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Abstract

We study agents in a social network who receive initial noisy signals about a

fundamental parameter and then, in each period, solve a robust non-parametric

estimation problem given their previous information and the most recent esti-

mates of their neighbors. The resulting robust opinion aggregators are charac-

terized by simple functional properties: normalization, monotonicity, and trans-

lation invariance. These aggregators admit the linear DeGroot’s model as a par-

ticular parametric specification. However, robust opinion aggregators allow for

additional features such as overweighting/underweighting of extreme opinions,

confirmatory bias, as well as discarding information obtained from sources per-

ceived as redundant. We show that under this general model, it is still possible

to link the long-run behavior of the opinions to the structure of the underlying

network. In particular, we provide suffi cient conditions for convergence and con-

sensus and we offer some bounds on the rate of convergence. In some parametric

cases, we derive the influence of the agents on the limit opinions and we stress

how it depends on their centrality as well as on their initial signals. Finally, we

study suffi cient conditions under which a large society learns the true parameter

while also highlighting why this property may fail.
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1 Introduction

In many social network settings of economic interest, individuals fail to adjust their

opinions in a Bayesian fashion. In this case, non-Bayesian social learning models offer

a better description of the opinions’dynamics.1 A reasonable explanation is that fully

rational inference is not an easy task to implement under the complex information

structures that arise in social networks. Moreover, agents are sometimes just trying to

either adapt to each other or to adjust to a belief shared by the entire society.2 Finally,

when modeling the evolution of Bayesian updates in a network, tractability is easily

lost, especially outside the standard quadratic-Gaussian setting.3

In this paper, we propose and analyze a general and highly flexible model of non-

Bayesian social learning. We highlight the key role of the network structure for the

limit behavior of opinions in terms of convergence, consensus (i.e., all the agents end

up sharing the same opinion), and information aggregation. In doing so, we also derive

a set of effects and predictions that are novel to this literature.

Robust estimation in networks We consider a network of agents in which each

of them observes the signals’realizations of her neighbors. These signals are equal to

a common fundamental location parameter plus some agent specific noise. Motivated

by the fact that it might be hard for real-life individuals to assess the informational

content encoded in others’actions and opinions, we model agents that are not Bayesian.

Specifically, in the face of their uncertainty about the data-generating process and

the global network structure, the agents pool their neighbors’ opinions as to solve

a robust estimation problem in each period. In other words, given their neighbors

signals’ realizations, in the first period, agents try to estimate a la Huber [48] the

true parameter and in the following periods they repeatedly update their opinions

using their neighbors’estimates coming from the previous round of updating. This

estimation procedure does not require them to postulate a probabilistic model for the

data observed. Instead, each agent minimizes a loss function which penalizes larger

residuals between what she observes and her estimate. This captures the idea that

individuals are aware that the data observed contain some valuable information on the

parameter, plus some noise.

1See the empirical evidence in Breza, Chandrasekhar, and Tahbaz-Salehi [15], and Chandrasekhar,

Larreguy, and Xandri [23], and the references therein.
2In these cases, adhering to Bayesian updating might not be reasonable even from a normative

point of view. See Section 7 for more details on how our model also addresses this issue.
3For a discussion of the diffi culties of Bayesian modelling of social networks see Breza, Chan-

drasekhar, Golub, and Parvathaneni [14]. A notable exception is the Gaussian case studied by Mossel,

Olsman, and Tamuz [70].
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Robust opinion aggregators The estimation procedure described above, depend-

ing on the loss functions used by the agents, generates a map from profiles of last

period opinions to the updates. Our first main result, Theorem 1, is a characterization

of these maps which we call robust opinion aggregators.4 These aggregators feature

properties that make the analysis still tractable:

1. Normalization: Every time the agents have reached a consensus none of them
further updates her opinion;

2. Monotonicity: If two profiles of opinions are such that the first one dominates
(according to the coordinatewise order) the second, then this relation is preserved

after aggregation;

3. Translation invariance: If the opinion of each agent is shifted by the same
constant, then the updates are shifted as well.

The first two properties have a straightforward interpretation, whereas translation

invariance is a natural consequence of the fact that agents try to estimate a location

parameter. In general, these simple properties are appealing because they arise from

the estimation procedure we consider, and, at the same time, they nest several classes

of opinion aggregators such as the celebrated DeGroot’s model.5

Our opinion aggregators are general enough to capture economic phenomena such as

dislike for (or attraction to) extreme opinions, confirmatory bias, disregard for redun-

dant information as well as assortativeness. Indeed, a key feature of our model is that

the reciprocal influence among agents also depends on their original estimates\opinion.
For example, if the robust opinion aggregator considered features attraction to extreme

opinions, then the influence of each agent depends both on her centrality and on how

extreme was her original opinion relative to the entire population. This novel effect

might have immediate and relevant implications for designing intervention policies in

networks. The intrinsic level of extremism among the agents (captured, for example, by

asymmetric loss functions) might challenge the establishment of a moderate consensus

even when the latter is proposed by central agents.6 To the best of our knowledge, the

current work is the first to propose a unifying approach that deals systematically with

each of the aforementioned effects.
4In a related project, [19], we show how the same dynamics arise from a stochastic coordination

game between the agents, provided that they keep some minimal inertia in favor of their own action

played in the previous period (in the current setting, the opinion they stated).
5Our model reduces to the standard DeGroot’s model when all the agents use a quadratic loss

function.
6These policy interventions can assume different forms such as incentive distortions (Galeotti,

Golub, and Goyal [37]) or information design (Galperti and Perego [39]).
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On the empirical side, the recent field studies that compare Bayesian to non-

Bayesian social learning models have obtained evidence consistent with our properties.

For instance, Chandrasekhar, Larreguy, and Xandri [23] find that most of the time,

if the sampled subjects come to a consensus, then they remain stuck on their beliefs

even when such a behavior is objectively suboptimal: this is consistent with normal-

ization. Similarly, they also find that the overwhelming majority of subjects responds

monotonically to changes in their neighbors’opinions.

The dynamics of robust opinion aggregation The opinions’dynamics induced

by this more general form of social learning are different from the ones described by the

standard linear updating rule of DeGroot. Thus, few fundamental questions naturally

arise. Are these new dynamics completely undisciplined? Is it still possible to obtain

convergence of opinions? Also, if the answer is yes, can we say anything on the rate of

convergence and the formation of consensus? Does the crowd become wise in the limit

a la Golub and Jackson [42]? The second goal of the present work is to answer these

and other questions regarding our more general opinions’dynamics. In answering these

questions, we systematically highlight the differences from the DeGroot’s model: the

benchmark for non-Bayesian opinion aggregation.

In our second main result, Theorem 2, we show that the opinions’time averages,

induced by robust opinion aggregators, uniformly converge. Intuitively, the agents’

updates either converge or eventually oscillate, whereas the bound on the rate of con-

vergence is independent of the particular signals’realization.

Despite being an essential result of what an external observer can learn by observing

the evolution of opinions, the convergence of time averages is usually not satisfactory

for the analysis of learning and aggregation of agents’opinions. Therefore, we next

look for conditions that ensure proper convergence of the iterates of our maps. In

particular, we provide conditions that have transparent economic interpretations, and

that can be derived from our foundations. Hence, we analyze the properties of the

network structure that guarantee convergence of the limit opinions, for example:

1. Self-influence: For every profile of opinions, the update of each agent is influ-
enced by her own past opinion;

2. Uniform common influencer: There is at least one source of information that
is trusted by the entire society;

3. Strong connectedness: For every pair of agents in the network, there is a
sequence of agents connecting them.

In our third main result, Theorem 3, we provide minimal suffi cient conditions for

standard convergence: be it to consensus or not. These conditions are expressed in
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terms of the network’s connections and are implied by each one of the previous three

properties where strong connectedness has to be paired to aperiodicity. If either the

uniform common influencer property or strong connectedness is satisfied, then a con-

sensus is reached at the limit. Under these two assumptions, we are also able to provide

bounds for the corresponding rates of convergence.

As mentioned, all these conditions are related to a network structure among agents

that we obtain from the opinion aggregator at hand. We show that this derived network,

under mild assumptions, coincides with the primitive one disciplining which signals the

agents observe. In our derived network, an agent is linked to another if the former

is always responsive to changes in the opinion of the latter. At the same time, we

highlight that it is also possible to capture different network layers by considering links

that are active only under certain stances stated by the agents (e.g., some of the agents

might be listened to only when they state an extreme opinion). As an implication, our

analysis suggests caution in concluding that convergence to consensus depends on the

local network properties as in DeGroot’s model.

Next, we focus our attention on a subclass of robust opinion aggregators that satisfy

comonotonic additivity. In this case, the aggregation is linear whenever restricted to

comonotonic vectors of opinions. We call the elements of this class Choquet aggregators

because they have a representation in the form of a Choquet integral. The median,

together with all the quantile functions as well as the order statistics, are examples

of such aggregators. Aside from the representation, these aggregators have also some

useful properties and interpretations. For example, each iteration of a Choquet aggre-

gator corresponds to a linear aggregation using a matrix that is selected from a finite

set of possible alternatives. The network structure and the current ranking of opinions

interact in determining which matrix is used and make these aggregators particularly

suitable to model agents that overweight either the extreme or the intermediate opin-

ions in the network.

Vox populi, vox Dei Finally,7 we explore whether or not robust opinion aggregation

allows the agents to learn the true parameter. In other words, we explore under which

conditions our non-Bayesian social learning model yields the wisdom of the crowd a la

Golub and Jackson [42]. Our findings are mixed. We can provide suffi cient conditions

for wisdom and we can also link them to our foundation. Also in our model, wisdom

occurs when the influence of each agent vanishes in the limit. But, we find new factors,

which are irrelevant in the linear model, that might prevent the wisdom of the crowd.

7Vox populi, vox Dei is a Latin sentence meaning: The voice of the people is the voice of God. It

is often shortened to just “Vox populi”as in the original paper of Galton [36] on the wisdom of the

crowd. Incidentally, in that paper, Galton “aggregated”opinions using the empirical median rather

than the average.
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For example, symmetry of the distribution of agents’signals plays a key role under

general robust opinion aggregation. Similarly, even if a small fraction of agents uses

a distorted aggregation procedure (e.g., they put excessive weight on extreme realiza-

tions), the long-run opinion emerging in large networks might be biased with respect to

the true parameter. Finally, we note how the nonlinearity of our opinion aggregators

makes higher order moments relevant for the volatility of the limit consensus.

Related literature The taxonomy of social learning outlined in Breza, Chandrasekhar,

Golub, and Parvathaneni [14] would categorize our model as a model of aggregation of

information represented by continuous levels (e.g., the intensity of beliefs) in a network

of agents with an intermediate level of sophistication.8

Within this class, the DeGroot’s model [26] is the benchmark.9 It is a discrete-

time dynamic model where a group of agents starts with initial estimates or opinions

and then periodically updates them by taking weighted averages of the estimates of

their neighbors. In this simple model, there is a clear link between the properties of the

underlying network structure and the long-run evolution of opinions. These features are

exploited in Golub and Jackson [42] to fully characterize convergence and convergence

to consensus in terms of the network structure. However, the DeGroot’s model makes

the somewhat unrealistic assumption that the weights assigned to agents are fixed and

do not depend on the opinion stated. These and other issues are addressed in our

more flexible and richer model of information aggregation in networks. For example,

we show that the suffi cient conditions for convergence of [42, Theorem 2] are still valid

and we point out how they might fail to be necessary.

DeMarzo, Vayanos, and Zwiebel [27] provide a microfoundation of the DeGroot’s

model as a repeated naive maximum likelihood estimation procedure of an underlying

parameter that captures a form of persuasion bias.10 In their model, the linearity of

aggregation crucially relies on the assumption that the error terms are normal and

independent. Our approach improves on the work of DeMarzo, Vayanos, and Zwiebel

in two dimensions. First, we do not impose any parametric specification, but we still

encompass the Gaussian case as a particular specification.11 Second, the iteration of

8A subclass of our opinion aggregators (see Section 5.4) are flexible enough to deal also with discrete

states.
9For a comprehensive treatment of this literature see Acemoglu and Ozdaglar [1], Golub and Sadler

[45], Mobius and Rosenblat [68], and the references therein.
10They also allow agents to vary over time the weight they give to their own past beliefs relative

to the others. For the generalization of their procedure in our model see Section D.2 in the Online

Appendix. Banerjee, Breza, Chandrasekhar, and Mobius [8] consider a different departure from the

DeGroot’s model by allowing for heterogeneity of the timing at which the agents receive their first

piece of information.
11Note that maximum likelihood estimators fall within the class of robust estimators, that is, the
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robust estimation requires a much lower degree of bounded rationality of the agents,

as argued above and in Section 3.

Among the most recent papers, the one closest to ours is Molavi, Tahbaz-Salehi, and

Jadbabaie [69]. The first difference concerns the stochastic component of the model.

They follow Jadbabaie, Molavi, Sandroni, and Tahbaz-Salehi [52] in considering social

learning when agents both repeatedly receive signals about an underlying state of

the world and naively combine the beliefs of their neighbors. Instead, we follow the

wisdom of the crowd approach of [42], and we study the long-run opinions as the size

of the society grows to infinity. The second difference regards the direction of the

relaxation of the linearity in the naive-updating rules of the agents. Both papers take

an axiomatic approach, postulating some properties of the opinion aggregators, the

main differences being between the assumptions of translation invariance and label

neutrality. In the Online Appendix, we show that for the questions we explore, i.e.,

the convergence of limit opinions and the wisdom of the crowd, log-linear aggregators

a la [69] can be studied in an equivalent linear system, thus making use of the results

developed for DeGroot’s model and its time-varying versions. Since our class of robust

opinion aggregators encompasses the linear model, our results cover their aggregators

too. However, notice that the equivalence with a linear system may be lost for a

problem of learning with repeated signals like the one they analyze in their paper.

Our results and their proofs relate to three different strains of literature in Math-

ematics: namely, discrete dynamical systems, fixed points approximation, and nonex-

pansive selfmaps (i.e., selfmaps which are Lipschitz continuous of order 1). We provide

here a brief overview. The literature on discrete dynamical systems/repeated averaging

shares a common theme. Agents aggregate opinions at each point in time following De-

Groot’s rationale, but with a potential time-varying averaging procedure which could be

linear or not. These works are typically concerned in providing the more general condi-

tions possible on the sequence of averaging procedures which guarantee convergence to

consensus. One of the first papers dealing with such a problem is Chatterjee and Seneta

[24] where agents aggregate opinions using time-varying aggregation matrices. Krause

[56] provides an excellent textbook exposition of the topic and a full characterization of

convergence to consensus.12 In a nutshell, [56, Theorem 8.3.4] shows that convergence

to consensus is achieved if and only if a form of strict internality is satisfied, that is, the

range of opinions of the agents eventually shrinks no matter what is the initial vector

of opinions. Our results differ from the ones above in two dimensions. First, in our

Theorems 2 and 3, we tackle the issue of convergence in general and we do not restrict

general class considered in this paper. In the Online Appendix, we also rationalize robust opinion

aggregation as a repeated maximum likelihood estimation.
12Both this monograph and the survey [1] provide detailed references about the generalizations of

DeGroot’s model in the engineering and computer science literature.
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ourselves just to convergence to consensus. This significantly complicates the analysis

and we need to resort to completely different techniques coming from functional analy-

sis and which we discuss below. The overlap with Krause’s result is therefore restricted

to Corollaries 2—4 and limited to the part of convergence. As we comment in Remark

1, the convergence part of these results can be easily obtained from our more general

Theorem 3, rather than proving any form of strict internality a la Krause. At the

same time, this brings us to the second difference. Since our opinion aggregators are

microfounded, under mild conditions, they inherit the primitive network structure of

the foundation. In turn, this imposes a strong discipline on the averaging process and

the corresponding sequence of replicating matrices. This fact was never fully exploited

before. Mathematically, this turns out to significantly simplify our proofs, which for

these results rely on a combination of operatorial arguments and simple Markov chains

techniques. Moreover, it allows us to provide bounds on the rate of convergence which

are function of the underlying network. Finally, Krause’s results are related to an un-

derlying network structure by Muller-Frank [71]. The results obtained in [71] rely on

a form of internality to the opinions in the neighborhood of each agent. Our opinion

aggregators, in general, do not have any strict internality property. However, note that

part of our Corollary 4 can also be obtained from Theorem 4 in [71].

The other two literatures relevant to our work are the ones about nonexpansive

maps and fixed points approximation. The goal there is to find solutions to functional

equations induced by operators or more in general fixed points of operators which are

not contractions. We exploit some of the techniques originating from these literatures

and in Appendices B and D.4, in several remarks (see Remarks 5—7 and 9), we com-

ment more in detail about the differences and the common aspects with our work. In

particular, we comment on the relation with the work of Baillon, Bruck, and Reich [7]

on the Cesaro convergence of the iterates of nonexpansive selfmaps. More in general,

even though we deal with issues present also in the two aforementioned literatures, our

opinion aggregators have properties which do not seem to have been studied in these

fields and which in turn allow us to obtain either sharper or novel results.

Our results also make use of techniques and concepts coming from decision theory.

The three papers which are mostly related to our work are Ghirardato, Maccheroni,

and Marinacci [41], Maccheroni, Marinacci, and Rustichini [63], and Schmeidler [79].

The first two papers were the first to study functionals which satisfy the properties of

normalization, monotonicity, and translation invariance and to fruitfully use nonstan-

dard differential techniques. In our case, these techniques turn out to be extremely

useful when we discuss the wisdom of the crowd. The third paper was the first one to

study comonotonic additive functionals.
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Outline The paper is structured as follows. Section 2 presents the definitions of the

mathematical objects used in our analysis. Section 3 introduces our estimation model

and characterizes the class of robust opinion aggregators. In Section 4, we provide

some illustrative examples. Section 5 describes the long-run evolutions of opinions and

the properties of the limit. Section 6 explores the conditions for obtaining the wisdom

of the crowd a la Golub and Jackson [42]. Finally, Section 7 discusses some of our main

assumptions and how to relax them. Most of the proofs are in the Appendix, except

for some instrumental results, whose proofs are relegated to the Online Appendix.

2 Preliminaries

Consider a finite set of agents N = {1, ..., n}. We denote by I a closed interval of R
with nonempty interior. For example, if I = [0, 1], then we interpret a number in this

interval as either a measurement of agreement on a particular instance or a subjective

probability about a specific event. In what follows, we study selfmaps T : B → B where

B = In. We call these selfmaps opinion aggregators. Given an opinion aggregator T

and i ∈ N , we denote the i-th component of T by Ti. In other words, given x ∈ B,
Ti (x) is the i-th component of the vector T (x). With a small abuse of notation, we

denote by the letter I two objects: a closed interval with nonempty interior and the

identity map I : B → B. The context will always clarify unambiguously to which

object we are referring to.

Given two vectors x, y ∈ Rn,13 recall that they are comonotonic if and only if
[xi − xj] [yi − yj] ≥ 0 for all i, j ∈ N . By e ∈ Rn, we denote the vector whose com-
ponents are all 1s. We denote by ∆ the collection of probability vectors in Rn, that
is, p ∈ ∆ if and only if pi ≥ 0 for all i ∈ N and

∑n
i=1 pi = 1. We endow B with the

topology induced by the supnorm ‖ ‖∞. Given an opinion aggregator T : B → B and

x ∈ B, the sequence {T t (x)}t∈N will be called the sequence of updates of x.
Among other things, we are concerned about the limit and the rate of convergence

of these sequences. We will be dealing with two kinds of limit: the standard one

induced by the supnorm as well as the one of Cesaro, that is,

C − lim
t
T t (x)

def
= lim

τ

1

τ

τ∑
t=1

T t (x)

where the limit on the right-hand side of the definition is the standard limit.

We denote by W the collection of stochastic matrices, that is, all n × n square

matrices whose entries are positive and rows sum up to 1.

We say that an opinion aggregator T is:

13In this paper, vectors will always be column vectors, unless otherwise specified.

9



1. normalized if and only if T (ke) = ke for all k ∈ I;

2. monotone if and only if for each x, y ∈ B

x ≥ y =⇒ T (x) ≥ T (y) ;

3. translation invariant if and only if

T (x+ ke) = T (x) + ke ∀x ∈ B, ∀k ∈ R s.t. x+ ke ∈ B;

4. constant affi ne if and only if

T (λx+ (1− λ) ke) = λT (x) + (1− λ) ke ∀x ∈ B, ∀k ∈ I,∀λ ∈ [0, 1] ;

5. comonotonic additive if and only if

x and y comonotonic =⇒ T (x+ y) = T (x) + T (y) ;

6. linear if and only if there exists a matrix W ∈ W such that

T (x) = Wx ∀x ∈ B;

7. odd if and only if

T (−x) = −T (x) ∀x ∈ B s.t. − x ∈ B;

Our foundations yield opinion aggregators that have the following properties: nor-

malization, monotonicity, and translation invariance.

Definition 1 Let T be an opinion aggregator. We say that T is robust if and only if
T is normalized, monotone, and translation invariant.

We call these aggregators robust for two reasons: 1) our foundation builds on

the theory of robust statistics (see Section 3 and Theorem 1), 2) more in general,

our foundation naturally generalizes the one of the linear model, without taking a

parametric approach, that is without committing to any specific functional form.

A final important mathematical object is the notion of directed graph/network. We

opt for a matrix representation. So a network will be the set of agents N paired with

an adjacency matrix A, that is, a matrix such that aij = 1 if there is a directed arc

from i to j, and aij = 0 otherwise.
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3 The model

We assume that the agents in our population N try to estimate a fundamental para-

meter µ ∈ R. Each agent i ∈ N initially observes a signal

X0
i (ω) = µ+ εi (ω) (1)

where εi : Ω → R is a random variable defined over a common probability space

(Ω,F , P ). We assume that X0
i (ω) ∈ I for all i ∈ N and for all ω ∈ Ω. The period-0

estimate of each agent i coincides with the realization X0
i (ω) of her signal that, for

simplicity, we denote by x0
i .

In period 1, the agents communicate with each other to acquire new information on

the parameter µ. We model the communication through a directed network (N,A). In

particular, each agent i collects the sample of realizations of signals in her neighborhood

Ni = {j ∈ N : aij = 1} and then solves an estimation problem about µ, based on

these data. We consider a generalization of the class of M-estimators for location

parameters considered in Huber [48].14 Formally, we endow each agent i with a lower

semicontinuous loss function φi : Rn → R+ and we assume she solves

min
c∈R

φi
(
x0 − ce

)
(2)

where x0 =
(
x0
j

)n
j=1
.15 Given the profile of loss functions φ = (φi)

n
i=1, the updates x

1 at

period 1 belong to the set

Tφ
(
x0
)

=
n∏
i=1

argminc∈R φi
(
x0 − ce

)
. (3)

In all of our results below, the assumptions on φ will guarantee the “internality”of Tφ

and its nonemptiness, that is, ∅ 6= Tφ (x) ⊆ B for all x ∈ B. Therefore, (3) defines an
updating correspondence Tφ : B ⇒ B that satisfies a property of translation invariance

(see, e.g., [48])

Tφ (x+ ke) = Tφ (x) + ke ∀x ∈ B, ∀k ∈ R s.t. x+ ke ∈ B
14Our generalization falls within the class of extremum estimators.
15The network structure (N,A) can be reflected in the profile of loss functions φ = (φi)

n
i=1 by

assuming that for each i ∈ N and for each z, z′ ∈ Rn

zj = z′j ∀j ∈ Ni =⇒ φi (z) = φi (z′) .

It is a natural assumption since φi (z) of each agent i is solely influenced by the components zj where

j is in the neighborhood of i (see, e.g., Babichenko and Tamuz [6]). Nevertheless, it is not important

from a mathematical point of view and it can be dispensed with. Finally, throughout the rest of the

paper, we maintain the semicontinuity assumption of each φi.
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where Tφ (x)+ke is the set of vectors in Tφ (x) shifted by ke. We define by T φ : B → B

an arbitrary selection of Tφ, that is, a function such that T φ (x) ∈ Tφ (x) for all x ∈ B.
With a standard abuse of notation, we identify single-valued correspondences with

functions and, in this case, write Tφ = T φ.

The minimization problem in (2) has the following interpretation: agent i optimally

selects the estimate for µ as to minimize a loss function of the induced residuals’vector

ε = x0 − ce. In particular, the function φi represents a belief-free form of the ex-ante

information of agent i about both the network structure and the objective distribution

of errors (both potentially unknown to each agent apart from their neighborhoods

Ni). For example, if i believes that the signal of j is highly informative, then her loss

function φi will penalize relatively more the residual εj = x0
j − c. Here, we implicitly

assume that the complexity of the environment does not allow the agents to attach

probabilistic beliefs to the data generating process, including the network structure.

This assumption is backed by the empirical evidence reported in Breza, Chandrasekhar,

and Tahbaz-Salehi [15].

In the subsequent periods, the agents do not receive any additional external in-

formation on µ, but rather keep iterating the same estimation procedure for a new

set of data points given by the last-period estimates of their neighbors. Formally, we

have that xt ∈ Tφ (xt−1) for all periods t ∈ N. In particular, whenever Tφ is single-

valued (denoted by T φ), the deterministic dynamics of the estimates in the population

given the initial realizations’vector x0, are described by the iteration of the operator

T φ : B → B at x0, that is, {
xt
}
t∈N =

{(
T φ
)t (

x0
)}

t∈N
.

A justification of this iteration procedure with a quadratic φ has been proposed by

DeMarzo, Vayanos, and Zwiebel [27] and is related to a form of persuasion bias. Under

this interpretation, the agents ignore the information redundancies in their neighbors’

estimates and consider what they observe as brand new information. Despite the con-

vincing arguments presented in [27] in favor of this kind of behavior, this interpretation

requires a certain degree of bounded rationality. Indeed, their estimation approach is

optimal when the agents know the specific parametric form of the error terms. How-

ever, this form is lost after the first round of estimation. In contrast, robust estimation

does not depend on any parametric specification of the errors. To see this, assume for

simplicity that the profile of loss functions φ is such that Tφ = T φ is single-valued and

T is translation invariant (cf. Theorem 1). If we define ε1 = T φ (ε), then the random

vector describing the profile of period 1 estimates is given by

X1 = T φ
(
X0
)

= T φ (µe+ ε) = µe+ ε1.
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Given that, at period 1, each agent i observes the realizations of the estimates in her

neighborhood
(
X1
j

)
j∈Ni

, it follows that the agents face a new location experiment with

error terms equal to ε1 = (ε1
i )
n
i=1. The uncertainty about the distribution of ε

1 is

qualitatively similar to the one of the previous period. Due to this similarity, it seems

then natural that each i would repeat the same estimation procedure of period 1 in all

the subsequent periods. The random vector describing the t-period agents’estimates

is X t =
(
T φ
)t

(X0) = µe + εt and is the result of a location experiment with errors

εt =
(
T φ
)t

(ε). Therefore, for each initial realization x0 of signals X0, the dynamics

followed by the agents’estimates are described by {xt}t∈N.
Finally, we note that the updating procedure proposed by DeMarzo, Vayanos, and

Zwiebel is easily nested in our framework by considering quadratic loss functions. For-

mally, each agent i minimizes

φi (x− ce) =
n∑
j=1

wij (xj − c)2 =
∑
j∈Ni

wij (xj − c)2 (4)

for some vector of weights wi ∈ ∆ such that wij = 0 for all j 6∈ Ni. In their context,

wij represents the subjective belief of i about the precision of the j-th signal.

3.1 Robust opinion aggregators: a foundation

Here, we study the general properties of φ that characterize robust opinion aggregators.

The following definition captures the most elementary form of trust in the signals

observed.16

Definition 2 The profile of loss functions φ is sensitive if and only if φi (he) >

φi (0) for all i ∈ N and for all h ∈ R\ {0}.

In words, if agent i observes a unanimous opinion (including herself) her loss is

minimized by declaring this same opinion. Indeed, if residuals are zero, then the agent

is perfectly matching all the observations, thus minimizing the loss. The next definition

is a form of complementarity in disagreeing with two or more agents from the same

side.

Definition 3 The profile of loss functions φ has increasing shifts if and only if for
each i ∈ N , z, v ∈ Rn, and h ∈ R++

z ≥ v =⇒ φi (z + he)− φi (z) ≥ φi (v + he)− φi (v) .

16With a small abuse of terminology, sometimes we will either say that a profile of loss functions

is sensitive (resp., lower semicontinuous, robust, etc) or that it is a profile of sensitive (resp., lower

semicontinuous, robust, etc) loss functions.
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It has strictly increasing shifts if and only if the above inequality is strict whenever

z � v.

We consider the property of increasing shifts because it is very permissive and

naturally emerges from the characterization of Theorem 1. Intuitively, it requires

that a raise in the agent i own estimate by h induces a higher loss the lower are the

opinions of the other agents. It is implied by stronger properties usually required on

games played on networks, such as supermodularity and degree complementarity (see,

e.g., Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv [38]). Moreover, we will see

momentarily how this corresponds to the generalization of the convexity assumption

imposed in robust statistics.

We call robust a profile of lower semicontinuous loss functions φ = (φi)
n
i=1 which is

sensitive and has increasing shifts. The collection of all these profiles is denoted by ΦR.

Next, we formalize the relationship between robust opinion aggregators and profiles of

robust loss functions.

Theorem 1 Let T be an opinion aggregator. The following statements are equivalent:

(i) There exists φ ∈ ΦR which has strictly increasing shifts and is such that T = T φ,

that is, for each i ∈ N

Ti (x) = argminc∈R φi (x− ce) ∀x ∈ B; (5)

(ii) T is a robust opinion aggregator.

Our first theorem provides a foundation for robust opinion aggregation as the result

of an estimation process. The foundation is tight since, at the same time, each estima-

tion process as in (5) yields a robust opinion aggregator. In Theorem 1, the property

of strictly increasing shifts guarantees that argminc∈R φi (x− ce) is a singleton. This
is a desirable property, nonetheless it is violated for few interesting specifications of

φ (see, e.g., (7) where each agent minimizes the absolute deviations). In Appendix A

(see Proposition 12), we treat the more general case, showing that the correspondence

Tφ, defined as in (3), always admits a selection which is a robust opinion aggregator.

Even though sensitivity and (strictly) increasing shifts are the properties charac-

terizing robust opinion aggregation, it might not be immediate to verify that a given

profile of loss functions satisfies them. The following result is a useful tool which al-

lows to recognize loss functions that induce robust opinion aggregators. Let Φ∗R denote

the set of profiles of continuous, convex, and supermodular loss functions which are

sensitive. Lemma 1 proves that Φ∗R ⊆ ΦR. Moreover, in Proposition 2, we discuss an

important class of natural loss functions which turn out to belong to the class Φ∗R.
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Lemma 1 Let φ = (φi)
n
i=1 be a profile of loss functions. If φ ∈ Φ∗R, then φ ∈ ΦR.

Moreover, if φi is strictly convex for all i ∈ N , then φ has strictly increasing shifts.

Typically, loss functions can satisfy extra properties that might be natural in light

of the estimation procedure at hand. In the next few results, we study how these

properties translate into additional features of T , where the latter play a key role in

establishing convergence of the sequence of updates (cf. Proposition 4 and Section 6).

We begin by studying two properties of homogeneity.

Definition 4 The profile of loss functions φ is positively homogeneous if and only if
for each i ∈ N there exists a positive function ηi : R+ → R+ such that

φi (λz) = ηi (λ)φi (z) ∀z ∈ Rn,∀λ ∈ R+.

For instance, positive homogeneity is satisfied whenever loss functions are semi-

norms (or suitable monotone transformations). For example, this is the case of either

the absolute deviation or the quadratic loss function.

Definition 5 The profile of loss functions φ is symmetric if and only if for each i ∈ N

φi (z) = φi (−z) ∀z ∈ Rn.

Symmetry is always satisfied when the loss functions only depend on the absolute

value of the residuals and not on their sign.

Proposition 1 Let T be an opinion aggregator. The following facts are true:

1. T is a constant affi ne robust opinion aggregator if and only if there exists a

positively homogeneous φ ∈ ΦR with strictly increasing shifts such that T = T φ,

that is, for each i ∈ N

Ti (x) = argminc∈R φi (x− ce) ∀x ∈ B.

2. T is an odd robust opinion aggregator if there exists a symmetric φ ∈ ΦR with

strictly increasing shifts such that T = T φ, that is, for each i ∈ N

Ti (x) = argminc∈R φi (x− ce) ∀x ∈ B.

As noted for Theorem 1, also here in proving the “if”parts, we can dispense with the

assumption of strictly increasing shifts (see Lemma 7). In this case, argminc∈R φi (x− ce)
fails to be a singleton, but Tφ admits a selection which is constant affi ne (resp., odd).

The opinion aggregators induced by seminorms as well as those in which each compo-

nent is a quantile, like the median, are constant affi ne. Another interesting case are

Choquet aggregators (see Section 5.4).
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L-estimators An interesting class of estimators which yield robust opinion aggre-

gators are L-estimators. When using an L-estimator, agent i takes a convex linear

combination of the order statistics in the observed sample. These estimators seem

particularly appealing for two reasons. First, they are robust to misspecification of the

data generating process of the observed opinions. Second, they are straightforward to

compute since they consist of a weighted average procedure. In addition to these desir-

able features, they allow for descriptively relevant biases in information aggregation in

a network framework. Indeed, they can be naturally used to capture the overweighting

(as well as the neglecting) of extreme realizations (see Section 5.4 and Example 6).

Finally, we also note that L-estimators are comonotonic additive. Moreover, it is par-

ticularly easy to link their behavior to the network structure.17 These mathematical

properties simplify the analysis of their long-run limit.

Lemma 2 If each agent i ∈ N uses an L-estimator, the induced opinion aggregator is

robust and comonotonic additive.

In the Online Appendix, we derive suffi cient conditions under which also maximum

likelihood and Bayesian estimators are robust opinion aggregators.

3.2 Independent signals and additive separable loss functions

In this section, following Huber [48], we assume that the agents commonly know that

the errors ε = (εi)
n
i=1 are independently and symmetrically distributed according to

some objective distribution, where the latter is still unknown from their perspective.

In this case, at period 1, every agent i solves an estimation problem with the sample

(Xj)j∈Ni that she perceives as independent. Each agent i uses an estimator T
φ
i that,

for each signals’realization x0, solves

min
c∈R

φi
(
x0 − ce

)
= min

c∈R

∑
j∈Ni

ρi
(
x0
j − c

)
(6)

where ρi : R → R+ is continuous, convex, strictly decreasing on R− and strictly
increasing on R+. This shows that the above problem (2) is a proper generalization

of the estimation method proposed by Huber. Indeed, most of the loss functions used

in robust statistics satisfy the properties we studied above: e.g., the quadratic loss

ρi (s) = s2, the absolute loss ρi (s) = |s|, the p-loss ρi (s) = |s|p with p ≥ 1, and the

Huber loss defined as

ρi (s) =

{
s2 if |s| ≤ k

2k |s| − k2 if |s| > k

17See Proposition 8 and Example 6.
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where k > 0.

Even if in a network setting the agents should take into account that the information

they receive is correlated, their imperfect knowledge of the correlation structure may

lead them to use an additively separable loss function. For this class, it is often easier

to recognize when our properties hold.

Definition 6 The profile of loss functions φ is additively separable if and only if
there exist a stochastic matrix W ∈ W and a profile of lower semicontinuous functions

ρ = (ρi : R→ R+)ni=1 such that for each i ∈ N

φi (z) =
n∑
j=1

wijρi (zj) ∀z ∈ Rn.

Problem (6) coincides with the case in which each agent gives uniform weight to

each signal in her neighborhood: a natural assumption when signals are also perceived

as identically distributed.18 At the same time, it is reasonable to expect that agents

might perceive the signal of some of their neighbors as either more or less precise. This

can be captured by the weights wij not being uniform over Ni. As we discuss in the

Online Appendix, this also is the result of a maximum likelihood estimation procedure.

Given a profile of additively separable loss functions φ, we often identify it with

the corresponding pair: φ = (W, ρ). We denote the set of profiles of robust additively

separable loss functions with ΦA. The following proposition characterizes the elements

of ΦA.

Proposition 2 Let W ∈ W and ρ = (ρi : R→ R+)ni=1. The following statements are

equivalent:

(i) (W, ρ) ∈ ΦA;

(ii) (W, ρ) ∈ ΦA ∩ Φ∗R;

(iii) ρi is convex, strictly decreasing on R−, and strictly increasing on R+ for all i ∈ N .

Thus, if each agent uses an additively separable loss function where ρi is like in

(iii), the resulting opinion aggregator is robust (see Theorem 1 and Proposition 12; the

former covers the case in which ρi is strictly convex while the latter covers the general

case).

18The profile of loss functions is additively separable where wij = aij/
∑n
l=1 ail for all i, j ∈ N .

Clearly, for W to be a well defined stochastic matrix, one needs to make the economically natural

assumption that each agent is connected to at least another agent, that is, for each i ∈ N there exists

l ∈ N such that ail > 0.
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4 Examples

Median and quantiles In the framework of robust estimation, assume that agents

use the following profile of additively separable loss functions

φi (z) =
n∑
j=1

wij |zj| ∀z ∈ Rn (7)

where the values wij are the entries of a stochastic matrixW. By Proposition 2, observe
that φ = (φi)

n
i=1 is a profile of robust loss functions. In this case, agents minimize the

weighted absolute deviations. It is well known that the solution correspondence Tφ in

(2) admits as a selection T φ, defined by

T φi (x) = min

c ∈ R :
∑
j:xj≤c

wij ≥ 0.5

 ∀x ∈ Rn,∀i ∈ N. (8)

Clearly, T φi (x) is the (weighted) median of x. Our results yield that T φ is a robust

opinion aggregator. This is a very minor departure from the quadratic losses approach,

yet it induces dramatically different dynamics as we next discuss (see also Section

5.4).19

Example 1 A group of agents N = {1, 2, 3, 4} share their opinions x0 ∈ B = [0, 1]4.

The weights assigned to the other agents are represented by the matrix

W =


0.4 0.3 0.3 0

0.3 0.4 0.3 0

0.1 0.1 0.2 0.6

0 0 0.6 0.4

 .
where the entry in row i, column j, is the value wij above. It is immediate to see that

aggregation through weighted averages would achieve consensus in the limit (see, e.g.,

Golub and Jackson [42, Proposition 1]).20 However, the dynamics induced by using the

median are qualitatively different.

- If x0 = (0, 1, 1, 1), then the block of agents agreeing on the higher opinion is

suffi ciently large to attract agent 1 to the same opinion, and the limit (consensus)

opinion of (1, 1, 1, 1) is reached in one round of updating.

19For a similar but asynchronous updating rule see Mei, Bullo, Chen, and Dorfler [65].
20That is, limt T

t (x) = limtW
tx exists for all x ∈ B. Moreover, the limit is a constant vector (i.e.,

consensus).
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- However, the prediction of consensus is lost if the initial opinion of player 2 is

slightly lowered. Let x0 = (0, 1/2, 1, 1), then their first round of updating gives

x1 = (1/2, 1/2, 1, 1), and this polarization will be the limit outcome: a strongly

connected society fails to reach consensus without a suffi ciently large block of an

initial agreement.

- Finally, consider x0 = (0, 1/2, 0, 1). Then the agents’first update is x1 = (0, 0, 1, 0)

and agents 1 and 2 will never change opinion again, whereas agents 3 and 4 will

keep reciprocally switching their opinions. This shows that also convergence may

not be guaranteed. At the same time, this latter feature allows us to say that

the time averages of the updates converge, that is,

lim
τ

1

τ

τ∑
t=1

T t
(
x0
)

=
(

0 0 1/2 1/2
)
.

In Theorem 2, we show that each robust opinion aggregator is convergent in this

weaker sense, no matter what is the initial condition. N

Quantiles Another restriction imposed by a quadratic loss as in (4) is that upward

and downward discrepancies from the observed opinions are felt as equally harming by

every agent. However, it might well be the case that (some) agents dislike more one or

the other. One easy example of this kind of behavior is the asymmetric version of the

absolute deviations in (7). Formally, for each i ∈ N we consider

φi (z) = αi
∑
j:zj≥0

wijzj + (1− αi)
∑
j:zj<0

wij (−zj) ∀z ∈ Rn, (9)

where αi ∈ (0, 1). If αi = 1/2, then the loss function in (9) reduces, up to a multiplica-

tive factor, to the one in (7). By Proposition 2, observe that φ = (φi)
n
i=1 is a profile of

robust loss functions.21 It is well known that the solution correspondence Tφ in (2),

when each agent uses a loss function as in (9), admits as a selection the (weighted)

quantile function for the distribution of observed opinions.22 Quantile functions capture

21Observe that φi : Rn → R+ can be written as

φi (z) =

n∑
j=1

αiwij max {zj , 0}+

n∑
j=1

(1− αi)wij max {−zj , 0}

=

n∑
j=1

wij (αi max {zj , 0} − (1− αi) min {zj , 0}) =

n∑
j=1

wijρi (zj) ∀z ∈ Rn

where ρi (s) = αi max {s, 0} − (1− αi) min {s, 0} for all s ∈ R. It is easy to see that ρi satisfies the
properties of point (iii) of Proposition 2 for all i ∈ N .
22More formally, the selection Tφ is defined as in (8) where 0.5 is replaced by αi for all x ∈ B and

for all i ∈ N .
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the behavior of agents who have a bias in favor of relatively extreme stances (αi close

to 0 or 1) or relatively moderate ones (αi close to 1/2). Our results yield that T φ is a

robust opinion aggregator (see also Section 5.4).

A quasi-arithmetic mean The quantile functionals are nondifferentiable and, even

though we do not rely on differentiability properties for our main results, smooth

aggregators might be more easily analyzed in applications. A smooth and tractable

robust opinion aggregator is obtained by considering the following loss function

φλi (z) =

n∑
j=1

wij [exp (λzj)− λzj] ∀z ∈ Rn (10)

where λ 6= 0 and the values wij are the entries of a stochastic matrixW. In particular,
whenever λ > 0, upward deviations from i’s current opinion c are more penalized than

downward deviations and vice versa whenever λ < 0. Figure 1 compares the quadratic

loss with the asymmetric one with λ = 1. Some interesting comparative statics hold

Figure 1: Smooth asymmetric loss

for the loss function in (10). We first present the formal result and then discuss its

interpretation. The next proposition provides a glimpse into our more general findings

about long run opinions and how they differ from the linear case. First, by Proposition

2, observe that φ =
(
φλi
)n
i=1

is a profile of robust loss functions. Since φ =
(
φλi
)n
i=1

has strictly increasing shifts too, for ease of notation, we denote the unique selection

of Tφ by T λ.

Proposition 3 Let φ be the profile of loss functions
(
φλi
)n
i=1

as in (10) with W ∈ W
and λ ∈ R\ {0}. The following statements are true:
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1. For each i ∈ N we have that

T λi (x) =
1

λ
ln

(
n∑
j=1

wij exp (λxj)

)
∀x ∈ B. (11)

2. For each i ∈ N we have that

lim
λ→λ̂

T λi (x) =


maxj:wij>0 xj if λ̂ =∞∑n

j=1wijxj if λ̂ = 0

minj:wij>0 xj if λ̂ = −∞
∀x ∈ B.

3. If there exists a vector s ∈ ∆ such that

lim
t→∞

W tx =

(
n∑
i=1

sixi

)
e ∀x ∈ Rn, (12)

then we have that T̄ λ : B → B, defined by

T̄ λ (x) =
1

λ
ln

(
n∑
i=1

si exp (λxi)

)
e ∀x ∈ B,

is such that

(a) T̄ λ (x) = limt

(
T λ
)t

(x) for all x ∈ B.

(b) ∂T̄λi
∂xj

(x) =
sj exp(λxj)∑n
l=1 sl exp(λxl)

for all x ∈ B and for all i, j ∈ N .

Point 1 gives an explicit functional form for the opinion aggregator. Point 2 shows

that this functional form encompasses the linear case as a limit, but also allows for

behavior which is nonneutral toward the direction of disagreement. In point 3, we

see another prediction of the linear model getting reversed. It is not just the network

structure W that determines the limit influence of each agent, but the initial opinion

also plays a key role. Indeed, when λ > 0, the higher the initial signal realization

of an individual is, the higher is her marginal contribution to the limit. This fact has

extremely relevant consequences. For example, consider one of the classical applications

of non-Bayesian learning, technology adoption in a village of a developing country, with

an opinion vector representing howmuch the agents have invested in the new technology

(e.g., the share of land cultivated with the new technology). There λ > 0 captures the

idea that the most innovative members of the society have a disproportionate influence

on the others, maybe because their performance attracts relatively more attention. In

that case, if resources are limited, i.e., if the external actor can only increase adoption

for an agent directly, relying on the network diffusion for the rest, the policy prescription

is qualitatively different. Indeed, she should choose the agent j for which the index
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in point 3.b is maximized, combining the standard eigenvector centrality sj with a

distortion increasing in the initial opinion of agent j. Finally, one can easily show that,

given two agents i and j sharing the same influence under the linear model, that is

such that si = sj, if their initial opinions are more dispersed (resp., more concentrated),

then the limit consensus is higher (lower) when λ > 0.23

5 Convergence

In the rest of the paper, we analyze the dynamics induced by iterated robust estimation.

From the point of view of an external analyst, these dynamics are stochastic as they

depend on the realizations of the initial signals. To address this issue, we follow a two-

step analysis. First, in this section, we analyze the opinions’convergence for a given

population size. Our strategy is to study the global properties (i.e., properties that

hold for every realization of the signals) of the corresponding deterministic dynamical

system. It follows that the same properties are inherited by the original stochastic

system of opinion dynamics. In doing so, we also highlight some of the local properties

of robust opinion aggregation that are qualitatively different from the linear case. For

example, the extent of polarization, whether or not consensus is attained in the limit,

and the influence of each individual might depend on the initial distribution of opinions

within the society (see Example 1 and Proposition 3). Second, in Section 6, in the spirit

of the wisdom of the crowd a la Golub and Jackson [42], we let the size n of the network

grow in order to analyze the asymptotic properties of the consensus opinion emerging

from aggregation. Also in this case, we stress the differences between robust and linear

opinion aggregation.

We begin by showing that robust opinion aggregators always induce a weaker form

of opinions’convergence: namely, their time averages convergence. Building on this

result, we give general conditions under which standard convergence is obtained, and

we study the stability and consensus properties of the limit.

5.1 The convergence of time averages

Section 3 shows that a robust statistical foundation of opinion aggregation leads to

aggregators that typically are not linear. In light of this, given an initial opinions’

vector x0 the study of its evolution via the sequence of updates {T t (x0)}t∈N cannot
rely on the results developed for the classical DeGroot’s model (e.g., DeGroot [26],

Jackson [51, Chapter 8], and Golub and Jackson [42]). For example, a priori one

23Formally, if x majorizes y, that is
∑n
i=1 ϕ (xi) si ≥

∑n
i=1 ϕ (yi) si for all real-valued, continuous,

and convex functions, then T̄λ (x) ≥ T̄λ (y).
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cannot rule out that the behavior of the sequence of updates might depend heavily

on the initial condition x0 (e.g., convergence, rate of convergence, consensus). Indeed,

despite the name robust, we might well wonder whether or not our opinion aggregators

generate chaotic dynamics. This is not the case since robust opinion aggregators and

their iterates are nonexpansive (see Lemma 8 in Appendix B).24

We are interested in the convergence of the sequence {T t (x0)}t∈N given a specific
x0 or, more in general, in the convergence of {T t (x)}t∈N, irrespective of the x chosen.

Definition 7 Let T be an opinion aggregator. We say that T is convergent at x0 if

and only if limt T
t (x0) exists. Moreover, we say that T is convergent if and only if T

is convergent at each x in B.

We cannot expect to obtain that robust opinion aggregators are convergent in gen-

eral as Example 1 already clarified. That example, using a simple opinion aggregator,

illustrates this as well as the gist of our first convergence result: the sequence of updates

might not converge, yet their time averages do.

In dealing with the issue of convergence, we thus first focus on Cesaro convergence

of the updates. We do so for two reasons:25

1. If given an initial condition x0 the updates T t (x0) converge, then {T t (x0)}t∈N
converges a la Cesaro and

C − lim
t
T t
(
x0
)

= lim
t
T t
(
x0
)
.

Therefore, conditions which yield that C− limt T
t (x0) exists are conceptually the

weaker counterpart of assumptions which deliver the convergence at x0. This all

the more is true if we are interested in global convergence.

2. Example 1 illustrates how the opposite might not be true. Therefore, we first

study which properties of T yield the existence of C − limt T
t (x) for all x ∈ B

24A common requirement for chaotic behavior is the following property, termed sensitive dependence

on initial conditions,

∃r > 0,∀x ∈ B, ∀ε > 0,∃y ∈ B, ∃t ∈ N s.t. ‖x− y‖∞ < ε and
∥∥T t (x)− T t (y)

∥∥
∞ ≥ r.

In other words, a small change ε in the initial condition, say from x to y, might generate very different

dynamics. Nonexpansive opinion aggregators violate this property. For a textbook treatment, see

Devaney [28, p. 49] and Robinson [76, Section 3.5].
25See, e.g., [18, Lemma 15.5] for the simple relation between convergence and Cesaro convergence.

The notion of Cesaro limit has been used already in the networks literature by Golub and Morris

[44]. In particular, they explore the convergence of Abel averages. Under their assumptions, this

convergence is equivalent to Cesaro convergence. Other works that emphasize the importance of

Cesaro convergence of the actions played in a game include Fudenberg and Levine [35].
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and, at a later stage, we study additional conditions on T , which turn Cesaro

convergence into standard convergence. These extra requirements can be mapped

into properties of the loss functions of our foundation, as discussed below.

The following result shows that, for each x ∈ B, the time averages of the sequence
of updates generated by robust opinion aggregators always converge. Moreover, the

last part of the result shows that, whenever the opinions of the agents are bounded, the

initial realizations of their signal do not affect the rate of convergence of time averages.

Therefore, the time needed for the information to stabilize on average does not depend

on the objective data generating process, but only on the estimation procedures (i.e.,

the profile of loss functions φ) used by the agents.

Theorem 2 If T is a robust opinion aggregator, then

C − lim
t
T t (x) exists ∀x ∈ B. (13)

Moreover, if T̄ : B → B is defined by

T̄ (x) = C − lim
t
T t (x) ∀x ∈ B, (14)

then T̄ is a robust opinion aggregator such that T̄ ◦T = T̄ , and if B̂ is a bounded subset

of B, then

lim
τ

(
sup
x∈B̂

∥∥∥∥∥1

τ

τ∑
t=1

T t (x)− T̄ (x)

∥∥∥∥∥
∞

)
= 0. (15)

The conceptual message of Theorem 2 is linked to our results on the wisdom of the

crowd. In Section 6, we give conditions under which the Cesaro limit of the updates

converges in probability to the true underlying parameter µ, provided the size of society

goes to infinity. If the robust opinion aggregator T happens to be convergent, then this

implies the wisdom of the crowd : agents are going to learn the true parameter. Instead,

if T is not convergent, still there is wisdom from the crowd : an external observer that

can compute the time averages in a part of the society, can extract enough information

to learn the truth.

From a mathematical point of view, in order to address the problem of standard

convergence, all we need now is a condition that paired with the (uniform) convergence

of time averages yields the usual convergence in norm. In light of the classic paper of

Lorentz [61], we know that such a condition exists (cf. Definition 8).

5.2 Standard convergence

We first discuss the technical condition of asymptotic regularity which characterizes

standard convergence. Asymptotic regularity is hard to interpret, yet useful. In Section
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5.3, we study suffi cient conditions on the network structure induced by T (see Definition

10) which are easier to interpret and imply asymptotic regularity. Moreover, we also

provide natural conditions on the profile of loss functions φ and on the network (N,A)

which imply them.

Definition 8 Let T be an opinion aggregator. We say that T is asymptotically regular
if and only if for each x ∈ B

lim
t

∥∥T t+1 (x)− T t (x)
∥∥
∞ = 0. (16)

On the one hand, (16) is weaker then the Cauchy property.26 On the other hand,

it is still enough to grant convergence. More formally, as we have seen, if T is a robust

opinion aggregator, then the time averages of {T t (x)}t∈N Cesaro converge uniformly.
If {T t (x)}t∈N further satisfies (16), then this is enough to show that C − limt T

t (x) =

limt T
t (x).27 The following result contains the above observation and elaborates on the

rate of convergence.

Proposition 4 Let T be a robust opinion aggregator. The following statements are

equivalent:

(i) T is asymptotically regular;

(ii) T is convergent.

Moreover, if T is constant affi ne, then they are also equivalent to the following:

(iii) There exists {ct}t∈N ⊆ [0,∞) such that ct → 0 and∥∥T̄ (x)− T t (x)
∥∥
∞ ≤ ct ‖x‖∞ ∀t ∈ N,∀x ∈ B. (17)

Proposition 4 shows that asymptotic regularity characterizes convergence for robust

opinion aggregators over B. Moreover, constant affi nity, which is satisfied in several

relevant cases (cf. Proposition 1 and Section 5.4), yields that if T is convergent, then

the rate of convergence is independent of the initial condition x. In this case, the rate of

convergence is given by the sequence {ct}t∈N, which we can bound in some prominent
cases (cf. Corollaries 2—4).

26An example is available upon request.
27Conditions, such as asymptotic regularity, that turn Cesaro convergence (or other weaker forms

of convergence) into standard convergence are also called Tauberian (see, e.g., Korevaar [54]).
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5.3 Network structure

In the standard DeGroot’s linear model, convergence is implied by the properties of

an underlying network structure. In this case, the underlying network structure can

either be implicit in T and given by the indicator matrix A (W ) of W (e.g., Golub and

Jackson [42]) or be explicit and given by a primitive network assumed in the foundation

of the opinion aggregator (e.g., DeMarzo, Vayanos, and Zwiebel [27]).28 When T is

linear, both approaches are tightly linked.

In what follows, we explore both paths and show they are linked also when T is

robust. In terms of the first approach, we begin by extending the notion of indicator

matrix to the nonlinear case. To start, we need to define when an agent is connected

to another one. A piece of notation: ej ∈ Rn denotes the j-th vector of the canonical
basis.

Definition 9 Let T be an opinion aggregator. We say that j strongly influences i if

and only if there exists εij ∈ (0, 1) such that for each x ∈ B and for each h > 0 such

that x+ hej ∈ B
Ti
(
x+ hej

)
− Ti (x) ≥ εijh. (18)

The interpretation of (18) is simple: the update of i increases at least linearly in

the opinion of j. This is a strict monotonicity type of property which from a marginal

point of view, under differentiability, is tantamount to assume that the j-th component

of the gradient of Ti is bounded away from 0. This allows us to define the underlying

network structure of T . The adjacency matrix A (T ) below represents the edges in the

directed network induced by a generic opinion aggregator T .

Definition 10 Let T be an opinion aggregator. We say that A (T ) is the adjacency

matrix induced by T if and only if for each i, j ∈ N the ij-th entry is such that

aij =

{
1 if j strongly influences i

0 otherwise
.

The directed network given by the adjacency matrix A (T ) is intuitively theminimal

network underlying the opinion aggregator T . This is because the condition for aij to

be equal to 1 is strong (cf. Example 5 and Section 5.4).29 Indeed, it requires that the

updates of i are responsive to changes in the opinion of j, starting from every vector

28Recall that the indicator matrix of W , A (W ), is such that the ij-th entry is 1 if wij > 0 and 0

otherwise.
29In Remark 7 in Appendix B, we discuss alternative notions of underlying network which were

explored in the mathematical literature.
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of opinions x. When T is linear, that is, T (x) = Wx for all x ∈ B with W ∈ W, we
have that

aij = 1 ⇐⇒ wij > 0

and, in particular, A (T ) coincides with the indicator matrix A (W ) ofW . As observed,

A (T ) is a minimal network. This observation naturally leads us to wonder whether

other layers of weaker networks can be derived from T . We briefly discuss this idea in

Remark 2.

Natural conditions on the profile of loss functions yield that the induced network

(N,A (T )) coincides with the primitive network (N,A) where the latter represents the

links connecting the agents (see Section 3). We formalize this fact in the next result

focusing on additively separable loss functions.30

Proposition 5 Let φ = (W, ρ) ∈ ΦA. If I is compact and ρi is twice continuously

differentiable and strongly convex for all i ∈ N , then Tφ = T φ, defined as in (3), is

single-valued and

wij > 0⇐⇒ j strongly influences i.

In particular, A (W ) = A
(
T φ
)
.

The result above confirms that, under mild conditions, an agent j opinion affects

the update of i if and only if i observes j. In particular, recall that our assumption

is that the indicator matrix of W coincides with the underlying network given by A.

Thus, the endogenous network we defined for T coincides with the primitive one and

justifies Definition 10 in terms of our foundation. Finally, as already argued, if T is

linear, Definition 10 coincides with the classical one, providing a further consistency

check.

5.3.1 Convergence

Given a robust opinion aggregator T , the network (N,A (T )) is instrumental in pro-

viding suffi cient conditions for convergence. In light of our previous discussions, and in

contrast to asymptotic regularity, those conditions have an immediate interpretation in

terms of connections among agents. We here recall some terminology from the network

literature. Consider the network (N,A (T )) and M ⊆ N . A path in M is a finite

sequence of agents i1, i2, ..., iK ∈ M with K ≥ 2, not necessarily distinct, such that

30The proof of Proposition 5 is at the end of Appendix A. In general, we can prove a similar

result for profiles of loss functions which are not additively separable. In this case, the assumptions of

differentiability and strong convexity can be also weakened and replaced with a coercivity condition

and a Lipschitz property of the difference quotients. These two alternative properties mirror the

assumptions of “bounded derivative”and “state monotonicity”of Frankel, Morris, and Pauzner [31].
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aikik+1
> 0 for all k ∈ {1, ..., K − 1}. In this case, the length of the path is K − 1. A

cycle in M is a path such that i1 = iK . A cycle is simple if and only if the only agent

appearing twice in the sequence is the starting (and ending) one. We say that M is

closed if and only if for each i ∈ M , aij > 0 implies j ∈ M . Finally, M is aperiodic if

and only if the greatest common divisor of the lengths of its simple cycles is 1.

A group of agents M is closed if an agent of the group only observes agents in M .

Aperiodicity instead has a simple interpretation: the cycles present do not generate

periodic behaviors. These two notions play a key role for convergence.

Definition 11 Let T be an opinion aggregator with adjacency matrix A (T ). We say

that T is strongly aperiodic if and only if each closed group M is aperiodic.

This definition coincides with the definition of strongly aperiodic proposed by Golub

and Jackson [42, Definition 7] for the linear case. One key difference with the linear

case though is that it might be emptily satisfied: for example, if A (T ) coincides with

the null matrix. In fact, when T is not linear it might happen that A (T ) might have

some null row. This is always ruled out in the linear case since W is always assumed

to have a nonzero element in each row. In what follows, we want to avoid the presence

of agents which are not influenced by any other agent. We formalize this in the next

definition.

Definition 12 Let T be an opinion aggregator with adjacency matrix A (T ). We say

that T has a nontrivial network if and only if no row of A (T ) is null, that is, for each

i ∈ N there exists j ∈ N such that aij > 0.

Intuitively, the next result says that, given a robust opinion aggregator with non-

trivial network, if each closed group does not have cycles which are “problematic”,

then T is convergent, thus linking the properties of the underlying network with the

stability of the long-run opinions.

Theorem 3 Let T be a robust opinion aggregator. If T is strongly aperiodic and has
a nontrivial network, then T is asymptotically regular and, in particular, convergent.

Our convergence theorem significantly generalizes in one direction Golub and Jack-

son [42, Theorem 2]. Nevertheless, differently from [42], it is not true that these

conditions are also necessary for convergence (see Example 5). Next, we provide a

parametric class of convergent robust opinion aggregators.

Example 2 (Confirmatory bias) It is often argued that in some societies, individu-
als tend to trust more those sources of information whose opinion confirms their original
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prior.31 This phenomenon can be captured by a modification of DeGroot’s linear model

which is a generalization of the one proposed by Jackson [51]. Let B = [0, 1]n and as-

sume that the network structure is represented by an adjacency matrix A with nonnull

rows. As in the linear model, society is represented by a stochastic matrix W (x) where

wij (x) is the weight assigned by individual i to agent j. Differently from the linear

model, the weight is allowed to depend on the vector x. Moreover, it is assumed that

each individual downweights the agents who disagree the most with her and only if

these agents belong to her neighborhood:

T (x) = W (x)x ∀x ∈ B

where

wij (x) =
aije

−γij |xi−xj |∑n
l=1 aile

−γil|xi−xl|
∀x ∈ B

with γij ∈ (0, 1] for all i, j ∈ N and
∑n

j=1 γij ≤ 1 for all i ∈ N . Here, 1/γij captures the

relative strength of the weight assigned by individual i to agent j net of the difference

in their opinions. It is easy to see that the aggregator T is robust and A (T ) = A.

Thus, in particular, by Theorem 3, if each closed group M is aperiodic under A, then

T is convergent. N

If each agent strongly influences herself, that is aii > 0 for all i ∈ N , then the

presence of problematic cycles is ruled out and the presence of a nontrivial network is

also guaranteed.

Corollary 1 Let T be a robust opinion aggregator with adjacency matrix A (T ). If T

is self-influential, that is aii > 0 for all i ∈ N , then T is convergent.

Self-influentiality characterizes a situation where the opinion of each agent has a

form of own-history dependence. Indeed, if we focus on a generic agent i, given two

instances x and y, if the only difference is the agent’s opinion, say xi > yi, then her

revised opinion is strictly higher in the first instance than in the second one. In a

repeated setting, information gathered in the past is not entirely dismissed in light of

new evidence.

The previous corollary shows how a very intuitive and weak condition is suffi cient

to obtain opinions’convergence in the long-run. Moreover, Chandrasekhar, Larreguy,

and Xandri [23] find in their field study that the behavior of most of the subjects is

consistent with self-influentiality, even when this is objectively suboptimal.32 So one
31See, e.g., the evidence presented in Benjamin [10], Lord, Ross, and Lepper [60], Yariv [84].
32In particular they write: “[...] over 82.9% of the time that subjects in the Indian sample who have

an information set that is dominated by a network neighbor fail to simply copy their neighbor, which

is what Bayesians would do in an all-Bayesian environment. In contrast, this failure occurs 54.5% of

the time in the Mexican data.”
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might be left to wonder what type of aggregators might fail to be self-influential. The

next example discusses two critical cases.

Example 3 Assume T is linear with matrixW . Clearly, T is not self-influential if and
only if there exists an agent i such that wii = 0, that is, an agent whose own opinion

never enters in her updating rule. Other important robust opinion aggregators which

may fail to be self-influential are those such that each Ti corresponds to a quantile

functional (see Section 5.4 for a characterization of the dynamics induced by these

opinion aggregators). The intuition, in this case, is simple. Quantiles tend to disregard

outliers, be those the opinions of the agent or not. In this case, an aggregator of this

kind is self-influential if and only if it is the identity (cf. Proposition 7). N

5.3.2 Equilibria

The previous section provides suffi cient conditions on the network structure (N,A(T )) which

guarantee convergence. At the same time, two natural questions pertain to the limit

itself. In other words, if limt T
t (x0) exists, what is it, and what are its properties?

In order to answer these questions, fixed points of the opinion aggregator T play a

fundamental role and so does the network (N,A (T )). Moreover, fixed points have a

standard interpretation: they characterize situations where a profile of opinions does

not change once reached.

Definition 13 Let T be an opinion aggregator. The point x̄ ∈ B is an equilibrium of

T if and only if T (x̄) = x̄. The set of equilibria is denoted by E (T ).

The notions of equilibrium and convergence are tied to each other. If a sequence of

updates converges, then it necessarily converges to an equilibrium.

Lemma 3 Let T be a robust opinion aggregator. If T is convergent and T̄ is defined
as in (14), then T̄ (x) = limt T

t (x) ∈ E (T ) for all x ∈ B.

This simple lemma clarifies the role played by the operator T̄ : B → B, as defined

in (14). Indeed, given x0 ∈ B, if T is robust, then T̄ (x0) is the opinion to which the

time averages of the updates converge. If T further happens to be convergent, then

T̄ (x0) is the equilibrium opinion to which the sequence of updates converges to. It is a

simple mathematical result, yet it stresses how strong is the property of convergence.

Indeed, in contrast as next example shows, if C − limt T
t (x0) exists, but limt T

t (x0)

does not, then it might not be true that C − limt T
t (x0) is an equilibrium.33

33An important case where T̄ (x) = C − limt T
t (x) is an equilibrium of T for all x ∈ B is given by

linear opinion aggregators (see, e.g., Aliprantis and Border [3, Theorem 20.14]).
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Example 4 Let B = [0, 1]3 and assume that T : B → B is defined by

T (x) = (max {x2, x3} , x3, x2) ∀x ∈ B.

It can be checked immediately that the opinion aggregator T is robust. Set x0 = (1, 0, 1)

and x̂ =
(
1, 1

2
, 1

2

)
. It follows that C−limt T

t (x0) =
(
1, 1

2
, 1

2

)
= x̂ and T (x̂) =

(
1
2
, 1

2
, 1

2

)
6=

x̂. N

An essential subset of equilibria that are always present in our framework is the

consensus subset. Formally, these vectors are the constant ones, and they represent a

situation in which all agents share the same opinion. We denote them by D, that is,

x ∈ D ⊆ B if and only if xi = xj for all i, j ∈ N .

Definition 14 Let T be an opinion aggregator. We say that T is a consensus operator
if and only if E (T ) ⊆ D.

In words, a robust opinion aggregator is a consensus operator if and only if its

only equilibria are the constant vectors in B. The properties of convergence and being

a consensus operator are separate and independent. To wit, there are linear opinion

aggregators which are consensus operators, but are not convergent,34 while the identity

operator is convergent, but not a consensus operator. Some suffi cient properties that

yield a consensus operator are easily expressed in terms of the network (N,A (T )). We

report them in the next definition and discuss them right below.

Definition 15 Let T be an opinion aggregator with adjacency matrix A (T ). We say

that:

1. T has the uniform common influencer property if and only if there exists k ∈ N
such that aik > 0 for all i ∈ N .

2. T has the pairwise common influencer property if and only if for each i, j ∈ N
there exists k ∈ N such that aik, ajk > 0.

3. T is strongly connected if and only if for each i, j ∈ N there exists a path in

N such that i1 = i and iK = j.

The uniform common influencer property states that there exists an agent k (an in-

fluencer) which is observed by all agents. Thus, such an agent has an extreme centrality

in the network. Indeed, many standard centrality measures used in the social network

34For example, set W =

(
0 1

1 0

)
.
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literature would be maximal for k. If T were to be linear, this would be tantamount

to have the k-th column of the matrix W strictly positive.

The pairwise common influencer property is a weakening of the former property.

We do not require the existence of an extremely central agent k. However, each pair of

agents must share an individual whose opinion is observed by both of them. Intuitively,

this is a minimal requirement about the presence of a direct source of information relied

on by both agents. A typical situation where we expect the pairwise common influencer

property to hold is one of asymmetric networks with a bunch of media followed by the

agents. If there is a minimal overlapping in the media trusted by the agents, the

property holds. If T were to be linear, the pairwise common influencer property would

be equivalent to assume that the representing matrix W is scrambling.

Strong connectedness takes a simple interpretation: after enough periods each agent

i is influenced by each agent j. What might happen is that it might be that there are

cycles and so, loosely speaking, agent i might lose sight of j. If T were to be linear,

strong connectedness of T would be equivalent to the irreducibility of W .

The next result shows that all the three properties above are suffi cient to yield a

consensus operator. Next section shows that they also play a key role in obtaining

convergence.

Proposition 6 Let T be a robust opinion aggregator. T is a consensus operator pro-
vided one of the following holds:

a. T has the pairwise common influencer property;

b. T has the uniform common influencer property;

c. T is strongly connected.

5.3.3 Rate of convergence and consensus

Theorem 3 and Corollary 1 provide suffi cient conditions for convergence, but are mute

in terms of rate of convergence and properties of the limit. Proposition 6, paired

with Lemma 3, provides conditions that guarantee that if T is convergent, then the

limit outcome is consensus. The next three results show how the properties yielding

consensus also guarantee stronger forms of convergence.

Corollary 2 Let T be a robust opinion aggregator. If T has the uniform common

influencer property, then T̄ (x) = limt T
t (x) ∈ D for all x ∈ B. Moreover, there exists

ε ∈ (0, 1) such that∥∥T̄ (x)− T t (x)
∥∥
∞ ≤ 2 (1− ε)t ‖x‖∞ ∀t ∈ N,∀x ∈ B.
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In words, if there is a uniform common influencer in the society, then the sequence

of updates converges, to consensus, and exponentially fast. As we have seen above,

the uniform common influencer property has a weaker version which we term pairwise

common influencer property. Next theorem proves that also this latter condition yields

convergence. But in this case, its rate is almost exponential.35

Corollary 3 Let T be a robust opinion aggregator. If T has the pairwise common

influencer property, then T̄ (x) = limt T
t (x) ∈ D for all x ∈ B. Moreover, there exist

ε ∈ (0, 1) and t̂ ∈ N such that t̂ ≤ n2 − 3n+ 3 and∥∥T̄ (x)− T t (x)
∥∥
∞ ≤ 2 (1− ε)b

t
t̂c ‖x‖∞ ∀t ∈ N, ∀x ∈ B. (19)

In the previous results about convergence to consensus, only local properties of

the underlying network A (T ) were considered, in the sense that agents have to share

(pairwise or uniformly) a first-hand source of information. Instead, the next result

leverages the connection structure of the social network.

Corollary 4 Let T be a robust opinion aggregator. If T is strongly connected and

strongly aperiodic, then T̄ (x) = limt T
t (x) ∈ D for all x ∈ B. Moreover, there exists

ε ∈ (0, 1) and t̂ ∈ N such that t̂ ≤ (n− 1)2 + 1 and∥∥T̄ (x)− T t (x)
∥∥
∞ ≤ 2 (1− ε)b

t
t̂c ‖x‖∞ ∀t ∈ N, ∀x ∈ B. (20)

Moreover, if T is also self-influential, then t̂ ≤ n− 1.

Under strong connectedness of T , observe that T is strongly aperiodic if and only

if N is aperiodic as in Golub and Jackson [42].

Remark 1 The previous three corollaries can be partially obtained via our main con-
vergence result. If T has either the uniform common influencer property (resp., pairwise

common influencer property) or is strongly connected and strongly aperiodic, then T

has a nontrivial network and is strongly aperiodic. By Theorem 3, Lemma 3, and

Proposition 6, we have that T̄ (x) = limt T
t (x) ∈ E (T ) = D for all x ∈ B. This

proof strategy has the drawback of not elaborating on the rate of convergence. For

this reason, we obtain the previous three corollaries as a by-product of another general

result: Theorem 7 in Appendix B. The aforementioned result is a nonlinear version

of a well known fact: in DeGroot’s model, convergence to consensus happens if and

only if there exists t̂ ∈ N such that some column of W t̂ is strictly positive (see, e.g.,

Jackson [51, Corollary 8.2]). In terms of underlying network, this is equivalent to say

35Recall that, given s ∈ (0,∞), bsc is the integer part of s, that is, the greatest integer l ∈ N0 such

that s ≥ l.
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that there exists an agent k which eventually strongly influences every other agent

in the population. Formally, for each t ≥ t̂ there exists a path from any agent i to

such an agent k.36 In Theorem 7, we generalize one implication of this result by a)

allowing for nonlinearities in T and b) offering some estimate about the rate of con-

vergence. This should also clarify the origin and the nature of the different bounds

on t̂. They are all obtained via the adjacency matrix induced by T and the implied

network structure specified by A (T ). In particular, in Corollary 4, t̂ can be chosen to

be the index/exponent of primitivity of A (T ), that is, the smallest integer such that

each entry of A (T )t̂ is strictly positive (in this case, each agent eventually strongly

influences any other agent). In other words, t̂ is the smallest integer such that for each

i, j ∈ N there exists a path of length t̂ from i to j. This allows also to provide other

bounds, for example, it is known that t̂ ≤ d2 +1 where d is the diameter of the network

(N,A (T )) (see, e.g., Neufeld [72]) or t̂ ≤ n+ s (n− 2), provided the shortest (simple)

cycle has length s ≥ 1 (see, e.g., Horn and Johnson [47, Theorem 8.5.7]). N

All the convergence results we have discussed until now, which involved conditions

on the network A (T ), provided suffi cient conditions for convergence. At the same time,

for the linear case, some of these conditions turn out to be necessary and suffi cient.

For example, Golub and Jackson [42, Theorem 2 and Proposition 1] prove that strong

aperiodicity is necessary and suffi cient for convergence while (strong) aperiodicity is

necessary and suffi cient for convergence to consensus, under strong connectedness. In

general, we do not expect the necessity parts to continue to hold in the nonlinear case.

Intuitively, this is due to our strong definition of underlying network (N,A (T )) (cf.

Remark 7 in Appendix B). We illustrate this in the next example.

Example 5 Let B = R2 and let T : R2 → R2 be defined to be such that

T1 (x) =

{
x2 if x1 > x2

1
2
x1 + 1

2
x2 if x2 ≥ x1

and T2 (x) = x1 ∀x ∈ B.

On the one hand, agent 2 always discards her own opinion. On the other hand, agent 1

discards her own signal if and only if it has the highest realization. Easy computations

yield that T is a robust opinion aggregator such that

A (T ) =

(
0 1

1 0

)
.

Thus, T is strongly connected, but it clearly fails to be strongly aperiodic. At the

same time, it is easy to show that limt T
t (x) = min {x1, x2} e for all x ∈ B, showing

36In terms of adjacency matrices, we have that the ik-th entry of A (T )
t̂ is strictly positive for all

i ∈ N and so is, as a consequence, the ik-th entry of A (T )
t for all t ≥ t̂.
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that, under strong connectedness, strong aperiodicity is suffi cient for convergence to

consensus, but not necessary. N

Example 5 suggests the presence of multiple layers of networks in our model. There-

fore, our model is flexible enough to capture more complex social structures. As an

example, the network A (T ) may be used to model the “strong ties”among agents a

la Granovetter [46], that is those clustered links that are always active regardless of

the particular stances of the agents. However, there might be additional links (i.e.,

“weak ties”) not in A (T ) that are active only under exceptional circumstances (e.g.,

aij might be 0, but j might influence i when the former takes an extreme position).37

More generally, our strong notion of network A (T ) is the base for suffi cient conditions

for convergence, in particular, to consensus. At the same time, weaker notions may be

used to obtain necessary conditions for convergence. A complete study of these con-

ditions is beyond the scope of the paper, but we offer a glimpse on how to undertake

this task in the next remark.

Remark 2 Consider a robust opinion aggregator T . We say that j weakly influences
i if and only if there exist x ∈ B and h > 0 such that x+ hej ∈ B and

Ti
(
x+ hej

)
− Ti (x) > 0.

With this, we can define the adjacency matrix of weak ties Ā (T ), that is, for each

i, j ∈ N the ij-th entry is such that

āij =

{
1 if j weakly influences i

0 otherwise
.

If T is linear, it is plain that A (W ) = A (T ) = Ā (T ). Moreover, in the linear case,

global convergence to consensus is characterized by the existence of a unique strongly

connected, closed, and aperiodic group of agents (see, e.g., Jackson [51, Corollary 8.1]).

For robust opinion aggregators, the necessity of a unique closed group for convergence

to consensus is preserved, with the caveat that the network to be used is
(
N, Ā (T )

)
.

5.4 Choquet aggregators

In this section, we consider a particular example of robust opinion aggregators. This

class encompasses linear opinion aggregators as well as those aggregators whose com-

ponents are either any quantile functional (e.g., the median) or any order statistics.

37These layers can be mapped into the data collected on the field. For example, in their analysis of

the network structure of the Indonesian villages Alatas, Banerjee, Chandrasekhar, Hanna, and Olken

[2] identify both the strong familiar ties and the links due to the extreme relative wealth of some

agents.
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Definition 16 Let T be an opinion aggregator. We say that T is a Choquet aggregator
if and only if T is normalized, monotone, and comonotonic additive.

It is routine to show that Choquet aggregators are constant affi ne and robust.

Right below, we offer a characterization which turns out to be useful in exploring

the behavior of aggregators such as the one in Example 1. Moreover, it justifies our

terminology. Indeed, if T is a Choquet aggregator, it follows that each Ti : B → R is
normalized, monotone, and comonotonic additive.38 Given Schmeidler [78, p. 256], it

is well known that a map Ti has these properties if and only if there exists a unique

capacity νi : 2N → [0, 1] such that

Ti (x) =

∫
N

xdνi ∀x ∈ B (21)

where the latter is a Choquet expectation/average. On the one hand, a capacity is a

set function with the following properties:

1. νi (∅) = 0 and νi (N) = 1;

2. A ⊇ B implies νi (A) ≥ νi (B).

On the other hand, the Choquet average for a function defined over a finite set of

points (i.e., a vector) is a rather simple object. First, in words, one should order the

components of x from the highest to the lowest. Formally, this is done with the help of

a permutation π over N such that xπ(1) ≥ ... ≥ xπ(n). Then, one computes the weight

given to xπ(l) in terms of νi which is

pπ(l)
def
= νi

(
∪lj=1 {π (j)}

)
− νi

(
∪l−1
j=1 {π (j)}

)
∀l ∈ N (22)

with the assumption that νi
(
∪0
j=1 {π (j)}

)
= 0. If the values taken by x were pairwise

distinct and we interpret νi as a measure of likelihood, (22) is exactly the likelihood

of observing a value greater than or equal to xπ(l) minus the likelihood of observing

strictly higher values. The Choquet expectation is then the average of the ordered

values of x using the probability vector p computed in (22):∫
N

xdνi =
n∑
l=1

xπ(l)

[
νi
(
∪lj=1 {π (j)}

)
− νi

(
∪l−1
j=1 {π (j)}

)]
=

n∑
l=1

xπ(l)pπ(l) ∀x ∈ Rn. (23)

38With a small abuse of notation, we use the same name for similar properties that pertain to,

respectively, functionals and operators. At the same time, no confusion should arise. A functional

Ti : B → R is normalized if and only if Ti (ke) = k for all k ∈ I and comonotonic additive if and only
if Ti (x+ y) = Ti (x) + Ti (y), provided x and y are comonotonic. Monotonicity is the usual notion.
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Note that if νi is a standard additive probability, then the Choquet average coincides

with the standard notion of weighted average. If T is a Choquet aggregator, then we

denote by νi the capacity that represents Ti as in (21).

In some situations, it is reasonable to start with the capacity as the primitive

objective. This is the case if an agent can assign an informational value to the subsets

of the society, but such a value is not necessarily additive. Additivity may fail if

two different sources are perceived as strongly correlated, since in that case, given the

observation from the first source, the additional information obtained by observing the

second source is (perceived as) much lower than if observed alone (see, e.g., Liang and

Mu [59]).

The next proposition shows that for comonotonic aggregators with {0, 1}-valued
capacities, if convergence happens, then it will happen in a finite number of periods.

These aggregators are important for two reasons. First, they encompass aggregators in

which each agent aggregates opinions, for example, according to one of the following

criteria: the median, any more general quantile, max, min, or any more general order

statistic. Second, even if this is outside the scope of this paper, they can be used

to study the evolution of opinions that lie in a discrete set of possible opinions O.

Indeed, the comonotonic aggregators with {0, 1}-valued capacities have the property
that {Ti (x) : i ∈ N} ⊆ {xi : i ∈ N}. For example, the triggering model by Kempe,
Kleinberg, and Tardos [53] is a particular case of Choquet aggregator with {0, 1}-
valued capacities over the discrete set O = {0, 1}.

Theorem 4 Let T be a Choquet aggregator such that νi is a {0, 1}-valued capacity for
all i ∈ N . If x ∈ B, then either {T t (x)}t∈N converges or it is eventually periodic, that
is, there exists t̄, p ≤ nn such that

T t+p (x) = T t (x) ∀t ≥ t̄.

Moreover, {T t (x)}t∈N converges if and only if it becomes constant after at most nn

periods.

Remark 3 The previous result provides an easy criterion to discern the behavior of
the sequence of updates {T t (x)}t∈N. Set t = nn where n is the number of agents

in the population, and so the maximum value of distinct components x can have. If

T t (x) = T t+1 (x), then {T t (x)}t∈N converges. If T t (x) 6= T t+1 (x), then {T t (x)}t∈N is
eventually periodic with period smaller than or equal to nn. N

One might wonder what additional restrictions the network conditions we studied

in Section 5.3 impose on the Choquet aggregators considered in Theorem 4. The result

below is a negative one.
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Proposition 7 Let T be a Choquet aggregator such that νi is a {0, 1}-valued capacity
for all i ∈ N . The following statements are equivalent:

(i) j strongly influences i;

(ii) Ti (x) = xj for all x ∈ B.

Moreover, T is self-influential if and only if T (x) = x for all x ∈ B and T has

the pairwise common influencer property if and only if there exists k ∈ N such that

Ti (x) = xk for all x ∈ B and for all i ∈ N .

We have noticed already how convergence is implied by the seemingly natural as-

sumption of self-influence (cf. Corollary 1). However, for Choquet aggregators which

are represented by {0, 1}-valued capacities, self-influence is too strong of an assump-
tion, since the only Choquet aggregator of this type is the one that coincides with the

identity. More in general, for this type of Choquet aggregators, we have that each agent

i can be influenced by at most only one other individual j. Self-influence yields that j

coincides with i, while the pairwise common influencer property returns the existence

of a unique uniform common influencer k = j.

It is important not to overstate the reach of this negative result. Indeed, a parallel

with decision theory suggests a natural specification for Choquet aggregators, consis-

tent with the properties of Section 5.3. In fact, consider a stochastic matrix W ∈ W,
W is assumed to capture the relative weights agents assign to each other as well as

the network structure among agents, as in DeGroot’s model. But differently from the

latter, we might allow for agents who do not compute linearly the opinions’average,

but rather use a distorted collection of weights, as in cumulative prospect theory. In

this case, the capacity used by each agent i is νi : 2N → [0, 1] defined by

νi (A) = fi

(∑
l∈A

wil

)
∀A ⊆ N, (24)

where fi : [0, 1] → [0, 1] is strictly increasing, continuous, and such that fi (0) = 0 as

well as fi (1) = 1. The interesting feature of these Choquet aggregators is that the

underlying network of T coincides with the primitive one, that is A (T ) = A (W ). In

light of Theorem 3, T is therefore convergent whenever W is.

Proposition 8 Let T be a Choquet aggregator such that νi is defined as in (24) for all
i ∈ N where W ∈ W. The following statements are equivalent:

(i) j strongly influences i;

(ii) wij > 0.
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In particular, we have that A (T ) = A (W ).

Example 6 Choquet aggregators like the ones of the previous result encompass L-
estimators. In fact, consider a directed network (N,A) and construct the stochastic

matrix of weights W defined by wij = aij/
∑n

l=1 ail for all i, j ∈ N .39 For each agent
i define νi : 2N → [0, 1] as in (24). Let x ∈ B and consider p as in equation (22).

We have that pπ(l) = 0 if and only if aiπ(l) = 0, that is, π (l) does not belong to the

neighborhood Ni of i. Otherwise, pπ(l) = f (k/Ni) − f ((k − 1) /Ni) where k belongs

to {1, ..., Ni} and also corresponds to the k-th highest value of x once the latter is
restricted to Ni. It follows that Ti (x) is the convex linear combination of the order

statistics of x restricted to Ni with weights {f (k/Ni)− f ((k − 1) /Ni)}Nik=1, that is,

Ti (x) is an L-estimator. N

The specification in (24) allows for exploring economically relevant phenomena

that are precluded by linear aggregators, possibly using tools already developed in

decision theory. As an example, if fi is set to be equal to the prominent Prelec’s

probability weighting function [74], (i.e., fi (s) = exp (− (− ln (s))αi) with αi ∈ (0, 1))

we obtain a one-parameter function with a clear psychological foundation.40 Indeed,

such a functional specification characterizes an agent who is particularly sensitive to

the range of opinions in the distribution, and that assigns a disproportionately high

weight to extreme stances, with the size of the distortion decreasing in αi ∈ (0, 1) (cf.

Figure 2). More generally, using an fi different from the identity map is a way to

introduce a perception bias a la Banerjee and Fudenberg [9] in a model of naive and

nonequilibrium learning.

We conclude the section on Choquet aggregators by discussing another subclass for

which the issue of convergence is rather easy to settle. Before doing so, observe that

for any permutation π : {1, ..., n} → {1, ..., n} we can construct the convex set

Bπ =
{
x ∈ B : xπ(1) ≥ xπ(2) ≥ ... ≥ xπ(n)

}
.

In other words, x ∈ Bπ if and only if the i-th highest opinion belongs to agent π (i) for

all i ∈ N . If we denote by Π the collection of all permutations, B is the union of these

subsets, that is, B = ∪π∈ΠBπ. Given (23), it follows that for each π ∈ Π there exists a

stochastic matrix Wπ ∈ W such that

T (x) = Wπx ∀x ∈ Bπ.

39Clearly, for W to be a well defined stochastic matrix, one needs to make the economically natural

assumption that each agent is connected to at least another agent, that is, for each i ∈ N there exists

l ∈ N such that ail > 0.
40Clearly, fi is defined only on (0, 1], but it also admits a unique continuous extension to [0, 1].

Moreover, the extension takes value 0 in 0.
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Figure 2: Probability Distortion Function

Thus, for each x ∈ B there exists π ∈ Π such that x ∈ Bπ and T (x) = Wπx, and the

update T (x) belongs to a set Bπ′ for some π′ ∈ Π. A priori, we might have Bπ′ 6= Bπ,

yielding that T 2 (x) = Wπ′Wπx. More in general, at each round, the updating is done

via a stochastic matrix that might change, but comes from the finite set {Wπ}π∈Π. The

next condition guarantees that only the first matrix Wπ depends on x ∈ Bπ and then

T t (x) = W t
πx for all t ∈ N.

Definition 17 Let T be a Choquet opinion aggregator. We say that T is assortative
if and only if for each π ∈ Π and for each i, i′ ∈ N

i′ ≥ i =⇒ νπ(i)

(
∪lj=1 {π (j)}

)
≥ νπ(i′)

(
∪lj=1 {π (j)}

)
∀l ∈ N. (25)

In words, this means that individuals with higher opinions assign a higher weight

to individuals with high opinions. To see this consider x ∈ B and assume that π ∈ Π

is such that xπ(1) ≥ ... ≥ xπ(n). Consider the agents π (i) and π (i′) where i′ ≥ i. By

construction, the opinion of π (i) is higher than the one of π (i′). By (23), we also have

that

Tπ(i) (x) =

∫
N

xdνπ(i) =
n∑
l=1

xπ(l)p
π(i)
π(l) and Tπ(i′) (x) =

∫
N

xdνπ(i′) =
n∑
l=1

xπ(l)p
π(i′)
π(l)

where pπ(i) ∈ ∆ (resp., pπ(i′)) is computed via (22) by replacing νi with νπ(i) (resp.,

νπ(i′)). Condition (25) amounts to require that pπ(i) dominates in first order stochastic

dominance pπ(i′) once their components are rearranged according to π. Thus, our
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definition captures the idea that, in an assortative society, a change in the stance of

the individuals with a higher opinion affects more the individuals with a higher opinion,

because they assign to them more weight.

Assortative societies naturally arise when agents are allowed to endogenously select

their network and try to trade-offthe benefit of interactions with dislike to disagreement

(see, e.g., Bolletta and Pin [13] and Frick, Iijima, and Ishi [32]). It turns out that when

a Choquet aggregator T is assortative, given the starting point x, the evolution of the

system is described by iteration of a stochastic matrix W as in the linear case.

Proposition 9 Let T be a Choquet aggregator. If T is assortative, then for each x ∈ B
there exists W ∈ {Wπ}π∈Π such that

T t (x) = W tx ∀t ∈ N.

As a consequence, in assortative societies, it is much easier to compute the long-run

dynamics of the opinions’updates. Indeed, for every initial opinion x ∈ Bπ, the results

of the linear case (see Golub and Jackson [42]), applied to W = Wπ, characterize the

limit weight of each agent in the society. However, these weights are dependent on the

initial distribution: if one starts from y ∈ Bπ′ with π 6= π′, then there is no guarantee

that the limit influence of each agent is the same.

Example 7 (Assortativeness) Consider an arbitrary capacity ν̄ : 2N → [0, 1] and

let δi : 2N → [0, 1] be the Dirac at i for all i ∈ N .41 Let γ ∈ [0, 1] and define the

capacity νi : 2N → [0, 1] by

νi (A) = γδi (A) + (1− γ) ν̄ (A) ∀A ⊆ N,∀i ∈ N . (26)

Easy computations show that the Choquet aggregator T (where νi is defined as in (26)

for all i ∈ N) is assortative. Thus, we have that for each π ∈ Π and x ∈ Bπ

T t (x) = W t
πx

where the i-th row of Wπ is γei + (1− γ) p̄π for all i ∈ N and p̄π ∈ ∆ is derived from

ν̄ via the formula (22).42 Here, ν̄ captures the commonly perceived informativeness

of the signals of agents’groups. However, every agent overweights her own opinion.

Therefore, the resulting opinion dynamics are described by the powers of the matrix

Wπ whose entries depend on the initial ordering of signals’realizations. Finally, by

Corollary 1, if γ ∈ (0, 1), then T is convergent and, in particular,43

T̄i (x) = p̄π · x ∀π ∈ Π,∀x ∈ Bπ,∀i ∈ N.
41That is, δi (A) = 1 if i ∈ A and 0 otherwise for all A ⊆ N .
42To signal the dependence on π, we add the superscript π to p̄.
43Observe that T = γI + (1− γ)S where Si (x) =

∫
N
xdν̄ for all i ∈ N and for all x ∈ B. By

Lemma 3 and since T is convergent and robust, set x̄ def
= T̄ (x) = limt T

t (x) ∈ E (T ). Since γ ∈ (0, 1),

this implies that x̄ = T (x̄) = γx̄+ (1− γ)S (x̄), yielding that S (x̄) = x̄.
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N

6 Vox populi, vox Dei

Motivated by our robust statistics foundation, we next study if the updating procedure

{T t (x0)}t∈N leads to estimates which allow either the agents in the network or an

external observer to learn the truth as the size of the population becomes larger and

larger. More formally, we consider the same setup of Section 3, with the caveat that here

everything is parametrized by the size n of the population. Recall that there exists a

true parameter µ ∈ I and each agent i ∈ N = {1, ..., n} observes a signal Xi (n) defined

over a probability space (Ω,F , P ). In this section, we make three assumptions:

Assumption 1 I = R.

Assumption 2 For each n ∈ N we assume that Xi (n) = µ+ εi (n) for all i ∈ N where

{εi (n)}i∈N,n∈N is an array of uniformly bounded, symmetric, and independent random
variables.44

Assumption 3 T̄i (n) = T̄j (n) for all i, j ∈ N and for all n ∈ N.
By Lemma 3, Assumption 3 is satisfied whenever T (n) is a convergent consensus

robust opinion aggregator (cf. Section 5.3.1 for conditions which guarantee convergence

and Proposition 6 for conditions which grant consensus).45

Given n ∈ N, if agents update their estimates via a convergent robust opinion aggre-
gator T (n), then each agent i will reach a final estimate T̄i (n) (X1 (n) (ω) , ..., Xn (n) (ω))

for all ω ∈ Ω. It is then natural to ask whether or not this estimate gets arbitrarily

close to the true parameter µ as the population size increases. Following Golub and

Jackson [42], we are interested in whether or not the society becomes wise in the limit,

where the latter property is formalized as follows:

Definition 18 Let {T (n)}n∈N be a sequence of robust opinion aggregators. The se-
quence {T (n)}n∈N is wise if and only if

T̄i (n) (X1 (n) , ..., Xn (n))
P→ µ ∀i ∈ N. (27)

44Formally, the property of symmetry means that for each i ∈ N and for each n ∈ N

P ({ω ∈ Ω : εi (n) (ω) ∈ B}) = P ({ω ∈ Ω : −εi (n) (ω) ∈ B})

for all Borel sets B ⊆ R.
45Let T (n) : Rn → Rn be a convergent consensus robust opinion aggregator. This implies that

limt (T (n))
t
(x) = T̄ (n) (x) ∈ E (T (n)) = D for all x ∈ B. Since T̄ (n) (x) is a constant vector for all

x ∈ B, this implies Assumption 3.
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Even though Assumption 3 is not strictly necessary, having it facilitates our rea-

soning, and it is also conceptually relevant. In fact, in order for the entire set of agents

to learn the true parameter µ, it seems natural to consider a situation in which the

result of the updating procedure is common across agents.

We first review the wisdom of the crowd for the linear case. But, before doing so,

we introduce some notation.

Notation With Î, we denote a bounded open interval such that Xi (n) (ω) ∈ Î for all
ω ∈ Ω, i ∈ N , and n ∈ N. We denote by ` def

= sup Î − inf Î the length of Î. Moreover,

we denote the collection of probability vectors in Rn by ∆n, rather than just ∆.

If T (n) is linear, so is T̄ (n) and the latter is represented by a matrix W̄ (n). In

this case, Assumption 3 yields that all the rows of W̄ (n) coincide with the left Perron-

Frobenius eigenvector s (n) ∈ ∆n associated to the eigenvalue 1. DeMarzo, Vayanos,

and Zwiebel [27] as well as Golub and Jackson [42] call s (n) the vector of influence

weights and the latter show that if limn→∞maxk∈N sk (n)→ 0, then {T (n)}n∈N is wise.
In generalizing this result to the nonlinear case, we face two main diffi culties. From

a mathematical point of view, it is not obvious how to generalize the notion of left

eigenvector. From an interpretive point of view, the conceptual relevance of the vector

s (n) comes from the immediate computability in terms of the primitive matrix W (n).

But, other than specific cases, it is not immediately evident in terms of primitives what

is its meaning. To wit, it is not immediate by a mere inspection of the components of

W (n), if one can obtain useful bounds on maxk∈N sk (n).

For such a reason, we make the following trivial observation: in the linear case, the

vector s (n) coincides with the gradient∇T̄i (n) of T̄i (n) at any point x ∈ Rn. This sim-
ple observation is useful in two dimensions. For starters, it allows us to overcome the

diffi culty of not having a viable notion of left eigenvector for nonlinear operators, and it

clarifies how the j-th component of the influence vector s (n) captures the idea of “mar-

ginal contribution of agent j”to the final opinion T̄i (n) (X1 (n) (ω) , ..., Xn (n) (ω)). Fi-

nally, via the chain rule, if T̄ (n) is the pointwise limit of T t (n) as t runs to infinity, it

allows us to bound these marginal contributions via the marginal contributions of each

agent at each round, that is, via the gradient of T (n). Unfortunately, in proceeding

this way, we face some technical complications. Our opinion aggregators might be non-

differentiable. Nevertheless, being Lipschitz continuous, by Rademacher’s Theorem,

they are almost everywhere differentiable. Let D
(
T̄ (n)

)
⊆ În (resp., D (T (n))) be the

subset of În where T̄ (n) (resp., T (n)) is differentiable.

Definition 19 Let T (n) : Rn → Rn be a robust opinion aggregator. We say that
s (T (n)) ∈ Rn is the influence vector of T (n) if and only if

s
i
(T (n)) = sup

x∈D(T̄ (n))

∂T̄1 (n)

∂xi
(x) ∀i ∈ N .
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As we mentioned, the above definition of influence vector coincides with the one of

Golub and Jackson whenever T (n) is linear since s (T (n)) = s (n). For, in this case,

one has that

s
i
(T (n)) =

∂T̄1 (n)

∂xi
(x) = si (n) ∀i ∈ N, ∀x ∈ D

(
T̄ (n)

)
. (28)

In the robust case, s
i
(T (n)) captures the maximal marginal contribution of a change

of the opinion i on the final consensus estimate. Intuitively, the next result shows that

under the assumptions of the current section, if the influence weight of each agent goes

to zero, then the estimates of the network become more and more accurate.

Proposition 10 Let {T (n)}n∈N be a sequence of odd robust opinion aggregators. If
there exist two sequences {c (n)}n∈N and {w (n)}n∈N such that for each n ∈ N, c (n) ∈ R,
w (n) ∈ ∆n, and

s (T (n)) ≤ c (n)w (n) as well as c (n)2 max
k∈N

wk (n)→ 0 as n→∞, (29)

then {T (n)}n∈N is wise.

Compared to the linear case, we must observe that Proposition 10 differs only in one

central aspect: our result relies on the signals being symmetric around µ. In fact, first,

linear opinion aggregators are trivially odd. Second, our condition in (29) is equivalent

to the one of Golub and Jackson.46 On the one hand, the assumption of symmetric

errors, paired with T (n) being odd, guarantees that T̄i (n) is an unbiased estimator,

that is,

E
(
T̄i (n) (X1 (n) , ..., Xn (n))

)
= µ ∀i ∈ N,∀n ∈ N. (30)

On the other hand, via McDiarmid’s inequality, (29) guarantees that T̄i (n) (X1 (n) , ..., Xn (n))

converges in probability to its expectation as n becomes larger, yielding that T̄i (n) is

a consistent estimator, that is, (27) holds. Finally, observe that odd aggregators nat-

urally arise when the profiles of loss functions used by the agents are symmetric (cf.

Proposition 1). The next corollary provides a simple condition which yields (29) and,

in turn, that {T (n)}n∈N is wise.
46In the linear case, given (28), note that

1 =

n∑
i=1

si (n) =

n∑
i=1

si (T (n)) ≤ c (n)

n∑
i=1

wi (n) = c (n) ∀n ∈ N.

This implies that for each n ∈ N

c (n)
2

max
k∈N

wk (n) ≥ c (n) max
k∈N

wk (n) ≥ max
k∈N

sk (n) ≥ 0,

yielding that limn→∞maxk∈N sk (n) → 0. As for the opposite implication, note that, in the linear

case, we can always set c (n) = 1 and w (n) = s (n) for all n ∈ N.
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Corollary 5 Let {T (n)}n∈N be a sequence of odd robust opinion aggregators. If we
have that

max
k∈N

sk (T (n)) = o

(
1√
n

)
,

then {T (n)}n∈N is wise.

Next remark elaborates on how fast the crowd becomes wise.

Remark 4 We can also provide bounds on both the variance of T̄i (n) (X1 (n) , ..., Xn (n))

and the probability of ∣∣T̄i (n) (X1 (n) , ..., Xn (n))− µ
∣∣ ≥ δ.

This helps in elucidating the convergence result contained in Proposition 10. If T (n)

is an odd robust opinion aggregator such that s (T (n)) ≤ cw (n) for some c ∈ (0,∞)

and w (n) ∈ ∆n, we have that (30) holds and for each δ ∈ (0, `]

P
({
ω ∈ Ω :

∣∣T̄i (n) (X1 (n) (ω) , ..., Xn (n) (ω))− µ
∣∣ ≥ δ

})
≤ 2e

− 2δ2

`2c2 maxk∈N wk(n) . (31)

Since our random variables take values in a bounded interval Î, the difference∣∣T̄i (n) (X1 (n) (ω) , ..., Xn (n) (ω))− µ
∣∣

can be at most the length of the interval, that is, `. Thus, the previous inequality

might provide a useful bound in terms of controlling for deviations from the actual

parameter. Mathematically, (31) is McDiarmid’s inequality. In turn, this allows us to

control the variance of T̄i (n) (X1 (n) , ..., Xn (n)). Indeed, we have that for each i ∈ N

Var
(
T̄i (n) (X1 (n) , ..., Xn (n))

)
≤ `2c2 max

k∈N
wk (n)

[
1− e−

2
c2 maxk∈N wk(n)

]
. (32)

Thus, if maxk∈N wk (n) gets smaller, then the bound on the variance gets smaller. N

Before moving on, we note that the above results and remark encompass also the

case when T (n) is not a convergent operator (an assumption we indeed never made

in this section). In such a case, recall that T̄ (n) is the limit of the time averages

of {T t (n)}t∈N. Conceptually, this extra layer of generality is interesting if we think
about the following question: can an external observer learn the true parameter µ by

observing only part of the updating dynamics of a subset of the agents? More formally,

assume that the external observer from a specific point in time, say m, gets to see the

updating process
{
T t+mi (n) (X1 (n) (ω) , ..., Xn (n) (ω))

}τ
t=1

of agent i. By Theorem 2,

we know that as τ →∞

1

τ

τ∑
t=1

T t+mi (n) (X1 (n) (ω) , ..., Xn (n) (ω))→ T̄i (n) (X1 (n) (ω) , ..., Xn (n) (ω)) ∀ω ∈ Ω.
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Our results up so far show that the external observer can use T̄ (n) to extract infor-

mation about the underlying parameter, even if the opinions of the individual agents

in the network are not stabilizing.

The next obvious question we tackle relates to the possibility of verifying condition

(29) in terms of the original sequence of robust opinion aggregators {T (n)}n∈N.

Proposition 11 Let {T (n)}n∈N be a sequence of odd robust opinion aggregators. If
there exist two sequences {c (n)}n∈N and {w (n)}n∈N such that for each n ∈ N, c (n) ∈ R,
w (n) ∈ ∆n, and for each i, h ∈ N

sup
x∈D(T (n))

∂Th (n)

∂xi
(x) ≤ c (n)wi (n) and c (n)2 max

k∈N
wk (n)→ 0 as n→∞, (33)

then (29) holds and {T (n)}n∈N is wise.

We next illustrate how our previous result can become handy in checking condition

(29), particularly in the context of our statistical foundation. As a by-product, we will

obtain that, under the assumptions of this section, the wisdom of the crowd can be

achieved as long as the minimum degree of connections gets larger as the population

size increases.

Example 8 Assume that each agent processes signals following Huber’s estimation
procedure (see Sections 3.1 and 3.2), that is,

Ti (n) (x) ∈ argminc∈R
∑

j∈Ni(n)

ρi (n) (xj − c) ∀i ∈ N,∀x ∈ Rn,∀n ∈ N.

Assume that the profile of loss functions φ (n) = (W (n) , ρ (n)) used by the agents is as

in Proposition 5 where the agents’weights wij (n) are uniform over their neighborhoods

Ni (n). Moreover, assume that there exists c̄ ∈ R such that

ρ′′i (n) (s)

ρ′′i (n) (s′)
≤ c̄ ∀i ∈ N,∀n ∈ N,∀s, s′ ∈ [−2`, 2`] .

By the Implicit Function Theorem,47 we have that T (n) is Frechet differentiable and

∂Th (n)

∂xi
(x) ≤ c̄

1

mink∈N |Nk (n) | ∀i, h ∈ N, ∀x ∈ B̂, ∀n ∈ N.

47Let s, s′ ∈ [−2`, 2`] be such that

ρ′′h (n) (s) = max
s̃∈[−2`,2`]

ρ′′h (n) (s̃) and ρ′′h (n) (s′) = min
s̃∈[−2`,2`]

ρ′′h (n) (s̃) .

Easy computations yield that

∂Th (n)

∂xi
(x) =

ahi (n) ρ′′h (n) (xi − Th (x))∑n
l=1 ahl (n) ρ′′h (n) (xl − Th (x))

≤ ρ′′h (n) (s)

|Nh (n)| ρ′′h (n) (s′)
≤ c̄

mink∈N |Nk (n) | .
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By Proposition 11, wisdom is reached at the limit (i.e., (27) holds) if the minimal

degree in the society is growing suffi ciently fast,48 that is,

1

mink∈N |Nk (n) | = o

(
1√
n

)
. (34)

Note that condition (34) allows each agent to be connected to a vanishing fraction of

the society. N

A word of caution must be mentioned here about the possibility of obtaining the

wisdom of the crowd in the realm of robust opinion aggregation. It can be shown that

given any sequence of linear opinion aggregators {T (n)}n∈N even if this sequence is wise,
we can slightly perturb it and obtain a new sequence which is not wise.49 In particular,

in this latter case, the limit estimate will be bounded away from the true parameter

µ. The intuition of this result is simple. We obtain the wisdom of the crowd relying

on the errors’ symmetry as well as on the fact that our robust opinion aggregators

recognize this symmetry, that is, they are odd. But as soon as this condition is not

satisfied, it is not diffi cult to imagine that the limit estimate might not be consistent:

for example, assume that each agent observes every other agent and aggregates opinions

according to the median computed with uniform weights. If errors are not symmetric,

the wisdom of the crowd cannot be achieved. What it is more diffi cult to show is

that small perturbations, even of wise sequences, are enough to generate such type

of behavior, thus showing that the wisdom of the crowd relies on special assumptions

which might or might not be satisfied in applications.

Linear opinion aggregators are a knife-edge case in terms of symmetry. The wisdom

of the crowd result of Golub and Jackson [42] does not depend on the informativeness

of the signals received by the individuals (i.e., it only assumes that signals have a finite

second moment). For instance, suppose that the array of signals (Xi (n))i∈N,n∈N ana-

lyzed above is replaced with an array (Yi (n))i∈N,n∈N where Yi (n) is a mean preserving

spread of Xi (n). Such a change is irrelevant for a linear opinion aggregator, even if the

signals are less informative, the wisdom of the crowd is obtained if and only if it was

obtained under the original signal structure. Instead, robust opinion aggregators do

not implicitly assume symmetry in the way in which extreme realizations are weighted.

For example, they leave open the possibility that extremely negative realizations are

48Similarly to the proof of Corollary 5, set

wi (n) =
1

n
and c (n) = nc̄

1

mink∈N |Nk (n) | ∀i ∈ N, ∀n ∈ N.

49Moreover, the sequence of loss functions justifying the sequence of perturbed robust opinion

aggregators can also be chosen to be “close”to the profiles of the quadratic loss functions justifying

{T (n)}n∈N (cf. Theorem 1).
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overweighted by the agents. Therefore, by making the tails of the distribution fatter, a

mean preserving spread of the individuals’signals may shift the limit consensus down-

ward. In general, the effect of less precise signals is ambiguous, but a precise result can

be obtained in the case of concave (resp., convex) opinion aggregators.50 In this case,

we will have that for each i ∈ N and for each n ∈ N

E
(
T̄i (n) (X1 (n) , ..., Xn (n))

)
≥ E

(
T̄i (n) (Y1 (n) , ..., Yn (n))

)
(resp., ≤ ).

Concave and convex opinion aggregators encompass some of the aggregators described

in Sections 4 and 5.4. In the first case, the aggregator obtained in equation (11) is

concave (resp., convex) whenever λ < 0 (resp., λ > 0). In the second case, the Choquet

aggregator in which each agent uses a capacity as in (24) is concave (resp., convex)

provided each fi is convex (resp., concave).

7 Discussion

In this section, we discuss two main aspects of our model and how they can be relaxed.

Strategic interaction In this paper, we have provided a justification for robust

opinion aggregation in terms of repeated robust estimation of a location parameter, in

line with the approach of DeMarzo, Vayanos, and Zwiebel [27]. The other classical mo-

tivation for DeGroot’s model is a process of myopic best response dynamics of agents

that are learning to play a coordination game with quadratic payoffs. Note that the

period by period minimization of a robust loss function described in Section 3.1, can

be alternatively interpreted as a best response dynamic process under a much broader

class of payoff functions. It is then clear that all our results leading to convergence

(resp., consensus) can be recasted as procedures to select a Nash equilibrium of the

corresponding coordination game (resp., full coordination equilibrium). Nevertheless,

best response dynamics assume some degree of bounded rationality in that agents best

respond to past coplayers’actions. In our related work [19], we show that the action

dynamics induced by robust aggregators arise also when the agents care about the

current and future action profiles and act strategically. In particular, this Markovian

behavior is derived under the additional assumption of a minimal amount of inertia

50An opinion aggregator T (n) : Rn → Rn is concave (resp., convex) if and only if for each λ ∈ (0, 1)

and for each x, y ∈ Rn

T (n) (λx+ (1− λ) y) ≥ λT (n) (x) + (1− λ)T (n) (y) (resp., ≤ ).
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of the agents with respect their own past actions. This result provides a fully ratio-

nal foundation of the dynamics studied in this paper in terms of (forward looking)

equilibrium behavior.

Translation invariance In our microfoundation, we have considered agents that

initially observe the realizations of different location experiments. In this setting, it is

natural to consider loss functions defined over the residuals (i.e., the differences between

observations and estimate). It immediately follows that the induced opinion aggregator

satisfies translation invariance, which might be seen as too restrictive. Indeed, under

the strategic interaction interpretation considered above, one might desire to allow for

more general properties of the best response function obtained, for instance, from a

payoff function that does not only depend on actions’differences. In our related work

[19], we relax the assumptions on the payoff functions of the agents, naturally obtaining

equilibrium maps that satisfy translation subinvariance, that is, agents react less than

proportionally to uniform shifts in actions. It turns out that most of the results of this

paper (e.g., Theorems 1 and 2) would continue to hold under minor adaptations.

A Appendix: A robust foundation and examples

In this appendix, we prove all the results of Sections 3 and 4 as well as Proposition 5

in Section 5. Recall that a loss function is a functional from Rn to R+. We next prove

two ancillary lemmas which will highlight some useful properties satisfied by a profile

of robust loss functions φ = (φi)
n
i=1. Recall that φ is a profile of robust loss functions,

denoted by φ ∈ ΦR, if and only if it is sensitive and has increasing shifts (Definitions

2 and 3) and each φi is lower semicontinuous.

Lemma 4 Let φ = (φi)
n
i=1 be a profile of loss functions. If φ ∈ ΦR, then for each

i ∈ N and z̃ ∈ Rn

z̃ � 0 =⇒ φi (z̃) > φi

(
z̃ −min

j∈N
z̃je

)
,

and

0� z̃ =⇒ φi (z̃) > φi

(
z̃ −max

j∈N
z̃je

)
.

Proof. Fix i ∈ N . Consider z̃ ∈ Rn such that z̃ � 0. Define z = z̃ − minj∈N z̃je,

v = 0, and h = minj∈N z̃j. Note that z ≥ v as well as h ∈ R++. Since φ has increasing

shifts and is sensitive, we obtain that

φi (z̃)− φi
(
z̃ −min

j∈N
z̃je

)
= φi (z + he)− φi (z)

≥ φi (v + he)− φi (v) = φi

(
min
j∈N

z̃je

)
− φi (0) > 0,
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proving the first inequality. Consider now z̃ ∈ Rn such that 0 � z̃. Define z =

maxj∈N z̃je, v = z̃, and h = −maxj∈N z̃j. Note that z ≥ v as well as h ∈ R++. Since

φ is sensitive and has increasing shifts, we obtain that

0 > φi (0)− φi
(

max
j∈N

z̃je

)
= φi (z + he)− φi (z)

≥ φi (v + he)− φi (v) = φi

(
z̃ −max

j∈N
z̃je

)
− φi (z̃) ,

proving the second equality. �

Next lemma shows that the property of increasing shifts is a property of convexity

of each loss function φi.

Lemma 5 Let φ = (φi)
n
i=1 be a profile of loss functions. If φ ∈ ΦR, then for each

i ∈ N and for each x ∈ Rn the function fi,x : R→ R+, defined by fi,x (c) = φi (x− ce)
for all c ∈ R, is convex. Moreover, if φ has strictly increasing shifts, then fi,x is strictly
convex for all i ∈ N and for all x ∈ Rn.

Proof. Fix i ∈ N and x ∈ Rn. Define gi,x : R → R+ by gi,x (c) = φi (x+ ce) for

all c ∈ R. Consider c1, c2 ∈ R such that c1 > c2 and h > 0. Since φ ∈ ΦR and

x+ c1e ≥ x+ c2e, it follows that

gi,x (c1 + h)− gi,x (c1) = φi ((x+ c1e) + he)− φi (x+ c1e)

≥ φi ((x+ c2e) + he)− φi (x+ c2e)

= gi,x (c2 + h)− gi,x (c2) .

By [75, Problem N, pp. 223—224], it follows that gi,x is midconvex. Since φi is lower

semicontinuous, we have that gi,x is measurable. By [75, Theorem C, p. 221], it follows

that gi,x is continuous. By [75, Theorem A, p. 212], this implies that gi,x is convex.

Finally, observe that fi,x = gi,x ◦ h where h (c) = −c for all c ∈ R, yielding that fi,x
is convex being the composition of a convex function with an affi ne function. Next,

assume that φ has strictly increasing shifts and, in particular, has increasing shifts. By

the previous part of the proof, gi,x is convex. By contradiction, assume that gi,x is not

strictly convex. This implies that there exists an interval [d2, d1], with d2 < d1, where

gi,x is affi ne. Define c1 = 1
2
d1 + 1

2
d2, c2 = d2, and h = (d1 − d2) /2. Note that c1 > c2

and h > 0. Since φ has strictly increasing shifts, by the same computations of the

previous part of the proof, we have that

gi,x (d1)− gi,x
(

1

2
d1 +

1

2
d2

)
= gi,x (c1 + h)− gi,x (c1) > gi,x (c2 + h)− gi,x (c2)

= gi,x

(
1

2
d1 +

1

2
d2

)
− gi,x (d2) ,
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yielding that gi,x
(

1
2
d1 + 1

2
d2

)
< 1

2
gi,x (d1) + 1

2
gi,x (d2), a contradiction with affi nity.

Since gi,x is strictly convex, so is fi,x = gi,x ◦ h. �

We next show that an estimation procedure like the one in (2) and (3) yields a

selection of Tφ which is a robust opinion aggregator. This is a generalization of (i)

implies (ii) of Theorem 1.

Proposition 12 Let φ = (φi)
n
i=1 be a profile of loss functions. If φ ∈ ΦR, then the cor-

respondence Tφ admits a selection T φ which is a robust opinion aggregator. Moreover,

if φ has strictly increasing shifts, then Tφ = T φ is single-valued and, in particular, is

a robust opinion aggregator.

Proof. Fix i ∈ N . We begin by considering the correspondence Tφ
i : B ⇒ I defined

by

Tφ
i (x) = argminc∈R φi (x− ce) ∀x ∈ B.

We next show that Tφ
i is well defined, nonempty-, convex-, and compact-valued, and

such that for each x, y ∈ B

x ≥ y =⇒ Tφ
i (x) ≥SSO T

φ
i (y) (35)

where ≥SSO is the strong set order. Fix x ∈ B. We next show that

∀d 6∈
[
min
j∈N

xj,max
j∈N

xj

]
, ∃c ∈

[
min
j∈N

xj,max
j∈N

xj

]
s.t. φi (x− ce) < φi (x− de) . (36)

Consider d as above. We have two cases either d < minj∈N xj or d > maxj∈N xj. In

the first case, we have that x− de� 0, in the second case, we have that 0� x− de.
By Lemma 4 and since φ ∈ ΦR, if we set c̃ = minj∈N xj − d (resp., maxj∈N xj − d), we
obtain that

φi (x− de) > φi (x− de− c̃e) = φi (x− ce)

where c = minj∈N xj ∈ [minj∈N xj,maxj∈N xj] (resp., c = maxj∈N xj ∈ [minj∈N xj,maxj∈N xj]),

proving (36). By (36), we can conclude that

min
c∈R

φi (x− ce) = min
c∈I

φi (x− ce) = min
c∈[minj∈N xj ,maxj∈N xj]

φi (x− ce) (37)

as well as

argminc∈R φi (x− ce) = argminc∈I φi (x− ce) = argminc∈[minj∈N xj ,maxj∈N xj] φi (x− ce) .

By a standard generalization of Weierstrass’Theorem (see, e.g., [3, Theorem 2.43]) and

since φi is lower semicontinuous, this implies that the above minimization problems ad-

mit solution and each argmin is a compact set. By Lemma 5, argminc∈[minj∈N xj ,maxj∈N xj] φi (x− ce)
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is also convex. Since x was arbitrarily chosen, this implies that Tφ
i is well defined,

nonempty-, convex-, and compact-valued and, in particular,

∅ 6= Tφ
i (x) ⊆

[
min
j∈N

xj,max
j∈N

xj

]
⊆ I ∀x ∈ B. (38)

We next prove (35). In order to do so, we rewrite explicitly (37) as a problem of

parametric optimization/monotone comparative statics. Define f : I ×B → R by

f (c, x) = −φi (x− ce) ∀ (c, x) ∈ I ×B.

It is immediate to see that

Ti (x) = argmaxc∈I f (c, x) ∀x ∈ B.

We next show that f has increasing differences in (c, x). Consider x, y ∈ B as well as

c, d ∈ I such that c ≥ d and x ≥ y. Define z = x− ce, v = y− ce, and h = c− d. Note
that z ≥ v and h ∈ R+. Since φ ∈ ΦR, it follows that

f (c, x)− f (d, x) = φi (x− de)− φi (x− ce) = φi (z + he)− φi (z)

≥ φi (v + he)− φi (v) = φi (y − de)− φi (y − ce)
= f (c, y)− f (d, y) .

This shows that f satisfies the property of increasing differences in (c, x). By [67,

Theorem 5], Ti satisfies (35). We finally show that T
φ
i is such that for each x ∈ B and

for each k ∈ R such that x+ ke ∈ B

c? ∈ Tφ
i (x) ⇐⇒ c? + k ∈ Tφ

i (x+ ke) . (39)

Fix x ∈ B. Consider k ∈ R such that x+ ke ∈ B. Consider c? ∈ Tφ
i (x). By definition,

it follows that φi (x− c?e) ≤ φi (x− ce) for all c ∈ R. This implies that

φi (x+ ke− (c? + k) e) = φi (x− c?e) ≤ φi (x− (d− k) e) = φi (x+ ke− de) ∀d ∈ R.

By definition of Tφ
i , this implies that c

? + k ∈ Tφ
i (x+ ke). Vice versa, if c? + k ∈

Tφ
i (x+ ke), then

φi (x+ ke− (c? + k) e) ≤ φi (x+ ke− de) ∀d ∈ R,

yielding that

φi (x− c?e) = φi (x+ ke− (c? + k) e) ≤ φi (x− ce) ∀c ∈ R,

proving that c? ∈ Tφ
i (x).
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To sum up, since i ∈ N was arbitrarily chosen, we proved that, for each i ∈ N , Tφ
i

is well defined, nonempty-, convex-, and compact-valued, and satisfies (35) as well as

(39). Observe also that Tφ : B ⇒ B is the product correspondence Tφ=
∏n

i=1T
φ
i . We

are ready to show that Tφ admits a selection T φ which is a robust opinion aggregator.

Define T φ : B → B to be such that

T φi (x) = minTφ
i (x) ∀x ∈ B, ∀i ∈ N.

Since Tφ
i (x) is compact for all x ∈ B, it follows that T φi (x) is well defined and, in

particular, T φi (x) ∈ Tφ
i (x) for all x ∈ B and for all i ∈ N , proving that T φ is a

selection of Tφ. By (38), it follows that Tφ
i (ke) = {k} for all k ∈ I and for all i ∈ N ,

proving that T φi (ke) = k for all k ∈ I and for all i ∈ N , that is, that T φ is normalized.
Next, consider x, y ∈ B such that x ≥ y. By (35), we have that T φi (x) ≥ T φi (y) for all

i ∈ N , proving monotonicity of T φi for all i ∈ N and so of T φ. Finally, consider x ∈ B
and k ∈ R such that x+ke ∈ B. By (39) and definition of T φi (x) as well as T φi (x+ ke),

we have that T φi (x) ∈ Tφ
i (x) for all i ∈ N , yielding that T φi (x) + k ∈ Tφ

i (x+ ke) for

all i ∈ N and, in particular, T φi (x) + k ≥ T φi (x+ ke) for all i ∈ N . This implies that
T φi (x+ ke) = T φi (x) + k for all i ∈ N , proving translation invariance.51

Finally, by Lemma 5, if φ has strictly increasing shifts, then the map c 7→ φi (x− ce)
is strictly convex, yielding that each Tφ

i is single-valued and so is T
φ. �

We are now ready to prove the main theorem of Section 3. Its proof (as well as

others) would be extremely facilitated if I were to be equal to R. In our case though,
I is only assumed to be a closed interval with nonempty interior. Nevertheless, we can

always extend T from B to the entire space Rn. Next lemma, proved in the Online
Appendix, guarantees this. Moreover, even though T might have many extensions, all

the extensions generate the same sequence of updates and therefore, the same limiting

behavior.

Lemma 6 Let T be an opinion aggregator. The following statements are true:

1. If T is robust, then it admits an extension S : Rn → Rn which is also robust.

2. If T is robust and constant affi ne, then it admits a unique extension S : Rn → Rn

which is robust and constant affi ne.

51Fix i ∈ N . By the previous part of the proof, for each x ∈ B and for each k ∈ R such that

x + ke ∈ B, we have that Tφi (x+ ke) ≤ Tφi (x) + k. Next, note that if x ∈ B and x + ke ∈ B, then
(x+ ke)− ke = x ∈ B. It follows that

Tφi (x) = Tφi ((x+ ke)− ke) ≤ Tφi (x+ ke)− k,

proving the opposite inequality.
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3. If T is normalized and monotone, then ‖T t (x)‖∞ ≤ ‖x‖∞ for all x ∈ B and for

all t ∈ N.

4. If x ∈ B, then there exists Ĩ ⊆ I which is a compact subinterval of I with

nonempty interior and x ∈ Ĩn
def
= B̃. Moreover, if T is robust, the restriction

T̃ = T|B̃ is a robust opinion aggregator and T̃ t (x) = T t (x) as well as
_

T̃ (x) =

T̄ (x) for all t ∈ N and for all x ∈ B̃.

Proof of Theorem 1. (i) implies (ii). By Proposition 12 and since φ ∈ ΦR and has

strictly increasing shifts, the implication follows.

(ii) implies (i). Let T : B → B be a robust opinion aggregator. By Lemma 6, there

exists an extension from Rn to Rn. With a small abuse of notation, we denote it by
the same symbol T . By Lemma 8, we have that T is nonexpansive and, in particular,

continuous and so are the maps Ti. Fix i ∈ N . By [20, Corollary 3], we have that

there exists a closed and convex set of probability vectors, Ci ⊆ ∆, and a function

αi : Rn → [0, 1] such that

Ti (x) = αi (x) min
w∈Ci

w · x+ [1− αi (x)] max
w∈Ci

w · x ∀x ∈ Rn. (40)

Fix x ∈ Rn. Since Ci is compact, define wi,1 (x) , wi,2 (x) ∈ Ci to be such that wi,1 (x) ·
x = minw∈Ci w · x and wi,2 (x) · x = maxw∈Ci w · x. By (40) and since Ci is convex,
we have that wi (x) = αi (x)wi,1 (x) + [1− αi (x)]wi,2 (x) ∈ Ci and Ti (x) = wi (x) · x.
Since x and i were arbitrarily chosen, it follows that for each i ∈ N and for each x ∈ B
there exists w ∈ Ci such that Ti (x) = w ·x. For each i ∈ N and for each x ∈ Rn define
the correspondence Γi : Rn ⇒ ∆ by

Γi (x) = {w ∈ Ci : Ti (x) = w · x} ∀x ∈ Rn.

We first prove the following ancillary claim.

Claim: For each i ∈ N the correspondence Γi is nonempty-, convex-, and compact-

valued, upper hemicontinuous, and such that

Γi (x) = Γi (x+ he) ∀x ∈ Rn, h ∈ R. (41)

Proof of Claim. Fix i ∈ N . Consider x ∈ Rn. By the previous part of the proof,
we have that wi (x) ∈ Γi (x), proving that Γi (x) is nonempty. Since Ci is convex

and compact, it is immediate to check that Γi (x) is convex and compact. Since x

was arbitrarily chosen, it follows that Γi is nonempty-, convex- and compact-valued.

We next show that Γi is upper hemicontinuous. Consider a sequence {(xn, wn)}n∈N
such that xn → x and wn ∈ Γi (x

n) for all n ∈ N. By definition, we have that
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wn ∈ Ci as well as Ti (xn) = wn · xn for all n ∈ N. Since Ci is compact, there exists a
subsequence {wnk}k∈N such that wnk → w ∈ Ci. Since Ti is continuous, we have that
Ti (x) = limk Ti (x

nk) = limk w
nk ·xnk = w ·x, proving that {wn}n∈N has a limit point in

Γi (x). By [3, Theorem 17.20] and since Γi is compact-valued, we can conclude that Γi

is upper hemicontinuous. Finally, consider x ∈ Rn and h ∈ R. Since T is translation
invariant and Ci ⊆ ∆, note that

w ∈ Γi (x) ⇐⇒ w ∈ Ci and Ti (x) = w · x
⇐⇒ w ∈ Ci and Ti (x) + h = w · x+ w · he
⇐⇒ w ∈ Ci and Ti (x+ he) = w · (x+ he) ⇐⇒ w ∈ Γi (x+ he) ,

proving (41). �
Fix i ∈ N . Define f : Rn × ∆ → R+ by f (x,w) =

∑n
j=1 wjx

2
j for all (x,w) ∈

Rn × ∆. It is immediate to see that f is continuous in the product topology. Define

φTi : Rn → R+ by

φTi (x) = min
w∈Γi(x)

f (x,w) = − max
w∈Γi(x)

−f (x,w) ∀x ∈ Rn.

By [3, Lemma 17.30] and since f is continuous and Γi is nonempty- and compact-

valued as well as upper hemicontinuous, it follows that φTi is lower semicontinuous.

Next, consider h ∈ R\ {0}. It follows that f (he, w) = h2 for all w ∈ ∆. We can

conclude that

φTi (he) = h2 > 0 = φTi (0) .

Since i and h were arbitrarily chosen, this implies that φ =
(
φTi
)n
i=1

is sensitive. Next,

we move to the property of strictly increasing shifts. By (41), we have that

φTi (x+ he) = min
w∈Γi(x+he)

n∑
j=1

wj (xj + h)2 = min
w∈Γi(x)

[
n∑
j=1

wjx
2
j + 2h

n∑
j=1

wjxj + h2

]
(42)

= min
w∈Γi(x)

n∑
j=1

wjx
2
j + 2hTi (x) + h2 ∀x ∈ Rn,∀h ∈ R. (43)

Consider z, v ∈ Rn and h ∈ R++. By (42) and (43) and since T is monotone, we can

conclude that

z ≥ v =⇒ φTi (z + he)−φTi (z) = 2hTi (z)+h2 ≥ 2hTi (v)+h2 = φTi (v + he)−φTi (v) .

Since i was arbitrarily chosen, it follows that φ =
(
φTi
)n
i=1

has increasing shifts and, in

particular, φ ∈ ΦR. Next, consider z, v ∈ Rn such that z � v. Set k = minj∈N (zj − vj).
It follows that k > 0 and z ≥ v + ke. Since T is monotone and translation invariant
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and k > 0, we can conclude that T (z) ≥ T (v + ke) = T (v) + ke. Since z, v ∈ Rn were
arbitrarily chosen, it follows that

z � v =⇒ T (z)� T (v) .

By (42) and (43), this implies that if z, v ∈ Rn and h ∈ R++, then

z � v =⇒ φTi (z + he)−φTi (z) = 2hTi (z)+h2 > 2hTi (v)+h2 = φTi (v + he)−φTi (v) .

Since i was arbitrarily chosen, it follows that φ =
(
φTi
)n
i=1
has strictly increasing shifts.

We are left to prove (5), that is, for each i ∈ N

Ti (x) = argminc∈R φ
T
i (x− ce) ∀x ∈ B.

By Proposition 12 and since φ =
(
φTi
)n
i=1
∈ ΦR has strictly increasing shifts, we have

that Tφ
i (x) = argminc∈R φ

T
i (x− ce) is well defined and single-valued for all x ∈ B and

for all i ∈ N . We are left to prove that it coincides with Ti (x) for all x ∈ B and for all

i ∈ N . Fix i ∈ N and x ∈ B. By (42) and (43), we have that

φTi (x− ce) = min
w∈Γi(x)

n∑
j=1

wjx
2
j − 2cTi (x) + c2 ∀c ∈ R

which, as a function of c, is quadratic and minimized at c = Ti (x), proving the state-

ment. �

Proof of Lemma 1. Since φ ∈ Φ∗R, we have that φ is sensitive and each φi is

continuous. To prove the first part of the statement, we only need to show that φ has

increasing shifts. By [64, Corollary 4.1] and since φi is convex and supermodular for

all i ∈ N , we have that φi is ultramodular, that is, for all z, v ∈ Rn and h ∈ Rn+

z ≥ v =⇒ φi (z + h)− φi (z) ≥ φi (v + h)− φi (v) ,

yielding that, in particular, φ has increasing shifts. As for the second part of the

statement, assume that φi is strictly convex for all i ∈ N . From the previous part of

the proof, we have that φ has increasing shifts. Fix i ∈ N and z, v ∈ Rn. Consider the
map gi,v : R→ R+ defined by gi,v (c) = φi (v + ce) for all c ∈ R. Clearly, gi,v is strictly
convex. Consider c1, c2 ∈ R and h > 0 such that c1 > c2. Define d = c1 + h. Since d =

c1 +h > c2 +h > c2, note that there exists α ∈ (0, 1) such that c2 +h = αc2 +(1− α) d.

Straightforward computations yield also that c1 = (1− α) c2 +αd. Since gi,v is strictly

convex, α ∈ (0, 1), and c2 6= d, it follows that

gi,v (c2 + h) < αgi,v (c2) + (1− α) gi,v (d)

as well as

gi,v (c1) < (1− α) gi,v (c2) + αgi,v (d)
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Adding the two inequalities, we obtain that gi,v (c2 + h) + gi,v (c1) < gi,v (c2) + gi,v (d),

that is,

gi,v (c2 + h)− gi,v (c2) < gi,v (c1 + h)− gi,v (c1) . (44)

Finally, consider h > 0 and assume that z � v. It follows that there exists δ > 0 such

that z ≥ v + δe. By (44) and since φ has increasing shifts, we can conclude that

φi (z + he)− φi (z) ≥ φi ((v + δe) + he)− φi (v + δe) = gi,v (δ + h)− gi,v (δ)

> gi,v (0 + h)− gi,v (0) = φi (v + he)− φi (v) .

Since i was arbitrarily chosen, it follows that φ has strictly increasing shifts. �

In order to prove Proposition 1, we state and prove an ancillary result which allows

us to obtain a similar result for loss functions which admit more than a minimizer.

Lemma 7 Let φ ∈ ΦR. The following facts are true:

1. If φ is positively homogeneous, then the correspondence Tφ admits a selection T φ

which is a constant affi ne robust opinion aggregator.

2. If φ is symmetric, then the correspondence Tφ admits a selection T φ which is an

odd robust opinion aggregator.

Proof. Before starting, we make four observations adopting the same notation of the
proof of Proposition 12. Since Tφ

i : B ⇒ I is nonempty-, convex-, and compact-valued

for all i ∈ N , we have that

Tφ
i (x) =

[
minTφ

i (x) ,maxTφ
i (x)

]
∀x ∈ B, ∀i ∈ N. (45)

By Proposition 12 and its proof, we know that T φ : B → B, defined by T φi (x) =

minTφ
i (x) for all x ∈ B and for all i ∈ N , is a robust opinion aggregator which is

a selection of Tφ. A quick inspection of the proof yields that T̃ φ : B → B, defined

by T̃ φi (x) = maxTφ
i (x) for all x ∈ B and for all i ∈ N , would satisfy the same

properties. Finally, since Tφ
i is convex-valued for all i ∈ N , T̂ φ : B → B, defined by

T̂ φi = 1
2
T φi + 1

2
T̃ φi for all x ∈ B and for all i ∈ N , would satisfy the same properties.

1. Since φ ∈ ΦR, observe that φ is sensitive. Since φ is positively homogeneous,

this implies that 0 < φi (λe) = ηi (λ)φi (e) for all λ ∈ R++ and for all i ∈ N , that is
ηi (λ) > 0 for all λ ∈ R++ and for all i ∈ N . Fix i ∈ N . Consider x ∈ B, k ∈ I, and
λ ∈ (0, 1). Let c? ∈ R. Since φ is positively homogeneous, note that

φi (x− c?e) ≤ φi (x− ce) ∀c ∈ R ⇐⇒ ηi (λ)φi (x− c?e) ≤ ηi (λ)φi (x− ce) ∀c ∈ R
⇐⇒ φi (λx− λc?e) ≤ φi (λx− λce) ∀c ∈ R
⇐⇒ φi (λx+ (1− λ) ke− (λc? + (1− λ) k) e)

≤ φi (λx+ (1− λ) ke− (λc+ (1− λ) k) e) ∀c ∈ R,
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proving that c? ∈ Tφ
i (x) if and only if λc? + (1− λ) k ∈ Tφ

i (λx+ (1− λ) ke). By

definition of T φi and since T
φ
i (x) ∈ Tφ

i (x), this implies that

T φi (λx+ (1− λ) ke) ≤ λT φi (x) + (1− λ) k.

By definition of T φi and since T
φ
i (λx+ (1− λ) ke) ∈ Tφ

i (λx+ (1− λ) ke), we also have

that

T φi (λx+ (1− λ) ke)− (1− λ) k

λ
∈ Tφ

i (x) and T φi (x) ≤ T φi (λx+ (1− λ) ke)− (1− λ) k

λ
,

proving that λT φi (x) + (1− λ) k ≤ T φi (λx+ (1− λ) ke). Since i, x, k, and λ were

arbitrarily chosen, we can conclude that

T φ (λx+ (1− λ) ke) = λT φ (x) + (1− λ) ke ∀x ∈ B, ∀k ∈ I,∀λ ∈ (0, 1) ,

proving constant affi nity.

2. Fix i ∈ N . Consider x ∈ B such that −x ∈ B. We next show that T̂ φi (−x) =

−T̂ φi (x). Let c? ∈ R. Since φ is symmetric, note that

φi (x− c?e) ≤ φi (x− ce) ∀c ∈ R ⇐⇒ φi (−x+ c?e) ≤ φi (−x+ ce) ∀c ∈ R
⇐⇒ φi (−x− (−c?) e) ≤ φi (−x− de) ∀d ∈ R,

proving that c? ∈ Tφ
i (x) if and only if −c? ∈ Tφ

i (−x). By (45), this implies that

−minTφ
i (x) = maxTφ

i (−x) and −maxTφ
i (x) = minTφ

i (−x) .

By definition of T̂ φi , it follows that

T̂ φi (x) =
1

2

(
−maxTφ

i (−x) +−minTφ
i (−x)

)
= −1

2

(
maxTφ

i (−x) + minTφ
i (−x)

)
= −T̂ φi (−x) .

Since i and x were arbitrarily chosen, we can conclude that T̂ φ is odd. �

Proof of Proposition 1. 1. “If”. By Proposition 12 and since φ ∈ ΦR has strictly

increasing shifts, then Tφ = T φ is single-valued. By point 1 of Lemma 7 and since φ is

also positively homogeneous, we can conclude that T = T φ is a constant affi ne robust

opinion aggregator. “Only if”. Consider the profile of loss functions φ ∈ ΦR as in the

proof of (ii) implies (i) of Theorem 1. The profile φ =
(
φTi
)n
i=1

has strictly increasing

shifts and is such that T φ = T as well as

φTi (z) = min
w∈Γi(z)

n∑
j=1

wjz
2
j ∀z ∈ Rn,∀i ∈ N. (46)
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The set Γi (z) is the set {w ∈ Ci : Ti (z) = w · z} where, with an abuse of notation, T
denoted an extension of T from Rn to Rn. By point 2 of Lemma 6 and since T is

constant affi ne, it follows that such an extension can be assumed to be constant affi ne

as well. This implies that T : Rn → Rn is such that T (λz) = λT (z) for all λ ∈ R+

and for all z ∈ Rn. Fix i ∈ N . This yields that Γi (λz) = Γi (z) for all λ ∈ R++ and

for all z ∈ Rn. By (46), we have that

φTi (λz) = min
w∈Γi(λz)

n∑
j=1

wj (λzj)
2 = λ2 min

w∈Γi(z)

n∑
j=1

wjz
2
j = λ2φTi (z) ∀z ∈ Rn, ∀λ ∈ R++.

Since i was arbitrarily chosen and φTi (0) = 0 for all i ∈ N , it follows that φ is positively
homogeneous where ηi (λ) = λ2 for all λ ∈ R+.

2. By Proposition 12 and since φ ∈ ΦR has strictly increasing shifts, then Tφ = T φ

is single-valued. By point 2 of Lemma 7 and since φ is also symmetric, we can conclude

that T = T φ is an odd robust opinion aggregator. �

Proof of Lemma 2. Fix i ∈ N . It is well known that order statistics are functionals
from Rn to R which are normalized, monotone, and comonotonic additive (cf. the

definitions at the beginning of Appendix B). This implies that order statistics are also

translation invariant. Since convex linear combinations maintain these properties and

i was arbitrarily chosen, the statement follows. �

Proof of Proposition 2. In this proof, given W ∈ W and a profile of lower semi-

continuous functions ρ = (ρi : R→ R+)ni=1, for each i ∈ N we denote by φi : Rn → R+

the function defined by

φi (z) =
n∑
j=1

wijρi (zj) ∀z ∈ Rn.

We denote by φ the profile φ = (φi)
n
i=1.

(i) implies (iii). Since φ = (W, ρ) ∈ ΦA, we have that φ ∈ ΦR. Fix i ∈ N . We begin
by showing that ρi is convex. Consider gi,0 as in the proof of Lemma 5. Observe that

for each c ∈ R

gi,0 (c) = φi (0 + ce) =
n∑
j=1

wijρi (c) = ρi (c) ∀c ∈ R.

By the proof of Lemma 5 and since φ ∈ ΦR, we have that gi,0 = ρi is convex. Since φ

is sensitive, it follows that ρi admits a unique minimizer at 0. This implies that ρi is

strictly decreasing on R− and strictly increasing on R+.52

52Since 0 is a minimizer, 0 ∈ ∂ρi (0) and, in particular, the left- and right-derivatives at 0 are such

that ρ′i,− (0) ≤ 0 ≤ ρ′i,+ (0). Since ρi is convex, we have that

ρ′i,+ (c) ≤ ρ′i,− (0) ≤ 0 ≤ ρ′i,+ (0) ≤ ρ′i,− (d) ∀c, d ∈ R s.t. c < 0 < d.
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(iii) implies (ii). Fix i ∈ N . Since ρi : R → R+ is convex, it follows that ρi is

continuous and convex. This implies that φi : Rn → R+ is continuous and convex.

Next, consider z, v ∈ Rn. It follows that

ρi (zj ∧ vj) + ρi (zj ∨ vj) = ρi (vj) + ρi (zj) ∀j ∈ N.

We can conclude that

φi (z ∧ v) + φi (z ∨ v) =

n∑
j=1

wijρi (zj ∧ vj) +

n∑
j=1

wijρi (zj ∨ vj)

=
n∑
j=1

wijρi (vj) +

n∑
j=1

wijρi (zj) = φi (v) + φi (z) ,

proving that φi is modular and, in particular, supermodular. Finally, consider h ∈
R\ {0}. Since ρi is strictly decreasing on R− and strictly increasing on R+, we have

that

φi (he) =
n∑
j=1

wijρi (h) = ρi (h) > ρi (0) =
n∑
j=1

wijρi (0) = φi (0) .

Since i was arbitrarily chosen, it follows that φ = (φi)
n
i=1 ∈ Φ∗R. By Lemma 1, we have

that φ is robust, that is, φ ∈ ΦR. By construction, φ is additively separable, it follows

that φ ∈ ΦA, proving the statement.

(ii) implies (i). It is trivial. �

Proof of Proposition 3. We omit the proof of point 2 which follows from well known
facts.53 Recall that for each i ∈ N

φλi (z) =
n∑
j=1

wijρi (zj) ∀z ∈ Rn

where λ ∈ R\ {0} and ρi : R → R+ is defined by ρi (s) = eλs − λs for all s ∈ R. It is
easy to see that ρi satisfies the properties of point (iii) of Proposition 2 for all i ∈ N .
This implies that φ ∈ ΦA ⊆ ΦR. Since ρ′′i > 0 for all i ∈ N , ρi is strictly convex for all
i ∈ N . By the same techniques of the second part of the proof of Lemma 1, this yields
that φ has strictly increasing shifts. By Proposition 12, it follows that Tφ = T φ = T λ

is single-valued and is a robust opinion aggregator. We are only left to compute it.

Since 0 is the unique minimizer and ρi is convex, ρ′i,+ (c) < 0 < ρ′i,− (d) for all c, d ∈ R such that

c < 0 < d. By the Mean Value Theorem for convex functions, the desired monotonicity properties

follow.
53The result for λ̂ =∞ is also known as Laplace’s method (see, e.g., [21, Theorem 4.1]). The case

for λ̂ = −∞ is instead obtained from the previous one and by observing that λxj = −λ (−xj) and
λ→ −∞ yields −λ→∞. The case of λ̂ = 0 is a standard result in risk theory.
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1. Fix i ∈ N . Consider x ∈ B. Since the function c 7→ φλi (x− ce) is strictly convex
and differentiable. We compute the first order conditions where c? is the optimal value.

−
n∑
j=1

wij [λ exp (λ (xj − c?))− λ] = 0 =⇒
n∑
j=1

wij [exp (λ (xj − c?))− 1] = 0 =⇒

exp (−λc?)
n∑
j=1

wij exp (λxj) = 1 =⇒
n∑
j=1

wij exp (λxj) = exp (λc?)

=⇒ c? =
1

λ
ln

(
n∑
j=1

wij exp (λxj)

)
,

proving the statement.

3. In order to prove this point, we need to introduce two continuous operators which

will be useful. The first one is S : Rn → Rn++ defined by Si (x) = exp (λxi) for all i ∈ N
and for all x ∈ Rn. The second one is Z : Rn++ → Rn defined by Zi (x) = 1

λ
ln (xi) for

all i ∈ N and for all x ∈ Rn++. Clearly, we have that Z is the inverse of S. Define

T̂ : Rn → Rn by T̂ (x) = Wx for all x ∈ Rn. We next show that(
T λ
)t

= S−1T̂ tS ∀t ∈ N. (47)

By definition of T λ, if t = 1, then T λ (x) = S−1 (WS (x)) for all x ∈ Rn, yielding (47).
Next, assume that (47) holds for t. We have that(

T λ
)t+1

= T λ
(
T λ
)t

= S−1T̂ SS−1T̂ tS = S−1T̂ t+1S,

proving that (47) holds for t+ 1. By induction, (47) follows. Consider x ∈ B. By (12),
it follows that

lim
t
T̂ t (S (x)) = lim

t
W tS (x) =

(
n∑
i=1

si exp (λxi)

)
e ∈ Rn++.

By (47) and since S−1 is continuous, we have that

lim
t

(
T λ
)t

(x) =

(
1

λ
ln

(
n∑
i=1

si exp (λxi)

))
e = T̄ λ (x) .

Since x was arbitrarily chosen, subpoint a follows. Subpoint b follows from standard

computations. �

Proof of Proposition 5. Before starting, we make few observations about strong con-
vexity (see, e.g., [75, p. 268]). Since each ρi is strongly convex and twice continuously

differentiable, we have that for each i ∈ N there exists αi > 0 such that ρ′′i (s) ≥ αi for

all s ∈ R. Moreover, we have that for each i ∈ N

(ρ′i (s1)− ρ′i (s2)) (s1 − s2) ≥ αi (s1 − s2)2 ∀s1, s2 ∈ R. (48)
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Finally, since each ρi is twice continuously differentiable and I is compact, for each

i ∈ N we have that there exists Li > 0 such that

|ρ′i (s1)− ρ′i (s2)| ≤ Li |s1 − s2| ∀s1, s2 ∈ [min I −max I,max I −min I] . (49)

Recall that φi : Rn → R+ is defined by φi (z) =
∑n

j=1wijρi (zj) for all z ∈ Rn and for
all i ∈ N . By assumption, φ ∈ ΦA ⊆ ΦR. Since ρ′′i ≥ αi > 0, this implies that ρi is

strictly convex for all i ∈ N . By the same techniques of the second part of the proof of
Lemma 1, this yields that φ has strictly increasing shifts. By Proposition 12, we have

that Tφ = T φ is single-valued and a robust opinion aggregator from B to B. Moreover,

T φi (x) is the unique solution of

min
c∈R

φi (x− ce) = min
c∈I

φi (x− ce) ∀i ∈ N,∀x ∈ B. (50)

Fix i ∈ N . Since ρi is differentiable and convex, so is the map c 7→ φi (x− ce) for all
x ∈ B. The solution of (50) is then given by the first order condition

n∑
j=1

wijρ
′
i

(
xj − T φi (x)

)
= 0 ∀x ∈ B.

Consider x ∈ B, h > 0, and l ∈ N such that x+ hel ∈ B. We have that
n∑
j=1

wijρ
′
i

(
xj − T φi (x)

)
= 0 and

n∑
j=1

wijρ
′
i

(
xj + helj − T

φ
i

(
x+ hel

))
= 0. (51)

Note that if wil = 0, then
∑n

j=1wijρ
′
i

(
xj + helj − c

)
=
∑n

j=1wijρ
′
i (xj − c) for all c ∈ R,

proving that T φi
(
x+ hel

)
= T φi (x) and that l does not strongly influence i. Next,

assume that wil > 0. By (49), (51), and (48) and since T φ is monotone and h > 0, we

can conclude that

Li

(
T φi
(
x+ hel

)
− T φi (x)

)
≥

n∑
j=1

wijρ
′
i

(
xj + helj − T

φ
i (x)

)
−

n∑
j=1

wijρ
′
i

(
xj + helj − T

φ
i

(
x+ hel

))
=

n∑
j=1

wijρ
′
i

(
xj + helj − T

φ
i (x)

)
−

n∑
j=1

wijρ
′
i

(
xj − T φi (x)

)
= wil

[
ρ′i

(
xl + h− T φi (x)

)
− ρ′i

(
xl − T φi (x)

)]
≥ wilαih,

proving that T φi
(
x+ hel

)
− T φi (x) ≥ εilh where εil = L−1

i wilαi. Since x and h were

arbitrarily chosen, we have that l strongly influences i. �
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B Appendix: Convergence

Before starting, we introduce some notation which will prove useful later on. Given

ε ∈ (0, 1], we denote by Wε,k the subset of stochastic matrices W ∈ W such that the

k-th column has all the entries greater than or equal to ε, that is, wik ≥ ε for all i ∈ N .
Let Wε = ∪k∈NWε,k.54 Given a functional, f : B → R, creating a small abuse of
terminology with the definitions of Section 2, we say that f is:

1. normalized if and only if f (ke) = k for all k ∈ I;

2. monotone if and only if x ≥ y implies f (x) ≥ f (y);

3. translation invariant if and only if f (x+ ke) = f (x) + k for all x ∈ B and for

all k ∈ R such that x+ ke ∈ B.

Lemma 8 If T is a robust opinion aggregator, then T t is nonexpansive (i.e., Lipschitz
continuous of order 1) for all t ∈ N. In particular, T is nonexpansive.

Proof. Since T is a robust opinion aggregator, Ti is normalized, monotone, and trans-
lation invariant for all i ∈ N . By [22, Theorem 4], it follows that Ti is a niveloid for

all i ∈ N . By [22, p. 346], it follows that |Ti (x)− Ti (y)| ≤ ‖x− y‖∞ for all x, y ∈ B
and for all i ∈ N . This implies that

‖T (x)− T (y)‖∞ = max
i∈N
|Ti (x)− Ti (y)| ≤ ‖x− y‖∞ ∀x, y ∈ B,

proving that T is nonexpansive.

By induction, we next show that T t is nonexpansive for all t ∈ N. Since we have
shown that T is nonexpansive, T t is nonexpansive for t = 1, proving the initial step.

By the induction hypothesis, assume that T t is nonexpansive, we have that for each

x, y ∈ B∥∥T t+1 (x)− T t+1 (y)
∥∥
∞ =

∥∥T (T t (x)
)
− T

(
T t (y)

)∥∥
∞ ≤

∥∥T t (x)− T t (y)
∥∥
∞ ≤ ‖x− y‖ ,

proving the inductive step. The statement follows by induction. �

Given an opinion aggregator T and x ∈ B, in what follows we first study the

limit of the time averages of {T t (x)}t∈N, that is, the Cesaro limit of {T t (x)}t∈N. The
next ancillary lemma (proved in the Online Appendix) highlights the properties of the

limiting operator T̄ , whenever it exists. Theorem 5 below provides a suffi cient condition

for existence: nonexpansivity.

54The matrices in
⋃

ε∈(0,1]

Wε are also said to be Markov’s matrices or that they satisfy “Doeblin’s

condition”(see, respectively, Seneta [80, Definition 4.7] and Stroock [81, p. 32]).
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Lemma 9 Let T be an opinion aggregator. If T is such that

C − lim
t
T t (x) exists ∀x ∈ B,

then T̄ : B → B, defined by T̄ (x) = C − limt T
t (x) for all x ∈ B, is well defined and

T̄ ◦ T = T̄ . Moreover,

1. If T is nonexpansive, so is T̄ . In particular, T̄ is continuous.

2. If T is normalized and monotone, so is T̄ .

3. If T is robust, so is T̄ .

4. If T is constant affi ne, so is T̄ .

5. If T is odd, so is T̄ , provided I is a symmetric interval, that is, k ∈ I if and only
if −k ∈ I.

The next result proves that the sequences of updates of a nonexpansive opinion

aggregator converge a la Cesaro, provided B is compact. This in turn will yield the

same result for robust opinion aggregators (proof of Theorem 2 below) whether B is

bounded or not.

Theorem 5 Let T be an opinion aggregator. If B is compact and T is nonexpansive,

then

C − lim
t
T t (x) exists ∀x ∈ B. (52)

Moreover, if T̄ : B → B is defined by

T̄ (x) = C − lim
t
T t (x) ∀x ∈ B,

then T̄ is nonexpansive and such that T̄ ◦ T = T̄ as well as

lim
τ

(
sup
x∈B

∥∥∥∥∥1

τ

τ∑
t=1

T t (x)− T̄ (x)

∥∥∥∥∥
∞

)
= 0. (53)

Proof. By the same inductive argument contained in the proof of Lemma 8, we have
that for each t ∈ N the maps T t : B → B are nonexpansive. Consider the space of

continuous functions over B: C (B). We endow this space with the supnorm. With

a small abuse of notation, we will denote by ‖ ‖∞ also the supnorm of C (B) where

‖f‖∞ = supx∈B |f (x)| for all f ∈ C (B). Define S : C (B)→ C (B) by

S (f) = f ◦ T ∀f ∈ C (B) .
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Note that S is a positive linear selfmap on C (B). Moreover, St (f) = f ◦ T t for all
f ∈ C (B) and for all t ∈ N. Fix f ∈ C (B). Since B is compact and f is continuous,

it follows that f is uniformly continuous (see, e.g., [3, Corollary 3.31]), that is, for each

ε > 0 there exists δ > 0 such that

x, y ∈ B and ‖x− y‖∞ < δ =⇒ |f (x)− f (y)| < ε.

Since T t is nonexpansive for all t ∈ N, this implies that for each t ∈ N and x, y ∈ B

‖x− y‖∞ < δ =⇒
∥∥T t (x)− T t (y)

∥∥
∞ < δ =⇒

∣∣f (T t (x)
)
− f

(
T t (y)

)∣∣ < ε.

We have that {St (f)}t∈N is a sequence of equicontinuous functions. Moreover, |St (f) (y)| =
|f (T t (y))| ≤ ‖f‖∞ for all t ∈ N and for all y ∈ B. It follows that ‖St (f)‖∞ ≤ ‖f‖∞
for all t ∈ N, that is {St (f)}t∈N is bounded. By setting t = 1 and since f was arbi-

trarily chosen, it also follows that S is a bounded operator. We can conclude that S

is a positive equicontinuous operator as defined in [77]. For each τ ∈ N also define the
operator Sτ : C (B)→ C (B) by

Sτ =
1

τ

τ∑
t=1

St.

By the Ergodic Theorem in Rosenblatt [77, Theorem 1 p. 134], it follows that Sτ (f)
‖ ‖∞→

S̄ (f) for all f ∈ C (B) where S̄ : C (B) → C (B). It is immediate to see that S̄ is

linear and bounded as well (see, e.g., [3, Corollary 6.18]).

Next, for each i ∈ N define fi : B → R by fi (x) = xi for all x ∈ B. Note that fi
is affi ne and fi ∈ C (B) for all i ∈ N . By the previous part of the proof, we have that
Sτ (fi)

‖ ‖∞→ S̄ (fi) for all i ∈ N .
Define T̄ : B → B by T̄i (x) = S̄ (fi) (x) for all i ∈ N and for all x ∈ B. Note that

T̄ is continuous.55 By definition of S̄ and T̄ , we have that for each i ∈ N for each ε > 0

there exists τi (ε) ∈ N such that τ ≥ τi (ε) yields that

sup
x∈B

∣∣∣∣∣fi
(

1

τ

τ∑
t=1

T t (x)

)
− T̄i (x)

∣∣∣∣∣ = sup
x∈B

∣∣∣∣∣1τ
τ∑
t=1

fi
(
T t (x)

)
− S̄ (fi) (x)

∣∣∣∣∣
= sup

x∈B

∣∣∣∣∣1τ
τ∑
t=1

St (fi) (x)− S̄ (fi) (x)

∣∣∣∣∣
= sup

x∈B

∣∣Sτ (fi) (x)− S̄ (fi) (x)
∣∣

=
∥∥Sτ (fi)− S̄ (fi)

∥∥
∞ < ε.

55In what follows, inter alia, we will show that T̄ coincides with the operator T̄ defined in (14),

justifying the choice of notation.
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For each ε > 0 define τ (ε) = maxi∈N τi (ε). In particular, we have that for each ε > 0

and for each τ ≥ τ (ε)

ε > sup
i∈N

sup
x∈B

∣∣∣∣∣fi
(

1

τ

τ∑
t=1

T t (x)

)
− T̄i (x)

∣∣∣∣∣ = sup
x∈B

sup
i∈N

∣∣∣∣∣fi
(

1

τ

τ∑
t=1

T t (x)

)
− T̄i (x)

∣∣∣∣∣
= sup

x∈B

∥∥∥∥∥1

τ

τ∑
t=1

T t (x)− T̄ (x)

∥∥∥∥∥
∞

,

proving that T̄ (x) = C − limt T
t (x) for all x ∈ B, that is, (52) as well as (53) holds.

By Lemma 9, T̄ is well defined, nonexpansive, and such that T̄ ◦ T = T̄ . �

Remark 5 Theorem 5 could be seen as a version of the classic nonlinear ergodic theo-
rem of Baillon (see Aubin and Ekeland [5, p. 253] as well as Krengel [57, Section 9.3]).

In this literature, the assumption of finite dimensionality does not seem to play a major

role, while the properties of the norm do (e.g., differentiability, strict convexity, etc). In

fact, on the one hand, our selfmap is nonexpansive when B is endowed with the ‖ ‖∞
norm. On the other hand, in the original version of Baillon’s result, T must be nonex-

pansive with respect to the Euclidean norm ‖ ‖2.
56 This is not a mere technical choice,

but rather a fundamental one driven by our opinion aggregators and their properties.

For example, when T is as in Example 4, T is not nonexpansive with respect to ‖ ‖2

while it is so for ‖ ‖∞. At the same time, generalizations of Baillon’s Theorem allow

for more general norms (e.g., ‖ ‖p with p ∈ (1,∞)), but to the best of our knowledge

the only one that encompasses the case ‖ ‖∞ is the one contained in Baillon, Bruck,

and Reich [7, Theorem 3.2 and Corollary 3.1]. Compared to our version, to the best of

our knowledge, the part that would be missing is the one contained in (53). Observe

that (53), not only guarantees uniform Cesaro convergence of {T t (x)}t∈N (present in
[7] too), but also the independence from the initial condition of the rate of such con-

vergence (cf. also point (iii) of Proposition 4). This latter property might play an

important role in applications and is missing in the aforementioned works. N

Proof of Theorem 2. Consider x ∈ B. By point 4 of Lemma 6, it follows that there
exists a compact subinterval Ĩ ⊆ I with nonempty interior such that x ∈ Ĩn ⊆ B.

Define B̃ = Ĩn. Consider the restriction T̃ = T|B̃ . By point 4 of Lemma 6, T̃ : B̃ → B̃

is a robust opinion aggregator and, in particular, nonexpansive. By Theorem 5 and

since B̃ is compact, we have that

lim
τ

1

τ

τ∑
t=1

T̃ t (x) exists.

56Recall that ‖x‖2 =
√∑n

i=1 x
2
i .
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Since T̃ t (x) = T t (x) for all t ∈ N and x was arbitrarily chosen, (13) follows. By

Lemma 9, if we define T̄ as in (14), T̄ is a well defined robust opinion aggregator such

that T̄ ◦ T = T̄ . Finally, let B̂ be a bounded subset of B. Note that there exists a

compact interval with nonempty interior Ĩ ⊆ I such that B̂ ⊆ B̃ where B̃ = Ĩn. Define

T̃ as before. By (53) applied to T̃ and since
_

T̃ (x) = T̄ (x) and T̃ t (x) = T t (x) for all

t ∈ N and for all x ∈ B̃, we have that

sup
x∈B̂

∥∥∥∥∥1

τ

τ∑
t=1

T t (x)− T̄ (x)

∥∥∥∥∥
∞

≤ sup
x∈B̃

∥∥∥∥∥1

τ

τ∑
t=1

T t (x)− T̄ (x)

∥∥∥∥∥
∞

= sup
x∈B̃

∥∥∥∥∥1

τ

τ∑
t=1

T̃ t (x)−
_

T̃ (x)

∥∥∥∥∥
∞

→ 0,

proving (15). �

Up to now, we proved that robust opinion aggregators generate dynamics which

Cesaro convergence. The next result is going to prove useful in transforming the

convergence of the updates’time averages into standard convergence.57

Theorem 6 (Lorentz) Let {xt}t∈N ⊆ Rn be a bounded sequence. The following state-
ments are equivalent:

(i) There exists x̄ ∈ Rn such that

∀ε > 0 ∃τ̄ ∈ N ∀m ∈ N s.t.
∥∥∥∥∥1

τ

τ∑
t=1

xm+t − x̄
∥∥∥∥∥
∞

< ε ∀τ ≥ τ̄ (54)

and limt ‖xt+1 − xt‖∞ = 0;

(ii) limt x
t = x̄.

Proof of Proposition 4. By Theorem 2 and since T is robust, we have that if B̂ is

a bounded subset of B, then

lim
τ

(
sup
x∈B̂

∥∥∥∥∥1

τ

τ∑
t=1

T t (x)− T̄ (x)

∥∥∥∥∥
∞

)
= 0 (55)

where T̄ : B → B is a robust opinion aggregator such that T̄ ◦T = T̄ . Since T̄ (T (x)) =

T̄ (x) for all x ∈ B, by induction, we have that T̄ (Tm (x)) = T̄ (x) for all m ∈ N and
for all x ∈ B.
57Theorem 6 was proved by Lorentz [61]. His result is stated for a sequence {xt}t∈N in R where

each xt is the partial sum up to t of another sequence {as}s∈N. In other words, Lorentz’s result is
a Tauberian theorem for series. Nonetheless, the techniques used to prove Theorem 6 are the same

elementary ones discovered by Lorentz with the extra caveat of setting a1 = x1 and as = xs − xs−1

for all s ≥ 2.
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(i) implies (ii). Fix x ∈ B. Define the sequence xt = T t (x) for all t ∈ N. By point
3 of Lemma 6, we have that {xt}t∈N is bounded. Set B̂ = {xt}t∈N. Note that for each
τ ∈ N and for each m ∈ N

1

τ

τ∑
t=1

xm+t =
1

τ

τ∑
t=1

Tm+t (x) =
1

τ

τ∑
t=1

T t (Tm (x)) .

Since (55) holds, if we define x̄ = T̄ (x), then we have that for each m ∈ N

lim
τ

1

τ

τ∑
t=1

xm+t = lim
τ

1

τ

τ∑
t=1

T t (Tm (x)) = T̄ (Tm (x)) = T̄ (x) = x̄.

It follows that

sup
m∈N

∥∥∥∥∥1

τ

τ∑
t=1

xm+t − x̄
∥∥∥∥∥
∞

= sup
m∈N

∥∥∥∥∥1

τ

τ∑
t=1

T t (Tm (x))− T̄ (Tm (x))

∥∥∥∥∥
∞

≤ sup
x∈B̂

∥∥∥∥∥1

τ

τ∑
t=1

T t (x)− T̄ (x)

∥∥∥∥∥
∞

.

Since (55) holds and T is asymptotically regular, we have that {xt}t∈N satisfies (54) in
(i) of Theorem 6. By Theorem 6, we have that limt T

t (x) = limt x
t exists. Since x was

arbitrarily chosen, the implication follows.

(i) implies (ii). Fix x ∈ B. Define xt = T t (x) for all t ∈ N. Since T is convergent,
we have that {xt}t∈N converges and, in particular, is bounded. By Theorem 6, we have
that limt ‖T t+1 (x)− T t (x)‖∞ = limt ‖xt+1 − xt‖∞ = 0. Since x was arbitrarily chosen,

the implication follows.

Next, we assume that, in addition, T is also constant affi ne.

(ii) implies (iii). By point 2 of Lemma 6 and since T is a robust and constant

affi ne opinion aggregator, it admits a unique extension S : Rn → Rn which is also
robust and constant affi ne. By induction, St is robust and constant affi ne for all t ∈ N.
Moreover, by Theorem 2 and Lemma 9, we have that the limiting operator S̄ has the

same properties and, in particular, it is continuous. Observe also that if the domain is

Rn, then constant affi nity yields positive homogeneity. Define Ĩ = [−1, 1] and B̃ = Ĩn.

Let S̃ be the restriction of S to B̃. Consider the space C
(
B̃,Rn

)
: the space of

continuous functions with B̃ as domain and Rn as target space. The space C
(
B̃,Rn

)
is a Banach space once endowed with the supnorm: ‖f‖∗ = supx∈B̃ ‖f (x)‖∞ for all

f ∈ C
(
B̃,Rn

)
. Note that

{
S̃t
}
t∈N
⊆ C

(
B̃,Rn

)
. Since T is convergent, so is the

extension S and we have that limt S̃
t (x) = limt S

t (x) = S̄ (x) for all x ∈ B̃.58 This
58Observe that for each x ∈ Rn there exists λ > 0 and k ∈ R such that x̃ = λx + ke ∈ B. This

implies that

lim
t
St (x) = lim

t
St
(

1

λ
x̃− k

λ
e

)
= lim

t

1

λ
St (x̃)− k

λ
e = lim

t

1

λ
T t (x̃)− k

λ
e,
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implies that
{
S̃t (x)

}
t∈N
⊆ B̃ ⊆ Rn is bounded for all x ∈ B̃. Since S̄ : Rn → Rn

is continuous, so is its restriction to B̃ which we still denote by S̄. By Lemma 8

and since S̃ is a robust opinion aggregator, it follows that S̃t is nonexpansive for all

t ∈ N. By [29, pp. 135—136], this implies that the sequence
{
S̃t
}
t∈N
⊆ C

(
B̃,Rn

)
is equicontinuous. By contradiction, assume that limt

∥∥∥S̃t − S̄∥∥∥
∗
6= 0. This would

imply that there exists ε > 0 and a subsequence
{
S̃tm
}
m∈N

⊆
{
S̃t
}
t∈N

such that∥∥∥S̃tm − S̄∥∥∥
∗
≥ ε for all m ∈ N. By Arzela-Ascoli Theorem (see, e.g., [29, Theorem

7.5.7]) and since
{
S̃tm
}
m∈N

is equicontinuous and
{
S̃tm (x)

}
m∈N
⊆ Rn is bounded for

all x ∈ B̃, this would imply that there exists a subsequence
{
S̃tm(l)

}
l∈N

and a function

Ŝ ∈ C
(
B̃,Rn

)
such that liml

∥∥∥S̃tm(l) − Ŝ
∥∥∥
∗

= 0. By definition of ‖ ‖∗, it would follow
that S̄ (x) = liml S̃

tm(l) (x) = Ŝ (x) for all x ∈ B̃, that is, Ŝ = S̄ on B̃. This would

imply that 0 < ε ≤ liml

∥∥∥S̃tm(l) − S̄
∥∥∥
∗

= 0, a contradiction. We can conclude that

lim
t

(
sup
x∈B̃

∥∥∥S̃t (x)− S̄ (x)
∥∥∥
∞

)
= lim

t

∥∥∥S̃t − S̄∥∥∥
∗

= 0.

By point 4 of Lemma 6, recall that S̃t (x) = St (x) for all x ∈ B̃ and for all t ∈ N. Note
also that S̄ (x) ∈ B̃ for all x ∈ B̃. Consequently, define {ct}t∈N ⊆ [0,∞) by

ct = sup
x∈B̃

∥∥∥S̃t (x)− S̄ (x)
∥∥∥
∞

= sup
x∈B̃

∥∥St (x)− S̄ (x)
∥∥
∞ ∀t ∈ N. (56)

By the previous part of the proof, note that ct → 0. Consider y ∈ Rn\ {0} and t ∈ N.
By (56) and since y/ ‖y‖∞ ∈ B̃ and S̄ and St are positively homogeneous for all t ∈ N,
it follows that

1

‖y‖∞

∥∥St (y)− S̄ (y)
∥∥
∞ =

∥∥∥∥ 1

‖y‖∞
St (y)− 1

‖y‖∞
S̄ (y)

∥∥∥∥
∞

=

∥∥∥∥St( y

‖y‖∞

)
− S̄

(
y

‖y‖∞

)∥∥∥∥
∞
≤ ct.

Since y was arbitrarily chosen in Rn\ {0} and St (0) = 0 = S̄ (0) for all t ∈ N, we have
that ∥∥St (y)− S̄ (y)

∥∥
∞ ≤ ct ‖y‖∞ ∀t ∈ N,∀y ∈ Rn.

Since S is the extension of T , we can conclude that∥∥T̄ (x)− T t (x)
∥∥
∞ =

∥∥S̄ (x)− St (x)
∥∥
∞ ≤ ct ‖x‖∞ ∀t ∈ N,∀x ∈ B,

proving (17).

(iii) implies (ii). Since T satisfies (17), we clearly have that T is convergent. �
yielding that limt S

t (x) exists.
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Remark 6 To the best of our knowledge, the use of Lorentz’s Theorem to transform

Cesaro convergence of the orbits of T into standard convergence seems to have first

appeared in Bruck [17]. Compared to our result, he assumes that T is nonexpansive

with respect to ‖ ‖2 (cf. Remark 5) and he does not elaborate on the rate of con-

vergence. This latter feature is mainly due to the property of constant affi nity of T .

Finally, proving that asymptotic regularity is equivalent to convergence can also be

obtained with the techniques of Browder and Petryshyn [16, Theorem 2]. N

We next move to the proof of our main result on standard convergence: Theorem

3. In order to do so, we will show how the property of having a nontrivial network (see

Definition 12) is equivalent to T having a useful decomposition.

Proposition 13 Let T be a robust opinion aggregator. The following statements are
equivalent:

(i) T has a nontrivial network;

(ii) There exist W ∈ W and ε ∈ (0, 1) such that

T (x) = εWx+ (1− ε)S (x) ∀x ∈ B (57)

where S is a robust opinion aggregator.

Moreover, we have that W in (ii) can be chosen to be such that A (W ) = A (T ).

Proof. (i) implies (ii). For each i, j ∈ N if j strongly influences i, consider εij ∈ (0, 1)

as in (18) otherwise let εij = 1/2. Define W̃ to be such that w̃ij = aijεij for all i, j ∈ N
where aij is the ij-th entry of A (T ). Since each row of A (T ) is not null, for each i ∈ N
there exists j ∈ N such that aij = 1 and, in particular, w̃ij > 0. This implies that∑n

l=1 w̃il > 0 for all i ∈ N . Define also ε = min {mini∈N
∑n

l=1 w̃il, 1/2} ∈ (0, 1). Define

W ∈ W to be such that wij = w̃ij/
∑n

l=1 w̃il for all i, j ∈ N . Clearly, we have that for
each i, j ∈ N

wij > 0 ⇐⇒ w̃ij > 0 ⇐⇒ aij = 1. (58)

This yields that A (W ) = A (T ). Next, consider x, y ∈ B such that x ≥ y. Define

y0 = y. For each t ∈ {1, ..., n− 1} define yt ∈ B to be such that yti = xi for all i ≤ t

and yti = yi for all i ≥ t + 1. Define yn = x. Note that x = yn ≥ ...y1 ≥ y0 = y. It
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follows that

Ti (x)− Ti (y) =

n∑
j=1

[
Ti
(
yj
)
− Ti

(
yj−1

)]
≥

n∑
j=1

aijεij
(
yjj − y

j−1
j

)
=

n∑
j=1

w̃ij (xj − yj) =

(
n∑
l=1

w̃il

)(
n∑
j=1

w̃ij∑n
l=1 w̃il

(xj − yj)
)

=

(
n∑
l=1

w̃il

)(
n∑
j=1

wij (xj − yj)
)

≥ ε
n∑
j=1

wij (xj − yj) ∀i ∈ N.

It follows that

x ≥ y =⇒ T (x)− T (y) ≥ εW (x− y) = ε (Wx−Wy) . (59)

Define S : B → Rn by

S (x) =
T (x)− εWx

1− ε ∀x ∈ B. (60)

By definition of S and since W ∈ W and T is normalized and translation invariant, it

is immediate to see that S (ke) = ke for all k ∈ I and that S is translation invariant.
Since (59) holds and ε ∈ (0, 1), routine computations yield that S is monotone. Since S

is normalized and monotone, then S is a selfmap, that is, S (B) ⊆ B and, in particular,

S is a robust opinion aggregator. By rearranging (60), (57) follows.

(ii) implies (i). Consider i ∈ N . Since W is a stochastic matrix, there exists j ∈ N
such that wij > 0. Let x ∈ B and h > 0 be such that x + hej ∈ B. By (57) and since
S is monotone, we have that

Ti
(
x+ hej

)
− Ti (x) = εwijh+ (1− ε)Si

(
x+ hej

)
− (1− ε)Si (x)

≥ εwijh,

proving that j strongly influences i and aij = 1. It follows that the i-th row of A (T ) is

not null. Since i was arbitrarily chosen, the statement follows.

Finally, by (58), note that W in (ii) can be chosen to be such that A (W ) = A (T ).

�

Our standard convergence theorem (Theorem 3) builds on two assumptions: a)

the adjacency matrix A (T ) has no null row and b) each closed group of (N,A (T ))

is aperiodic. On the one hand, the first assumption allows for a decomposition of T

into a convex linear combination of a linear opinion aggregator with matrix W and a
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robust opinion aggregator S (cf. Proposition 13). We next show that ifW takes a very

particular shape, which we dub partition matrix, then T is asymptotically regular and,

in particular, convergent (see Lemma 10 and Proposition 14). On the other hand, the

second assumption yields that W can be always chosen such that W t is eventually a

partition matrix. This will prove Theorem 3.

Definition 20 Let J : B → B be an opinion aggregator. We say that J is a partition

operator/matrix if and only if there exists a family of disjoint nonempty subsets {Nl}ml=1

of N such that ∪ml=1Nl = N and for each l ∈ {1, ...,m} there exists kl ∈ Nl such that

Ji (x) = xkl for all i ∈ Nl.

Note that a partition operator is linear. With a small abuse of notation, we will

denote the matrix and the operator by the same symbol. In particular, Jkl (x) = xkl
for all l ∈ {1, ...,m} and for all x ∈ B.

Lemma 10 Let T be a robust opinion aggregator such that T = εJ + (1− ε)S where
ε ∈ (0, 1), J is a partition operator, and S : B → B is a robust opinion aggregator.

Let A be a nonempty subset of B such that there exists k > 0 satisfying

‖T (x)− x‖∞ < k ∀x ∈ A. (61)

If there exists δ > 0 such that for each t ∈ N0 there exists x ∈ A satisfying∥∥T t+1 (x)− T t (x)
∥∥
∞ ≥ δ, (62)

then {T t (x) : x ∈ A and t ∈ N0} is unbounded.

The previous lemma, proved in the Online Appendix, and next proposition are

related to the work of Edelstein and O’Brien [30, Lemma 1 and Theorem 1]. In Remark

9, before proving Lemma 10, we elaborate on the differences.

Proposition 14 Let T be a robust opinion aggregator. If T is such that T = εJ +

(1− ε)S where ε ∈ (0, 1), J is a partition operator, and S is a robust opinion aggre-

gator, then T is asymptotically regular and, in particular, convergent.

Proof. Fix x ∈ B. In Lemma 10, set A = {x}. Clearly, there exists k > 0 that

satisfies ‖T (x)− x‖∞ < k. By point 3 of Lemma 6 and since T is a robust opinion

aggregator, it follows that {T t (x)}t∈N0
is bounded. By Lemma 10, we have that for

each δ > 0 there exists t̄ ∈ N such that∥∥∥T t̄+1 (x)− T t̄ (x)
∥∥∥
∞
< δ. (63)
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Since T is nonexpansive, {‖T t+1 (x)− T t (x)‖∞}t∈N0
is a decreasing sequence. By (63)

and since {‖T t+1 (x)− T t (x)‖∞}t∈N0
is a decreasing sequence, we have that for each

δ > 0 there exists t̄ ∈ N such that ‖T t+1 (x)− T t (x)‖∞ < δ for all t ≥ t̄, that is,

limt ‖T t+1 (x)− T t (x)‖∞ = 0. Since x was arbitrarily chosen, it follows that T is

asymptotically regular. By Proposition 4, this implies that T is convergent. �

Next, we show that if T is strongly aperiodic and has a nontrivial network, then

there exists t̄ ∈ N such that T t̄ = γJ+(1− γ)S (resp., T t̄+1 = γJ+(1− γ)S) where J

is a partition operator, γ ∈ (0, 1), and S is a robust opinion aggregator. The operator

J only depends on A (T ) while γ and S both depend on t̄ (resp., t̄ + 1). In turn,

Proposition 14 yields that T t̄ and T t̄+1 are convergent. This will be suffi cient to imply

the convergence of T .

Lemma 11 Let T be a robust opinion aggregator. If T is strongly aperiodic and has a
nontrivial network, then there exists t̄ ∈ N such that T t̄ and T t̄+1 are convergent.

Proof. By Proposition 13 and since T has a nontrivial network, we have that there
exists W ∈ W, ε ∈ (0, 1), and a robust opinion aggregator S : B → B such that

T (x) = εWx+ (1− ε)S (x) ∀x ∈ B. (64)

Moreover, W can be chosen to be such that A (W ) = A (T ). By [42, Theorems 2

and 3] and since T is strongly aperiodic, this implies that there exist t̄ ∈ N and a

partition {Nl}ml=1 of N such that for each l ∈ {1, ...,m} there exists kl ∈ Nl satisfying

w
(t̄)
ikl
, w

(t̄+1)
ikl

> 0 for all i ∈ Nl.59 It follows that

W t̄ = δt̄J + (1− δt̄) W̃t̄ and W
t̄+1 = δt̄+1J + (1− δt̄+1) W̃t̄+1 (65)

where δt̄, δt̄+1 ∈ (0, 1), J is a partition operator,60 and W̃t̄ as well as W̃t̄+1 are stochastic

matrices. By (64) and induction, we also have that

T t̄ (x) = εt̄W t̄x+
(

1− εt̄
)
S̃t̄ (x) ∀x ∈ B

and

T t̄+1 (x) = εt̄+1W t̄+1x+
(

1− εt̄+1
)
S̃t̄+1 (x) ∀x ∈ B

where S̃t̄ and S̃t̄+1 are robust opinion aggregators. By (65), it follows that

T t̄ = γt̄J + (1− γt̄) Ŝt̄ and T t̄+1 = γt̄+1J + (1− γt̄+1) Ŝt̄+1

59As usual, we denote by w(t̄)
ikl
(resp., w(t̄+1)

ikl
) the entry in the i-th row and kl-th column of the

matrix W t̄ (resp., W t̄+1).
60That is, Ji (x) = xkl for all i ∈ Nl and for all l ∈ {1, ...,m} where {Nl}

m
l=1 and {kl}

m
l=1 have been

defined above.
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where γt̄ = εt̄δt̄ (resp., γt̄+1 = εt̄+1δt̄+1) and Ŝt̄ (x) = εt̄(1−δt̄)
1−εt̄δt̄

W̃t̄x + 1−εt̄
1−εt̄δt̄

S̃t̄ (x) (resp.,

Ŝt̄+1 (x) =
εt̄+1(1−δt̄+1)
1−εt̄+1δt̄+1

W̃t̄x + 1−εt̄+1

1−εt̄+1δt̄+1
S̃t̄+1 (x)) for all x ∈ B. It follows that γt̄, γt̄+1 ∈

(0, 1) and Ŝt̄ as well as Ŝt̄+1 are robust opinion aggregators. By Proposition 14, this

implies that T t̄ and T t̄+1 are convergent. �

Proof of Theorem 3. We adopt the usual convention T 0 (x) = x for all x ∈ B. By
Lemma 11 and since T is strongly aperiodic and has a nontrivial network, there exists

t̄ ∈ N such that T t̄ and T t̄+1 are convergent. We next show that this implies that T

is convergent. Fix x ∈ B. Since T t̄ is convergent, we can conclude that limk T
kt̄ (x)

exists. Denote x̄ = limk T
kt̄ (x). Since T is continuous and so is T t̄, it is plain that

T t̄ (x̄) = x̄. This implies that

T t̄ (T s (x̄)) = T t̄+s (x̄) = T s+t̄ (x̄) = T s
(
T t̄ (x̄)

)
= T s (x̄) ∀s ∈ N0.

By induction on k, this yields that for each s ∈ N0

T (k+1)t̄ (T s (x̄)) = T kt̄
(
T t̄ (T s (x̄))

)
= T kt̄ (T s (x̄)) = T s (x̄) ∀k ∈ N.

In particular, by setting k = s, we obtain that for each s ∈ N

T s(t̄+1) (x̄) = T st̄ (T s (x̄)) = T s (x̄) . (66)

Since T t̄+1 is convergent, we have that lims T
s(t̄+1) (x̄) exists. By (66), this implies

that lims T
s (x̄) exists. Denote x̂ = lims T

s (x̄). Since T is continuous, it is plain that

T (x̂) = x̂. Since
{
T kt̄ (x̄)

}
k∈N ⊆ {T

s (x̄)}s∈N and T kt̄ (x̄) = x̄ for all k ∈ N, we have
that

x̄ = lim
k
T kt̄ (x̄) = lim

s
T s (x̄) = x̂ and T (x̂) = x̂. (67)

We can now prove that {T t (x)}t∈N converges too. By (67) and since T is nonexpansive,
we have that∥∥x̄− T t+1 (x)

∥∥
∞ =

∥∥T (x̄)− T
(
T t (x)

)∥∥
∞ ≤

∥∥x̄− T t (x)
∥∥
∞ ∀t ∈ N,

yielding that {‖x̄− T t (x)‖∞}t∈N is a decreasing sequence. Moreover, since x̄ = limk T
kt̄ (x),

we have that the subsequence
{∥∥x̄− T kt̄ (x)

∥∥
∞

}
k∈N ⊆ {‖x̄− T

t (x)‖∞}t∈N converges
to 0. This implies that limt T

t (x) = x̄ and, in particular, that T is convergent at x.

Since x was arbitrarily chosen, the statement follows. �

Remark 7 Most of our results on convergence rely on the notion of adjacency matrix
induced by T (cf. Definition 10). We are aware of three other notions of directed

graph/network associated to an operator T : Rn → Rn, coming from the mathematical
literature. They are due respectively to Gaubert and Gunawardena [40, p. 4943],
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Amghibech and Dellacherie [4], and Nussbaum [73].61 These three notions are too

weak to yield our convergence results. In fact, given any of these three notions, we

can provide examples of nonconvergent robust opinion aggregators T such that the

corresponding graph features each agent being connected to any other agent via a path

of length one (that is each ij-th entry is 1). N

Proof of Corollary 1. Since T is self-influential, it follows that each row of A (T ) is

not null, yielding that T has a nontrivial network. Moreover, since there is a simple

cycle of length 1 from i to i for all i ∈ N , each closed group is trivially aperiodic. By
Theorem 3, the statement follows.

Proof of Lemma 3. By Lemma 8 and since T is robust, T is nonexpansive and, in
particular, continuous. By Theorems 2 and 6 and since T is robust and convergent, we

have that

T̄ (x) = C − lim
t
T t (x) = lim

t
T t (x) ∀x ∈ B.

For ease of notation, for each x ∈ B define T̄ (x) = x̄. Since T is continuous, we

have that T (x̄) = T (limt T
t (x)) = limt T (T t (x)) = limt T

t+1 (x) = x̄, proving the

statement. �

Proof of Proposition 6. Before starting, observe that if T has the pairwise common
influencer property (resp., is strongly connected), then T has a nontrivial network. By

Proposition 13, there exist W ∈ W and ε ∈ (0, 1) such that

T (x) = εWx+ (1− ε)S (x) ∀x ∈ B (68)

where S : B → B is a robust opinion aggregator. Moreover, W can be chosen to be

such that A (W ) = A (T ) and so, in particular, W is scrambling (resp., irreducible).

Finally, by induction and (68), we have that if t ∈ N, then there exist γ ∈ (0, 1) and a

robust opinion aggregator S̃ : B → B (which both depend on t) such that

T t (x) = γW tx+ (1− γ) S̃ (x) ∀x ∈ B. (69)

a. Assume that T has the pairwise common influencer property. By contradiction,

assume that there exists x ∈ B\D such that T (x) = x. Define xi = minl∈N xl and

xj = maxl∈N xl. It follows that xj > xi and i 6= j. Since W is scrambling, there exists

k = k (i, j) ∈ N such that wik > 0 and wjk > 0. We have two cases:

61The notion of Nussbaum pertains homogeneous operators defined over Rn+. We consider the

natural corresponding notion for translation invariant operator which is obtained via the usual log-

exp transformation.
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1. xk < xj. It follows that

0 = ‖T (x)− x‖∞ ≥ |Tj (x)− xj| =
∣∣∣∣∣ε

n∑
l=1

wjlxl + (1− ε)Sj (x)− xj

∣∣∣∣∣
=

∣∣∣∣∣ε
n∑
l=1

wjl (xl − xj) + (1− ε) (Sj (x)− xj)
∣∣∣∣∣

= ε

n∑
l=1

wjl (xj − xl) + (1− ε) (xj − Sj (x)) ≥ εwjk (xj − xk) > 0,

a contradiction.

2. xk > xi. It follows that

0 = ‖T (x)− x‖∞ ≥ |Ti (x)− xi| =
∣∣∣∣∣ε

n∑
l=1

wilxl + (1− ε)Si (x)− xi

∣∣∣∣∣
=

∣∣∣∣∣ε
n∑
l=1

wil (xl − xi) + (1− ε) (Si (x)− xi)
∣∣∣∣∣

= ε
n∑
l=1

wil (xl − xi) + (1− ε) (Si (x)− xi) ≥ εwik (xk − xi) > 0,

a contradiction.

Case 1 and 2 prove that the only equilibria of T are the constant vectors in B,

proving the statement.

b. Assume that T has the uniform common influencer property. It follows that T

has the pairwise common influencer property. By point a, we have that T is a consensus

operator.

c. We start by making one simple observation. By induction, if t ∈ N, then the
equilibria of T are a subset of the ones of T t : B → B. By contradiction, assume that

there exists x ∈ B\D such that T (x) = x. Define xi = minl∈N xl and xj = maxl∈N xl.

Clearly, xj > xi. Since A (W ) = A (T ) and T is strongly connected, there exists t̄ ∈ N
such that w(t̄)

ij > 0. Since x ∈ E (T ), we have that T t̄ (x) = x. By (69), this implies

that

0 =
∥∥∥T t̄ (x)− x

∥∥∥
∞
≥
∣∣∣T t̄i (x)− xi

∣∣∣ =

∣∣∣∣∣γ
n∑
l=1

w
(t̄)
il xl + (1− γ) S̃i (x)− xi

∣∣∣∣∣
=

∣∣∣∣∣γ
n∑
l=1

w
(t̄)
il (xl − xi) + (1− γ)

(
S̃i (x)− xi

)∣∣∣∣∣
= γ

n∑
l=1

w
(t̄)
il (xl − xi) + (1− γ)

(
S̃i (x)− xi

)
≥ γw

(t̄)
ij (xj − xi) > 0,
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a contradiction. �

Our convergence results in Section 5.3.3 (Corollaries 2—4) can all be reconducted to

the following convergence result which generalizes one of the findings of DeGroot (see,

e.g., [26, Theorem 1]).

Theorem 7 Let T be a robust opinion aggregator. If there exists t̂ ∈ N such that

T t̂ has the uniform common influencer property, then T̄ (x) = limt T
t (x) ∈ D for all

x ∈ B. Moreover, there exists ε ∈ (0, 1) such that∥∥T̄ (x)− T t (x)
∥∥
∞ ≤ 2 (1− ε)b

t
t̂c ‖x‖∞ ∀t ∈ N, ∀x ∈ B. (70)

Proof. Before proving the main statement, we need to state and prove an ancillary
claim. We just introduce some notation. Given a sequence of stochastic matrices,

{Wl}l∈N ⊆ W, we denote by Πt+1
l=1Wl the backward product of the first t+ 1 elements,

that is, Πt+1
l=1Wl = Wt+1Πt

l=1Wl = Wt+1...W1 for all t ∈ N.
Claim: If {Wl}l∈N ⊆ Wε for some ε ∈ (0, 1), then for each t,m ∈ N such that m ≥ t∥∥(Πm

l=1Wl)x−
(
Πt
l=1Wl

)
x
∥∥
∞ ≤ 2 (1− ε)t ‖x‖∞ ∀x ∈ B.

Proof of the Claim. Recall that the product of stochastic matrices is a stochastic

matrix, thus Πt
l=1Wl ∈ W for all t ∈ N. Next, define V0 = {y ∈ Rn :

∑n
i=1 yi = 0}. By

[81, p. 28], note that for each y ∈ V0 and l ∈ N

yTWl ∈ V0 and
∥∥yTWl

∥∥
1
≤ (1− ε) ‖y‖1

where ‖y‖1 =
∑n

i=1 |yi|. By induction, this yields that∥∥yTΠt
l=1Wl

∥∥
1
≤ (1− ε)t ‖y‖1 ∀y ∈ V0. (71)

Finally, consider x ∈ B and m > t. By the definition of backward product, it follows

that (Πm
l=1Wl)x =

(
Πm
l=t+1Wl

)
((Πt

l=1Wl)x). Observe that(
Πm
l=t+1Wl

) ((
Πt
l=1Wl

)
x
)
−
(
Πt
l=1Wl

)
x =

((
Πm
l=t+1Wl

)
− I
) ((

Πt
l=1Wl

)
x
)

= Z (Rx)

where Z = Πm
l=t+1Wl − I and R = Πt

l=1Wl. Note that R,Πm
l=t+1Wl ∈ W and, in

particular, the entries of each row of Z sum up to 0. Denote by zi the column vector

whose transpose is exactly the i-th row of Z. It is immediate to see that it is the

difference of two probability vectors, thus zi ∈ V0 and ‖zi‖1 ≤ 2. The quantities

Z (Rx) and Rx are vectors of Rn, and the i-th component of the former is exactly
(zi)

T
Rx. By (71) and since zi ∈ V0, we can conclude that∣∣∣(zi)T

(Rx)
∣∣∣ =

∣∣∣((zi)T
R
)
x
∣∣∣ ≤ ∥∥∥(zi)T

R
∥∥∥

1
‖x‖∞ ≤ (1− ε)t

∥∥zi∥∥
1
‖x‖∞

≤ 2 (1− ε)t ‖x‖∞ .
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Since (Πm
l=1Wl)x− (Πt

l=1Wl)x = Z (Rx) and t, m, x, and i were arbitrarily chosen, we

have that∣∣((Πm
l=1Wl)x−

(
Πt
l=1Wl

)
x
)
i

∣∣ =
∣∣∣(zi)T

(Rx)
∣∣∣ ≤ 2 (1− ε)t ‖x‖∞ ∀x ∈ B, ∀i ∈ N,∀m > t.

We can conclude that∥∥(Πm
l=1Wl)x−

(
Πt
l=1Wl

)
x
∥∥
∞ ≤ 2 (1− ε)t ‖x‖∞ ∀x ∈ B, ∀t,m ∈ N s.t. m ≥ t,

proving the claim. �
We start by proving the statement for t̂ = 1. Since T = T t̂ has the uniform common

influencer property, it follows that T has a nontrivial network. By Proposition 13, we

have that there exist W ∈ W and γ ∈ (0, 1) such that

T (x) = γWx+ (1− γ)S (x) ∀x ∈ B (72)

where S is a robust opinion aggregator. Moreover, W can be chosen to be such that

A (W ) = A (T ) and so, in particular, W ∈ Wδ for some δ ∈ (0, 1). This implies that

for each x ∈ B there exists a matrix W (x) ∈ Wγδ such that T (x) = W (x)x for all

x ∈ B.62 Fix x ∈ B. Define Wl = W
(
T l−1 (x)

)
for all l ∈ N with the usual convention

T 0 (x) = x for all x ∈ B. By induction, we have that for each m ∈ N

Tm (x) = T
(
Tm−1 (x)

)
= W

(
Tm−1 (x)

)
Tm−1 (x) = (Πm

l=1Wl)x.

By the previous claim, we have that∥∥Tm (x)− T t (x)
∥∥
∞ =

∥∥(Πm
l=1Wl)x−

(
Πt
l=1Wl

)
x
∥∥
∞ ≤ 2 (1− ε)t ‖x‖∞ ∀t,m ∈ N s.t. m ≥ t

(73)

ε = γδ > 0. By setting m = t + 1 and since x was arbitrarily chosen, this implies

that T is asymptotically regular. By Proposition 4, it follows that T is convergent.

By Lemma 3 and since T is convergent, we have that T̄ (x) = limt T
t (x) ∈ E (T ) for

all x ∈ B. By taking the limit in m in (73), (70) immediately follows for the case

t̂ = 1. By Proposition 6 and since T has the uniform common influencer property and

T̄ (x) = limt T
t (x) ∈ E (T ) for all x ∈ B, we have that T is a consensus operator and

T̄ (x) = limt T
t (x) ∈ D for all x ∈ B.

62Observe that Si : B → R is normalized, monotone, and translation invariant for all i ∈ N . By
[20] and since Si is continuous, for each i ∈ N there exists a convex and compact subset Ci of ∆ such

that

Si (x) = α (x) min
w∈Ci

w · x+ [1− α (x)] max
w∈Ci

w · x ∀x ∈ B

where α : B → [0, 1]. It follows that for each i ∈ N and for each x ∈ B there exists wi (x) ∈ ∆

such that Si (x) = wi (x) · x. If we define Ŵ (x) ∈ W to be such that its i-th row is the transpose

of wi (x), then we have that S (x) = Ŵ (x)x. By (72), we can conclude that T (x) = W (x)x where

W (x) = γW + (1− γ) Ŵ (x).
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If t̂ > 1, define U : B → B to be such that U = T t̂. Note that U is a robust opinion

aggregator. By assumption, it follows that U has the uniform common influencer

property. By the previous part of the proof, we have that∥∥Ū (x)− U t (x)
∥∥
∞ ≤ 2 (1− ε)t ‖x‖∞ ∀t ∈ N,∀x ∈ B

and Ū (x) = limt U
t (x) ∈ D for all x ∈ B. Consider x ∈ B and, for ease of notation,

denote x̄ = Ū (x). Let t ∈ N. We have two cases:

1. t < t̂. In this case, it follows that
⌊
t
t̂

⌋
= 0 and∥∥x̄− T t (x)

∥∥
∞ ≤

∥∥Ū (x)
∥∥
∞ +

∥∥T t (x)
∥∥
∞ ≤ ‖x‖∞ + ‖x‖∞ = 2 (1− ε)b

t
t̂c ‖x‖∞ .

2. t ≥ t̂. In this case, it follows that there exists n ∈ N such that nt̂ ≤ t < (n+ 1) t̂.

This implies that n ≤ t
t̂
< (n+ 1) and n =

⌊
t
t̂

⌋
. We have two subcases:

(a) n = t
t̂
. In this case, we have that∥∥x̄− T t (x)

∥∥
∞ =

∥∥∥x̄− T nt̂ (x)
∥∥∥
∞

= ‖x̄− Un (x)‖∞ ≤ 2 (1− ε)n ‖x‖∞ .

(b) n < t
t̂
. In this case, define j = t− nt̂. Since x̄ ∈ D and T is nonexpansive,

we have that∥∥x̄− T t (x)
∥∥
∞ =

∥∥T (x̄)− T t (x)
∥∥
∞ ≤

∥∥x̄− T t−1 (x)
∥∥
∞

=
∥∥T (x̄)− T t−1 (x)

∥∥
∞ ≤ ...

≤
∥∥x̄− T t−j (x)

∥∥
∞ =

∥∥∥x̄− T nt̂ (x)
∥∥∥
∞

= ‖x̄− Un (x)‖∞ ≤ 2 (1− ε)n ‖x‖∞ .

Since t and x were arbitrarily chosen, points 1 and 2 prove that∥∥Ū (x)− T t (x)
∥∥
∞ ≤ 2 (1− ε)b

t
t̂c ‖x‖∞ ∀t ∈ N, ∀x ∈ B. (74)

It follows that {T t (x)}t∈N converges for all x ∈ B. By taking the limit in t and Lemma
3, this implies that T̄ (x) = limt T

t (x) = Ū (x) ∈ D for all x ∈ B. Thus, (74) implies
(70). �

Proof of Corollary 2. By hypothesis, in Theorem 7, we can set t̂ = 1. By Theorem

7, the statement follows. �

Proof of Corollary 3. By repeating the same arguments contained in the beginning of
the proof of Proposition 6 up to (69), we have that if t ∈ N, then there exist γ ∈ (0, 1),

a stochastic matrix W ∈ W, and a robust opinion aggregator S̃ : B → B such that

T t (x) = γW tx+ (1− γ) S̃ (x) ∀x ∈ B
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where γ and S̃ depend on T as well as t andW can be chosen to be such that A (W ) =

A (T ). Since T has the pairwise common influencer property and A (W ) = A (T ), it

follows that W is scrambling. By [80, Theorem 4.11 and Exercise 4.13] and since W is

scrambling, we have that there exists t̂ ∈ N such that W t̂ has a column whose entries

are all strictly positive. By [49, Theorem 2], it follows that t̂ is such that t̂ ≤ n2−3n+3.

Since W t̂ has a column whose entries are all strictly positive, note that W t̂ ∈ Wδ for

some δ ∈ (0, 1). Denote the strictly positive column by k ∈ N . It follows that if x ∈ B
and h > 0 are such that x+ hek ∈ B, then for each i ∈ N

T t̂i
(
x+ hek

)
− T t̂i (x) ≥ γ

n∑
l=1

w
(t̂)
il he

k
l ≥ γw

(t̂)
ik h ≥ γδh,

proving that k strongly influences i for all i ∈ N and, in particular, that T t̂ has the

uniform common influencer property. By Theorem 7, T̄ (x) = limt T
t (x) ∈ D for all

x ∈ B and there exists ε ∈ (0, 1) such that (19) holds. �

Proof of Corollary 4. By repeating the same arguments contained in the beginning
of the proof of Proposition 6 up to (69), we have that if t ∈ N, then there exist
γ ∈ (0, 1), a stochastic matrix W ∈ W, and a robust opinion aggregator S̃ : B → B

such that

T t (x) = γW tx+ (1− γ) S̃ (x) ∀x ∈ B
where γ and S̃ depend on T as well as t andW can be chosen to be such that A (W ) =

A (T ). Since T is strongly connected and strongly aperiodic and A (W ) = A (T ), it

follows that W is primitive. By [47, Corollary 8.5.8] and since W is primitive, we have

that there exists t̂ ∈ N such thatW t̂ has a column whose entries are all strictly positive

and t̂ is such that t̂ ≤ (n− 1)2 +1. SinceW t̂ has a column whose entries are all strictly

positive, note that W t̂ ∈ Wδ for some δ ∈ (0, 1). Denote the strictly positive column

by k ∈ N . It follows that if x ∈ B and h > 0 are such that x+ hek ∈ B, then for each
i ∈ N

T t̂i
(
x+ hek

)
− T t̂i (x) ≥ γ

n∑
l=1

w
(t̂)
il he

k
l ≥ γw

(t̂)
ik h ≥ γδh,

proving that k strongly influences i for all i ∈ N and, in particular, that T t̂ has the

uniform common influencer property. By Theorem 7, T̄ (x) = limt T
t (x) ∈ D for all

x ∈ B and there exists ε ∈ (0, 1) such that (20) holds.

Finally, since A (W ) = A (T ), if T is self-influential, then W is such that wii > 0

for all i ∈ N . By [47, Lemma 8.5.4] and since W is primitive, we have that the above

index t̂ is such that t̂ ≤ n− 1. �

Proof of Theorem 4. Let x ∈ B. Call V the set of values the components of x take:
V = {x1, ..., xn}. Define U to be the subset of vectors y in B such that each component
of y coincides in value to the value of some component of x, formally,
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U = {y ∈ B : yi ∈ V ∀i ∈ {1, ..., n}} .

Since the components of x might be distinct, note that the cardinality of U is at most

nn. Since νi is {0, 1}-valued for all i ∈ {1, ..., n}, note that Ti (y) ∈ V for all y ∈ U
and for all i ∈ {1, ..., n}. This implies that T (x) ∈ U . By induction, it follows that
T t (x) ∈ U for all t ∈ N. This implies that the sequence {T t (x)}t∈N can take at most
a finite number of values. We have two cases:

1. {T t (x)}t∈N converges. If {T t (x)}t∈N converges, then the previous part implies
that {T t (x)}t∈N becomes constant, that is, there exists t̃ ∈ N such that

T t (x) = T t̃ (x) ∈ U ∀t ≥ t̃. (75)

Call x̄ the limit of {T t (x)}t∈N. Note that x̄ = T t̃ (x) and T t (x̄) = x̄ for all t ∈ N.
In particular, we have that

T (x̄) = x̄. (76)

Define now t̄ ∈ N to be such that t̄ = min {t ∈ N : T t (x) = x̄}. By (75), t̄ is well
defined. By (76), we have that T t (x) = x̄ for all t ≥ t̄. If t̄ = 1, then {T t (x)}t∈N
is constant to begin with and so it becomes constant after at most nn periods.

Assume t̄ > 1. We next show that T t (x) 6= Tm (x) for all m, t < t̄ such that

m 6= t. By contradiction, assume that there exist m, t < t̄ such that m 6= t and

T t (x) = Tm (x). Without loss of generality, we assume that m > t. This would

imply that T t+n (x) = T n (T t (x)) = T n (Tm (x)) = Tm+n (x) for all n ∈ N. In
particular, by setting n = t̄−m > 0, we would have that T t+n (x) = Tm+n (x) =

T t̄ (x) = x̄. Note that t̂ = t+ n < m+ n = t̄. Thus, this would imply that

T t̂ (x) = x̄ and t̂ < t̄,

a contradiction with the minimality of t̄. By definition of t̄, we can also conclude

that T t (x) 6= x̄ for all t < t̄. This implies that {T t (x)}t̄−1
t=1 is contained in U\ {x̄}.

Since U contains at most nn elements and the elements of {T t (x)}t̄−1
t=1 are pairwise

distinct, it follows that t̄− 1 ≤ nn− 1, proving that {T t (x)}t∈N converges only if
it becomes constant after at most nn periods.

2. {T t (x)}t∈N does not converge. Define ñ = nn. Recall that {T t (x)}ñ+1
t=1 ⊆ U where

the latter set has cardinality at most ñ. This implies that there exist m̂, t̂ ≤ ñ+1

such that T m̂ (x) = T t̂ (x) and m̂ 6= t̂. Without loss of generality, we assume that

m̂ > t̂. It follows that

T t̂+n (x) = T n
(
T t̂ (x)

)
= T n

(
T m̂ (x)

)
= T m̂+n (x) ∀n ∈ N0.
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Define p = m̂− t̂ > 0. Since t̂ ≥ 1 and m̂ ≤ ñ+1, note that m̂− t̂ ≤ ñ and t̂ ≤ ñ.

We have that T t̂+n (x) = T t̂+n+p (x) for all n ∈ N0, proving that T t (x) = T t+p (x)

for all t ≥ t̂.

Points 1 and 2 prove the first part of the statement as well as the “only if”of the

second part. The “if”part is trivial. �

Proof of Proposition 7. Before starting, define Binj = {x ∈ intB : xl 6= xk if l 6= k}.
It is routine to check that Binj is dense in intB, and so, in B. Since T is continuous

and Binj is dense, if Ti (x) = xj for all x ∈ Binj, then Ti (x) = xj for all x ∈ B. Thus,
Ti (x) 6= xj for some x ∈ B if and only if there exists y ∈ Binj such that Ti (y) 6= yj.

(i) implies (ii). By assumption, there exists εij ∈ (0, 1) such that for each y ∈ B
and for each h > 0 such that y + hej ∈ B

Ti
(
y + hej

)
− Ti (y) ≥ εijh.

By contradiction, assume that there exists y ∈ Binj such that Ti (y) 6= yj. Since

Binj ⊆ intB, there exists ε̄ > 0 such that z ∈ Rn and ‖z − y‖∞ < ε̄ yields that

z ∈ intB. Since Ti (x) =
∫
N
xdνi for all x ∈ B and νi is {0, 1}-valued, it follows that

there exists m ∈ N such that Ti (y) = ym. Since Ti (y) 6= yj, this implies that j 6= m.

Define δ = min {mini′,i′′∈N :i′ 6=i′′ |yi′ − yi′′ | , ε̄} /2. Since y ∈ Binj and ε̄ > 0, we have that

δ > 0 and δ < ε̄. Consider h = δ. It is immediate to see that y + hej ∈ B. At the
same time, we have that Ti (y + hej) =

∫
(y + hej) dνi = ym, yielding that

0 = Ti
(
y + hej

)
− Ti (y) ≥ εijh = εijδ > 0,

a contradiction.

(ii) implies (i). It is trivial.

Note that T is self-influential if and only if i strongly influences i for all i ∈ N .

By the previous part, this happens if and only if Ti (x) = xi for all i ∈ N , that is,

T (x) = x for all x ∈ B. The second part of the statement follows in a similar fashion.
�

Proof of Proposition 8. Before proving the statement, we introduce some terminol-
ogy and some useful facts. Fix i ∈ N . Recall that

νi (A) = fi

(∑
l∈A

wil

)
∀A ⊆ N.

Fix j ∈ N and A ∈ 2N such that j 6∈ A. Since fi is strictly increasing, we have that

νi (A ∪ {j})− νi (A) > 0⇔ fi

(∑
l∈A

wil + wij

)
− fi

(∑
l∈A

wil

)
> 0⇔ wij > 0. (77)
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Call Π the collection of all permutations of N , that is, the collection of all bijections

π : {1, ..., n} → {1, ..., n}. Given π ∈ Π, consider p ∈ ∆ as defined in (22), to signal the

dependence on π and i we here denote p by pπ,i. Define by Di the set {pπ,i : π ∈ Π}.
By definition of pπ,i, we have that

pπ,iπ(j) = νi
(
∪jl=1 {π (l)}

)
− νi

(
∪j−1
l=1 {π (l)}

)
∀j ∈ N,∀π ∈ Π (78)

with the assumption that νi (∪0
l=1 {π (l)}) = 0. By (77) and (78), we have that for each

π ∈ Π and for each j ∈ N

pπ,iπ(j) > 0 ⇐⇒ wiπ(j) > 0. (79)

Finally, since each νi induces a functional from Rn to R, we can assume without loss
of generality that B = Rn. By [41, Theorem 14 and Example 17] and (79), we have

that the Clarke’s differential of Ti at 0, ∂Ti (0), coincides with the convex hull of Di.

This yields that

pj > 0 ∀p ∈ ∂Ti (0) = co (Di) ⇐⇒ wij > 0. (80)

(i) implies (ii). By counterpositive, we prove that if wij 6> 0, then j does not

strongly influence i. Since wij ≥ 0 and wij 6> 0, we have that wij = 0. Fix x = 0. This

implies that

Ti
(
x+ hej

)
− Ti (x) = Ti

(
hej
)

= hTi
(
ej
)

= hfi (wij) = 0 ∀h > 0,

proving that j cannot strongly influence i.

(ii) implies (i). Define εij = minπ∈Π p
π,i
j /2. By (79) and since wij > 0, we have that

εij ∈ (0, 1). Consider x ∈ B and h > 0. Define y = x + hej. By Lebourg’s Mean

Value Theorem and (80) and since Ti is a Choquet integral, there exist γ ∈ (0, 1) and

p ∈ ∂Ti (γy + (1− γ)x) ⊆ ∂Ti (0) such that

Ti
(
x+ hej

)
− Ti (x) = Ti (y)− Ti (x) =

n∑
l=1

pl (yl − xl) = pjh ≥ εijh,

proving the implication.

Finally, by the previous part of the proof and since the ij-th entry of A (T ) is 1 if

and only if j strongly influences i if and only if wij > 0 if and only if the ij-th entry of

A (W ) is 1, the final part of the statement follows. �

Proof of Proposition 9. Consider x ∈ B. Let π ∈ Π be such that x ∈ Bπ. We first

show that if z ∈ Bπ, then T (z) ∈ Bπ. Since Ti is a Choquet average, it is well known

that for each i ∈ N

Ti (z) =

∫
N

zdνi =

∫ ∞
0

νi ({j ∈ N : zj ≥ t}) dt+

∫ 0

−∞
[νi ({j ∈ N : zj ≥ t})− 1] dt.

(81)
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Since T is assortative, we have that

i′ ≥ i =⇒ νπ(i) ({j ∈ N : zj ≥ t}) ≥ νπ(i′) ({j ∈ N : zj ≥ t}) ∀t ∈ R.

By (81), this implies that

Tπ(1) (z) ≥ Tπ(2) (z) ... ≥ Tπ(n) (z) ,

proving that T (z) ∈ Bπ. By induction, this implies that T t (z) ∈ Bπ for all z ∈ Bπ

and for all t ∈ N. Next, for each i ∈ N , given νi, construct pπ,i as in the proof of

Proposition 8. DefineWπ where the i-th row is the transpose of the column vector pπ,i.

By (23), we have that T (z) = Wπz for all z ∈ Bπ. Since x ∈ Bπ, T (z) = Wπz, and

T t (z) ∈ Bπ for all z ∈ Bπ and for all t ∈ N, we can conclude that

T (x) = Wπx as well as T t+1 (x) = T
(
T t (x)

)
= WπT

t (x) ∀t ∈ N. (82)

By (82) and using induction, this proves the statement. �

C Appendix: Vox populi, vox Dei

Proof of Proposition 10. Before starting, define B̂ = În. We proceed by proving two

intermediate steps. First, we prove that T̄i (n) is an unbiased estimator for all i ∈ N and

for all n ∈ N. Second, we show that (29) yields that T̄i (n) is not extremely sensitive to

changes coming from a single observation. Finally, by applying McDiarmid’s inequality,

these two steps will yield (27). Before starting, we make a few observations. By

Theorem 2 and by points 3 and 5 of Lemma 9 and since I = R, we have that T̄ (n)

is a well defined odd robust opinion aggregator for all n ∈ N. By Assumption 3, we
have that T̄i (n) = T̄j (n) for all i, j ∈ N and for all n ∈ N. Since the random variables

{Xi (n)}i∈N,n∈N are uniformly bounded and measurable and T̄i (n) is continuous for

all i ∈ N and for all n ∈ N, it follows that ω 7→ T̄i (n) (X1 (n) (ω) , ..., Xn (n) (ω)) is

integrable for all i ∈ N and for all n ∈ N.
Step 1. For each i ∈ N and for each n ∈ N

E
(
T̄i (n) (X1 (n) , ..., Xn (n))

)
=

∫
Ω

T̄i (n) (X1 (n) , ..., Xn (n)) dP = µ. (83)

Proof of the Step. Recall that Xi (n) = µ + εi (n) for all i ∈ N and for all n ∈ N
where {εi (n)}i∈N,n∈N is a collection of uniformly bounded, symmetric, and independent
random variables. Since T̄i (n) is continuous for all i ∈ N and for all n ∈ N, it follows
that ω 7→ T̄i (n) (ε1 (n) (ω) , ..., εn (n) (ω)) is integrable for all i ∈ N and for all n ∈ N.
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Since T̄ (n) is odd for all n ∈ N, this implies that for each i ∈ N and for each n ∈ N∫
Ω

T̄i (n) (ε1 (n) , ..., εn (n)) dP =

∫
Ω

T̄i (n) (−ε1 (n) , ...,−εn (n)) dP

= −
∫

Ω

T̄i (n) (ε1 (n) , ..., εn (n)) dP.

It follows that for each i ∈ N and for each n ∈ N

2

∫
Ω

T̄i (n) (ε1 (n) , ..., εn (n)) dP = 0.

Since T̄ (n) is translation invariant, we can conclude that for each i ∈ N and for each

n ∈ N

E
(
T̄i (n) (X1 (n) , ..., Xn (n))

)
=

∫
Ω

T̄i (n) (X1 (n) , ..., Xn (n)) dP

=

∫
Ω

T̄i (n) (µ+ ε1 (n) , ..., µ+ εn (n)) dP

= µ+

∫
Ω

T̄i (n) (ε1 (n) , ..., εn (n)) dP = µ,

proving (83). �
Step 2. For each i, j ∈ N and for each n ∈ N

sup
{(x,t)∈B̂×R:x+tej∈B̂}

∣∣T̄i (n)
(
x+ tej

)
− T̄i (n) (x)

∣∣ ≤ `c (n)wj (n) .

Proof of the Step. Fix i ∈ N and n ∈ N. By Rademacher’s Theorem and since T̄ (n) is

nonexpansive, this implies that T̄ (n) is almost everywhere Frechet differentiable. Let

D
(
T̄ (n)

)
⊆ În = B̂ be the subset of B̂ where T̄ (n) is Frechet differentiable. Clearly,

T̄i (n) is Frechet differentiable on D
(
T̄ (n)

)
and, in particular, Clarke differentiable.

Since T̄i (n) is monotone and translation invariant, note that ∇T̄i (n) (x) ∈ ∆n for all

x ∈ D
(
T̄ (n)

)
. Consider x̄ ∈ B̂. Recall that Clarke’s differential is the set (see, e.g.,

[25, Theorem 2.5.1]):

∂T̄i (n) (x̄) = co
{
p ∈ ∆n : p = lim

k
∇T̄i (n)

(
xk
)
s.t. xk → x̄ and xk ∈ D

(
T̄ (n)

)}
.

(84)

By Definition 19 and (84) and since T̄1 (n) = T̄i (n), note that

0 ≤ pj ≤ sj (T (n)) ∀p ∈ ∂T̄i (n) (x) ,∀x ∈ B̂, ∀j ∈ N. (85)

Consider j ∈ N , x ∈ B̂, and t ∈ R such that x + tej ∈ B̂. Define y = x + tej. By

Lebourg’s Mean Value Theorem, we have that there exist λ ∈ (0, 1) and p̄ ∈ ∂T̄i (n) (z)

where z = λy + (1− λ)x ∈ B̂ such that

T̄i (n)
(
x+ tej

)
− T̄i (n) (x) = T̄i (n) (y)− T̄i (n) (x) =

n∑
l=1

p̄l (yl − xl) .
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It follows that
∣∣T̄i (n) (x+ tej)− T̄i (n) (x)

∣∣ = |p̄j (yj − xj)| = p̄j |yj − xj| ≤ `p̄j. By

(85), this implies that∣∣T̄i (n)
(
x+ tej

)
− T̄i (n) (x)

∣∣ ≤ `p̄j ≤ `sj (T (n)) ≤ `c (n)wj (n) .

Since x and t were arbitrarily chosen, it follows that

sup
{(x,t)∈B̂×R:x+tej∈B̂}

∣∣T̄i (n)
(
x+ tej

)
− T̄i (n) (x)

∣∣ ≤ `c (n)wj (n) .

Since i, n, and j were also arbitrarily chosen, the statement follows. �
By McDiarmid’s inequality as well as Steps 1 and 2, we can conclude that for each

δ > 0

P
({
ω ∈ Ω :

∣∣T̄i (n) (X1 (n) (ω) , ..., Xn (n) (ω))− µ
∣∣ ≥ δ

})
= P

({
ω ∈ Ω :

∣∣T̄i (n) (X1 (n) (ω) , ..., Xn (n) (ω))− E
(
T̄i (n) (X1 (n) , ..., Xn (n))

)∣∣ ≥ δ
})

≤ 2 exp

(
− 2δ2∑n

j=1 (`c (n)wj (n))2

)
= 2 exp

(
− 2δ2

`2c (n)2∑n
j=1 wj (n)2

)

≤ 2 exp

(
− 2δ2

`2c (n)2 maxk∈N wk (n)
∑n

j=1 wj (n)

)

= 2 exp

(
− 2δ2

`2c (n)2 maxk∈N wk (n)

)
→ 0 as n→∞,

proving the statement. �

Proof of Corollary 5. For each i ∈ N and for each n ∈ N set

wi (n) =
1

n
and c (n) = nmax

k∈N
sk (T (n)) .

It is immediate to see that c (n) ∈ R and w (n) ∈ ∆n for all n ∈ N. Moreover, we have
that for each n ∈ N

si (T (n)) ≤ max
k∈N

sk (T (n)) = c (n)wi (n) ∀i ∈ N. (86)

Since maxk∈N sk (T (n)) = o
(

1√
n

)
, we have that

c (n)2 max
k∈N

wk (n) = n

(
max
k∈N

sk (T (n))

)2

→ 0 as n→∞. (87)

By (86) and (87), it follows that (29) holds. By Proposition 10 and since {T (n)}n∈N
is a sequence of odd robust opinion aggregators, this implies the statement. �
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Proof of Remark 4. Let i ∈ N and n ∈ N. By the last part of the proof of Proposition
10, we have that

P
({
ω ∈ Ω :

∣∣T̄i (n) (X1 (n) (ω) , ..., Xn (n) (ω))− µ
∣∣2 ≥ δ

})
= P

({
ω ∈ Ω :

∣∣T̄i (n) (X1 (n) (ω) , ..., Xn (n) (ω))− µ
∣∣ ≥ √δ})

≤ 2 exp

(
− 2δ

`2c2 maxk∈N wk (n)

)
∀δ > 0.

By [12, Equation 21.9], observe that

Var
(
T̄i (n) (X1 (n) , ..., Xn (n))

)
= E

((
T̄i (n) (X1 (n) , ..., Xn (n))− µ

)2
)

=

∫ ∞
0

P
({
ω ∈ Ω :

(
T̄i (n) (X1 (n) (ω) , ..., Xn (n) (ω))− µ

)2 ≥ t
})

dt

=

∫ `2

0

P
({
ω ∈ Ω :

∣∣T̄i (n) (X1 (n) (ω) , ..., Xn (n) (ω))− µ
∣∣2 ≥ t

})
dt

≤
∫ `2

0

2 exp

(
− 2t

`2c2 maxk∈N wk (n)

)
dt

= `2c2 max
k∈N

wk (n)

[
1− exp

(
− 2

c2 maxk∈N wk (n)

)]
,

proving (32). �

Proof of Proposition 11. Fix n ∈ N. Since T (n) is a robust opinion aggregator, we

have that T (n) is Lipschitz continuous. By Rademacher’s Theorem, this implies that

T (n) is almost everywhere Frechet differentiable and, in particular, Clarke differen-

tiable. Let D (T (n)) ⊆ În = B̂ be the subset of B̂ where T (n) is Frechet differentiable.

Clearly, Th (n) is Frechet differentiable on the same set for all h ∈ N . Since Th (n) is

monotone and translation invariant, note that ∇Th (n) (x) ∈ ∆n for all x ∈ D (T (n)).

Consider x̄ ∈ B̂. Recall that Clarke’s differential is the set (see, e.g., [25, Theorem

2.5.1]):

∂Th (n) (x̄) = co
{
p ∈ ∆n : p = lim

k
∇Th (n)

(
xk
)
s.t. xk → x̄ and xk ∈ D (T (n))

}
.

(88)

Similarly, we have that

∂T̄1 (n) (x̄) = co
{
p ∈ ∆n : p = lim

k
∇T̄1 (n)

(
xk
)
s.t. xk → x̄ and xk ∈ D

(
T̄ (n)

)}
.

By Theorem 2, recall that T̄ (n) ◦ T (n) = T̄ (n), yielding that T̄1 (n) ◦ T (n) = T̄1 (n).

Fix x̄ ∈ B̂. Define by Πn
h=1∂Th (n) (x̄) the collection of all n×n square matrices whose
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h-th row is an element of ∂Th (n) (x̄). From the previous part of the proof, we have

that Πn
h=1∂Th (n) (x̄) ⊆ W. Define

∂T̄1 (n) (T (n) (x̄)) Πn
h=1∂Th (n) (x̄)

=
{
w̃ ∈ ∆n : ∃p ∈ ∂T̄1 (n) (T (n) (x̄)) ,∃W ∈ Πn

h=1∂Th (n) (x̄) s.t. pTW = w̃T
}
.

In words, w̃ ∈ ∂T̄1 (n) (T (n) (x̄)) Πn
h=1∂Th (n) (x̄) only if it is a stochastic vector which

is a convex linear combination of the rows of some matrix W ∈ Πn
h=1∂Th (n) (x̄). By

the Chain Rule (see, e.g., [25, Theorem 2.6.6 and point e of Proposition 2.6.2]) and

since T̄1 (n) = T̄1 (n) ◦ T (n), we have that

∂T̄1 (n) (x̄) ⊆ co
{
∂T̄1 (n) (T (n) (x̄)) Πn

h=1∂Th (n) (x̄)
}

(89)

By assumption, we have that for each h ∈ N

sup
x∈D(T (n))

∂Th (n)

∂xi
(x) ≤ c (n)wi (n) and c (n)2 max

k∈N
wk (n)→ 0 as n→∞ (90)

By (88) and (90), we have that

0 ≤ pi ≤ c (n)wi (n) ∀p ∈ ∂Th (n) (x̄) ,∀i, h ∈ N.

By (89), we can conclude that

0 ≤ pi ≤ c (n)wi (n) ∀p ∈ ∂T̄1 (n) (x̄) ,∀i ∈ N.

Since x̄ was arbitrarily chosen, this implies that

0 ≤ pi ≤ c (n)wi (n) ∀p ∈ ∂T̄1 (n) (x) ,∀x ∈ B̂, ∀i ∈ N.

Finally, observe that if x ∈ D
(
T̄ (n)

)
, we have that ∇T̄1 (n) (x) ∈ ∂T̄1 (n) (x) and, in

particular, ∂T̄1(n)
∂xi

(x) ≤ c (n)wi (n) for all i ∈ N . This yields that

si (T (n)) = sup
x∈D(T̄ (n))

∂T̄1 (n)

∂xi
(x) ≤ c (n)wi (n) ,

proving the statement. �
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D Online Appendix

D.1 Additional statistical procedures

We saw that robust estimation provides a tight foundation for our robust opinion aggre-

gators. At the same time, robust estimation is only one of several statistical procedures

that agents might use to estimate the underlying parameter µ, particularly when in

a network. In what follows, we discuss two other common estimation procedures and

show that they still lead to robust opinion aggregators. Before doing so, we make an

assumption which we will keep throughout this section.

Assumption Each agent believes errors ε = (εi)
n
i=1 are independently distributed

across agents.

Maximum likelihood estimation The approach followed by Huber [48], that we

combine to a network structure (N,A), is completely non-parametric, in the sense that

Huber did not postulate any functional form for the probability distribution of the

error terms. An alternative approach for this network framework is the one proposed

by DeMarzo, Vayanos, and Zwiebel [27]. They consider agents who may entertain

incorrect point beliefs about the errors’distribution. Each agent i ∈ N believes that

the errors across the population are independently distributed according to a pdf fij,

which is normal with 0 mean and variance σ2
ij > 0 for all j ∈ N . Thus, agent i

believes that the errors’vector ε in (1) is distributed according to N (0,Σi), where

Σi is a diagonal matrix with diagonal entries
(
σ2
ij

)n
j=1
. According to [27], in period

0 there is a signals’ realization
(
x0
j

)n
j=1
, but each agent i only observes the signals’

realizations of her neighbors:
(
x0
j

)
j∈Ni

.63 In period 1 agent i performs a maximum

likelihood estimation of µ obtaining

x1
i = Ti

(
x0
)

=
n∑
j=1

wijx
0
j =

∑
j∈Ni

wijx
0
j ∀i ∈ N

where

wij = aij
1/σ2

ij∑
l∈Ni 1/σ2

il

∀i, j ∈ N.

In other words, as well known, in this case the maximum likelihood estimator is a

weighted average of the realizations where the weight given by agent i to j is inversely

proportional to the variance of j’s error, provided j is in the neighborhood of i, and it

is 0 otherwise. In the following periods t ∈ N, in the most basic version of the model,
agents naively keep updating their opinions by combining their neighbors’estimates

with the weights just defined, that is, xti = Ti (x
t−1) (see Section D.2 below).

63Clearly, we assume that Ni 6= ∅ for all i ∈ N .
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In this way, DeMarzo, Vayanos, and Zwiebel provide a foundation for the linear De-

Groot’s model based on optimal information acquisition with a behavioral component:

persuasion bias as discussed above. At the same time, their approach relies heavily on

the normality of errors which in turn yields the linearity of the opinion aggregator T .

In what follows, we maintain the same maximum likelihood estimation procedure,

but we relax the normality assumption. This naturally leads us again toward robust

opinion aggregators.

Lemma 12 If for each i, j ∈ N the marginal pdf fij : R→ R++ is log-concave with a

unique local maximum in 0, then the agents’maximum likelihood estimators admit a

selection which is a robust opinion aggregator.64

Proof. Each agent i ∈ N , given x ∈ B, solves

max
c∈R

∏
j∈Ni

fij (xj − c) .

Since the set of maximizers is not affected by a strictly increasing transformation of

the objective function and fij > 0 for all i, j ∈ N , this problem is equivalent to

max
c∈R

∑
j∈Ni

ln fij (xj − c) = −min
c∈R

(
−
∑
j∈Ni

ln fij (xj − c)
)
. (91)

For each i ∈ N define φi : Rn → R+ by φi (z) =
∑n

j=1 aijρij (zj) for all z ∈ Rn where
ρij = − ln fij + ln fij (0) for all i, j ∈ N . By the same arguments of (iii) implies (ii)

of Proposition 2, it follows that φ = (φi)
n
i=1 ∈ Φ∗R ⊆ ΦR. For each i ∈ N define

Tφ
i : B ⇒ I by

Tφ
i (x) = argminc∈R φi (x− ce) ∀x ∈ B.

For each i ∈ N and x ∈ B the solutions of (91) coincide with the set Tφ
i (x). Define

Tφ : B ⇒ B by Tφ (x) =
∏n

i=1T
φ
i (x) for all x ∈ B. By Proposition 12, the statement

follows. �

These properties are quite mild and satisfied by several parametric families: e.g.,

normal, logistic, Gumbel, and Laplace with mode 0. Also, some of the aggregators

studied in the main text can be mapped into these families. For example, if the fijs

are normal, then the resulting opinion aggregator T is linear; if they are Laplace,

then each component Ti is a weighted median; if they are Gumbel with uniform scale

parameter across the j indexes, then the aggregator is a quasi-arithmetic one as in

(11).

64As the maximum likelihood estimator is the result of a maximization problem, a priori, the solution

might fail to be unique. In applications, this is not a concern since typically the fij pdfs are assumed

to be strictly log-concave.
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For example, Laplacian errors arise when agents still believe that the errors of

the others are normally distributed, but they are uncertain about their variance. In

particular, they have a subjective belief that the variance of the signal of another agent

is σij =
√

2νi/τij where νi has an exponential distribution with parameter 1.65 In other

words, agent i believes that agent j error has the shape σijZi where Zi is a standard

normal. It is then well known that this random variable is distributed according to

Laplace
(

0, 1
τij

)
(see, e.g., Kotz, Kozubowski, and Podgorski [55, Proposition 2.2.1]).

This is just an example of a much more general fact: any distribution in the exponential

power family is a mixture of normals (see West [83]). This allows us to view some robust

opinion aggregators as optimal behavior in face of various forms of uncertainty about

the precision of the signals of the other agents.66

Bayesian estimation The updating rule proposed by DeMarzo, Vayanos, and Zwiebel

has also been rationalized as a Bayesian procedure with a diffuse prior (see [27, Foot-

note 17] and [45]). Formally, we keep all the assumptions of above and only change the

estimation procedure from maximum likelihood estimation to a Bayesian one, that is,

agents have a uniform improper prior Λ over the entire real line. With this procedure,

at period 1, agents update their beliefs about µ in the following way:

Λ
(
µ| (xj)j∈Ni

)
=

∏
j∈Ni fij (xj − µ)∫

R
∏

j∈Ni fij (xj − µ′) dΛ (µ′)
.

The posterior expectation of each agent i, given x, is defined by

Ti (x) =

∫
R µ
∏

j∈Ni fij (xj − µ) dΛ (µ)∫
R
∏

j∈Ni fij (xj − µ′) dΛ (µ′)
.

Next result, which is an extension of Milgrom [66, Proposition 1], shows that also this

procedure yields a robust opinion aggregator.

Lemma 13 If for each i, j ∈ N the marginal pdf fij : R → R++ is log-concave and

symmetric around 0, then the collection of agents’ posterior expectations is a robust

opinion aggregator.

65Clearly, τij > 0 for all i, j ∈ N .
66Observe that the exponential power densities with power parameter equal or larger than 1 satisfy

the assumptions of Lemma 12.
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Proof. Fix i ∈ N . Since each fij : R→ R++ is log-concave and symmetric around 0,

it follows that Ti (x) is well defined for all x ∈ B. We have that for each k ∈ R

Ti (ke) =

∫
R
µ

∏
j∈Ni fij (k − µ)∫

R
∏

j∈Ni fij (k − µ′) dΛ (µ′)
dΛ (µ)

=

∫
R
µ

∏
j∈Ni fij (µ− k)∫

R
∏

j∈Ni fij (µ′ − k) dΛ (µ′)
dΛ (µ)

=

∫
R

(s+ k)

∏
j∈Ni fij (s)∫

R
∏

j∈Ni fij (s′) dΛ (s′)
dΛ (s)

=

∫
R
s

∏
j∈Ni fij (s)∫

R
∏

j∈Ni fij (s′) dΛ (s′)
dΛ (s) + k

∫
R
∏

j∈Ni fij (s) dΛ (s)∫
R
∏

j∈Ni fij (s′) dΛ (s′)

= k

where the first equality follows by definition, the second and the fifth by the symmetry

of the fijs, and the third by the Change of Variable Theorem. Next, consider x ∈ B
and k ∈ R. By similar arguments, we have that

Ti (x+ ke) =

∫
R
µ

∏
j∈Ni fij (xj + k − µ)∫

R
∏

j∈Ni fij (xj + k − µ′) dΛ (µ′)
dΛ (µ)

=

∫
R
µ

∏
j∈Ni fij (µ− k − xj)∫

R
∏

j∈Ni fij (µ′ − k − xj) dΛ (µ′)
dΛ (µ)

=

∫
R

(s+ k)

∏
j∈Ni fij (s− xj)∫

R
∏

j∈Ni fij (s′ − xj) dΛ (s′)
dΛ (s)

=

∫
R
s

∏
j∈Ni fij (s− xj)∫

R
∏

j∈Ni fij (s′ − xj) dΛ (s′)
dΛ (s) + k

∫
R
∏

j∈Ni fij (s− xj) dΛ (s)∫
R
∏

j∈Ni fij (s′ − xj) dΛ (s′)

= Ti (x) + k.

By [66, Proposition 1] and since the fijs are log-concave, we have that Ti is monotone.

Since i was arbitrarily chosen, the statement follows. �

D.2 Alternative updating rules

In DeGroot’s linear model, given x0, the updates’dynamics are of the type

xt = T
(
xt−1

)
∀t ∈ N

where T is linear. Insofar, what we proposed was the study of the same type of

dynamics where the aggregator T was only assumed to be robust, thus not necessarily

linear. At the same time, despite keeping the assumption that T is linear, other types

of opinion evolution have been studied in the literature (see, e.g., Jackson [51, Chapter
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8]). In this section, we focus on two particular examples: the one of DeMarzo, Vayanos,

and Zwiebel [27] as well as the one of Friedkin and Johnsen [33] and [34].

We start by considering the procedure of [27]. In this case, DeMarzo, Vayanos, and

Zwiebel have agents revise an opinion x at each round with a linear operator T , but

they also allow agents to vary the weight they give to their own beliefs. This results

in the following revision dynamic:

xt = Tt
(
xt−1

)
and Tt = (1− λt) I + λtT ∀t ∈ N. (92)

They further assume that {λt}t∈N ⊆ (0, 1] and
∑∞

t=1 λt = ∞. Moreover, in their case,
T is assumed to be linear and self-influential. The above condition on the weights

λt intuitively captures the idea that agents cannot get fixed on their own opinion too

quickly. By definition, since T is linear, there exists a stochastic matrix W ∈ W such

that T (x) = Wx for all x ∈ B. Theorem 1 of [27] shows that if W is irreducible,

that is T is strongly connected, then {xt}t∈N converges and to an equilibrium point x̄

of T . It turns out that x̄ is also a consensus opinion. In what follows, we generalize

this result in two directions. First, we show that if T is robust and self-influential,

then the sequence of updates defined as in (92) still converges and to an equilibrium

of T . Second, we can also offer a version where T is not necessarily assumed to be

self-influential. This relaxation comes at the cost of requiring λt to be bounded away

from 1, that is, λt ≤ b < 1 for all t ∈ N and some b ∈ (0, 1). Intuitively, this means

that agents, at each round, are stuck on their own opinion for at least a factor of 1− b,
which can be small, but must also be strictly positive.

Proposition 15 Let T be a robust opinion aggregator, x0 ∈ B, and {λt}t∈N ⊆ (0, 1]

such that
∑∞

t=1 λt =∞. The following statements are true:

1. If T is self-influential and {xt}t∈N is defined as in (92), then limt x
t exists and it

is an equilibrium of T .

2. If there exists b ∈ (0, 1) such that λt ≤ b for all t ∈ N and {xt}t∈N is defined as
in (92), then limt x

t exists and it is an equilibrium of T .

Proof. We first prove point 2, then point 1. By Lemma 8, recall that robust opinion
aggregators are nonexpansive.

2. Given x0 ∈ B, the sequence {xt}t∈N, defined as in (92), is a specification of the
Mann’s iterates of T , using as weights {λt}t∈N. Consider B̃ as in point 4 of Lemma 6.

Note that T
(
B̃
)
⊆ B̃ and xt ∈ B̃ for all t ∈ N0. By Ishikawa [50, Theorem 1], we have

that {xt}t∈N converges and its limit is a fixed point of T .
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1. By Proposition 13 and since T is self-influential, there exists ε ∈ (0, 1) such that

T = εI + (1− ε)S where S is a robust opinion aggregator. Note that given λ ∈ (0, 1]

we have that

Tλ
def
= (1− λ) I + λT = (1− λ) I + λεI + (1− ε)λS = (1− γ) I + γS

def
= Sγ

where γ = (1− ε)λ ≤ (1− ε). Given x0 ∈ B, the sequence {xt}t∈N, defined as in (92),
can be rewritten as

xt = St
(
xt−1

)
and St = (1− γt) I + γtS ∀t ∈ N

where γt = (1− ε)λt for all t ∈ N. We have that 0 < γt ≤ (1− ε) < 1 for all t ∈ N as
well as

∑∞
t=1 γt = ∞. By point 2, we can conclude that {xt}t∈N converges to a fixed

point of S. It is immediate to see that the fixed points of T and S coincide, proving

the statement. �

Remark 8 On the one hand, the updating process that we studied in Section 5 gen-
erates a sequence of updates {T t (x0)}t∈N. If we define xt = T t (x0) for all t ∈ N, then
the sequence of updates is such that

xt = T
(
xt−1

)
∀t ∈ N

which are also known in the mathematical literature as Picard’s iterates. On the

other hand, the sequence of updates generated by the updating procedure of DeMarzo,

Vayanos, Zwiebel [27] are known as (a version of) Mann’s iterates (see Mann [62] and

Ishikawa [50]). Both types of iterates are very common in the literature of fixed points

approximation which deals with the study of recursive procedures that yield existence

and convergence to fixed points of selfmaps (see, e.g., Berinde [11]). N

Note that for both results consensus is the only possible limit, provided T is a

consensus operator (cf. Definition 14 and Proposition 6). Note also that point 2

generalizes [27] in the linear case too. If each agent has a minimal stickiness to her

own opinion, then convergence happens irrespective of the network structure. This fact

is remarkable because convergence to a consensus could be obtained by having strong

connectedness, but without self-influentiality or, more in general, aperiodicity.

We next consider the procedure of Friedkin and Johnsen [33] and [34] (see also

Golub and Sadler [45, p. 16]), which is popular in sociology. In this case, agents are

assumed to aggregate an opinion x at each round with a linear operator T (represented

by a matrix W ), but they are also allowed to hold onto their initial opinion:

xt = αT
(
xt−1

)
+ (1− α)x0 ∀t ∈ N. (93)
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Friedkin and Johnsen interpret α as a measure of agents’susceptibilities to personal

influence. In other words, the t-th update of agent i is a mixture of her linear t − 1-

th update, xt−1, and her initial opinion x0
i where the mixture weight is given by α.

The convergence of the corresponding different updating process is derived under the

assumption α ∈ [0, 1) for all i ∈ N .67

In what follows, we study the Friedkin and Johnsen updating process in (93) when

T is only assumed to be robust, but not necessarily linear. Next result shows that if T

is robust, then the procedure in (93) still yields convergent updating dynamics.

Fact 1 Let T be a robust opinion aggregator and x0 ∈ B. If α ∈ (0, 1) and {xt}t∈N is
defined as in (93), then x̄ = limt x

t ∈ B exists and it is such that

x̄ = αT (x̄) + (1− α)x0.

Proof. Fix x0 ∈ B. Consider B̃ as in point 4 of Lemma 6. Observe that T
(
B̃
)
⊆ B̃.

Define also R : B̃ → B̃ to be such that R (x) = αT (x) + (1− α)x0 for all x ∈ B̃.

Since α ∈ (0, 1), R is well defined. By Lemma 8 and since T is robust, we have that

T is nonexpansive. Since α ∈ (0, 1) and x0 ∈ B̃, this immediately implies that R is a

contraction. By definition of R, we have that R (x0) = x1. If Rt (x0) = xt ∈ B̃ when t ∈
N, then we can conclude that Rt+1 (x0) = R (Rt (x0)) = R (xt) = xt+1. By induction, it

follows that {Rt (x0)}t∈N = {xt}t∈N ⊆ B̃. By Banach Contraction Principle and since

R is a contraction and B̃ is compact, we have that x̄ = limt x
t = limtR

t (x0) exists and

x̄ is a fixed point of R, that is,

x̄ = R (x̄) = αT (x̄) + (1− α)x0,

proving the statement. �

D.3 Comparison with Molavi, Tahbaz-Salehi, and Jadbabaie

In this section we show that for the issues analyzed in this paper, namely convergence

and the wisdom of the crowd, when each agent observes a unique initial signal, the

log-linear learning rule axiomatized in Molavi, Tahbaz-Salehi, and Jadbabaie [69] can

be equivalently analyzed by means of a linear system. However, the equivalence with a

linear system may be lost for a problem of learning with repeated signals like the one

in [69].

Formally, Molavi, Tahbaz-Salehi, and Jadbabaie consider the case of agents having

a full support belief µ ∈ ∆ (Θ) where Θ is a finite set of possible states of the world.

67For example, in discussing convergence, they require α−1 not to be an eigenvalue of W , thus

α 6= 1.
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In particular, there is a bijection between beliefs and the profile of likelihood ratios(
x
(
θ, θ̂
))

(θ,θ̂)∈Θ×Θ
with

x
(
θ, θ̂
)

=
µ (θ)

µ
(
θ̂
) ∀

(
θ, θ̂
)
∈ Θ×Θ.

Their assumption of IIA allows to study the evolution of x
(
θ, θ̂
)
∈ R++ independently

from the value of the other likelihood ratios. Therefore, we fix a particular
(
θ, θ̂
)
and

denote the likelihood ratio obtained from the belief of agent i at time t as

xti =
µti (θ)

µti

(
θ̂
) ∀i ∈ N, ∀t ∈ N.

When the agents do not observe any additional signal at period t equation (3) in [69]

reads as

lnxti =
∑
j∈Ni

aij,t lnxt−1
j

where aij,t > 0 for all i, j ∈ N and for all t ∈ N. We can explicitly write the law of
motion of {xt}t∈N as

xti = exp

(∑
j∈Ni

aij,t lnxt−1
j

)
∀i ∈ N,∀t ∈ N. (94)

For each t ∈ N define the operator St : Rn++ → Rn++ to be such that the i-th component

is x 7→ exp
(∑

j∈Ni aij,t lnxj

)
. Thus, we can rewrite (94) as xt = St (xt−1) for all t ∈ N.

Each operator St is not a robust opinion aggregator, since it does not satisfy translation

invariance.

At the same time, we can analyze an equivalent system whose law of motion is

described by time-varying linear aggregation. Toward this end, fix x0 and let {xt}t∈N
be recursively defined as in equation (94). Define At to be the matrix whose ij-th entry

is aij,t. Next, define {yt}t∈N0
by

yti = lnxti ∀i ∈ N, ∀t ∈ N0 (95)

and note that

yt = Aty
t−1 ∀t ∈ N.

Note that, whenever each At is equal to the same stochastic matrixW ∈ W, the iterates
{yt}t∈N are described by the standard DeGroot’s model with matrix W . Therefore, in
this case, it is possible to appeal to the results in [42] to study the limit behavior of

{yt}t∈N. In general, whenever each At ∈ W, one can rely on the more general results
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for time-varying matrices (see, e.g., Seneta [80] and Krause [56]). Given the continuity

of the transformation in (95), we have that

lim
t
xt exists in Rn++ ⇐⇒ lim

t
yt exists in Rn.

The previous simple equivalence shows that limt y
t uniquely pins down limt x

t.

D.4 Missing proofs

In this section, we confine all the proofs which involve routine arguments. They appear

in the order in which the corresponding statements appear in the text.

Proof of Lemma 6. 1. Since T is robust, we have that Ti : B → R is monotone and
translation invariant for all i ∈ N (cf. the definitions at the beginning of Appendix

B). By [22, Theorem 4], Ti is a niveloid for all i ∈ N . By [22, Theorem 1], Ti admits

an extension Si : Rn → R which is a niveloid for all i ∈ N . By [22, Theorem 4], Si is

monotone and translation invariant for all i ∈ N . Define S : Rn → Rn to be such that
the i-th component of S (x) is Si (x) for all i ∈ N and for all x ∈ B. It is immediate
to see that S is monotone and translation invariant. Fix k′ ∈ I. Since S is translation
invariant and T is normalized, it follows that for all k ∈ R

S (ke) = S (k′e+ (k − k′) e) = S (k′e) + (k − k′) e
= T (k′e) + (k − k′) e = k′e+ (k − k′) e = ke,

proving that S is normalized and, in particular, that S is robust.

2. We only prove uniqueness of the extension. The existence of a robust extension

S : Rn → Rn which is constant affi ne follows from routine arguments.68 Let R : Rn →
Rn be a robust and constant affi ne opinion aggregator such that R (x) = T (x) for all

x ∈ B. Let r ∈ int I. It follows that re ∈ intB. Consider x ∈ Rn and α ∈ (0, 1) such

that αx+ (1− α) re ∈ B. We have that

αR (x) + (1− α) re = R (αx+ (1− α) re) = T (αx+ (1− α) re)

= S (αx+ (1− α) re) = αS (x) + (1− α) re,

proving that R (x) = S (x). Since x was arbitrarily chosen, it follows that S = R.

3. By induction, if T is normalized and monotone, then T t is normalized and

monotone for all t ∈ N. Consider x ∈ B and t ∈ N. Define k? = mini∈N xi and

k? = maxi∈N xi. Note that ‖x‖∞ = max {|k?| , |k?|}, k?, k? ∈ I, and k?e ≤ x ≤ k?e.

Since T t is normalized and monotone, we have that

k?e = T t (k?e) ≤ T t (x) ≤ T t (k?e) = k?e,

68A proof is available upon request.
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yielding that |T t (x)| ≤ max {|k?| , |k?|} e and ‖T t (x)‖∞ ≤ ‖x‖∞. Since t and x were
arbitrarily chosen, the statement follows.

4. Let x ∈ B. Define k? = mini∈N xi and k? = maxi∈N xi. We have two cases:

a. k? < k?. Clearly, we have that k?, k? ∈ I. Note that Ĩ = [k?, k
?] ⊆ I is compact

and with nonempty interior. Moreover, x ∈ Ĩn = B̃.

b. k? = k?. Since I has nonempty interior, there exists ε > 0 such that either

Ĩ = [k?, k? + ε] ⊆ I or Ĩ = [k? − ε, k?] ⊆ I. In all these cases, Ĩ is compact and with

nonempty interior. Moreover, x ∈ Ĩn = B̃.

Consider the restriction T̃ = T|B̃ . Note that T
(
B̃
)
⊆ B̃, yielding that T̃ is a

robust opinion aggregator. By induction, we have that T̃ t (x) = T t (x) for all t ∈ N
and for all x ∈ B̃. It follows that for each x ∈ B̃

T̄ (x) = lim
τ

1

τ

τ∑
t=1

T t (x) = lim
τ

1

τ

τ∑
t=1

T̃ t (x) =
_

T̃ (x) ∀x ∈ B̃,

proving the point. �

Proof of Lemma 9. Let x ∈ B. Since T is a selfmap, we have that {T t (x)}t∈N ⊆ B.

Since B is convex, we have that

1

τ

τ∑
t=1

T t (x) ∈ B ∀τ ∈ N.

Since x was arbitrarily chosen, this implies that Aτ : B → B, defined by Aτ (x) =∑τ
t=1 T

t (x) /τ for all x ∈ B, is well defined for all τ ∈ N. Since B is closed, we have

that T̄ (x) = limτ Aτ (x) = limτ
1
τ

∑τ
t=1 T

t (x) ∈ B for all x ∈ B, proving that T̄ is well
defined. By the same computations contained in [3, Lemma 20.12], despite T being

nonlinear, one can prove that

Aτ (T (x)) =
τ + 1

τ
Aτ+1 (x)− 1

τ
T (x) ∀x ∈ B, ∀τ ∈ N.

This implies that

T̄ (T (x)) = lim
τ
Aτ (T (x)) = lim

τ

τ + 1

τ
lim
τ
Aτ+1 (x)− lim

τ

1

τ
T (x) = T̄ (x) ∀x ∈ B,

proving that T̄ ◦ T = T̄ .

1. By the same inductive argument contained in the proof of Lemma 8, we have

that for each t ∈ N the map T t : B → B is nonexpansive. Since the convex linear com-

bination of nonexpansive maps is nonexpansive, the map Aτ : B → B is nonexpansive

for all τ ∈ N. We can conclude that for each x, y ∈ B∥∥T̄ (x)− T̄ (y)
∥∥
∞ =

∥∥∥lim
τ
Aτ (x)− lim

τ
Aτ (y)

∥∥∥
∞

= lim
τ
‖Aτ (x)− Aτ (y)‖∞ ≤ ‖x− y‖∞ ,
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proving that T̄ is nonexpansive. Continuity of T̄ trivially follows.

2. By induction, we have that for each t ∈ N the map T t : B → B is normalized and

monotone. Since the convex linear combination of normalized and monotone operators

is normalized and monotone, the map Aτ : B → B is normalized and monotone for all

τ ∈ N. We can conclude that T̄ (ke) = limτ Aτ (ke) = ke for all k ∈ I as well as

x ≥ y =⇒ T̄ (x) = lim
τ
Aτ (x) ≥ lim

τ
Aτ (y) = T̄ (y) ,

proving that T̄ is normalized and monotone.

3. Since T is robust, T is normalized, monotone, and translation invariant. By the

previous point, T̄ is normalized and monotone. By induction, we have that for each

t ∈ N the map T t : B → B is translation invariant. Since the convex linear combination

of translation invariant operators is translation invariant, the map Aτ : B → B is

translation invariant for all τ ∈ N. We can conclude that for each x ∈ B and for each

k ∈ I such that x+ ke ∈ B

T̄ (x+ ke) = lim
τ
Aτ (x+ ke) = lim

τ
[Aτ (x) + ke] = T̄ (x) + ke,

proving that T̄ is translation invariant and, in particular, robust.

4. By induction, we have that for each t ∈ N the map T t : B → B is constant

affi ne. Since the convex linear combination of constant affi ne maps is constant affi ne,

the map Aτ : B → B is constant affi ne for all τ ∈ N. We can conclude that for each
x ∈ B, for each k ∈ I, and for each λ ∈ [0, 1]

T̄ (λx+ (1− λ) ke) = lim
τ
Aτ (λx+ (1− λ) ke)

= lim
τ

[λAτ (x) + (1− λ) ke] = λT̄ (x) + (1− λ) ke,

proving that T̄ is constant affi ne.

5. By induction, we have that for each t ∈ N the map T t : B → B is odd. Since

the convex linear combination of odd maps is odd, the map Aτ : B → B is odd for all

τ ∈ N. We can conclude that

T̄ (−x) = lim
τ
Aτ (−x) = lim

τ
[−Aτ (x)] = −T̄ (x) ∀x ∈ B s.t. − x ∈ B,

proving that T̄ is odd. �

Remark 9 The proof of Lemma 10 (cf. Proposition 14) below is a tedious adaptation
of the techniques contained in the proof of Edelstein and O’Brien [30, Lemma 1]. Their

case is more general in terms of domain of T in that B can be any convex subset of

a normed vector space. Their generality comes at the cost of having J equal to the

identity operator which in our case would only cover Corollary 1. N
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Proof of Lemma 10. We first offer two definitions and make two observations. Define
the diameter of {T t (x) : x ∈ A and t ∈ N0} by D.69 Given x ∈ B, define xt = T t (x) as

well as yt = S (xt) for all t ∈ N0. Since T is nonexpansive, recall that {‖xt − xt−1‖∞}t∈N
is a decreasing sequence for all x ∈ B.70 Note that this implies that ‖T (x)− x‖∞ ≥
‖T t+1 (x)− T t (x)‖∞ for all t ∈ N0 and for all x ∈ B, yielding that k > δ.

By contradiction, assume that {T t (x) : x ∈ A and t ∈ N0} is bounded. This implies
that D <∞. Consider M ∈ N\ {1} and P ∈ N to be such that

Mδ > D + δ + 1 and
⌊
P

M

⌋
> max

{
1,

k

(1− ε) εM

}
.71

By (62) and since P ∈ N, there exists x ∈ A such that∥∥xP+1 − xP
∥∥
∞ =

∥∥T P+1 (x)− T P (x)
∥∥
∞ ≥ δ.

Now, we enlist seven useful facts:

1. By (61) and since {‖xt − xt−1‖∞}t∈N is a decreasing sequence, it follows that

k ≥
∥∥xi+1 − xi

∥∥
∞ ≥ δ ∀i ∈ {1, ..., P} .

2. By definition of {yt}t∈N0
and since S is nonexpansive, we have that∥∥yt − yt−1

∥∥
∞ =

∥∥S (xt)− S (xt−1
)∥∥
∞ ≤

∥∥xt − xt−1
∥∥
∞ ∀t ∈ N.

3. By definition of {xt}t∈N0
and since T = εJ + (1− ε)S, we have that xt =

T (xt−1) = εJ (xt−1) + (1− ε) yt−1 for all t ∈ N, that is,

yt−1 =
1

1− εx
t − ε

1− εJ
(
xt−1

)
∀t ∈ N.

69Recall that the diameter of a subset Â of B is the quantity

sup
{
‖x− y‖∞ : x, y ∈ Â

}
.

70For, we have that for each t ∈ N and for each x ∈ B∥∥xt+1 − xt
∥∥
∞ =

∥∥T t+1 (x)− T t (x)
∥∥
∞

=
∥∥T (T t (x)

)
− T

(
T t−1 (x)

)∥∥
∞ ≤

∥∥T t (x)− T t−1 (x)
∥∥
∞ ≤

∥∥xt − xt−1
∥∥
∞ .

71Once M is chosen, one could set P =
(⌊

max
{

1, k
(1−ε)εM

}⌋
+ 1
)
M , so that⌊

P

M

⌋
=

⌊
max

{
1,

k

(1− ε) εM

}⌋
+ 1 > max

{
1,

k

(1− ε) εM

}
.
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By point 2, this yields that for each t ∈ N∥∥∥∥ 1

1− ε
(
xt+1 − xt

)
− ε

1− ε
(
J
(
xt
)
− J

(
xt−1

))∥∥∥∥
∞

=
∥∥yt − yt−1

∥∥
∞ ≤

∥∥xt − xt−1
∥∥
∞ .

4. Let L be an integer in N such that

L >
k

(1− ε) εM . (96)

Define bm = δ +m (1− ε) εM for all m ∈ {0, ..., L}. It follows that the collection
of intervals {[bm, bm+1]}L−1

m=0 contains L elements whose union is a superset of

[δ, k].

5. Note that εM−1 1−εi
εi

= εM−i−1 − εM−1 ≤ εM−i−1 for all i ∈ {1,M − 1}. Since
ε ∈ (0, 1), this implies that

(1− ε) εM
M−1∑
i=1

1− εi
εi
≤ (1− ε) ε

M−1∑
i=1

εM−i−1 = (1− ε) ε
M−2∑
i=0

εi

≤ (1− ε) ε 1

1− ε ≤ ε < 1.

6. Let t ∈ N, j ∈ N , and b, κ, c ≥ 0. If xt+1
j − xtj ≥ b− c and ‖xt − xt−1‖∞ ≤ b+ κ,

then (by point 3):72

b− c
1− ε −

ε

1− ε
(
xtkl − x

t−1
kl

)
=
b− c
1− ε −

ε

1− ε
(
Jj
(
xt
)
− Jj

(
xt−1

))
≤ b+ κ

where l is such that j ∈ Nl. This yields that

xtkl − x
t−1
kl
≥ b− c

ε
− 1− ε

ε
κ. (97)

7. Let t ∈ N, j ∈ N , and b, κ, c ≥ 0. If xtj − xt+1
j ≥ b− c and ‖xt − xt−1‖∞ ≤ b+ κ,

72For, we have that

b− c
1− ε −

ε

1− ε
(
xtkl − x

t−1
kl

)
=
b− c
1− ε −

ε

1− ε
(
Jj
(
xt
)
− Jj

(
xt−1

))
≤ 1

1− ε
(
xt+1
j − xtj

)
− ε

1− ε
(
Jj
(
xt
)
− Jj

(
xt−1

))
≤
∥∥∥∥ 1

1− ε
(
xt+1 − xt

)
− ε

1− ε
(
J
(
xt
)
− J

(
xt−1

))∥∥∥∥
∞

=
∥∥yt − yt−1

∥∥
∞ ≤

∥∥xt − xt−1
∥∥
∞ .
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then (by point 3):73

b− c
1− ε −

ε

1− ε
(
xt−1
kl
− xtkl

)
=
b− c
1− ε −

ε

1− ε
(
Jj
(
xt−1

)
− Jj

(
xt
))
≤ b+ κ

where l is such that j ∈ Nl. This yields that

xt−1
kl
− xtkl ≥ b− c

ε
− 1− ε

ε
κ. (98)

By definition of P , we have that bP/Mc satisfies (96). By point 4, there exists a
collection of intervals {[bm, bm+1]}bP/Mc−1

m=0 which covers [δ, k]. By point 1, [δ, k] contains

{‖xi+1 − xi‖∞}
P

i=1. Since we have bP/Mc intervals and the first P elements (of the

sequence {‖xt+1 − xt‖∞}t∈N) belong to these intervals, we have that there exists one
of them, Î = [bm̄, bm̄+1], which contains at least M elements of {‖xi+1 − xi‖∞}

P

i=1.
74

Since {‖xt − xt−1‖∞}t∈N is decreasing, we have that there exists K ∈ N0 such that∥∥xK+i+1 − xK+i
∥∥
∞ ∈ Î ∀i ∈ {1, ...,M} .

This implies that there exists j ∈ {1, ..., n} such that
∣∣xK+M+1
j − xK+M

j

∣∣ ≥ bm̄ and∥∥xK+M − xK+M−1
∥∥
∞ ≤ bm̄+1 = bm̄ + (1− ε) εM . We have two cases:

a. xK+M+1
j − xK+M

j ≥ bm̄. Set b = bm̄, c = 0, and κ = (1− ε) εM . By (97), we can
conclude that

xK+M
kl

− xK+M−1
kl

≥ bm̄ − (1− ε) εM (1− ε)
ε

. (99)

By (finite) induction, we next prove that

xK+M+1−i
kl

− xK+M−i
kl

≥ bm̄ − (1− ε) εM (1− εi)
εi

∀i ∈ {1,M − 1} , (100)

73For, we have that

b− c
1− ε −

ε

1− ε
(
xt−1
kl
− xtkl

)
=
b− c
1− ε −

ε

1− ε
(
Jj
(
xt−1

)
− Jj

(
xt
))

≤ 1

1− ε
(
xtj − xt+1

j

)
− ε

1− ε
(
Jj
(
xt−1

)
− Jj

(
xt
))

≤
∥∥∥∥ 1

1− ε
(
xt − xt+1

)
− ε

1− ε
(
J
(
xt−1

)
− J

(
xt
))∥∥∥∥
∞

=

∥∥∥∥ 1

1− ε
(
xt+1 − xt

)
− ε

1− ε
(
J
(
xt
)
− J

(
xt−1

))∥∥∥∥
∞

=
∥∥yt − yt−1

∥∥
∞ ≤

∥∥xt − xt−1
∥∥
∞ .

74Otherwise, each interval would contain strictly less than M elements. This would yield that{∥∥xi+1 − xi
∥∥
∞
}P
i=1

would consist of strictly less than⌊
P

M

⌋
M ≤ P

M
M = P

elements, a contradiction.
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that is,

xK+M+1−i
kl

≥ xK+M−i
kl

+ bm̄ − (1− ε) εM (1− εi)
εi

∀i ∈ {1,M − 1} . (101)

By (99), the statement is true for i = 1. Next, we assume it is true for i ∈
{1, ...,M − 1} and prove it is still true for i+ 1 when i+ 1 ∈ {1, ...,M − 1}. This
implies that i ≤M − 2. Define t = K +M − i. By the induction hypothesis, we
have that

xt+1
kl
− xtkl = xK+M+1−i

kl
− xK+M−i

kl
≥ bm̄ − (1− ε) εM (1− εi)

εi
.

Moreover, we also have that ‖xt − xt−1‖∞ =
∥∥xK+M−i − xK+M−i−1

∥∥
∞ ≤ bm̄ +

(1− ε) εM . Set b = bm̄, c = (1− ε) εM (1−εi)
εi

, and κ = (1− ε) εM . By (97), we
can conclude that

x
K+M+1−(i+1)
kl

− xK+M−(i+1)
kl

= xK+M−i
kl

− xK+M−i−1
kl

= xtkl − x
t−1
kl

≥ bm̄ − (1− ε) εM (1− εi)
εi

1

ε
− 1− ε

ε
(1− ε) εM

= bm̄ − (1− ε) εM (1− εi+1)

εi+1
,

proving (100). By (101), repeated substitution, and point 5, this implies that

xK+M
kl

≥ xK+1
kl

+ (M − 1) bm̄ − (1− ε) εM
M−1∑
i=1

1− εi
εi
≥ xK+1

kl
+ (M − 1) bm̄ − 1,

that is, ∥∥xK+M − xK+1
∥∥
∞ ≥ xK+M

kl
− xK+1

kl
≥ (M − 1) bm̄ − 1.

Since bm̄ ≥ δ > 0, we have that (M − 1) bm̄ ≥ (M − 1) δ > D + 1. We can

conclude that

D ≥
∥∥xK+M − xK+1

∥∥
∞ ≥ (M − 1) bm̄ − 1 > D,

a contradiction.

b. xK+M
j − xK+M+1

j ≥ bm̄. Set b = bm̄, c = 0, and κ = (1− ε) εM . By (98), we can
conclude that

xK+M−1
kl

− xK+M
kl

≥ bm̄ − (1− ε) εM 1− ε
ε

. (102)

By (finite) induction, we next prove that

xK+M−i
kl

− xK+M+1−i
kl

≥ bm̄ − (1− ε) εM (1− εi)
εi

∀i ∈ {1,M − 1} , (103)
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that is,

xK+M−i
kl

≥ xK+M+1−i
kl

+ bm̄ − (1− ε) εM (1− εi)
εi

∀i ∈ {1,M − 1} . (104)

By (102), the statement is true for i = 1. Next, we assume it is true for i ∈
{1, ...,M − 1} and prove it is still true for i+ 1 when i+ 1 ∈ {1, ...,M − 1}. This
implies that i ≤M − 2. Define t = K +M − i. By the induction hypothesis, we
have that

xtkl − x
t+1
kl

= xK+M−i
kl

− xK+M+1−i
kl

≥ bm̄ − (1− ε) εM (1− εi)
εi

.

Moreover, we also have that ‖xt − xt−1‖∞ =
∥∥xK+M−i − xK+M−i−1

∥∥
∞ ≤ bm̄ +

(1− ε) εM . Set b = bm̄, c = (1− ε) εM (1−εi)
εi

, and κ = (1− ε) εM . By (98), we
can conclude that

x
K+M−(i+1)
kl

− xK+M+1−(i+1)
kl

= xK+M−i−1
kl

− xK+M−i
kl

= xt−1
kl
− xtkl

≥ bm̄ − (1− ε) εM (1− εi)
εi

1

ε
− 1− ε

ε
(1− ε) εM

= bm̄ − (1− ε) εM (1− εi+1)

εi+1
,

proving (103). By (104), repeated substitution, and point 5, this implies that

xK+1
kl
≥ xK+M

kl
+ (M − 1) bm̄ − (1− ε) εM

M−1∑
i=1

1− εi
εi
≥ xK+M

kl
+ (M − 1) bm̄ − 1,

that is, ∥∥xK+1 − xK+M
∥∥
∞ ≥ xK+1

kl
− xK+M

kl
≥ (M − 1) bm̄ − 1.

Since bm̄ ≥ δ > 0, we have that (M − 1) bm̄ ≥ (M − 1) δ > D + 1. We can

conclude that

D ≥
∥∥xK+1 − xK+M

∥∥
∞ ≥ (M − 1) bm̄ − 1 > D,

a contradiction.

Points a and b prove the statement. �
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