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1 Introduction
A large number of important voting bodies grant one or several of their members the

right to block decisions even when a proposal has secured the necessary majority—a veto

right. One prominent example is the United Nations Security Council (UNSC), where any

of the five permanent members can prevent the adoption of a proposal with a negative

vote. Another example is the U.S. President’s ability to veto congressional decisions or the

European Parliament’s power to block legislation proposed by the European Commission.

Additionally, in assemblies with asymmetric voting weights and complex voting procedures,

veto power may arise implicitly: this is the case of the U.S. in the International Monetary

Fund and the World Bank governance bodies (Leech and Leech 2004).

The existence of veto power raises a frequent concern among practitioners and in the

public opinion: although the formal veto right only grants the power to block undesirable

decisions, it could de facto allow veto members to impose their ideal decision on the rest of

the committee. This concern was expressed by the delegates of the smaller countries when

the founders of the UN met in San Francisco in June 1945 (Russell 1958), and has been a

crucial point of contention in the ongoing discussion over UNSC reform (Blum 2005). A

similar debate has arisen regarding the IMF and WB voting weights (Woods 2000).

This paper investigates, theoretically and experimentally, the consequences of veto power

in a dynamic bargaining setting where the location of the current status quo policy is de-

termined by the policy implemented in the previous period. In each of an infinite number

of periods, one of three legislators—one of whom is a veto player—is recognized to propose

the allocation of a fixed endowment. The proposal is implemented if it receives at least two

affirmative votes, including the vote of the veto player. Otherwise, the status quo policy

prevails and the endowment is allocated as it was in the previous period. In this sense, the

status quo policy evolves endogenously. In this setting, I answer three basic questions: To

what extent is the veto player able to leverage his veto power into favorable outcomes, both

in the short and in the long run? How does this depend on the legislators’ patience and the
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initial agreement? What are the effects of institutional measures meant to reduce the power

of the veto player?

Formal models have mostly investigated veto power from the static perspective of an ad

hoc committee bargaining over a single policy: committee members come to the table with

an exogenous status quo policy and negotiations end when they reach an agreement for a

reform. This is not a realistic description of many bargaining environments. Committees

are often dynamic: their members bargain over a sequence of policies—that is, the commit-

tee is standing—and a policy remains in effect until a new agreement is reached—that is,

the status quo is endogenous. These are key features of European legislation on environ-

mental standards or competition policy. Similarly, Supreme Court opinions remain in force

unless revisited and some UNSC resolutions—for example, on disputed borders or economic

sanctions—and IMF decisions—for example, on its basket of global reserve currencies—hold

until explicitly addressed by a new vote. In this dynamic setting, the status quo policy—

which determines the bargaining advantage of veto players—is the product of past decisions

rather than being exogenous. This suggests that, in order to assess veto members’ incentive

to uphold the status quo and the balance of power between veto and non-veto members in

a committee, it is important to take into account the inherently dynamic process by which

the status quo policy is generated. This is exactly what I do in this paper.

In particular, I fully characterize a Markov Perfect Equilibrium (MPE) and prove it

exists for any discount factor and any initial divisions of the resources.1 In this MPE, the

veto player is able to gradually converge to his ideal policy, irrespective of the legislators’

patience and the initial division of resources. At the same time, it takes an infinite number

of periods to converge to this long run outcome. This happens because the bargaining

1The only general existence results for dynamic bargaining games apply to settings with stochastic shocks
to preferences and the status quo (Duggan and Kalandrakis 2012) or a non-collegial voting rule, i.e., no veto
power (Anesi and Duggan 2018). As these features are not present in my model, proving existence is a
necessary step of the analysis. Moreover, if I were to consider a model with stochastic shocks to preferences
and the status quo, the results in Duggan and Kalandrakis (2012) would guarantee existence of an equilibrium
but would not provide a characterization of its outcomes and dynamics, or comparative statics with respect
to patience, the initial division of the dollar or recognition probabilities.
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power of a patient non-veto player decreases with the share held by the veto player in the

status quo. For this reason, the veto player’s coalition partner demands a premium to

vote in favor of an allocation that increases the veto player’s share: the veto player has to

compensate his coalition partner with a short term gain in stage utility for the long term

loss in future bargaining power. This premium is always positive and, thus, some benefits

accrue to non-veto players in all periods of the game. The speed of convergence to the veto

player’s ideal outcome is decreasing in the discount factor of the committee, as the premium

demanded by non-veto legislators increases in their patience. Interestingly, when the status

quo policy prescribes dispersed benefits, the veto player supports reforms that decrease his

allocation, moving the status quo policy further away from his ideal policy. In particular,

he is willing to move to an allocation where both he and one non-veto player have a smaller

share. This occurs because the future status quo policy affects the future leverage the veto

player has when he is the proposer: in this event, he needs to secure the vote of just one

non-veto player, and he will, thus, build a coalition with the non-veto player who demands

the least. These results are not a feature of a particular equilibrium. In fact, I show that

complete appropriation by the veto player is the only absorbing outcome in any continuous

and consistent MPE — that is, in any MPE whose associated strategies are continuous

and do not lead to choice behavior inconsistent with standard criteria in decision theory

(e,g., the Weak Axiom of Revealed Preferences) — and that this outcome is only reached

asymptotically in any symmetric MPE.

This dynamic model suggests that giving a committee member the power to oppose

does not deprives completely other members of their bargaining power in the short run but

it guarantees a strong leverage on long run outcomes. Therefore, I analyze an institutional

mechanism to weaken veto power and promote more equitable outcomes for longer: reducing

the agenda setting power of the veto player. I show that, as long as the veto player maintains

some proposal power, this measure does not prevent complete expropriation of non-veto

players in the long run. At the same time, assigning monopolistic agenda setting powers to
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non-veto players is effective in preventing their complete expropriation, as the veto player

cannot improve on his initial allocation. I characterize an MPE to ensure existence and then

show that these outcomes are shared by any continuous and consistent MPE of the game.

These results stand in sharp contrast to the properties of models with ad hoc committees.

To highlight the effect of dynamic considerations, I analyze a benchmark model, where a

committee makes a single decision which determines allocations in the current and all future

periods, without the possibility of further reforms. In this setting, outcomes are strongly

affected by legislators’ patience and the initial division of resources. Moreover, the veto

player never supports a proposal decreasing his allocation.

It would be challenging to evaluate the ability of this complex theoretical model to

predict empirical behavior using observational data. Instead, I test the predictions from the

theoretical analysis with laboratory experiments, which allow a tight control of the decision

environment and the evolution of the status quo policy. I consider an experimental design

that varies legislators’ long run incentives, comparing legislatures with different degrees of

patience. The theory is consistent with many features of the data: the vast majority of

policies give a positive amount only to a minimal winning coalition (i.e., the veto player

and one non-veto player); the allocation to the veto player gradually increases over time,

more rapidly in less patient committees; allocations which give most resources to the veto

player are the only stable policies; both veto and non-veto proposers expropriate resources

from one non-veto player and share the spoils with a coalition partner; veto proposers share

resources with the coalition partner more evenly in more patient committees; voting behavior

is selfish, with both veto and non-veto legislators more likely to support proposals which are

more generous to themselves and less likely to support proposals which are more generous

to the other non-proposer.
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2 Related Literature
This paper contributes primarily to the theoretical literature on the consequences of

veto power.2 In particular, Winter (1996) shows that the share of resources to veto players

is decreasing in the cost of delaying an agreement, so that the share of resources to non-

veto players declines to zero as the cost of delay becomes negligible, that is, as legislators

become infinitely patient. A common limitation of this literature, and the main point of

departure with my paper, is the focus on static settings: the legislative interaction ceases

once the legislature has reached a decision, and policy cannot be modified after its initial

introduction. In this paper, the legislature makes multiple decisions and the status quo

policy is not exogenously specified but is rather the product of policy makers’ past decisions.

In this sense, this study belongs to a recent literature on legislative policy making with

an endogenous status quo and farsighted legislators (Baron 1996, Kalandrakis 2004, 2010,

Penn 2009, Diermeier and Fong 2011, Bowen and Zahran 2012, Richter 2014, Dziuda and

Loeper 2016). Four papers in this literature explore the consequences of veto power: Duggan

et al. (2008), Anesi and Seidmann (2015), Anesi and Duggan (2017) and Diermeier et al.

(2017). I discuss each of them in detail below.

Duggan et al. (2008) model the specific institutional details of the American presidential

veto and limit their analysis to numerical computations. Anesi and Seidmann (2015) consider

unanimous voting, that is, committees where all legislators have the power to oppose. They

show that the unique stationary MPE payoffs coincide with the unique stationary SPE

payoffs in the equivalent model with ad hoc committees (i.e., à la Baron and Ferejohn 1989).

Anesi and Duggan (2017) consider the finite framework introduced by Anesi (2010), where

the set of feasible policies is finite, legislators have strict preferences and are sufficiently

2A large number of studies build on models of legislative bargaining à la Baron and Ferejohn (1989) to
examine the role of veto power in specific environments, e.g., the case of the U.S. Presidential veto. See,
among, others, Romer and Rosenthal 1978, Matthews 1989, Diermeier and Myerson 1999, McCarty 2000,
Groseclose and McCarty 2001, Callander and Krehbiel 2014, Dragu et al. 2014). Less related to the non-
cooperative approach of this paper, Lucas (1992) and Ray and Vohra (2015) discuss cooperative solutions
for bargaining games with veto players.
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patient. They show that, if there is a veto player with positive recognition probability, then

starting from any given alternative, there is a unique absorbing point which the equilibrium

process transitions to. While they do not characterize this point and their framework is not

nested with mine, the equilibrium outcomes I characterize are consistent with their result:

there is a unique absorbing outcome, the veto player’s ideal policy, which is independent of

the initial alternative.3

Diermeier et al. (2017, DES) consider a model where legislators allocate a set of indi-

visible, identical objects among themselves and are sufficiently patient.4 A key element of

their analysis is the notion of a protocol, which might be any finite sequence of players (pos-

sibly with repetition) ending with a veto player. The protocol to be used is realized at the

beginning of each period and prescribes the sequence of proposers within that period. A

bargaining period ends as soon as a proposal is accepted or after the last player in the pro-

tocol had his proposal rejected. DES focus on protocol-free MPEs, that is, MPEs where the

function which maps the status quo allocation and the realization of the bargaining protocol

into the current period’s allocation does not depend on the bargaining protocols. They show

that, in any protocol-free MPE, the set of stable allocations coincides with the unique von

Neumann-Morgenstern-stable set.5 In committees with three players, one veto player and

simple majority (as in this paper), this set is composed of all allocations which give the same

amount to the two non-veto players. I show that, when the objects legislators bargain over

are infinitely divisible, mutual protection by non-veto players is not assured and the veto

3Diermeier and Fong (2011) study the finite framework with a persistent agenda setter. This is related
to a special case of the model with heterogeneous proposal power I investigate in Section 5. They find that
legislators without agenda setting power mutually protect each other and the persistent agenda setter is
unable to fully expropriate them. See the Appendix for an MPE where full expropriation by a persistent
agenda setter is the only stable allocation even when, as in Diermeier and Fong (2011), the set of feasible
policies is finite and the legislators’ discount factor approaches 1.

4Specifically, they assume δ > 1− 1
b+2 , where b is the number of available indivisible objects.

5In the Appendix, I show that, dropping the requirement of protocol independence and using the protocols
commonly assumed in the legislative bargaining literature (and in this paper), can lead to MPEs where full
expropriation by the veto player is the only stable allocation even when, as in DES, the set of feasible policies
is finite and the legislators’ discount factor approaches 1.
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player might be able to fully expropriate non-veto players regardless of their patience and

the initial division of the dollar. Moreover, in contrast with DES, I characterize both stable

outcomes and the transition to these policies for any level of patience, and I offer results on

the effect of legislators’ patience and recognition probabilities on bargaining outcomes.

Finally, this paper contributes to the literature on laboratory experiments testing models

of legislative bargaining (McKelvey 1991, Frechette et al. 2003, Frechette et al. 2005a,b,c,

Diermeier and Morton 2005, Diermeier and Gailmard 2006, Frechette 2009, Drouvelis et al.

2010, Miller and Vanberg 2013, 2015, Agranov and Tergiman 2014, Baranski and Kagel 2013,

Tergiman 2015, Nunnari and Zapal 2016, Cook and Woon Forthcoming, Fréchette and Vespa

2017). In particular, Wilson and Herzberg (1987), Haney et al. (1992), Kagel et al. (2010),

and Agranov and Tergiman (2019) provide experimental evidence on the consequences of veto

power in ad hoc committees. All this work focuses on static environments where resources

are allocated only once.6 More closely related to this paper, the experiments presented in

Battaglini and Palfrey (2012), Battaglini et al. (2012), Agranov et al. (2016), Baron et al.

(2017), Agranov et al. (2020), and Battaglini et al. (Forthcoming) investigate models of

legislative bargaining with standing committees, where resources are allocated repeatedly.

As in the current paper, in Battaglini and Palfrey (2012) and Baron et al. (2017), the status

quo policy evolves endogenously: if an agreement is not reached, resources are allocated as

in the previous period.7 None of these papers considers the effect of veto power.8

6Less related to the private value environment of this paper, Guarnaschelli et al. (2000), Goeree and
Yariv (2011), Bouton et al. (2017), and Elbittar et al. (Forthcoming) study the consequences of veto power
for the aggregation of information in common value environments.

7In Battaglini et al. (2012), Agranov et al. (2016), Agranov et al. (2020), and Battaglini et al. (Forth-
coming) the status quo policy is exogenous and time-invariant. The linkage between periods is represented
by the stock of a durable public good the committee can invest in (Battaglini et al. 2012, Agranov et al.
2016), the allocation of proposal power (Agranov et al. 2020), or the available budget (Battaglini et al.
Forthcoming).

8The sole exception is Battaglini et al. (2012) who consider a treatment with unanimous voting. Contrary
to the divide-the-dollar game with endogenous status quo studied in this paper, in Battaglini et al. (2012),
resources can be allocated both to private transfers and to investment in a durable public good; and the
status quo policy does not depend on past decisions but is always zero investment in the public good and
an even share of the budget to each committee member’s private consumption.

7



3 Model and Equilibrium Notion
Three agents repeatedly bargain over a legislative outcome xt for each period of an infinite

horizon, t = 1, 2, . . . . One of the three agents is endowed with the power to veto any proposed

outcome in every period. I denote the veto player with the subscript v and the two non-veto

players with the subscript j = {1, 2}. The possible outcomes in each period are all possible

divisions of a fixed resource among the three players.

The Bargaining Protocol. At the beginning of each period, one agent is randomly se-

lected to propose a new policy, z ∈ ∆. Each agent has the same probability of being

recognized as policy proposer, that is 1
3 . This proposal is voted up or down by the com-

mittee. A proposal passes if it gets the support of the veto player and at least one other

committee member. If a proposal passes, xt = z is the implemented policy at t. If a proposal

is rejected, the policy implemented is the same as it was in the previous period, xt = xt−1.

Thus, the previous period’s decision, xt−1, serves as the status quo policy in period t. The

initial status quo x0 is exogenously specified.

Stage Utilities. Agent i derives stage utility ui = xi from the implemented policy xt.

Players discount the future with a common factor δ ∈ [0, 1), and their payoff in the game is

given by the discounted sum of stage payoffs.

Strategies and Equilibrium Notion. In what follows, I look for a stationary Markov

perfect equilibrium (MPE). In this type of equilibrium, strategies depend only on payoff-

relevant effects of past behavior (Maskin and Tirole 2001). I define the state in period t

as the status quo policy, or the previous period’s decision, st = xt−1. In an MPE, agents

behave identically in different periods with the same state s, even if that state arises from

different histories. In this dynamic game, the expected utility of agent i from the allocation

implemented in period t does not only depend on his stage utility, but also on the discounted

expected flow of future stage utilities, given a set of strategies. The continuation value, vi(s),

is the expected payoff of legislator i when the state is s before the proposer is selected. We
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can write the expected utility of legislator i from the allocation implemented in period t, xt,

as:

Ui(xt) = xti + δvi(xt)

As is standard in models of bargaining, I require that agents use stage-undominated

voting strategies—that is, they vote yes if and only if their expected utility from the status

quo is not greater than their expected utility from the proposal.9

4 Equilibrium Analysis
In this Section, I propose natural conditions on strategies, and show that these conditions

define an equilibrium. First, equilibrium proposals involve minimal winning coalitions, such

that at most one non-veto player receives a positive amount in each period. Second, the

proposer proposes the acceptable allocation—that is, an allocation that defeats the status

quo—that maximizes his current share of the dollar. The set of allocations each agent prefers

to the status quo policy changes with the discount factor, as legislators take more or less

into account the impact of the current allocation on future periods. Not surprisingly, this

has important consequences for the dynamics of the game.

I first discuss the case when the proposer is a non-veto player, and then the case when

the proposer is a veto player. To help with the exposition, I partition the space of possible

divisions of the dollar into two subsets, ∆ and ∆\∆. Define ∆ ⊂ ∆ as the set of states

x ∈ ∆ in which at least one non-veto legislator gets zero. Define the demand of legislator i,

di, as the minimum amount he requires to accept a proposal x ∈ ∆.

4.1 Non-Veto Proposer
When a non-veto player is proposing, he needs to secure the vote of the veto player in

order to change the current status quo. If the non-veto proposer wants to maximize his

current share of the dollar, he will propose the veto player’s demand to the veto player,

9This restriction rules out uninteresting equilibria where voting decisions constitute best responses solely
due to the fact that a single vote cannot change the outcome.
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and assign the remainder to himself. Therefore, to characterize the equilibrium proposal

strategies of a non-veto player, we need to identify the acceptance set of the veto player.

A perfectly impatient veto player values only his current allocation and, thus, only sup-

ports proposals that give him as much as the status quo or more. On the other hand, a

patient veto player is not indifferent between all states in which he receives the same allo-

cation, and might be better off with allocations that reduce his current share when these

decrease his future coalition building costs. In particular, he is willing to move from an

interior allocation where he gets a higher share, to an allocation where both he and one non-

veto player have a smaller share. This occurs because the future status quo policy affects the

future leverage the veto player has when he is the proposer. In this event, he needs to secure

the vote of just one non-veto player, and he will, thus, build a coalition with the non-veto

player who demands the least. As shown below, the demand of each non-veto player is an

increasing function of what he gets in the status quo and, therefore, a veto player’s coalition

building costs with status quo s are a positive function of min{s1, s2}. Thus, a veto player

prefers an allocation s′ where he gets s′v and min{s′1, s′2} = s′nv to an alternative allocation

s′′ with s′′v = s′v but min{s′′1, s′′2} = s′′nv > s′nv.

Figure 2 depicts the acceptance set of a patient veto player for two different values

of δ > 0. The vertical dimension represents the share to (non-veto) player 1, while the

horizontal dimension represents the share to (non-veto) player 2. The remainder is the share

that goes to the veto player. In the Appendix, I characterize the amount the veto player

demands to accept a proposal that brings the status quo into ∆—where one non-veto player

gets nothing—as:

dv = max{sv − δ
3−2δsnv, 0} (1)

where snv is the allocation of the poorer non-veto player in the status quo. The reduction

accepted by the veto player increases with his discount factor δ and the share to the poorer
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Figure 1: Veto’s acceptance set and non-veto’s proposal strategies for state s0: (a) Av(s0) when
δ = δ1 > 0; (b) Av(s0) δ = δ2 > δ1, (c) equilibrium proposal of non-veto 1 (blue arrow) and
non-veto 2 (green arrow).

non-veto player snv. A veto player does not accept any division of the dollar that gives him

less than the status quo when s ∈ ∆. Note also that the reduction a veto player is willing

to accept could be more than what he has in the status quo, in which case his demand is

bounded below by 0.

The non-veto proposer proposes the acceptable policy that maximizes his current alloca-

tion. These are depicted in the right-most panel of Figure 2. A non-veto proposer completely

expropriates the other non-veto player, gives the veto player his demand, and allocates the

remainder to himself. When the state is in ∆, the non-veto proposer can only get 1 − sv,

but when the state is in ∆\∆ he can extract an higher amount, namely 1− dv.

4.2 Veto Proposer
When the veto player desires to pass a proposal with a minimal winning coalition, he is

not bound to include any specific legislator. Thus, he selects the legislator who accepts the

highest increase to the veto player’s share—that is, the legislator with the lowest demand—

as his coalition partner. When legislators are perfectly impatient, the veto player builds a

coalition with the poorer non-veto player—the non-veto player who receives the least in the

status quo—giving him as much as he is granted by the status quo. A perfectly impatient

non-veto player accepts this proposal. A patient non-veto player does not.

In fact, the bargaining power of a patient non-veto player decreases with the share held
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Figure 2: Non-veto 2’s acceptance sets for state s0 where s1 > s2: (a) A2(s0) when δ = 0, (b)
A2(s0) when δ = δ1 > 0; (c) A2(s0) δ = δ2 > δ1.

by the veto player in the status quo. For this reason, a patient non-veto player prefers an

allocation s′ ∈ ∆ where he gets s′j = 0 and the veto player gets s′v to an alternative allocation

s′′ ∈ ∆ with s′′j = s′j but s′′v > s′v. The difference between these allocations arises when he

is recognized in t + 1, as he will gain the support of the veto player only for proposals that

give him no more than 1 − sv. Figure 3 depicts the acceptance set of the poorer non-veto

player for a state s0 ∈ ∆ and three increasing values of the discount factor.

With δ > 0, the veto player’s coalition partner demands a premium to vote in favor

of an allocation that increases the veto player’s share: the veto player has to compensate

his coalition partner with a short term gain in stage utility for the long term loss in future

bargaining power. The Appendix shows that the demand of the poorer non-veto player for

states s ∈ ∆ is:

dnv = δ
3−2δsnv (2)

where snv is the allocation to the richer non-veto player in the status quo.

Some properties of dnv are worth noting. First, dnv is smaller than snv for any δ ∈ [0, 1).

This means that, as long as δ < 1, the veto proposer can increase his share, as he can assign

himself 1 − dnv > sv = 1 − snv. Since the veto player does not accept any reduction to his

allocation once s ∈ ∆, the allocation to the veto player displays a ratchet effect: it can only
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Figure 3: Veto’s equilibrium proposal strategy for state s0 and δ > 0.

stay constant or increase.

Second, the premium paid by the veto player to his coalition partner is monotonically

increasing in δ and linearly increasing in snv: dnv converges to snv as δ converges to 1, and

to 0 as δ converges to 0. This implies that the ratchet effect is slower with more patient

legislators. With δ = 0, the premium is 0 and the veto player is able to steer the status quo

policy to his ideal point in at most two proposals, as he can pass any x ∈ ∆ when the poorer

non-veto player has zero. With δ ∈ (0, 1), the premium is always positive and convergence to

the veto player’s ideal point happens only asymptotically. Figure 4(b) shows how the state

would evolve when the veto player always proposes.

When the allocations to the two non-veto players are close, the veto player mixes between

coalition partners. This is necessary to guarantee that the proposer’s choice of a partner is

a best response to what they demand: if the veto player always picked the poorer non-veto

player as coalition partner, this player would become the most expensive coalition partner.

4.3 Theoretical Results
Proposition 1 provides a summary of the discussion above:

Proposition 1 For any δ ∈ [0, 1) and any s0 ∈ ∆ there exists an MPE such that:
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Figure 4: Partition of ∆ into regions with different equilibrium strategies for allocations where
s1 ≥ s2: (a) δ=0; (b) δ = δ1 > 0; (c) δ = δ2 > δ1. In A and B, veto proposer builds a coalition with
poorer non-veto player; in C and D, veto proposer mixes between coalition partners; in B, and C
veto player is willing to accept nothing when he is not proposing.

• All proposals give a positive allocation at most to a minimal winning coalition.

• For some s ∈ ∆\∆, the veto proposer mixes between possible coalition partners. For

the remaining s ∈ ∆, the veto proposer proposes dnv to the poorer non-veto player.

• For all s ∈ ∆, the non-veto proposers propose dv to the veto player.

• For all s ∈ ∆, dv = sv and dnv ≥ snv, that is, the veto player demands his status quo

allocation, non-veto players demand weakly more.

In the Appendix, I give the exact statement of the equilibrium proposal and voting

strategies for each region of ∆, and show that these strategies and the associated value

functions constitute part of an MPE. Moreover, I show that the MPE from Proposition

1 is continuous in δ and s, meaning that a small change in the discount factor or a small

change in the status quo imply a small change in proposal strategies and, by extension, to the

equilibrium transition probabilities. An immediate implication of the continuity of transition

probabilities is the fact that continuation values and expected utilities are continuous.

Proposition 2 The continuation value functions, Vi, and the expected utility functions, Ui,

induced by the equilibrium in Proposition 1 are continuous.
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Proposition 3 discusses the long run implications of the equilibrium from Proposition 1:

Proposition 3 For any δ ∈ [0, 1) and any s0 ∈ ∆, there exists an MPE such that the status

quo policy eventually gets arbitrarily close to the veto player’s ideal policy, that is, ∀ ε > 0

limt→∞ Pr[xtv > 1− ε] = 1.

Proposition 4 addresses the speed of convergence to this long run outcome:

Proposition 4 In the MPE characterized in the proof of Proposition 1, if legislators are

impatient, δ = 0, it takes at most two rounds of proposals by the veto player to converge to

his ideal policy. If legislators are patient, δ ∈ (0, 1), convergence to this state does not happen

in a finite number of periods, and the higher the discount factor the slower the convergence.

5 Heterogeneous Recognition Probabilities
In some settings, the veto player is an outsider with reduced ability to set the agenda—for

example, the U.S. President—while in others the veto player has a privileged position to set

the agenda—for example, committee chairs in the U.S. Congress. In this Section, I relax

the assumption of symmetric recognition probabilities and explore an institutional measure

that could, in principle, reduce the leverage of the veto player and promote more equitable

outcomes: manipulating the recognition probability of the veto player. In particular, I

characterize sufficient conditions on the discount factor and the recognition probabilities

under which the veto player is able to eventually appropriate all resources for any initial

status quo. In these cases, the speed of convergence to this outcome is increasing in the

probability the veto player sets the agenda and decreasing in the legislators’ patience.

Denote by pv the probability the veto player is recognized as the proposer in each period,

with pnv = 1−pv

2 being the probability a non-veto player is recognized. Proposition 5 shows

that, when pv ∈ (0, 1/2] or pv = 1, there exists an MPE of this dynamic game that has the

same features as the one characterized in Proposition 1: all proposals entail positive distri-

bution to, at most, a minimal winning coalition and the status quo allocation converges to
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the ideal point of the veto player irrespective of the discount factor and the initial allocation

of resources. When pv ∈ (0.5, 1), an MPE with these features exists as long as the discount

factor is below a threshold, δ(pv).

Proposition 5 Consider the game with heterogenous recognition probabilities. If pv ∈(
0, 1

2

]
∪{1}, then for any δ ∈ [0, 1) and any s0 ∈ ∆, there exists an MPE such that the status

quo policy eventually gets arbitrarily close to the veto player’s ideal point. If pv ∈
(

1
2 , 1

)
,

then for any δ ≤ δ(pv) and any s0 ∈ ∆, there exists an MPE such that the status quo policy

eventually gets arbitrarily close to the veto player’s ideal point.10

As in the case with even recognition probabilities, this result hinges on the fact that the

veto player is able to move the status quo to ∆—the set of allocations where at least one

non-veto player gets zero—as soon as he proposes and that, once an allocation is in this

absorbing set, the veto player is able to increase his share whenever he proposes. When the

sufficient conditions in Proposition 5 are met, the veto player’s proposal power influences the

speed of convergence to this policy both directly and indirectly. The direct effect is given

by the change in the frequency at which the veto player can increase his allocation—which

happens only when he proposes. The indirect effect is given by the change in the amount

the veto player can extract from the non-veto players when he proposes. The probability of

recognition of the veto player affects the continuation value of the status quo policy for all

legislators, and, thus, it affects how much they demand to support a policy change.

Consider status quo allocations where one non-veto player has nothing. As pv increases,

the poorer non-veto player is less likely to be recognized and, thus, he is less concerned about

the endowment of the richer non-veto player, which represents the resources he can appro-

priate when he has the power to set the agenda. This reduces the premium he demands to

support an allocation that increases the share to the veto player. In the proof of Proposition

10The threshold δ(pv) is characterized in the proof of Proposition 5. This MPE does not exist only for a
small fraction of parameters: the lowest value of δ is 0.875, reached when pv ≈ 0.857. Thus, for δ ∈ [0, 0.875),
the MPE exists for any pv ∈ (0, 1] and any s0 ∈ ∆. For a discussion of the intuition behind the irregular
shape of the existence set, see the proof of Proposition 5.
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5, I show that this premium is monotonically decreasing in pv. When pv = 1, the poorer

non-veto player does not demand a premium and supports any allocation. Thus, with a

higher pv, the veto player is more likely to increase his share in each period, and he can also

extract more from the non-veto players when he is the proposer.

The limit case where the veto player does not have any chance to set the agenda is effective

in avoiding full expropriation of non-veto players and, thus, merits discussion. Consider the

dynamic bargaining game with pv = 0. In the MPE I fully characterize in the proof of

Proposition 5, each non-veto proposer offers to the veto player his status quo allocation and

takes the remainder for himself. As a consequence, the veto player receives the amount

prescribed by the initial agreement in every period of the game and he is never able to

increase his allocation. Proposition 6 summarizes this discussion:

Proposition 6 In the MPE from Proposition 5, (a) if δ = 0 or pv = 1, it takes at most

two rounds of proposals by the veto player to converge to his ideal policy; (b) if δ ∈ (0, 1)

and pv ∈ (0, 1), convergence to this state does not happen in a finite number of periods and

convergence is slower the higher is δ and the lower is pv; (c) if pv = 0, the veto player

receivers the amount prescribed in the initial status quo s0
v, in all periods.

In spite of this discontinuities long run outcomes and the speed of convergence, the MPE

from Proposition 5 is continuous in δ, s and pv, meaning that, in the set of parameters

for which the equilibrium exists, a small change in the discount factor, the status quo or

recognition probabilities imply a small change in legislators’ value functions and expected

utilities.

Proposition 7 The continuation value functions, Vi, and the expected utility functions, Ui,

induced by the equilibrium in Proposition 5 are continuous.

6 Uniqueness of Equilibrium Outcomes
The legislative game studied in this paper is an infinite horizon dynamic game with a

plethora of subgame perfect Nash equilibria and, thus, an equilibrium-selection issue. As
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standard in the literature on dynamic legislative bargaining, I do not consider equilibria

involving stage-dominated or non-stationary strategies.11 Even so, it is still possible that

other MPEs of this game exist.12 In this Section, I show that the results presented in Sections

4 and 5 are not a feature of a particular equilibrium but hold in larger classes of equilibria.

Before I state the formal results, I need to introduce some additional definitions:

Definition 1 (Symmetric MPE) For any s = {sv, s1, s2} ∈ ∆, let s̃(s) = {sv, s2, s1} be

the policy permuting the allocations to non-veto players and keeping the same allocation to

the veto player. We say that an MPE is symmetric if µi[x|s] = µ−i[x̃(x)|̃s(s)], µv[x|s] =

µv[x̃(x)|̃s(s)], Ai(s) = A−i (̃s(s)), and Av(s) = Av (̃s(s)), where i = {1, 2}, −i = {1, 2} \ {i},

µi[x|s] is the probability player i proposes x when the status quo is s and Ai(s) is the set of

policies that player i weakly prefers to status quo s.

Definition 2 (Continuous MPE) We say that an MPE is continuous if the continuation

value functions induced by equilibrium strategies, Vi(s), are continuous at any policy s ∈ ∆

for any i = {v, 1, 2}.

Definition 3 (Consistent MPE) Fix an MPE. Let A(s) be the set of proposals which beat

status quo s and let xa(s) be the equilibrium proposal of a ∈ {1, 2} given status quo s. We say

that a proposal strategy is consistent if, for any pair of status quo policies s and s′ and any

proposer a ∈ {1, 2}, xa(s) ∈ A(s′) and xa(s) 6= xa(s′) implies xa(s′) /∈ A(s). A consistent

MPE is an MPE in consistent proposal strategies.

11In large legislatures, non-stationary strategies that depend on the history are implausible because of
legislators’ turnout, extraordinary commitment, coordination, and/or communications requirements.

12For example, Anesi and Duggan (2018) show that, in a large class of models of dynamic bargaining
with an endogenous quo, MPEs are indeterminate. While their result does not apply to the framework of
this paper (because the voting rule is collegial), it highlights the fact that constructive techniques may fail
to identify other plausible outcomes. In the Appendix, I consider the game with homogeneous recognition
probabilities and characterize a class of MPEs where an allocation (or a pair of allocations) giving a positive
amount to all players is stable. The set of such allocations is non-empty for any δ > 0.68 and grows with
δ. As δ goes to 1, there exists an MPE where Y = {(xv, x1, x2), (xv, x2, x1} is an irreducible absorbing set
for any x ∈ ∆ such that min{xv, x1, x2} > 0 and x1 + x2 > 0.25. Moreover, in subsequent work, Sethi
and Verriest (2019) show that, when agents are sufficiently patient, the veto player holds sufficient proposal
power, and the initial allocations to non-veto players are sufficiently similar, there exists an MPE where the
veto player is only able to partially expropriate non-veto players.
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Definition 4 (Irreducible Absorbing Set) Fix an MPE. The set Y ⊆ ∆ is an absorbing

set if once the committee implements policy y ∈ Y , it never transitions to policy x /∈ Y with

positive probability. The set Y is an irreducible absorbing set if Y is an absorbing set and

there does not exist a proper subset Y ′ ⊂ Y such that Y ′ is an absorbing set.

Continuity requires that a small change in the status quo implies a small change in

proposal strategies, value functions and expected utilities. Symmetry requires that non-

veto player’s (the veto player’s) proposal and voting strategies are symmetric (identical) for

each pair of states permuting the allocations to non-veto players. Consistency is adapted

from Forand (2014) and requires that proposal strategies not lead to choice behavior that

is inconsistent with standard criteria in decision theory (e.g., the Weak Axiom of Revealed

Preferences): consider the policy chosen under status quo s, xa(s); if the same policy is

still available under a new status quo s′ but it is not chosen, that is, xa(s) ∈ A(s′) and

xa(x) 6= xa(x′), then, it must be the case that the policy chosen under this new status quo

was not available under the old status quo, that is, xa(s′) /∈ A(s).13

Proposition 8 considers the broader class of subgame perfect Nash equilibria (a superset

of MPEs) and shows that no allocation other than full appropriation by the veto player can

be stable when the discount factor is sufficiently low.

Proposition 8 In any subgame perfect Nash equilibrium of the dynamic legislative bargain-

ing game with heterogeneous recognition probabilities, (a) full appropriation by the veto player

is absorbing for any δ ∈ [0, 1); (b) Vv(x) ≥ xv

1−δ ; (c) Vi(x) ≥ pnvxi

1−δpnv
for i = {1, 2}; and (d) no

allocation other than full appropriation by the veto player is absorbing for any δ ∈
[
0, 1

2−pnv

)
.

Corollary 1 Consider the dynamic legislative bargaining game with equal recognition prob-

abilities. If δ < 3/5, there is no subgame perfect Nash equilibrium where an allocation other

than full appropriation by the veto player is absorbing.

13These conditions have already been used to refine equilibria of dynamic games of elections and bargaining
(see, e.g., Battaglini and Coate 2007, 2008, Diermeier and Fong 2011, Battaglini et al. 2012, Forand 2014).

19



Proposition 9 considers the class of stationary Markov perfect equilibria. It shows that,

in any irreducible absorbing set which includes more than one policy, the veto player must

receive the same allocation in all these policies.14

Proposition 9 Consider any MPE of the dynamic legislative bargaining game with pv ∈

[0, 1]. For any set Y ⊆ ∆, Y is an irreducible absorbing set with respect to this MPE only if

all elements of Y give the same allocation to the veto player.

Proposition 10 imposes symmetry and shows that one of the key features of the MPEs

from Proposition 1 and 5 extends to any MPE in this broader class: as long as non-veto play-

ers have some proposal power and care, even minimally, about future policies, convergence

to full appropriation by the veto player is only asymptotic in any symmetric MPE.

Proposition 10 In any symmetric MPE of the dynamic legislative bargaining game, (a)

Vi(x) ≥ pi max{x1,x2}
1−δpi

for i = {1, 2}; and (b) for any δ ∈ (0, 1), s0 6= {1, 0, 0}, and pv ∈ (0, 1),

the committee does not converge in finite time to full appropriation of the dollar by the veto

player.

This is the intuition behind the proof, which is presented in the Appendix. From Propo-

sition 8(a), we know that z = (1, 0, 0) is an absorbing outcome in any subgame perfect Nash

equilibrium (and, thus, in any MPE). Therefore, proposal z gives an expected utility of 0

to either veto player. This means that such a proposal defeats a status quo s 6= z only if

sj+δVj(s) ≤ 0 for at least one non-veto player j = {1, 2}. Since allocations are non-negative,

a non-veto player whose status quo allocation is positive will never support a proposal which

leads to z. Thus, z defeats the status quo only if there is at least one non-veto players for

which sj = 0 and Vj(s) = 0. Proposition 10(a) shows that, as long as non-veto players

are not perfectly impatient and have some proposal power, Vj(s) is strictly positive for any

s 6= z. The intuition is that, when he proposes, a non-veto player can swap his allocation

14Note that this is the continuous policies analogous of what Anesi and Duggan (2017) showed for a
dynamic legislative bargaining game with a finite set of feasible policies and strict utilities.
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with the other non-veto player’s allocation and give the same as in the status quo to the veto

player. In a symmetric MPE, this proposal will pass with the support of the veto player.

As a consequence, no proposer will be able to reform a status quo policy which allocates

a positive amount to some non-veto player with a policy which allocates zero resources to

non-veto players.

Proposition 11 shows that, in continuous and consistent MPEs, long run equilibrium

outcomes are insensitive to the distribution of agenda setting power, the discount factor and

the initial division of the dollar, as long as the veto player has some ability to set the agenda.

Proposition 11 In any consistent and continuous MPE of the game with δ ∈ [0, 1), s0 ∈ ∆,

and pv ∈ (0, 1], the unique irreducible absorbing set is a singleton and its only element is full

appropriation of the dollar by the veto player.

The proof is presented in the Appendix but I sketch here the argument. Above I estab-

lished that any irreducible absorbing set of an MPE must be composed by policies giving

the same amount, k ∈ [0, 1], to the veto player (Proposition 9) and that Y = {(1, 0, 0)} is an

irreducible absorbing set (Proposition 8(a)) in any MPE. Thus, to prove the statement from

Proposition 11, it is sufficient to show that any set of policies giving the same amount k < 1

to the veto player cannot be an irreducible absorbing set. I then show that for any status quo

policy in the irreducible absorbing set of a consistent MPE, each player proposes the same

policy (Lemma 6) and the equilibrium proposals of non-veto players are minimal winning

coalitions (Lemma 7). This allows me to characterize the continuation value each non-veto

player derives from any policy in the irreducible absorbing set as a function of δ, pv and two

parameters. At this point, I can derive a contradiction. Let Y be an irreducible absorbing

set and assume k < 1. Since Uv(y) = k
1−δ for any y ∈ Y and, in any MPE, Uv(s) ≥ sv

1−δ , the

veto player would be strictly better off moving to a policy outside of Y where he receives a

higher allocation. Using the continuation values of non-veto players and continuity, I show

that when the veto player proposes he can always find a proposal which allocates to himself
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strictly more than k and that is weakly preferred to the status quo by at least one non-veto

player.

Finally, Proposition 12 tackles the limit, yet interesting, case where the veto player has

no power to propose and shows that this institutional measure is effective in preventing the

expropriation of non-veto players in the class of continuous and consistent MPEs.

Proposition 12 In any consistent and continuous MPE of the game with pv = 0, the allo-

cation to the veto player in any period is the amount in the initial status quo, s0
v.

In the proof, which is presented in the Appendix, I first show that, in this case, the veto

player’s continuation value from any policy is strictly increasing in his allocation. Thus, the

veto player never accepts a reduction to his allocation. Since the veto player never proposes,

this means that, to prove Proposition 11, it is sufficient to rule out that equilibrium proposals

by either non-veto player increase the allocation to the veto player. Proceeding towards a

contradiction, I show that, if this were the case, consistency would imply that one non-veto

player proposes the same increased allocation to the veto player for an interval of status quo

policies; and that, for the same interval of policies, the other non-veto player is better off

offering the status quo allocation to the veto player. In turn, this would lead to discontinuous

continuation values.

7 The Effect of Multiple Decisions
To highlight the effect of repeated interaction, I analyze a benchmark model where an

ad hoc committee composed of three players—one veto player and two non-veto players—

bargains over a single decision. At the beginning of each period of an infinite horizon, one

committee member is randomly selected to propose an agreement, x ∈ ∆. If the proposal

is supported by the veto player and at least one non-veto player, then negotiations end

with outcome x in the current and every subsequent period. Otherwise, a status quo policy,

s ∈ ∆, is implemented in the current period and there is a call for new proposals. Legislators
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discount the future with a common factor, δ ∈ [0, 1].15

Proposition 13 Consider bargaining in ad hoc committees with status quo s ∈ ∆. As-

sume, without loss of generality, s1 ≥ s2. In the unique stationary equilibrium, there is an

immediate agreement and proposals are such that:

x?nv(s) =


(3−3δ)(3−δ)
9(1−δ)+δ2 s2 + (3−3δ)δ

9(1−δ)+δ2 s1 if s1 ≥ 3−2δ
3−3δs2

3−3δ
6−5δ (s1 + s2) if s1 <

3−2δ
3−3δs2

x?v(s) =


sv + δ2

9(1−δ)+δ2 s2 + δ(3−2δ)
9(1−δ)+δ2 s1 if s1 ≥ 3−2δ

3−3δs2

sv + δ
6−5δ (s1 + s2) if s1 <

3−2δ
3−3δs2

µ?1(s) =


0 if s1 ≥ 3−2δ

3−3δs2

δs1−(3−2δ)(s1−s2)
δ(s1+s2) if s1 <

3−2δ
3−3δs2

where x?nv is the amount proposed by the veto player to one non-veto player, x?v is the amount

proposed by each non-veto player to the veto player, and µ?1(s) ∈ [0, 1/2] is the probability

that the veto player proposes x?nv to non-veto player 1. Note that x?nv is strictly decreasing

in δ, with limδ→1 x
?
nv = 0; and that x?v is weakly larger than sv and strictly increasing in δ,

with limδ→1 x
?
v = 1.

Proposition 13 shows that bargaining in ad hoc committees displays these properties:

• There exists s ∈ ∆ and δ ∈ [0, 1] such that any x ∈ ∆ is an equilibrium outcome, i.e.,

outcomes crucially depends on patience and the initial division of the dollar.

• Full appropriation by the veto player is an equilibrium outcome only if δ = 1 or sv = 1.

15Winter (1996) studies veto power in ad hoc committees but a direct comparison is hindered by his
assumption that failure to reach an agreement is worse for all legislators than every possible bargaining
outcome (i.e., s = {0, 0, 0} /∈ ∆). The conclusions on the role of patience do not depend on this assumption
(see Propositions 2 and A.1 in Winter 1996). Banks and Duggan (2006) show that, in this setting, a
stationary equilibrium exists and that there are no stationary equilibria without immediate agreement but
do not offer comparative static results on legislators’ patience and the status quo policy.

23



• The value of the game for the veto player is strictly increasing in legislators’ patience.

• The veto player never supports a reform which goes against his immediate preferences.

More generally, any committee member’s preferences over policies only depend on the

allocation to oneself, not on the entire distribution of resources.

These results illuminate the role of multiple decisions as they stand in sharp contrast to the

properties of bargaining in standing committees I presented above.

8 Experimental Design
The theory provides sharp empirical implications, in particular on the shadow of the

future in standing committees, that is, on how different degrees of patience affects legislators’

bargaining behavior and the allocation of resources. In the remainder of the paper, I assess

the empirical validity of these theoretical predictions with the use of controlled laboratory

experiments, which have some important advantages over field data when studying a highly

structured dynamic environment such as the one in this paper (Falk and Heckman 2009).

The experiments were conducted at the Rady Behavioral Laboratory between November

2012 and February 2013. Subjects were undergraduate students from the University of

California San Diego and were recruited from a database of volunteer subjects. Eight sessions

were run, using a total of 96 subjects. No subject participated in more than one session.

The experimental treatment is the discount factor, that is, the degree of patience of

the committee. I conduct four sessions with low patience committees (δ = 0.50), and four

sessions with high patience committees (δ = 0.75). Discount factors were induced by a

random termination rule: after each round of the same game, a fair die was rolled by the

experimenter at the front of the room, with the outcome determining whether the game

continued to another round (with probability δ). This is a standard technique used in the

experimental literature to preserve the incentives of infinite horizon games in the laboratory

(Roth and Murnighan 1978, Fréchette and Yuksel 2017).16

16The length of a game ranged from 1 to 13 rounds. To ensure the same number of expected rounds (40),
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Treatment δ Sessions Committees Subjects
High Patience 3/4 4 160 48
Low Patience 1/2 4 320 48

Table 1: Experimental design.

All sessions were conducted with 12 subjects, divided into 4 committees of 3 members

each—one veto player and two non-veto players. Veto players were selected randomly at

the beginning of the session, with their role as veto players remaining fixed throughout

the session. Committees stayed the same throughout the rounds of a given game, and

subjects were randomly rematched into committees between games. The exogenous amount

of resources in each round was 60 experimental units (corresponding to $2). At the beginning

of each game, an initial status quo was randomly chosen by the computer among all vectors of

three non-negative integers which sum to 60. After being informed of the initial status quo,

each committee member was prompted to enter a provisional proposal. After all members

had entered a provisional proposal, one was selected at random to become the proposed

budget. This proposal was then voted on against the status quo, which was referred to as the

standing budget. The proposed budget defeated the standing budget with the approval of the

veto player and at least one non-veto player. Whichever budget passed the voting stage was

the policy that was implemented in that round, each member received earnings accordingly,

and the budget that just passed became the new status quo. Instructions were read aloud

and subjects were required to correctly answer all questions on a short comprehension quiz

before the experiment was conducted. The experiments were conducted via computers.17

Table 1 summarizes the experimental design.

each of the high patience sessions lasted for 10 games and each of the low patience sessions for 20 games.
17Sample instructions are available in the Appendix. The computer program used in the experiment was

an extension to the open source software Multistage.
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9 Experimental Results
Unless otherwise noted, in this Section, I use random effects panel regressions with stan-

dard errors clustered at the session level to compare policy outcomes and bargaining behavior

between different treatments Clustering at the session level accounts for potential interde-

pendencies between observations that come from random re-matching of subjects between

games in a session.18

9.1 Policy Outcomes and Dynamics
The evolution of policies over time provides a clear picture of outcome dynamics, since it

provides a synthetic description of aggregate behavioral data on both proposal making and

voting. One way to represent the data compactly is to cluster policies in seven regions. The D

regions correspond to dictatorial allocations where one committee member receives the lion’s

share of the budget: D1, D2 and DV are the regions where, respectively, committee member

1, committee member 2 or the veto player receives at least 2/3 of the budget, that is, 40 out

of 60 tokens. The U region consists of universal allocations, where all committee members

receive at least 1/4 of the budget (15 tokens out of 60) and, thus, the budget is equally,

or nearly equally, shared. Finally, the C regions correspond to the remaining allocations,

where only two committee members receive a substantial share of the budget, while the third

committee member is assigned a negligible share: C12 is the coalition composed of committee

member 1 and committee member 2; C1V is the coalition composed of committee member

1 and the veto player; and C2V is the coalition composed of committee member 2 and the

veto player.

Before discussing the results, it is useful to recall the theoretical predictions. If the

status quo is in region U or C12, the MPE from Proposition 1 predicts that policy moves

immediately to a region where the budget is shared by the members of a minimal winning

coalition (that is, to region C1V or C2V), regardless of the identity of the proposer. If

18See Fréchette (2012) for a discussion.
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the status quo is in region C1V or C2V, the the MPE from Proposition 1 predicts that

the status quo is maintained or that policy moves to the opposite side of ∆. In this latter

case, if the veto player is proposing and the initial status quo gives him enough, policy

transitions to region DV. Finally, if the status quo lies in region DV, policy almost always

stays there. The predicted evolution of policies between these regions is very similar between

the two treatments. The theory does predict sharp differences between high and low patience

committees for finer details of behavior and I investigate them below.

The overall frequency of each region and the transition probabilities between each pair of

regions for the two treatments is summarized in Table 2. For each panel, the last row gives

the overall outcome frequencies, excluding the initial status quo policies, which were decided

randomly by the computer to start each game. Each cell in the other seven rows gives the

probability of moving to a policy in the column region when starting from a policy in the

row region. I highlight four results from this table.19

Finding 1: Consistent with the theory, most policies give a positive amount of resources

to the veto player and to, at most, one non-veto player. In both high and low patience

committees, around 88% of all policies give a substantial share to the veto player. Moreover,

only around 22% of all policies give a substantial share to both non-veto players (28% in

high patience committees and 17% in low patience committees).

Finding 2: Consistent with the theory, allocations which give most resources to the

veto player are an absorbing state. The chance of leaving region DV is around 2% in high

patience committees and around 3% in low patience committees. This is the only absorbing

state: the second most resilient region is U, which survives 80% of the time in high patience

committees and 55% of the time in low patience committees (meaning that the status quo

policy transitions to another region, respectively, 20% and 45% of the time).

19Table 6 in the Appendix shows that these results are robust to a different classification of outcomes,
which adopts a stricter definition of dictatorial and universal allocations. In Table 6, I define as dictatorial
an allocation which gives at least 3/4 of the budget (45 out of 60 tokens) to a single committee member;
and I define as universal an allocation which gives at least 3/10 of the budget (18 tokens out of 60) to each
committee member.
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Panel A: High Patience
Status Quo (t+1)

Status Quo (t) D1 D2 DV C12 C1V C2V U
Dictator 1 0.45 0.03 0.03 0.04 0.05 0.22 0.18
Dictator 2 0.12 0.40 0.07 0.07 0.14 0.05 0.14
Dictator V 0.00 0.00 0.98 0.00 0.01 0.01 0.01
Coalition 1 + 2 0.02 0.02 0.00 0.67 0.05 0.07 0.16
Coalition 1 + V 0.00 0.00 0.16 0.00 0.51 0.28 0.05
Coalition 2 + V 0.01 0.00 0.13 0.00 0.26 0.56 0.04
Universal 0.01 0.01 0.03 0.00 0.08 0.09 0.80
Frequency 0.05 0.02 0.36 0.04 0.13 0.16 0.23

Panel B: Low Patience
Status Quo (t+1)

Status Quo (t) D1 D2 DV C12 C1V C2V U
Dictator 1 0.22* 0.10** 0.11 0.00** 0.11 0.30 0.17
Dictator 2 0.14 0.32 0.16* 0.00** 0.16 0.06 0.16
Dictator V 0.00 0.00 0.97 0.01 0.00 0.00 0.03
Coalition 1 + 2 0.07 0.15 0.02 0.29* 0.15** 0.24** 0.07
Coalition 1 + V 0.01 0.03 0.20 0.00 0.43 0.22* 0.10
Coalition 2 + V 0.02 0.02 0.28** 0.00 0.20 0.42 0.06
Universal 0.05 0.01 0.04 0.00 0.23 0.13 0.55**
Frequency 0.05 0.05* 0.43 0.02** 0.15 0.15 0.15

Table 2: Policy frequencies and transition probabilities. Notes: ** and * indicate difference with
High Patience is significant, respectively, at 1% and at 5% level (see p-values in Table 5).
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Finding 3: Consistent with the theory, when the status quo lies in region C1V or C2V

(giving a negligible amount of resources to one non-veto player), resources continue to be

shared by a minimal winning coalition or policy transitions to region DV. When the status

quo shares resources between the members of a minimal winning coalition, the policy im-

plemented in that round lies in region C1V, C2V or DV 95% of the time in high patience

committees and 86% of the time in low patience committees.

Finding 4: Contrary to the theory, the survival rate of allocations giving a substantial

amount to both non-veto players is positive and greater in more patient committees. The di-

agonal of the transition matrices suggests that there is status quo inertia (at least within the

boundaries of these regions) and this is true also for status quo policies which do not assign

resources primarily to a minimal winning coalition — that is, policies where resources are

mostly shared between the two non-veto players or policies where every committee members

receive a non-negligible share. This inertia is statistically stronger in more patient com-

mittees: the chance a status quo in region C12 survives is 29% in low patience committees

and 67% in high patience committees; the chance a status quo in region U survives is 55%

in low patience committees and 80% in high patience committees. Moreover, while they

represent only a small fraction of policies in both treatments, allocations in region C12 are

more frequent in more patient committees (4% versus 2%) and this difference is statistically

significant.

9.2 Veto Player’s Allocation
From the transition probabilities in Table 2, we can see that the policies slowly transition

to the DV region, regardless of the initial status quo and degree of patience and that, once

there, they do not leave this region. The transition to DV can happen directly: with the

exception of region C12 in committees with high patience, there is a positive probability of

moving to region DV starting from any region. More frequently, the transition to DV happens

indirectly: there is a substantial probability of moving to region DV when the status quo

lies in a region where exactly one non-veto player has a negligible share of the budget—that
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Figure 5: Average allocation to veto player. Numbers on bars are observations (committees).

is, regions C1V and C2V—and policies move to these regions at substantial rates starting

from any other region (the only exception being region DV, which is an absorbing state).20

Since this is one of the main empirical implications of the theory, it is interesting to give a

closer look to the evolution of the allocation to the veto player.

Figure 5 shows the evolution of the average allocation to the veto player as the number

of rounds played in the same game grows, separately for the two treatments. The first data

point on the left is the average allocation to the veto player in the initial status quo policy

randomly drawn by the computer in all games of the same treatment.21 The duration of

each game is stochastic: the number of observations available for each round is different and

higher rounds have fewer observations.22

20Starting from regions C1V and C2V, policies move to region DV 14% of the time with high patience
and 24% of the time with low patience. The probability of moving to region C1V or C2V starting from any
region other than DV is at least 12% (in high patience committees, starting from region C12) and as large
as 41% (in low patience committees, starting from region D1).

21The initial allocation to the veto player is not statistically different between the two treatments (p-value:
0.593).

22Figure 5 shows only rounds for which we have at least 12 committees for each treatment. This covers
93% of all observations for high patience committees and 96% of all observations for low patience committees.

30



A: VETO PROPOSER HIGH PATIENCE LOW PATIENCE
ALL ACC ALL ACC

Mean Premium to Proposer 8.34 7.71 12.65* 12.77**
Mean Premium to Rich Non-Veto -15.09 -16.99 -19.15** -20.74**
Mean Premium to Poor Non-Veto 6.75 9.28 6.51 7.97
Mean Premium to Coalition Partner 7.11 8.97 5.00 5.79*
Observations 844 178 824 215

B: NON-VETO PROPOSER HIGH PATIENCE LOW PATIENCE
ALL ACC ALL ACC

Mean Premium to Proposer 8.12 9.12 10.09* 11.04
Mean Premium to Veto -0.83 3.86 -0.35 6.81**
Mean Premium to Other Non-Veto -7.29 -12.98 -9.74* -17.85**
Mean Premium to Coalition Partner 0.38 3.46 2.04 6.74**
Observations 1688 291 1648 316

Table 3: Proposing behavior. Notes: For each treatment, the first column is for all observed
proposals, the second column for proposals that are voted on and accepted; Rich Non-Veto (Poor
Non-Veto) is the non-veto player who receives the most (least) in the status quo; Coalition Partner
is the non-proposing player who receives the most in the proposal; ** and * indicate difference with
High Patience is significant, respectively, at 1% and at 5% level.

Finding 5: Consistent with the theory, there is a ratchet effect in the allocation to the

veto player, slower in more patient committees. The allocation to the veto player gradually

increases over time in both treatments with a veto player. The allocation to the veto player

is larger in lower patience committees in all rounds.23

9.3 Proposal Making
The experimental data is very rich and allow us to test the finer predictions of the

model. To investigate the origin of the dynamic patterns described above, I decompose

23The difference between the High Patience and the Low Patience series is positive for all rounds and
significant at the 5% level for round 1 (p-value: 0.041), round 2 (p-value: 0.010), round 3 (p-value: 0.032),
round 4 (p-value: 0.037), round 5 (p-value: 0.010), round 6 (p-value: 0.011) and at the 10% level for round 7
(p-value: 0.051). The lack of significance for round 8 (p-value: 0.650) can be due to the random termination
rule, which means the number of observations for high rounds is small in both treatments. The existence of
a ratchet effect is confirmed by the Tobit regressions presented in Table 8 in the Appendix.
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the determinants of the transition probabilities and analyze in detail proposal and voting

behavior. Regarding proposing behavior, the model predicts that both veto and non-veto

proposers completely expropriate one non-veto player; that veto proposers are forced to share

resources more evenly with the other non-veto player in more patient committees; and that

non-veto proposers give the veto player no more than what is granted by the current status

quo.

Table 3 shows how proposers allocate resources among committee members. To compare

proposals made at different status quo policies, I look at the premium proposed to each

committee member, rather than at the absolute amount. The premium to a member is

the difference between the amount proposed to that member by the agenda setter and the

amount granted to that same member by the status quo policy. If the premium to a member

is positive, this means the proposer is suggesting an increase to that member’s allocation.

Finding 6: As predicted by the theory, both veto and non-veto proposers expropriate

resources from one non-veto player and share the spoils with a coalition partner. Regardless

of their degree of patience and their role, proposers expropriate resources from a non-veto

player and redistribute the spoils towards themselves and a coalition partner. In particular,

veto proposers expropriate resources from the non-veto player who is allocated the largest

amount in the status quo and give a significant premium to themselves and to the other non-

veto player; and non-veto player expropriates the other non-veto player and give a significant

premium to themselves and to the veto player.24

Finding 7: As predicted by the theory, veto proposers share resources more evenly with

coalition partners in more patience committees. In general, both veto and non-veto proposers

are less greedy and more generous with other committee members in more patient committees.

The premium to a veto proposer and the premium to the non-veto coalition partner are,

respectively, smaller and larger in high patience than in low patience committees. Moreover,

24As shown in Table 9 in the Appendix, this is true also when I restrict the analysis to status quo polices
which gives a non-negligible amount to both non-veto players, that is, policies in regions U and C12.
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HIGH PATIENCE LOW PATIENCE
(1) (2) (3) (4)

Premium Me 0.016** 0.019** 0.013** 0.016**
(0.002) (0.000) (0.001) (0.001)

Premium Other Non-Proposer -0.007** 0.002 -0.007** -0.005**
(0.001) (0.003) (0.001) (0.001)

Constant 0.535** 0.493** 0.535** 0.545**
(0.021) (0.019) (0.039) (0.015)

Voter Type Veto Non-Veto Veto Non-Veto
Proposer Type Non-Veto Veto Non-Veto Veto
Pseudo-R2 0.2488 0.4136 0.3413 0.4798
Observations 566 556 560 528

Table 4: Probability of supporting a proposal: panel random fixed effects estimates with standard
errors clustered at the session level. Notes: ** and * indicate, respectively, significant at 1% and
at 5% level.

veto (non-veto) proposers expropriate a lower amount from the rich non-veto player (the

other non-veto player) when they are more patient; and non-veto proposers offer a larger

amount to their coalition partner (the veto player) when they are more patient. As detailed

in Table 3, these differences are statistically significant.

9.4 Voting Decisions
To investigate the determinants of voting behavior, I run regressions for the likelihood

of voting in favor of a proposal using premium to oneself and premium to the other non-

proposer as the explanatory variables. I do this separately for different roles of proposer and

voter—whether they are a veto or non-veto player—and for different treatments—columns

1 and 2 analyze behavior in high patience committees; columns 3 and 4 analyze behavior in

low patience committees. Table 4 shows the results.25

Finding 8: Subjects vote selfishly and are less likely to support proposals which are more

generous to the other non-proposer. Regardless of patience and role, committee members are

25I exclude proposers from the analysis. Excluding votes between identical allocations, subjects vote in
favor of their own proposal 91% in High Patience and 94% in Low Patience.
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more likely to support a proposal when it offers a larger premium to themselves. Interestingly,

the probability a non-veto player supports a proposal by the veto player does not depend on

(high patience committees) or decreases in (low patience committees) the premium offered to

the other non-veto player. The probability the veto player supports a proposal by a non-veto

player decreases in the premium offered to the other non-veto player in both treatments.

10 Conclusions
This paper studies the consequences of veto power in a bargaining game with an evolving

status quo policy. As the importance of the right to block a decision crucially depends on

the status quo, a static analysis cannot draw general conclusions about the effect of veto

power on policy capture by the veto player. Instead of making ad hoc assumptions on the

status quo policy, I study veto power by exploring the inherently dynamic process via which

the location of the current status quo is determined. I prove that there exists an equilibrium

of this dynamic game such that the veto player is eventually able to extract all resources,

irrespective of the discount factor and the initial agreement, and that this is the unique

stable outcome in a class of MPEs. This result shows that, in the long run, the right to veto

is extremely powerful, especially if coupled with proposal power. This is true even when

non-veto legislators are patient, and take into account the loss in future bargaining power

implied by making concessions to veto players in the current period. At the same time,

institutional measures can be effective in promoting more equitable outcomes, at least in

the short run: reducing the veto player’s ability to set the agenda decreases the speed of

convergence to the veto player’s ideal policy, and assigning monopolistic agenda setting power

to non-veto players prevents the veto player from expropriating other legislators. The main

predictions of the theory find support in the behavior of committees bargaining in controlled

laboratory experiments: outcomes evolve according to the predicted transition probabilities,

albeit with stronger persistence; the allocation to the veto player gradually increases over

time; and patient committees exhibit significantly different proposal and voting behavior

than impatient committees.
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While the results in this paper certainly add to our understanding of the incentives

present in real world legislatures, the setup is intentionally very simple and uses a number

of specific assumptions. There are many possible directions for next steps in this research.

First, while I have limited the analysis to committees with three legislators and one veto

player, it would certainly be interesting to extend the asymptotic result of full appropriation

by the veto player(s) to legislatures with an arbitrary number of veto and non-veto legis-

lators. The existence proofs for the equilibria proposed in this paper rely on constructing

the equilibrium strategies, and the associated continuation values, for any allocation of the

dollar, s ∈ ∆. It is a challenging task to extend this existence result and to characterize an

MPE with a higher number of legislators, as the dimensionality of the state space increases

and tractability is quickly lost. In the Appendix, I introduce two assumptions to preserve

the analytical tractability of the model: I assume that only veto players are able to make

proposals and I restrict the set of feasible allocations to those with, at most, two types of

non-veto players, a subset who receives zero and a subset who receives the same, non-negative

amount. This allows me to study the effect of competing veto powers, committee size and

majority requirements on veto players’ ability to appropriate resources in the short and in

the long run. I show that these institutional measures do not prevent complete expropria-

tion of non-veto players in the long run but can affect short run outcomes. Future research

could explore the dynamics of a larger legislature using numerical methods, a solution often

adopted in the literature on dynamic models with endogenous status quo (Baron and Her-

ron 2003, Penn 2009, Battaglini and Palfrey 2012, Duggan et al. 2008). Second, this study

analyzes a divide-the-dollar game where legislators’ preferences are purely conflicting. This

is a natural starting point to analyze the consequences of veto power in a dynamic setting

as it lays bare the incentives at work. However, legislative committees make decisions on

many policy domains where agents’ preferences are partially aligned. Extending the policy

space beyond the pure distributive setting—either considering a unidimensional policy space

or allowing resources to be allocated to a pubic good—is an important direction for future
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work. Finally, on the experimental side, one interesting possibility is to allow for unrestricted

communication among committee members. Recent experimental studies on dynamic bar-

gaining show that communication affects the prevailing norm of fairness (Baron et al. 2017)

and makes it easier to sustain non-stationary, history-dependent strategies (Agranov et al.

2020).
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A Proofs of Propositions from Section 4

Proof of Proposition 1
Before proceeding to the proof, I introduce two formal definitions:

Definition 5 (Markov Strategy) A Markov strategy is a pair of functions, σi(s) = (µi[·|s], Ai(s)),

where µi[z|s] represents the probability that legislator i makes the proposal z when recognized,

conditional on the state being s; and Ai(s) represents the allocations for which i votes yes

when the state is s.

Definition 6 (Legislators’ Demands) For an MPE, non-veto legislator j’s demand when

the state is s is the minimum amount dj(s) ∈ [0, 1] such that for a proposal x ∈ ∆ with

xj = dj(s), xv = 1 − dj(s), we have Uj(x) ≥ Uj(s). Similarly, veto legislator v’s demand

when the state is s is the minimum amount dv(s) ∈ [0, 1] such that for a proposal x ∈ ∆

with xv = dv(s), xj = 1− dv(s), for j = 1, 2, we have Uv(x) ≥ Uv(s).

The results of Proposition 1 follow from the existence of an MPE with the following

minimal winning coalition proposal strategies for all s ∈ ∆, where s1 ≥ s2:

• Case A
(
s1 ≤ 1− 3−δ

3−2δs2, s1 ≥ 3−δ
3−2δs2

)
:

xv = [1− d2, 0, d2],x1 = [dv, 1− dv, 0],x2 = [dv, 0, 1− dv]

dv = sv −
δs2

3− 2δ

d2 = δ

3− 2δ s1 + (3− δ)
(3− 2δ)s2
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• Case B
(
s1 > 1− 3−δ

3−2δs2, s1 ≥ 27−27δ+3δ2+δ3

(3−2δ)(3−δ)2 s2 + δ2

(3−δ)2

)
:

xv = [1− d2, 0, d2],x1 = [dv, 1− dv, 0],x2 = [dv, 0, 1− dv]

dv = 0

d2 = 9− 12δ + 3δ2

(3− 2δ)2 s2 + δ

(3− 2δ)

• Case C
(
s1 >

6−3δ
2(3−δ) − s2, s1 <

27−27δ+3δ2+δ3

(3−2δ)(3−δ)2 s2 + δ2

(3−δ)2

)
:

xv =


[1− d2, d2, 0]

[1− d2, 0, d2]

w/ Pr = 1− µCv

w/ Pr = µCv

,x1 = [dv, 1− dv, 0],x2 = [dv, 0, 1− dv]

dv = 0

d2 = (−3 + δ)(3δ2 − 12δ + 9)
(−3 + 2δ)(δ2 − 15δ + 18)

(s1 + s2) + (−3 + δ)(6δ − 4δ2)
(−3 + 2δ)(δ2 − 15δ + 18)

µCv = (δ3 + 3δ2 − 27δ + 27)s1 + (2δ3 − 15δ2 + 36δ − 27)s2 − 2δ3 + 3δ2

δ
[
(3δ2 − 12δ + 9)(s1 + s2) + 6δ − 4δ2

]

• Case D
(
s1 ≤ 6−3δ

2(3−δ) − s2, s1 <
3−δ
3−2δs2

)
:

xv =


[1− d2, d2, 0]

[1− d2, 0, d2]

w/ Pr = 1− µDv

w/ Pr = µDv

,x1 = [dv, 1− dv, 0],x2 = [dv, 0, 1− dv]

dv = sv −
δs2

3− 2δ

d2 = (3− δ)(9− 6δ − δ2)
(3− 2δ)(δ2 − 15δ + 18)

s1 + (3− δ)(9− 6δ + δ2)
(3− 2δ)(δ2 − 15δ + 18)

s2

µDv = (δ3 − 6δ2 + 27δ − 27)s1 + (−δ3 + 12δ2 − 36δ + 27)s2

δ
[
(δ2 + 6δ − 9)s1 + (−δ2 + 6δ − 9)s2

]

It is tedious but straightforward to check that, if players play the proposal strategies in

cases A-D and these proposals pass, their continuation values are as follows:
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• Case A

vv(s) = 1
1− δ −

2− δ
(3− δ)(1− δ)s1 −

1
(1− δ)s2 (3)

v1(s) = (3− 3δ + δ2)
(3− δ)2(1− δ)s1 + (3− δ)

(3− δ)2(1− δ)s2 (4)

v2(s) = (3− 2δ)
(3− δ)2(1− δ)s1 + (6− 5δ + δ2)

(3− δ)2(1− δ)s2 (5)

• Case B

vv(s) = 1
(1− δ)(3− δ) −

(3− 4δ + δ2)
(3− 2δ)(1− δ)(3− δ)s2

v1(s) = (3δ − 4δ2 + δ3)
(3− δ)2(1− δ)(3− 2δ)s2 + (9− 15δ + 9δ2 − 2δ3)

(3− δ)2(1− δ)(3− 2δ)

v2(s) = (3− 2δ)
(3− δ)2(1− δ) + (3− 4δ + δ2)

(3− δ)2(1− δ)s2

• Case C

vv(s) = −9− 7δ2 + 15δ + δ3

(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)
(s1 + s2) + 2δ2 + 18− δ3 − 15δ

(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)

v1(s) = − δ4 − 13δ3 + 48δ2 − 63δ + 27
(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)δ

s1 −
6δ3 − 33δ2 + 54δ − 27

(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)δ
s2 +

+ −8δ3 + 24δ2 − 18δ
(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)δ

v2(s) = − δ4 − 13δ3 + 48δ2 − 63δ + 27
(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)δ

s2 −
6δ3 − 33δ2 + 54δ − 27

(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)δ
s1 +

+ −8δ3 + 24δ2 − 18δ
(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)δ
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• Case D

vv(s) = δ3 − 23δ2 + 63δ − 45
(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)

s1 + δ3 − 15δ2 + 51δ − 45
(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)

s2 +

+ 18δ2 + 54− δ3 − 63δ
(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)

v1(s) = − δ4 − 21δ3 + 72δ2 − 81δ + 27
(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)δ

s1 −
2δ3 − 15δ2 + 36δ − 27

(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)δ
s2

v2(s) = − −2δ3 − 9δ2 + 36δ − 27
(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)δ

s1 −
δ4 − 17δ3 + 66δ2 − 81δ + 27

(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)δ
s2

On the basis of these continuation values, we obtain players’ expected utility functions,

Ui(x) = xi+δVi(x). The reported demands are in accordance with Definition 2. In particular,

di, i = 1, 2 and dv can be easily derived from the following equations:

si + δVi(s) = di + δVi([1− di, di, 0])

sv + δVv(s) = dv + δVv([dv, 1− dv, 0])

The demands for non-veto player 1 are never part of a proposed allocation and have

therefore been omitted in the statement of the equilibrium proposal strategies above but we

will use them in the remainder of the proof. In cases C and D, the mixing of the veto player

is such that d1 = d2. In the other two cases, d1 is as follows:

• Case A
(
s1 ≤ 1− 3−δ

3−2δs2, s1 ≥ 3−δ
3−2δs2

)
:

d1 = (4δ2 − 12δ + 9)
(3− 2δ)2 s1 + (3δ − δ2)

(3− 2δ)2 s2

• Case B
(
s1 > 1− 3−δ

3−2δs2, s1 ≥ 27−27δ+3δ2+δ3

(3−2δ)(3−δ)2 s2 + δ2

(3−δ)2

)
:

d1 = (27− 63δ + 51δ2 − 17δ3 + 2δ4)
(3− 2δ)3 s1 + (3δ2 − 4δ3 + δ4)

(3− 2δ)3 s2 + 9δ − 15δ2 + 9δ3 − 2δ4

(3− 2δ)3
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Furthermore, all reported non-degenerate mixing probabilities are well defined. On the

basis of the expected utility functions, Ui, we can then construct equilibrium voting strate-

gies, A∗i (s) = {x|Ui(x) ≥ Ui(s)}, i = {v, 1, 2}, for all s ∈ ∆. These voting strategies are

obviously stage-undominated. Then, to prove Proposition 1 it suffices to verify the optimal-

ity of proposal strategies. To do so, we make use of five lemmas. We seek to establish an

equilibrium with proposals that allocate a positive amount to at most one non-veto player.

Lemma 1 shows that the expected utility function for these proposals satisfies some continu-

ity and monotonicity properties. Lemma 2 proves that minimal winning coalition proposals

are optimal among the set of feasible proposals in ∆. Lemma 3 establishes that the equilib-

rium demands of the veto player and one non-veto player sum to less than unity and that

the demands of the two non-veto players are (weakly) ordered in accordance to the ordering

of allocations under the state s. Lemma 4 then establishes that the proposal strategies for

legislators i = {v, 1, 2} in Proposition 1 maximize Ui(x) over all x ∈ W (s)∩∆, where W (s)

is the set of all proposals that beat s in the voting stage. These proposals would then max-

imize Ui(x) over all x ∈ W (s) if there is no x ∈ W (s) ∩∆/∆ that accrues i higher utility.

We establish that this is indeed the case in Lemma 5.

Lemma 1 Consider a Markov Perfect strategy profile with expected utility Ui(s), s ∈ ∆,

determined by the continuation values in equations (3)-(5). Then, for all x = (x, 1−x, 0) ∈

∆ (a) Ui(x), i = {v, 1, 2} is continuous and differentiable with respect to x, (b) Uv(x) is

strictly increasing in x, while U1(s) and U2(s) is strictly decreasing in x.

Proof. An allocation x = (x, 1 − x, 0) ∈ ∆ belongs to case A in Proposition 2. Therefore

we can write Ui(x) = xi + δVi(x) as follows:

Uv(x) = x+ δ

1− δ −
δ(2− δ)

(3− δ)(1− δ)(1− x) (6)

U1(x) = 1− x+ δ
(3− 3d+ δ2)

(3− δ)2(1− δ)(1− x) (7)

U2(x) = δ
(3− 2δ)

(3− δ)2(1− δ)(1− x) (8)
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Ui(x) is linear and continuous in x for i = {v, 1}, establishing part (a) of the Lemma.

Regarding part (b):

∂Uv(x)
∂x

= 1 + δ(2− δ)
(3− δ)(1− δ) > 0

∂U1(x)
∂x

= −
(

1 + δ
(3− 3d+ δ2)

(3− δ)2(1− δ)

)
< 0

∂U2(x)
∂x

= −δ (3− 2δ)
(3− δ)2(1− δ) < 0

∂Uv(x)
∂x

> 0 for any δ ∈ [0, 1), since both the numerator and the denominator of δ(2−δ)
(3−δ)(1−δ) are

positive for any δ ∈ [0, 1); ∂U1(x)
∂x

< 0 for any δ ∈ [0, 1), since both the numerator and the

denominator of (3−3d+δ2)
(3−δ)2(1−δ) are positive for any δ ∈ [0, 1); and ∂U2(x)

∂x
< 0 for any δ ∈ [0, 1),

since both the numerator and the denominator of (3−2δ)
(3−δ)2(1−δ) are positive for any δ ∈ [0, 1).

By the definition of demands and the monotonicity established in part (b) of Lemma 1

we immediately deduce:

Lemma 2 Consider a Markov Perfect strategy profile with expected utility, Ui(x), for x ∈ ∆,

i = {v, 1, 2}, given by (6)-(8). Every minimal winning coalition proposal of the veto player

x(v, i, di(s)), i = {1, 2} is such that x(v, i, di(s)) ∈ arg max{Uv(x)|x ∈ ∆, Ui(x) ≥ Ui(s)};

similarly, every minimal winning coalition proposal of a non-veto player x(i, v, dv(s)), i =

{1, 2} is such that x(i, v, di(s)) ∈ arg max{Ui(x)|x ∈ ∆, Uv(x) ≥ Uv(s)}.

Lemma 3 For all s ∈ ∆, the demands reported in Proposition 1 are such that (a) si ≥ sj ⇒

di ≥ dj, i, j = {1, 2}, and (b) di + dv ≤ 1, i = {1, 2}.

Proof. Part (a). Since we focus on the half of ∆ in which s1 ≥ s2, we want to prove that

d1 ≥ d2. In cases C and D the mixed strategy of the veto player is such that d1 = d2, so we

focus on cases A and B.
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• Case A:

(4δ2 − 12δ + 9)
(3− 2δ)2 s1 + (3δ − δ2)

(3− 2δ)2 s2 ≥
δ

3− 2δ s1 + (3− δ)
(3− 2δ)s2

s1 ≥
3− δ
3− 2δ s2

• Case B:

(27− 63δ + 51δ2 − 17δ3 + 2δ4)
(3− 2δ)3 s1 + (3δ2 − 4δ3 + δ4)

(3− 2δ)3 s2 + 9δ − 15δ2 + 9δ3 − 2δ4

(3− 2δ)3

≥ 9− 12δ + 3δ2

(3− 2δ)2 s2 + δ

(3− 2δ)

s1 ≥
27− 27δ + 3δ2 + δ3

(3− 2δ)(3− δ)2 s2 + δ2

(3− δ)2

Part (b). Since we focus on the half of the ∆ in which s1 ≥ s2, by part (a) of the same

Lemma, it is enough to prove that d1 + dv ≤ 1.

• Case A:

sv −
δs2

(3− 2δ) + (4δ2 − 12δ + 9)
(3− 2δ)2 s1 + (3δ − δ2)

(3− 2δ)2 s2 ≤ 1

sv + s1 + δ2

(3− 2δ)2 s2 ≤ 1

which holds for any δ ∈ [0, 1), because sv + s1 + s2 = 1 and δ2

(3−2δ)2 ∈ [0, 1). To see this

notice that δ2

(3−2δ)2 is monotonically increasing in δ and is equal to 1 when δ = 1.

• Case B:

(27− 63δ + 51δ2 − 17δ3 + 2δ4)s1

(3− 2δ)3 + (3δ2 − 4δ3 + δ4)s2

(3− 2δ)3 + 9δ − 15δ2 + 9δ3 − 2δ4

(3− 2δ)3 ≤ 1

Notice that (27−63δ+51δ2−17δ3+2δ4)
(3−2δ)3 ≥ (3δ2−4δ3+δ4)

(3−2δ)3 for any δ ∈ [0, 1), so the LHS has an upper
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bound when s1 = 1 and s2 = 0. Therefore, we can prove the following inequality:

(27− 63δ + 51δ2 − 17δ3 + 2δ4)
(3− 2δ)3 + 9δ − 15δ2 + 9δ3 − 2δ4

(3− 2δ)3 ≤ 1

(3− 2δ)3

(3− 2δ)3 ≤ 1

• Case C:

(−3 + δ)(3δ2 − 12δ + 9)
(−3 + 2δ)(δ2 − 15δ + 18)

(s1 + s2) + (−3 + δ)(6δ − 4δ2)
(−3 + 2δ)(δ2 − 15δ + 18)

≤ 1

(s1 + s2) ≤ (δ − 6)(−3 + 2δ)
(−3 + δ)2

which holds for any δ ∈ [0, 1), since sv+s1 +s2 = 1 and (δ−6)(−3+2δ)
(−3+δ)2 ≥ 1 for any δ ∈ [0, 1).

To see this notice that (δ−6)(−3+2δ)
(−3+δ)2 is monotonically decreasing in δ and it is equal to 5/4

when δ = 1.

• Case D:

(1− s1 − s2)− δs2

3− 2δ −
(3− δ)(9− 6δ − δ2)

(3− 2δ)(δ2 − 15δ + 18)
s1 −

(3− δ)(9− 6δ + δ2)
(3− 2δ)(δ2 − 15δ + 18)

s2 ≤ 1

− −30δ2 + 54δ − 27 + 3δ3

(−3 + 2δ)(δ2 − 15δ + 18)
s1 −

−9δ2 + 36δ − 27
(−3 + 2δ)(δ2 − 15δ + 18)

s2 ≤ 0

which holds for any δ ∈ [0, 1] because the coefficients of s1 and s2 in the right hand side

are always non-positive: they are strictly increasing in δ and are equal to 0 for δ = 1.

We now show that equilibrium proposals are optimal over feasible alternatives in ∆.

Lemma 4 µi[z|s] > 0⇒ z ∈ arg max{Ui(x)|x ∈ W (s) ∩∆}, for all z, s ∈ ∆.

Proof. All equilibrium proposals take the form of minimal winning coalition proposals:

x(v, j, dj(x)) when the veto player is proposing and x(j, v, dv(x)) when a non-veto player is

proposing. Also, whenever µv[x(v, 1, d1)|s] > 0 and µv[x(v, 2, d2)|s] > 0, we have d1 = d2
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so that Uv(x(v, 1, d1)) = Uv(x(v, 2, d2)). Thus, in view of Lemma 2 it suffices to show that

if µi[x(i, j, dj)|s] = 1, then Ui(x(i, j, dj)) = Ui(x(i, h, dh)), h 6= i, j, i.e. proposer i has no

incentive to coalesce with player h instead of j. This is immediate for a non-veto player,

since only coalescing with the veto player guarantees the possibility to change the state. To

show that - for the veto player - if µv[x(v, j, dj)|s] = 1, then Uv(x(v, j, dj)) = Uv(x(v, h, dh)),

j 6= h, it suffices to show dh ≥ dj by part (b) of Lemma 1. In Proposition 1 we have s1 ≥ s2,

(by part (a) of Lemma 3) d1 ≥ d2, and when d1 6= d2, we have µv[x(v, 1, d1)|s] = 0 which

gives the desired result.

We conclude the proof by showing that optimum proposal strategies cannot belong in

∆/∆. In particular, we show that if an alternative in ∆/∆ beats the status quo by majority

rule, then for any player i we can find another alternative in ∆ that is also majority preferred

to the status quo and improves i’s utility.

Lemma 5 Assume x ∈ W (s) ∩ ∆/∆; then for any i = v, 1, 2 there exists y ∈ W (s) ∩ ∆

such that Ui(y) ≥ Ui(s).

Proof. Consider first the veto player, i = v. Let x ∈ W (s) ∩ ∆/∆. Consider first

the case x ∈ A∗v(s). Then, x is weakly preferred to s by v and at least one i, i = 1, 2.

Now set y = x(v, j, dj(x)), where dj(x) is the applicable demand from Proposition 1. We

have Uj(x(v, j, dj(x))) ≥ Uj(x), by the definition of demand. From part (b) of Lemma

3 have dv(x) + dj(x) ≤ 1 and as a result xv(v, j, dj(x)) = 1 − dj(x) ≥ dv(x); hence,

Uv(x(v, j, dj(x))) ≥ Uv(x), which follows from the weak monotonicity in part (b) of Lemma

1. Thus, y = x(v, j, dj(x)) ∈ W (s) (because is supported by v and j), and we have com-

pleted the proof for this case. Now consider the case x 6∈ A∗v(s), i.e. Uv(s) > Uv(x).

Part (a) of Lemma 3 ensures that dv(s) + dj(s) ≤ 1, hence proposal y = x(v, j, dj(s)) has

xv(v, j, dj(s)) = 1− dj(s) ≥ dv(s). Then Uv(y) ≥ Uv(s) > Uv(x), and y ∈ W (s) ∩∆.

Now consider a non veto player, i = 1, 2. Let x ∈ W (s)∩∆/∆. Consider first the case x ∈

A∗i (s). Then, x is weakly preferred to s by v and (at least) i. Now set y = x(i, v, dv(x)), where

dv(x) is the applicable demand from Proposition 1. We have Uv(x(i, v, dv(x))) ≥ Uv(x), by
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the definition of demand. From part (b) of Lemma 3 have dv(x) + di(x) ≤ 1 and as a result

xi(i, v, dv(x)) = 1− dv(x) ≥ di(x); hence, Ui(x(i, v, dv(x))) ≥ Ui(x), which follows from the

weak monotonicity in part (b) of Lemma 1. Thus, y = x(i, v, dv(x)) ∈ W (s)∩∆ (because is

supported by v and i), and we have completed the proof for this case. Finally, consider the

case x 6∈ A∗i (s), i.e. Ui(s) > Ui(x). Part (a) of Lemma 3 ensures that dv(s)+di(s) ≤ 1, hence

proposal y = x(i, v, dv(s)) has xi(i, v, dv(s)) = 1−dv(s) ≥ di(s). Then Ui(y) ≥ Ui(s) > Ui(x),

and y ∈ W (s) ∩∆, which completes the proof.

As a result of Lemmas 4 and 5, equilibrium proposals are optimal over the entire range

of feasible alternatives which completes the proof.

Proof of Proposition 2
The result of Proposition 2 follows once we establish that the proposal strategies in

the equilibrium from Proposition 1 are weakly continuous in the status quo s, i.e., that in

equilibrium a small change in the status quo implies a small change in proposal strategies

and, by extension, to the equilibrium transition probabilities. Formally, we want to show

that the equilibrium proposal strategies µ∗i in the proof of Proposition 1 are such that for

every s ∈ ∆ and every sequence sn ∈ ∆ with sn → s, µ∗i [·|sn] converges weakly to µ∗i [·|s].

The equilibrium is such that µ∗i [·|s] i = {1, 2} has mass on only one point x(i, v, dv(s))

and that µ∗v[·|s] has mass on at most two points x(v, 1, d1(s)), and x(v, 2, d2(s)). It suffices

to show that these proposals (when played with positive probability) and associated mixing

probabilities are continuous in s. Continuity holds in the interior of Cases A-D in Proposition

1, so it remains to check the boundaries of these cases. In order to distinguish the various

applicable functional forms we shall write dwi and µwv [·|s] where w = {A,B,C,D} identifies

the case for which the respective functional form applies.

• Boundary of Cases A and B: at the boundary (as in the interior of the two cases) we

have µAv [x(v, 1, d2)|s] = µBv [x(v, 1, d2)|s] = 0; at the boundary we have s1 = 1− 3−δ
3−2δs2,
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then:

dAv = dBv = 0

dA1 = dB1 = 1− 9− 12δ − 3δ2

(3− 2δ)2 s2

dA2 = dB2 = 9− 12δ − 3δ2

(3− 2δ)2 s2 + δ

(3− 2δ)

• Boundary of Cases B and C: at the boundary we have s1 = 27−27δ+3δ2+δ3

(3−2δ)(3−δ)2 s2 + δ2

(3−δ)2 ;

then:

µBv [x(v, 1, d2)|s] = µCv [x(v, 1, d2)|s] = 1

dBv = dCv = 0

dB1 = dC1 = 9− 12δ + 3δ2

(3− 2δ)2 s2 + δ

(3− 2δ)

dB2 = dC2 = 9− 12δ − 3δ2

(3− 2δ)2 s2 + δ

(3− 2δ)

• Boundary of Cases C and D: at the boundary we have s1 = 1− 3−δ
3−2δs2; then:

µCv [x(v, 1, d2)|s] = µDv [x(v, 1, d2)|s] =

= (−36δ3 + 3δ4 + 153δ2 − 270δ + 162)s2 + 15δ3 − 2δ4 − 72δ2 + 135δ − 81[
(−12δ2 + 3δ3 + 9δ)s2 − 9δ2 − 2δ3 + 36δ − 27

]
δ

dCv = dDv = 0

dC1 = dD1 = dC2 = dD2 =

= (−3 + δ)(−12δ2 + 3δ3 + 9δ)
(2δ − 3)2(δ2 − 15δ + 18)

s2 + (−3 + δ)(−2δ3 − 9δ2 + 36δ − 27)
(2δ − 3)2(δ2 − 15δ + 18)
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• Boundary of Cases D and A: at the boundary we have s1 = 3−δ
3−2δs2; then:

µDv [x(v, 1, d2)|s] = µAv [x(v, 1, d2)|s] = 1

dDv = dAv = sv −
δs2

3− 2δ

dD1 = dA1 = dD2 = dA2 = (3− δ)2

(3− 2δ)2 s2

Proof of Proposition 3
The result derives from the features of the MPE characterized in the proof of Proposition

1. In this MPE, once we reach allocations in the absorbing set ∆, which happens after at most

one period, the veto player is able to increase his share whenever he has the power to propose,

and keeps a constant share when not proposing. For any ε and any starting allocation s0,

there exists a number of proposals by the veto player—which depends on δ—such that the

veto player’s allocation in the status quo will be at least 1 − ε for all subsequent periods.

Let this number of proposals be n∗(ε, δ, s0). Since each player has a positive probability

of proposing in each period, the probability that in infinitely many periods the veto player

proposes less than n∗(ε, δ, s0) is zero.
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B Proofs of Propositions from Section 5

Proof of Proposition 4
This result follows directly from the equilibrium demand of the poorer non-veto player

in the absorbing set ∆, dnv(s, δ) = δ
3−2δsnv. When δ = 0, this demand is zero. This means

that, when the status quo is in ∆—a set that is reached in at most one period—the poorer

non-veto supports any proposal by the veto player. The veto player can thus pass his ideal

outcome as soon s ∈ ∆ and he proposes. On the other hand, when δ ∈ (0, 1), this is not

possible, and the poorer non-veto player always demands a positive share of the dollar to

support any allocation that makes the veto player richer. The convergence in this case is

only asymptotic as the non-veto player’s demand is always positive as long as the allocation

to the richer non-veto is positive, that is as long as the poorer veto player does not have the

whole dollar in the status quo.26

Proof of Proposition 5
As for Proposition 1, we focus on the allocations in which s1 ≥ s2. The other cases

are symmetric. Consider the following equilibrium proposal strategies (all supported by a

minimal winning coalition) and demands (as defined in the proof of Proposition 1):

• CASE A: s1 ≤ 1− 2−δ(1−pv)
2−δ(1+pv)s2; s1 ≥ 2−δ(1−pv)

2−δ(1+pv)s2

xv = [1− dA2 , 0, dA2 ],x1 = [dAv , 1− dAv , 0],x2 = [dAv , 0, 1− dAv ]

dAv = sv −
2pvδ

2− (1 + pv)δ
s2

dA2 = δ(1− pv)
2− δ(1 + pv)

s1 + 2− δ(1− pv)
2− δ(1 + pv)

s2

dA1 = −4pvδ + 4 + 2pvδ2 − 4δ + p2
vδ

2 + δ2

(2− δ(1 + pv))2 s1 + −p
2
vδ

2 − δ2 − 2pvδ + 2δ + 2pvδ2

(2− δ(1 + pv))2 s2

26Notice that when the initial division of the dollar—which is assumed to be exogenous—assigns the
whole dollar to the veto player, then the status quo will never be changed and the veto player gets the whole
dollar in every period.
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• CASE B: s1 > 1−2−δ(1−pv)
2−δ(1+pv)s2; s1 ≥ p3

vδ
3−2p2

vδ
3+pvδ

3+p2
vδ

2−2pvδ
2+δ2−4δ+4

(2−(1+pv)δ)(2−(1−pv)δ)(1−pvδ) s2+ p3
vδ

3−pvδ
3−2p2

vδ
2+2pvδ

2

(2−(1+pv)δ)(2−(1−pv)δ)(1−pvδ)

xv = [1− dB2 , 0, dB2 ],x1 = [dBv , 1− dBv , 0],x2 = [dBv , 0, 1− dBv ]

dBv = 0

dB2 = −2pvδ2 + 2δ2 + 2pvδ − 6δ + 4
(2− δ(1 + pv))2 s2 + p2

vδ
2 − δ2 − 2pvδ + 2δ
(2− δ(1 + pv))2

dB1 = 16δ − 8 + 2p2
vδ

2 + 8pvδ − 16pvδ2 − 10δ2 − 2p3
vδ

3 + 2δ3 − 2p2
vδ

3 + 10pvδ3 − 2pvδ4 + 2p3
vδ

4

(−2 + pvδ + δ)3 s1 + ...

+6pvδ3 + 2p3
vδ

3 − 8p2
vδ

3 + 4p2
vδ

2 − 4pvδ2 + 4p2
vδ

4 − 2pvδ4 − 2p3
vδ

4

(−2 + pδ + δ)3 s2 + ...

+−δ
3 − 7pvδ3 + 5p2

vδ
3 + 4pvδ2 + 4pvδ − 8p2

vδ
2 + 4δ2 + 2pvδ4 − 4δ + 3p3

vδ
3 − 2p3

vδ
4

(−2 + pδ + δ)3

• CASE C: s1 >
2−δ

2−δ(1−pv)−s2; s1 <
p3

vδ
3−2p2

vδ
3+pvδ

3+p2
vδ

2−2pvδ
2+δ2−4δ+4

(2−(1+pv)δ)(2−(1−pv)δ)(1−pvδ) s2+ p3
vδ

3−pvδ
3−2p2

vδ
2+2pvδ

2

(2−(1+pv)δ)(2−(1−pv)δ)(1−pvδ)

xv =


[1− dC2 , dC2 , 0]

[1− dC2 , 0, dC2 ]

w/ Pr = 1− µCv

w/ Pr = µCv

,x1 = [dCv , 1− dCv , 0],x2 = [dCv , 0, 1− dCv ]

dCv = 0

dC1 = dC2 = (pvδ − 1)(−pvδ2 + δ2 + pvδ − 3δ + 2)
(pvδ + δ − 2)(p2

vδ
2 − 2pvδ − δ + 2)

(s1 + s2) + (pvδ − 1)(p2
vδ

2 + 2δ − δ2 − 2pvδ)
(pvδ + δ − 2)(p2

vδ
2 − 2pvδ − δ + 2)

µCv = (p3
vδ

3 − 2p2
vδ

3 + pvδ
3 + p2

vδ
2 − 2pvδ2 + δ2 − 4δ + 4)s1

2pvδ((−pvδ2 + δ2 + pvδ − 3δ + 2)s1 + (−pvδ2 + δ2 + pvδ − 3δ + 2)s2 + p2
vδ

2 + 2δ − δ2 − 2pvδ)
+

+ (−p3
vδ

3 + pvδ
3 + p2

vδ
2 − 4pvδ2 − δ2 + 4pvδ + 4δ − 4)s2

2pvδ((−pvδ2 + δ2 + pvδ − 3δ + 2)s1 + (−pvδ2 + δ2 + pvδ − 3δ + 2)s2 + p2
vδ

2 + 2δ − δ2 − 2pvδ)
+

+ p3
vδ

3 − pvδ3 − 2p2
vδ

2 + 2pvδ2

2pvδ((−pvδ2 + δ2 + pvδ − 3δ + 2)s1 + (−pvδ2 + δ2 + pvδ − 3δ + 2)s2 + p2
vδ

2 + 2δ − δ2 − 2pvδ)
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• CASE D: s1 ≤ 2−δ
2−δ(1−pv) − s2; s1 <

2−δ(1−pv)
2−δ(1+pv)s2

xv =


[1− dD2 , dD2 , 0]

[1− dD2 , 0, dD2 ]

w/ Pr = 1− µDv

w/ Pr = µDv

,x1 = [dDv , 1− dDv , 0],x2 = [dDv , 0, 1− dDv ]

dDv = sv −
2pvδ

2− (1 + pv)δ
s2

dD1 = dD2 = (pvδ − 1)(2p2
vδ

3 − 2pvδ3 − 3p2
vδ

2 + pvδ
2 − 2δ2 + 3pvδ + 7δ − 6)

(−3 + 2δ)(pvδ + δ − 2)(p2
vδ

2 − 2pvδ − δ + 2)
s1 +

+(pvδ − 1)(p2
vδ

3 − 2pvδ3 + δ3 − 3p2
vδ

2 + 3pvδ2 − 4δ2 + 3pvδ + 7δ − 6)
(−3 + 2δ)(pvδ + δ − 2)(p2

vδ
2 − 2pvδ − δ + 2)

s2

µDv = (4p3
vδ

4 − 4p2
vδ

4 − 6p3
vδ

3 + 4p2
vδ

3 + 2δ3 + 3p2
vδ

2 − 11δ2 + 20δ − 12)s1
T

+

+(−p3
vδ

4 + pvδ
4 − 6pvδ3 − 2δ3 + 3p2

vδ
2 + 14pvδ2 + 11δ2 − 12pvδ − 20δ + 12)s2
T

where T = 2pvδ[(2p2
vδ

3 − 2pvδ3 − 3p2
vδ

2 + pvδ
2 − 2δ2 + 3pvδ + 7δ − 6)s1 +

+ (p2
vδ

3 − 2pvδ3 + δ3 − 3p2
vδ

2 + 3pvδ2 − 4δ2 + 3pvδ + 7δ − 6)s2], and µCv , µDv are the probabilities

that the veto player coalesces with non-veto player 2 in cases C, and D respectively. These are

well defined probability in [0,1] such that dC1 = dC2 and dD1 = dD2 , or such that s1 + δv1(s, µv, d2) =

s2 + δv2(s, µv, d2).

Remember that the veto player proposes with probability pv and each non-veto player with

probability (1 − pv)/2. If proposers use the proposal strategies above and these proposals pass,

players’ continuation values in cases A-D are as follows:

• Case A

vv(s) = 1
(1− δ) −

(1− pv)(2− δ)
(1− δ)[2− δ(1− pv)]

s1 −
1

(1− δ)s2

v1(s) = (1− pv)[2− δ − δpv(3− 2δ)]
2(1− δ)(1− pvδ)[2− (1− pv)δ]

s1 + (1− pv)
2(1− δ)(1− pvδ)

s2

v2(s) = p2
vδ − δ − 2pv + 2

2(1− δ)(1− pvδ)[2− (1− pv)δ]
s1 + −2p2

vδ
2 + 2pvδ2 + p2

vδ − 4pvδ − δ + 2pv + 2
2(1− δ)(1− pvδ)[2− (1− pv)δ]

s2
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• Case B

vv(s) = 2pv(pvδ2 + 3δ − δ2 − pvδ − 2)
(pvδ + 2− δ)(−1 + δ)(−2 + pvδ + δ)s2 + 2pv(−pvδ + 2− δ)

(pvδ + 2− δ)(−1 + δ)(−2 + pvδ + δ)

v1(s) = −(−2pvδ3 + 2p2
vδ

3 − 2p2
vδ

2 + 6pvδ2 − 4pvδ)(−1 + pv)
2(−2 + pvδ + δ)(−1 + δ)(pvδ + 2− δ)(pvδ − 1) s2 +

−(−4 + 2pvδ3 + 2p2
vδ

3 − 8pvδ2 + 8pvδ − 3p2
vδ

2 − δ2 + 4δ)(−1 + pv)
2(−2 + pvδ + δ)(−1 + δ)(pvδ + 2− δ)(pvδ − 1)

v2(s) = −2p2
vδ

2 − 2pvδ2 − 2p2
vδ + 6pvδ − 4pv

2(−1 + δ)(pvδ + 2− δ)(pvδ − 1) s2 −
−p2

vδ + δ + 2pv − 2
2(pvδ + 2− δ)(−1 + δ)(pvδ − 1)

• Case C

vv(s) = (p2
vδ

3 + 2pvδ2 − pvδ3 − p2
vδ

2 − pvδ − 3δ + δ2 + 2)pv
(−1 + δ)(pvδ + 2− δ)(p2

vδ
2 − 2pvδ − δ + 2)

(s1 + s2) +

(2δ − p2
vδ

3 + pvδ
3 − p2

vδ
2 − pvδ2 + 4pvδ − 4)pv

(−1 + δ)(pvδ + 2− δ)(p2
vδ

2 − 2pvδ − δ + 2)

v1(s) = −−4 + δ3 − 5δ2 + 8δ − 2p2
vδ

4 + 2p3
vδ

4 − 2p3
vδ

3 + 3p2
vδ

3 + 2pvδ3 − p2
vδ

2 − 6pvδ2 + 4pvδ
2δ(p2

vδ
2 − 2pvδ − δ + 2)(pvδ + 2− δ)(−1 + δ)

s1 +

− 4− δ3 + 5δ2 − 8δ − p2
vδ

2 + p2
vδ

3

2δ(p2
vδ

2 − 2pvδ − δ + 2)(pvδ + 2− δ)(−1 + δ)
s2 +

−−4pvδ + 4δ + 4p2
vδ

2 − 4δ2 + δ3 + pvδ
3 − p2

vδ
3 − p3

vδ
3

2δ(p2
vδ

2 − 2pvδ − δ + 2)(pvδ + 2− δ)(−1 + δ)

v2(s) = − 4− δ3 + 5δ2 − 8δ − p2
vδ

2 + p2
vδ

3

2δ(p2
vδ

2 − 2pvδ − δ + 2)(pvδ + 2− δ)(−1 + δ)
s1

−−4 + δ3 − 5δ2 + 8δ − 2p2
vδ

4 + 2p3
vδ

4 − 2p3
vδ

3 + 3p2
vδ

3 + 2pvδ3 − p2
vδ

2 − 6pvδ2 + 4pvδ
2δ(p2

vδ
2 − 2pvδ − δ + 2)(pvδ + 2− δ)(−1 + δ)

s2

−−4pvδ + 4δ + 4p2
vδ

2 − 4δ2 + δ3 + pvδ
3 − p2

vδ
3 − p3

vδ
3

2δ(p2
vδ

2 − 2pvδ − δ + 2)(pvδ + 2− δ)(−1 + δ)
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• Case D

vv(s) = H

(−1 + δ)(pvδ + 2− δ)(p2
vδ

2 − 2pvδ − δ + 2)(−3 + 2δ)
s1 +

+ I

(−1 + δ)(pvδ + 2− δ)(p2
vδ

2 − 2pvδ − δ + 2)(−3 + 2δ)
s2 +

+12− 6pvδ − 20δ + 11δ2 + 7pvδ2 + 3p3
vδ

3 − 2δ3 − 2pvδ3 − 3p2
vδ

3 + 2p2
vδ

4 − 2p3
vδ

4

(−1 + δ)(pvδ + 2− δ)(p2
vδ

2 − 2pvδ − δ + 2)(−3 + 2δ)

v1(s) = − J

2δ(p2
vδ

2 − 2pvδ − δ + 2)(−3 + 2δ)(pvδ + 2− δ)(−1 + δ)
s1

− K

2δ(p2
vδ

2 − 2pvδ − δ + 2)(−3 + 2δ)(pvδ + 2− δ)(−1 + δ)
s2

v2(s) = − L

2δ(p2
vδ

2 − 2pvδ − δ + 2)(−3 + 2δ)(pvδ + 2− δ)(−1 + δ)
s1

− M

2δ(p2
vδ

2 − 2pvδ − δ + 2)(−3 + 2δ)(pvδ + 2− δ)(−1 + δ)
s2

where H = −11δ2 + 20δ + 2δ3 + 6pv − 12 + 6p3
vδ

2 − 9p2
vδ + 5p2

vδ
3 + 4pvδ3 + 3p2

vδ
2 − 12pvδ2 +

5pvδ+ 2p3
vδ

4−2p2
vδ

4−7p3
vδ

3, I = 6pv + 16δ+ 6p3
vδ

2−9p2
vδ+ 6p2

vδ
3 + 3pvδ3−p2

vδ
2−12pvδ2 + 9pvδ+

2p3
vδ

4 − 2p2
vδ

4 − 6p3
vδ

3 − 12 + δ3 − 7δ2, J = −12p3
vδ

4 + 10p2
vδ

4 + 9p3
vδ

3 − 9p2
vδ

2 − 21pvδ3 + 18pvδ2 +

12 + 6δ4pv + 4p3
vδ

5− 4p2
vδ

5− 24δ3 + 51δ2− 44δ+ 4δ4, K = −p3
vδ

4 + δ4pv − 3pvδ3− 9p2
vδ

2− 4pvδ2 +

12pvδ + 2p2
vδ

3 + p2
vδ

4 + 3p3
vδ

3 + 6δ3 − 15δ2 − δ4 − 12 + 20δ, L = −2p3
vδ

4 + 3p3
vδ

3 + 6p2
vδ

3 − 9p2
vδ

2 −

3pvδ3−8pvδ2 +12pvδ−12+2δ4pv +2δ3−11δ2 +20δ, and M = −11p3
vδ

4 +5δ4pv−21pvδ3−9p2
vδ

2 +

22pvδ2 − 4p2
vδ

3 + 11p2
vδ

4 + 9p3
vδ

3 + 4p3
vδ

5 − 4p2
vδ

5 − 20δ3 + 47δ2 + 3δ4 + 12− 44δ.

One can show that these equilibrium strategies and the associated value functions are part of

an MPE, using the same strategy employed in the proof of Proposition 1. The only difference

with the proof of Proposition 1 is in the proof of Lemma 3 (b). With heterogenous recognition

probabilities, dv+d2 is not always less than or equal to 1 when pv ∈ (0.5, 1). This condition is what

determines the bound on δ in the statement of Proposition 5. In particular, the binding case is the

allocation where s1 = s2 = 0.5. This is the case in which non-veto players are most demanding, as

it can be proven by inspection of d2 in the four cases above. Setting s1 = s2 = 0.5 and solving for

dCv + dC2 ≤ 1, we obtain the bound δ < δ = 1+3pv−
√

1+6pv−7p2
v

4p2
v

. Figure 6 shows the space of (pv, δ)

for which the MPE in Proposition 5 exists.

The irregular shape of the set of parameters for which the MPE from Proposition 5 exists
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merits discussion. The condition for existence of the MPE from Proposition 5 is determined by

the ability of the veto player to convince a non-veto player to completely expropriate the other

non-veto player. The allocation demanded by a non-veto player to accept such a proposal changes

with δ, pv and s and the available resources are not always sufficient to meet this demand. To

understand the intuition behind the irregular shape of the existence set, consider the status quo

allocation where the dollar is split evenly between the two non-veto players, s = (0, 1/2, 1/2). This

is the status quo allocation where the veto player’s bargaining power is the lowest and it is toughest

to trigger convergence to full appropriation by the veto player. In the MPE from Proposition 4,

a non-veto player proposes to appropriate the whole dollar; and the veto player offers a randomly

chosen non-veto player the minimum amount he is willing to accept to completely expropriate the

other non-veto player. The most tempting offer of this kind is the whole dollar. Non-veto player 1

prefers x = (0, 1, 0) to s = (0, 1/2, 1/2) if and only if

1 + δV1((0, 1, 0)) ≥ 1
2 + δV1((0, 1/2, 1/2))

1 + δV1((0, 1, 0)) ≥ 1
2 + δ

[1 + δV1((0, 1, 0))
2 + δV1((0, 0, 1))

2

]
(1− δ) (1 + δV1((0, 1, 0))) ≥ δ2V1((0, 0, 1))

where V1((0, 1, 0)) is the continuation value of non-veto player 1 from the allocation which gives him

the whole dollar; and V1((0, 0, 1)) is the continuation value of non-veto player 1 from the allocation

which gives the whole dollar to the other non-veto player. The temptation to accept is increasing

in V1((0, 1, 0)) and decreasing in V1((0, 0, 1)). First, note that V1((0, 0, 1)) > V1((0, 1, 0)), that is,

the continuation value of being the poorer non-veto player is larger than the continuation value of

being the richer non-veto player. This is because, when the status quo lies in ∆, the poor non-veto

player can pass a proposal swapping the non-veto players’ allocations and the veto player proposes

a positive amount only to the poorer non-veto player. Second, both V1((0, 0, 1)) and V1((0, 1, 0))

are strictly increasing in δ. This is because, as δ grows, the amount the veto player offers to his

coalition partner increases. Moreover, V1((0, 0, 1)) grows faster in δ than V1((0, 1, 0)), because the

poorer non-veto player benefits sooner of the veto player’s increased generosity. This means that

the condition in equation (9) becomes more difficult to satisfy — that is, the best feasible offer the
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veto player can make to a non-veto player in state (0,1/2,1/2) becomes less tempting — as δ grows.

Third, both V1((0, 0, 1)) and V1((0, 1, 0)) are strictly decreasing in pv. This is because, as pv grows,

both the probability that a non-veto player proposes and the amount the veto player offers to his

coalition partner decrease. Moreover, the speed at which V1((0, 0, 1)) and V1((0, 1, 0)) decrease in

pv is different and it changes with pv. This is because the probability that the poorer non-veto

player receives a positive amount at the end of the period while the richer non-veto player gets

0 is increasing in pv (as this happens exactly when the veto player proposes). At the same time,

what the poorer non-veto player gains in this case, that is, the amount the veto player offers to the

coalition partner, decreases with pv. As a consequence, V1((0, 0, 1))−V1((0, 1, 0)) is non-monotonic

in pv. For low values of pv, the first effect dominates and V1((0, 0, 1)) − V1((0, 1, 0)) grows in pv,

reducing the ability of the veto player to convince a non-veto player to expropriate the other. For

large values of pv, the second effect dominates and V1((0, 0, 1))−V1((0, 1, 0)) decreases in pv, making

it easier for the veto player to bribe a non-veto player. This effect of pv on the veto player’s ability

to convince a non-veto player to completely expropriate the other complements the effect of δ for

low values of pv but it counteracts it (and eventually dominates it) for high values of pv. Finally, as

pv goes to 1, both V1((0, 0, 1)) and V1((0, 1, 0)) go to 0. This is because, when non-veto players have

no chance to set the agenda, non-veto players cannot improve on their current allocation and, thus,

the non-veto player who is completely expropriated is willing to accept any allocation proposed by

the veto player. This means that, in the limit, the veto player is able to convince a non-veto player

to completely expropriate the other regardless of δ and s.

Proof of Proposition 6
The results in part (a) and (b) follow directly from the equilibrium demand of the poorer non-

veto player in the absorbing set ∆, that is, dnv(s, δ) = δ(1−pv)
2−δ(1+pv)snv. When δ = 0, this demand is

zero. This means that, when the status quo is in ∆—a set that is reached in at most one period—

the poorer non-veto player supports any proposal by the veto player. The veto player can thus pass

his ideal outcome as soon s ∈ ∆ and he proposes. On the other hand, when δ ∈ (0, 1), this is not

possible, and the poorer non-veto player always demands a positive share of the dollar to support

any allocation that makes the veto player richer. The convergence in this case is only asymptotic

and the speed of the convergence is inversely related to dnv(s, δ), which is strictly increasing in δ for
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pv 

δ 

Figure 6: Existence of MPE from Proposition 5. The shaded area represents the pairs of δ and pv
for which the MPE does not exist.

any pv ∈ (0, 1), strictly increasing in snv for any pv ∈ (0, 1) and any δ ∈ (0, 1], strictly decreasing

in pv for any δ ∈ (0, 1). The result in part (c) follows directly from the equilibrium demand of the

veto player. When pv = 0, all s ∈ ∆ belong to Case A. In this case, we have, dAv = sv − 2pvδ
2−(1+pv)δs2

which equals dAv = sv if pv = 0. This means that, for any s ∈ ∆, either non-veto proposer offers sv

to the veto player. Since the veto player has never a chance to propose he gets s0
v in all periods.

Proof of Proposition 7
Continuity of the expected utility functions hold once we establish continuity of the continuation

value functions. Continuity of the continuation value functions holds in the interior of Cases A–

D in the proof of Proposition 5, so it remains to check the boundaries of these cases. In order

to distinguish the various applicable functional forms we shall write V w
i where w = {A,B,C,D}

identifies the case for which the respective functional form applies.
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• Boundary of Cases A and B: at the boundary we have s1 = 1− 2−δ(1−pv)
2−δ(1+pv)s2, then:

V A
v = V B

v = 2pv
(1− δ)(2− δ(1− pv))

− 2pvs2
2− δ(1 + pv)

V A
1 = V B

1 = 1
1− δ − V

A
v − V A

2

V A
2 = V B

2 = pvs2
1− δpv

+ (1− pv)(2− δ(1 + pv))
2(1− δ)(2− δ(1− pv))(1− δpv)

• Boundary of Cases B and C: at the boundary we have

s1 = p3
vδ

3−2p2
vδ

3+pvδ
3+p2

vδ
2−2pvδ

2+δ2−4δ+4
(2−(1+pv)δ)(2−(1−pv)δ)(1−pvδ) s2 + p3

vδ
3−pvδ

3−2p2
vδ

2+2pvδ
2

(2−(1+pv)δ)(2−(1−pv)δ)(1−pvδ) ; then:

V B
v = V C

v = 2pv
(1− δ)(2− (1− pv)δ)

− 2pvs2
2− δ(1 + pv)

V B
1 = V C

1 = pvδ(1− pv)s2
(1− δpv)(2− δ(1 + pv))

− 1
2

(−1 + pv)(2δ2pv − 3δpv − δ + 2)
(1− δ)(2− δ(1− pv))(1− δpv)

V B
2 = V C

2 = 1
1− δ − V

B
v − V B

1

• Boundary of Cases C and D: at the boundary we have s1 = 2−δ
2−δ(1−pv) − s2; then:

V C
v = V D

v = pv(1 + δ)
(1− δ)(2− (1− pv)δ)

V C
1 = V D

1 = s2
δ

+ 2δ2 + (p− 5)δ + 2
2(δ − 1)(2 + (−1 + pv)δ)δ

V C
2 = V D

2 = 1
1− δ − V

C
v − V C

1

• Boundary of Cases D and A: at the boundary we have s1 = 2−δ(1−pv)
2−δ(1+pv)s2; then:

V D
v = V A

v = 1
1− δ −

2(2− δ − pv)
(1− δ)(2− δ(1− pv))

s2

V D
1 = V A

1 = 1
1− δ − V

D
v − V D

2

V D
2 = V A

2 = s2
1− δ
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C Proofs of Propositions from Section 6

Proof of Proposition 8
Part (a) If Y = {(1, 0, 0)} is an irreducible absorbing set, then Vv((1, 0, 0)) = 1

1−δ and Uv((1, 0, 0)) =

1 + δVv((1, 0, 0)) = 1
1−δ . Since the amount of resources available in any period is 1, Vv(x) ≤ 1

1−δ for

any x ∈ ∆ in any subgame perfect Nash equilibrium of the game. Thus, if x is such that xv < 1,

we have Uv(x) = xv + δVv(x) < 1
1−δ . This means that the veto player is strictly worse off moving

to a policy outside of Y and, thus, a) he will never propose a policy outside of Y and b) he will

veto any policy outside of Y proposed by a non-veto player.

Part (b) Consider any allocation s ∈ ∆. In any SPE, the veto player can unilaterally implement

the status quo in the current and all following periods, regardless of the identity of the proposer.

The payoff from this strategy is sv and this establishes that Vv(s) ≥ sv
1−δ in any SPE.

Part (c) Consider any allocation s ∈ ∆. In any SPE, a non-veto player can unilaterally imple-

ment the status quo whenever he proposes. The payoff from this strategy is si in the history in

which i proposes in this and all following periods. Since we are looking for a lower bound, suppose

that at any other history, player i gets zero. We have established that, in any SPE,

Vi(s) ≥ pnvsi + p2
nvδsi + p3

nvδ
2si + . . .+ ptnvδ

t−1si + . . . = pnvsi
1− δpnv

where pnv is the probability either non-veto player proposes and si is the allocation to i in s.

Part (d) Assume s ∈ ∆ is an absorbing allocation. Then, Ui(s) = si
1−δ for i = {v, 1, 2}. Since,

as we established above, Uv(x) ≥ xv
1−δ for any x ∈ ∆, the veto player supports any reform of s as

long as he is offered at least sv. We want to show that, when δ < 1
2−pnv

, either non-veto player

prefers a feasible allocation other than s where the veto player receives at least sv to s. This means

that this non-veto player will find it optimal to reform the status quo, with the support of the veto

player, as soon as he has a chance to propose and, thus, that s cannot be absorbing. The non-veto

player who has the least incentive to maintain the policy in s forever is the one with the lowest

amount. Without loss of generality, assume s1 ≥ s2 and consider the incentive of non-veto player 2
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to reform s. Non-veto player 2 can move to allocation (sv, 0, s1 + s2) with the support of the veto

player. Non-veto player 2 strictly prefers allocation x = (sv, 0, s1 + s2) to (sv, s1, s2) if:

s2
1− δ < s1 + s2 + δ

(
pnv(s1 + s2)

1− δpnv

)
≤ s1 + s2 + δV2(x) (9)

Note that the lower bound of the“temptation” to reform the status quo is increasing in s1. This

means that the inequality will be hardest to satisfy when s1 = s2. In this case, the inequality

becomes:

s2
1− δ < 2s2 + δ

(
pnv(2s2)
1− δpnv

)
s2

1− δ <
2s2

1− δpnv
1
2 <

1− δ
1− δpnv

δ <
1

2− pnv
(10)

This establishes that when δ < 1
2−pnv

there is no s ∈ ∆ other than (1,0,0) which is absorbing.

Proof of Proposition 9
Fix an MPE of the dynamic legislative bargaining game. Consider an irreducible absorbing set

with respect to this MPE, Y with |Y | = k ≥ 2, and enumerate the elements of Y as y1, . . . ,yk. For

each h = 1, . . . , k, let Yh ⊆ Y \{yh} denote the policies that occur with positive probability given

status quo yh and enumerate the elements of Yh as zh,1, zh,2, . . . , zh,nh
. For each h = 1, . . . , k and

each l = 1, . . . , nh, the veto player must get a weakly higher dynamic payoff from zh,l than from

yh. If this was not true, the veto player would block transition to policy zh,l and, thus, zh,l would

not occur with positive probability given status quo yh. We have:

Uv(zh,l) ≥ Uv(yh)
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Let m be a solution to maxh∈{1,...,k} Uv(yh), so that ym maximizes the veto player’s dynamic payoff

over Y , i.e., Uv(ym) = maxh=1,...,k Vv(yh). Then for all l = 1, . . . , nm, we must have:

Uv(zm,l) = Uv(ym)

Thus, all the policies that occur with positive probability following ym also maximize the veto

player’s dynamic payoff. Since Y is an irreducible absorbing set, this argument in fact implies that

for all h = 1, . . . , k, we have Uv(yh) = Uv(ym), so that the dynamic payoff of the veto player is

constant on Y , and we can denote this by U . Denote with yi,v the amount allocated to the veto

player in policy yi. Choosing any yi,yj ∈ Y , we then have:

yi,v + δU = Uv(yi)

= Uv(yj)

= yj,v + δU

which implies yi,v = yj,v.

Proof of Proposition 10
Part (a) We want derive a lower bound on Vi(s), i = {1, 2}, that is, on the continuation value of

the game starting at policy s ∈ ∆ for non-veto player i. Non-veto player i can adopt the following

proposal strategy: propose an allocation y such that yi = max{s1, s2}, y−i = min{s1, s2}, and

yv = sv, where −i refers to the other non-veto player. In other words, non-veto player i can

propose the status quo policy (when this policy gives i the largest amount to a non-veto player)

or propose to swap his allocation with the allocation of the other non-veto player and keep the

allocation to the veto player unchanged (when the status quo policy gives i the lowest amount to a

non-veto player). In a symmetric MPE, both proposals will pass with the support of the veto player

(who receives the same allocation and the same continuation value from the status quo and from

either proposal above). After the current period, as long as non-veto player i is the proposer (that

is, in the history where non-veto player i is the proposer in every following period), he can propose

and implement the status quo allocation y. The payoff from this proposal strategy is max{s1, s2}
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in the history in which i proposes in this and all following periods. Since we are looking for a lower

bound, suppose that at any other history, player i gets zero (the lowest possible amount). We have

established that:

Vi(s) ≥ pimax{s1, s2}+ p2
i δmax{s1, s2}+ p3

i δ
2max{s1, s2}+ . . .+ ptiδ

t−1max{s1, s2}+ . . . = pimax{s1, s2}
1− δpi

where pi is the probability non-veto player i proposes and max{s1, s2} is the largest allocation to

a non-veto player in allocation s.

Part (b) From Proposition 8(a), we know that z = (1, 0, 0) is an absorbing outcome. Therefore,

the continuation value of z for non-veto player j, j = {1, 2}, is Vj(z) = 0. In any symmetric MPE

in stage-undominated voting strategies, non-veto player i votes in favor of proposal x against status

quo s if and only if:

xj + δVj(x) ≥ sj + δVj(s)

xj ≥ sj + δ (Vj(s)− Vj(x))

The status quo policy can be changed only with the approval of 1 non-veto player. Proposal z gives

zj + δVj(z) = 0 to any non-veto player j = {1, 2}. This means that such a proposal defeats a status

quo s 6= z only if the following condition holds for at least 1 non-veto player:

sj + δVj(s) ≤ 0 (11)

Since allocations are constrained to be non-negative, we have sj ≥ 0 and Vj(s) ≥ 0. This means

that (11) will never be satisfied for a non-veto player whose status quo allocation is positive: this

legislator will never support a proposal which leads to absorbing outcome z. Thus, the absorbing

outcome z defeats the status quo only if there is at least 1 non-veto players for which sj = 0 and

Vj(s) = 0.

Consider a status quo allocation s 6= (1, 0, 0) which gives 0 to one non-veto player. Without loss

of generality, let s1 > s2 = 0. Given the discussion above, these are the only status quo policies we

have not ruled out as conducive to the absorbing state z.
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The lower bound on V2(s) derived in part (a) is strictly positive for any legislator who is not

perfectly impatient, δ > 0, and has some positive probability to propose, p2 > 0. This means that,

as long as legislators are not perfectly impatient and everybody has some agenda setting power,

there is no s 6= z where (11) is satisfied for one non-veto player, or, in other words, no proposer

will be able to bring the status quo policy from an outcome which allocates a positive amount to

some non-veto player to an outcome which allocates zero resources to non-veto players.

Proof of Proposition 11
Proposition 9 shows that any irreducible absorbing set must be composed by policies giving

the same amount to the veto player. Proposition 8(a) shows that Y = {(1, 0, 0)} is an irreducible

absorbing set. Thus, to prove the statement from Proposition 11 it is sufficient to show that any

set of policies giving the same amount k < 1 to the veto player cannot be an absorbing set.

The proof uses two lemmas.

Lemma 6 Consider any consistent MPE of the dynamic legislative bargaining game with pv ∈ (0, 1]

and let Y ⊆ ∆ be an irreducible absorbing set with respect to this MPE. For any status quo y ∈ Y ,

player i = {v, 1, 2} proposes the same policy.

Proof. From Proposition 9, we know that any y ∈ Y gives the same allocation to the veto

player. This means that, for any status quo policy y ∈ Y , we have yv = k, y1 = ρy(1 − k), and

y2 = (1− ρy)(1− k), where k ∈ [0, 1] is the same for all policies in the set and ρy ∈ [0, 1] is specific

to policy y. Thus, for any y ∈ Y , we have Uv(y) = k
1−δ and Av(y) = {x ∈ ∆|xv ≥ k}. This means

that a proposing non-veto player faces the same acceptance set for any status quo policy in Y .

Therefore, by consistency, each non-veto player proposes the same policy for any status quo policy

in Y . Denote this policy with xi, i = {1, 2}.

We now argue that also the veto player faces the same acceptance set for any policy in y and,

in particular, that for any status quo policy y ∈ Y , the set of proposals that are supported by at

least one non-veto player, that is, A1(y) ∪ A2(y), encompasses all policies where the veto player

has yv = k.

Consider status quo s ∈ Y such that sv = 1 − k, s1 = ρs(1 − k), s2 = (1 − ρs)(1 − k) and a
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proposal x ∈ Y such that xv = k, x1 = ρx(1 − k), x2 = (1 − ρx)(1 − k). We want to show that ,

∀ρs, ρx ∈ [0, 1], x ∈ A1(s) ∪A2(s). Let z = 1− k denote the sum of allocations to non-veto players

in any policy in the irreducible absorbing set. Non-veto player 1 accepts x if and only if:

ρxz + δV1(x) ≥ ρsz + δV1(s)

(ρx − ρs)z ≥ δ [V1(s)− V1(x)] (12)

Non-veto player 2 accepts x if and only if:

(1− ρx)z + δV2(x) ≥ (1− ρs)z + δV2(s)

−(ρx − ρs)z ≥ δ [V2(s)− V2(x)] = −δ [V1(s)− V1(x)]

(ρx − ρs)z ≤ δ [V1(s)− V1(x)] (13)

The equality in the second line follows from the fact that Vv(s) = Vv(x) and
∑
i={v,1,2} Vi(s) =∑

i={v,1,2} Vi(x). It is easy to see that, for any ρs, ρx ∈ [0, 1], at least one condition is always

satisfied. This means that the proposing veto player faces the same acceptance set for any status

quo policy in Y . Therefore, by consistency, the veto player proposes the same policy for any status

quo policy in Y . Denote this policy with xv.

Lemma 7 Consider any consistent MPE of the dynamic legislative bargaining game with pv ∈ (0, 1]

and let Y ⊆ ∆ be an irreducible absorbing set with respect to this MPE: (a) Vi(y), the continuation

value function of player i = {v, 1, 2} from policy y, is constant over set Y ; (b) the equilibrium

proposals of non-veto players when the status quo is y ∈ Y are MWC, that is, the proposer offers

exactly 0 to the other non-veto player.

Proof. From Lemma 6, we know that ∀y ∈ Y , each player makes the same proposal, xi, i =

{v, 1, 2}. As a consequence, Vi(y), i = {v, 1, 2} is constant in set Y . Since U1(x1) = x1
1 + δV1(x1)

does not depend on the amount allocated to non-veto player 2 in x1, non-veto player 1 finds most

advantageous to propose a policy which allocates the whole amount not allocated to the veto player

to himself (as before, call this amount, which is identical for all policies in set Y , z). Similarly,
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since U2(x2) = x2
2 + δV2(x2) does not depend on the amount allocated to non-veto player 1 in x2,

non-veto player 2 finds most advantageous to propose a policy which allocates z to himself.

We are now ready to prove the statement from Proposition 11. Fix a consistent MPE. Consider

the irreducible absorbing set with respect to this MPE, Y ⊆ ∆. The Lemmas above show that

|Y | ≤ 3. The three policies which can belong to Y are the unique equilibrium proposals made by

each player for any status quo in Y . Denote with xi, i = {1, 2}, each non-veto player’s equilibrium

proposal for a status quo policy in the irreducible absorbing set, Y . In Lemma 7, we showed that

x1 = {1 − z, z, 0}, x2 = {1 − z, 0, z}, where z ∈ [0, 1] is the allocation to the veto player in any

policy in Y . Denote the veto player’s equilibrium proposal with xv = {1 − z, ρz, (1 − ρ)z}, where

ρ ∈ [0, 1]. We can characterize the continuation value each non-veto player derives from any policy

in the irreducible absorbing set as a function of z, ρ, δ and pv:

V1 = 1− pv
2 [z + δV1] + 1− pv

2 [0 + δV1] + pv [ρz + δV1] = 1 + (2ρ− 1)pv
2(1− δ) z

V2 = 1− pv
2 [z + δV2] + 1− pv

2 [0 + δV2] + pv [(1− ρ)z + δV2] = 1− (2ρ− 1)pv
2(1− δ) z

We, thus, have:

U1(x1) = z + δ
1 + (2ρ− 1)pv

2(1− δ) z

U1(x2) = 0 + δ
1 + (2ρ− 1)pv

2(1− δ) z

U2(x1) = 0 + 1− (2ρ− 1)pv
2(1− δ) z

U2(x2) = z + 1− (2ρ− 1)pv
2(1− δ) z

Above we showed that all policies in an irreducible absorbing set give the veto player the same

allocation, k ∈ [0, 1]. Assume, towards a contradiction, k < 1. First, note that, since Uv(y) = k
1−δ

for any y ∈ Y and, in any MPE, Uv(s) ≥ sv
1−δ , the veto player would be strictly better off moving

to a policy outside of the irreducible absorbing set where he receives a higher allocation. We want

to show that, when the veto player proposes, he can implement such policies with the support of a

non-veto player and, thus, that policies such that k < 1 cannot belong to an irreducible absorbing
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set.

Consider the status quo policy x1 ∈ Y . Since the veto player does not receive the whole pie

(that is, k < 1) and, thus, z > 0, we have U1(x1) > U1(x2) and U2(x2) > U2(x1). This means

that, by continuity, when the veto player proposes and the status quo is either x1 or x2 (an event

which happens with probability 1), he can always find a proposal which allocates to himself strictly

more than k and that is weakly preferred to the status quo by at least one veto player. Without

loss of generality, consider status quo x1 ∈ Y . If the veto player proposes x2 = {1 − z, 0, z},

the dynamic payoff non-veto player 2 receives from the proposal is strictly larger than the dynamic

payoff he receives from the status quo, U2(x2) > U2(x1). Consider proposal w = {1−z+ε, 0, z−ε},

which shocks x2 by redistributing ε from non-veto player 2 to the veto player. By continuity of the

continuation values, there is ε > 0 such that U2(w) ≥ U2(x1) and, thus, w can be approved with

the support of non-veto player 2.

Proof of Proposition 12
The proof uses a series of lemmas.

Lemma 8 In any continuous and consistent MPE of the dynamic bargaining game where pv = 0

and min{p1, p2} > 0: (a) Uv(s) depends only on sv; (b) Uv(s) is strictly monotone in sv; (c) Uv(s)

is strictly increasing in sv.

Proof. Remember that Uv(x) = xv + δVv(x), the dynamic payoff of the veto player from policy x.

Part (a). We want to show that ∀x,x′ ∈ ∆Uv(x) = Uv(x′)⇔ xv = x′v.

First, we prove that Uv(x) = Uv(x′)⇒ xv = x′v.

Fix an equilibrium and let xa(s) be the equilibrium proposal of agenda setter a ∈ {1, 2} given

status quo s. Then, for all i ∈ {1, 2, v},

Vi(s) =
∑

a∈{1,2}
pa [xai (s) + δVi (xa(s))] =

∑
a∈{1,2}

paUi (xa(s))

so that Ui(x) = xi + δ
∑
a∈{1,2} paUi (xa(x)).
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Now fix x and x′ such that Uv(x) = Uv(x′). Then, A(x) = A(x′) and, in any consistent MPE,

xa(x) = xa(x′) for all j ∈ {1, 2}. Hence:

Uv(x)− Uv(x′) = xv + δ
∑

a∈{1,2}
paUv (xa(x))−

x′v + δ
∑

a∈{1,2}
paUv

(
xa(x′)

) = xv − x′v

Since Uv(x)− Uv(x′) = 0, we have xv = x′v.

Second, we prove that Uv(x) = Uv(x′)⇐ xv = x′v.

Fix an equilibrium, a pair of policies x and x′ such that xv = x′v, and assume, towards a

contradiction, that Uv(x) 6= Uv(x′). In any stationary equilibrium, Uv(x) 6= Uv(x′) and xv = x′v

imply x 6= x′ (because, otherwise, the continuation values from the two policies and, thus, the

dynamic payoffs would be the same). This means that xv = x′v < 1, since there are no two

distinct policies which give 1 to the veto player. Without loss of generality, assume Uv(x) < Uv(x′).

Because in any MPE, Vv(s) ≥ sv
1−δ and Vv(s) ≤ 1

1−δ , we have Vv((1, 0, 0)) = 1
1−δ . Since Uv(x′) =

x′v + δVv(x′) and Vv(x′) ≤ 1
1−δ , x′v < 1 implies Uv(x′) < 1

1−δ . To see this, note that, even when

Vv(x′) equals its upper bound, Uv(x′) can equal 1
1−δ only if x′v = 1. We have Uv((1, 0, 0)) =

1
1−δ > Uv(x′) > Uv(x). By continuity of Vv and hence of Uv, there exists α ∈ (0, 1) such that

Uv(α(1, 0, 0) + (1 − α)x) = Uv(x′). But as we proved above, Uv(x) = Uv(x′) ⇒ xv = x′v. This

implies that, if Uv(α(1, 0, 0) + (1 − α)x) = Uv(x′), then (α(1, 0, 0) + (1 − α)x)v = x′v, which is a

contradiction since it rewrites as α+ (1− α)xv = x′v, or, equivalently, α = αxv (since xv = x′v), or,

equivalently, xv = 1 (since α ∈ (0, 1)).

Part (b). To see that Uv(s) is strictly monotone in xv, take x,x′ ∈ X with xv < x′v and

assume, towards a contradiction, that Uv(x) = Uv(x′). Then, by Lemma 1, we have xv = x′v, a

contradiction.

Part (c). To prove that Uv(s) is strictly increasing in xv, it suffices to show that it is not

strictly decreasing. Assume, towards a contradiction, that Uv(x) is strictly decreasing in xv. Since

Uv((1, 0, 0)) = 1
1−δ , this implies that Uv(x) > 1

1−δ ∀x ∈ ∆ \ {(1, 0, 0)}. This is not feasible since
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Uv(x) ≤ 1
1−δ ∀x ∈ ∆ (since the largest allocation the veto can receive in any period is 1).

Lemma 9 In any continuous and consistent MPE of the dynamic bargaining game where pv = 0

and min{p1, p2} > 0, Vi(s) depends only on sv for any i ∈ {v, 1, 2} and any policy s ∈ ∆.

Proof. Denoting the equilibrium proposal by agenda setter a ∈ {1, 2} for status quo s ∈ ∆ with

xa(s), the value function of player i ∈ {v, 1, 2} from policy s ∈ ∆ can be written as:

Vi(s) =
∑

a∈{1,2}
pa [xai (s) + δVi(xa(s))] (14)

Since, by Lemma 8, Uv(s) = Uv(s′) ⇔ sv = s′v, the set of policies that beat the status quo,

A(s), only depends on sv. By consistency of proposal strategies, this implies that xa(s) depends

only on sv for any status quo s ∈ ∆ and any agenda setter a ∈ {1, 2}. In turn, this implies that

also Vi(s) depends only on sv for any i ∈ {v, 1, 2} for any status quo s ∈ ∆.

Lemma 10 In any continuous and consistent MPE of the dynamic bargaining game where pv = 0

and min{p1, p2} > 0, equilibrium proposals are MWC, that is, the proposer offers exactly 0 to the

other non-veto player.

Proof. For any status quo s ∈ ∆, the equilibrium proposal of proposer a ∈ {1, 2} solves

maxz∈A(s) za+δVa(z). Denote the proposing non-veto player with a ∈ {1, 2} and the non-proposing

veto player with −a = {1, 2} \ {a}. Assume, towards a contradiction, that x = xa(s) is such that

x−a > 0 and consider an alternative proposal y such that yv = xv, ya = xa + x−a > xa and

y−a = 0. If x ∈ A(s), then also y ∈ A(s). This is because the set of policies that beat the status

quo, A(s) = {z ∈ ∆|Uv(z) ≥ Uv(s)} depend only on zv and sv. Moreover, since Va(z) only depend

on zv, we have Va(x) = Va(y). This means that the dynamic payoff the proposer derives from y is

strictly larger than the dynamic payoff the proposer derives from x. Since they both belong to the

set of acceptable policies, it cannot be the case that x solves maxz∈A(s) za + δVa(z).

Lemma 11 Consider a continuous and consistent MPE of the dynamic bargaining game where

pv = 0 and min{p1, p2} > 0. Denote with xa(s) the equilibrium proposal of a = {1, 2} under status

quo s ∈ ∆. If x = xa(s) is such that xv > sv for some a ∈ {1, 2} and some s ∈ ∆, then, ∀s′ ∈ ∆

such that s′v ∈ [sv, xv], xa(s′) = xa(s).
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Proof. Assume that x = xa(s) is such that xv > sv for some a ∈ {1, 2} and s ∈ ∆ and fix

s′ ∈ ∆ such that s′v ∈ [sv, xv]. Since xv ≥ s′v and Uv(s) is strictly increasing in sv, we have

xa(s) ∈ A(s′). Moreover, s′v ≥ sv implies A(s′) ⊆ A(s) and hence xa(s′) ∈ A(s). Thus, by

consistency, xa(s′) = xa(s).

Lemma 12 Consider a continuous and consistent MPE of the dynamic bargaining game where

pv = 0 and min{p1, p2} > 0. Denote with xa(s) the equilibrium proposal of non-veto player a =

{1, 2} under status quo s ∈ ∆, and with x−a(s) the equilibrium proposal of the other non-veto player

under the same status quo. If y = xa(s) is such that yv > sv for some a ∈ {1, 2} and some s ∈ ∆,

then, x = x−a(s) is such that xv = sv.

Proof. Assume, towards a contradiction, that, for some a ∈ {1, 2} and s ∈ ∆, y = xa(s) is

such that yv > sv and x = x−a(s) is such that xv > sv (Note that, because non-veto proposers

cannot pass a proposal decreasing the allocation to the veto player for any status quo, this suffices.)

Without loss of generality, assume that xv < yv. By Lemma 11, ∀s′ ∈ ∆ such that s′v ∈ [sv, xv],

xa(s′) = xa(s) and x−a(s′) = x−a(s). This means that ∀s′ ∈ ∆ such that s′v ∈ [sv, xv], V−a(s′) is

constant. Consider x′ ∈ ∆ such that x′v ∈ [sv, xv) and x′−a = x−a + (xv − x′v). Since xv − x′v > 0

and V−a(x) = V−a(x′), we have: x′−a + δV−a(x′) = x−a + (xv − x′v) + δV−a(x′) > x−a + δV−a(x).

However, this is a contradiction since x−a + δV−a(x) = maxz∈A(s) z−a + δV−a(z).

Finally, we are in the position to argue that, ∀s ∈ ∆ and ∀a ∈ {1, 2}, x = xa(s) is such that

xv = sv. Since the veto player cannot propose, this shows that, in any period of a consistent and

continuous MPE, the veto player gets s0
v. Notice that because Uv(s) is strictly increasing in sv, to

prove Proposition 12 it is sufficient to rule out xv > sv (as the veto player never accepts a reduction

to this allocation). Suppose, towards a contradiction, that for some a ∈ {1, 2} and some s ∈ ∆, we

have x = xa(s) such that xv > sv.

We can assume, without loss of generality, that sv = 1− sa. (To see why this is without loss of

generality, note that, if there is s ∈ ∆ such that xv > sv, then, since by consistency the equilibrium

proposal depends on only on sv, there has to be s′ ∈ ∆ with s′v = sv and s′a = 1 − s′v such that

xa(s′) = xa(s).) By Lemma 10, we have x−a = 0 and, thus, xv = 1 − xa. Hence xv > sv implies

xa < sa. Because a proposes x = xa(s) when the status quo is s, we have xa+δVa(x) ≥ sa+δVa(s)
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and because xa < sa, we must have Va(x) > Va(s).

We now argue that, ∀s′ ∈ ∆ such that s′v ∈ [sv, xv), Va(s′) is constant in s′. Remember that

we denote x = xa(s). Let x′ = xa(s′) and y′ = x−a(s′). Since xv > sv, by Lemma 11 we have that

∀s′ ∈ ∆ such that s′v ∈ [sv, xv), x′ = x. Thus, ∀s′ ∈ ∆ such that s′v ∈ [sv, xv), x′v = xv > s′v and,

by Lemma 12, y′v = s′v. Because, by Lemma 10 y′a = 0 ∀s′ ∈ ∆ and because, by Lemma 9 Va(s′)

depends only on s′v, we can express as follows Va(s′) ∀s′ ∈ ∆ such that s′v ∈ [sv, xv):

Va(s′) = pa
[
x′a + δVa(x′)

]
+ p−a

[
y′a + δVa(y′)

]
= pa [xa + δVa(x)] + p−a

[
0 + δVa(s′)

]
= pa

1−δp−a
[xa + δVa(x)] .

(15)

Now consider a sequence (sn)∞n=1 defined by snv = 1
nsv+ n−1

n xv and sna = 1−snv . Because, ∀s′ ∈ ∆

such that s′v ∈ [sv, xv), Va(s′) is constant in s′v, Va(sn) = Va(s) ∀n ∈ N. Hence limn→∞ Va(sn) =

Va(s) < Va(x). Thus Va is not continuous at xv, a contradiction.
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D Proofs of Propositions from Section 7

Proof of Proposition 13
Banks and Duggan (2006) show that there are no stationary equilibria of this game with delay.

This means that, in any stationary equilibrium, each legislator proposes only policies that are

accepted. Let Vi denote the continuation value for player i = {v, 1, 2}.

Negotiations end following an agreement. This means that, if accepted, proposal x ∈ ∆ gives to

player i = {v, 1, 2} a dynamic payoff equal to xi
1−δ . Thus, player i supports any proposal offering him

an amount weakly greater than (1−δ)si+ δ
1−δVi. It is straightforward to show that in any stationary

equilibrium, each legislators offers to exactly one other committee member (which, together with

the proposer, forms a minimal winning coalition) the amount which makes this member indifferent

between accepting and rejecting the proposal and keeps the remainder for himself.

Let the proposal made by player i = {v, 1, 2} when recognized be denoted by xi = {xiv, xi1, xi2}.

If non-veto player i = {1, 2} is recognized, he offers xiv such that xi
v

1−δ = sv + δVv to the veto

player. If the veto player is recognized, he offers xvj such that xv
j

1−δ = sj +δVj to one non-veto player

j = {1, 2}. Denoting with µ1(s) ∈ [0, 1] the probability that the veto player chooses non-veto player

1 as coalition partner given status quo (s) and with xnv the amount the veto player offers to this

coalition partner, we can express the continuation values as follows:

Vv = 1
3

(1− xnv
1− δ

)
+ 2

3

(
xv

1− δ

)
V1 = 1

3

(1− xv
1− δ

)
+ 1

3µ1(s)
(
xnv

1− δ

)
V2 = 1

3

(1− xv
1− δ

)
+ 1

3(1− µ1(s))
(
xnv

1− δ

)

In equilibrium, (a) either the veto player chooses one non-veto player with certainty and, even if

he is always chosen as coalition partner, this non-veto player is the cheapest coalition partner; or (b)

the veto player chooses either non-veto player with positive probability and his proposal strategy is

such that the veto player is indifferent between choosing either non-veto player as coalition partner.

Since s1 ≥ s2, non-veto player 2 is potentially a cheaper coalition partner. However, if non-veto
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player 2 is always chosen as coalition partner and s1 is sufficiently close to s2, non-veto player 2

requires a higher amount than non-veto player 1 to support a proposal. It is easy to verify that, if

µ?1(s) is as characterized in the statement of Proposition 13, then the amount that makes non-veto

player 2 indifferent between accepting and rejecting is strictly smaller than the amount that makes

non-veto player 1 indifferent if s1 ≥ 3−2δ
3−3δs2; and that instead these two amounts are the same if

s1 < 3−2δ
3−3δs2. Using this probability distribution over coalition partners in the continuation values

above and solving the system of two equations and two unknowns formed by xv
1−δ = sv + δVv and

x2
1−δ = s2 + δV2 , we get the equilibrium proposals in the statement of the proposition.
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E Committee Size and Majority Requirement

In this Appendix, I study committees with n legislators, k ≤ n veto players and m = n − k

non-veto players (with m even). A proposal defeats the status quo if it receives the concurring

support of the k veto players and q ∈
[
0, 2

3m
]

non-veto players. This includes a wide array of

voting rules, from oligarchies where the coalition of all veto players can change the status quo

without the approval of any non-veto player (q = 0), to qualified majorities where the status quo

is defeated only with the approval of more than 50% of legislators (k + q > n/2). This more

general setup allows me to investigate whether expanding the committee or changing the majority

requirement can reduce the leverage of the veto player(s) and promote more equitable outcomes.

In order to preserve the analytical tractability of the model, I introduce two assumptions.

First, having explored the impact of recognition probabilities in smaller committees, I assume that

only veto players are able to make proposals and that each veto player proposes with the same

probability. Second, I restrict the set of feasible allocations to those with, at most, two types of

non-veto players: a subset who receives zero and a subset who receives the same, non-negative

amount. In particular, a feasible allocation is summarized by s = {sv1, sv2, . . . , svk,m, sm}, where

svi, i = {1, 2, . . . , k}, denotes the share to veto player i, m denotes the number of poor non-veto

players (whose share is sm = 0), and sm ≥ 0 denotes the share to each of the (m−m) rich non-veto

players.27 I denote with snv = (m−m)sm the total share of resources allocated to non-veto players

in allocation s.

The presence of multiple veto players or qualified majorities do not prevent the complete ex-

propriation of the resources initially allocated to non-veto players. Proposition 14 shows that this

dynamic game has an MPE in which the k veto players extract all the surplus in finite time.

Proposition 14 Consider the game with n legislators, k veto players, and q non-veto players

needed for passage. For any n ≥ 3, any k ≤ n, any q ∈
[
0, 2(n−k)

3

]
, any δ ∈ [0, 1), and any s0 ∈ ∆,

there exists an MPE such that the committee transitions to an absorbing state where the k veto

27This assumption does not restrict the number of legislators who receive a positive allocation and it
allows proposers to give different amounts to different legislators. The role of this assumption is to simplify
the identification of the cheapest coalition: the proposer randomizes among coalition partners with the same
status quo allocation but does not need to employ a different mixing probability for each feasible allocation.
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players get the whole pie in at most three periods.28

Complete appropriation by veto players is possible because a veto proposer can always pass an

allocation that increases his allocation. The committee converges to this outcome in finite time

because poor non-veto players do not demand a premium and support any allocation of resources.

This means that the veto player can expropriate non-veto players completely as soon as the status

quo gives zero to at least q non-veto legislators.

At the same time, non-veto players might enjoy positive resources in the initial periods and

larger majority requirements reduce the speed of convergence to the absorbing state where non-veto

players hold nothing. This is because rich non-veto players do demand a premium to support an

allocation which increases the allocation to veto players, and this premium is increasing in the

discount factor and in the fraction of the resources to non-veto players. The cumulative demand of

the (q−m) rich non-veto players needed for a minimal winning coalition is less than the cumulative

amount to non-veto players in the status quo. Thus, the proposing veto player can increase his

allocation and increase the number of poor non-veto players in the future status quo.29 However,

with a larger q or a lower m, it takes more periods to have at least q poor non-veto players and for

veto players to appropriate all resources.

Moreover, the presence of other legislators with veto power reduces the amount a single legislator

can extract. A non-proposing veto player asks more than what he receives in the status quo to

support the expropriation of non-veto players. He demands this premium because a higher current

allocation to another veto player decreases the amount he is able to extract when he proposes

in the future. In particular, when the non-veto players are completely expropriated, the policy

moves to a gridlock region where no future proposer will be able to pass a policy he prefers to the

status quo. In order to offset this loss and gain their vote, the proposing veto player has to share

part of the amount he expropriates from the non-veto players with the other k − 1 veto players.

Nonetheless, the proposing veto player gets a greater share of the resources expropriated from the

non-veto players for any δ ∈ [0, 1).

28For the case where veto players are decisive (q = 0), Proposition 16 in the proof of Proposition 14
below proves an analogous result for the more general setup where pv ∈ (0, 1] and all vectors of non-negative
transfers which sum to 1 are feasible agreements.

29This is because mt+1 = m− (q −mt) = mt + (m− q) > mt.
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Proposition 15 summarizes this discussion.

Proposition 15 In the MPE from Proposition 14: (a) the number of periods with positive resources

to non-veto players is weakly increasing in q; (b) the cumulative value of the game for non-veto

players is weakly increasing in δ, q and s0
nv, and weakly decreasing in m; (c) the share to each veto

player in the absorbing state is strictly larger than his starting share, unless s0 is an absorbing state

(that is, s0
nv = 0) or δ = 0.

Proof of Proposition 14
Veto Players are Decisive: q = 0

When the coalition of veto players is decisive (that is, q = 0) we can consider a more general

setup where we relax the two assumptions employed in this Section: each veto player proposes with

chance pv

k , where pv ∈ (0, 1]; each non-veto player proposes with chance 1−pv

n−k ; and the space of

possible agreements is composed of all vectors of non-negative transfers to the n legislators which

sum to 1. We can prove the following result:

Proposition 16 Consider the game with n legislators and k decisive veto players. For any n ≥ 3,

any k ≤ n, any pv ∈ (0, 1], any δ ∈ [0, 1), and any s0 ∈ ∆, there exists an MPE such that the

committee transitions to an absorbing state where the k veto players get the whole pie as soon as

one veto player proposes. In the absorbing state, the share to each veto player is strictly larger than

his starting share, unless s0 is an absorbing state or δ = 0.

The result of Proposition 14 for q = 0 is a special case of the more general result in Proposition

16 above, for the case where pv = 1. Below, we prove Proposition 16.

In this game an allocation is s = [sv1, sv2, . . . , svk, s1, s2, . . . , sn−k], where svi, i = 1, 2, . . . , k,

denotes the share to a veto player and si, i = 1, 2, . . . , (n−k) denotes the share to a non-veto player.

The unique minimal winning coalition is composed of all veto players. The result of Proposition 16

follows from the existence of a symmetric MPE where veto players propose a positive allocation to

the members of the minimal winning coalition and non-veto players propose a positive allocation

to these members and to themselves. In particular, consider the following proposal strategies for

all status quo policies s ∈∆:
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• When the proposer is veto player vi, she offers dvvj (s) = svj + δpv

k(1−δ+pvδ)
∑n−k
i=1 si to each

of the other (k − 1) veto players, 0 to all non-veto players, and 1 −
∑
j 6=i d

v
vj (s) = svi +(

1− (k−1)δpv

k(1−δ+pvδ)

)∑n−k
i=1 si to herself.

• When the proposer is non-veto player i, he offers dnvvi = svi, i = 1, 2, . . . , k, to the k veto

players, 0 to all other non-veto players, and 1−
∑
i svi =

∑n−k
i=1 si to herself.

If these proposals pass, allocations which do not give anything to any non-veto players are

absorbing states and one of these allocations is reached as soon as one veto player proposes. Re-

member that a veto player is selected to propose with probability pv/k and a non-veto player with

probability (1− pv)/(n− k). Therefore, if legislators play the proposal strategies above and these

proposals pass, legislators’ continuation values for allocation s ∈ ∆ are as follows:

vvi(s) = (1− pv) [sv1 + δvv1(s)] + pv
k

[
1−

∑
j 6=i d

v
vj (s)

1− δ

]
+ pv(k − 1)

k

[
dvv1

1− δ

]

= svi
(1− δ) + pv

∑n−k
i=1 si

(1− δ)k(1− δ + pvδ)

vi(s) = 1− pv
n− k

[
n−k∑
i=1

si + δvi(s)
]

=
(1− pv)

(∑n−k
i=1 si

)
(n− k)− δ(1− pv)

On the basis of these continuation values, we obtain veto players’ expected utility functions,

Uvi(x) = xvi + δvvi(x). The reported demands for veto players as a function of the proposer’s

type are in accordance with Definition 2. In particular, dvviand dnvvi , i = 1, 2, . . . , k, can be easily

derived from the following equations:

svi + δvvi

(
svi,

n−k∑
i=1

si

)
= dvvi

1− δ

svi + δvvi

(
svi,

n−k∑
i=1

si

)
= dnvvi + δvvi

(
dnvvi ,

n−k∑
i=1

si

)

By the definition of demands, supporting the proposals outlined above is an equilibrium voting

strategy. Finally, we need to prove that those proposal strategies are optimal, given the contin-

uation values. First, note that the expected utility a veto player derives from a policy x is an
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increasing and linear function of what x assigns to her and of what x assigns to all non-veto play-

ers. Second, since p
k(1−δ+pvδ) ∈ [pv/k, 1/k] is always smaller than 1, the optimal proposal for player

vi is the one that maximizes xvi, subject to being approved, that is, subject to giving the other

veto players at least dvvj . The unique proposal that maximizes this objective function subject to

this constraint is the one that gives exactly dvvj to the other veto player, 0 to the non-veto players,

and the remainder to the proposer.

Veto Players are not Decisive: q ∈
(
0, 2

3m
]

In this case, a proposal passes if it receives the support of the k veto players, plus at least q ∈
[
1, 2

3m
]

non-veto legislators. Remember that we denote with snv = (m−m)sm the total share of resources

allocated to non-veto players in allocation s. The results of Proposition 14 follow from the existence

of a symmetric MPE with the following minimal winning coalition proposal strategies for all feasible

allocations:

• Case A m ≥ q:

– The proposing veto player offers dAvi = svi + δ
ksnv to the other (k − 1) veto players, the

remainder to himself, and 0 to everybody else. The proposal passes with the support of

the veto players and the poor non-veto players, (who are indifferent between the status

quo and the proposal because dAm = 0). At the beginning of the following period, the

status quo allocation is such that m = m > q. This means that the new status quo

belongs to case A.

• Case B q > m ≥ 2q −m:

– The proposing veto player offers dBv = svi+ δ
k

(m−m)−2(q−m)
(m−m)−δ(q−m)snv to the other (k−1) veto

players, dBm = 1
(m−m)−δ(q−m)snv to (q −m) randomly chosen rich non-veto players, the

remainder to himself, and 0 to everybody else. The proposal passes with the support

of the veto players, the (q−m) rich veto players who are offered a positive amount and

the poor non-veto players (who are indifferent between the status quo and the proposal

because dBm = 0). At the beginning of the following period, the status quo allocation
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st+1 is such that mt+1 = mt + (m− q). Since mt ≥ 2q −m, this means that mt+1 ≥ q,

or that the new status quo belongs to case A.

• Case C m < 2q −m:

– The proposing veto player offers dCv = svi+ δ
k

(m−q)2(1−δ)2

[m−m−δ(q−m)]2 snv to the other (k−1) veto

players, dCm = (q−m)−δ(2q−m−m)
(q−m)[m−m−δ(q−m)]snv to (q−m) randomly chosen rich non-veto players,

the reminder to himself, and 0 to everybody else. The proposal passes with the support

of the veto players, the (q−m) rich veto players who are offered a positive amount and

the poor non-veto players (who are indifferent between the status quo and the proposal

because dCm = 0). At the beginning of the following period, the status quo allocation

st+1 is such that mt+1 = mt+(m−q). Since mt < 2q−m, we have mt+1 < q. Moreover,

since q < 2
3m, we have mt+1 ≥ 2q−m. This means that the new status quo belongs to

case B.

If players play the proposal strategies in cases A-C and these proposals pass, their continuation

values are as follows:

• Case A

vvi(s) = svi
1− δ + snv

(1− δ)k
vm(s) = 0

vm(s) = 0

• Case B

vvi(s) = svi
1− δ + (m− q)

(1− δ)k[m−m− δ(q −m)]snv

vm(s) = 0

vm(s) = (q −m)
(m−m)

snv
(m−m)− δ(q −m)
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• Case C

vvi(s) = svi
1− δ + (m− q)[(1− δ)(m−m) + δ2(m− q)]

(1− δ)k[m−m− δ(q −m)]2 snv

vm(s) = 0

vm(s) = (q −m)
(m−m)

snv
(m−m)− δ(q −m)

On the basis of these continuation values, we obtain players’ expected utility functions, Uvi(x) =

xvi + δvvi(x), Um(x) = 0 + δvm(x), and Um(x) = xm + δvm(x). The reported demands are in

accordance with Definition 2. In particular, dAvi, dBvi, dCvi, i = 1, 2, . . . , k, dAm, dBm, dCm, dBm, and dCm

can be derived from the following indifference conditions:

svi + δvAvi (svi, snv) = dAvi
1− δ

svi + δvBvi (svi, snv) = dBvi + δvAvi

(
dBvi, (q −m)dBm

)
svi + δvCvi (svi, snv) = dCvi + δvBvi

(
dCvi, (q −m)dCm

)
0 + δvAm = dAm + δvAm

0 + δvBm = dBm + δvAm

0 + δvCm = dCm + δvBm

sm + δvBm (snv,m) = dBm + δvAm

sm + δvCm (snv,m) = dCm + δvBm

(
(q −m)dCm,m+ (m− q)

)

By the definition of demands, supporting the proposals outlined above is an equilibrium voting

strategy. Finally, we need to prove that those proposal strategies are optimal, given the continuation

values. In case A, Uvi(x) is a linear and positive function of both xvi and xnv. Since 1
1−δ ≥

δ
k(1−δ)

for any k ≥ 1, and δ ∈ [0, 1], Uvi(x) is maximized when xvi is as large as possible. Similarly, in

cases B and C, Uvi(x) is a linear and positive function of both xvi and xnv. Since the coefficient of

xvi, 1
1−δ , is greater than or equal to the coefficient of xnv for any k ≥ 1, δ ∈ [0, 1], m ≥ 1, m ≤ m,

and q < m, Uvi(x) is maximized when xvi is as large as possible. This means that the expected

utility of the proposing veto player is maximized when xvi is as large as possible. The proposal
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strategies above are the acceptable proposals which give the largest possible share to the proposer

(because they make the agents of a minimal winning coalition barely indifferent between accepting

and rejecting).

Proof of Proposition 15
This result in part (a) follows from the equilibrium demand of poor non-veto players which

demand zero to support any allocation. This means that, when the status quo is such that m > q,

the proposing veto player can expropriate the non-veto players completely with the support of

the poor non-veto players and the other veto players. When in the initial status quo m0 < q,

the proposer cannot extract completely the rich non-veto players because he needs the support of

(q −m0) rich non-veto players who demand a positive allocation. However, the number of cheap

coalition partners at the beginning of the second period will be larger: m1 = m − (q − m0) =

m0 + (m− q) > m0, which holds ∀q < m. When q > m0 ≥ 2q −m, we have m1 > q. In this case,

in the second period the proposer does not need the support of any rich non-veto player and we

converge to the absorbing state where non-veto players have zero resources. When m0 < 2q−m, we

have m1 < q so, in the second period, the proposer needs to muster the costly support of (q −m1)

rich non-veto players. However, since q < 2
3m, we have m2 ≥ q: in the third period the proposer

does not need the support of any rich non-veto player and we converge to the absorbing state where

non-veto players have zero resources.

The result in part (b) follows from investigating the sum of all non-veto players’ value functions

evaluated at the initial status quo, s0. Since the value of any initial allocation to poor non-veto

players is 0 and the value to each non-veto player is the same, this sum is given by (m−m)vm(s0)

or by:

∑
i∈nv

vi(s0) = (m−m)vm(s0) =


0, if q < m0

q−m0

m−m0−δ(q−m0)s
0
nv, if q > m0

When q < m0, this value is constant. When q > m0, this value is increasing in q, δ and s0
nv and

decreasing in m.

The result in part (c) follows from the equilibrium demand of veto players: δ
k and δ

k
(m−q)2(1−δ)2

[m−m−δ(q−m)]2

are strictly positive for any k ≥ 1, δ ∈ (0, 1), and q < m; δ
k

(m−m)−2(q−m)
(m−m)−δ(q−m) (the demand in case B)
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is strictly positive for any δ ∈ (0, 1), q < m, and m < q (which is true in case B). This means

that each veto player gets a positive fraction of the resources expropriated from non-veto players

regardless of the identity of the proposer.
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F MPEs Where Positive Allocations to Non-Veto Play-

ers Are Stable

Proposition 17 Consider any x ∈ ∆ such that (a) min{xv, x1, x2} > 0, (b) x2+ δ(x1−x2)
2 > x(δ) =

(3−2δ)2

(3−δ)2 and (c) x1 +x2 > x(δ) = 54−72δ+18δ2+4δ3

(3−δ)(18−15δ+δ2) . There exists an MPE of the legislative bargaining

game where Y = {(xv, x1, x2), (xv, x2, x1)} is an irreducible absorbing set.

In the proof of Proposition 17, I construct a class of MPEs where an allocation (or a pair of

allocations) giving a positive amount to all players is stable. In particular, I show that, for each

set Y satisfying the sufficient conditions in the statement of Proposition 17, there exists an MPE

of the legislative bargaining game such that (a) if s0 ∈ Y , the policy is never changed (if x1 = x2

and, thus, |Y | = 1) or alternates forever between allocations in Y (if x1 6= x2 and, thus |Y | = 2);

and (b) if s0 /∈ Y , the policy converges asymptotically to full extraction by the veto player as in

the MPE from Proposition 1. Notice that the set of allocations satisfying the sufficient conditions

in the statement of Proposition 17 is non-empty for any δ > 0.68 and grows with δ.

Corollary 2 Consider any x ∈ ∆ such that (a) min{xv, x1, x2} > 0, (b) x1 = x2 = xnv, (c)

xnv >
(3−2δ)2

(3−δ)2 and (d) xnv > 27−36δ+9δ2+2δ3

(3−δ)(18−15δ+δ2) . There exists an MPE of the legislative bargaining

game where x is absorbing. In particular, as δ goes to 1, for any x ∈ ∆ such that xnv > 1/4, there

exists an MPE of the legislative bargaining game where x is absorbing.

Example 1 Assume δ = 0.75. In this case, x(δ) = 0.44 and x(δ) = 0.72. Note that x2 + 3(x1−x2)
8 >

0.44 implies x1 + x2 > 0.72 as long as x1 ≥ 1/25. Since neither inequality is satisfied when

x1 < 1/25, there exists an MPE where Y = {(xv, x1, x2), (xv, x2, x1} is an irreducible absorbing set

for any x ∈ ∆ such that min{xv, x1, x2} > 0 and 5
8x2 + 3

8x1 > 0.44.

Example 2 Assume δ = 0.95. In this case, x(δ) = 0.29, and x(δ) = 0.55. Note that x2 +
95(x1−x2)

200 > 0.29 implies x1 + x2 > 0.55 as long as x1 ≥ 1/8. Since neither inequality is satisfied

when x1 < 1/8, there exists an MPE where Y = {(xv, x1, x2), (xv, x2, x1} is an irreducible absorbing

set for any x ∈ ∆ such that min{xv, x1, x2} > 0 and 21
40x2 + 19

40x1 > 0.29.
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Example 3 Assume δ = 0.99. In this case, x(δ) = 0.26, and x(δ) = 0.51. Note that x2 +
99(x1−x2)

200 > 0.26 implies x1+x2 > 0.51 Then,there exists an MPE where Y = {(xv, x1, x2), (xv, x2, x1}

is an irreducible absorbing set for any x ∈ ∆ such that min{xv, x1, x2} > 0 and 101
200x2+ 99

200x1 > 0.26.

Proof. Assume s1 ≥ s2 (without loss of generality) and consider the following strategies: (a) if

s ∈ Y = {(sv, s1, s2), (sv, s2, s1)}, then a veto proposer offers either allocation in Y with the same

chance; non-veto proposer 1 offers (sv, s1, s2); non-veto proposer 2 offers (sv, s2, s1); (b) if x /∈ Y ,

players follow the proposing and voting strategies from the MPE characterized in the proof of

Proposition 1.

This is the strategy of the proof. First we want to show that when the policy is in Y , it does

not move out of this set. Second, we want to show that when the policy is not in Y , policy does not

move in this set. To prove the first statement, I show that, given the strategies described above and

the associated value functions, there is no allocation outside Y which the veto player and at least

one non-veto player prefer to a status quo is in Y . In particular, I derive the minimum amount

a non-veto player needs to be offered in order to support a proposal outside of Y (and label it

d?2); then, I derive the minimum amount a veto player needs to be offered in order to support a

proposal outside of Y (and label it d?v); finally, I show that, when the assumptions in the statement

of Proposition 17 are satisfied, there is no feasible allocation outside Y which both the veto player

and one non-veto player are willing to support (that is, d?2+d?v > 1). To prove the second statement,

I show that, when the policy is not in Y the veto player is better off vetoing any attempt to bring

the policy in Y .

Consider an allocation s = (sv, s1, s2) /∈ Y . Given the conjectured equilibrium strategies, the

evolution of policies follows the MPE from Proposition 1 (with all future policies lying in ∆ and

asymptotic convergence to full extraction by the veto player). Thus, the continuation values and

expected utilities are those from the proof of Proposition 1.

Consider an allocation s = (sv, s1, s2) ∈ Y .

Given the conjectured equilibrium strategies, expected utilities from s are:
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Uv(s) = sv
1− δ

U1(s) = s1 + δ

[
s1 + s2
2(1− δ)

]
= 2s1 − δ(s1 − s2)

2(1− δ)

U2(s) = s2 + δ

[
s1 + s2
2(1− δ)

]
= 2s2 + δ(s1 − s2)

2(1− δ)

Part 1: if st ∈ Y , then st+1 ∈ Y .

Consider status quo s ∈ Y . Since U1(s) ≥ U2(s), we can focus on the minimum amount

required by non-veto player 2 to support a policy outside Y . Note that, given the conjectured

equilibrium strategies, the continuation value of any allocation outside Y is the continuation value

from the MPE in Proposition 1. These continuation values are such that expected utilities are

strictly increasing in one’s own allocation for any δ ∈ [0, 1) so we can focus on allocations in ∆.

The amount that makes player 2 indifferent between s ∈ Y and an allocation x ∈ ∆ (or player

2’s demand, using the definition introduced in the proof of Proposition 1) is the amount d2 such

that:

2s2 + δ(s1 − s2)
2(1− δ) = d2 + δvA2 (d)

2s2 + δ(s1 − s2)
2(1− δ) = d2 + δ

[
3− 3δ + δ2

(3− δ)2(1− δ)

]
d2

d?2 = (2s2 + δ(s1 − s2)) (3− δ)2

2(3− 2δ)2

where vA2 (d) is the continuation value of allocation d = (1− d2, 0, d2) from the MPE in Propo-

sition 1. Note that d?2(s1, s2, δ) is strictly increasing in s1, s2, δ.

The amount that makes the veto player indifferent between s ∈ Y and an allocation x ∈ ∆ (or

the veto player’s demand) is the amount dv such that:
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1− s1 − s2
1− δ = dv + δvAv (d)

1− s1 − s2
1− δ = 1

1− δ −
2− δ

(3− δ)(1− δ)(1− dv)

where vAv (d) is the continuation value of allocation d = (dv, 0, 1− dv) from the MPE in Propo-

sition 1. Since negative allocations are not feasible, we have:

d?v =


0 if s1 + s2 >

2−δ
3−δ

(1−s1−s2)(3−δ)−1
2−δ if s1 + s2 ≤ 2−δ

3−δ

which is weakly decreasing in s1, s2, δ.

If d?2 + d?v > 1, then there is no feasible allocation outside Y which can count on the support of

the veto player and at least one non-veto player. We have two cases to consider.

Case A: s1 + s2 >
2−δ
3−δ ∈

[
1
2 ,

2
3

]

d?2 + d?v > 1

d?2 + 0 > 1

(2s2 + δ(s1 − s2)) (3− δ)2

2(3− 2δ)2 > 1

s2 + δ(s1 − s2)
2 >

(3− 2δ)2

(3− δ)2 = x(δ) (16)

For any δ ∈ [0, 1], the LHS is largest when s1 = s2 = 1/2. The RHS is continuous and strictly

decreasing in δ; it goes to 1 as δ goes to 0 and it goes to 1/4 as δ goes to 1. Thus, the inequality

in equation (16) cannot be satisfied for any s ∈ ∆ when δ < 9
7 −

3
√

2
7 ≈ 0.68.

Case B: s1 + s2 ≤ 2−δ
3−δ ∈

[
1
2 ,

2
3

]
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d?2 + d?v > 1

(2s2 + δ(s1 − s2)) (3− δ)2

2(3− 2δ)2 + (1− s1 − s2)(3− δ)− 1
2− δ > 1(

δ(3− δ)2

2(3− 2δ)2 −
3− δ
2− δ

)
s1 +

(
(2− δ)(3− δ)2

2(3− 2δ)2 − 3− δ
2− δ

)
s2 > 0 (17)

The coefficients of s1 and s2 in the LHS are non-positive for any δ ∈ [0, 1]. Thus, the inequality

can never be satisfied. This means that no MPE in the class constructed in this proof exists when

s1 + s2 ≤ 2−δ
3−δ or (regardless of δ) when s1 + s2 ≤ 1/2.

Part 2: if st /∈ Y , then st+1 /∈ Y .

Consider a status quo allocation s /∈ Y . A sufficient condition for policy to evolve according to

the MPE in Proposition 1 and never moving in set Y is that the veto player blocks any attempt

to move policy inside Y . From the continuation values in the proof of Proposition 1, we know

that the s /∈ Y which gives the lowest expected utility to the veto player is (0, 1/2, 1/2). Thus, if

the veto player prefers (0, 1/2, 1/2) to allocations in Y , then he prefers any allocation outside Y

to allocations in Y . The veto player prefers (0, 1/2, 1/2) to either policy in Y when the following

inequality is satisfied:

0 + δvCv (0, 1/2, 1/2) > 1− s1 − s2
1− δ

9δ − 5δ3

(3− δ)(18− 15δ + δ2)
> 1− s1 − s2

s1 + s2 > 1− 9δ − 5δ3

(3− δ)(18− 15δ + δ2)
= 54− 72δ + 18δ2 + 4δ3

(3− δ)(18− 15δ + δ2)
= x(δ) (18)

where vCv (0, 1/2, 1/2) is the continuation value of allocation (0, 1/2, 1/2) from the MPE in

Proposition 1. Notice that the RHS is strictly decreasing in δ and converges to 1/2 as δ goes to 1.

For any δ ∈ [0, 1], if equation (18) is satisfied, then s1 + s2 >
2−δ
3−δ so equation (17) is irrelevant.

The sufficient conditions in the statement of Proposition 17 are exactly equation (16) and equation

(18).
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For Corollary 2, note that when s1 = s2 = snv, equation (16) becomes:

snv >
(3− 2δ)2

(3− δ)2 (19)

Similarly, when when x1 = x2 = xnv, equation (18) becomes

snv >
27− 36δ + 9δ2 + 2δ3

(3− δ)(18− 15δ + δ2)
(20)

The RHS of equation (19) is strictly decreasing in δ and goes to 1/4 as δ goes to 1. The RHS of

equation (20) is strictly decreasing in δ and goes to 1/4 as δ goes to 1. Thus, as δ goes to 1, any

s ∈ ∆ such that snv ∈ (1/4, 1/2) satisfies the sufficient conditions for MPE existence.
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G MPEs Where Only Full Appropriation by Veto Player

Is Stable in DES

Protocol with Veto Player as Persistent Proposer (pv = 1)
Consider the bargaining protocol where the veto player has monopolistic agenda setting power

(pv = 1). Contrary to the setup in this paper and, in line with the assumptions of Diermeier,

Egorov and Sonin (2017), here I assume that in each period, players bargain over the allocation of

b indivisible objects, where b = 2. I show that, in spite of this difference, there is an MPE of the

legislative bargaining game where full extraction by the veto player is the only stable allocation for

any δ ∈ [0, 1]. In the analysis by Diermeier, Egorov and Sonin (2017), this equilibrium is refined

away by the assumption that the bargaining protocol is randomly selected from a set of potential

protocols at the beginning of each round and by the focus on equilibria which do not depend on

the protocol selected. Using the language from Diermeier, Egorov and Sonin (2017), here I assume

that there is only one feasible bargaining protocol, where the only proposer in each period is the

veto player.

Consider the following strategies: when s = (0, 1, 1), the veto player proposes (0,0,2) or (0,2,0)

with equal chance and this proposal is supported by the non-veto player who is offered a positive

amount; when s 6= (0, 1, 1), the veto player proposes (2,0,0) and the proposal is supported by the

non-veto player who has 0 in the status quo. In this MPE, the only irreducible absorbing set is

{(2, 0, 0)}, that is, full expropriation by the veto player, which is reached in, at most, two periods.

The continuation values are as follows:

Vi(2, 0, 0) = Vi(1, 0, 1) = Vi(1, 1, 0) = Vi(0, 2, 0) = Vi(0, 0, 2) = 0

for i = {1, 2}.

V1(0, 1, 1) = 1
2 [2 + δV1(0, 2, 0)] + 1

2 [0 + δV1(0, 0, 2)] = 1

V2(0, 1, 1) = 1
2 [2 + δV1(0, 0, 2)] + 1

2 [0 + δV1(0, 2, 0)] = 1
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Non-veto player 1 accepts proposal (0,2,0) when the status quo is (0,1,1) if and only if:

2 + δVi(0, 2, 0) ≥ 1 + δV1(0, 1, 1)

1 ≥ δ

Thus, this MPE exists for any δ ∈ [0, 1].

Protocol with Random Selection of Proposer (pv = 1
3)

Consider the bargaining protocol where the proposer is randomly selected in each period (pv =

1/3). Contrary to the setup in this paper and, in line with the assumptions of Diermeier, Egorov

and Sonin (2017), here I assume that 1) in each period, players bargain over the allocation of b

indivisible objects, where b = 3; and 2) a reform which simply shuffles the allocations to non-veto

players is costly and always rejected by the veto player, that is, it is impossible to move from

allocation (sv, s1, s2) to allocation (sv, s2, s1). I show that, in spite of these differences, there is

an MPE of the legislative bargaining game where full extraction by the veto player is the only

stable allocation. In the analysis by Diermeier, Egorov and Sonin (2017), this equilibrium is refined

away by the assumption that the bargaining protocol is randomly selected from a set of potential

protocols at the beginning of each round and by the focus on equilibria which do not depend on

the protocol selected. Using the language from Diermeier, Egorov and Sonin (2017), here I assume

that there are three feasible bargaining protocols — one where the only proposer is the veto player,

one where the only proposer is non-veto player 1, and one were the only proposer is non-veto player

2 — and that each protocol is equally likely to be selected at the beginning of each round.

Below, I describe proposal and voting strategies for each feasible allocation and show that,

together with the continuation values, these strategies constitute a symmetric MPE of the legislative

bargaining game where (3,0,0) is the only absorbing outcome. Without loss of generality, I focus on

the portion of the simplex where s1 ≥ s2 and consider the following proposal and voting strategies

for status quo s = (sv, s1, s2):

• when s = (3, 0, 0): everybody proposes s; the veto player blocks any reform; non-veto players

support any reform;

95



• when s = (2, 1, 0): the veto player and non-veto player 2 propose (3,0,0); non-veto player 1

proposes s; the veto player and non-veto player 1 support only reforms which increase one’s

own allocations; non-veto player 2 supports any reform;

• when s = (1, 2, 0): the veto player and non-veto player 2 propose (2,0,1); non-veto player 1

proposes s; everybody supports only reforms which increase one’s own allocation;

• when s = (1, 1, 1) and δ < 0.908: the veto player proposes (1,2,0) and (1,0,2) with equal

chance; non-veto player 1 proposes (1,2,0); non-veto player 2 proposes (1,0,2); the veto player

supports any reform which gives him at least 1; non-veto players support only reforms which

increase one’s own allocation;

• when s = (1, 1, 1) and δ ≥ 0.908: the veto player proposes (0,3,0) and (0,0,3) with equal

chance; non-veto player 1 proposes (0,3,0); non-veto player 2 proposes (0,0,3); the veto player

supports any reform; non-veto players support only reforms which give them everything;

• when s = (0, 3, 0): the veto player and non-veto player 2 propose (1,0,2); non-veto player 1

proposes s; everybody supports only reforms which increase one’s own allocation;

• when s = (0, 2, 1): the veto player proposes (0,3,0) with probability (1− µ) and (0,0,3) with

probability µ; non-veto player 1 proposes (0,3,0); non-veto player 2 proposes (0,0,3); the veto

player supports any reform; non-veto players only support reforms which increase one’s own

allocation; µ = 1 if δ ≤ 0.5787 and µ = 27−21δ2+10δ3

2δ(7δ2−18δ+27) ∈ [1/2, 1] if δ > 0.5787.
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Given these strategies, the continuation values of the non-veto players are:

V1(3, 0, 0) = V2(3, 0, 0) = 0

V1(1, 2, 0) = V2(1, 0, 2) = 1
3 [2 + δV1(1, 2, 0)] + 2

3 [0 + δV1(2, 0, 1)] = 2
3− δ

V1(1, 0, 2) = V2(1, 2, 0) = 1
3 [0 + δV1(1, 0, 2)] + 2

3 [1 + δV1(2, 1, 0)] = 6
(3− δ)2

V1(2, 1, 0) = V2(2, 0, 1) = 1
3 [1 + δV1(2, 1, 0)] + 2

3[0] = 1
3− δ

V1(2, 0, 1) = V2(2, 1, 0) = 0

V1(0, 3, 0) = V2(0, 0, 3) = 1
3 [3 + δV1(0, 3, 0)] + 2

3[0 + δV1(1, 0, 2)] = 27− 6δ + 3δ2

(3− δ)3

V1(0, 0, 3) = V2(0, 3, 0) = 1
3 [0 + δV1(0, 0, 3)] + 2

3[2 + δV1(1, 2, 0)] = 12
(3− δ)2

V1(0, 2, 1) = V2(0, 1, 2) = 2− µ
3 (3 + δV1(0, 3, 0)) + 1 + µ

3 (0 + δV1(0, 0, 3))

V1(0, 1, 2) = V2(0, 2, 1) = 1 + µ

3 (3 + δV1(0, 3, 0)) + 2− µ
3 (0 + δV1(0, 0, 3))

V1(1, 1, 1) = V2(1, 1, 1) =


1
2 [2 + δV1(1, 2, 0)] + 1

2 [0 + δV1(1, 0, 2)] = 9
(3−δ)2 if δ < 0.908

1
2 [3 + δV1(0, 3, 0)] + 1

2 [0 + δV1(0, 0, 3)] = 9(9−2δ+δ2)
2(3−δ)3 if δ ≥ 0.908

The continuation values of the veto player are:

Vv(3, 0, 0) = 3
1− δ

Vv(1, 2, 0) = Vv(1, 0, 2) = 1
3 [1 + δVv(1, 2, 0)] + 2

3 [2 + δVv(2, 1, 0)] = 15− 4δ + δ2

(1− δ)(3− δ)2

Vv(2, 1, 0) = Vv(2, 0, 1) = 1
3 [2 + δVv(2, 1, 0)] + 2

3 [3 + δVv(3, 0, 0)] = 8− 2δ
(1− δ)(3− δ)

Vv(0, 3, 0) = Vv(0, 0, 3) = 1
3 [0 + δVv(0, 3, 0)] + 2

3 [1 + δVv(1, 2, 0)] = 18 + 6δ
(1− δ)(3− δ)2

Vv(1, 1, 1) =


1 + δVv(1, 2, 0) = 3(3+δ2)

(1−δ)(3−δ)2 if δ < 0.908

0 + δVv(0, 3, 0) = 18δ+6δ2

(1−δ)(3−δ)2 if δ ≥ 0.908

It is straightforward to show that, given these continuation values, the proposing and voting

strategies above are optimal for status quo policies where exactly one non-veto players receives

0. The crucial steps are: A) proving that the veto player prefers state (1,2,0) to state (0,3,0)
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when both are in the acceptance set of non-veto player 1 (or, equivalently, that the veto player

prefers state (1,0,2) to state (0,0,3) when both are in the acceptance set of non-veto player 2); B)

proving that non-veto player 1 supports proposal (1,2,0) when the status quo is (1,1,1) if and only

if δ < 0.908 (or, equivalently, that non-veto player 2 supports proposal (1,0,2) when the status quo

is (1,1,1) if and only if δ < 0.908); C) proving that both non-veto player 1 and the veto player

support proposal (1,2,0) when the status quo is (1,1,1) and δ < 0.908 (or equivalently that both

non-veto player 2 and the veto player support proposal (1,0,2) when the status quo is (1,1,1) and

δ < 0.908); D) proving that both non-veto player 1 and the veto player support proposal (0,3,0)

when the status quo is (1,1,1) and δ ≥ 0.908 (or, equivalently, that both non-veto player 2 and

the veto player support proposal (0,0,3) when the status quo is (1,1,1) and δ ≥ 0.908); E) proving

that non-veto player 1 supports proposal (0,3,0) when the status quo is (0,2,1) (or, equivalently,

that non-veto player 2 supports proposal (0,0,3) when the status quo is (0,1,2)); F) proving that

non-veto player 1 supports proposal (0,3,0) when the status quo is (0,1,2) (or, equivalently, that

non-veto player 2 supports proposal (0,0,3) when the status quo is (0,2,1)).

Step A

The veto player prefers state (0,3,0) to state (1,2,0) if:

δVv(0, 3, 0) > 1 + δVv(1, 2, 0)

δ

( 18 + 6δ
(1− δ)(3− δ)2

)
> 1 + δ

(
15− 4δ + δ2

(1− δ)(3− δ)2

)
3δ(6 + δ)− 9

(1− δ)(3− δ)2 > 0

which holds for any δ > 0.464. In other words, when the status quo is (1,1,1) and δ ≥ 0.908 so

non-veto player 1 is willing to support both (0,3,0) and (1,2,0), the veto player prefers to bring the

status quo to (0,3,0).
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Step B

Player 1 supports (1,2,0) when the status quo is (1,1,1) if and only if

1 + δV1(1, 1, 1) ≤ 2 + δV1(1, 2, 0)

1 + 9δ
(3− δ)2 ≤ 2 + 2δ

3− δ

δ ≤ 9
9 + δ

which is satisfied for any δ < 0.908.

Step C

Step A shows that player 1 supports (1,2,0) when the status quo is (1,1,1) and δ < 0.908. When

the status quo is (1,1,1) and δ < 0.908, the veto player supports (1,2,0) if and only if:

1 + δVv(1, 2, 0) ≥ 1 + δV1(1, 1, 1)

Vv(1, 2, 0) ≥ V1(1, 1, 1)
15− 4δ + δ2

(1− δ)(3− δ)2 ≥ 3(3 + δ2)
(1− δ)(3− δ)2

15− 4δ + δ2

3(3 + δ2)
≥ 1

which is satisfied for any δ < 0.908.

Step D

Non-veto player 1 supports proposal (0,3,0) when the status quo is (1,1,1) if and only if:

3 + δV1(0, 3, 0) ≥ 1 + δV1(1, 1, 1)

3 + δ

(
27− 6δ + 3δ2

(3− δ)3

)
≥ 1 + δ

(
9(9− 2δ + δ2)

2(3− δ)3

)

which is true for any δ ∈ [0, 1].

99



The veto player supports proposal (0,3,0) over the status quo (1,1,1) if and only if:

0 + δVv(0, 3, 0) ≥ 1 + δVv(1, 1, 1)

0 + δVv(0, 3, 0) ≥ 1 + δ[0 + δVv(0, 3, 0)]

Vv(0, 3, 0) ≥ 1
δ(1− δ)

18 + 6δ
(1− δ)(3− δ)2 ≥

1
δ(1− δ)

which is true for any δ ∈ (0.642, 1].

Step E

When δ ≤ 0.587, µ = 1 and we have:

V1(0, 2, 1) = 1
3 (3 + δV1(0, 3, 0)) + 2

3 (0 + δV1(0, 0, 3))

Player 1 supports proposal (0,3,0) when the state is (0,2,1) if and only if:

3 + δV1(0, 3, 0) ≥ 2 + δV1(0, 2, 1)

3 + δV1(0, 3, 0) ≥ 2 + δ

[1
3 (3 + δV1(0, 3, 0)) + 2

3 (0 + δV1(0, 0, 3))
]

1 + δV1(0, 3, 0) ≥ δ + δ2

3 V1(0, 3, 0) + 2δ2

3 V1(0, 0, 3)

1− δ +
(

3δ − δ2

3

)
V1(0, 3, 0) ≥ 2δ2

3 V1(0, 0, 3)

1− δ +
(

3δ − δ2

3

)(
27− 6δ + 3δ2

(3− δ)3

)
≥ 2δ2

3

( 12
(3− δ)2

)

1− δ +
(

3δ − δ2

3

)(
27− 6δ + 3δ2

(3− δ)3

)
− 2δ2

3

( 12
(3− δ)2

)
≥ 0

which is satisfied for any δ ∈ [0, 1].

100



When δ > 0.587, µ = 27−21δ2+10δ3

2δ(7δ2−18δ+27) and we have:

V1(0, 2, 1) =
1 +

(
27−21δ2+10δ3

2δ(7δ2−18δ+27)

)
3 (3 + δV1(0, 3, 0)) +

2−
(

27−21δ2+10δ3

2δ(7δ2−18δ+27)

)
3 (0 + δV1(0, 0, 3))

= 3
2

(8δ6 − 27δ5 + 85δ4 − 62δ3 + 18δ2 + 153δ + 81)
δ(7δ2 − 18δ + 27)(3− δ)2

Player 1 supports proposal (0,3,0) when the state is (0,2,1) if and only if:

3 + δV1(0, 3, 0) ≥ 2 + δV1(0, 2, 1)

3 + δ

(
27− 6δ + 3δ2

(3− δ)3

)
≥ 2 + δ

(
3
2

(8δ6 − 27δ5 + 85δ4 − 62δ3 + 18δ2 + 153δ + 81)
δ(7δ2 − 18δ + 27)(3− δ)2

)

1 + δ

(
27− 6δ + 3δ2

(3− δ)3

)
− δ

(
3
2

(8δ6 − 27δ5 + 85δ4 − 62δ3 + 18δ2 + 153δ + 81)
δ(7δ2 − 18δ + 27)(3− δ)2

)
≥ 0

which is satisfied for any δ ∈ [0, 1].

Step F

When δ ≤ 0.587, µ = 1 and we have:

V1(0, 1, 2) = 2
3 (3 + δV1(0, 3, 0)) + 1

3 (0 + δV1(0, 0, 3))

Player 1 supports proposal (0,3,0) when the state is (0,1,2) if and only if:

3 + δV1(0, 3, 0) ≥ 1 + δV1(0, 1, 2)

3 + δV1(0, 3, 0) ≥ 1 + δ

[2
3 (3 + δV1(0, 3, 0)) + 1

3 (0 + δV1(0, 0, 3))
]

2 + δV1(0, 3, 0) ≥ 2δ + 2δ2

3 V1(0, 3, 0) + δ2

3 V1(0, 0, 3)

2− 2δ +
(

3δ − 2δ2

3

)
V1(0, 3, 0) ≥ δ2

3 V1(0, 0, 3)

2− 2δ +
(

3δ − 2δ2

3

)(
27− 6δ + 3δ2

(3− δ)3

)
≥ δ2

3

( 12
(3− δ)2

)

2− 2δ +
(

3δ − 2δ2

3

)(
27− 6δ + 3δ2

(3− δ)3

)
− δ2

3

( 12
(3− δ)2

)
≥ 0
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which is satisfied for any δ ∈ [0, 1].

When δ > 0.587, µ = 27−21δ2+10δ3

2δ(7δ2−18δ+27) and we have:

V1(0, 1, 2) =
2−

(
27−21δ2+10δ3

2δ(7δ2−18δ+27)

)
3 (3 + δV1(0, 3, 0)) +

1 +
(

27−21δ2+10δ3

2δ(7δ2−18δ+27)

)
3 (0 + δV1(0, 0, 3))

= 3
2

(6δ6 − 23δ5 + 103δ4 − 118δ3 + 36δ2 + 333δ − 81)
(δ(7δ2 − 18δ + 27)(3− δ)2

Player 1 supports proposal (0,3,0) when the state is (0,1,2) if and only if:

3 + δV1(0, 3, 0) ≥ 1 + δV1(0, 1, 2)

3 + δ

(
27− 6δ + 3δ2

(3− δ)3

)
≥ 1 + δ

(
3
2

(6δ6 − 23δ5 + 103δ4 − 118δ3 + 36δ2 + 333δ − 81)
(δ(7δ2 − 18δ + 27)(3− δ)2

)

2 + δ

(
27− 6δ + 3δ2

(3− δ)3

)
− δ

(
3
2

(6δ6 − 23δ5 + 103δ4 − 118δ3 + 36δ2 + 333δ − 81)
(δ(7δ2 − 18δ + 27)(3− δ)2

)
≥ 0

which is satisfied for any δ ∈ [0, 1].
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H Additional Experimental Results

Status Quo (t+1)
Status Quo (t) D1 D2 DV C12 C1V C2V U
Dictator 1 0.018 0.000 0.096 0.003 – 0.468 0.513
Dictator 2 0.979 0.425 0.042 0.000 0.844 0.658 0.698
Dictator V – – 0.725 0.282 0.265 0.265 0.643
Coalition 1 + 2 0.153 0.051 – 0.022 0.004 0.008 0.234
Coalition 1 + V – 0.089 0.524 – 0.298 0.014 0.079
Coalition 2 + V 0.605 0.389 0.004 – 0.292 0.087 0.420
Universal 0.240 – 0.353 – 0.073 0.286 0.002
Frequency 0.676 0.027 0.430 0.008 0.521 0.554 0.261

Table 5: Policy frequencies and transition probabilities, p-values for treatment effects.
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Panel A: High Patience
Status Quo (t+1)

Status Quo (t) D1 D2 DV C12 C1V C2V U
Dictator 1 0.29 0.10 0.00 0.04 0.10 0.33 0.14
Dictator 2 0.16 0.37 0.00 0.16 0.21 0.00 0.11
Dictator V 0.00 0.00 0.99 0.00 0.01 0.00 0.00
Coalition 1 + 2 0.02 0.00 0.00 0.61 0.10 0.12 0.15
Coalition 1 + V 0.00 0.00 0.12 0.00 0.57 0.26 0.06
Coalition 2 + V 0.00 0.00 0.11 0.00 0.29 0.56 0.04
Universal 0.00 0.00 0.00 0.00 0.08 0.10 0.82
Frequency 0.01 0.01 0.24 0.07 0.26 0.24 0.16

Panel B: Low Patience
Status Quo (t+1)

Status Quo (t) D1 D2 DV C12 C1V C2V U
Dictator 1 0.09 0.03 0.13* 0.03 0.22 0.25* 0.25
Dictator 2 0.09 0.29 0.09* 0.03** 0.23 0.09 0.20
Dictator V 0.00 0.00 0.98 0.01 0.01 0.00 0.01
Coalition 1 + 2 0.03 0.09 0.01 0.24** 0.21 0.29* 0.13
Coalition 1 + V 0.00 0.00 0.13 0.01 0.54 0.27 0.05
Coalition 2 + V 0.00 0.00 0.17 0.00 0.31 0.46 0.06
Universal 0.00 0.00 0.02 0.00 0.21 0.06 0.71
Frequency 0.01 0.02** 0.24 0.03** 0.31 0.26 0.12

Table 6: Policy frequencies and transition probabilities, stricter definitions of D and U regions.
Notes: ** and * indicate difference with High Patience is significant, respectively, at 1% and at 5%
level (see p-values in Table 7).
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Status Quo (t+1)
Status Quo (t) D1 D2 DV C12 C1V C2V U
Dictator 1 0.201 0.245 0.013 0.671 – 0.034 –
Dictator 2 0.358 0.223 0.038 0.003 0.753 0.176 0.764
Dictator V – – 0.488 0.206 0.737 – 0.206
Coalition 1 + 2 0.641 – – 0.000 0.173 0.044 0.418
Coalition 1 + V – – 0.933 0.858 0.709 0.635 0.699
Coalition 2 + V – – 0.130 – 0.867 0.205 0.293
Universal – – – – 0.305 0.495 0.261
Frequency 0.810 0.008 0.733 0.001 0.272 0.217 0.662

Table 7: Policy frequencies and transition probabilities, stricter definitions of D and U regions,
p-values for treatment effects.

(1) (2) (3)
Round 2.545** 3.185** 2.531**

(0.000) (0.001) (0.000)
Constant 22.707** 23.360** 20.647**

(1.022) (1.301) (2.326)
Sample All δ = 0.50 δ = 0.75
Pseudo-R2 0.0210 0.0223 0.0254
Observations 2148 1144 1004

Table 8: Tobit estimates of allocation to the veto player (out of 60 units). The unit of analysis is
a committee in a round and include the initial status quo exogenously assigned by the computer
(coded as policy outcome in round 0). Standard errors clustered by sessions in parentheses. **
significant at the 1% level.
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A: VETO PROPOSER HIGH PATIENCE LOW PATIENCE
ALL ACC ALL ACC

Mean Premium to Proposer 10.63 9.13 13.25 14.58**
Mean Premium to Rich Non-Veto -8.59 -7.91 -13.17 -14.76**
Mean Premium to Poor Non-Veto -2.04 -1.22 -0.09 0.18
Mean Premium to Coalition Partner 3.95 4.19 1.89 3.00*
Observations 239 32 169 33

B: NON-VETO PROPOSER HIGH PATIENCE LOW PATIENCE
ALL ACC ALL ACC

Mean Premium to Proposer 4.03 2.74 6.97** 8.16**
Mean Premium to Veto 1.19 3.93 5.43** 8.16*
Mean Premium to Other Non-Veto -5.22 -6.68 -12.40** -16.32**
Mean Premium to Coalition Partner 1.87 4.22 5.72** 8.11*
Observations 478 74 338 75

Table 9: Proposing behavior in regions U and C12. Notes: For each treatment, the first column is
for all observed proposals, the second column for proposals that are voted on and accepted; Rich
Non-Veto (Poor Non-Veto) is the non-veto player who receives the most (least) in the status quo;
Coalition Partner is the non-proposing player who receives the most in the proposal; ** and *
indicate difference with High Patience is significant, respectively, at 1% and at 5% level.
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I Experimental Instructions (High Patience Treatment)

Thank you for agreeing to participate in this experiment. During the experiment we require

your complete, undistracted attention and ask that you follow instructions carefully. Please turn

off your cell phones. Do not open other applications on your computer, chat with other students,

or engage in other distracting activities, such as reading books, doing homework, etc. You will

be paid for your participation in cash, at the end of the experiment. Different participants may

earn different amounts. What you earn depends partly on your decisions, partly on the decisions of

others, and partly on chance. It is important that you do not talk or in any way try to communicate

with other participants during the experiments.

Following the instructions, there will be a practice session and a short comprehension quiz. All

questions on the quiz must be answered correctly before continuing to the paid session. At the end

you will be paid in private and you are under no obligation to tell others how much you earned.

Your earnings are denominated in FRANCS which will be converted to dollars at the rate of 60

FRANCS to 1 DOLLAR.

This an experiment in committee decision making. The experiment will take place over a

sequence of 10 matches. We begin the match by dividing you into 4 committees of 3 members

each. Each of you is assigned to exactly one of these committees. You will be given a temporary

Committee Member Number (either 1, 2 or 3) and you are not told the identity of the other

members of your committee. One of the members of your committee is selected at random by the

computer to be the Veto Player for this committee. The Committee Member Number of the Veto

Player will be displayed on your computer. For example, if you are Committee Member Number 1

and the Veto Player for this committee in this match is Committee Member Number 1, then you

are the Veto Player in your committee in this match. In each match, your committee will make

budget decisions over a sequence of several rounds.

In each round, your committee has a budget of 60 francs. Your committee must decide how to

divide this budget into private allocations A1, A2, and A3. These private allocations A1, A2, and

A3 have all to be greater than or equal to 0 and must add up to exactly 60. If your committee

budget decision is (A1, A2, A3), then A1 francs go directly to member 1’s earnings, A2 francs go
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to member 2’s earnings, and A3 francs go to member 3’s earnings.

Here is the procedure for how your committee makes budget decisions. At the beginning of the

first round, the computer randomly selects an initial budget decision (A1, A2, A3) and displays

it on your computer as what we call the Standing Budget. Next, each of you makes a provisional

proposal for an alternative budget decision you would like your committee to consider. (You may

propose the Standing Budget itself if you wish.) Your proposal can be any budget decision—

that is, any three non-negative numbers (including 0s) that add up to exactly 60. After all three

members of your committee have chosen provisional proposals, one of these provisional proposals

is selected at random by the computer to be the Proposed Budget. The Proposed Budget will be

displayed on your computer, along with the number of the Committee Member who proposed it.

The committee then conducts a vote between the Standing Budget and the Proposed Budget. The

Proposed Budget passes only if the Veto Player and at least one other committee member vote

in its favor. If the Veto Player votes against the Proposed Budget, the Standing Budget wins. If

the Veto Player votes in favor of the Proposed Budget but the two other committee members vote

against it, the Standing Budget wins. Your earnings in this round are determined by your private

allocation in whichever budget decision wins in the voting stage.

One important aspect of your committee’s budget decision is that it is inertial. That is, the

budget decision that prevails in round 1 becomes the Standing Budget in round 2 and will thus

determine the private allocations in round 2 if your committee does not agree on a different budget

decision. Every round, the budget decision of your committee determines both your earnings in

this round and the Standing Budget for the following round.

The total number of rounds in a match will depend on the rolling of a fair 8-sided die. When

the first round ends, we roll it to decide whether to move on to the second round. If the die comes

up a 1 or a 2 we do not go on to round 2, and the match is over. We will describe in a moment

what happens after a match is over. If the die comes up a 3, 4, 5, 6, 7, or 8, we continue to the

next round. In round 2, your Committee Member Number, the members of your committee and

the identity of the Veto Player all stay the same. Round 2 proceeds just as round 1, with the

exception that the Standing Budget in round 2 is whatever the committee decision was in round

1. Therefore, if the original Standing Budget won the voting stage in round 1, this continues as
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the Standing Budget in round 2. But if the Proposed Budget in round 1 won the voting stage,

then it replaces the original Standing Budget and becomes the new Standing Budget for round 2.

The proposal and voting process then follows the same rules as round 1. Once again, each member

types in a proposal, the computer then randomly selects one of them to be the Proposed Budget

and a vote is taken between the round 2 Standing Budget and the Proposed Budget. After round

2 is over, we roll the 8-sided die again to determine whether to move on to a third round. We

continue to more rounds, until a 1 or a 2 is rolled at the end of a round and the match ends. It is

important to remember that your Committee Member Number, the members of your committee,

and the identity of the Veto Player all stay the same in all rounds of the match. In round T, the

Standing Budget is always whatever the committee decision was in round T-1.

After the first match ends, we move to match 2. In this new match, you are reshuffled randomly

into 4 new committees of 3 members each. Your assigned a new Committee Member Number (1,

2, or 3). The computer randomly selects a Standing Budget for each committee for round 1, and

randomly selects a Veto Player for each committee. The match then proceeds the same way as

match 1. This continues for 10 matches. After match 10, the experiment is over. Your total

earnings for the experiment are the sum of your earnings over all rounds and all matches.
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