table. However, the models for 5 variables lead to alarming saturation ratios between 
4.9 and 10.2 and has not been pursued further. 
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In Tables 5-7, we report the estimation outputs for three cases. All estimated processes imply 

point estimates of the VAR(1) matrix with eigenvalues outside the unit circle, i.e., they are 

covariance stationary in all regimes. The same holds for single-state VAR(1) models, even when 

occasionally a Reader might detect coefficients on the main diagonal of the 𝚽ଵ	matrices exceeding 

1. Complete, full-sample estimation results for all seven cases (as well as for the corresponding, 

single-state VAR(1) models) are collected in an Appendix available upon request. Table 5 reports 

the estimates obtained for the factors in isolation. First, while most regime switching intercepts 

are not precisely estimated, the time invariant VAR(1) matrix collects only statistically significant 

(at a size of 10% or less) estimates and therefore stops displaying a triangular structure. When 

regimes are taken into account, not only there is evidence that the DNS factors are tightly 

interconnected because they jointly shift regimes, but also display a stronger, more accurately 

estimated cross-serial correlation structure. However, the point estimates of the coefficients are 

not drastically different (but the curvature factor becomes less persistent) and in fact they all 

retain the same signs as in Table 3: therefore a MSVAR framework just allows a more accurate 

estimation of the VAR components, even though the regime-specific intercepts are not always 

precisely estimated. Interestingly, also the regime-specific covariance matrix stops being 

approximately diagonal because in at least two regimes out of three, all factor shocks are 

positively and significantly correlated. Also in this case, the cross-sectional variation of interest 

rates of different maturities is explained almost entirely by the MSVAR model for the DNS factors, 

with all the R-squares exceeding 99%, and those for the intermediate tenors now approaching 

essentially 100%. 

As far as their interpretation is concerned, an inspection of Table 5 and of the smoothed 

probabilities plotted in Figure 4 reveals that regime 1 is a state of stable, low rates characterized 

by a steeply upward sloping and concave term structure. The regime is the most persistent of the 

three, with a “stayer” (𝑝ଵ,ଵ ൌ Prሺ𝑆௧ ൌ 1|𝑆௧ିଵ ൌ 1ሻ) probability of 0.90 and an average duration of 

approximately 10 months. In this regime, shocks to level and slope have a strongly negative 

correlation, probably indicative of a period in which the efforts to reduce the short-term rates 

were aimed at supporting a steepening of the yield curve to express an improvement in the 

expectations concerning medium- and long-term growth prospects (hence, inflation). Figure 4 

reveals that regime 1 tends to follow the start of recessionary periods (e.g., late 1993, 2002-2003, 

and 2009-2014) and especially corresponds to the great recession and the successful recovery of 

the US economy spurred by unconventional monetary policy measures; this is also reflected by 

the modest volatility of Level and Slope and therefore of the rates themselves. 
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Regime 2 is a state of high average rates, flat and approximately linear or even convex (when 

downward sloping) term structure, in which shocks to the factors are slightly more volatile than 

under regime 1 (with the exception of Curvature). This state is more persistent than regime 1 is, 

with a “stayer” probability of 0.94, which implies a duration in excess of 15 months. Figure 4 

shows that the regime characterizes financial bull markets and the mature stages of expansionary 

periods, such as the long booms of 1996-1999 and 2004-2006, which were both characterized by 

high effective Fed fund rates. 

Regime 3 is the least persistent of the states with an average duration of 4.4 months and a “stayer” 

probability of 0.77. This is a state characterizing the early stages of bear markets and, more 

generally, of economic downturns as revealed by the implied intermediate average level and 

slope of the yield curve, that are both lower vs. regime 1. In this regime, shocks to all factors are 

highly volatile, with an estimated volatility that may be twice the estimates for regime 1. Figure 

4 shows that regime 3 coincides with NBER recession periods and occasionally spikes in 

correspondence to crisis episodes. For instance, this regime occurs in correspondence to the 

fallout from the Russian default in 1998, late 2000-2001 when the internet bubble burst, and 

finally the GFC of 2007-2008. Interestingly, the estimated transition matrix has a structure that 

reveals that regimes 1 and 3 “communicate” with relatively large and statistically significant 

probabilities: Prሺ𝑆௧ ൌ 3|𝑆௧ିଵ ൌ 1ሻ ൌ 0.09, Prሺ𝑆௧ ൌ 1|𝑆௧ିଵ ൌ 3ሻ ൌ 0.16;26 on the contrary, regimes 

1 and 2 and 2 and 3 are less likely to communicate. Importantly, this special structure justifies 

why regime 1, in spite of a lower duration and “stayer” probability carries a higher ergodic 

probability (0.485) than regime 2 does (0.254).This suggests that in the fixed income market, one 

typically switches from a state of turbulent markets in times of crisis, to more quiet markets, often 

under the influence of policy interventions, like in the final part of our sample, 2009-2014. 

Even though our working hypothesis is that adding variables that capture the stance of monetary 

policy to a regime switching DNS set up improves forecasting power with special emphasis on 

the crisis sub-sample, Table 6—with reference to a M = 4 system expanded to include the log of 

the size of the Fed’s balance sheet—shows results qualitatively similar to Table 5 as far as the 

parameter estimates and regime classification are concerned.27 In fact, the fraction of accurately 

estimated parameters grows. Regime 1 is still interpretable as a regime of low rates, moderate 

                                                 
26 Because of the “by-row” sum up constraint on the transition probabilities, in each row only the standard 
errors of K – 1 probabilities can be computed. 
27 In the case of the macro variables, the implied unconditional means reported in Tables 6 and 7 refer to 
the first difference of the log and hence to the implied monthly growth rate. 
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slope and concavity of the yield curve and in which the size of the Fed’s balance sheet grows at a 

(relatively, compared to the average) rapid rate; shocks to both DNS factors and the log-size of 

the balance sheet are not very volatile and moderately correlated, to indicate that as measured 

by log-asset size, monetary policy is dominated by a very persistent dynamics (close to a 

stochastic trend) of the Fed’s assets and not by a rapid response to market conditions. This 

regime is rather persistent (average duration is almost 8 months) and characterizes 

approximately 30% of a 1996-2015 sample. An unreported set of pictures of smoothed state 

probabilities similar to Figure 4 shows that regime 1 still captures an unconventional monetary 

policy regime, even though in this case between 2011 and 2015 there is a tendency of regime 1 

to alternate with regime 2. This is sensible, as regime 2 describes a better state of higher average 

rates within upward sloping and approximately linear (if not slightly convex, with a hyperbolic 

shape) term structures, typical of the initial stages of economic expansions. However, this regime 

lasts on average 3.5 months, characterizes only 22% of our sample and in this respect is more 

“peculiar” and hence short-lived than regime 2 in Table 5, when only the DNS factors were 

considered. Regime 3 therefore plays a residual role in logical terms, describing “normal times”, 

and it carries a high persistence of 2 years, and dominates our sample (its ergodic frequency of 

48%); therefore, in this regime the yield curve is at intermediate levels, it is upward sloping and 

concave, as we would expect of a normal state. In this respect, regime 3 in Table 6 is very similar 

to regime 2 in Table 5.  

Interestingly, the VAR(1) matrix in Table 6 turns out to be lower triangular, which indicates that 

the current size of the Fed’s balance sheet does forecast subsequent DNS factors but not the 

opposite, similarly to the empirical results in Diebold, Rudebusch, and Aruoba (2006), who 

however use data for output growth and inflation. In fact, we have estimated a restricted, lower 

triangular MSVAR model in which the log size of the Fed balance sheet is not predicted by past 

DNS factors finding a maximized log-likelihood of 561.25; when compared to the unrestricted 

maximized log-likelihood of 566.32 in Table 4, under six restrictions, this gives an 

(asymptotically chi-square distributed) likelihood ratio test statistic of 10.134, which leads to a 

p-value of 0.119. Because the p-value seem indecisive and because the restriction was rejected 

for a number of other monetary policy indicators (as in Table 7), in the rest of the paper we work 

with unrestricted MSVAR models even though we are aware that in some cases this may worsen 

they realized, OOS forecasting performance. As such our results in Sections 5 and 6 ought to be 

taken as lower bounds of the potential ones. 
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Table 7 reports the ML estimates of a MSIH(3)-VAR(1) model similar to the one in Table 6, but 

when the size of the quantitative easing expansion engineered by the Fed in 2008-2015 is 

measured more indirectly, through its effects on the total quantity of money, as captured by the 

log-MZM Divisia index. Qualitatively, the estimation results, nature and persistence of the three 

regimes implied by the table are very similar to those commented with reference to Table 6; for 

instance, also in this case, most of the unconventional monetary policy effects on the shape and 

dynamics of the US risk-free yield curve are captured by a rather persistent regime 1, the 

smoothed probability of which raise towards 1 and remain close to that level during most of the 

period 2009-2014. In fact, the point of displaying Table 7 alongside Table 6 is to document the 

fact that, even though qualitatively the estimates and predictions from the two models may differ, 

in qualitative terms they have similar interpretation and implications. The same can be said with 

reference to the remaining three MSIH(3)-VAR(1) models that alternatively expand the set of 

variables composed of the three DNS factors to the time series of the average maturity of the 

asset-side of the Fed’s balance sheet, its composition in terms of the percentage represented by 

Treasuries, and the effective Fed funds rate. In all cases, we recognize as a regime 1 a state that 

tends to characterize most of the final part of our sample and that is characterized by low 

volatility of the shocks, moderate correlations, low average rates, and intermediate levels of the 

Slope and Curvature factors.28 

 

5.	FORECASTING	WITH	MACRO‐AUGMENTED	REGIME	SWITCHING	DNS	MODELS		

To investigate the value created by the regime-switching framework and our conjecture that 

regimes exist in which DNS factors can be predicted not only from their own past but also using 

the stance of monetary policy, after a description of our pseudo OOS design, in this section we 

test three hypotheses. The first question is whether the MSVAR models (with and without 

macroeconomic factors) outperform a single state VAR in terms of their forecasting accuracy. 

This issue is related to the role of regime shifts in forecasting with DNS models and extends the 

work by Xiang and Zhou (2013). Secondly, we investigate whether the addition of 

macroeconomic variables to a baseline MSVAR model for the DNS factors may generate 

                                                 
28 In the case of the MSVAR model including the FFR, regime 1 is characterized by a near-zero, basically 
constant rate. Moreover, the estimated VAR matrix shows that the FFR highly depends on the lagged values 
of Level and Slope although the opposite is less evident (i.e., FFR do not show high predictive ability for 
Level and Slope); on the other hand, the FFR has significant forecasting power for Curvature. In the case 
of the models including average maturity and the composition of the Fed’s balance sheet, regime 1 implies 
an above-average maturity and a below-average weight assigned to Treasuries, as we would expect from 
Figure 2. 
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additional forecasting power and whether such a power changes across different periods, with 

particular emphasis on the GFC and the ensuing policy measures. Finally, we compare the 

forecasting performance of the baseline VAR and MSVAR models with that of a natural 

benchmark, much used in the literature, the Random Walk (henceforth, RW) that recently has 

been shown to have performed well in forecasting US spot rates since the GFC (see Eo and Kang, 

2018). 

5.1.	The	pseudo	out‐of‐sample	recursive	forecasting	experiment	

We implement a typical recursive, expanding window, pseudo OOS design. We start by estimating 

all M-variables MSIH(K)-VAR(1) models—as defined by K = 1, 3 and by whether M = 3 or 4 (just 

DNS factors or factors expanded to include macro variables)— and the benchmarks (see Section 

5.2) on a sample ending in December 2005 to forecast both the DNS factors and the associated 

yields one-month forward, as of the end of January 2006.29 We then add one vector of estimated 

DNS factors, in this case corresponding to January 2006, and perform afresh estimation on this 

expanded data set to compute one-month ahead forecasts for February 2006. We proceed in this 

fashion until we exhaust the useful panel of estimated DNS factors, in June 2015, when we obtain 

the last one-step ahead prediction of factors and hence yields, for July 2015. Therefore, we obtain 

a sequence of 113 predicted DNS factors and the associated 113 predicted yield curves (in terms 

of the 9 maturities listed in Section 3). 

We supplement the models described in Section 4 with the standard benchmarks commonly 

employed in the yield curve forecasting literature (see, e.g., Guidolind and Thornton, 2018): 

  Random walk: 𝒇௧ାଵ|௧ ൌ 𝒇௧;  

 VARሺ1ሻ model: 𝒇௧ାଵ|௧ ൌ 𝝁  𝚽𝒇௧,  which nests DL (2006).  

However, differently from what is typical of the literature, such benchmarks are applied to the 

DNS factors to obtain 𝒇௧ାଵ|௧ ≡ ሾ𝐿௧ାଵ|௧ 𝑆መ௧ାଵ|௧ 𝐶መ௧ାଵ|௧] ’  and then converted into yield predictions 

using: 

                                                 
29 The estimation sample starts in January 1982 for four of the six choices of the variables included in 𝒙௧ 
and in July 1996 for the models based on the log-size of the Fed’s balance sheet and the proportion 
represented by Treasuries. We also compute forecasting performance for the factors themselves because 
the trading strategies in Section 6 are directly based on factor predictions. Of course, it is easy to extend 
our OOS design to multi-step ahead forecasts, but because we aim at analyzing the economic value of such 
forecasts, it seems more relevant to report results focusing on short-horizon predictions. 
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As in Diebold, Rudebusch, and Aruoba (2006), the yields only load on the predicted DNS factors 

and not on the macroeconomic factors. 

5.2.	Evaluating	the	forecasting	performance	

We define the time t forecast error from model m, for a target variables j as: 

                                                                           𝑒௧,௧ାଵ
, ≡ 𝑦௧ାଵ

 െ 𝑦ො ௧ାଵ|௧
.  ,                                                            ሺ9ሻ 

where 𝑦ො ௧ାଵ|௧
.  comes from either one of the models described in Section 4 or from a benchmark, 

and it can be a DNS factor or a yield prediction. Once we have obtained the time series of forecast 

errors ൛𝑒௧,௧ାଵ
, ൟ, for t that goes from December 2005 through June 2015 and for each model m, we 

proceed to compute several measures of prediction accuracy. 

The popular Root	Mean	Squared	Forecast	Error	(RMSFE), is defined as 

                                                                    𝑅𝑀𝑆𝐹𝐸, ൌ ඩ
1
𝑃

൫𝑒௧,௧ାଵ
, ൯

ଶ


௧ୀଵ

 ,                                                 ሺ10ሻ 

where P = 112 is the total size of the pseudo OOS period. However, RMSFE is a point estimate of 

forecast accuracy and does not take into consideration sampling uncertainty; because we are 

interested in comparing the predictive power of alternative models (e.g., MSVAR models vs. the 

baseline VARሺ1ሻ), to test whether these models carry statistically significant differences in 

forecasting accuracy, we resort to the Diebold and Mariano (1995)-West (1996)-McCracken 

(2004) nonparametric tests for non-nested models, which also account for any incremental 

sample variation in forecast errors due to parameter uncertainty. The DMWM test for a pair of 

models indexed as m₁ and m₂ is based on the statistic 

                                                                  𝐷𝑀𝑊𝑀ሺ𝑚ଵ, 𝑚ଶሻ ≡
�̅�

ඥ𝑉𝑎𝑟 ሺ�̅�ሻ
,                                                  ሺ11ሻ 

where �̅� is an average over P observations of the values taken by some differential in loss 

functions, dt ≡ ℓ(𝑒௧,௧ାଵ
,భ ) - ℓ(𝑒௧,௧ାଵ

,మ ) where ℓ(⋅) is a generic loss function, and 𝑉𝑎𝑟 ሺ�̅�ሻ is an estimator 

of the variance of �̅�. In practice, in coherence with the RMSFE in (10), in the paper we use ℓ(𝑒௧,௧ାଵ
, ) 
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= (𝑒௧,௧ାଵ
, )2. The DMWM statistic has an asymptotic standard normal distribution under the null 

hypothesis that E[dt] = 0, which corresponds to a null of no differential predictive accuracy. 

Following standard practice, the variance of dt is estimated using a heteroskedastic-

autocorrelation consistent estimator, 

                                                        𝑉𝑎𝑟 ൫�̅�൯ ൌ 𝑃ିଵ ቈ𝜑ො  𝑃ିଵ  ሺ𝑃 െ 𝐵ሻ𝜑ො

ିଵ

ୀଵ
                                    ሺ12ሻ 

where 𝜑ො ≡ ሺ𝑃 െ 𝑗ሻିଵ ∑ ሺ𝑑௧ െ �̅�ሻሺ𝑑௧ି െ �̅�ሻ
௧ୀାଵ . West (1996) has shown that in general, when 

the loss functions depend on estimated parameters, (12) provides a valid estimate of the 

asymptotic variance of �̅� only in special circumstances, e.g., when the models are estimated 

consistently by OLS and the loss function is a squared function (i.e., under MSFE). In general, 

however, the structure of 𝑉𝑎𝑟൫�̅�൯ is 

                               𝑉𝑎𝑟൫�̅�൯ ൌ  𝑉𝑎𝑟 ൫�̅�൯  2𝜗ௗ൫𝑭𝑼𝐶𝑜𝑣ᇱሺ𝒅, 𝒔ሻ൯  𝜗𝑭𝑼𝑉𝑎𝑟ሺ𝒔ሻ𝑼′𝑭′                    ሺ13ሻ 

Where, in the case of a recursive forecasting exercise, 𝜗ௗ ≡ 1-(R/P)ln(1+(P/R)), 𝜗ௗ ≡ 2[1-

(R/P)ln(1+(P/R))], R is the length of the estimation sample from which the back-testing exercise 

is initialized (288 and 120, depending on the model considered). F and U are matrices that 

depend on the data used in estimation as well as on the derivatives of the loss functions with 

respect to unknown parameters to be computed in correspondence to the true but unknown 

population parameters (see McCracken, 2004). Finally, s denotes the time series of the scores 

generated by each model, when estimation occurs by QML.30 

The Relative	 RMSFE represents another popular measure that allows us to compare the 

performances of different forecasting models. This is calculated as the ratio between the RMSFE 

of model i	and the RMSFE of a given benchmark model. Thus, by construction, values of this 

statistic lower than one indicate that model i produces more accurate forecasts than the 

benchmark. Specifically, we shall compare RMSFEs of the MS models with two very successful 

benchmarks in the term structure literature: the Random Walk (RW), and the VAR(1)-DNS model. 

The Mean	Absolute	Percentage	Error	(MAPE)	is perhaps the most widely used unit-free measure 

of predictive accuracy (see, e.g., Armstrong and Collopy, 1992) and is defined as: 

                                                          𝑀𝐴𝑃𝐸, ൌ
1
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.                                                   ሺ14ሻ 

                                                 
30 McCracken (2004) proposes to estimate F without deriving the functional form for the derivatives of the 
loss function or making strong assumptions about the joint distribution of the observables. The idea is that 
unknown derivatives can be approximated numerically by using the finite difference method. 
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Because it measures the sample mean of absolute errors as a percentage of realized values, MAPE 

has the advantage of being scale-independent. However, because it penalizes positive errors 

more than negative errors, MAPE has been sometimes criticized (see, e.g., Hyndman and Koehler, 

2006). Moreover, it may become unstable when 𝑦௧ାଵ
  is zero or very close to it: however, in our 

sample and even with 3-month rates this was never the case, although these yields become very 

small between 2009 and 2014. 

The Hit	Ratio (HR) is the percentage of correct sign predictions offered by a given model i, 

                                                     𝐻𝑅, ൌ
1
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  𝐼
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ೕ. வቅ
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ିଵ
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                                             ሺ15ሻ 

where 𝐼
ቄ∆௬,శభ

ೕ ∆௬ො ,శభ
ೕ. வቅ

 is an indicator variable that takes a unit value when ∆𝑦௧,௧ାଵ
  (the actual 

variation of the target variable j between t and t+1) and ∆𝑦ො ௧,௧ାଵ
.  (the predicted variation of 

variable j between t and t+1) have the same sign. As often demonstrated in finance applications, 

for many trading strategies (especially the directional ones) it is more relevant that the 

forecasting model produces predictions with a correct sign rather than predictions that are 

quantitatively (more) accurate (see, e.g., Christoffersen and Diebold, 2006; Leitch and Tanner, 

1991). We shall return to this point in Section 6, when we assess the relative economic 

performance of our models. 

5.3.	Empirical	results	

Table 8 reports the realized RMSFE results for six MSVAR models and the two benchmarks. Panel 

A concerns DNS factor forecasting and panels B-D cover yield forecasting. In each panel and in 

correspondence to each combination of factor (or tenor)/sample, we boldface the model leading 

to the lowest realized RMSFE. Because we also aim at testing whether the inclusion of monetary 

variables my differentially improve forecasting performance in correspondence to the GFC, it is 

instructive to compute performance accuracy not only over the full 2006-2015 pseudo OOS 

period, but also to distinguish between Crisis (August 2007 – March 2009) and Non Crisis periods 

(the rest of the OOS period). Because January 2006 – July 2007 is relatively short, the Non Crisis 

period almost entirely corresponds to the late management and extension of unconventional 

monetary policies. 

Visibly, with reference to the full sample, there is considerable heterogeneity concerning the 

identity of the best performing model; in fact, for long-term yields and the Level factor, it also 

occurs that a RW offers the best OOS performance. However, in the two sub-samples, it is always 

the case that richer MSVAR models that generally contain macro predictors lead to the most 
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accurate performances. In particular, in the Crisis sample, out of a total of 12 cells (9 yield tenors 

and three DNS factors), the MSIH(2)-VAR(1) that includes the average maturity of the Treasuries 

in the Fed’s balance sheet yields the lowest RMSFE six times and the model extended to the 

Divisia Index log differences scores best four times. During the Non-Crisis period, the regime 

switching model that includes the first difference in the log-size of the Fed’s assets gives the 

lowest RMSFE six times and the one including the fraction of the Fed’s balance sheet composed 

by Treasuries, three times. Even though it remains complex to grasp why certain variables may 

work best only sometimes, it is a fact that during the GFC the Fed reacted at first by changing the 

composition of its balance sheet (by selling Treasuries, also to support market liquidity and 

refinancing operations by banks, and purchasing MBS and agency debt) and subsequently by also 

exponentially expanding its size. Especially in the case of yields (the forecasts of the Slope and 

Curvature factors behave more erratically, while Level behaves coherently with long-term 

yields), the predictive performance of MSVAR models seem to reflect this, by selecting the 

predictive framework accordingly. For instance, while over the full-sample the best DNS 

multivariate model to forecast 5-year rates is a random walk for the factors with a RMSFE of 27 

bps, during the GFC the lowest RMSFE (37 bps) is given by a MSVAR that includes the maturity 

variable; in the post-crisis period, the lowest RMSFE (only 14 bps, when rates are much lower) is 

given by a MSVAR that includes the log-size of the balance sheet, consistently with a QE-driven 

period.31 

Figure 5 documents how sensible it can be to switch from including the average maturity of the 

Fed’s balance sheet in favor of its size in correspondence to the end of GFC, during 2009. The top 

row of plots shows the time series of the two variables and emphasizes that average maturity 

“jumps” twice, in the second half of 2008 and then again between late 2011 and mid 2013; on the 

contrary, the log-size of the Fed’s balance sheet records a sizeable “jump” after Lehman’s 

bankruptcy, between October 2008 and March 2009. Such discrete changes are visible and 

represent signals that could be hardly ignored in real time, and yet one of them would have led 

to incorrect trades and a reduction in cumulative strategy returns. In the second row, to the left, 

we have plotted the evolution of the yield curve between June and December 2008: the term 

                                                 
31 The fact that in overall terms, the RW outperforms all other models reminds us of typical results in the 
literature (see Duffee, 2002) but it is not a bizarre result: if better fine-tuned econometric models may give 
strong regime-dependent OOS performances but are unstable in such performance, it is possible that both 
maturity- and size-augmented MSVARs may be dominated by the RW. This means that if an investor were 
to acknowledge the existence of regimes but were unable to monitor their occurrence in real time (which 
is not as demanding as accurately forecasting them but requires to make inference on them), then a DNS 
RW benchmark may be a useful support to investment decisions. Section 6 further discusses this point. 
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structure shifts down by almost 150 bps, it becomes steeper and its concavity declines; indeed 

the estimated DNS factors reported in the third row, to the left, follow exactly this path, as shown 

by the arrows. These are precise trading signals on the three DNS factors that would have been 

predicted by the mid-2008 jump in the average maturity of the Fed’s balance sheet. As a result, 

Table 8 correctly indicates that during 2008 a MSVAR model that includes this variable would 

have outperformed all other models. However, by 2010, it would have become unwise to forecast 

with this model: when in late 2011 a second jump occurs as a result of the MEP, the effect on the 

yield curve is ambiguous and while level declines and slope steepens at first, these outcomes 

subside in late 2012 (see rightmost plot in the second row), as also shown by the estimated DNS 

factors in the rightmost plot of the third row. In fact, after 2009, large jumps in monetary 

variables tend to imply much weaker trading signals, as shown in the fourth row of Figure 5 in 

that concerns the yield curve and the estimated DNS factors between October 2008 and March 

2009: the yield curve at first shifts down and flattens but these shifts are reversed and fail to 

provide exploitable trading signals. A MSVAR model that were to include the average maturity of 

the Fed’s balance sheet instead of its size would give signals that are unlikely to generate trading 

profits. In any event, Table 8 gives evidence that regimes are needed to support accurate 

predictions. In general, MSIH(3)-VAR(1) for the DNS factors forecasts better that a single-state 

VAR(1) and adding variables that capture the stance of monetary policy also tends to help, at least 

most of the time, which may be taken as an indication that past interest rates do not incorporate 

all information useful to predict future rates. 

Table 9 confirms the results in Table 8 by displaying the Relative RMSFEs vs. the VAR(1) 

benchmarks with no regimes. We use the plural because for each model, as characterized by a 

selection of one macroeconomic variable (or none), we build a corresponding M-variable (M = 3 

or 4) VAR(1) that includes the same variables. Moreover, in this case besides boldfacing all 

relative RMSFEs below 1, in the case of the	full	sample (to retain sufficient data) we also report 

(using stars next to the RMSFE statistics) indications concerning the outcomes of two-tailed 

DMWM tests of the null that the models in the tables have identical MSFE vs. the VAR(1). 

Strikingly, when used to forecast either yields in the full sample or the Level and Slope factors, all 

models lead to relative RMSFEs well below 1; most of them are also statistically significant, in the 

sense that the null of no differential predictive accuracy can be rejected with p-values of 1% or 

smaller in the case of yields, and for most models with p-values of 5% or smaller in the case of 

the DNS factors. This evidence is overwhelming for the Level factor and for short- to medium-

term rates, in the sense that the relative RMSFE is below 0.9 (0.6 for the rates) for all models with 

regimes.  
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To give further support to these conclusions, in Table 10 we offer a variation of Table 9 in which 

the MSVAR models are pitted against the RW benchmark which, based on the evidence in Table 

8, provides a much taller bar to clear and that can be seen as a highly parsimonious, restricted 

version of a VAR(1) model for the factors (one obtains the RW from a VAR(1) by assuming 𝚽ଵ ൌ

𝐈ଷ). Given that it has been reported that for econometric models of interest rates, it is generally 

hard to outperform the RW, Table 10 is encouraging. On the one hand, on	average, MSVAR models 

are not better than a RW either in terms of factor or of yield prediction: in the former case, the 

average relative RMSFE is 1.028; in the latter case, it is 1.001, even though Table 10 reveals that 

during the GFC many models with regimes for the DNS factors forecasted rates better than the 

RW. Of course, differences are hardly significant because they are on average small. However, at 

least with reference to the full sample, the (full-sample) DMWM tests offer indications of a few 

occasions in which selected MSVAR models can be established to lead to lower RMSFE than the 

RW does. In the case of factor predictions, this is the case of Slope, even though the rejections are 

obtained with p-values between 4% and 5%. The fact that Slope can be predicted very accurately 

will turn out to be important in Section 6 and this is consistent with the evidence in Wu (2001) 

that the steepness of the yield curve is heavily influenced by monetary policy. However, spot rates 

at 3-, 6-, and 12-month (essentially, T-bill rates) can surely be predicted more accurately with 

MSVAR DNS factors models than with a RW. Most recorded differences in MSFEs are in fact highly 

statistically significant, even when parameter uncertainty is (albeit imperfectly) taken into 

account. For these maturities, the MSVAR models including the size of the Fed’s balance sheet, 

the average maturity of the Treasuries in the balance sheet, and the rate of growth of the Divisia 

aggregate, often take the relative RMSFE well below 0.9. It is instead harder to outperform the 

RW in OOS tests applied to maturities exceeding 2 years and very hard at the 5-, 7-, and 10-year 

tenors. 

Nonetheless, Tables 8-10 are all based on the same loss function, the classical square loss, 

ℓ(𝑒௧,௧ାଵ
, ) = (𝑒௧,௧ାଵ

, )2. Even though we have not performed all DMWM tests afresh, to check the 

robustness of our earlier findings to using a different loss function, in Table 11 we report results 

obtained using the MAPE criterion, which is based on the absolute value of the errors scaled by 

the value of the target. Table 11 reports MAPE scores for our recursive OOS period. We fail to 

note any major qualitative differences between MAPE results and the RMSFE findings in Table 

8:32 in the Crisis sample, the MSIH(2)-VAR(1) including the average maturity of the Treasuries in 

                                                 
32 In Table 11, MAPE declines with the yield maturity because in (11) we scale by the level of the predicted 
yield, which is on average increasing with maturity. 
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the Fed’s balance sheet yields the lowest MAPE ten times (out of 12 possible); during the Non-

Crisis period, the MSVAR that includes the first difference in the log-size of Fed’s balance sheet 

assets gives the lowest MAPE seven times and the one including the fraction of the Fed’s balance 

sheet composed by Treasuries, four times. Although the overall predictive performance is less 

impressive for the full-sample period, when the RW often returns the lowest MAPE (especially 

for medium- and long-term bonds), regimes are needed to support accurate predictions and 

adding variables that capture the stance of monetary policy reduces MAPE, an indication of 

partial inefficiency of the Treasury market that would not always incorporate all available 

information on the stance of monetary policy. 

Because the ability of nonlinear time series models to forecast the sign of the changes in target 

variables has been proven to be essential to their economic value in financial applications, in 

Table 12 we report the realized Hit ratios from the models under consideration. Note that we 

omit the ratios of the RW from factor forecasts because, since the RW forecasts are always of “no 

change” (i.e., the factor at t	+ 1	is expected to be the same as in t), the ratio will always be zero or 

close to zero. In the table, we draw red squares around the maximum Hit ratio across models and 

boldface all ratios that exceed 50%, for added visibility. Although the general feeling for the 

results is similar to Tables 8-11, Table 12 marks a shift of the balance of the evidence on 

predictive power in favor of MSVAR models expanded to include the log-size of the Fed’s balance 

sheet. In fact, out of a total number of best model cells equal to 36 across factors/yields/sub-

periods, 11 are occupied by this model; no other model stands out. While with reference to the 

non-crisis period, the OOS outperformance of the model including size is to be expected in the 

light of earlier comments, the finding that also during the crisis sub-sample this variable 

improves accuracy is interesting. In the case of the full sample, where the length of the OOS period 

makes our remarks more reliable, we note that while a top Hit ratio of 66% for the Slope factor 

is rather impressive, in the case of yields, we observe top performance of around 55% in the case 

of short rates that increases to exceed 60% for longer rates.33 

In the light of the previous results, we also experimented with a M = 5-variable MSIH(3)-VAR(1) 

model, the one reported at the bottom of Table 4, that includes, besides the DNS factors, both the 

log-asset and the Fed’s budget maturity series. Our goal is to assess whether the forecasting 

                                                 
33 Interestingly, although the length of the OOS is rather limited and any inference ought to be taken with 
caution, the percentage of correct sign prediction is generally higher over the Crisis sub-sample than in 
the full sample. Panel A of Table 12 traces back this result to the fact that during the GFC it becomes 
relatively easier, through recursive estimation, to predict the most volatile factors implicit in the yield 
curve (Slope and Curvature) vs the least variable one (Level). 
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power of MSVAR models further improves when, in essence, we try to account for both the QE 

and MEP programs simultaneously. Yet, such a model achieves OOS predictive results—both in 

terms of realized OOS RMSFE and relative RMSFE—similar to four-variable MSVARs in which 

either the log-size or Treasury maturity composition of the Fed balance sheet are investigated 

individually. This holds with references to both sub-periods, when the model fails to outperform 

the simpler four-variable MSVARs with very limited exceptions. Yet, in terms of Hit ratio, this 

extended model obtains superior results, and in particular the highest Hit ratio for both the Level 

and Slope factors (66% and 62%, respectively). However, the advantage obtained in the Slope 

forecasts do not translate into better sign predictions of the short-term yields, although for the 

10- and 30-year yields this five-variable model reaches the highest Hit ratios. On the one hand, 

these results strengthen our feeling that variables measuring the stance of monetary policy 

through the size and maturity of the Fed’s balance sheet carry forecasting power for Level and 

Slope, respectively: whereas the size of the Fed balance sheet mainly influences the general level 

of the interest rate, the maturity composition of the Fed’s portfolio of Treasuries affects the 

spread between long-, and short-term yields. On the other hand, the low saturation ratio of this 

model and its disappointing predictive accuracy for short-term rates advises us not to pursue 

further tests of this model. 

 

6.	ECONOMIC	VALUE	

In Section 5, we have shown that MSVAR models, and especially some of the models extended to 

include macroeconomic variables, can be successfully used to predict the movements of the yield 

curve. Therefore, at least in some regimes, the shape of the riskless yield curve—as summarized 

by the DNS factors—fails to summarize all available information on the current and future stance 

of monetary policy. In this Section, we dig deeper in earlier results and investigate whether and 

to what extent such evidence of predictability can be used to implement a systematic trading 

strategy using bond butterfly strategies. We first explain how to build butterfly strategies and the 

trading rule used to set them up. Subsequently, we illustrate how to measure their economic 

value, and discuss their empirical performance. 

 
6.1.	Trading	strategies	

Bond butterflies are among the most common active strategies used by trading desks to exploit 

views on spot interest rate changes. Here we follow Fabozzi, Martellini, and Priaulet (2007) who 

have shown how to use them within a NS framework. To bet on specific views on changes of the 

shape of the term structure, one can implement at least two different types of trading strategies: 
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one that bets on the changes of the individual factors of the yield curve; another one that directly 

bets on the implied yield changes. In the former case, we construct a set of semi-hedged, long-

short, zero outlay (self-financing) strategies in which the portfolio is exposed to movements of 

one factor at the time, remaining neutral to all others. We describe such strategies below. For 

instance, in the case of Level bets, we have to neutralize the exposure of the portfolio to Curvature 

and Slope movements and as a result, when we forecast a downward movement of the yield curve 

we cannot buy all the maturities in the same amount (like we do in case of yield bets) because 

otherwise we would be exposed to the risk of changes in the Slope or Curvature. Instead, we have 

to combine long and short positions in order to be hedged from non-parallel shifts of the yield 

curve. In the latter case, using a given model, we derive time t predictions of yields for time t + 1: 

we then proceed to sell (buy) all Treasuries for which the rate is predicted to increase (decrease), 

according to an equally weighted scheme (these are sets of bullet trades); the strategy is turned 

into a self-financing one by adjusting all short (long) positions to cover the sum of all long (short) 

positions when the number of long (short) positions exceeds the number of the short (long) 

ones.34 

As far the butterfly bets on DNS factors are concerned, for instance, suppose that a trader predicts 

a change in the Curvature of the term structure between t and t + 1, but she has no view on Level 

and Slope movements. Therefore, she needs to build a portfolio that is exposed to Curvature 

changes but insensitive to Level and Slope changes. To this purpose, she may design a duration-

weighted hedged and self-financing butterfly strategy using three bonds with different maturities 

(a short-, a medium-, and a long-term bond). The portfolio weights of such a strategy are obtained 

as the solution to the following system of equations: 

                                                 ൝
𝑞௦ MD௦L௦  𝑞 MDL  𝑞 MDL ൌ 0
𝑞௦ MD௦Sୱ  𝑞 MDS  𝑞 MDS ൌ 0

𝑞௦  𝑞  𝑞 ൌ 1
 ,                                    ሺ16ሻ 

where 𝑞௦  , 𝑞 , and 𝑞  are the amounts of the short-, medium-, and long-term bonds 

(interpretable as weights thanks to the third constraint), MD௦, MD, and MD are the modified 

durations of the short-, medium-, and long-term bonds;35 L௦, L, and L are the sensitivities of the 

short-, medium-, and long-term yields to the Level factor as calculated in Nelson-Siegel’s model; 

                                                 
34 For instance, if the predictions from a given model imply that 7 tenors ought to be purchased and 2 of 
them sold, given an equal weighting scheme for the 7 long tenors, each of the 2 tenors short must then be 
leveraged according to a 3.5 = 7/2 factor. In case all tenors should be purchased, we arbitrarily finance the 
position by shorting 3-month T-bills; in case all tenors should be shorted, we arbitrarily invest the 
proceeds from going long in Treasuries between 1-month and 10-year tenors, in 30-year Treasuries. 
35 The modified duration is a measure of the price sensitivity, hence the risk exposure, of a bond, defined 
as the percentage change in price of a bond for a unit change in yield. 
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finally, S௦, S, and S are the exposures of the short-, medium-, and long-term yields to the Slope 

factor (i.e., the loadings of Slope). Moreover, since L௦ = L= L = 1 by construction, hedging 

against the Level factor is equivalent to a duration-neutral condition. Therefore the problem in 

(16) simplifies to: 

                                                   ൝
𝑞௦ MD௦  𝑞 MD  𝑞MD ൌ 0

𝑞௦ MD௦ ൌ െ𝑞MDγ
𝑞௦  𝑞  𝑞 ൌ 1

 ,                                               ሺ17ሻ 

where: γ ≡ ቀ
ୗିୗ

ୗିୗೞ
ቁ. Similarly, another type of Nelson-Siegel-weighted butterfly can be designed 

to be hedged against movements in the Level and Curvature factors, while retaining exposure to 

changes in the Slope factor. This can be done as in equation (17), except for using a different γ 

coefficient, γௌ ≡ ቀ
େିେ

େିେೞ
ቁ, where C௦, C, and C are the sensitivities of the short-, medium-, and 

long-term yields to the Curvature factor (i.e., the loadings of Curvature). Of course, a third kind of 

strategy can be easily implemented to bet only on the Level factor and that consists of simply 

modifying equation (16) in order to neutralize the Slope and Curvature exposures. 

Following this procedure, we build three kind of butterfly strategies, each betting on a different 

factor. In particular, our butterflies are based on of 2-, 5-, and 10-year bonds, set up and 

unwounded on a monthly basis.36 To decide the direction of the trades (i.e., which maturities to 

buy and which to sell) we rely on the forecasts generated by the seven models described in 

Sections 4 and 5 and therefore, the direction only depends on the predicted direction of the 

change in the factor. Just to continue with the earlier example on Curvature bets, on the one hand, 

when we predict a sharply humped yield curve, we sell the “body”, the center of the butterfly (i.e., 

the 5-year maturity) and buy the “wings” (i.e., the 2- and 10-year maturities); on the other hand, 

when we predict a decline in Curvature, we flip around the direction of the trades, i.e., we buy the 

body and sell the wings. Following the same logic, we can apply this rule also to Level and Slope 

bets. 

 
6.2.	Measuring	the	economic	value	of	the	strategies	

The first step towards measuring the performance of a strategy is to calculate its total return. 

Given the definition of modified duration, we can approximate the total return between t and t+1 

of a bond with maturity	j	with the well-known formula, 

                                                 
36 This combination of maturities is selected because it is typical of what practitioners do. To check the 
robustness of our results, we have also used another popular combination of maturities (i.e., 2-, 5-, 7-year 
maturities) finding qualitatively similar and often quantitatively indistinguishable empirical results. 
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                                                             𝑅 ≡   
∆𝑃

P
≅ െMD∆𝑦,                      𝑗 ൌ 𝑠, 𝑚, 𝑙                ሺ18ሻ	

where ∆𝑃 is the price change of the bond between two adjacent dates, s, m, and l denote the 

tenors of the short-, medium-, and long-term Treasuries that are traded, and ∆𝑦 is the change in 

the yield between t and t	+ 1.37 At this point, we take the weighted average of the short-, medium-

, and long-maturities bond returns to obtain the total return of the butterfly strategy based on 

model μ, between t and t	+ 1, 𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑡𝑢𝑟𝑛௧
ஜ ≡ ∑ 𝑞,௧ୀ௦,, 𝑅,௧. We perform this calculation at end 

of each month in the pseudo OOS period (January 2006 - June 2015), thus obtaining for each 

strategy a vector of 112 monthly returns. Then, we can calculate the average monthly 

performance of each butterfly strategy as 

                           𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑅𝑒𝑡𝑢𝑟𝑛௧
ஜ ≡ ෑ൫1  𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑡𝑢𝑟𝑛௧

ஜ൯
ଵ ⁄



୲ୀଵ

െ 1,              ሺ19ሻ 

which is a geometric average. 

To further test whether the performance of a strategy is statistically significant (or significantly 

different from some other strategy), we use again DMWM tests. Here, the null hypothesis of the 

test is that mean returns are zero or that difference between the total returns of two strategies is 

zero, which are the natural yardsticks for a zero-outlay long-short strategy. In particular, in the 

case of the MSIH(3)-VAR(1) model for the DNS factors, the null is that of equal performance vs. a 

single state VAR(1) model; in all other cases, the null hypothesis is that of equal performance vs. 

the MSIH(3)-VAR(1) model that excludes the monetary variables. The former hypothesis is useful 

to test whether regimes may generate economic value, while the latter concerns whether adding 

additional information on the stance of monetary policy—interacted with regimes—may be 

exploited. 

One additional way to assess the benefits of active strategies consists of examining the risk-return 

score they generate. For this reason, we calculate the most popular measure of realized risk-

adjusted performance, the Sharpe Ratio (SR), 

                     𝑆𝑅
ஜ ≡

∑ 𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑡𝑢𝑟𝑛௧
ஜ

௧ୀଵ

ට𝑃ିଵ ∑ ሺ𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑡𝑢𝑟𝑛௧
ஜ െ 𝑃ିଵ ∑ 𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑡𝑢𝑟𝑛௧

ஜ
௧ୀଵ ሻଶ

௧ୀଵ

 ,                  ሺ20ሻ 

                                                 
37 For additional precision, we could have included a convexity term, which is omitted here because 
positions are just held for a period of one month, so that small changes in rates prevail and make first-
order Taylor expansions viable. In robustness checks, we confirm that the factor forecast-driven results in 
Tables 13 and 14 are unaffected to the third decimal digit when the convexity term is accounted for. 
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in which the numerator does not include a risk-free rate adjustment when the strategy is a zero 

net-outlay one (any funding costs will be deducted from the total return). Because the Sharpe 

ratio is subject to estimation error as much as Diebold-Mariano’s type statistics, and such errors 

derive from the fact that the recorded total returns depend on estimated model parameters 

which are sample statistics, we want to quantify the uncertainty surrounding 𝑆𝑅
ஜ and test 

hypotheses concerning it.38 Under some conditions (see Lo, 2002), the asymptotic variance of the 

Sharpe Ratio estimator is 𝑉ௌோሺ𝜇, 𝑃ሻ ൌ 𝑃ିଵሾ1 
ଵ

ଶ
൫𝑆𝑅

ஜ൯
ଶ

ሿ so that the standard error of the SR 

estimator is: 

                                                   SEௌோሺ𝜇, 𝑃ሻ ൌ ඨ𝑃ିଵ 1 
1
2

ሺ𝑆𝑅
ஜሻଶ൨.                                           ሺ21ሻ 

In the calculation of total strategy returns, we also entertain two distinct cases. At first, we do not 

consider the funding costs on margin positions. This applies to traders that may be already hold 

the Treasuries being shorted and that therefore end up only paying a fractional haircut (that may 

be even zero or negative in some market states) that is in general modest in the case of Treasuries, 

especially at benchmark maturities such as 5-, 7-, and 10-year.39 Because in any event retail 

traders and most other desks do pay some funding costs when Treasuries are shorted, we 

perform the same calculations (of realized OOS return, DMWM tests, and SRs) afresh accounting 

for the presence of these costs. According to US regulations (Regulation T established by the 

Federal Reserve Board), to sell a security short, a trader must establish a margin account with a 

brokerage firm and deposit margins in cash and/or securities as a collateral. Under Regulation T 

there are no restrictions on government securities, hence the margin requirements for 

Treasuries are independently determined by the broker. Although there are different practices 

that vary according to the brokerage firm, a thorough search of standard practices reveals that a 

margin of 10% is reasonably conservative.40 Once a margin is established, it is necessary to 

calculate the cost of short selling and this will depend on the quality and liquidity of the collateral 

posted. Given that we assume that Treasury securities will be posted instead of cash, the repo 

                                                 
38 In general, this is not straightforward, but under the assumption that the realized portfolio returns are 
approximately IID, due to the Central Limit Theorem, as P diverges, the divergence of the numerator 
(denominator) from its expectation multiplied by √𝑃 converges to a normal distribution with mean zero 
and variance 𝑃ିଵ ∑ ሺ𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑡𝑢𝑟𝑛௧

ஜ െ
௧ୀଵ  𝑃ିଵ ∑ 𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑡𝑢𝑟𝑛௧

ஜ
௧ୀଵ )2. 

39 Moreover, it is typical of hedge funds to benefit of discounts or to buy services in bundles from prime 
brokers, presumably in exchange of trading commissions or even sheer trading volume. 
40 See Rule 4210 by the Financial Industry Regulatory Authority (FINRA) for a detailed discussion on 
margin requirements in the US market. The margins are assumed to be constant for the entire period in 
which the strategies are implemented because our search showed that margins have not been subject to 
changes between 2006 and 2015. 
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rate should be a good proxy of the funding cost of short positions.41 In particular, on each month 

of our OOS period, we use the corresponding average repo rate obtained from the Federal 

Reserve Bank of New York data base. As a result, we calculate the net return subtracting to the 

return in (18) the costs on margin positions, set to equal 0.1 ൈ repo rate. 

 
6.3.	Empirical	results	

Table 13 and 14 report results concerning the OOS performance of trading strategies and hence 

the economic value of alternative models and variable selections. Differently from earlier 

forecasting evaluations, here the comparisons involve two different levels of analysis. One 

concerns the performance of alternative models (i.e., single-state VAR benchmark vs. the MSVAR 

with and without macroeconomic factors) for each trading strategy; the other concerns the 

performance of different strategies (i.e., bets on the yields as well as specific bets on Level, Slope, 

or Curvature) regardless of the model used to produce the forecasts. In other words, in addition 

to assessing whether using a forecasting framework may increase the realized profits of the same 

strategy, we also ask whether there are any differences in the risk-return profile of the strategies 

common to all models. 

Table 13 concerns the case in which funding costs are disregarded. A bird’s eye view focused on 

the boldfaced DMWM statistics that indicate rejection of the null of no difference vs. simpler 

models, reveals that significant trading profits can only be derived by either trading Slope 

forecasts during the Crisis period (see panel A)—and this actually obtains using MSVAR models 

that account for both regimes and the predictive power of macroeconomic variables that 

represent monetary policy—or by trading all yields without implementing butterfly strategies, 

again mostly during the GFC (see panel D). In light of Table 12 and of the literature on the links 

between accurate sign predictions and trading performance, this may have been expected, 

because the highest Hit ratios were found for the Slope factor, especially with reference to the 

crisis sub-sample. 

In the non-crisis OOS and when either Level or Curvature are traded, profits are harder to seize, 

in the sense that even why they are positive, the Sharpe ratio are seldom significantly so.42 In 

particular, exploiting the forecasts from a MSIH(3)-VAR(1) that includes DNS factors as well as 

                                                 
41 A Repurchase Agreement (repo) represents a collateralized loan in which a party lends to a borrower 
and receives securities as collateral until the loan is repaid. In particular, the repo	rate is the interest paid 
by the borrower to the cash lender. 
42 However, trading all Treasuries under consideration in the full-sample on the basis of forecasts from 
MSVAR models that include monetary aggregates, the size of the Fed’s balance sheet, or its average 
maturity, tends to lead to positive and statistically significant Sharpe ratios (see panel D). 
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the percentage of Treasuries in the Fed’s balance sheet, during the GFC would have led to an 

average monthly return of 38.6 bps, a statistically significant Sharpe ratio of 0.524 (the standard 

error is 0.250) when used to give signals to a butterfly strategy; the model would have 

outperformed a MSIH(3)-VAR(1) for the DNS factors only with a DMWM p-value of essentially 

zero, i.e., conditioning on the stance of monetary policy would have generated economic value. 

The same MSVAR would have scored an average monthly return of 68.9 bps, a statistically 

significant Sharpe ratio of 0.502 (the standard error is 0.222) when used to support equal-

weighted trades on the entire yield curve; in this case, a DMWM test of equality vs. a MSIH(3)-

VAR(1) for the DNS factors only, rejects with a p-value of less than 0.01. Yet, the same model, 

when used to trade the Slope factor over the full OOS period, yields a much smaller average 

monthly return of 13.5 bps, to imply an insignificant Sharpe ratio of 0.051 (standard error is 

0.104), leading to a DMWM p-value in excess of 0.28 when the model is compared to the MSVAR 

that drops the macro variable. In fact, over the full OOS period, the same model leads to negative 

returns and Sharpe ratios when the entire yield curve is traded. Even if we limit the analysis to 

the GFC, this model leads to disappointing results when applied to butterfly strategies that trade 

either Level or Curvature predictions: in the former case, the average monthly return is -5.5 bps 

which implies a negative (but at least not significant) Sharpe ratio; in the latter case, panel C of 

Table 13 shows large average returns of 87.5 bps that however turn out to be highly volatile, to 

the point that the 0.372 Sharpe ratio fails to be statistically significant (the standard error is 

0.234), while the null of no difference vs. a model that omits the stance of monetary policy cannot 

be rejected at conventional significance levels. 

Table 14 has the same structure as Table 13 but now reports trading strategy results when 

realistic funding costs to a retail investor are taken into account. Note that such funding costs are 

considered on an ex-ante basis, i.e., they are charged on all short positions before the decision to 

implement the strategy has been taken. This explains the fact that in some cases the raw, monthly 

returns in Table 14 exceed those in Table 13: some trades that are executed in Table 13 on a thin 

forecasting “margin” and that end up losing money, are not executed in Table 14 because of the 

implicit filter represented by the funding cost on the short positions. Despite this, Table 14 shows 

that—with very few exceptions—transaction costs may completely wipe out the ability of both 

regimes in DNS models and of adding variables descriptive of the monetary policy stance to 

generate positive economic value. For instance, in panel B, with reference to the GFC period, when 

Slope predictions are traded while the average returns from models that exclude monetary 

proxies are generally low (5-9 bps per month), MSVAR models that include such proxies lead to 

stronger performance, between 15 and 35 bps per month. However, such returns are highly 
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uncertain and as a result the Sharpe ratios are modest and hardly ever significant; for the same 

reason, most comparisons of realized returns across models with different structure in terms of 

including regimes or macroeconomic variables, fail to lead to rejection of the null of no difference. 

As in Table 13, trading the entire yield curve tends to give less extreme and erratic mean 

performances vs. trading the factors. For instance, in the case of Level bets, the constraints 

deriving from the need to hedge induce a trader to buy and sell larger quantities of bonds vs. 

unconstrained trades on all yields and this results in a more risky strategy. However, DMWM 

tests performed against a zero return strategy show that, with few exceptions, both strategies 

achieve gains statistically different from zero for all the models. For the majority of the models, 

accounting for regime switching implies better performances than single-state VARs do. 

However, these results should be treated with caution because they are hardly ever significant 

according to DMWM tests. Therefore, even though in qualitative terms the results in Table 14 are 

not different from those in Table 13, when realistic transaction costs are considered, the number 

of trades decreases and the volatility of the resulting outcomes increases enough to prevent us 

from drawing precise and statistically robust inferences on the economic value of the models 

entertained in this paper. 

 

7.	CONCLUSIONS		

In this paper, in the spirit of Diebold and Li (2006) and Xiang and Zhu (2013), we have used a 

range of regime switching models to test whether standard DNS factors derived from the current 

and past shape of the yield curve carry all the information necessary to forecast the dynamics of 

the very yield curve or—as an alternative—whether the direct modelling of macroeconomic 

variables able to proxy for the current stance of monetary policy expand the needed information 

set. To deal in an effective way with the risk of overfitting presented by relatively rich models 

with Markov regimes extended to include macroeconomic variables besides the DNS factors, we 

have also investigated the economic value of the predictions generated by the models. We have 

done so both by adopting simple strategies that buy (sell) all Treasuries whose yield is forecast 

to decrease (increase) between t and t + 1, as well as hedged butterfly strategies that allow us to 

place pure bets on specific DNS factors when these are predicted to change over time in reliable 

ways. The interaction between introducing Markov regimes in multivariate time series models 

for DNS factors and extending the vector of DNS factors to include variables that proxy for 

monetary policy seems natural in light of the drastic shift in the tools adopted by the Fed during 

the GFC and its aftermath, based for instance on quantitative easing objectives and on the attempt 

to control the slope of the yield curve through maturity extension programs. Moreover, such 
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unconventional policy measures may have affected (hence, forecast) different features of the DNS 

factors, that currently the literature has been increasingly using to summarize the shape and 

dynamics of the yield curve. 

We find that—even when regimes are taken into account—the standard DNS factors hardly 

contain all the information required to forecast the yield curve. As conjectured, such a lack of 

predictive power becomes stronger during (but it is not limited to) the GFC, when monetary 

policy shifted tools and objectives. This means that, at least when considered in isolation and 

conditioning on the imperfect (but very accurate) fit to the term structure provided by the DNS 

factor, the US Treasury market may be considered weakly informationally efficient but not semi-

strong efficient, as appropriate indicators of the stance of monetary policy provide tradeable 

signals that improve the forecasting power otherwise obtainable. Such signals lead in fact to 

positive and sometimes accurately estimated trading profits, especially when the strategies are 

based on placing bets on Slope factor predictions and during the GFC, when the changes in policy 

tools were more drastic. 

Several extensions of this paper appear to be natural. First of all, we have not tried to incorporate 

all the macroeconomic variables into a single eight-variable MSVAR system to investigate if and 

to what extent the forecasting performance would change. The numerical and inferential 

problems we would encounter, due to the lack of a sufficient number of observations on the very 

monetary variables, would be probably unsurmountable. Yet, with longer time series or resorting 

to higher frequency (weekly) data, such an effort might be possible. Another natural extension 

would consist of making our MSVAR models arbitrage-free in the tradition of Christensen, 

Diebold, and Rudebusch (2011) to control whether enforcing the theoretical rigor of the model 

would deteriorate or improve the forecasting performance. Moreover, because our results 

partially suggest that also yields have forecasting power for macroeconomic variables, thus along 

the lines of Estrella and Hardouvelis (1991), this route could be further investigated in a Markov 

switching framework. Third, we have limited our forecast horizon to one month because this 

seems natural when trading strategies are implemented and the resulting economic value 

estimated, but it could be interesting to understand our framework to multi-step forecasts, as in 

Moench (2008) or Eo and Kang (2018); the latter paper, in fact, also experiments with regime-

switching, predictable forecast combination schemes, that we have ignored in our work. Fourth, 

while in our paper we have turned forecast accuracy in economic value using trading strategies, 

in the tradition of Leitch and Tanner (1992), another, increasingly popular metrics also when 

applied to bond portfolio is risk measurement and prediction. For instance, Tu and Chen (2018) 

have recently studied whether expanding the DNS framework (as in Caldeira, Moura, and Santos, 
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2015) to include non-yield curve related financial and macroeconomic variables may lead to 

more accurate Value-at-Risk estimates and have reported that plain-vanilla, three-factor NS 

models are rarely sufficient to provide reasonably accurate VaR forecasts. It would be interesting 

to assess the robustness of our findings to using risk management-related loss functions. Finally, 

in the paper we have used simple trading strategies that just exploit forecasts for either the DNS 

factors or for the implied yields. Recently, some researchers recognized the benefits of exploiting 

predictability in the shape of the yield curve also for portfolio choice. Campbell and Viceira 

(2001) and Korn and Koziol (2006), pioneered this literature by employing the Vasicek (1977) 

model to perform bond portfolio selection, in the former case using intertemporal optimization 

for a long-term investor. Caldeira, Moura, and Santos (2016) propose a novel method that 

explicitly uses the DNS model (extended to a general class of dynamic heteroskedastic factor 

models) to build optimal mean-variance bond portfolios. It could be interesting to extend the 

empirical work in our paper to an explicit mean-variance set up. 
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Table	1	

Summary	Statistics	of	Treasury	Bond	Yields	

Panel A shows summary statistics for Constant Maturity Treasury yields, at various maturities. The data are expressed in annualized percentage 
terms. We use monthly data for the sample January 1982-February 2015. The last row contains the Jarque-Bera test applied to the null 
hypothesis of normal distribution for each of the series (the 5% critical level is 5.991). Panel B shows the correlations between pairs of Treasury 
yields. 
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Table	2	

Summary	Statistics	for	Recursively	Estimated	Dynamic	Nelson‐Siegel	Factors	

Panel A shows summary statistics for the estimated DNS factors: Level, Slope, and Curvature. The 
data are reported in annualized percentage terms. We use monthly data from January 1982 to 
February 2014. The last row contains the Jarque-Bera test applied to the null hypothesis of 
normal distribution for each of the series (the 5% critical level is 5.991). Panel B shows the 
correlations between the DNS factors. 

 
 

Table	3	

ML	Estimates	of	a	Single‐State	VAR(1)	Model	for	the	DNS	Factors	
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Table	4	

Model	Specification	Search	for	Expanded	Markov	Switching	VAR	Models	

The table shows the result of a model search based on the maximization of the optimized log-
likelihood and the minimization of three alternative information criteria (Akaike’s, Hannan-
Quinn’s, and the Bayes-Schwartz’s) that penalized according to alternative functions the number 
of parameters implied by each model. The saturation ratio is the ratio between the total number 
of observations available for estimation and the total number of parameters implied by each 
model. The structure of the four MSVAR models estimated is reported in the main text. The LR 
linearity test is a LR test of the null hypothesis that a linear VAR model with the same number of 
lags as the MSVAR indicated in the row is adequate to fit the data; the p-values unreported in 
parentheses are computed using Davies’ (1977) upper bound that adjusts for the presence of 
nuisance parameters in the MSVAR model under the null. 

MSVAR(k ,	p )
Number	of	
parameters

Maximized	Log‐
Likelihood

LR	Linearity	
Test

AIC H‐Q SIC
Saturation	
ratio

MSIH(2,1) 29 -381.55 135.96   (0.000) 2.100 2.220 2.400 41.59
MSIH(3,1) 42 ‐167.13 564.80   (0.000) 1.073 1.242 1.500 28.71
MSIAH(2,1) 38 -281.50 336.08   (0.000) 1.638 1.792 2.025 31.74
MSIAH(3,1) 60 -170.90 557.26   (0.000) 1.800 1.420 1.790 20.10

MSIH(2,1) 46 60.063 660.55  (0.000) -0.0721 0.1133 0.3957 26.22
MSIH(3,1) 64 170.15 880.73  (0.000) -0.5444 -0.2864 0.1065 18.84
MSIAH(2,1) 62 76.352 693.13  (0.000) -0.0736 0.1763 0.5569 19.45
MSIAH(3,1) 96 266.68 1073.78 (0.000) ‐0.8753 ‐0.4883 0.1010 12.56

MSIH(2,1) 46 1296.7 433.10  (0.000) -6.5313 -6.3432 -6.0571 25.83
MSIH(3,1) 64 1380.3 600.23  (0.000) -6.8736 ‐6.6119 ‐6.2139 18.56
MSIAH(2,1) 62 1197.9 235.49  (0.000) -5.9318 -5.6782 -5.2927 19.16
MSIAH(3,1) 96 1433.4 706.42  (0.000) ‐6.9838 -6.5912 -5.9942 12.56

MSIH(2,1) 46 -988.84 178.04   (0.000) 5.307 5.492 5.775 26.22
MSIH(3,1) 64 -722.04 711.66   (0.000) 4.031 4.289 4.682 18.84
MSIAH(2,1) 62 -953.06 249.61   (0.000) 5.205 5.455 5.836 19.45
MSIAH(3,1) 96 ‐680.06 795.60   (0.000) 3.980 4.367 4.956 12.56

MSIH(2,1) 46 344.11 163.57  (0.000) -2.7603 -2.4699 -2.0414 14.87
MSIH(3,1) 64 566.32 607.99  (0.000) -4.6511 ‐4.2471 ‐3.6510 10.69
MSIAH(2,1) 62 434.95 345.24  (0.000) -3.4532 -3.0618 -2.4844 11.03
MSIAH(3,1) 96 611.39 698.13  (0.000) ‐4.7721 -4.1661 -3.2720 7.13

MSIH(2,1) 46 564.85 367.96   (0.000) -4.800 -4.510 -4.085 14.87
MSIH(3,1) 64 627.37 492.97   (0.000) ‐5.216 ‐4.812 ‐4.216 10.69
MSIAH(2,1) 62 481.61 201.44   (0.000) -3.885 -3.494 -2.916 11.03
MSIAH(3,1) 96 638.09 506.40    (0.000) -4.982 -4.376 -3.482 7.13

MSIH(2,1) 67 -826.63 435.88   (0.000) 4.4865 4.6723 4.9552 10.21
MSIH(3,1) 91 ‐705.23 678.68   (0.000) 3.9549 4.2134 4.6070 7.52
MSIAH(2,1) 92 -944.63 199.87   (0.000) 5.1755 5.4259 5.8072 7.43
MSIAH(3,1) 141 -736.15 616.84   (0.000) 4.2784 4.6662 5.2566 4.85

DNS	Factors	+	Average	Maturity	and	Log	Size	of	Assets	on	FED's	Balance	Sheet	(July	1996	‐	July	2015)

Dynamic	Nelson‐Siegel	Factors	(Jan.	1982	‐	July	2015)

DNS	Factors	+	Average	Maturity	of	FED's	Balance	Sheet	(Jan.	1982	‐	July	2015)

DNS	Factors	+	Federal	Funds	Rate	(Jan.	1982	‐	July	2015)

DNS	Factors	+	Natural	Log	of	Size	of	Assets	on	FED's	Balance	Sheet	(July	1996	‐	July	2015)

DNS	Factors	+	Percentage	of	FED's	Balance	Sheet	Made	Up	by	US	Treasuries	(July	1996	‐	July	2015)

DNS	Factors	+	Natural	Log	of	Divisia	Money		(Jan.	1982	‐	July	2015)
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Table	5	

ML	Estimates	of	a	Three‐State	VAR(1)	Model	for	the	DNS	Factors	

The table shows the estimates of the 42 parameters implied by a MSIH(2)-VAR(1) model for the 
dynamically estimated Nelson-Siegel factors from US Treasury yields over a 1982:01-2015:06 
sample. For conditional mean coefficients, OGP-derived p-values are reported underneath the 
corresponding coefficient. Coefficients that are significantly different from zero are boldfaced. In 
the case of residual standard errors, significant means that the estimated coefficient >0.0001. 

 
    * significant at 10% size; ** significant at 10% size; *** significant at 1% size 

Level(t) Slope(t) Curvature(t)

Intercept	term

Regime	1 0.0601 0.1066 -0.1943
(0.222) (0.077) (0.127)

Regime	2 0.0069 0.1073 ‐0.8636
(0.911) (0.149) (0.000)

Regime	3 0.0390 -0.1214 -0.2014
(0.593) (0.171) (0.264)

VAR(1)	matrix

Level(t-1) 0.9939 ‐0.0170 0.0402
(0.000) (0.072) (0.038)

Slope(t-1) 0.0195 0.9534 0.0644
(0.034) (0.000) (0.004)

Curvature(t-1) ‐0.0163 0.0375 0.8434
(0.049) (0.000) (0.000)

Unconditional	Means

Regime	1 7.8869 0.0615 0.8092
Regime	2 4.2035 -4.1854 -6.1569
Regime	3 -0.7556 -5.2689 -3.6391

Covariance	matrix	of	shocks
Regime	1
Level(t) 0.1894*** ‐0.7273*** 0.4268***
Slope(t) 0.2083*** ‐0.2545**

Curvature(t) 0.5047***

Regime	2
Level(t) 0.2291*** ‐0.9645*** -0.1479
Slope(t) 0.2679*** -0.0939

Curvature(t) 0.4236***

Regime	3
Level(t) 0.3524*** ‐0.2858** 0.1532*
Slope(t) 0.4730*** ‐0.2053**

Curvature(t) 0.9384***

Transition	matrix Regime	1 Regime	2 Regime	3
Regime	1 0.9004*** 0.0064 0.0932
Regime	2 0.0097 0.9350*** 0.0553
Regime	3 0.1758** 0.0514 0.7728***

Observations Ergodic	Probability Duration
Regime	1 195 0.4853 10.04
Regime	2 102 0.2538 15.39
Regime	3 105 0.2609 4.40

(standard errors on main diagonal; correlation outside)
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Table	6	

ML	Estimates	of	a	Three‐State	VAR(1)	Model	for	the	DNS	Factors	and	the	Log‐Size	of	
the	FED’s	Balance	Sheet	

The table shows the estimates of a MSIH(2)-VAR(1) model for the Nelson-Siegel factors from US 
Treasury yields over a 1996:07-2015:06 sample. For conditional mean coefficients, OGP- p-
values are reported underneath the coefficients, with boldfacing to indicate significance. In the 
case of residual standard errors, significant means that the estimated coefficient >0.0001. 

	
       * significant at 10% size; ** significant at 10% size; *** significant at 1% size 

Level(t) Slope(t) Curvature(t) Size	of	Assets(t)
Intercept	term

Regime	1 1.6282 -1.4715 0.9853 -0.0632
(0.039) (0.135) (0.594) (0.355)

Regime	2 1.7830 ‐1.8075 0.5958 -0.0450
(0.040) (0.067) (0.747) (0.518)

Regime	3 1.7253 -1.5834 -0.1162 -0.0654
(0.045) (0.119) (0.951) (0.351)

VAR(1)	matrix
Level(t-1) 0.9119 0.0433 0.0020 0.0015

(0.000) (0.229) (0.978) (0.568)
Slope(t-1) 0.0048 0.9500 -0.0116 -0.0006

(0.734) (0.000) (0.753) (0.603)
Curvature(t-1) -0.0045 0.0319 0.7841 -0.0010

(0.7258) (0.044) (0.000) (0.603)
Size of Assets(t-1) ‐0.0945 0.0966 -0.0780 1.0043

(0.080) (0.130) (0.503) (0.000)

Unconditional	Means
Regime	1 4.4452 -0.3901 -0.0962 0.3249
Regime	2 16.0975 -13.9899 2.4110 -0.6363
Regime	3 8.1290 -6.7922 -3.8984 0.0698

Covariance	matrix	of	shocks
Regime	1
Level(t) 0.1580*** ‐0.7132** 0.0149 -0.0579
Slope(t) 0.1893*** ‐0.2839** ‐0.1780*

Curvature(t) 0.4703*** 0.0159
Size of Assets(t) 0.0130***

Regime	2
Level(t) 0.2190*** ‐0.7128*** 0.0480 -0.0696
Slope(t) 0.3531*** 0.1664* -0.0846

Curvature(t) 0.8831*** ‐0.1426*
Size of Assets(t) 0.0910***

Regime	3
Level(t) 0.2962*** ‐0.9581*** ‐0.1578* 0.1540
Slope(t) 0.2561*** -0.1135 ‐0.1798*

Curvature(t) 0.4452*** 0.0041
Size of Assets(t) 0.0164***

Transition	matrix Regime	1 Regime	2 Regime	3
Regime	1 0.8715*** 0.1285* 0.0000
Regime	2 0.1884** 0.7153*** 0.0963
Regime	3 0.0000 0.0420* 0.9580***

Observations Ergodic	Probability Duration
Regime	1 82 0.3081 7.78
Regime	2 51 0.2102 3.51
Regime	3 94 0.4817 23.8

(standard errors on main diagonal; correlation outside)
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Table	7	

ML	Estimates	of	a	Three‐State	VAR(1)	Model	for	the	DNS	Factors	and	the	Natural	
Logarithm	of	the	Divisia	Index	

The table shows the estimates of a MSIH(2)-VAR(1) model for the Nelson-Siegel factors from US 
Treasury yields over a 1982:01-2015:06 sample. For conditional mean coefficients, OGP- p-
values are reported underneath the coefficients, with boldfacing to indicate significance. In the 
case of residual standard errors, significant means that the estimated coefficient >0.0001. 

	
        * significant at 10% size; ** significant at 10% size; *** significant at 1% size 

Level(t) Slope(t) Curvature(t) Log	of	Divisia(t)
Intercept	term

Regime	1 2.2610 ‐2.8900 0.2857 0.0323
(0.001) (0.002) (0.874) (0.000)

Regime	2 2.3995 ‐3.0677 0.8319 0.0887
(0.001) (0.001) (0.643) (0.000)

Regime	3 2.3497 ‐2.8095 1.0204 0.0824
(0.001) (0.02) (0.561) (0.000)

VAR(1)	matrix
Level(t-1) 0.9370 0.0545 0.0278 ‐0.0020

(0.000) (0.022) (0.559) (0.000)
Slope(t-1) 0.0211 0.9526 0.0537 0.0002

(0.030) (0.000) (0.029) (0.195)
Curvature(t-1) ‐0.0149 0.0382 0.8294 -0.0006

(0.077) (0.044) (0.000) (0.195)
Log of Divisia(t-1) ‐0.2358 0.3025 -0.1349 0.9919

(0.002) (0.001) (0.461) (0.000)

Unconditional	Means
Regime	1 6.1275 -3.2325 -3.4379 0.2823
Regime	2 7.4942 -2.9082 -1.3172 -0.1278
Regime	3 6.7049 -1.6482 -0.0296 -0.0752

Covariance	matrix	of	shocks
Regime	1
Level(t) 0.2284*** ‐0.9651*** ‐0.1364* -0.1116
Slope(t) 0.2687*** -0.1022 0.1641*

Curvature(t) 0.4232*** ‐0.3102***
Log of Divisia(t) 0.0043***

Regime	2
Level(t) 0.3166*** ‐0.5180*** 0.3325** ‐0.1956**
Slope(t) 0.3589*** ‐0.1654* 0.0100

Curvature(t) 0.7927*** -0.1052
Log of Divisia(t) 0.0049***

Regime	3
Level(t) 0.1931*** ‐0.7314*** 0.3104** -0.0729
Slope(t) 0.1927*** ‐0.1890* -0.0045

Curvature(t) 0.5439*** -0.0320
Log of Divisia(t) 0.0028***

Transition	matrix Regime	1 Regime	2 Regime	3
Regime	1 0.9273*** 0.0589** 0.0132
Regime	2 0.0399 0.9074*** 0.0527
Regime	3 0.0141 0.0341 0.9518***

Observations Ergodic	Probability Duration
Regime	1 102 0.2574 13.75
Regime	2 126 0.3195 10.8
Regime	3 168 0.4230 20.74

(standard errors on main diagonal; correlation outside)
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Table	8	

Root	Mean	Squared	Forecast	Error	Performance	

The table reports the RMSFE for the six MSVAR models and the two benchmarks described in the 
text. Panel A reports the OOS performance for the factors, whereas Panels B-D for the yields. The 
results are provided for the total OOS sample (January 2006-July 2015) as well as for the Crisis 
(August 2007-March 2009) and Non-Crisis (January 2006-July 2007;April 2009-July 2015) sub-
samples. We boldface the lowest RMSFE across models. 

	

	 	

Panel	A

Level Slope Curvature Level Slope Curvature Level Slope Curvature
VAR(1) for DNS factors 0.2977 0.5013 0.6030 0.4549 0.7350 0.8762 0.1501 0.3287 0.5928
Random walk 0.2524 0.3016 0.5182 0.3384 0.4094 0.7897 0.1553 0.2095 0.4421
MSIH(3)-VAR(1) for DNS factors 0.2544 0.2958 0.5339 0.3245 0.3468 0.7822 0.2028 0.2660 0.4757
MSIH(3)-VAR(1)  DNS factors + Fed Funds Rate 0.2608 0.2903 0.5400 0.3618 0.3566 0.7694 0.1652 0.2232 0.4658
MSIH(3)-VAR(1) DNS factors + Log Divisia 0.2535 0.2917 0.5162 0.3291 0.3569 0.7596 0.1657 0.2336 0.4667
MSIH(3)-VAR(1) DNS factors + Maturity 0.2531 0.2923 0.5606 0.3015 0.3460 0.8344 0.1564 0.2329 0.4246
MSIH(3)-VAR(1) DNS factors + Log Assets 0.2604 0.2966 0.6128 0.3180 0.3610 1.0309 0.1409 0.1988 0.4457
MSIH(3)-VAR(1) DNS factors + Treasuries Pct. 0.2769 0.2959 0.6402 0.3435 0.3804 1.1091 0.1712 0.2122 0.4869

Panel	B
3-month 6-month 1-year 2-year 3-year 5-year 7-year 10-year 30-year

VAR(1) for DNS factors 0.5916 0.4098 0.3625 0.3960 0.3889 0.3726 0.3572 0.2870 0.3402
Random walk 0.2729 0.1605 0.1917 0.2320 0.2352 0.2694 0.2676 0.2219 0.2823
MSIH(3)-VAR(1) for DNS factors 0.2563 0.1470 0.1848 0.2335 0.2505 0.2903 0.2842 0.2320 0.2764
MSIH(3)-VAR(1)  DNS factors + Fed Funds Rate 0.2532 0.1461 0.1810 0.2274 0.2511 0.2952 0.2925 0.2360 0.2755
MSIH(3)-VAR(1) DNS factors + Log Divisia 0.2377 0.1423 0.1877 0.2257 0.2310 0.2733 0.2751 0.2245 0.2760
MSIH(3)-VAR(1) DNS factors + Maturity 0.2295 0.1395 0.1819 0.2180 0.2303 0.2750 0.2719 0.2252 0.2736
MSIH(3)-VAR(1) DNS factors + Log Assets 0.2389 0.1413 0.1909 0.2412 0.2465 0.2770 0.2762 0.2268 0.2921
MSIH(3)-VAR(1) DNS factors + Treasuries Pct. 0.2477 0.1602 0.1947 0.2454 0.2684 0.3061 0.3012 0.2503 0.2966

Panel	C
3-month 6-month 1-year 2-year 3-year 5-year 7-year 10-year 30-year

VAR(1) for DNS factors 1.1231 0.8245 0.7009 0.7349 0.7540 0.6721 0.6237 0.4666 0.4163
Random walk 0.5302 0.3196 0.2977 0.3865 0.4214 0.3761 0.3530 0.2839 0.3264
MSIH(3)-VAR(1) for DNS factors 0.4996 0.2945 0.2873 0.3986 0.4434 0.4066 0.3807 0.2923 0.3217
MSIH(3)-VAR(1)  DNS factors + Fed Funds Rate 0.4985 0.2713 0.2553 0.3769 0.4422 0.4188 0.4062 0.3122 0.3307
MSIH(3)-VAR(1) DNS factors + Log Divisia 0.4366 0.2631 0.2630 0.3545 0.4009 0.3704 0.3504 0.2725 0.3171
MSIH(3)-VAR(1) DNS factors + Maturity 0.4359 0.2521 0.2546 0.3504 0.3924 0.3680 0.3516 0.2873 0.3240
MSIH(3)-VAR(1) DNS factors + Log Assets 0.4312 0.2747 0.2945 0.4051 0.4490 0.3959 0.3563 0.2728 0.3192
MSIH(3)-VAR(1) DNS factors + Treasuries Pct. 0.4617 0.2889 0.2876 0.4188 0.4838 0.4410 0.4146 0.3430 0.3934

Panel	D
3-month 6-month 1-year 2-year 3-year 5-year 7-year 10-year 30-year

VAR(1) for DNS factors 0.3830 0.2236 0.2215 0.2886 0.2865 0.2558 0.2260 0.1875 0.1443
Random walk 0.1347 0.1416 0.1364 0.1519 0.1585 0.1592 0.1584 0.1591 0.1713
MSIH(3)-VAR(1) for DNS factors 0.1224 0.1199 0.1236 0.1542 0.1701 0.1807 0.1861 0.1910 0.1961
MSIH(3)-VAR(1)  DNS factors + Fed Funds Rate 0.1033 0.1514 0.1526 0.1680 0.1747 0.1740 0.1735 0.1748 0.1810
MSIH(3)-VAR(1) DNS factors + Log Divisia 0.1736 0.1539 0.1676 0.1864 0.1837 0.1721 0.1656 0.1695 0.1922
MSIH(3)-VAR(1) DNS factors + Maturity 0.0958 0.1668 0.1663 0.1544 0.1540 0.1536 0.1559 0.1596 0.1626
MSIH(3)-VAR(1) DNS factors + Log Assets 0.1538 0.0945 0.1035 0.1417 0.1463 0.1428 0.1420 0.1514 0.1916
MSIH(3)-VAR(1) DNS factors + Treasuries Pct. 0.1299 0.1376 0.1479 0.1589 0.1596 0.1541 0.1513 0.1493 0.1507

Non‐Crisis	Sample

Full	Sample Crisis	Sample Non‐Crisis	Sample

Full	Sample

Crisis	Sample
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Table	9	

Relative	Root	Mean	Squared	Forecast	Error	Performance	vs.	a	VAR(1)	Model	

The table reports the Relative RMSFEs for the six MSVAR models described in the text against a 
single state VAR(1) that includes the same set of variables. Panel A reports the OOS relative 
performance for the factors, whereas Panels B-D for the yields. The results are provided for the 
total OOS sample (January 2006-July 2015) as well as for the Crisis (August 2007-March 2009) 
and Non-Crisis (January 2006-July 2007;April 2009-July 2015) sub-samples. We boldface relative 
RMSFEs below 1. Only in the case of the full sample statistics, the asterisks refer to the outcomes 
of a West-McCraken test of the null of no superior predictive accuracy against a VAR(1). * and ** 
indicate rejection of the null of equal predictive accuracy at 5 and 1 percent size, respectively. 

	

	

	 	

Panel	A

Level Slope Curvature Level Slope Curvature Level Slope Curvature
MSIH(3)-VAR(1) for DNS factors 0.8546* 0.5901* 0.8855 0.7134 0.4718 0.8928 1.3508 0.8094 0.8025
MSIH(3)-VAR(1)  DNS factors + Fed Funds Rate 0.8761* 0.5791** 0.8956 0.7954 0.4852 0.8096 1.1002 0.6793 0.7858
MSIH(3)-VAR(1) DNS factors + Log Divisia 0.8516* 0.582** 0.8561* 0.7234 0.4855 0.8669 1.1037 0.7108 0.7873
MSIH(3)-VAR(1) DNS factors + Maturity 0.8502 0.5831* 0.9297 0.7551 0.4843 0.9523 1.0418 0.7086 0.7164
MSIH(3)-VAR(1) DNS factors + Log Assets 0.8747* 0.5918** 1.0164 0.6991 0.4911 1.1767 1.1403 0.6458 0.8214
MSIH(3)-VAR(1) DNS factors + Treasuries Pct. 0.9301 0.5903* 1.0617 0.8827 0.5284 1.2659 0.9386 0.6048 0.7519

Panel	B
3-month 6-month 1-year 2-year 3-year 5-year 7-year 10-year 30-year

MSIH(3)-VAR(1) for DNS factors 0.4333** 0.3588** 0.5099** 0.5895** 0.6442** 0.7790** 0.7955** 0.8083* 0.8125*
MSIH(3)-VAR(1)  DNS factors + Fed Funds Rate 0.4280** 0.3566** 0.4995** 0.5743** 0.6457** 0.7924** 0.8187** 0.8223* 0.8099**
MSIH(3)-VAR(1) DNS factors + Log Divisia 0.4017** 0.3473** 0.5177** 0.5699** 0.5940** 0.7335** 0.7702** 0.7822** 0.8112**
MSIH(3)-VAR(1) DNS factors + Maturity 0.3879** 0.3403** 0.5017** 0.5503** 0.5923** 0.7380** 0.7611** 0.7845* 0.8042**
MSIH(3)-VAR(1) DNS factors + Log Assets 0.4038** 0.3447** 0.5267** 0.6090** 0.6339** 0.7434** 0.7731** 0.7900* 0.8585*
MSIH(3)-VAR(1) DNS factors + Treasuries Pct. 0.4187** 0.3908** 0.5372** 0.6198** 0.6900** 0.8215** 0.8431* 0.8719 0.8717

Panel	C
3-month 6-month 1-year 2-year 3-year 5-year 7-year 10-year 30-year

MSIH(3)-VAR(1) for DNS factors 0.4448 0.3572 0.4099 0.5423 0.5880 0.6049 0.6105 0.6265 0.7729
MSIH(3)-VAR(1)  DNS factors + Fed Funds Rate 0.4439 0.3291 0.3642 0.5128 0.5865 0.6231 0.6514 0.6690 0.7944
MSIH(3)-VAR(1) DNS factors + Log Divisia 0.3887 0.3191 0.3752 0.4823 0.5316 0.5511 0.5619 0.5839 0.7618
MSIH(3)-VAR(1) DNS factors + Maturity 0.3882 0.3058 0.3675 0.4769 0.5203 0.5476 0.5638 0.6158 0.7783
MSIH(3)-VAR(1) DNS factors + Log Assets 0.3839 0.3332 0.4201 0.5513 0.5954 0.5890 0.5712 0.5845 0.7667
MSIH(3)-VAR(1) DNS factors + Treasuries Pct. 0.4111 0.3503 0.4103 0.5699 0.6417 0.6562 0.6648 0.7351 0.9451

Panel	D
3-month 6-month 1-year 2-year 3-year 5-year 7-year 10-year 30-year

MSIH(3)-VAR(1) for DNS factors 0.3197 0.5361 0.5579 0.5341 0.5938 0.7064 0.8235 1.0186 1.3588
MSIH(3)-VAR(1)  DNS factors + Fed Funds Rate 0.2697 0.6771 0.6892 0.5821 0.6098 0.6802 0.7678 0.9319 1.2538
MSIH(3)-VAR(1) DNS factors + Log Divisia 0.4532 0.6880 0.7568 0.6457 0.6413 0.6729 0.7328 0.9040 1.3320
MSIH(3)-VAR(1) DNS factors + Maturity 0.2502 0.7458 0.7509 0.5350 0.5375 0.6006 0.6898 0.8512 1.1270
MSIH(3)-VAR(1) DNS factors + Log Assets 0.4016 0.4225 0.4675 0.4908 0.5108 0.5583 0.6286 0.8074 1.3279
MSIH(3)-VAR(1) DNS factors + Treasuries Pct. 0.3390 0.6152 0.6677 0.5503 0.5573 0.6026 0.6697 0.7964 1.0445

Non‐Crisis	Sample

Full	Sample Crisis	Sample Non‐Crisis	Sample

Full	Sample

Crisis	Sample
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Table	10	

Relative	Root	Mean	Squared	Forecast	Error	Performance	vs.	a	Random	Walk	Model	

The table reports the Relative RMSFEs for the six MSVAR models described in the text against a 
random walk for the DNS factors. Panel A reports the OOS relative performance for the factors, 
whereas Panels B-D for the yields. The results are provided for the total OOS sample (January 
2006-July 2015) as well as for the Crisis (August 2007-March 2009) and Non-Crisis (January 
2006-July 2007;April 2009-July 2015) sub-samples. We boldface relative RMSFEs below 1. In the 
case of the full sample statistics, the asterisks refer to the outcomes of a West-McCraken test of 
the null of no superior predictive accuracy against a random walk for the DNS factors. * and ** 
indicate rejection of the null of equal predictive accuracy at 5 and 1 percent size, respectively. 

	

	 	

Panel	A

Level Slope Curvature Level Slope Curvature Level Slope Curvature
MSIH(3)-VAR(1) for DNS factors 1.0081 0.9807 1.0303 0.9589 0.8471 0.9905 1.3059 1.2695 1.0761
MSIH(3)-VAR(1)  DNS factors + Fed Funds Rate 1.0334 0.9625* 1.0421 1.0691 0.8711 0.9743 1.0638 1.0652 1.0537
MSIH(3)-VAR(1) DNS factors + Log Divisia 1.0045 0.9672* 0.9961 0.9725 0.8718 0.9619 1.0670 1.1148 1.0557
MSIH(3)-VAR(1) DNS factors + Maturity 1.0029 0.9691* 1.0818 0.8909 0.8452 1.0566 1.0071 1.1115 0.9605
MSIH(3)-VAR(1) DNS factors + Log Assets 1.0318 0.9833 1.1825 0.9397 0.8818 1.3055 0.9073 0.9487 1.0082
MSIH(3)-VAR(1) DNS factors + Treasuries Pct. 1.0972 0.9810 1.2354 1.0150 0.9292 1.4045 1.1024 1.0127 1.1014

Panel	B
3-month 6-month 1-year 2-year 3-year 5-year 7-year 10-year 30-year

MSIH(3)-VAR(1) for DNS factors 0.9394** 0.9163** 0.9642 1.0061 1.0653 1.0774 1.0618 1.0456 0.9792
MSIH(3)-VAR(1)  DNS factors + Fed Funds Rate 0.9279** 0.9108** 0.9446* 0.9802 1.0677 1.0959 1.0929 1.0637 0.9759
MSIH(3)-VAR(1) DNS factors + Log Divisia 0.8710** 0.8870** 0.9791 0.9726 0.9823 1.0144 1.0281 1.0119 0.9776
MSIH(3)-VAR(1) DNS factors + Maturity 0.8410** 0.8692** 0.9489* 0.9393* 0.9795 1.0208 1.0159 1.0148 0.9692*
MSIH(3)-VAR(1) DNS factors + Log Assets 0.8756** 0.8804** 0.9960 1.0394 1.0483 1.0282 1.0319 1.0220 1.0347
MSIH(3)-VAR(1) DNS factors + Treasuries Pct. 0.9078** 0.9981 1.0160 1.0578 1.1411 1.1362 1.1254 1.1279 1.0505

Panel	C
3-month 6-month 1-year 2-year 3-year 5-year 7-year 10-year 30-year

MSIH(3)-VAR(1) for DNS factors 0.9422 0.9215 0.9651 1.0312 1.0521 1.0809 1.0786 1.0297 0.9856
MSIH(3)-VAR(1)  DNS factors + Fed Funds Rate 0.9402 0.8490 0.8576 0.9751 1.0494 1.1136 1.1508 1.0996 1.0130
MSIH(3)-VAR(1) DNS factors + Log Divisia 0.8234 0.8233 0.8836 0.9171 0.9513 0.9849 0.9928 0.9598 0.9715
MSIH(3)-VAR(1) DNS factors + Maturity 0.8222 0.7890 0.8554 0.9067 0.9311 0.9785 0.9962 1.0122 0.9925
MSIH(3)-VAR(1) DNS factors + Log Assets 0.8132 0.8597 0.9892 1.0482 1.0654 1.0525 1.0093 0.9608 0.9777
MSIH(3)-VAR(1) DNS factors + Treasuries Pct. 0.8707 0.9039 0.9663 1.0836 1.1482 1.1725 1.1746 1.2083 1.2052

Panel	D
3-month 6-month 1-year 2-year 3-year 5-year 7-year 10-year 30-year

MSIH(3)-VAR(1) for DNS factors 0.9087 0.8465 0.9058 1.0147 1.0736 1.1350 1.1749 1.2007 1.1449
MSIH(3)-VAR(1)  DNS factors + Fed Funds Rate 0.7667 1.0692 1.1191 1.1058 1.1025 1.0929 1.0955 1.0986 1.0565
MSIH(3)-VAR(1) DNS factors + Log Divisia 1.2883 1.0863 1.2289 1.2266 1.1595 1.0811 1.0455 1.0657 1.1224
MSIH(3)-VAR(1) DNS factors + Maturity 0.7113 1.1776 1.2192 1.0164 0.9718 0.9651 0.9841 1.0034 0.9496
MSIH(3)-VAR(1) DNS factors + Log Assets 1.1417 0.6671 0.7591 0.9323 0.9236 0.8971 0.8968 0.9518 1.1189
MSIH(3)-VAR(1) DNS factors + Treasuries Pct. 0.9637 0.9715 1.0842 1.0455 1.0076 0.9682 0.9555 0.9388 0.8801

Non‐Crisis	Sample

Full	Sample Crisis	Sample Non‐Crisis	Sample

Full	Sample

Crisis	Sample
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Table	11	

Mean	Absolute	Percentage	Forecast	Error	Performance	

The table reports the MAPFE for the six MSVAR models and the two benchmarks described in the 
text. Panel A reports the OOS performance for the factors, whereas Panels B-D for the yields. The 
results are provided for the total OOS sample (January 2006-July 2015) as well as for the Crisis 
(August 2007-March 2009) and Non-Crisis (January 2006-July 2007;April 2009-July 2015) sub-
samples. We boldface the lowest MAPFE across models. 

	

	
	 	

Panel	A

Level Slope Curvature Level Slope Curvature Level Slope Curvature
VAR(1) for DNS factors 0.0541 0.9522 0.4711 0.0819 0.4038 0.2543 0.0264 4.2626 1.9987
Random walk 0.0446 0.5635 0.4821 0.0536 0.1850 0.2162 0.0247 2.5712 2.1213
MSIH(3)-VAR(1) for DNS factors 0.0461 1.0720 0.4851 0.0509 0.1478 0.2068 0.0366 5.2917 2.1432
MSIH(3)-VAR(1)  DNS factors + Fed Funds Rate 0.0474 0.8067 0.4705 0.0623 0.1540 0.1978 0.0275 3.8841 2.0506
MSIH(3)-VAR(1) DNS factors + Log Divisia 0.0449 0.9921 0.5893 0.0571 0.1402 0.2287 0.0252 4.8847 2.5179
MSIH(3)-VAR(1) DNS factors + Maturity 0.0456 0.8921 0.4880 0.0487 0.1340 0.1900 0.0272 4.3532 2.1186
MSIH(3)-VAR(1) DNS factors + Log Assets 0.0475 0.6848 0.4047 0.0538 0.1805 0.2858 0.0263 3.2065 1.6321
MSIH(3)-VAR(1) DNS factors + Treasuries Pct. 0.0497 0.4530 0.5059 0.0715 0.1667 0.3007 0.0229 2.0049 2.1363

Panel	B
3-month 6-month 1-year 2-year 3-year 5-year 7-year 10-year 30-year

VAR(1) for DNS factors 3.7815 0.6885 0.5678 0.3750 0.1809 0.1589 0.1170 0.0705 0.0702
Random walk 1.9164 0.1546 0.5277 0.2906 0.1333 0.1433 0.0992 0.0586 0.0584
MSIH(3)-VAR(1) for DNS factors 1.7793 0.1727 0.5099 0.2856 0.1451 0.1511 0.1049 0.0608 0.0566
MSIH(3)-VAR(1)  DNS factors + Fed Funds Rate 1.7292 0.2223 0.5194 0.2752 0.1409 0.1564 0.1097 0.0634 0.0563
MSIH(3)-VAR(1) DNS factors + Log Divisia 1.7380 0.2091 0.5400 0.2904 0.1352 0.1484 0.1049 0.0604 0.0557
MSIH(3)-VAR(1) DNS factors + Maturity 1.6792 0.1668 0.4989 0.2833 0.1435 0.1438 0.1000 0.0590 0.0563
MSIH(3)-VAR(1) DNS factors + Log Assets 2.0184 0.2339 0.5284 0.2872 0.1414 0.1494 0.1054 0.0621 0.0601
MSIH(3)-VAR(1) DNS factors + Treasuries Pct. 2.0434 0.3420 0.5009 0.2561 0.1608 0.1650 0.1151 0.0677 0.0595

Panel	C
3-month 6-month 1-year 2-year 3-year 5-year 7-year 10-year 30-year

VAR(1) for DNS factors 3.4874 0.7684 0.4728 0.3693 0.3247 0.2346 0.1865 0.1145 0.0760
Random walk 1.2522 0.2191 0.1601 0.1746 0.1722 0.1237 0.0933 0.0633 0.0583
MSIH(3)-VAR(1) for DNS factors 1.2622 0.2031 0.1519 0.1785 0.1814 0.1318 0.1008 0.0645 0.0559
MSIH(3)-VAR(1)  DNS factors + Fed Funds Rate 1.3099 0.1924 0.1396 0.1646 0.1709 0.1294 0.1085 0.0694 0.0606
MSIH(3)-VAR(1) DNS factors + Log Divisia 1.1307 0.1796 0.1350 0.1604 0.1670 0.1230 0.0934 0.0578 0.0534
MSIH(3)-VAR(1) DNS factors + Maturity 0.8057 0.1486 0.1154 0.1424 0.1498 0.1115 0.0886 0.0662 0.0583
MSIH(3)-VAR(1) DNS factors + Log Assets 1.1028 0.1866 0.1450 0.1867 0.1885 0.1338 0.0983 0.0624 0.0594
MSIH(3)-VAR(1) DNS factors + Treasuries Pct. 0.8900 0.2261 0.1796 0.2040 0.1995 0.1402 0.1150 0.0810 0.0745

Panel	D
3-month 6-month 1-year 2-year 3-year 5-year 7-year 10-year 30-year

VAR(1) for DNS factors 0.0738 0.0398 0.0407 0.0522 0.0518 0.0456 0.0398 0.0334 0.0242
Random walk 0.0210 0.0225 0.0238 0.0267 0.0284 0.0286 0.0281 0.0276 0.0270
MSIH(3)-VAR(1) for DNS factors 0.0199 0.0189 0.0208 0.0275 0.0303 0.0329 0.0342 0.0338 0.0309
MSIH(3)-VAR(1)  DNS factors + Fed Funds Rate 0.0171 0.0243 0.0250 0.0302 0.0309 0.0307 0.0307 0.0313 0.0295
MSIH(3)-VAR(1) DNS factors + Log Divisia 0.0280 0.0235 0.0268 0.0298 0.0306 0.0296 0.0287 0.0288 0.0300
MSIH(3)-VAR(1) DNS factors + Maturity 0.0161 0.0292 0.0293 0.0264 0.0271 0.0277 0.0282 0.0281 0.0250
MSIH(3)-VAR(1) DNS factors + Log Assets 0.0261 0.0161 0.0174 0.0234 0.0244 0.0247 0.0249 0.0266 0.0299
MSIH(3)-VAR(1) DNS factors + Treasuries Pct. 0.0209 0.0216 0.0248 0.0280 0.0293 0.0284 0.0273 0.0265 0.0233

Non‐Crisis	Sample

Full	Sample Crisis	Sample Non‐Crisis	Sample

Full	Sample

Crisis	Sample
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Table	12	

Hit	Ratio	Forecast	Performance	

The table reports the hit ratio (defined as the percentage of the OOS observations for which a 
model estimated with data up to t-1 returns a correct prediction of the sign of the change between 
t-1 and t), for the six MSVAR models and the two benchmarks described in the text. Panel A 
reports the OOS performance for the factors, whereas Panels B-D for the yields. The results are 
provided for the total OOS sample (January 2006-July 2015) as well as for the Crisis (August 
2007-March 2009) and Non-Crisis (January 2006-July 2007;April 2009-July 2015) sub-samples. 
For each sub-sample, target variable/maturity, we emphasize with a square the model returning 
the highest OOS hit ratio. 

	

Panel	A

Level Slope Curvature Level Slope Curvature Level Slope Curvature
VAR(1) for DNS factors 55.8% 60.0% 49.5% 45.0% 65.0% 70.0% 50.0% 61.1% 33.3%
MSIH(3)-VAR(1) for DNS factors 58.5% 60.6% 48.9% 45.0% 65.0% 70.0% 61.1% 61.1% 38.9%
MSIH(3)-VAR(1)  DNS factors + Fed Funds Rate 59.6% 58.5% 51.1% 45.0% 60.0% 70.0% 61.1% 61.1% 50.0%
MSIH(3)-VAR(1) DNS factors + Log Divisia 59.6% 59.6% 47.9% 50.0% 65.0% 70.0% 55.6% 55.6% 27.8%
MSIH(3)-VAR(1) DNS factors + Maturity 56.4% 62.8% 47.9% 75.5% 48.4% 95.0% 55.6% 61.1% 33.3%
MSIH(3)-VAR(1) DNS factors + Log Assets 56.4% 62.8% 47.9% 45.0% 70.0% 65.0% 55.6% 61.1% 33.3%
MSIH(3)-VAR(1) DNS factors + Treasuries Pct. 57.5% 66.0% 48.9% 45.0% 80.0% 65.0% 55.6% 66.7% 33.3%

Panel	B
3-month 6-month 1-year 2-year 3-year 5-year 7-year 10-year 30-year

VAR(1) for DNS factors 46.8% 53.2% 47.9% 52.1% 55.3% 56.4% 60.6% 55.3% 58.5%
Random walk 48.9% 57.4% 52.1% 52.1% 60.6% 61.7% 64.9% 57.4% 61.7%
MSIH(3)-VAR(1) for DNS factors 50.0% 55.3% 51.1% 52.1% 59.6% 62.8% 66.0% 57.4% 63.8%
MSIH(3)-VAR(1)  DNS factors + Fed Funds Rate 47.9% 52.1% 52.1% 48.9% 56.4% 60.6% 62.8% 56.4% 60.6%
MSIH(3)-VAR(1) DNS factors + Log Divisia 48.9% 56.4% 53.2% 50.0% 58.5% 59.6% 63.8% 58.5% 61.7%
MSIH(3)-VAR(1) DNS factors + Maturity 48.9% 55.3% 51.1% 51.1% 55.3% 59.6% 61.7% 56.4% 60.6%
MSIH(3)-VAR(1) DNS factors + Log Assets 50.0% 47.9% 53.2% 53.2% 55.3% 61.7% 63.8% 58.5% 62.8%
MSIH(3)-VAR(1) DNS factors + Treasuries Pct. 46.8% 55.3% 51.1% 51.1% 59.6% 61.7% 62.8% 56.4% 58.5%

Panel	C
3-month 6-month 1-year 2-year 3-year 5-year 7-year 10-year 30-year

VAR(1) for DNS factors 50.0% 70.0% 80.0% 80.0% 75.0% 70.0% 75.0% 60.0% 55.0%
Random walk 55.0% 70.0% 90.0% 80.0% 80.0% 75.0% 80.0% 60.0% 60.0%
MSIH(3)-VAR(1) for DNS factors 60.0% 70.0% 80.0% 75.0% 75.0% 70.0% 75.0% 55.0% 55.0%
MSIH(3)-VAR(1)  DNS factors + Fed Funds Rate 60.0% 70.0% 85.0% 80.0% 80.0% 75.0% 80.0% 65.0% 55.0%
MSIH(3)-VAR(1) DNS factors + Log Divisia 60.0% 75.0% 85.0% 80.0% 80.0% 75.0% 80.0% 65.0% 60.0%
MSIH(3)-VAR(1) DNS factors + Maturity 60.0% 70.0% 85.0% 75.0% 70.0% 65.0% 70.0% 55.0% 55.0%
MSIH(3)-VAR(1) DNS factors + Log Assets 60.0% 70.0% 85.0% 80.0% 75.0% 70.0% 75.0% 60.0% 65.0%
MSIH(3)-VAR(1) DNS factors + Treasuries Pct. 60.0% 75.0% 80.0% 75.0% 75.0% 70.0% 75.0% 55.0% 50.0%

Panel	D
3-month 6-month 1-year 2-year 3-year 5-year 7-year 10-year 30-year

VAR(1) for DNS factors 66.7% 61.1% 44.4% 50.0% 55.6% 55.6% 55.6% 55.6% 55.6%
Random walk 66.7% 61.1% 44.4% 50.0% 55.6% 55.6% 55.6% 50.0% 55.6%
MSIH(3)-VAR(1) for DNS factors 66.7% 61.1% 44.4% 55.6% 55.6% 61.1% 61.1% 55.6% 61.1%
MSIH(3)-VAR(1)  DNS factors + Fed Funds Rate 61.1% 61.1% 44.4% 44.4% 44.4% 50.0% 50.0% 44.4% 61.1%
MSIH(3)-VAR(1) DNS factors + Log Divisia 66.7% 61.1% 55.6% 44.4% 50.0% 50.0% 55.6% 50.0% 55.6%
MSIH(3)-VAR(1) DNS factors + Maturity 61.1% 61.1% 44.4% 55.6% 55.6% 55.6% 55.6% 50.0% 55.6%
MSIH(3)-VAR(1) DNS factors + Log Assets 66.7% 61.1% 50.0% 50.0% 55.6% 61.1% 61.1% 55.6% 55.6%
MSIH(3)-VAR(1) DNS factors + Treasuries Pct. 66.7% 61.1% 44.4% 55.6% 55.6% 55.6% 55.6% 50.0% 55.6%

Non‐Crisis	Sample

Full	Sample Crisis	Sample Non‐Crisis	Sample

Full	Sample

Crisis	Sample
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Table	13	

Realized	Performance	of	Butterfly	Trading	Strategies	

The table shows monthly percentage returns from the recursive implementation of butterfly strategies based on bets on either the individual 
factor forecasts under a variety of models or on trading the selected Treasury maturities. Sharpe ratios and the associated asymptotic standard 
errors are also reported. In order to implement the strategies, we trade the 2-, 5-, 10-year maturities on a monthly basis betting on the predicted 
changes either in the factors or in the yields implied by a range of models. The p-values in the W-McK column refer to West (1996)-McCracken’s 
(2004) nonparametric tests for non-nested models of the null hypothesis that the return differentials are not different from zero. In particular, 
in the case of the MSIH(3)-VAR(1) model for DNS factors, the null is that of equal performance vs. a single state VAR(1) model; in all other cases, 
the null hypothesis is that of equal performance vs. the MSIH(3)-VAR(1) model. Next to the p-value, the symbols  and  indicate that a model 
as a superior (resp. inferior) performance vs. its benchmark and that the null of no difference is rejected with a p-value of 5% or lower. 
Throughout the table, we have boldfaced all p-values inferior or equal to a 5% size. The results are tabulated for the full OOS sample (January 
2006-July 2015) as well as for the Crisis (August 2007-March 2009) and Non-Crisis (January 2006-July 2007;April 2009-July 2015) sub-samples. 
Panels A, B, C, and D show the results for recursive bets on Level, Spread, Curvature, and the yields, respectively. 

	

Panel	A:	Trading	Level	Forecasts	under	(Partial)	Hedging

Return W-McK p-value Sharpe ratio SR Std. Err. Return W-McK p-value Sharpe ratio SR Std. Err. Return W-McK p-value Sharpe ratio SR Std. Err.
VAR(1) for DNS factors -0.383 ___ -0.071 0.103 0.541 ___ 0.014 0.224 -0.717 ___ -0.273 0.240
MSIH(3)-VAR(1) for DNS factors -0.842 0.256 -0.139 0.123 -2.838 0.000 -0.367 0.214 0.967 0.000 0.246 0.222
MSIH(3)-VAR(1)  DNS factors + Fed Funds Rate -0.223 0.793 -0.048 0.103 0.957 0.031 0.087 0.228 0.398 0.436 -0.003 0.249
MSIH(3)-VAR(1) DNS factors + Log Divisia 0.192 0.435 0.012 0.093 -0.332 0.719 -0.052 0.232 0.662 0.317 0.075 0.225
MSIH(3)-VAR(1) DNS factors + Maturity -0.641 0.434 -0.109 0.087 -2.440 0.329 -0.289 0.232 0.025 0.137 -0.114 0.234
MSIH(3)-VAR(1) DNS factors + Log Assets 0.166 0.904 0.008 0.085 -0.457 0.628 -0.065 0.216 1.539 0.434 0.357 0.229
MSIH(3)-VAR(1) DNS factors + Treasuries Pct. -0.060 0.123 -0.024 0.122 -0.055 0.093 -0.022 0.210 -0.717 0.545 0.354 0.230

Panel	B:	Trading	Slope	Forecasts	under	(Partial)	Hedging
Return W-McK p-value Sharpe ratio SR Std. Err. Return W-McK p-value Sharpe ratio SR Std. Err. Return W-McK p-value Sharpe ratio SR Std. Err.

VAR(1) for DNS factors 0.024 ___ -0.199 0.226 0.053 ___ 0.805 0.257 0.017 ___ -0.013 0.236
MSIH(3)-VAR(1) for DNS factors 0.149 0.098 0.076 0.083 0.098 0.541 0.637 0.247 0.663 0.000 1.330 0.324
MSIH(3)-VAR(1)  DNS factors + Fed Funds Rate 0.155 0.122 0.093 0.096 0.331 0.062 0.468 0.225 0.482 0.159 0.162 0.216
MSIH(3)-VAR(1) DNS factors + Log Divisia 0.061 0.266 -0.105 0.126 0.248 0.000 0.219 0.229 0.099 0.486 ‐0.969 0.286
MSIH(3)-VAR(1) DNS factors + Maturity 0.170 0.195 0.116 0.091 0.198 0.151 0.105 0.203 0.751 0.958 1.142 0.311
MSIH(3)-VAR(1) DNS factors + Log Assets -0.015 0.001 ‐0.273 0.120 0.301 0.000 0.503 0.211 0.113 0.725 ‐0.887 0.254
MSIH(3)-VAR(1) DNS factors + Treasuries Pct. 0.135 0.283 0.051 0.104 0.386 0.021 0.524 0.250 0.512 0.445 0.232 0.230

Full	Sample Crisis	Sample Non‐Crisis	Sample
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Table	13	(continued)	

Realized	Performance	of	Butterfly	Trading	Strategies	
	

	
	 	

Panel	C:	Trading	Convexity	Forecasts	under	(Partial)	Hedging

Return W-McK p-value Sharpe ratio SR Std. Err. Return W-McK p-value Sharpe ratio SR Std. Err. Return W-McK p-value Sharpe ratio SR Std. Err.
VAR(1) for DNS factors -0.096 ___ -0.142 0.225 -0.507 ___ ‐0.448 0.235 0.003 ___ -0.017 0.236
MSIH(3)-VAR(1) for DNS factors -0.032 0.854 -0.096 0.110 -0.068 0.041 -0.225 0.212 0.268 0.000 0.137 0.220
MSIH(3)-VAR(1)  DNS factors + Fed Funds Rate 0.130 0.762 0.015 0.084 0.608 0.206 0.223 0.233 0.276 0.270 0.181 0.227
MSIH(3)-VAR(1) DNS factors + Log Divisia 0.138 0.065 0.020 0.119 0.730 0.006 0.282 0.233 0.515 0.050 0.136 0.224
MSIH(3)-VAR(1) DNS factors + Maturity 0.352 0.006 0.165 0.093 0.805 0.009 0.501 0.228 0.895 0.237 0.656 0.251
MSIH(3)-VAR(1) DNS factors + Log Assets -0.210 0.589 ‐0.220 0.092 0.047 0.872 -0.049 0.226 0.384 0.292 -0.031 0.238
MSIH(3)-VAR(1) DNS factors + Treasuries Pct. 0.157 0.718 0.033 0.091 0.875 0.459 0.372 0.234 0.394 0.333 -0.023 0.244

Panel	D:	Trading	Implied	Yield	Forecasts	under	(Partial)	Hedging
Return W-McK p-value Sharpe ratio SR Std. Err. Return W-McK p-value Sharpe ratio SR Std. Err. Return W-McK p-value Sharpe ratio SR Std. Err.

VAR(1) for DNS factors -0.140 ___ -0.185 0.104 -1.228 ___ ‐1.269 0.300 0.171 ___ -0.051 0.236
MSIH(3)-VAR(1) for DNS factors 0.211 0.208 0.168 0.088 -1.564 0.641 ‐1.602 0.349 1.079 0.000 0.858 0.274
MSIH(3)-VAR(1)  DNS factors + Fed Funds Rate -0.083 0.718 -0.128 0.088 -0.898 0.963 ‐0.938 0.284 0.289 0.883 0.067 0.249
MSIH(3)-VAR(1) DNS factors + Log Divisia 0.251 0.464 0.205 0.100 0.156 0.008 0.116 0.247 0.124 0.472 -0.101 0.250
MSIH(3)-VAR(1) DNS factors + Maturity 0.453 0.952 0.408 0.123 1.044 0.009 1.003 0.272 0.562 0.808 0.285 0.261
MSIH(3)-VAR(1) DNS factors + Log Assets 0.258 0.558 0.211 0.101 0.547 0.033 0.960 0.204 1.191 0.320 0.965 0.263
MSIH(3)-VAR(1) DNS factors + Treasuries Pct. -0.102 0.862 -0.148 0.104 0.689 0.007 0.502 0.222 -1.029 0.004 ‐1.068 0.264

Full	Sample Crisis	Sample Non‐Crisis	Sample
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Table	14	

Realized	Performance	of	Butterfly	Trading	Strategies:	The	Effects	of	Accounting	for	Funding	Costs	on	Margin	Positions	

The table shows monthly percentage returns from the recursive implementation of butterfly strategies based on bets on either the individual 
factor forecasts under a variety of models or on trading the selected Treasury maturities. Sharpe ratios and the associated asymptotic standard 
errors are also reported. In order to implement the strategies, we trade the 2-, 5-, 10-year maturities on a monthly basis betting on the predicted 
changes either in the factors or in the yields implied by a range of models. The p-values in the W-McK column refer to West (1996)-McCracken’s 
(2004) nonparametric tests for non-nested models of the null hypothesis that the return differentials are not different from zero. In particular, 
in the case of the MSIH(3)-VAR(1) model for DNS factors, the null is that of equal performance vs. a single state VAR(1) model; in all other cases, 
the null hypothesis is that of equal performance vs. the MSIH(3)-VAR(1) model. Next to the p-value, the symbols  and  indicate that a model 
as a superior (resp. inferior) performance vs. its benchmark and that the null of no difference is rejected with a p-value of 5% or lower. 
Throughout the table, we have boldfaced all p-values inferior or equal to a 5% size. The results are tabulated for the full OOS sample (January 
2006-July 2015) as well as for the Crisis (August 2007-March 2009) and Non-Crisis (January 2006-July 2007;April 2009-July 2015) sub-samples. 
Panels A, B, C, and D show the results for recursive bets on Level, Spread, Curvature, and the yields, respectively. 

	

Panel	A:	Trading	Level	Forecasts	under	(Partial)	Hedging

Return W-McK p-value Sharpe ratio SR Std. Err. Return W-McK p-value Sharpe ratio SR Std. Err. Return W-McK p-value Sharpe ratio SR Std. Err.
VAR(1) for DNS factors -0.383 ___ -0.062 0.103 0.512 ___ 0.013 0.224 -0.621 ___ -0.249 0.240
MSIH(3)-VAR(1) for DNS factors -0.740 0.256 -0.130 0.090 -2.712 0.000 -0.362 0.243 0.909 0.000 0.233 0.239
MSIH(3)-VAR(1)  DNS factors + Fed Funds Rate -0.206 0.793 -0.043 0.124 0.968 0.033 0.080 0.243 0.380 0.436 -0.003 0.236
MSIH(3)-VAR(1) DNS factors + Log Divisia 0.032 0.638 -0.011 0.117 0.053 0.834 -0.011 0.216 0.791 0.426 0.114 0.236
MSIH(3)-VAR(1) DNS factors + Maturity -1.484 0.316 ‐0.236 0.083 -3.149 0.403 -0.408 0.214 0.385 0.577 0.070 0.236
MSIH(3)-VAR(1) DNS factors + Log Assets 0.055 0.774 -0.008 0.128 0.233 0.884 -0.041 0.210 0.845 0.533 0.131 0.237
MSIH(3)-VAR(1) DNS factors + Treasuries Pct. 0.329 0.695 0.032 0.121 -0.028 0.304 -0.019 0.228 0.829 0.684 0.126 0.237

Panel	B:	Trading	Slope	Forecasts	under	(Partial)	Hedging
Return W-McK p-value Sharpe ratio SR Std. Err. Return W-McK p-value Sharpe ratio SR Std. Err. Return W-McK p-value Sharpe ratio SR Std. Err.

VAR(1) for DNS factors 0.025 ___ -0.172 0.226 0.052 ___ 0.818 0.257 0.016 ___ -0.012 0.236
MSIH(3)-VAR(1) for DNS factors 0.139 0.098 0.071 0.103 0.087 0.541 0.634 0.250 0.571 0.004 1.375 0.307
MSIH(3)-VAR(1)  DNS factors + Fed Funds Rate 0.151 0.122 0.096 0.121 0.347 0.062 0.448 0.243 0.428 0.159 0.145 0.235
MSIH(3)-VAR(1) DNS factors + Log Divisia 0.119 0.069 0.020 0.118 0.266 0.062 0.285 0.205 0.482 0.708 0.126 0.228
MSIH(3)-VAR(1) DNS factors + Maturity 0.123 0.098 0.027 0.116 0.213 0.060 -0.433 0.246 0.482 0.804 0.126 0.258
MSIH(3)-VAR(1) DNS factors + Log Assets 0.095 0.199 -0.027 0.084 0.153 0.135 0.005 0.246 0.530 0.251 0.272 0.235
MSIH(3)-VAR(1) DNS factors + Treasuries Pct. 0.159 0.958 0.096 0.105 0.225 0.753 0.163 0.226 0.647 0.516 0.606 0.263

Full	Sample Crisis	Sample Non‐Crisis	Sample
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Table	14	(continued)	

Realized	Performance	of	Butterfly	Trading	Strategies:	The	Effects	of	Accounting	for	Funding	Costs	on	Margin	Positions	
	

	
	 	

Panel	C:	Trading	Convexity	Forecasts	under	(Partial)	Hedging

Return W-McK p-value Sharpe ratio SR Std. Err. Return W-McK p-value Sharpe ratio SR Std. Err. Return W-McK p-value Sharpe ratio SR Std. Err.
VAR(1) for DNS factors -0.100 ___ -0.130 0.225 -0.449 ___ -0.385 0.235 0.003 ___ -0.016 0.236
MSIH(3)-VAR(1) for DNS factors -0.031 0.854 -0.087 0.090 -0.071 0.047 -0.200 0.226 0.234 0.013 0.127 0.237
MSIH(3)-VAR(1)  DNS factors + Fed Funds Rate 0.118 0.762 0.015 0.110 0.558 0.206 0.211 0.226 0.275 0.270 0.154 0.238
MSIH(3)-VAR(1) DNS factors + Log Divisia 0.071 0.092 -0.026 0.110 0.499 0.210 0.166 0.225 0.740 0.221 0.473 0.249
MSIH(3)-VAR(1) DNS factors + Maturity 0.159 0.943 0.034 0.087 0.213 0.299 -0.433 0.234 0.482 0.084 0.126 0.237
MSIH(3)-VAR(1) DNS factors + Log Assets -0.120 0.780 -0.157 0.094 0.130 0.214 -0.009 0.224 0.139 0.090 -0.385 0.244
MSIH(3)-VAR(1) DNS factors + Treasuries Pct. 0.092 0.588 -0.012 0.078 0.041 0.967 -0.051 0.224 0.484 0.345 0.101 0.237

Panel	D:	Trading	Implied	Yield	Forecasts	under	(Partial)	Hedging
Return W-McK p-value Sharpe ratio SR Std. Err. Return W-McK p-value Sharpe ratio SR Std. Err. Return W-McK p-value Sharpe ratio SR Std. Err.

VAR(1) for DNS factors -0.141 ___ -0.185 0.104 -1.271 ___ -1.102 0.300 0.149 ___ -0.044 0.236
MSIH(3)-VAR(1) for DNS factors 0.220 0.208 0.160 0.119 -1.497 0.641 -1.666 0.338 0.977 0.000 0.846 0.276
MSIH(3)-VAR(1)  DNS factors + Fed Funds Rate -0.074 0.718 -0.113 0.126 -0.881 0.963 -0.872 0.268 0.262 0.883 0.059 0.273
MSIH(3)-VAR(1) DNS factors + Log Divisia 0.118 0.949 0.073 0.127 -0.382 0.820 -0.419 0.233 0.470 0.396 0.245 0.239
MSIH(3)-VAR(1) DNS factors + Maturity 0.455 0.599 0.411 0.109 0.919 0.792 0.882 0.264 0.794 0.219 0.542 0.252
MSIH(3)-VAR(1) DNS factors + Log Assets 0.059 0.714 0.015 0.104 -0.434 0.973 -0.473 0.236 0.400 0.818 0.173 0.238
MSIH(3)-VAR(1) DNS factors + Treasuries Pct. -0.127 0.722 -0.172 0.124 -1.328 0.201 ‐1.370 0.311 0.399 0.880 0.192 0.238

Full	Sample Crisis	Sample Non‐Crisis	Sample
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Figure	1	

Treasury	Bond	Yields	

The plot reports the 3-month, 6-month, 1-, 2-, 3-, 5-, 7-, 10-, and 30-year Constant Maturity Treasury yields. The sample covers the period from 
January 1982 to February 2015. The data are reported in annualized percentage terms. 
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Figure	2	

Plots	of	the	Series	Used	to	Capture	the	Stance	of	Monetary	Policy	
The effective Federal Funds Rate is from FRED, at the Federal Reserve Bank of St. Louis. As a proxy for total aggregate monetary base, we use (in 
natural logs) the Divisia Index MZM (“money-zero maturity”, i.e., M2 less small time deposits, plus Institutional money market mutual funds) 
published by the Federal Reserve Bank of St. Louis. The total assets in the Fed’s balance sheet (in natural logs) is from the Federal Reserve’s 
weekly H41 release sampled in correspondence to the last week of each month. The amount of Treasuries in Fed's balance sheet is also sampled 
at a monthly frequency from the weekly H41 release. The average maturity of the FED’s portfolio of Treasuries refers to the New York Fed data 
of System Open Market Account holdings computed from rough maturity breakdowns (less than 15 days, 16-90 days, 91 days to 1 year, over 1 
year to 5 years, over 5 years to 10 years, and over10 years), by imputing the mid-point of each bracket, for the 2003-2015 sample. Between 1982 
and 2002 we use the average maturity of the Fed’s Treasury holdings calculated by Kuttner (2006). 
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Figure	3	

Estimated	vs.	Empirical	Yield	Curve	Factors	

The plots show recursive, cross-sectional estimates obtained between Jan. 1982 and July 2015. 
We also show empirical proxies for level (the 10-year yield), slope (10-year minus 3-month 
yield), and curvature (twice the 2-year minus the sum of the 3-month and 10-year yields). 
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Figure	4	

Smoothed	Regime	Probabilities	from	a	Three‐State	VAR(1)	Model	for	the	DNS	Factors	

The plots show the full-sample, exp-post smoothed state probabilities implied by a MSIH(2)-
VAR(1) model for the dynamically estimated Nelson-Siegel factors from US Treasury yields over 
a 1982:01-2015:06 sample. 
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Figure	5	

Changes	in	the	Shape	of	the	Yield	Curve	and	Structure	of	DNS	Factors	on	Selected	Dates	
The plots show how the yield curve and the estimated DNS factors change over the samples June 
2008 – April 2009 and October 2011 – January 2013 when Markov switching VAR(1) models 
augmented with the log of the size of the FED’s balance sheet and the average maturity of the 
FED’s balance sheet lead to diverging forecasting performances. 
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