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Roberto Riccó† Barbara Rindi‡ Duane J. Seppi§

March 1, 2020

Abstract
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market with asymmetric information and non-Markovian learning. Investors condition

on information in both the current limit order book and also, unlike in previous re-
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The aggregation of asymmetric information and the dynamics of liquidity supply and demand

are closely intertwined in financial markets. In dealer markets, informed and uninformed in-

vestors trade via market orders that take liquidity, while dealers provide liquidity and extract

information from the arriving order flow (e.g., as in Kyle (1985) and Glosten and Milgrom

(1985)). However, in limit order markets — the dominant form of securities market organ-

ization today — the relation between who has information and who is trying to learn it and

who supplies and demands liquidity is not well understood theoretically.1 Recent empirical

research highlights the role of informed traders as liquidity suppliers as well as liquidity

takers. O’Hara (2015) argues that fast informed traders use both market and limit orders.

Fleming, Mizrach, and Nguyen (2017) and Brogaard, Hendershott, and Riordan (2019) find

that limit orders reveal information.2 Thus, understanding how and when informed, and

uninformed, investors choose to trade using limit and market orders is important for market

liquidity, price discovery, and investor welfare.

Our paper presents the first rational expectations model of a dynamic limit order mar-

ket with asymmetric information and history-dependent Bayesian learning. In particular,

learning is not constrained to be Markovian in the limit order book. In addition, we model

a trading day with market opening and closing effects to investigate non-stationarity in

intraday market dynamics. Our analysis leads to two main sets of results:

• Several standard intuitions about adverse selection can fail when informed and unin-

formed investors endogenously choose between limit and market orders. For example,

increased adverse selection does not always worsen market liquidity as in Kyle (1985).

Rather, liquidity can improve if informed traders trade more aggressively by submitting

more limit orders at the inside quotes than by using market orders. In addition, the

equilibrium information content of arriving orders can be opposite both order direction

and order aggressiveness.

• Learning dynamics are non-Markovian in that the order history has information in

addition to the current state of the limit order book.3 In addition, the incremental

1See Jain (2005) about the prevalence of limit order markets. See Parlour and Seppi (2008) for a survey
of theoretical models of limit order markets. See Rindi (2008) and Boulatov and George (2013) for models
of informed traders as liquidity providers.

2Kacperczyk and Pagnotta (2019) and Garriott and Riordan (2019) find that directly identified informed
traders empirically use limit orders frequently. Gencay, Mahmoodzadeh, Rojcek, and Tseng (2016) investig-
ate brief episodes of extreme quotation behavior in the U.S. equity market (bursts in liquidity provision that
happen several hundreds of time a day for actively traded stocks) and find that limit orders during these
bursts significantly impact prices.

3To be clear about terminology, we say a stochastic process followed by a set of variables x
is non-Markovian if the conditional probability distributions Pr[xs|xt, xt−1, . . .] and Pr[xs|xt] are
different for some times t and s > t. If a summary function a(xt−1, . . .) exists such that
Pr[(xs, a(xs−1, . . .))| (xt, a(xt−1, . . .)), (xt−1, a(xt−2, . . .)), . . .] = Pf [(xs, a(xs−1, . . .))|(xt, a(xt−1, . . .))], then
we say the augmented process {x, a} is Markovian but not that the unaugmented process {x} is Markovian.
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informational price-impact of arriving limit and market orders can vary conditional on

time of day, the current standing limit order book, and the prior order history.

Much of our analysis takes the form of showing how the relationships between adverse

selection, liquidity, price discovery, and welfare are induced by investor trading behavior and

how their trading behavior changes with market conditions. For order submission and market

quality, key drivers are i) the differential incentives for informed and uninformed investors to

use limit orders as noted by Bloomfield, O’Hara, and Saar (2005), ii) the increased use of limit

orders at aggressive limit prices by informed investors when adverse selection is stronger, and

iii) the effect on investor order submissions when the standing limit order book is unbalanced

with more depth on one side than the other. Our price discovery results follow from the fact

that the information revealed by arriving orders depends on the mixture of informational and

uninformed motives for submitting different market and limit orders. This mixture depends

on i) the exogenous ex ante distributions over potential information and private gains-from-

trade, ii) endogenous prior learning about realized value-shocks conditional on the history of

past orders, iii) the endogenous state of the standing limit order book that defines the trading

opportunities available to investors when they arrive, iv) the amount of time remaining over

the day for limit orders to be executed, and v) endogenous investor choices about how to

trade given changing trade-offs between trade profitability and execution probability given

investors’ realized information and private values. Despite the rich behavior that emerges in

our model, however, our model structure is designed to be quite parsimonious.

Dynamic limit order markets without price discovery are studied in a large theoretical lit-

erature. This includes Foucault (1999), Parlour (1998), Foucault, Kadan, and Kandel (2005),

Goettler, Parlour, and Rajan (2005) and Roşu (2009). Ait-Sahalia and Saglam (2017) model

limit-order strategies for HFT market makers who do not have private valuation informa-

tion. There is some prior theoretical research that allows informed traders to supply liquidity.

Kumar and Seppi (1994) is a static model in which optimizing informed and uninformed in-

vestors use profiles of multiple limit and market orders to trade. Kaniel and Liu (2006)

and Brolley and Malinova (2017) extend the Glosten and Milgrom (1985) dealership market

to allow informed traders to post limit orders. Goettler, Parlour, and Rajan (2009) allow

informed and uninformed traders to post limit or market orders, but their model is station-

ary and assumes Markovian learning in the standing limit order book and the most recent

trade. Roşu (2016b) studies a steady-state limit order market equilibrium in continuous-time

also assuming Markovian learning with some additional information-processing restrictions.

These last two papers are closest to ours. Our model differs from them in two ways: First,

they assume restrictions on Markovian learning in order to study dynamic trading strategies
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with order cancellation, whereas we simplify the strategy space in order to investigate non-

Markovian learning given full order histories. Second, we model a non-stationary trading day

with opening and closing effects. Market opens and closes are important daily events in the

dynamics of liquidity in financial markets. Bloomfield et al. (2005) show in an experimental

market analysis of limit orders that liquidity from informed traders changes over the day

and sometimes exceeds liquidity from uninformed traders. Our model provides equilibrium

examples of such behavior.

Our work also has implications for empirical research on limit order markets. We show not

only that limit orders can have informational content — as documented in Fleming, Mizrach,

and Nguyen (2019) and Brogaard et al. (2019) — but that orders’ information content can

vary over time with the state of the standing limit order book and the intraday order history.

Yueshen and Zhang (2019) use a filtering approach to show that the price impact of orders

is time-varying. Our results identify explanatory variables that may account for some of this

intraday time-variation.

A growing literature investigates the relation between information and trading speed (e.g.,

Biais, Foucault, and Moinas (2015); Foucault, Hombert, and Roşu (2016); and Roşu (2016a)).

However, these models assume Kyle or Glosten-Milgrom market structures and, thus, cannot

consider the roles of informed and uninformed traders as endogenous liquidity providers and

demanders. We argue that understanding price discovery dynamics in limit order markets is

an essential precursor to understanding speedbumps and cross-market competition in real-

world limit order markets.

1 Model

We consider a limit order market in which a risky asset is traded at N discrete times tj ∈

{t1, . . . , tN} over a trading day. The fundamental value of the asset at the end of the day

after time tN is

ṽ = v0 + ∆ =


v̄ = v0 + δ with Pr(v̄) = 1

3

v0 with Pr(v0) = 1
3

v
¯

= v0 − δ with Pr(v
¯
) = 1

3

(1)

where v0 is the ex ante expected asset value, and ∆ is a symmetrically distributed value

shock. The limit order market allows for trading through two types of orders: Limit orders

are price-contingent orders that are collected in a limit order book. Market orders are

executed immediately at the best available price in the limit order book. The limit order

book has a price grid with four prices, Pi ∈ {A2, A1, B1, B2}, two each on the ask and bid
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sides of the market. The tick size is equal to κ > 0, and the ask prices are A1 = v0 + 0.5κ,

A2 = v0 + 1.5κ, and, by symmetry, the bid prices are B1 = v0 − 0.5κ, B2 = v0 − 1.5κ. For

simplicity, we normalize the tick size to κ = 1.

Order execution follows time and price priority. At each time tj, seven possible actions

xtj are available to investors: One possibility is to submit a market order MBAitj or MSBitj

to buy or sell immediately at the best available ask Aitj or bid Bitj
(indexed by itj) in the

limit order book at time tj. A subscript itj = 1 indicates that the best standing quote at

time tj is at an inside price A1 or B1, and itj = 2 means the best quote is at an outside price

A2 or B2. Alternatively, the investor can submit one of four possible limit orders LBBi and

LSAi to buy or sell at the different prices Bi and Ai on the bid or ask side of the book. A

subscript i = 1 denotes an aggressive limit order posted at the inside quote, and i = 2 is a

less aggressive limit order at the outside quotes.4 Yet another alternative is to do nothing

(NT ).

Two types of investors trade in the market. The first are a sequence of arriving active

traders with potential gains-from-trade due to private information and/or random private

values. One active investor arrives at each time tj. They are risk-neutral and asymmetric-

ally informed. The active investor arriving at time tj is informed with probability α and

uninformed with probability 1 − α. Informed investors know the realized value shock ∆

perfectly. A generic informed investor is denoted as I. When we want to make explicit the

specific information known by the informed investor, then we denote the informed investor

as Iv̄ if the value shock is positive (∆ = δ), as Iv
¯

if the shock is negative (∆ = −δ), and as

Iv0 if the shock is zero (∆ = 0). Informed investors arriving at different times during the

day all have the identical asset-value information (i.e., there is only one realized ∆ in the

day). Uninformed investors do not know ∆, but they use Bayes’ Rule and their knowledge of

the equilibrium to learn about ∆ from the observable order history over time. Uninformed

investors are denoted as U .

An investor arriving at time tj may also have an additive random personal private value

βtj . Non-informational private-value trading motives include preference shocks, hedging

needs, and taxation. The absence of non-informational trading motives would lead to the

Milgrom and Stokey (1982) no-trade result. The sequence of arriving active investors is in-

dependently distributed over time in terms of whether investors are informed or uninformed

and in terms of their individual private values βtj . Our analysis considers two model spe-

cifications for private values. In both specifications, the βtj value at time tj for uninformed

investors is drawn from a truncated-Normal distribution, Tr[N (µ, σ2)], with support over

4For tractability, it is assumed investors cannot post buy limit orders at A1 and sell limit orders at B1.
This is one way in which the investor action space is simplified in our model.
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the interval [−10, 10], which corresponds to private valuations of up to plus or minus 10 ticks

(see distribution in Figure 1).5 The mean, µ = 0, is a neutral private value. The parameter

σ determines the dispersion of investor private values βtj and, thus, the probability of large

private gains-from-trade due to extreme private valuations. In our first model, informed

investors have no private-value motives in that their βtjs are all equal to 0. In the second

specification, the βtjs for informed investors are random and are independently drawn from

the same truncated-Normal distribution Tr[N (µ, σ2)] as the uninformed investors.

The second type of investors in the market are a group of passive liquidity providers

with no active motive to trade. These investors, who we call the trading crowd, submit limit

orders to provide liquidity. By assumption, the crowd just posts single limit orders at the

outside prices A2 and B2. In particular, the crowd is always willing to provide liquidity at

the outside prices, since, given a parametric assumption δ ≤ 1.5, only uninformed investors

submit market orders at those quotes. The market opens with an initial book submitted

from the crowd. After the order-submission by the arriving active investor at each time tj,

the crowd replenishes the book at the outside prices, as needed, when either side of the book

is empty. Otherwise, if there are limit orders on both sides of the book, the crowd does

nothing. The trading crowd effectively establishes a maximal bid-ask spread in the market.

Including liquidity from a crowd seems reasonable since, given our parametric restriction,

it only involves “zero intelligence” behavior in the sense that it does not require complex

optimization or belief updating by the crowd, and they never lose money on their trades (i.e.,

since at the outside quotes they only trade with uninformed investors given our parametric

assumption δ < 1.5 on value shocks relative to the tick size). Excluding such liquidity

would, therefore, make the book unreasonably thin. Since the maximal bid-ask spread from

the crowd is large relative to the tick size, there is room for further liquidity supply from

limit orders from arriving informed and uninformed investors. The goal of our model is

to understand the dynamics of liquidity supply and demand due to active investor trading

within this maximal bid-ask spread set by the crowd.6

For tractability, we make four additional simplifying assumptions. First, limit orders

cannot be modified or canceled after submission. Thus, each arriving investor has one op-

portunity to submit an order. Second, there is no quantity decision. Orders are to buy or sell

one share. Third, arriving active investors can only submit one single order. Fourth, limit

orders by the active investors have priority over limit orders from the crowd. This departure

5We expect similar results for other private-value distributions with a relatively wide support.
6The maximal bid-ask spread could arise in other ways. For example, the maximal bid-ask spread of a

more sophisticated crowd that could do Bayesian updating could still be wider than one tick given sufficient
adverse selection. Alternatively, the trading crowd can be endogenized as HFT investors in a Budish,
Cramton, and Shim (2015) style model by adding picking-off risk due to immediate public intraday value
shocks to the model.
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from time priority for active traders relative to the crowd (but not other active traders) means

arriving active investors always have a choice whether to use market orders or different limit

orders while keeping the limit order book dynamics simple with only a small number of pos-

sible limit prices.7 Taken together, these assumptions let us express the action set for arriv-

ing active investors at time tj as Xtj = {MSBitj
, LSA1, LSA2, NT, LBB2, LBB1,MBAitj },

where each of the orders is for one share.8

Our model is intentionally non-stationary over the trading day in order to capture market

opening and closing effects and intraday dynamics. When the market opens at t1, the only

standing limit orders in the book are those at prices A2 and B2 from the trading crowd.9

At the end of the day all unexecuted limit orders are cancelled. The state of the limit order

book at a generic time tj during the day is

Ltj = [qA2
tj , q

A1
tj , q

B1
tj , q

B2
tj ] (2)

where qAi
tj and qBi

tj indicate the total depths at prices Ai and Bi at time tj. The limit order

book changes over time due to the arrival of new limit orders (which augment the depth of

the book) and market orders (which remove depth from the book) from arriving informed

and uninformed investors and due to limit-order submissions from the crowd. The resulting

dynamics are

Ltj = Ltj−1
+Qtj + Ctj j = 1, . . . , N (3)

where Qtj is the change in the book due to an arriving investor’s action xtj ∈ Xtj at tj:
10

Qtj = [QA2
tj , Q

A1
tj , Q

B1
tj , Q

B2
tj ] =



[−1, 0, 0, 0] if xtj = MBA2

[0,−1, 0, 0] if xtj = MBA1

[+1, 0, 0, 0] if xtj = LSA2

[0,+1, 0, 0] if xtj = LSA1

[0, 0, 0, 0] if xtj = NT

[0, 0,+1, 0] if xtj = LBB1

[0, 0, 0,+1] if xtj = LBB2

[0, 0,−1, 0] if xtj = MSB1

[0, 0, 0,−1] if xtj = MSB2

(4)

7In a richer model, we could assume the crowd submits limit orders at prices three ticks from the uncon-
ditional common value v0 and that their limit orders also have time priority.

8The action space Xtj of orders that can be submitted at time tj includes market orders at the standing
best bid or offer at time tj . The index itj in MSBitj and MBAitj reflects the fact that the best bid or offer

at time tj are not at fixed price levels but rather depends on the incoming state of the limit order book at
the inside and outside prices at tj . There is no time script in the limit order notation LSA1, ... because
these are just limit orders at particular fixed prices A1, . . . in the price grid.

9In practice, daily opening limit order books include uncancelled orders from the previous day and new
limit orders from opening auctions. For simplicity, we abstract from these interesting features of markets.

10There are nine alternatives in (4) because we allow separately for cases in which the best bid and ask
for market sells and buys at time tj are at the inside and outside quotes.
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where “+1” with a limit order denotes the arrival of an additional order at a particular limit

price, and “−1” with a market order denotes execution against a limit order at the standing

best-bid-or-offer limit price, and where Ctj is the change in the limit order book due to any

limit orders submitted by the crowd:

Ctj =


[1, 0, 0, 0] if qA2

tj−1
+QA2

tj = 0

[0, 0, 0, 1] if qB2
tj−1

+QB2
tj = 0.

[0, 0, 0, 0] otherwise.

(5)

A potentially important source of information at time tj is the observed history of orders

at prior times t1, .., tj−1. When traders arrive in the market, they observe the history of

market activity up through the current standing limit order book at the time they arrive.

However, since orders from the crowd have no incremental information beyond that in the

arriving active-investor orders, we exclude them from the notation for the portion of the

order history used for informational updating of investor beliefs, which we denote by Ltj−1
=

{Qt1 , . . . , Qtj−1
}.

Investors trade using optimal order-submission strategies given their information and any

private-value motive. If an uninformed investor arrives at time tj, then his order xtj is chosen

to maximize his expected terminal payoff:

max
x∈Xtj

wU(x |βtj ,Ltj−1
) =


[
v0 + E[∆ |Ltj−1

, θxtj ] + βtj − p(x)
]
Pr(θxtj |Ltj−1

) if x is a buy order

0 if x is a NT[
p(x)− (v0 + E[∆ |Ltj−1

, θxtj ] + βtj )
]
Pr(θxtj |Ltj−1

) if x is a sell order

(6)

where p(x) is the price at which order x trades. If x is a market order, then the execution

price p(x) is the best standing quote on the other side of the market at time tj. If x is a non-

marketable limit order, then p(x) is its limit price. The expression θxtj in (6) denotes the set

of future trading states in which an order x submitted at time tj is executed.11 Conditioning

on θxtj matters for limit orders because the sequences of subsequent orders that may or may

not result in the execution of earlier limit orders can be correlated with the asset-value shock

∆. For example, subsequent buy market orders may be more likely given positive ∆ shocks

if value shocks are sufficiently large (i.e., if δ >> κ/2, so that informed investors are willing

to cross the inside bid-ask spread using market orders). The probability of outside limit

orders being undercut by subsequent aggressive inside limit orders by informed investors is

also different given good or bad news. Market orders, of course, execute with probability 1.

Uninformed investors rationally take the relation between future orders and ∆ into account

11A market orders xtj is executed immediately at time tj and so is executed for sure.
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when forming their expectation E[∆ |Ltj−1
, θxtj ] of what the asset will be worth in states

in which their limit orders are executed. Uninformed investors in (6) use the prior order

history Ltj−1
in two ways: It affects their beliefs about limit-order execution probabilities

Pr(θxtj |Ltj−1
) and their execution-state-contingent asset-value expectations E[∆ |Ltj−1

, θxtj ].

An informed investor who arrives at tj chooses an order xtj to maximize her expected

payoff:

max
x∈Xtj

wI(x | v, βtj ,Ltj−1
) =


[
v + βtj − p(x)

]
Pr(θxtj |v,Ltj−1

) if x is a buy order

0 if x is a NT[
p(x)− (v + βtj)

]
Pr(θxtj |v,Ltj−1

) if x is a sell order

(7)

The only uncertainty for informed investors is whether any limit orders they submit will be

executed. Their belief about order-execution probabilities Pr(θxtj | v,Ltj−1
) are conditioned

on both the trading history up through the current book and on their knowledge about the

ending asset value. Informed traders condition on Ltj−1
, not to learn about the value shock ∆

(which they already know) or about later investor private values βtj (which are independent

over time), but rather because the order history is an input in the trading behavior of later

uninformed investors (with whom they might trade in the future) and, thus, also in the

trading behavior of later informed investors (against whom they compete and who will also

take history-contingent uninformed-investor learning behavior into account when deciding

whether to undercut earlier limit orders).12

The optimization problem in (6) defines sets of actions xtj ∈ Xtj that are optimal for the

uninformed investor at different times tj given different private-value factors βtj and order

histories Ltj−1
. Optimal orders can be unique, or there may be multiple orders that make

uninformed investors equally well-off. The optimal order-submission strategy for uninformed

investors is a probability function ϕUtj(x|βtj ,Ltj−1
) that is zero if the order x is suboptimal

and equals a mixing probability over optimal orders. If an optimal order x is unique, then

ϕtj(x|βtj ,Ltj−1
) = 1. Mixed strategies are also allowed. Similarly, the optimization problem

in (7) leads to an optimal order-submission strategy ϕItj(x|βtj , v,Ltj−1
) for informed investors

at time tj given their private value βtj , their knowledge about the asset value v, and the

order history Ltj−1
.

Our model has four sources of potential order-flow randomness. First, orders are random

due to the random arrival of informed and uninformed investors. Second, they are random

due to the asset-value shock ∆ that informed traders condition on. Third, orders are random

12Recall here that in one specification of our model, only uninformed investors have random private
valuations, while in a second richer specification both informed and uninformed investors have random
private valuations.
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due to randomness in investors’ personal private values βtj . This is illustrated in Figure 1 for

a numerical example of our model that is considered in detail in Section 2.2. The plot shows

where the order-submission probabilities come from for an informed investor Iv at time

t1 by superimposing the upper envelope of the expected payoffs for the different optimal

orders at time t1 for the case of good news about a positive value shock ∆ on the truncated

Normal βtj distribution. It shows how different βtj subranges correspond to discrete sets of

optimal orders delimited by βtj thresholds. Similar constructions exist at other dates for

other informed and uninformed investors. Fourth and lastly, some equilibria involve order

randomness due to mixed strategies ϕUtj and ϕItj .

To summarize, our model captures the following economic drivers of trading in a dynamic

limit order market with adverse selection: First, trading by uninformed investors provides

camouflage for trading by the informed investors. Second, investors trade off gains from

trading immediacy and price improvement when deciding between submitting market vs.

limit orders and in their choice of using more vs. less aggressive limit orders. Third, there is

dynamic competition between informed investor to trade on their common private informa-

tion over time. Fourth, there is competition between informed and uninformed investors in

liquidity provision.

Figure 1: β Distribution and Upper Envelope for Informed Investor Iv̄ at time
t1. This figure shows the private value β ∼ Tr[N (µ, σ2)] distribution superimposed on the plot of the
expected payoffs the informed investor Iv̄ with good news at time t1 for each equilibrium order type MBA2,
MSB2, LSA2, LSA1, LBB1, LBB2, NT , (solid colored lines) when the total book (including crowd limit
orders) opens Lt0 = [1 0 0 1]. The dashed lines show the investor’s upper envelope for the optimal orders. The
vertical black lines show the β-thresholds at which two adjacent optimal strategies yield the same expected
payoffs. LSA1 is the optimal order for values of β below the first vertical black line; LSA2 is the optimal
order for the values of β between the first and the second vertical lines; and so forth. The market parameters
are α = 0.8, δ = 1.4, µ = 0, σ = 15, and κ = 1.
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1.1 Equilibrium

An equilibrium is a set of mutually consistent beliefs and optimal strategies for uninformed

and informed investors for each time tj, given each order history Ltj−1
, private-value factor

βtj , and (for informed traders) private information v. This section explains what “mutually

consistent” means and then gives a formal definition of an equilibrium.

A central feature of our model is asymmetric information. By observing orders over

time, uninformed traders infer information about the asset value v and use it in their order-

submission strategies. More precisely, uninformed traders rationally learn from the trading

history about the probability that v will go up, stay constant, or go down. However, investors

cannot learn about the private values (βtj) of investors at future times tj or about the

information status (I or U) of future traders since, by assumption, these are both independent

over time. Informed investors do not need to learn about v since they know it directly.

However, they do condition their orders on v both because v is the final stock value and also

because v tells them what type of informed investors Iv will arrive in the future (along with

the uninformed U traders). Informed investors also condition on the order history Ltj−1
,

since Ltj−1
affects the trading behavior of future investors.13

The underlying economic state in our model is the realization of the asset value v

and a sequence of investors who arrive in the market. The investor who arrives at time

tj is described by two characteristics: Their status as being informed or uninformed, I

or U , and their private-value factor βtj . The underlying economic state is exogenously

chosen over time by Nature. More formally, it follows an exogenous stochastic process

described by the model parameters δ, α, µ, and σ. An asset value and a sequence of

arriving investors together with a pair of strategy functions — which we denote here as

Φ = {ϕUtj(x|βtj ,Ltj−1
), ϕItj(x|βtj , v,Ltj−1

)} — induce a sequence of trading actions xtj which

— together with the predictable actions of the trading crowd — results in a sequence of

observable changes in the state Ltj of the limit order book which results in a sequence of

order paths Ltj . Thus, the stochastic process generating paths of order histories is induced

by the economic state process and the strategy functions. First, the order-path process

determines the unconditional probabilities of different paths Pr(Ltj) and the conditional

probabilities Pr(Qtj |Ltj−1
) of particular order book changes Qtj due to arriving investors

given a prior history Ltj−1
. Second, the endogenous order-path process also determines the

order-execution probabilities Pr(θxtj | v,Ltj−1
), with v, and Pr(θxtj |Ltj−1

) for informed and

13The order history Ltj−1
is an input in the learning problem of future uninformed investors and, thus,

is an input in their order-submission strategy. In addition, since future informed investors know that Ltj−1

can affect trading by uninformed investors, it also enters the order-submission strategies of future informed
investors. Thus, for both reasons current informed investors condition on Ltj−1 .
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uninformed investors for each possible orders x at time tj. These probabilities are computed

by listing all of the possible underlying economic states (i.e., value and investor sequence

realizations), mechanically applying the order-submission rules Φ, identifying the order path

outcomes, and then taking expectations across paths.

Let ` denote the set of all histories {Ltj : j = 1, . . . , N − 1} of available orders of lengths

up to N − 1 trading periods. A N − 1 period long history is the longest history an order-

submission strategy can depend on in our N -period model. Certain order paths in ` are

possible in that they have positive probability, Pr(Ltj) > 0, given the strategy functions

Φ, but other paths may be feasible in that they consist of available orders in the action

choice sets Xtj but not possible in that Pr(Ltj) = 0 for Φ. Let ` in,Φ denote the subset of

all possible order paths Ltj in ` with positive probability given order strategies Φ, and let

` off,Φ denote the complementary set of order paths that are feasible but not possible given Φ.

This notation will be useful when discussing “equilibrium” beliefs on order paths that have

positive probability and “off equilibrium” beliefs on paths that have zero probability given

investor strategies. The strategy functions Φ are defined for all paths in `. In particular,

this includes the possible paths in ` in,Φ given Φ and also the paths in ` off,Φ. As a result,

the probabilities Pr(Qtj |Ltj−1
), Pr(θxtj | v,Ltj−1

) and Pr(θxtj |Ltj−1
) are always well-defined,

because the continuation trading process going forward — even after an unexpected order-

arrival event (i.e., a path Ltj−1
∈ ` off,Φ) — is still well-defined.

The stochastic process for order paths and its relation to the underlying economic state

also determine the uninformed-investor expectations E[v |Ltj−1
, θxtj ] of the terminal asset

value given the previous order history Ltj−1
and conditional on future execution in states

θxtj for orders x at time tj. In particular, beliefs and expectations for uninformed investors

involve backward conditioning on the prior order history Ltj−1
and forward conditioning on

the endogenous set of future states θxtj in which orders x are executed. These beliefs and

expectations are determined as follows:

• Step 1: The conditional probabilities πvtj = Pr(v|Ltj) for final asset values v = v̄, v0

or v given a possible order history Ltj ∈ ` in,Φ up through time tj are given by Bayes’

Rule. At time t1, this probability is

πvt1 =
Pr(v,Lt1)

Pr(Lt1)
=
Pr(Lt1|v)Pr(v)

Pr(Lt1)
=
Pr(Qt1 |v)Pr(v)

Pr(Qt1)
(8)

=
Pr(Qt1|v, I)Pr(I) + Pr(Qt1 |U)Pr(U)

Pr(Qt1)
Pr(v)

=
Eβ[ϕIt1(xt1|βt1 , v)|v, I]α + Eβ[ϕUt1(xt1|βt1)|U ](1− α)

Pr(Qt1)
πvt0
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where the prior is the unconditional probability πvt0 = Pr(v), xt1 is the order at time t1

that leads to the order book change Qt1 , and Eβ denotes an expectation with respect to

the random private value βt1 .14 At times tj > t1, the history-conditional probabilities

are given recursively by15

πvtj =
Pr(v,Ltj)

Pr(Ltj)
=
Pr(v,Qtj ,Ltj−1

)

Pr(Qtj ,Ltj−1
)

=

 Pr(Qtj |v,Ltj−1
, I)Pr(I|Ltj−1

)Pr(v|Ltj−1
)

+Pr(Qtj |v,Ltj−1
, U)Pr(U |Ltj−1

)Pr(v|Ltj−1
)


Pr(Qtj |Ltj−1

)

=
Eβ[ϕItj(xtj |βtj , v,Ltj−1

)|v, I,Ltj−1
] α + Eβ[ϕUtj(xtj |βtj ,Ltj−1

)|U,Ltj−1
] (1− α)

Pr(Qtj |Ltj−1
)

πvtj−1
(9)

Given these probabilities, the expected asset value conditional on the order history is

E[ṽ|Ltj−1
] = πv̄tj−1

v̄ + πv0
tj−1

v0 + π vtj−1
v (10)

• Step 2: Conditional probabilities πvtj for a “feasible but not possible in equilibrium”

order history Ltj ∈ ` off,Φ containing a limit order book change Qtj that is inconsistent

with the strategies Φ at time tj are set as follows:

1. If the priors are fully revealing in that πvtj−1
= 1 for some v, then πvtj = πvtj−1

for

all v.

2. If the priors are not fully revealing at time tj, then πvtj = 0 for any v for which

πvtj−1
= 0 and the probabilities πvtj for the remaining v’s can be any non-negative

numbers such that πv̄tj + πv0
tj + π vtj = 1.

3. Thereafter, until any next unexpected trading event, the subsequent probabilities

πvtj′ for j′ > j are updated according to Bayes’ Rule as in (9).

• Step 3: The execution-contingent conditional probabilities π̂vtj = Pr(v|Ltj−1
, θxtj) of a

final asset value v conditional on a prior path Ltj−1
and on execution of a limit order

x submitted at time tj is

π̂vtj =
Pr(Ltj−1

)Pr(v|Ltj−1
) Pr(θxtj−1

|v,Ltj−1
)

Pr(θxtj ,Ltj−1
)

(11)

=
Pr(θxtj |v,Ltj−1

)

Pr(θxtj |Ltj−1
)
πvtj−1

14A trader’s information status (I or U) is independent of the asset value v, so Pr(I|v) = Pr(I) and
Pr(U |v) = Pr(U). Furthermore, uninformed traders have no private information about v, so the probability
Pr(Qt1 |U) with which they take a trading action Qt1 does not depend on v. Note that our notation allows
for different distributions over βt1 in the expectation Eβ conditional on I and U investors.

15A trader’s information status is again independent of v, and it is also independent of the past trading
history Lt1 . While the probability with which an uninformed trader takes a trading action Qt1 may depend
on the past order history Ltj , it does not depend directly on v which uninformed traders do not know.
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This holds when adjusting for a future execution contingency both when the probabil-

ities πvtj−1
given the prior history Ltj−1

are for possible paths in ` in,Φ (from (8) and (9)

in Step 1) and also for feasible but not possible paths in ` off,Φ (from Step 2). These

execution-contingent probabilities π̂vtj are used to compute the execution-contingent

conditional expected value:

E[ṽ|Ltj−1
, θxtj ] = π̂v̄tj v̄ + π̂v0

tj v0 + π̂ vtj v¯
(12)

used by uninformed traders to compute expected payoffs for limit orders. In particular,

the probabilities in (12) are the execution-contingent probabilities π̂vtj from (11) rather

than the probabilities πvtj from (9) that just condition on the prior trading history but

not on the future states in which the limit order is executed.

Given these updating dynamics, we can now define an equilibrium.

Definition. A Perfect Bayesian Nash Equilibrium of the trading game in our model is a col-

lection {ϕU, ∗tj (x|βtj ,Ltj−1
), ϕI, ∗tj (x|βtj , v,Ltj−1

), P r∗(θxtj | v,Ltj−1
), P r∗(θxtj |Ltj−1

), E∗[ṽ|Ltj−1
, θxtj ]}

N
j=1

of order-submission strategies, execution-probability functions, and execution-contingent

conditional expected asset-value functions such that:

• The equilibrium execution probabilities Pr∗(θxtj | v,Ltj−1
) and Pr∗(θxtj |Ltj−1

) are con-

sistent with the equilibrium order-submission strategies {ϕU, ∗tj+1
(x|βtj+1

,Ltj), . . . , ϕ
U, ∗
t5 (x|βt5 ,Lt4)}

and {ϕI, ∗tj+1
(x|βtj+1

, v,Ltj), . . . , ϕ
I, ∗
t5 (x|βt5 , v,Lt4)} after time tj.

• The execution-contingent conditional expected asset values E∗[ṽ|Ltj−1
, θxtj ]} agree with

Bayesian updating equations (8), (9), (11), and (12) in Steps 1 and 3 when the order x

is consistent with the equilibrium strategies ϕU, ∗tj (x|βtj ,Ltj−1
) and ϕI, ∗tj (x|βtj , v,Ltj−1

)

at date tj and with the off-equilibrium updating in Step 2 when x is an off-equilibrium

action inconsistent with the equilibrium strategies.

• The positive-probability supports of the equilibrium strategy functions ϕU, ∗tj (x|βtj ,Ltj−1
)

and ϕI, ∗tj (x|βtj , v,Ltj−1
) (i.e., the orders with positive probability in equilibrium) are

subsets of the sets of optimal orders for uninformed and informed investors from their

optimization problems (6) and (7) and the equilibrium execution probabilities and

outcome-contingent conditional asset-value expectation functions Pr∗(θxtj | v,Ltj−1
), Pr∗(θxtj |Ltj−1

),

and E∗[ṽ|Ltj−1
, θxtj ].

Our equilibrium concept differs from the Markov Perfect Bayesian Equilibrium used in

Goettler et al. (2009). Beliefs and strategies in our model are path-dependent; that is to say,
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traders use Bayes Rule given the full prior order history when they arrive in the market. In

contrast, Goettler et al. (2009) restricts Bayesian updating to the current state of the limit

order book and does not allow for conditioning on the previous order history. Roşu (2016b)

also assumes a Markov Perfect Bayesian Equilibrium. The quantitative importance of the

order history is considered in Section 2.

To help with intuition, Appendix A illustrates the order-submission and Bayesian updat-

ing mechanics for a particular realized equilibrium path in the extensive form of the trading

game. Appendix B explains the algorithm used to compute equilibria in our model.

2 Results

This section presents results about how trading decisions of informed and uninformed in-

vestors and the learning process for uninformed investors affect market liquidity, price dis-

covery, and investor welfare. Section 2.1 first considers a model specification in which only

uninformed investors have random private-value trading motives. Section 2.2 considers a

second specification that generalizes the analysis and shows the robustness of our findings

and extends them when informed investors also have private-value motives. Throughout

our analysis, there are N = 5 trading rounds and the truncated Normal distribution for

private values Tr[N (µ, σ2)] has a mean µ = 0, dispersion σ = 15, and support [−10, 10].

Our main results explain how various features of investors’ endogenous order-submission

strategies can combine to overturn standard intuitions about adverse selection, information

revelation, liquidity, and welfare in limit order markets and describe non-Markovian aspects

of price discovery.

Our model is non-stationary with start-up effects at the beginning of the day and terminal

horizon effects at the market close, much like actual trading days. Thus, we report results

for two time windows. The first is the market open at time t1. The second is over the middle

of the trading day from times t2 through t4. When the market opens at time t1, there are

time-dependent incentives to provide liquidity: The opening book Lt0 is thin (with limit

orders only from the crowd), and there is the maximum time for future investors to arrive

to hit limit orders from t1. There are also time-dependent disincentives for limit orders:

Information asymmetries are maximal at time t1, since there has been no learning through

the trading process. Also, there is the maximal time for early less aggressive outside limit

orders (at A2 and B2) to be undercut by later more aggressive inside limit orders (at A1

and B1). Over the day, information is revealed (lessening adverse selection costs), but the

standing book can also become fuller (due to competition in liquidity provision from earlier
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limit orders with time priority), and the remaining time for market orders to arrive and

execute limit orders becomes shorter. Comparing these two time windows shows how non-

stationary market dynamics change over the day. The market close at t5 is also important,

but trading then is straightforward. At the end of the day, investors only submit market

orders (or do not trade), because the execution probability for new limit orders at t5 is zero

given our assumption that unfilled limit orders are canceled once the market closes. Our

choice of N = 5 trading rounds in a day is a compromise between computational tractability

and having time mid-day for relatively less constrained endogenous choices between market

and limit orders at times t2 through t4 away from the immediate mechanical effects of the

relatively thin book at the market open at t1 and the end-of-day market orders at t5.

Our model lets us investigate three questions: First, who provides and takes liquidity,

and how does the amount of adverse selection affect investor decisions to take and provide

liquidity? Second, how does market liquidity vary with different amounts of adverse selec-

tion? Third, how does the information content of different types of orders depend on an

order’s direction, aggressiveness, intraday timing, and on the prior order history?

We present numerical comparative statics and other analyses for four different combina-

tions of parameters with high and low informed-investor arrival probabilities (α = 0.8 and

0.2) and high and low value-shock volatilities (δ = 1.4 and 0.2). The value-shock volat-

ility δ controls the magnitude of adverse selection in the market: A large δ means the

private information of informed investors is potentially large. We call markets with δ = 1.4

high-volatility markets and markets with δ = 0.2 low-volatility markets because of the size

of arriving information δ relative to the κ = 1 tick size. In high-volatility markets with

δ = 1.4, the final asset value v given good or bad news is inside the outside quotes A2 or

B2. This has two implications: First, providing liquidity at the outside quotes is always

profitable for the crowd, even when the market is fully revealing. Second, when informed-

investor private-value realizations βtj are sufficiently small (e.g., zero), informed investors in

our high-volatility market (given δ < 1.5) never use market orders to trade at the outside

quotes, but they do potentially use market orders to trade with limit orders at the inside

quotes. In contrast, in low-volatility markets, v is always between the inside quotes A1 and

B1, and so market orders are never profitable for informed investors with small (e.g., zero)

private values βtj . A real-world example of a low-volatility trading environment are days

on which a heteroscedastic stocks’ stochastic volatility process has low volatility. Another

example are certain futures contracts where a large amount of bid-ask bounce indicates that

their customized price grids are large relative to the underlying information flow.16 One fur-

16We thank Rob Almgren for bringing this empirical fact about futures to our attention.
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ther example is algorithmic informed trading on small valuation inferences from correlated

securities.

The informed-investor arrival probability α controls the amount of informed trading. It

has four effects: First, it controls the amount of informational competition faced by informed

investors: When α is large, it is more likely an arriving informed investor at a time tj will

face competition from other informed investors with the same private information who may

arrive later in the day (who might undercut outside limit orders posted at tj) and who have

already arrived earlier in the day (i.e., the incoming book at time tj reflects the decisions

of any earlier informed investors to hit earlier attractive inside limit orders or to post their

own limit orders). Second, α affects adverse selection faced by uninformed investors via the

probability that uninformed traders trade with informed investors as counterparties and via

the probability of prior information revelation by prior informed trading. Third, when α

is high, future arriving investor trading motives are more correlated over time. Fourth, α

affects the potential gains-from-trade in the market if informed and uninformed traders have

different βtj distributions.

2.1 Uninformed traders with random private-value motives

In our first model specification, only uninformed U traders have random private values βtj .

Informed I investors have fixed neutral private values βtj = 0. Thus, as in Kyle (1985), there

is a clear differentiation between investors who speculate on private information and those

trading for purely non-informational reasons. Unlike Kyle (1985), informed and uninformed

investors here can choose to trade using limit or market orders rather than being restricted

to just market orders.

2.1.1 Trading strategies

The equilibrium trading behavior of investors is complex because of endogenous equilibrium

interactions and forward- and backward-looking belief updating and because the dynamic

optimization problems in (6) and (7) are non-stationary (given the reduction in the remain-

ing time for limit order execution as time passes over the day) and state-contingent (based on

valuation information revealed by the prior order history and on the state of the stochastic-

ally evolving standing limit order book when investors arrive in the market). However,

despite this complexity, a few basic motives can be identified that drive order-submission

decisions for the different investors: First, directionally-informed Iv̄ and Iv investors trade

both to speculate on their private information and also potentially to profit from providing

liquidity to uninformed investors. Second, informed Iv0 investors with neutral information
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trade to profit from liquidity provision to uninformed investors given their private knowledge

that there was no valuation shock so that the ex ante expectation E[v] is correct. Lastly,

uninformed U investors trade to capture their personal private-value gains-from-trade (if

their |βtj | is large) and to provide liquidity to other uninformed investors but at the risk of

adverse selection with informed investors (if their |βtj | is small).

We begin by investigating who supplies and takes liquidity and how these decisions change

with the amount of adverse selection and information competition. Our starting point follows

from first principles:

Proposition 1 Directionally-informed investors with βtj = 0 only trade using limit orders

when the value-shock volatility δ is small, but they use both market and limit orders when

δ is sufficiently large. In addition, their trading strategies are affected differently by changes

in adverse selection due to the value-shock size δ vs. changes in the arrival probability α of

informed investors.

Proof: Consider first the effect of the value-shock δ on informed-investor order submissions

given any fixed α > 0. If the value-shock δ is sufficiently close to zero, then directionally-

informed Iv̄ and Iv investors with good or bad news never use market orders, since the

terminal asset value v is always between the inside bid and ask prices A1 and B1 given a

discrete tick size. However, once δ is sufficiently large, investors with good and bad news

start to use market orders for their guaranteed execution. Thus, the set of orders used by

directionally-informed investors can change when δ changes. This is true for all informed-

investor arrival probabilities α > 0. In contrast, consider the effect of the informed-investor

arrival probability α on informed-investor order submissions given a fixed δ > 0. If the

value-shocks δ are close to zero, informed investors with good or bad news never use market

orders for any informed-investor arrival probability α. They are unwilling to pay a large tick

size to trade on their small information. Instead, they use limit orders to supply liquidity

asymmetrically depending on the direction of their information. Thus, the set of orders used

by directionally-informed investors in low-volatility markets never changes to include market

orders when α changes.

Our analysis continues by describing several specifics about investor trading behavior

that, in addition to their own interest, will drive our later results about liquidity, price

discovery, and welfare. Table 1 reports results about trading early in the day at time t1

using a 2 × 2 format. Each of the four cells corresponds to a different combination of

parameters. Comparing cells horizontally shows the effect of a change in the value-shock

size δ while holding the arrival probability α for informed traders fixed. Comparing cells
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vertically shows the effect of a change in the informed-investor arrival probability while

holding the value-shock size fixed. In each cell corresponding to a set of parameters, there

are four columns reporting conditional results for informed investors with good news, neutral

news, and bad news about the asset (Iv, Iv0 , Iv) and for an uninformed investor (U) and

a fifth column with the unconditional market results (Uncond). The table reports order-

submission probabilities and several market-quality metrics. Specifically, we report expected

bid-ask spreads conditioning on the three informed-investor types E[Spread |Iv] and on the

uninformed trader E[Spread |U ], the unconditional expected market spread E[Spread], and

expected depths at the inside prices (A1 and B1) and the total at both prices (A1 + A2

and B1 + B2) on each side of the market. As we shall see, our results are symmetric for

the directionally informed investors Iv and Iv on the buy and sell sides of the market. In

addition, we report the probability-weighted contributions to the different investors’ welfare

(i.e., expected gains-from-trade) from limit and market orders respectively, and investor total

expected welfare.17 Table C1 in Appendix C provides additional results about execution

probabilities for the different orders (PEX(xt1)) and also the uninformed investor’s updated

expected asset value E[v|xt1 ] given different types of buy orders xt1 at time t1.

Table 2 shows average results for times t2 through t4 during the day using a similar 2× 2

format. The averages are across time. Comparing results for time t1 with the averages for

t2 through t4 shows intraday variation in the trading process. There is no table for time t5,

because only market orders are used to trade at the market close.

Consider first directionally-informed Iv and Iv investors. Two properties have important

impacts on trading dynamics and on market-quality and order-informativeness in the price-

discovery process. First, directionally-informed investors tend to trade more aggressively

in high-volatility markets in which their private information is large relative to the tick

size. This aggressive-trading property is intuitive since larger potential payoffs make price

improvement less important relative to trade execution on speculative trades. The most

aggressive way to trade is via market orders, which take liquidity. However, the next most

aggressive way to trade is via limit orders at the inside prices. Thus, in some cases greater

trading aggressivenss means greater liquidity provision by inside limit orders rather than

liquidity taking by market orders. Second, directionally-informed investors switch from

speculation to liquidity provision on the other side of the market if the speculative side of

the standing limit order book is too deep when they arrive. In particular, a deep standing

17Let WU (βtj ) and W I(v, βtj ) denote value functions when (6) and (7) are evaluated at time tj using
optimal strategies for the uninformed and informed investors. The total ex ante welfare for the uninformed
investor at tj is Eβ [WU (βtj )] where the expectation is taken over the uninformed investor’s random βtj . The
corresponding expected welfare for informed investors given v is W I(v, βtj ) in our first model specification
where βtj = 0 for informed investors and Eβ [W I(v, βtj )] in our second specification in Section 2.2 where the
expectation is taken over the informed investor’s random βtj .
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book of competing limit orders with time priority from earlier investors reduces the execution

probability, and thus expected profitability, of further speculative limit orders (e.g., limit

buys given good news v̄), but if there is little depth on the other side of the book, then

directionally-informed investors may start submitting limit orders to profit from liquidity

provision on the other side of the book (e.g., limit sells at limit prices above v̄). However, if

the standing book is too deep on both sides, then they do not submit any order (NT ). We

call these the unbalanced deep-book effect and the two-sided deep-book effect.

The aggressive-trading property can be seen in Table 1 at time t1 where Iv̄ and Iv investors

only post limit orders at the less-aggressive outsides quotesA2 andB2 in the two low-volatility

parameterizations on the right (with δ = 0.2 and α = 0.2 or 0.8) but use aggressive limit

orders at the inside quotes A1 and B1 — either as a pure-strategy or in a mixed-strategy along

with outside limit orders — in the two high-volatility parameterization on the left (with δ =

1.4 and the same two α values). Next, consider the average order-submission probabilities

at times t2 through t4 in Table 2. In the two low-volatility parameterizatons on the right,

informed Iv̄ and Iv investors supply liquidity via limit orders on both sides of the market

— either to speculate on their information or to provide liquidity due to the unbalanced

deep-book effect — with order-submission probabilities that are somewhat skewed at the

inside quote in the direction of their small amount of private information (δ = 0.2).18 Now

consider increasing volatility and moving to the two high-volatility parameterizations on the

left. If the informed-investor arrival probability is low (α = 0.2), higher value volatility δ

causes directionally-informed investors to increase their probability of using aggressive inside

limit orders (the trading aggressiveness property for limit orders) and also to start using

market orders to speculate their information. However, when the informed-investor arrival

probability is high (α = 0.8), increased trading aggressiveness by the Iv̄ and Iv investors in

the high-volatility market takes the form of reduced speculative limit orders and increased

market orders at times t2 through t4. However the biggest effects of higher asset volatility in

the high α case are their increased use of NT and increased liquidity provision via outside

limit orders on the opposite side of their information (due to the two-sided and unbalanced

book effects). With a high α = 0.8, informed investors face more competition on one or

both sides of the limit order book from earlier investors with the same information. This

can cause the book to become “full” for purposes of speculation and/or liquidity provision.

Next, consider the uninformed U investors. One obvious fact in Table 1 is that, in these

parameterizations, uninformed-trader behavior at t1 changes more when α changes than

18The high probability of an outside LSA2 limit sell by an Iv̄ investor later in the day when α = 0.8 is
in part due to the high probability that the standing book will already have a LBB2 limit buy from an Iv̄
investor at t1.
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when δ changes. This is because uniformed traders, given their potentially large private-value

gains-from-trade, tend here to be more concerned about execution probability (controlled by

α with its negative impact on the mix of investor with potentially large private-value trading

motives) than the relatively modest adverse selection costs (even with δ = 1.4).

An equilibrium trading interaction here is noteworthy. Note that informed Iv̄ and Iv

investors use aggressive limit orders at the inside quotes at time t1 with a lower probability

in the upper-left (high adverse-selection) parameterization than in the lower-left (less-intense

adverse selection) parameterization (0.433 vs 1.0). At first glance, this might seem counter-

intuitive since informational competition from future informed investors (and the possibility

of early outside limit orders being undercut by later inside limit orders) is greater when

the informed-investor arrival probability α is large (i.e., α = 0.8 vs 0.2). The explanation

is that in the high-δ/high-α parametrization, uninformed U investors use aggressive inside

limit orders at t1 with only a very small probability relative to the high-δ/low-α market

(0.03 vs 0.393). As a result, there is much less potential camouflage in equilibrium from

uninformed U investors posting inside limit orders in the upper-left parametrization. Table

C1 in Appendix C shows that, as a result, the execution probabilities for the highly revealing

inside limit orders in the high-δ/high-α market are much lower than for the less-informative

inside limit orders in the high-δ/low-α market (0.090 vs 0.735).19

Lastly, consider the neutrally-informed Iv0 investors. There are three points to note:

First, neutrally-informed investors use more inside limit orders at times t2 through t4 than

directionally-informed traders in some parameterizations (high-α/high-δ and low-α/low-δ).

This is consistent with the intuition of Bloomfield, O’Hara and Saar (BOS 2005), who

find in laboratory experiments that informed investors provide liquidity via limit orders

when mispricing is small (i.e., as here when v = v0). However, the BOS effect does not

obtain in other parametrizations where it is either negligible or is reversed (high-α/low-

δ and low-α/high-δ) due other causal effects. Second, the use of inside limit orders by

the neutrally-informed Iv0 investors increases significantly at times t2 through t4 when the

probability α of informed traders increases. This is an example of increased informational

competition. Third, neutrally-informed Iv0 investors respond differently to adverse selection

than uninformed U investors because the Iv0 investors have an advantage in that there is

no adverse selection risk for them. They know the value shock ∆ is 0 and, thus, that the

unconditional valuation v0 is correct. This is another variation on the BOS intuition. We see

this effect at times t2 through t4 where Iv0 investors consistently use inside limit orders more

than U investors. Overall, Tables 1 and 2 show there is variation across parameterizations

19Uninformed investors with extreme private values still hit limit orders when the market is fully revealing.
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in the considerations driving neutrally-informed Iv0 investor trading.

2.1.2 Market quality

Market liquidity changes when the magnitude of adverse selection (δ) and the amount of

informed trading (α) in a market change. A standard intuition, as in Kyle (1985), is that

liquidity deteriorates given more adverse selection. Roşu (2016b) also finds worse liquidity

(a wider bid-ask spread) given higher value volatility in his limit order market. However, we

show the standard intuition is not always true when informed investors endogenously choose

whether to supply liquidity via limit orders or take liquidity via market orders.

Observation 1 Liquidity can potentially improve when adverse selection increases.

In particular, markets can become more liquid when the value-shock volatility δ increases

from being small (0.2) to being large (1.4) relative the price tick size.

The impact of adverse selection on market liquidity follows directly from three intuitions

about the trading strategies in Section 2.1.1. First, changes in market parameterizations (i.e.,

δ and α) that make directionally-informed investors trade more aggressively (i.e., that reduce

their use of outside limit orders at A2 and B2) can improve liquidity if their stronger trading

interest migrates to aggressive inside limit orders at A1 and B1 rather than to market orders.

This is the aggressive trading effect for limit orders. Second, neutrally-informed investors

have a comparative advantage in providing liquidity over uninformed investors since Iv0

investors know the unconditional asset value is correct. This is a version of the Bloomfield-

O’Hara-Saar effect. Third, liquidity can change due to a composition effect when changes

in α change the mix of informed and uninformed investors, since different types of investors

affect liquidity differently. Informed Iv0 investors with neutral news are natural liquidity

providers. Their impact on liquidity comes from whether they supply liquidity at the inside

(A1 and B1) or outside (A2 and B2) prices. In contrast, directionally informed Iv̄ and Iv

investors and uninformed U traders affect liquidity depending on whether and how they

opportunistically take or supply liquidity. All three effects can contribute to overturning the

standard intuition about adverse selection and liquidity.
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Table 1: Trading Strategies, Liquidity, and Welfare at Time t1 in an Equilibrium with
Informed Traders with β = 0 and Uninformed Traders with β ∼ Tr[N (µ, σ2)]. This table
reports results for two different informed-investor arrival probabilities α (0.8 and 0.2) and two different
value-shock volatilities δ (1.4 and 0.2). The private-value parameters are µ = 0 and σ = 15, the tick size
is κ = 1, and there are N = 5 trading dates. Each cell corresponding to a set of parameters reports the
equilibrium order-submission probabilities, the expected bid-ask spreads and expected depths at the inside
prices (A1 and B1) and total depths on each side of the market after order submissions at time t1, and
expected welfare of investors arriving at t1. The first four columns in each parameter cell are for informed
traders with positive, neutral and negative signals, (Iv̄,Iv0 ,Iv

¯
) and for uninformed traders (U). The fifth

column (Uncond.) reports unconditional results for the market.

δ = 1.4 δ = 0.2

Iv̄ Iv0 Iv
¯

U Uncond. Iv̄ Iv0 Iv
¯

U Uncond.

LSA2 0 0.500 0.567 0.087 0.302 0 0.500 1.000 0.052 0.410
LSA1 0 0 0.433 0.030 0.122 0 0 0 0.079 0.016
LBB1 0.433 0 0 0.030 0.122 0 0 0 0.079 0.016
LBB2 0.567 0.500 0 0.087 0.302 1.000 0.500 0 0.052 0.410

MBA2 0 0 0 0.383 0.077 0 0 0 0.369 0.074
MBA1 0 0 0 0 0 0 0 0 0 0
MSB1 0 0 0 0 0 0 0 0 0 0
MSB2 0 0 0 0.383 0.077 0 0 0 0.369 0.074
NT 0 0 0 0 0 0 0 0 0 0

α = 0.8
E[Spread |·] 2.567 3.000 2.567 2.940 2.757 3.000 3.000 3.000 2.842 2.968
E[Depth A2+A1 |·] 1.000 1.500 2.000 1.117 1.423 1.000 1.500 2.000 1.131 1.426
E[Depth A1 |·] 0 0 0.433 0.030 0.122 0 0 0 0.079 0.016
E[Depth B1 |·] 0.433 0 0 0.030 0.122 0 0 0 0.079 0.016
E[Depth B1+B2 |·] 2.000 1.500 1.000 1.117 1.423 2.000 1.500 1.000 1.131 1.426

E[Welfare LO |·] 0.367 0.614 0.367 0.089 0.377 0.846 0.688 0.846 0.153 0.665
E[Welfare MO |·] 0 0 0 3.413 0.683 0 0 0 3.390 0.678
E[Welfare |·] 0.367 0.614 0.367 3.502 1.060 0.846 0.688 0.846 3.543 1.343

LSA2 0 0.500 0 0.056 0.078 0 0.500 1.000 0.063 0.150
LSA1 0 0 1.000 0.393 0.381 0 0 0 0.397 0.318
LBB1 1.000 0 0 0.393 0.381 0 0 0 0.397 0.318
LBB2 0 0.500 0 0.056 0.078 1.000 0.500 0 0.063 0.150

MBA2 0 0 0 0.051 0.041 0 0 0 0.040 0.032
MBA1 0 0 0 0 0 0 0 0 0 0
MSB1 0 0 0 0 0 0 0 0 0 0
MSB2 0 0 0 0.051 0.041 0 0 0 0.040 0.032
NT 0 0 0 0 0 0 0 0 0 0

α = 0.2
E[Spread |·] 2.000 3.000 2.000 2.213 2.237 3.000 3.000 3.000 2.206 2.365
E[Depth A2+A1 |·] 1.000 1.500 2.000 1.449 1.459 1.000 1.500 2.000 1.460 1.468
E[Depth A1 |·] 0 0 1.000 0.393 0.381 0 0 0 0.397 0.318
E[Depth B1 |·] 1.000 0 0 0.393 0.381 0 0 0 0.397 0.318
E[Depth B1+B2 |·] 2.000 1.500 1.000 1.449 1.459 2.000 1.500 1.000 1.460 1.468

E[Welfare LO |·] 2.618 1.471 2.618 3.379 3.150 2.268 1.497 2.268 3.595 3.279
E[Welfare MO |·] 0 0 0 0.803 0.643 0 0 0 0.642 0.514
E[Welfare |·] 2.618 1.471 2.618 4.182 3.793 2.268 1.497 2.268 4.238 3.793
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Table 2: Averages for Trading Strategies, Liquidity, and Welfare across Times t2 through
t4 for Informed Traders with β = 0 and Uninformed Traders with β ∼ Tr[N (µ, σ2)]. This
table reports results for two different informed-investor arrival probabilities α (0.8 and 0.2) and two different
value-shock volatilities δ (1.4 and 0.2) averaged over times t2 through t4. The private-value parameters are
µ = 0 and σ = 15, the tick size is κ = 1, and there are N = 5 trading dates. Each cell corresponding to a
set of parameters reports the equilibrium order-submission probabilities, the expected bid-ask spreads and
expected depths at the inside prices (A1 and B1), the total depths on each side of the market after order
submissions, and expected arriving investor welfare averaged over times t2 through t4. The first four columns
in each parameter cell are for informed traders with positive, neutral and negative signals, (Iv̄,Iv0 ,Iv

¯
) and

for uninformed traders (U). The fifth column (Uncond.) reports unconditional results for the market.

δ = 1.4 δ = 0.2

Iv̄ Iv0 Iv
¯

U Uncond. Iv̄ Iv0 Iv
¯

U Uncond.

LSA2 0.444 0.248 0.050 0.024 0.203 0.399 0.255 0.108 0.026 0.209
LSA1 0 0.246 0.254 0.149 0.163 0.192 0.239 0.288 0.064 0.205
LBB1 0.254 0.246 0 0.149 0.163 0.288 0.239 0.192 0.064 0.205
LBB2 0.050 0.248 0.444 0.024 0.203 0.108 0.255 0.399 0.026 0.209

MBA2 0 0 0 0.289 0.058 0 0 0 0.347 0.069
MBA1 0.045 0 0 0.031 0.018 0 0 0 0.058 0.012
MSB1 0 0 0.045 0.031 0.018 0 0 0 0.058 0.012
MSB2 0 0 0 0.289 0.058 0 0 0 0.347 0.069
NT 0.207 0.013 0.207 0.012 0.116 0.013 0.010 0.013 0.011 0.012

α = 0.8
E[Spread |·] 2.059 2.260 2.059 2.194 2.140 2.269 2.275 2.269 2.738 2.364
E[Depth A2+A1 |·] 1.849 2.311 2.514 1.830 2.146 2.165 2.300 2.433 1.608 2.161
E[Depth A1 |·] 0.001 0.370 0.944 0.405 0.432 0.226 0.362 0.506 0.131 0.318
E[Depth B1 |·] 0.944 0.370 0.001 0.405 0.432 0.506 0.362 0.226 0.131 0.318
E[Depth B1+B2 |·] 2.514 2.311 1.849 1.830 2.146 2.433 2.300 2.165 1.608 2.161

E[Welfare LO |·] 0.088 0.130 0.088 0.928 0.267 0.299 0.133 0.299 0.055 0.206
E[Welfare MO |·] 0.041 0 0.041 2.969 0.616 0 0 0 3.538 0.708
E[Welfare |·] 0.129 0.130 0.129 3.897 0.883 0.299 0.133 0.299 3.592 0.914

LSA2 0.103 0.390 0.601 0.083 0.139 0.375 0.389 0.443 0.093 0.155
LSA1 0 0.094 0.201 0.069 0.075 0.044 0.096 0.116 0.066 0.070
LBB1 0.201 0.094 0 0.069 0.075 0.116 0.096 0.044 0.066 0.070
LBB2 0.601 0.390 0.103 0.083 0.139 0.443 0.389 0.375 0.093 0.155

MBA2 0 0 0 0.214 0.171 0 0 0 0.218 0.175
MBA1 0.070 0 0 0.131 0.110 0 0 0 0.120 0.096
MSB1 0 0 0.070 0.131 0.110 0 0 0 0.120 0.096
MSB2 0 0 0 0.214 0.171 0 0 0 0.218 0.175
NT 0.026 0.033 0.026 0.005 0.009 0.022 0.030 0.022 0.005 0.009

α = 0.2
E[Spread |·] 2.116 2.122 2.116 2.359 2.311 2.212 2.173 2.212 2.478 2.422
E[Depth A2+A1 |·] 1.459 2.096 2.549 1.572 1.665 3.066 3.026 3.066 2.442 1.680
E[Depth A1 |·] 0.239 0.440 0.704 0.324 0.351 0.346 0.414 0.442 0.262 0.290
E[Depth B1 |·] 0.704 0.440 0.239 0.324 0.351 0.442 0.414 0.346 0.262 0.290
E[Depth B1+B2 |·] 2.549 2.096 1.459 1.572 1.665 2.257 2.091 1.932 1.576 1.680

E[Welfare LO |·] 1.228 0.609 1.228 0.477 0.586 1.206 0.654 1.206 0.500 0.605
E[Welfare MO |·] 0.278 0 0.278 3.467 2.811 0 0 0 3.417 2.734
E[Welfare |·] 1.506 0.609 1.506 3.944 3.397 1.206 0.654 1.206 3.917 3.338
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The two measures of liquidity we consider are the expected bid-ask spread and the expec-

ted depth at the inside prices. In Table 1, liquidity improves at time t1 when the value-shock

volatility δ increases (comparing parameterizations horizontally with α fixed). This hap-

pens, contrary to the standard intuition, because the informed Iv and Iv investors submit

limit orders at the inside quotes in these high-volatility markets, whereas they only use

limit orders at the outside quotes in the low-volatility markets. Violations of the standard

adverse-selection intuition also occur on average at times t2 through t4 in Table 2. Once

again, liquidity improves when δ increases for both the low and high α values. However,

the underlying causes are different: When α is low (0.2), high-volatility markets are more

liquid due both to the increased average use of inside limit orders (0.201 vs 0.044 + 0.116)

by directionally-informed investors at t2 through t4 (i.e., the aggressive trading effect for

limit orders) and due to a mechanical liquidity carry-over effect from a deeper book at t1. In

contrast, when α is high (0.8), directionally-informed investors in the high-volatility market

use fewer inside limit orders at times t2 through t4 (0.254 vs 0.192 + 0.288), but average

liquidity is still better due to the carry-over effect of greater depth from the book at time t1.

Next, consider the effect of the amount of informed trading α on liquidity (comparing

parameterizations vertically with δ fixed). At t1, liquidity is decreasing in α, as per the

standard intuition, due to the camouflage effect (with δ = 1.4) and greater adverse selection

for uninformed investors (with δ = 0.2). However, at times t2 through t4, for both high and

low value-shock volatility, a higher probability α of informed investors increases liquidity.

Liquidity improves because i) neutrally-informed Iv0 investors consistently increase their use

of limit orders at the inside prices due to increased informational competition and ii) there is

a composition effect with more informed investors, who tend to use inside limit orders more

than uninformed investors at later dates.

Our results show that the relation between adverse selection and liquidity in limit order

markets is more subtle than the standard intuition. In particular, it is the ability of investors

to choose endogenously whether to supply or demand liquidity and at what prices that

can overturn the standard intuition. Goettler et al. (2009) also investigate a market with

informed traders with no private-value motives and uninformed with private-value motives.

In their model, when volatility increases, informed traders reduce their liquidity provision

and increase their demand for liquidity; with the opposite holding for uninformed traders.

Our results show the effects are more nuanced.
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2.1.3 Welfare

Tables 1 and 2 also report results about investor welfare. First, we clearly see the importance

of limit orders for informed investors. Even in parameterizations in which informed traders

use market orders, most of their expected gains-from-trade come from limit orders. Second,

the equilibrium impact of greater value-shock volatility on directionally-informed investor

welfare is mixed, whereas a partial-equilibrium intuition might suggest it should be positive.

With a low α = 0.2 at times t2 through t4, increasing δ increases directionally-informed

investor welfare (1.506 up from 1.206). However, with a high α = 0.8, increasing δ leads

to lower average welfare for directionally-informed investors at times t2 through t4 (0.129

down from 0.299). This is due partly to their increased probability of NT (0.207 up from

0.013) due to the reduced use of market orders by uninformed investors and because the book

can fill up in the direction of the information resulting in directionally-informed investors

providing liquidity opposite their information using low-profit outside limit orders. Third

and perhaps more surprisingly, uniformed U investor utility can increase when the value

volatility δ is larger at t2 through t4. This is due to an increased trading demand by informed

investors that leads to more trading that allows more uninformed investors to capture more

of their potential gains-from-trade, which are large in the parameterizations here relative

to the still small increased adverse selection. The net effect is that it is possible, in low-α

parameterizations, to overturn another standard intuition about adverse selection.

Observation 2 It is possible for greater adverse selection due to greater value-shock volatility

δ to increase total unconditional investor welfare.

In contrast, total welfare is reduced when the arrival probability α of informed investors

increases. This is because in this model specification only uninformed U investors have

private values (i.e., informed trading leads to zero-sum net transfers between investors).

2.1.4 Information content of orders

Real-world traders and empirical researchers are interested in the information content of

different types of orders for price discovery.20 Informativeness of an order xt1 at time t1 is

measured here as the Bayesian revision E[v|xt1 ]−E[v] in the uninformed investor’s expect-

ation of the terminal value v after an order xt1 at time t1. Informativeness at later dates

t2 through t4 is the Bayesian revision E[v|Ltj−1
, xtj ] − E[v|Ltj−1

] for different given types

of orders xtj at time tj relative to the incoming expectation conditional on the preceding

in-equilibrium order-flow history Ltj−1
.

20Fleming et al. (2017) extend the VAR estimation approach of Hasbrouck (1991) to estimate the price
impacts of limit orders as well as market orders. See also Brogaard et al. (2019).

25



A necessary condition for an order to be informative is that informed investors use it.

However, the magnitude of order informativeness is determined by the mix of equilibrium

probabilities with which informed and uninformed traders use an order. If uninformed traders

use the same orders as informed investors, they add noise to the price discovery process,

and orders become less informative. In our model, the mix of information– and noise–

based orders depends on the exogenous market parameterization (the underlying proportion

α of informed investors and value-shock volatility δ) and on investors’ endogenous order-

submission strategies.

We expect different market and limit orders to have different information content. A nat-

ural conjecture is that the sign of the information revision associated with an order should

agree with the order direction (e.g., buy market and limit orders should lead to positive

valuation revisions). Another natural conjecture is that the magnitude of information revi-

sions should be greater for more aggressive orders. Surpisingly, however, the order-sign and

order-aggressiveness conjectures need not always hold.

Observation 3 Order informativeness is not always increasing in order aggressiveness.

Observation 4 The direction of order informativeness can be opposite the order sign.

These results are another consequence of how informed investors trade on their information.

In addition, the relative informativeness of different market and limit orders change in high-

volatility and low-volatility markets.

The order-aggressiveness violation is immediate from first principles in Proposition 1 for

(aggressive) market orders versus (less aggressive) limit orders in low-volatility (δ = 0.2)

markets in which informed investors avoid market orders all together. However, order-

aggressiveness violations for market orders can also obtain with high volatility. In addition,

the order-aggressiveness conjecture can fail for aggressive limit orders at the inside quotes

(A1 and B1) relative to less-aggressive limit orders at the outside quotes (A2 and B2).

Figure 2 shows the informativeness of different types of market and limit buy orders.

Each row has four plots showing the informativeness of different types of orders at different

times during the day for each of the four market parameterizations. In particular, the

informativeness of a given order type may change over time and may differ conditional on

different preceding order histories. The vertical heights of the individual dots in the plots

indicate the informativeness of given orders at particular times given different preceding

histories.21 The associated probabilities can differ for the different dots. The rectangles

21A sequence of equilibrium orders might be produced by more than one investor-arrival sequence. Thus,
individual dots correspond to sets of investor-arrival sequences. The horizontal spacing of the dots is simply
for ease of viewing.
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show the range of our informativeness metrics across paths. The vertical height of the blue

squares indicate the probability-weighted average informativeness of a given type of order

across all prior in-equilibrium paths at a point in time. The results are symmetric for sell

orders.

The results in Figure 2 point to a variety of properties about order informativeness. First,

the most obvious point is the heterogeneity in the information content of a given order both

at different times during the day and also conditional on different prior order histories. For

example, plot I(c) shows the Bayesian revisions for a LBB1 limit buy order at the inside

quotes B1 in the high-δ/high-α market. At time t1, an inside LBB1 order is highly revealing

with a Bayesian revision relative to the unconditional expectation of 1.331. This follows

from the fact in Table 1 that informed Iv̄ investors with good news use LBB1 orders with a

much higher probability than uninformed U investors at time t1. However, at later dates an

LBB1 limit order has different information content depending on the prior history.22 Over

time the number of equilibrium paths grows by definition, but, in addition, the amount of

equilibrium informational heterogeneity across paths also grows (i.e., the number of dots

associated with individual paths grows). Moreover, there are an increasing number of paths

with zero Bayesian revisions. One reason this happens is that the number of fully revealing

prior order histories is non-decreasing over time.

Second, Figure 2 shows that the order-aggressiveness conjecture can fail in a variety of

ways. While the conjecture can fail for individual paths, we focus here on even stronger

results where the order-aggressiveness conjecture fails in expectation across paths. One

example is that the expected Bayesian revisions across-paths (the small solid squares) for

limit buys are frequently larger (i.e., higher) than for market buys. This follows immediately

from Proposition 1 for low-volatility markets (δ = 0.2). However, the conjecture also fails

in high-volatility markets (δ = 1.4) where informed investors do use market orders. For

example, in the high-δ/high-α market, the average revision at t3 for inside limit orders in

Plot I(c) is larger than for market orders at the inside quotes in Plot I(b). This is even more

22The fact that inside limit orders are also submitted by uninformed U investors with a small, but still
positive, probability at t1 explains the outcomes (dots) in Figure 2 with extremely large positive valuation
swings for MBA1 market buys at t2 and later in the day. These are paths where a LSA1 limit order submitted
by an uninformed U investor at t1 was interpreted as almost revealing bad news (given the high probability
that such orders are submitted by Iv investors), but then a subsequent MBA1 market buy fully reveals
good news since in this parameterization only informed Iv investors submit MBA1 market buys on such
paths. This outcome is rare given the low probability of uninformed investors arriving and submitting inside
limit orders at t1 in this parameterization. A similarly unlikely but possible sequence of events explains the
outcome (dot) associated with a large negative valuation swing given an outside LBB2 limit buy at time t4.
In this case, an inside LBB1 limit buy was submitted by an uninformed investor at t1 (and was interpreted
as almost revealing good news) and was followed by an inside LSA1 limit sell at t2 (which did not contract
bad news since uninformed investors submit such orders at t2) and then the standing LBB1 order was hit
by a market sell at t3 (which was interpreted as an uninformed-investor order) In this case, only an informed
investor with bad news submits an outside LBB2 limit buy at t4 (to provide liquidity since a limit sell would
not execute given the standing limit sell at A1) which fully reveals bad news, leading to the large valuation
swing.
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true at t2 and t3 for MBA1 market orders in Plot II(b) versus LBB1 and LBB2 limit orders

in II(c) and II(d) in the high-δ/low-α market.

The order-aggressiveness conjecture can also fail for aggressive vs. less-aggressive limit

orders. Plots II(c) and II(d) for the high–δ/low–α market show that less-aggressive LBB2

limit buys at t2 and t3 have larger average Bayesian revisions than the aggressive LBB1 limit

buys. Having shown that the aggressiveness conjecture can fail, we also note that it does not

always fail. For example, the average Bayesian revisions for aggressive LBB1 limit orders at

times t1 through t4 in Plot I(c) are larger than for the less-aggressive LBB2 limit orders in

Plot I(d).

Third, Figure 2 shows that violations of the order-sign conjecture are rare but possible.

Buy orders are associated with non-negative Bayesian revisions for most individual paths

and, thus, in expectation. However, there are exceptions. We see this for a few paths in

Plot I(d) at t4. More dramatically, the order-sign conjecture fails in expectation for LBB2

limit buys at time t2 in the low-δ/high-α parameterization in Plot III(d). This is, in part, a

consequence of the fact in Table 2 that investors use outside limit orders to provide liquidity

opposite their information (e.g., limit sells at A2 given good news v̄ since A2 > v̄ here) more

than to trade with their information (e.g., limit sells at A2 given bad news v).23 Violations

of the order-sign conjecture are even more frequent in Section 2.2 below when informed

investors also have private-value motives to trade.

Figure 2 also has one further implication:

Observation 5 The information content of market orders can differ depending on the limit

prices at which they are executed.

In the two high-variance markets, market orders executed at the inside prices reveal inform-

ation whereas those at the outside prices do not.24 This implies that empirical price-impact

estimation should treat inside and outside market orders separately and not pool them.

23Note that directionally-informed investors submit outside limit orders opposite their information more
than with their information due to unbalanced deep books in the low-δ/high-α market in Table 2. However,
this is not sufficient for an order-sign violation. We also see more outside limit order submissions opposite
directionally-informed investors’ information in other market parameterizations in Table 2 without order-
sign violations in Figure 2. What matters for order-sign violation is not the total probability of limit order
submission opposite an investor’s information, but rather the joint distribution of the order information
content and order submissions. For example, if a market is already fully-revealing on the preceding order
path, then there is no information in any subsequent limit orders.

24A similar result easily obtains, more generally, in any limit order market in which an arbitrary private-
value distribution has a continuous support that extends beyond an arbitrary bounded private-information
support (i.e., uninformed trading motives are potentially larger than speculative motives) where the discrete
price grid includes prices inside the private-information distribution. In such a generalized market, there will
be two qualitatively different categories of market orders: Market orders executed at extreme standing bids
and asks outside of the private-information support will only be used by uninformed trades with extreme
private values, and, thus, will, a priori, have zero information content. In contrast, market orders executed
at standing bids and asks inside the private-information support could potentially come from informed or
uninformed investors, and so their information content depends on the specifics of investors’ endogenous
trading strategies.
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Figure 2: Order Informativeness for the Model with Informed Traders with β = 0 and Uninformed Traders with β ∼ Tr[N (µ, σ2)] for times t1 to t4. This figure shows the path-contingent
Bayesian value-forecast revisions E[v|Ltj−1, xtj ]− E[v|Ltj−1], which shows the change in the uninformed traders’s expected value of the fundamental conditional on different actions xtj . We only consider orders when
they are equilibrium orders for the trading periods. Each dot indicates an equilibrium revision, the rectangles indicate the maximum and the minimum, and the squares denote probability-weighed cross-path means.
The plots are grouped by their respective market parameterizations (δ, α).
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2.1.5 Non-Markovian learning

This section investigates the role of the order history in Bayesian learning. A major difference

between our model and Goettler et al. (2009) and Roşu (2016b) is their assumption that

learning is Markovian in that the standing limit order book Ltj is a sufficient statistic at

times tj > t1 for the information content of the full prior order history Ltj . In contrast,

we show the prior order history can have substantial information about the asset value v in

excess of the information in the standing limit order book.25 26

Observation 6 Price discovery can be significantly non-Markovian.

The plots in Figure 3 measure the non-Markov information content of order histories by

E[v|Ltj(Ltj)]− E[v|Ltj ], (13)

which is the incremental information in the uninformed investors’ expected asset value con-

ditional on an order history path Ltj(Ltj) ending with a particular limit order book Ltj at

time tj net of the corresponding expectation conditional on just the ending book Ltj . In

particular, we are interested in books Ltj that can be preceded in equilibrium by more than

one different prior history. If learning is Markov, then order histories Ltj(Ltj) preceding

a book Ltj should convey no additional information beyond Ltj ; in which case our metric

in (13) should be zero. Individual dots in the plots indicate the incremental information

content of particular histories preceding different orders submitted at each of the different

dates.27 The standing book Ltj may reflect some information at each time tj about the path

of past active investor actions. However, i) the book does not necessarily fully reveal the

timing of past orders, and ii) past crowd actions can partially obscure past active-investor

actions, since the crowd replenishes the book when it is depleted at the outside prices by

active investors. Each plot is for a different market parameterization. For brevity, the plots

include all possible books Ltj , rather than having separate plots for individual books.

The main result from Figure 3 is that there is substantial incremental information in

the preceding order histories Ltj(Ltj) after conditioning on the standing limit order book

Ltj . As expected, variation in the conditioning information in the preceding order histories

in Figure 3 is greater when the shock volatility δ is greater (note the difference in vertical

25The evidence of path-contingent order informativeness in Figure 2 by itself does not necessarily imply
non-Markovian learning. Markovian learning is still possible if the incoming book Ltj at time tj summarizes
the information content of the full order history Ltj (Ltj ) preceding book Ltj .

26Goettler et al. (2009) also includes the most recent transaction, in addition to the standing limit order
book, in the investor state space.

27Time t1 is included in the figure because books Lt1 at t1 can potentially be produced by different
sequences of active investor actions xt1 and crowd responses at t1.
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scales).

Given that learning is non-Markovian, the next question is about what features of order-

flow histories are informative. The next two sections consider several aspects of this question.

Figure 3: Informativeness of the Order History for the Model with Informed Traders with
β = 0 and Uninformed Traders with β ∼ Tr[N (µ, σ2)] for Times t1 through t4. This figure shows
the incremental information content of the past order history in excess of the information in the standing
limit order book observed at the end of time tj as measured by E[v|Ltj (Ltj )]− E[v|Ltj ] where Ltj (Ltj ) is
a history ending in the limit order book Ltj . We only consider books Ltj that occur in equilibrium in the
different trading periods. The dots indicate values for particular books and paths, and the rectangles show
the range of maximum and minimum values.

(a) Parameters: α = 0.8, δ = 1.4 (b) Parameters: α = 0.8, δ = 0.2

(c) Parameters: α = 0.2, δ = 1.4 (d) Parameters: α = 0.2, δ = 0.2

2.1.6 Price-impact of order flow

A standard empirical measure of price-discovery is the informational price-impact of order

flow. The idea is that the price-impact of orders can be decomposed into two components:

One measures the size of surprises in arriving orders relative to their expectations given

the prior history, and the second measures the marginal (per-share) valuation impact of

order-flow surprises. Fleming et al. (2017) and Brogaard et al. (2019) extend the Hasbrouck

(1991) vector autoregression methodology — a standard empirical technique to estimate this

decomposition — to allow for limit orders as well as market orders. Using our notation, their

information innovation equation can be written as

E[v|xt,Lt−1]− E[v|Lt−1] =
∑
k

λk[Q
xt
k,t − E[Qxt

k,t|Lt−1]] (14)
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where Qxt
k,t −E[Qxt

k,t|Lt−1] in the innovation in the number of shares Qxt
k,t associated with an

order type k (e.g., a particular market or limit order) given the investor action xt at time t,

and λk is a constant marginal price-impact for order type k.

This section shows the potential need for a further extension of VAR estimation.28

Observation 7 The price-impacts of order flow are functions λk(t,Lt−1) that are conditional

on time tj and the prior order history Lt−1.

Simple empirical specifications might look at deterministic functions of time λk(t) or condi-

tioning (as in GPR 2009) on the standing limit order book Lt−1 via a function λk(t, Lt−1).

In its most general form, our analysis suggests using machine learning techniques to identify

potentially high-dimensional relationships λk(t,Lt−1) given prior order histories. Yueshen

and Zhang (2019) find the price-impact of orders follows a stochastic process. Our results

identify the standing limit order book and prior order-history paths as variables that may

explain random time-varying price-impact.

Figure 4 shows that even our very simple model generates substantial variation in the

conditional price-impact of orders. Consider an order sequence {Ltj−1
, xtj} where sequences

{Ltj−1
, xtj} and {Ltj−1

, NT} both have positive equilibrium probabilities. As a metric for

dispersion in the conditional price impact of order flow, we compute29

max
Ltj−1

[
E[v|Ltj−1

, xtj ]− E[v|Ltj−1
, NT ]

]
− min

Ltj−1

[
E[v|Ltj−1

, xtj ]− E[v|Ltj−1
, NT ]

]
(15)

In words, E[v|Ltj−1
, xtj ] − E[v|Ltj−1

, NT ] is the differential informational impact of a one-

unit innovation in order type xtj relative to NT where differencing controls for expectations

given the prior history Ltj−1
. The diff-in-diff metric in (15) is the spread between the

maximal and minimum differential informational innovation across all paths Ltj−1
such that

order xtj and NT both occur with positive probability following the different paths Ltj−1
.

As can be seen, the amount of cross-path dispersion in the conditional price-impact of order

flow can be substantial.30

2.1.7 Information and order-path characteristics

This section examines specific characteristics of order paths and their impact on price discov-

ery. One natural conjecture is that the magnitude of valuation forecast errors is decreasing in

the magnitude of prior valuation revisions caused by the preceding realized order history. In

28Note that path-dependence in the price-impact of orders λk(t,Lt−1) is conceptually different from path-
dependent order-flow expectations E[Qxt

k,t|Lt−1] used to construct order innovations Qxt

k,t − E[Qxt

k,t|Lt−1].
29The formulation here reflects the fact that our model only has one non-zero order size.
30Our order-impact statistic can only be computed once the book is sufficiently full such that NT becomes

an option for arriving investors. In these parameterizations, that only happens at times t3 and t4.
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other words, it may be easier for the trading process to reveal positive or negative valuation

shocks than to reveal the absence of a valuation shock. Our results are consistent with this

conjecture. Consider, for example, time t4, which has the longest order histories for which

both market and limit orders are potentially used. The valuation-error heteroscedasticity

conjecture can be assessed using the correlation between the absolute cumulative Bayesian

revision |E[v|Lt4 ]− E[v]| up to time t4 and the associated expected absolute forecast error

E[ |v−E[v|Lt4 ]| ] at time t4. In Table 3, the first column in the four market parameterization

cells shows that these correlations are negative (as conjectured) and strongly so for three of

our four different parameterizations. In other words, the volatility of potential informational

price changes later in the day are smaller when the path of realized orders earlier in the day

has already revealed substantial information.

This raises then the question of what specific path characteristics are informative. A

natural set of candidate informative path characteristics are cumulative order imbalances.

To explore this, the second two columns in Table 3 report correlations between expected

absolute forecast errors E[ |v − E[v|Ltj ]| ] at time t4 and the absolute value of different

preceding order-flow imbalances. In particular, we consider imbalances for market and limit

orders executed or posted at the inside quotes and also total imbalances at both the inside and

outside quotes. The question is whether different types of market- and limit-order imbalances

are informative. A negative (positive) correlation means larger imbalances for a particular

type of order are more (less) informative. Table 3 shows that limit-order imbalances are

consistently more informative than market-order imbalances. This is not surprising when

the value volatility δ is small and informed investors do not use market orders, but it is

also true when δ is high and informed investors do use market orders. As a result, larger

market-order imbalances means more low- or non-informative market orders arrived over

time than the more-informative limit orders. Once again, we also see that the information

content of market orders executed at the inside quotes is different from all market orders

pooled together.

2.1.8 Summary

The analysis of our first model specification has identified a number of empirically testable

predictions. First, liquidity and the relative information content of different orders differ

in high-volatility markets (in which value shocks are large relative to the tick size) vs. in

low-volatility markets. Second, it is possible for less-aggressive orders to be more informative

than more aggressive orders and for the information content of some orders to be opposite

the order sign. Third, price discovery is non-Markov. Fourth, the price-impact of orders
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Table 3: Correlations between expected absolute pricing errors, prior absolute valuation re-
visions, and order imbalances. This table reports correlations between the uninformed traders’ expected
absolute pricing errors E[ |v − E[v|Lt4 ]| ] at time t4, the absolute past valuation revisions |E[v|Lt4 ]− E[v]|
(column 1), the market and limit order imbalances both for orders executed/submitted only at the inside
quotes and for all orders at both quotes at t1 (column 2) and foe t − 2 through t4 (column 3). Four com-
binations of value-shock volatilities and informed investor-arrival probabilities, δ and α, are considered. The
private-value parameters are µ = 0 and σ = 15, the tick size is κ = 1, and there are N = 5 trading dates.

δ = 1.4 δ = 0.2
t1 t2 − t4 t1 t2 − t4

|E[v|Lt4 ]− E[v]| -0.027 -0.317

All |#MB-#MS| 0.178 0.220 0.100 0.359
|#LB-#LS| -0.178 -0.052 -0.100 0.000

α = 0.8
Inside |#MB-#MS| N/A 0.129 N/A 0.051

|#LB-#LS| -0.099 0.033 0.429 -0.098

|E[v|Lt4 ]− E[v]| -0.352 -0.647

All |#MB-#MS| 0.045 0.169 0.070 0.092
|#LB-#LS| -0.045 -0.196 -0.070 -0.017

α = 0.2
Inside |#MB-#MS| N/A 0.282 N/A 0.253

|#LB-#LS| 0.355 -0.145 0.622 -0.305

varies conditional on the prior order history.

Figure 4: Dispersion in the price impact of order flow The plot reports maxLtj−1
(E[v|Ltj−1

, xtj ]−
E[v|Ltj−1

, NT ])−minLtj−1
(E[v|Ltj−1

, xtj ]−E[v|Ltj−1
, NT ]) at different times, which shows how the prior

order history affects the marginal price impact of the surprise in a given order. The parameterization is:
α = 0.8, δ = 1.4
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2.2 Informed and uninformed traders both have private-value motives

Our second model specification generalizes our earlier analysis. Now informed investors

also have random private-valuation factors βtj with the same truncated-Normal distribution

βtj ∼ Tr[N (µ, σ2)] as the uninformed investors. Hence, informed traders not only speculate

on their information, but they also have preference shocks, hedging needs and tax-induced

private-value motives to trade. As a result, informed investors arriving at different times

with the same valuation information potentially buy or sell from each other due to their

different private values. This combination of trading motives has not been investigated in

earlier models of dynamic limit order markets. Our second model specification lets us assess

the robustness of the results in Section 2.1 and extend them.

2.2.1 Trading strategies

Tables 4 and 5 report order-submission probabilities and other statistics for our second model

specification for time t1 and for averages over times t2 through t4. There are a few differences

relative to Tables 1 and 2 for the simpler model in Section 2.1. First, now all investors use

all of the possible limit orders in both time windows, since now all investors have private-

value motives to trade. Second, informed investors of all types use market orders at times

t2 through t4 when their private-value trading motive is sufficiently strong. In particular,

Iv0 investors with neutral news no longer just provide liquidity using limit orders. Third,

trading against their private asset-value information is even stronger now for directionally-

informed investors. In particular, Iv̄ and Iv investors not only submit outside limit orders

(which are always profitable given private good or bad news) as in our first model in Section

2.1, but now they also post inside limit orders against their private information (which are

unprofitable when δ = 1.4). Indeed, Tables 4 and 5 both show that outside limit orders are

consistently used more by investors to trade opposite their information than to trade with

their information. The same is also true on average at times t2 through t4 for inside limit

orders in all of the parameterizations. These stronger results are due not just to deep-book

effects (at outside prices), but also because their private-value motives can overwhelm their

speculative motives (at inside as well as outside prices). The fact that informed investors

frequently use limit orders to trade against their information will have important implications

for the information content (considered below) of such limit orders.

Consider next the impact of adverse selection on trading. The effect of higher δ and higher

α on directionally-informed Iv̄ and Iv
¯

investors differs when they are trading with or opposite

their information. For investors trading with their information, we see the aggressiveness

trading effect for limit orders again, similar to the results in Section 2.1. In particular,
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Table 4: Trading Strategies, Liquidity, and Welfare at Time t1 in an Equilibrium with In-
formed and Uninformed Traders both with β ∼ Tr[N (µ, σ2)]. This table reports results for two
different informed-investor arrival probabilities α (0.8 and 0.2) and two different value-shock volatilities δ
(1.4 and 0.2). The private-value parameters are µ = 0 and σ = 15, the tick size is κ = 1, and there are
N = 5 trading dates. Each cell corresponding to a set of parameters reports the equilibrium order-submission
probabilities, the expected bid-ask spreads and expected depths at the inside prices (A1 and B1) and total
depths on each side of the market after order submisions at time t1, and the expected welfare of investors
arriving at t1. The first four columns in each parameter cell are for informed traders with positive, neut-
ral and negative signals, (Iv̄,Iv0

,Iv
¯
) and for uninformed traders (U). The fifth column (Uncond.) reports

unconditional results for the market.

δ = 1.4 δ = 0.2

Iv̄ Iv0 Iv
¯

U Uncond. Iv̄ Iv0 Iv
¯

U Uncond.

LSA2 0.107 0.053 0.032 0.062 0.064 0.054 0.048 0.042 0.048 0.048
LSA1 0.333 0.447 0.303 0.438 0.377 0.438 0.452 0.466 0.452 0.452
LBB1 0.303 0.447 0.333 0.438 0.377 0.466 0.452 0.438 0.452 0.452
LBB2 0.032 0.053 0.107 0.062 0.064 0.042 0.048 0.054 0.048 0.048

MBA2 0.224 0 0 0 0.060 0 0 0 0 0
MBA1 0 0 0 0 0 0 0 0 0 0
MSB1 0 0 0 0 0 0 0 0 0 0
MSB2 0 0 0.224 0 0.060 0 0 0 0 0
NT 0 0 0 0 0 0 0 0 0 0

α = 0.8
E[Spread |·] 2.363 2.106 2.363 2.123 2.247 2.096 2.096 2.096 2.096 2.096
E[Depth A2+A1 |·] 1.441 1.500 1.335 1.500 1.440 1.492 1.500 1.508 1.500 1.500
E[Depth A1 |·] 0.333 0.447 0.303 0.438 0.377 0.438 0.452 0.466 0.452 0.452
E[Depth B1 |·] 0.303 0.447 0.333 0.438 0.377 0.466 0.452 0.438 0.452 0.452
E[Depth B1+B2 |·] 1.335 1.500 1.441 1.500 1.440 1.508 1.500 1.492 1.500 1.500

E[Welfare LO |·] 2.776 4.454 2.776 4.295 3.527 4.462 4.465 4.462 4.461 4.462
E[Welfare MO |·] 1.671 0 1.671 0 0.891 0 0 0 0 0
E[Welfare |·] 4.447 4.454 4.447 4.295 4.419 4.462 4.465 4.462 4.461 4.462

LSA2 0.061 0.050 0.043 0.050 0.050 0.049 0.048 0.046 0.048 0.048
LSA1 0.368 0.450 0.484 0.450 0.447 0.441 0.452 0.464 0.452 0.452
LBB1 0.484 0.450 0.368 0.450 0.447 0.464 0.452 0.441 0.452 0.452
LBB2 0.043 0.050 0.061 0.050 0.050 0.046 0.048 0.049 0.048 0.048

MBA2 0.045 0 0 0 0.003 0 0 0 0 0
MBA1 0 0 0 0 0 0 0 0 0 0
MSB1 0 0 0 0 0 0 0 0 0 0
MSB2 0 0 0.045 0 0.003 0 0 0 0 0
NT 0 0 0 0 0 0 0 0 0 0

α = 0.2
E[Spread |·] 2.148 2.101 2.148 2.101 2.107 2.096 2.096 2.096 2.096 2.096
E[Depth A2+A1 |·] 1.429 1.500 1.526 1.500 1.497 1.490 1.500 1.510 1.500 1.500
E[Depth A1 |·] 0.368 0.450 0.484 0.450 0.447 0.441 0.452 0.464 0.452 0.452
E[Depth B1 |·] 0.484 0.450 0.368 0.450 0.447 0.464 0.452 0.441 0.452 0.452
E[Depth B1+B2 |·] 1.526 1.500 1.429 1.500 1.497 1.510 1.500 1.490 1.500 1.500

E[Welfare LO |·] 4.093 4.452 4.093 4.433 4.389 4.466 4.465 4.466 4.465 4.465
E[Welfare MO |·] 0.422 0 0.422 0 0.056 0 0 0 0 0
E[Welfare |·] 4.516 4.452 4.516 4.433 4.445 4.466 4.465 4.466 4.465 4.465
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Table 5: Averages for Trading Strategies, Liquidity, and Welfare across Times t2 through
t4 for Informed and Uninformed Traders both with β ∼ Tr[N (µ, σ2)]. This table reports results
for two different informed-investor arrival probabilities α (0.8 and 0.2) and for two different value-shock
volatilities δ (1.4 and 0.2) averaged over times t2 through t4. The private-value parameters are µ = 0
and σ = 15, the tick size is κ = 1, and there are N = 5 trading dates. Each cell corresponding to a
set of parameters reports the equilibrium order-submission probabilities, the expected bid-ask spreads and
expected depths at the inside prices (A1 and B1) and total depths on each side of the market after order
submissions at times t2 through t4, and the expected arriving investor welfare averaged over times t2 through
t4. The first four columns in each parameter cell are for informed traders with positive, neutral and negative
signals, (Iv̄,Iv0 ,Iv

¯
) and for uninformed traders (U). The fifth column (Uncond.) reports unconditional results

for the market.

δ = 1.4 δ = 0.2

Iv̄ Iv0 Iv
¯

U Uncond. Iv̄ Iv0 Iv
¯

U Uncond.

LSA2 0.138 0.121 0.094 0.115 0.117 0.127 0.123 0.119 0.123 0.123
LSA1 0.103 0.057 0.050 0.065 0.069 0.057 0.053 0.048 0.053 0.053
LBB1 0.050 0.057 0.103 0.065 0.069 0.048 0.053 0.057 0.053 0.053
LBB2 0.094 0.121 0.138 0.115 0.117 0.119 0.123 0.127 0.123 0.123

MBA2 0.263 0.192 0.123 0.194 0.193 0.207 0.194 0.181 0.194 0.194
MBA1 0.158 0.128 0.069 0.124 0.119 0.133 0.128 0.124 0.129 0.128
MSB1 0.069 0.128 0.158 0.124 0.119 0.124 0.128 0.133 0.129 0.128
MSB2 0.123 0.192 0.263 0.194 0.193 0.181 0.194 0.207 0.194 0.194
NT 0.003 0.003 0.003 0.004 0.004 0.004 0.003 0.004 0.004 0.004

α = 0.8
E[Spread |·] 2.352 2.326 2.352 2.365 2.348 2.336 2.337 2.336 2.337 2.336
E[Depth A2+A1 |·] 1.602 1.599 1.550 1.570 1.581 1.590 1.593 1.596 1.593 1.593
E[Depth A1 |·] 0.308 0.339 0.344 0.320 0.328 0.324 0.333 0.344 0.333 0.334
E[Depth B1 |·] 0.344 0.339 0.308 0.320 0.328 0.344 0.333 0.324 0.333 0.334
E[Depth B1+B2 |·] 1.550 1.599 1.602 1.570 1.581 1.596 1.593 1.590 1.593 1.593

E[Welfare LO |·] 0.872 0.700 0.872 0.720 0.796 0.674 0.671 0.674 0.670 0.672
E[Welfare MO |·] 3.272 3.333 3.272 3.313 3.296 3.357 3.357 3.357 3.358 3.357
E[Welfare |·] 4.144 4.032 4.144 4.034 4.092 4.031 4.028 4.031 4.028 4.029

LSA2 0.130 0.123 0.115 0.122 0.122 0.124 0.123 0.122 0.123 0.123
LSA1 0.058 0.054 0.049 0.053 0.053 0.053 0.053 0.052 0.053 0.053
LBB1 0.049 0.054 0.058 0.053 0.053 0.052 0.053 0.053 0.053 0.053
LBB2 0.115 0.123 0.130 0.122 0.122 0.122 0.123 0.124 0.123 0.123

MBA2 0.249 0.194 0.143 0.195 0.195 0.202 0.194 0.186 0.194 0.194
MBA1 0.156 0.127 0.095 0.127 0.127 0.133 0.128 0.124 0.128 0.128
MSB1 0.095 0.127 0.156 0.127 0.127 0.124 0.128 0.133 0.128 0.128
MSB2 0.143 0.194 0.249 0.195 0.195 0.186 0.194 0.202 0.194 0.194
NT 0.004 0.003 0.004 0.004 0.004 0.004 0.003 0.004 0.004 0.004

α = 0.2
E[Spread |·] 2.337 2.335 2.337 2.339 2.338 2.337 2.337 2.337 2.337 2.337
E[Depth A2+A1 |·] 1.552 1.595 1.632 1.591 1.592 3.066 3.026 3.066 2.442 1.592
E[Depth A1 |·] 0.293 0.334 0.373 0.332 0.333 0.327 0.333 0.339 0.333 0.333
E[Depth B1 |·] 0.373 0.334 0.293 0.332 0.333 0.339 0.333 0.327 0.333 0.333
E[Depth B1+B2 |·] 1.632 1.595 1.552 1.591 1.592 1.599 1.593 1.587 1.592 1.592

E[Welfare LO |·] 0.679 0.682 0.679 0.669 0.671 0.671 0.671 0.671 0.671 0.671
E[Welfare MO |·] 3.453 3.347 3.453 3.355 3.367 3.359 3.357 3.359 3.357 3.358
E[Welfare |·] 4.131 4.029 4.131 4.023 4.038 4.030 4.028 4.030 4.028 4.028
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increased adverse selection (α or δ) leads to a reduced use of less-aggressive outside limit

orders and an increased use of more aggressive orders when trading with directional news

at t1 and on average over t2 through t4. The net effect on aggressive inside limit orders is

a priori ambiguous in these cases due to in-migration of probability from the reduced use

of the outside limit orders but possible out-migration of probability to market orders. For

example, at t1 when δ increases, the probability of LBB1 inside limit orders decreases when

α = 0.8 (from 0.466 to 0.303) but increases when α = 0.2 (from 0.464 to 0.484).

The effect of adverse selection is different from above when investors trade opposite their

directional information. Now greater adverse selection δ causes informed investors trading

opposite their information to increase their use of less-aggressive outside limit orders (e.g.,

the LSA2 submission probability at t1 increases from 0.054 to 0.107 when δ increases from

0.2 to 1.4 with the high α). In particular, when δ increases, informed investors with good

news v̄ (bad news v) know the security is worth more (less) and require a higher (lower) price

when selling (buying). However, when α increases, there is a supply/demand effect: The

demand for buying (selling) increases since now more investors know the good (bad) news,

and, thus, informed investors willing to sell (buy) against their information can increase the

price of the liquidity they provide.

The effects of higher volatility δ on uninformed U traders differs slightly at t1 relative to

times t2 through t4. At t1, uninformed traders do not use market orders in these paramet-

rizations, but they do tend to post slightly more patient outside limit orders when adverse

selection increases (comparing the strategy probabilities for LBB2 and LSA2). This change

in order-submission strategies is the consequence of uninformed traders offering liquidity at

more profitable price levels to make up for the increased adverse selection costs. In later

periods t2 through t4, as uninformed traders learn about the fundamental value of the asset,

they still take liquidity at the outside quotes (using MBA2 and MSB2), but move to the

inside quotes to supply liquidity (the LSA1 and LBB1 submission probabilities increase to

0.065 for times t2 through t4) when moving to the high-δ/high-α parameterization. As they

learn about the future value of the asset, uninformed traders perceive less adverse selection

costs and can afford to offer liquidity at more aggressive quotes. In contrast, the effect of

increased value-shock volatility on the trading behavior of Iv0 investors with neutral news is

relatively modest both at time t1 and at times t2 through t4.

2.2.2 Market quality

Market quality — as measured by both expected spreads and inside depth in Tables 3 and

4 — is almost always decreasing in adverse selection in this second model. This is a notable
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difference from our first model. However, this is not surprising given the generally greater

use of market orders due to the potentially large range of private values. In particular, when

the gains-from-trade are large, order execution is more important than price improvement.

2.2.3 Information content of orders

Figure 5 shows the distribution of Bayesian revisions for the different orders at different times

and conditional on different prior order-history paths. The format is the same as in Figure

2. Once again, there is heterogeneity in the information content of orders over time and

conditional on the preceding history. Not surprisingly, the magnitudes are smaller since there

is substantially less price discovery in this second model specification given that informed-

investor orders are now affected by noise from private values as well as information. Once

again, we still see violations of the order-aggressiveness conjecture. Consider, for example,

the high adverse-selection high-δ/high-α parameterization. As before, the small squares

denote cross-path means. The most informative orders on average at t1 and t2 here are

the market orders. However, the less-aggressive LBB2 outside limit orders have a greater

average informativeness than the aggressive LBB1 inside limit orders at t1 and also, less

obvious visually, at t2. The same is also true for limit orders at t1 in the low-δ/high-α

parameterization.

Violations of the order-sign conjecture are more common in our second model specific-

ation. For example, in the high-δ/high-α parameterization, LBB2 limit buys at t1 reveal

bad news (rather than good news as one might expect given that they are buy orders). The

same is true, but less obvious visually, of LBB2 at dates t2 through t4 and also of LBB1

limit buys at t1 through t4. This is because, as noted above, limit buys in our second model

specification are used more frequently by directionally informed investor to trade opposite

(rather than with) their information (i.e., due to their private-values βtj).

39



Figure 5: Order Informativeness for the Model with Informed Traders and Uninformed Traders both with β ∼ Tr[N (µ, σ2)] for times t1 to t4. This figure shows the path-contingent Bayesian
value-forecast revisions E[v|Ltj−1, xtj ] − E[v|Ltj−1], which shows the change in the uninformed traders’s expected value of the fundamental conditional on different orders xtj . Plots a,c,e and g show graphs for the
parametrization with α = 0.8 and δ = 1.4. Plots b,d,f and h show graphs for the parametrization with α = 0.8 and δ = 0.2. Plots i,k,m and o show graphs for the parametrization with α = 0.2 and δ = 1.6. Plots j,l,n
and p show graphs for the parametrization with α = 0.2 and δ = 0.2. We only consider orders when they are equilibrium orders for the trading periods. Each dot indicates an equilibrium revision, the rectangles indicate
the maximum and the minimum, and the squares denote probability-weighed cross-path means. The plots are grouped by their respective market parameterizations (δ, α).

I (a) α = 0.8 δ = 1.4, Order:MBA2 I (b) α = 0.8 δ = 1.4, Order:MBA1 I (c) α = 0.8 δ = 1.4, Order:LBB1 I (d) α = 0.8 δ = 1.4, Order:LBB2

II (a) α = 0.2 δ = 1.4, Order:MBA2 II (b) α = 0.2 δ = 1.4, Order:MBA1 II (c) α = 0.2 δ = 1.4, Order:LBB1 II (d) α = 0.2 δ = 1.4, Order:LBB2

III (a) α = 0.8 δ = 0.2, Order:MBA2 III (b) α = 0.8 δ = 0.2, Order:MBA1 III (c) α = 0.8 δ = 0.2, Order:LBB1 III (d) α = 0.8 δ = 0.2, Order:LBB2

IV (a) α = 0.2 δ = 0.2, Order:MBA2 IV (b) α = 0.2 δ = 0.2, Order:MBA1 IV (c) α = 0.2 δ = 0.2, Order:LBB1 IV (d) α = 0.2 δ = 0.2, Order:LBB2



2.2.4 Non-Markovian learning

Figure 6 shows once again the variation in the incremental information E[v|Ltj(Ltj)] −

E[v|Ltj ] in the prior order histories Ltj(Ltj) preceding different books Ltj . The plots here

confirm qualitatively our earlier results about non-Markovian learning. In particular, there is

cross-path heterogeneity in the information content of arriving orders. Not surprisingly, the

heterogeneity is quantitatively less here since there is less information revelation in general

due to the additional trading noise. This reduction is especially apparent when valuation

volatility δ is low. One qualitative difference relative to the model in Section 2.1.5 is that

the range of cross-path heterogeneity in Figure 6 is not growing over time as in Figure 3.

Figure 6: History Informativeness for Informed and Uninformed Traders both with β ∼
Tr[N (µ, σ2)] for times t1 through t4. This Figure shows the incremental information content of the
past order history in excess of the information in the standing limit order book observed at the end of time tj
as measured by E[v|Ltj (Ltj )]−E[v|Ltj ] where Ltj (Ltj ) is a history ending in the limit order book Ltj . We
only consider books Ltj that occur in equilibrium in the different trading periods. The candlesticks indicate
for each of these two metrics the maximum, the minimum, the median and the 75th (and 25th) percentile
respectively as the top (bottom) of the bar.

(a) Parameters: α = 0.8, δ = 1.4 (b) Parameters: α = 0.8, δ = 0.2

(c) Parameters: α = 0.2, δ = 1.4 (d) Parameters: α = 0.2, δ = 0.2

2.2.5 Price-impact of order flow

Figure 7 confirms qualitatively our earlier results about intraday time-contingency and path-

dependence in the price-impact of order flow. The main difference is that, as expected, the

additional noise due to the informed-investor private values makes the magnitudes of the

effects here smaller than in Figure 4 (i.e., note difference in vertical scaling). However, they
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are still present and material relative to the overall amount of price discovery.

Figure 7: Dispersion in the price impact of order flow The plot reports maxLtj−1
(E[v|Ltj−1 , xtj ]−

E[v|Ltj−1
, NT ])−minLtj−1

(E[v|Ltj−1
, xtj ]−E[v|Ltj−1

, NT ]) at different times, which shows how the prior

order history affects the marginal price impact of the surprise in a given order. The parameterization is:
α = 0.8, δ = 1.6

(a) Order Type: MBA2

t1 t2 t3 t4

0

0.1

0.2

0.3

(b) Order Type: MBA1

t1 t2 t3 t4

0

0.1

0.2

0.3

(c) Order Type: LBB1

t1 t2 t3 t4

0

0.1

0.2

0.3

(d) Order Type: LBB2

t1 t2 t3 t4

0

0.1

0.2

0.3

2.2.6 Summary

The results for our second model specification — with its richer specification of informed

investor trading motives — confirm the robustness of the results from our first model specific-

ation and extend them. First, increased adverse selection affects informed-investor trading

differently when directionally informed investors trade with their information than (because

of private-value shocks) against their information. Second, the informativeness of orders can

again be opposite both order aggressiveness and order direction. Third, information content

of arriving orders is again history-dependent. Not surprisingly, the quantitative magnitudes

of these effects are smaller due to the additional trading noise, but they are material relative

to the overall amount of price discovery.

3 Robustness

Our analysis makes a number of simplifying assumptions for tractability, but we conjecture

that our qualitative results are robust to relaxing these assumptions. We consider two of

these assumptions here. First, our model of the trading day only has five periods. Relatedly,
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our analysis abstracts from limit orders being carried over from one day to the next. It is

true that, with more trading rounds, as information is revealed, different paths should all

eventually converge to the correct valuation. However, along the way at early trading times,

paths should still differ depending on difference in how quickly and accurately information

is revealed over time. Second, arriving investors are only allowed to submit single orders

that cannot be cancelled or modified subsequently. However, it seems likely that order-flow

histories will still be informative if orders at different points in time are correlated due to

correlated actions of returning investors.

4 Conclusions

This paper has identified a number of notable theoretical properties about information ag-

gregation and liquidity provision in dynamic limit order markets. First, informed investors

switch between endogenously demanding liquidity via market orders and supplying liquidity

via limit orders. Second, the information content/price impact of orders can differ from the

order direction and order aggressiveness. Third, the information aggregation process is non-

Markovian. In particular, the prior order history has information content beyond that in

the standing limit order book, and the price-impact of order flow is also history dependent.

These findings have implications for conditional estimation of the empirical price-impact of

different types of orders. Moreover, we have shown the robustness of our results in two dif-

ferent specification of private trading motives, and have argued they should also be robust

with dynamic trading strategies and more sophisticated market makers.

Our model suggests several directions for future research. Most importantly, our analysis

provides a framework for empirical research about the changing price-impacts of orders

conditional on the order history and time of day. There are also promising directions for

future theory. First, the model can be enriched by allowing investors to trade dynamically

over time and to face quantity decisions and to use multiple orders. Second, the model could

be extended to allow for trading in multiple fragmented limit order markets and with Dark

Pools. Third, the model could be used to study high frequency trading in limit order markets

and the effect of different investors processing and trading on different types of information

at different latencies.
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5 Appendix A: Illustration of order paths and Bayesian

updating

This appendix uses an excerpt of the extensive form of the trading game in our model to

illustrate order-submission and trading dynamics and the associated Bayesian updating. The

particular realized order path in Figure 8 is from the equilibrium for a model specification

in which informed and uninformed investors both have random private-values (βtj). The

model is considered in detail in Section 2.2. There are N = 5 rounds of trade, and the

market parameters are κ = 1, µ = 0, σ = 15, α = 0.8, and δ = 1.4. This is a relatively

high informed-investor arrival probability and large value shocks. In this example, Nature

has chosen an underlying economic state with good value news (v), a realized sequence of

arriving traders {I, U, U, I, I}, and a sequence of realized private values {βt1, . . . , βt5} (not

shown for brevity). For simplicity, we only consider a few possible nodes of the trading game

and show the possible outgoing total books (from both the crowd and the arriving investors)

for the different possible equilibrium order choices given the realized arriving trader types.31

The realized books along this particular path are indicated in bold with double bars (“||”).

Trading starts at t1 with a book [1, 0, 0, 1] consisting of limit orders at the outside prices A2

and B2 from the trading crowd.

Along the particular equilibrium path in this example, the optimal orders are unique.

However, orders are random given the arriving investors’ informational types (Iv or U) due

to their random private values βtj . Below each possible order type at each time, Figure 8

shows the order’s equilibrium submission probability for the realized arriving trader. For

example, the informed investor Iv arriving here at t1 chooses a limit order LSA2 to sell

at A2 with an ex ante probability 0.107. Figure 1 in the main body of the paper shows

an example of how order-submission probabilities are determined for different ranges of βtj

values. In this example, the initial trader has a βt1 such that she posts a limit sell LSA2 and

has rational-expectation beliefs that its execution probability is 0.625.32 This equilibrium

execution probability depends on all of the possible future trading paths proceeding from her

submission at time t1 up through time t5. Continuing along this realized path, an uninformed

trader arrives at t2 and posts a limit sell LSA1 at A1, thereby undercutting the earlier LSA2

order, so that the book at the end of t2 is [2, 1, 0, 1]). In this scenario, the initial LSA2 order

from t1 can only be executed if the LSA1 order at t2 is executed first. For example, the

probability of a market order MBA1 hitting the limit order at A1 at t3 is 0.352, and then

31For example, NT is not included at t1, since Section 2.2 shows NT is not an equilibrium action here.
32Some of the numerical values discussed here are from equilibrium calculations reported in more detail

in Tables 4 and 5 and in Table C2 in Appendix C. Others are unreported calculations available from the
authors upon request.
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the probability of another market order hitting the initial limit sell at A2 is 0.407 at t4 and

0.495 at t5.33 Therefore, there is a chance that the LSA2 order from t1 will still be executed

even after it is undercut by the order LSA1 at t2.

The path in Figure 8 also illustrates Bayesian updating. After the investor at t1 submits

the LSA2 limit sell, the uninformed trader who arrives at time t2 in this example — who just

knows the submitted order at time t1 but not the identity or information of the trader at time

t1 — updates his equilibrium conditional valuation to E[ṽ|LSA2] = 10.442 and his execution-

contingent expectation given his limit order LSA1 at time t2 is E[ṽ|LSA2, θ
LSA1
t2 ] = 10.724.

In subsequent periods, later investors observe additional realized orders and further update

their beliefs.

33Due to space constraints, we do not include the t4 node in Figure 8.
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Figure 8: Excerpt of the Extensive Form of the Trading Game. This figure shows one
possible realized order path of the trading game with parameters α = 0.8, δ = 1.4, µ = 10, σ = 15, κ = 1,
and N = 5 periods. When trading starts at time t1, the incoming book [1, 0, 0, 1] consists of just the initial
limit orders from the crowd at A2 and B2. Arriving traders choose optimal orders at each period which may
be limit orders LSAi (LBBi) i = 1, 2, market orders at the best standing ask, MBAit , or bid, MSBit , or
no trade, NT . Below each possible optimal order at the nodes shown here, we report in italics the order’s
equilibrium submission probability given randomness in the investor private values β. Boldfaced orders and
the associated states of the book (within double vertical bars) indicate realized equilibrium outcomes along
this particular realized order path.
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6 Appendix B: Algorithm for computing equilibrium

The computational problem to solve for a Perfect Bayesian Nash equilibrium in our model

(as defined in Section 1.1) has three parts. First, the optimal order-submission problems

in (6) and (7) require computing limit-order execution probabilities Pr(θxtj |v,Ltj−1
) and

Pr(θxtj |Ltj−1
) for informed and uninformed investors conditional on past order histories Ltj−1

and asset-value expectations E[v|Ltj−1
] for uninformed investors that are conditional on both

the order history Ltj−1
and on future state-contingent limit-order execution θxtj for each

time tj at each node of the trading game. Thus, the learning problem is both backward-

and forward-looking. Second, optimal strategies are needed for each possible investor given

their different information and different private values. Third, rational expectations (RE)

involves a fixed point so that the beliefs underlying the optimal order-submission strategies

are consistent with the execution probabilities and value expectations that the endogenous

optimal strategies produce in equilibrium.

Our algorithm uses backward induction to solve for optimal order strategies given a

set of asset-value beliefs for all dates and nodes in the trading game and uses an iterative

recursion to solve for the RE equilibrium asset-value and order-execution beliefs fixed point.

The backward induction makes order-execution probabilities consistent with optimal order-

submission. It also takes future state-contingent execution into account in the uninformed-

investor value expectations. We then embed the optimal order strategy calculation in an

iterative recursion to solve for a fixed point for the RE asset-value beliefs. For a generic round

r in this recursion, asset-value probabilities πv,r−1
tj from round r − 1 are used iteratively as

incoming asset-value beliefs in round r. Thus, the recursion for a generic round r involves

solving by backward induction for optimal strategies for each tj

max
x∈Xtj

wI, r(x | v,Ltj−1
) = [v + βtj − p(x)] f(x)Prr(θxtj | v,Ltj−1

) (16)

max
x∈Xtj

wU, r(x |Ltj−1
) = [v0 + Er[∆ |Ltj−1

, θxtj ] + βtj − p(x)] f(x)Prr(θxtj |Ltj−1
) (17)

where f(x) is the fill function (equal to 1 for buy orders, 0 for NT , and -1 for sell orders)

and

Er[∆|Ltj−1
, θxtj ] = (π̂v̄, rtj v̄ + π̂v0, r

tj v0 + π̂v, rtj v)− v0 (18)

π̂v, rtj =
Prr(θxtj |v,Ltj)

Prr(θxtj |Ltj)
πv, r−1
tj . (19)

At each time tj the backward induction in round r has already determined limit-order exe-
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cution contingencies θxtj at subsequent times t > tj. Thus, the order-execution probabilities

Prr(θxtj | v,Ltj−1
) and Prr(θxtj |Ltj−1

), and the history-and execution-contingent probabilities

π̂v, rtj−1
and associated asset-value expectations Er[∆|Ltj−1

, θxtj ] are hybrid moments in that

history-contingent asset-value beliefs πv, r−1
tj−1

from round r− 1 for a path Ltj−1
for dates t1 to

tj−1 are updated using the order-execution contingencies already computed for subsequent

dates tj+1 to tN in the backward induction for round r. At the end of round r, the updated

outgoing asset-value beliefs πv,rtj for round r are then used as incoming beliefs for the next

round r+ 1. The fixed-point recursion starts in round r = 1 by setting the initial asset-value

beliefs πv,0tj of uninformed traders at each time tj in the backward induction to be the uncon-

ditional priors Pr(v) in (1). In other words, the algorithm starts in round r = 1 by ignoring

history. The recursion is then iterated to find a RE fixed point πvtj in the uninformed investor

asset-value beliefs given history.

Order-execution in generic round r is modeled as follows: Starting at tN (the last

order-decision time), the execution-probability for new limit orders is zero, and so optimal

strategies only involve market orders and NT . Given linearity of the expected payoffs in

the private value β ∈ [−10, 10] in (16) and (17), the optimal orders for an informed trader

Iv ∈ {Iv, Iv0 , Iv} at tN are34

xI,rtN (β|Lt4 , v) =


MSBitN

if β ∈ [−10, β
r,Iv ,MSBitN

,NT

tN
)

NT if β ∈ [β
r,Iv ,MOBitN

,NT

tN
, β

r,Iv ,NT,MBAitN
tN

]

MBAitN if β ∈ [β
r,Iv ,NT,MBAtN
tN

, 10]

(20)

where for each possible combination ofMSBitN
= {MSB1,MSB2} andMBAitN = {MBA1,MBA2}

β
r,Iv ,MSBitN

,NT

tN
= BitN

− v (21)

β
r,Iv ,NT,MBAitN
tN

= AitN − v

are the critical thresholds that solve wI,r(MSBitN
|v,LtN−1

) = wI,r(NT |v,LtN−1
) and wI,r(NT |v,LtN−1

) =

wI,r(MBAitN |v,LtN−1
), respectively. The optimal trading strategies and β thresholds for an

uninformed traders are similar but the conditioning set does not include the asset value v:

xU,rtN (β|LtN−1
) =


MSBitN

if β ∈ [−10, β
r,U,MSBitN

,NT

tN
)

NT if β ∈ [β
r,U,MSBitN

,NT

tN
, β

r,U,NT,MBAitN
tN

]

MBAitN if β ∈ (β
r,U,NT,MBAitN
tN

, 10]

(22)

34For instance, an informed trader would post a market buy MBA1 at tN only if the payoff is positive
and thus outperforms the NT payoff of zero, i.e, if v + βtN −A1 > 0.
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where the critical thresholds are

β
r,U,MSBitN

,NT

tN
= BitN

− (v0 + Er−1[∆|LtN−1
]) (23)

β
r,U,NT,MBAitN
tN

= AitN − (v0 + Er−1[∆|LtN−1
]).

Given the βtN ranges for each possible action at tN , we compute submission probabilities

associated with each optimal order at tN using the truncated-Normal density n(·) for the

private values βtN .35 At time tN−1 these are the execution probabilities for new limit orders

by an informed trader Iv ∈ {Iv, Iv0 , Iv} at the different possible best bids and asks, Bi,tN−1

and Ai,tN−1
respectively at time tN :

Prr(θLBBi
tN−1
|LtN−2

, v) = α
[ ∫ β

r,Iv,MSBitN
,NT

tN

−10

n(β) dβ
]

+
(

1−α
)[ ∫ β

r,U,MSBitN
,NT

tN

−10

n(β)dβ
]

(24)

Prr(θLSAi
tN−1
|LtN−2

, v) = α
[ ∫ 10

β
r,Iv,NT,MBAitN
tN

n(β) dβ
]

+
(

1− α
)[ ∫ 10

β
r,U,NT,MBAitN
tN

n(β) dβ
]

(25)

which may be zero if particular orders are never submitted. The analogous execution prob-

abilities for an uninformed U investor arriving at time tN−1 and who does not know v a

priori are:

Prr(θLBBi
tN−1
|LtN−2

) = α
[ ∑
v∈{v,v0,v}

π̂v,rtN−1

∫ β
r,Iv,MSBitN

,NT

tN

−10

n(β) dβ
]
+
(

1−α
)[ ∫ β

r,U,MSBitN
,NT

tN

−10

n(β) dβ
]

(26)

Prr(θLSAi
tN−1
|LtN−2

) = α
[ ∑
v∈{v,v0,v}

π̂v,rtN−1

∫ 10

β
r,Iv,NT,MBAitN
tN

n(β) dβ
]
+
(

1−α
)[ ∫ 10

β
r,U,NT,MBAitN
tN

n(β) dβ
]

(27)

At tN−1 there is only one period before the end of the trading game. Thus, the execution

probability for a limit order is positive if and only if the order is posted at the best price

on its own side of the market (AitN−1
or BitN−1

), and if there are no non-crowd limit orders

already standing in the limit order book at that price at the time the new limit order is

posted.

The backwards induction continues at generic times tj < tN in round r as follows: In-

vestors now potentially use limit orders as well as market orders and NT . From the back-

wards induction for dates t > tj, we have order-execution probabilities (for informed and

uninformed investors) and conditional valuation expectations (for uninformed investors) for

each potential order an investor might submit at time tj, and so we can compute expec-

35The discussion here is for the case where both informed and uninformed investors have random private
factors β.
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ted payoffs for each order for each investor given their information and given each possible

private value βtj . Since expected payoffs at each tj in (16) and (17) are linear in an investor’s

β, optimal strategies given investor beliefs are characterized by the upper envelope of their

expected payoffs for each order with respect to possible values of β. The critical thresholds

for optimal orders at tj are the β values where expected payoffs for different optimal orders

are equal (i.e., potential orders dominated by other orders are not used). The probability of

the truncated normal distribution for β in between the different critical thresholds gives the

order-submission probabilities associated with investors’ optimal orders. Figure 1 illustrates

this construction.36 The order-execution probabilities together with the model parameters

and the uninformed-investor beliefs then give order-execution probabilities at time tj for

potential orders at time tj−1. This backwards induction for round r continues back to time

t1.

Off-equilibrium beliefs: Round r of the backwards-induction recursion requires history-

contingent asset-value beliefs πv,r−1
tj = Prr−1(v|Ltj) from round r − 1 for all feasible paths

that traders may use. These beliefs can be computed using Bayes’ Rule for all paths Ltj that

occur with positive probability in round r−1. However, Bayes’ Rule cannot be used to update

beliefs for paths that involve orders that are not used with positive probability in round r−1.

Thus, similar to the discussion in Section 1.1, the model needs candidate off-equilibrium

beliefs for such paths. There are many ways to search over candidate off-equilibrium beliefs,

such as grid search, simulate annealing, and introducing trembles. However, we found that

a relatively simple procedure worked well: If a path Ltj does not occur in round r − 1, we

set the candidate off-equilibrium belief Prr−1(v|Ltj) to be the probability Prr−k(v|Lt) of

the most recent recursion r − k in which the longest subpath starting at t1 and continuing

up to the largest t < tj consistent with path Ltj occurred. If no such recursion exists, then

Prr−1(v|Ltj) is set to be the unconditional probability Pr(v).

Mass points: In our first model specification in Section 2.1, all informed investors have

neutral private values β = 0. Thus, rather than there being a probability density function

over different informed investors with different private values β, there are mass points. In

this specification, the integrals associated with the upper-envelope construction giving the

cumulative densities between critical thresholds must be replaced with probability masses

for the different informed investors.

Mixed strategies: We allow for both pure and mixed strategies in our Perfect Bayesian

36One reason for the model’s tractability, despite having a continuum of investor β types, is that all
investors with private values β in between two critical thresholds, by construction, have the same unique
optimal order.
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Nash equilibrium. Our algorithm starts with a conjecture of pure strategies. However, if

a pair of orders (x, x′) for a particular investor repeatedly oscillates between order x being

optimal when it is conjectured that the investor uses order x′ and x′ being optimal when it

is conjectured that the investor uses x, then we search over mixed strategies such that the

investor is indifferent between using the two orders given other investors’ behavior given the

conjectured mixing probabilities. For example, in Section 2.1, neutrally informed investors

mix equally between a limit buy LSA2 and a limit sell LSB1 at time t1. Another example

is that, in the high-δ/high-α market, an informed investor with good news mixes unequally

between LBB1 and LBB2 limit orders.

Mixed strategies and mass points in the private-value distribution are connected.

Proposition 2 If the private-value distributions for all investors have continuous densities,

then the market equilibrium will have pure strategies. However, if the private-value distri-

butions have mass points (by themselves or in mixtures with continuous densities), then is

is possible that the equilibrium will involve mixed strategies.

Proof: The proof follows from the fact that investor expected payoffs on different orders

change linearly in investor private values βtj . Thus, if an investor with a given βtj value

is indifferent between two orders (a set of measure zero if there are no private-value mass

points), investors with adjacent βtj values nearby will strictly prefer one order over the other,

and, thus, cannot optimally mix over those orders.

Convergence: A Perfect Bayesian Nash equilibrium is obtained by solving the model re-

cursively for multiple rounds until the updating process converges to a fixed point (i.e, the

RE beliefs) in that uninformed traders no longer revise their asset-value beliefs and when

mixed strategies yield the same payoffs. Numerically, convergence deemed to have been

reached when i) the probabilities πv, rtj , π
v0, r
tj and π v, rtj in round r are “close enough” to the

probabilities from round r − 1 in that the absolute values of the differences between the

two are all less than 10−7 and ii) the absolute differences in expected payoffs for any mixed

strategies are also within 10−7.

7 Appendix C: Additional results

The tables in this section provide additional information on the execution probabilities of

limit orders for informed investor with positive, neutral and negative signals, (Iv̄,Iv0 ,Iv
¯
) and

for uninformed traders. The tables also report the asset-value expectations of the uninformed

investor at time t2 after observing all the possible buy orders submissions at time t1. The
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expectations for sell orders are symmetric. Table C1 reports results for our first model

specification in which only uninformed traders have random private values. Table C2 reports

results for our second model in which both the informed and uniformed traders have private-

value motives.

Table C1: Order Execution Probabilities and Asset-Value Expectation for Informed Traders
with β = 0 and Uninformed Traders with β ∼ Tr[N (µ, σ2)]. This table reports results for two
different values of the informed-investor arrival probability α (0.8 and 0.2) and for two different values of the
value-shock volatility δ (1.4 and 0.2). σ = 15. For each set of parameters, the first four columns report the
equilibrium limit order probabilities of executions for informed traders with positive, neutral and negative
signals, (Iv̄,Iv0 ,Iv

¯
) and for uninformed traders (U). The fifth column (Uncond.) reports the unconditional

order-execution probabilities in the market. Next, the columns report conditional and unconditional future
order-execution probabilities and the asset-value expectations of an uniformed investor at time t2 after
observing different order submissions at time t1.

δ = 1.4 δ = 0.2

Iv̄ Iv0 Iv
¯

U Uncond. Iv̄ Iv0 Iv
¯

U Uncond.

PEX(LSA2|·) 0.269 0.205 0.059 0.177 0.177 0.180 0.229 0.170 0.193 0.193
PEX(LSA1|·) 0.999 0.154 0.090 0.414 0.414 0.323 0.323 0.323 0.323 0.323
PEX(LBB1|·) 0.090 0.154 0.999 0.414 0.414 0.323 0.323 0.323 0.323 0.323
PEX(LBB2|·) 0.059 0.205 0.269 0.177 0.177 0.170 0.229 0.180 0.193 0.193

α = 0.8
E[v|LBB1 |·] 11.331 10.000
E[v|LBB2 |·] 10.701 10.130
E[v|MBA1 |·]
E[v|MBA2 |·] 10.000 10.000

PEX(LSA2|·) 0.563 0.490 0.402 0.485 0.485 0.514 0.499 0.476 0.496 0.496
PEX(LSA1|·) 0.872 0.772 0.735 0.793 0.793 0.792 0.792 0.790 0.791 0.791
PEX(LBB1|·) 0.735 0.772 0.872 0.793 0.793 0.790 0.792 0.792 0.791 0.791
PEX(LBB2|·) 0.402 0.490 0.563 0.485 0.485 0.476 0.499 0.514 0.496 0.496

α = 0.2
E[v|LBB1 |·] 10.245 10.000
E[v|LBB2 |·] 10.000 10.089
E[v|MBA1 |·]
E[v|MBA2 |·] 10.000 10.000
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Table C2: Order Execution Probabilities and Asset-Value Expectation for Informed and Unin-
formed Traders both with β ∼ Tr[N (µ, σ2)]. This table reports results for two different values of the
informed-investor arrival probability α (0.8 and 0.2) and for two different values of the value-shock volatility
δ (1.4 and 0.2). σ = 15. For each set of parameters, the first four columns report the equilibrium limit
order probabilities of executions for informed traders with positive, neutral and negative signals, (Iv̄,Iv0 ,Iv

¯
)

and for uninformed traders (U). The fifth column (Uncond.) reports the unconditional order-execution
probabilities in the market. Next, the columns report conditional and unconditional future order-execution
probabilities and the asset-value expectations of an uniformed investor at time t2 after observing different
order submissions at time t1.

δ = 1.4 δ = 0.2

Iv̄ Iv0 Iv
¯

U Uncond. Iv̄ Iv0 Iv
¯

U Uncond.

PEX(LSA2|·) 0.625 0.498 0.419 0.514 0.514 0.502 0.487 0.472 0.487 0.487
PEX(LSA1|·) 0.906 0.834 0.720 0.820 0.820 0.849 0.837 0.824 0.836 0.836
PEX(LBB1|·) 0.720 0.834 0.906 0.820 0.820 0.824 0.837 0.849 0.836 0.836
PEX(LBB2|·) 0.419 0.498 0.625 0.514 0.514 0.472 0.487 0.502 0.487 0.487

α = 0.8
E[v|LBB1 |·] 9.970 10.003
E[v|LBB2 |·] 9.558 9.988
E[v|MBA1 |·]
E[v|MBA2 |·] 11.400

PEX(LSA2|·) 0.519 0.492 0.471 0.494 0.494 0.490 0.487 0.483 0.487 0.487
PEX(LSA1|·) 0.851 0.834 0.816 0.834 0.834 0.839 0.837 0.834 0.837 0.837
PEX(LBB1|·) 0.816 0.834 0.851 0.834 0.834 0.834 0.837 0.839 0.837 0.837
PEX(LBB2|·) 0.471 0.492 0.519 0.494 0.494 0.483 0.487 0.490 0.487 0.487

α = 0.2
E[v|LBB1 |·] 10.024 10.001
E[v|LBB2 |·] 9.967 9.999
E[v|MBA1 |·]
E[v|MBA2 |·] 11.400
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