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Abstract

How do estimates of firm-level markups that rely on production function estimations de-

pend on common data limitations? With a tractable analytical framework, simulation from a

quantitative model, and firm-level administrative production and pricing data, we study bi-

ases due to the use of revenue instead of quantity, and due to production function misspec-

ification. Estimates from revenue mismeasure the level of markups, but do contain useful

information about true markups. Conversely, misspecified production functions have little

effect on the estimated average markup but reduce its information content. Finally, revenue

and quantity markups display similar correlations with variables such as profitability and

market share in our data.
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1 Introduction

The markup is a key variable in macroeconomics. Markups above one mean that firms charge

prices above marginal costs, which reduces demand for goods. This negatively affects demand

for production factors and creates a gap between factor prices and marginal productivities. If

markups differ across firms there is a further effect: high-markup firms produce inefficiently

little compared to low-markup firms, causing output in the economy to fall below the effi-

cient frontier and depressing aggregate total factor productivity (e.g. Hsieh and Klenow 2009).

Conversely, higher markups can represent the return to intangible investments and fixed costs,

and can incentivize firms to innovate and drive aggregate productivity growth (e.g. Aghion et

al. 2005). Whether this is the case has become a particularly relevant question recently, be-

cause new evidence suggests that both the level and the dispersion of markups have increased

steadily over the last 40 years (e.g. De Loecker et al. 2020).

To analyze the macroeconomic effects of markups, it is first needed to measure them. This

paper uses a combination of theory, simulations and detailed firm-level administrative data

on production and prices to assess the performance of empirical markup estimation methods.

Measuring markups is not trivial as the true markup is the ratio of price over marginal costs.

The former is only available in a few datasets, the latter in virtually none. Recent work there-

fore uses the ratio estimator of the markup, which was first derived in Hall (1986, 1988). He

derives that markups can be found by multiplying the output elasticity of some variable input,

that firms set without adjustment costs, with the ratio of revenue over the firm’s spending on

that variable input. Markups are therefore straightforward to estimate with data on revenue

and input spending from the income statement, if the researcher knows the parameters of the

production function.

The purpose of this paper is twofold. First, we provide an accessible introduction to the two-

stage procedure that is commonly used to obtain production function parameters to estimate

markups. Estimating a production function is difficult because firm-level productivity is un-

observed. Productivity directly affects output and indirectly affects inputs (because productive

firms charge lower prices and therefore sell more), such that a least squares estimation of a

parametric production function is biased (e.g. Klette and Griliches 1996). To solve this, many

papers after De Loecker and Warzynski (2012) have estimated markups using production

function elasticities from the Ackerberg et al. (2015) two-stage iterative GMM procedure.

The iterative GMM procedure involves a first-stage regression to purge observed firm output

of measurement error. The second stage involves a regression to identify the production

function, imposing structure on the productivity process to identify the true parameters. We

provide an intuitive discussion in a simplified analytical framework of the conditions under

which a researcher is able to consistently estimate the elasticities of the production function,

and therefore the markup, with this procedure.
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In the body of the paper, we then scrutinize three prominent critiques of this procedure through

the lens of the simple framework. While the two-stage iterative GMM procedure has been fre-

quently used in the literature, skepticism has recently developed on the feasibility of using it

to estimate markups for price-setting firms. The first critique relates to the bias that arises

from assuming an incorrect functional form of the production function. In particular, we dis-

cuss what happens if a researcher assumes a Cobb-Douglas production function while the true

production function is more complex. The second is a derivation of the bias that results from

measuring markups from estimates of the production function using data on revenue rather

than quantity as a measure of a firm’s output. Because price-setting firms face downward-

sloping demand curves, firms that increase production need to lower prices to attain sufficient

demand. Consequently, estimates of the elasticities for inputs from a revenue production func-

tion are lower than those from a quantity production function. Bond et al. (2020) show that

this causes a bias in the markup estimates severe enough to make the estimates uninformative

of the true markup. Yet, the scarcity of (accessible) data on firm-level prices means that the

majority of researchers are limited to the analysis of data on revenues. The Bond et al. (2020)-

critique therefore has the potential to seriously limit future analysis of firm-level markups. The

third critique we discuss is on two-stage GMM procedure in settings where firms have market

power. The procedure requires that a firm’s output is purged from measurement error in a first-

stage regression that controls for unmeasured productivity using observable data. Recent work,

including Bond et al. (2020) and Doraszelski and Jaumandreu (2020), shows that this purging

requires the researcher to observe the firm’s marginal costs, which is usually unfeasible.

While all of these critiques have merit, we show that there are strong practical differences in the

extent to which bias estimates of firm-level markups are affected. To do so we deploy two ap-

proaches. We first estimate the production function on a sample of simulated firms. The firms

compete oligopolistically as in Atkeson and Burstein (2008) and therefore have endogenously

heterogeneous markups. The advantage of estimating markups on simulated firms is that we

know the true markups and the true parameters of the production function. We compare the

true values with estimates from the Ackerberg et al. (2015) procedure and the Hall (1986) ratio-

estimator for various production functions, first-stage specifications and output variables. In

the final part of the analysis, we estimate markups in different specifications using rich empiri-

cal firm-level data. For the universe of French manufacturing firms with at least 20 employees,

we are able to estimate the markup with both revenue and quantity data. To do so, we combine

balance sheet and income statement data for these firms from 2009 to 2018 with data on the

unit values of the products they sell. This allows us to empirically assess the degree to which

markup estimates from revenue data differ from markup estimates from quantity data.

To analyze the relevance of the functional form of the production function, we compare

markup estimates from a Cobb-Douglas and a translog production function. The latter is a first-
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order log approximation of a large set of more complex production functions, including the

CES, and nests Cobb-Douglas as a special case. We find that there are significant drawbacks to

assuming that production obeys a Cobb-Douglas production function when the true produc-

tion function does not. While our simulations show that average markups are well-estimated,

dispersion is not. For the French data, we find that the estimated dispersion in markups un-

der the Cobb-Douglas assumption is more than twice the dispersion found when assuming

the less restrictive translog. In a back-of-the-envelope exercise, we show that researchers that

attempt to measure the welfare costs of markups using a Cobb-Douglas production function

would overestimate these costs by 126% in the French data. This is important because the

Cobb-Douglas production function has become popular in response to critiques of production

function-based markup estimates such as Bond et al. (2020) and Doraszelski and Jaumandreu

(2020). If firms have the same production functions within industries, an analysis of Cobb-

Douglas log markups with industry fixed effects is unaffected by bias in production function

estimates (e.g. Peters 2020, Crouzet and Eberly 2019, Meier and Reinelt 2020). Our results show

that this solution is not without loss of generality.

When comparing the estimates of markups derived from revenue and quantity production

functions, we find that revenue-based markups are informative of quantity-based markups.

Bond et al. (2020) show that, because price-setting firms set markups as a function of the price

elasticity of demand, the revenue elasticity of an input is equal to the output elasticity of an

input divided by the true markup. Markups from the ratio-estimator will therefore erroneously

equal one at all times when the revenue elasticity of an input is used. We show that this cri-

tique holds on average, in the sense that the average level of revenue-based markups is not

informative of the true average markup. Average revenue markups equal one if firms do not

face aggregate demand shocks, though the average can fall short, exceed or be equal to the true

markup in richer settings. We further show that the bias mainly affects the level of the markup.

The dispersion, both in the cross-section and over time, is estimated reasonably well. We find a

positive pairwise correlation of 0.34 for our preferred revenue and quantity-based log markup

estimates, rising to 0.61 in log differences. This is because revenue-production functions do

not measure the exact elasticity of revenues with respect to an input when a functional form,

such as Cobb Douglas or translog, is assumed. We furthermore find that the firm-level corre-

lation of markup estimates with profitability, the labor share and market share is similar for

quantity-based markups and revenue-based markups. From this we conclude that revenue-

based markup estimates do contain meaningful information about true markups.

We find that estimates of the markup are mostly robust to misspecification of the first stage in

the two-stage iterative GMM procedure. The first stage is valid if it purges measurement error

from the observed firm output. In practice, this is done by running a regression of output on a

third-degree polynomial of observed inputs and a set of control variables. The residuals from

this regressions are assumed to be the measurement error, which is true as long as a firm’s un-
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observed total factor productivity is correctly accounted for by the polynomial of observables

and control variables. Bond et al. (2020) and Doraszelski and Jaumandreu (2020) show that if

firms are price-setters, one of those control variables should be the firm’s log marginal cost. As

marginal costs are nearly always unobserved, a researcher could proxy for it by including the log

of prices and the log of the markup. While markups are unobserved, a researcher could instead

add a variable that closely correlates with the markup, such as market share (e.g. De Loecker

et al. 2020), to address this issue. We compare markup estimates from three specifications:

one where we do not purge for measurement error, one where we only include a third-degree

polynomial of inputs in the first stage, and one where we additionally include price and market

share. We show in the simulated model, where we know the ‘true’ measurement error, the most

complete full-stage regressions correctly identify the errors. We further show that the specifica-

tion of the first stage has minor effects on the estimates of the production function parameters

and the estimated markups, both in the simulations and in the data. In summary, we conclude

the Ackerberg et al. (2015) procedure can feasibly be used to estimate firm-level markups.

Related literature Our paper builds on a significant literature that estimates production func-

tions at the firm level. A simple regression of a set of (log) inputs on a firm’s (log) output does not

identify the production function elasticities because of unobserved differences in productivity

across firms. Productivity directly affects output and indirectly affects inputs (e.g. because pro-

ductive firms charge lower prices and therefore sell more), such that a least squares estimation

of a parametric production function is biased (e.g. Klette and Griliches 1996). Our analysis is

in the spirit of the seminal work by Olley and Pakes (1996) and Levinsohn and Petrin (2003)

by using a proxy regression to control unobservable productivity. In line with Ackerberg et al.

(2015) we use materials as a variable input to proxy for unobservable productivity, under the

assumption that demand for materials is monotonic in the latter.

We focus on the feasibility of using estimates of production function elasticity to estimate

markups at the firm level. This technique was pioneered by De Loecker and Warzynski (2012)

to show that exporting firms have higher markups than non-exporters. De Loecker et al. (2016)

extend their methodology to multi-product firms.1 De Loecker et al. (2020) applies the method-

ology to listed U.S. firms to show that estimated markups have increased sharply between 1980

and 2015, a result confirmed for other countries by Díez et al. (2019) and that has sparked a

rich discussion on the feasibility of the De Loecker and Warzynski (2012) methodology on ac-

counting data (e.g., Traina 2018, Basu 2019, Syverson 2019). Baqaee and Farhi (2019) note that

the rise of markups is driven by a reallocation of activity towards high-markup firms, in line

with evidence of reallocation towards low-labor share firms in Autor et al. (2020) and Kehrig

1Because most datasets do not provide input allocations across products that firms produce, De Loecker et al.
(2016) estimate production functions at the product level using data on single-product firms. They then estimate
markups for multi-product firms with the estimated elasticities. We also rely on product-level data for prices and
quantities, but aggregate this to the firm level when estimating markups.
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and Vincent (2021). Hershbein et al. (2021) and Morlacco (2019) note that markup estimates

are biased when firms have market power on the market for the flexible input.2

Estimating the production function when firms have market power is particularly challenging.

As pointed out by Doraszelski and Jaumandreu (2019) and Brand (2019) one of the identifying

assumptions in the procedure by Ackerberg et al. (2015) is that the demand function by firms

is not affected by unobservables other than productivity.3 This is true for cases such as per-

fect or monopolistic competition but not necessarily for the case of oligopolistic competition.

We analyze the bias arising from improperly accounting for demand (and therefore markup)

heterogeneity in the estimation of the production function elasticities and markups.4

Our paper adds to the broader literature that on the consequences of market power. Karabar-

bounis and Neiman (2014) find that the share of labor has fallen in most advanced economies

over the last decades.5 Barkai (2017) adds that, when accounting for the falling costs of capital,

the capital share of income has also declined, leaving a rise in the profit share as the residual.6

Increasing markups have been linked to low investments and a lack of entry (e.g. Gutiérrez and

Philippon 2017, Eggertsson et al. 2018, Gutiérrez and Philippon 2018), low productivity growth

(e.g. Aghion et al. 2019, De Ridder 2019),7 and industry concentration (e.g. Grullon et al. 2019,

Autor et al. 2020). The effects of markup dispersion on welfare through misallocation have been

quantified in (e.g.) Baqaee and Farhi (2019), Edmond et al. (2018), and Peters (2020).8

Outline The remainder of this paper proceeds as follows. Section 2 outlines an analytical

framework to understand the conditions under which a firm-level production function are con-

sistently estimated, potential biases are discussed in Section 3. In Section 4 we introduce our

dataset with production and pricing data for French manufacturing firms. Section 5 presents

simulations that compare the performance of our various markup estimates in a setting where

true markups and production functions are known. In section 6 we compare the empirical

properties of markup estimates from various specifications. Section 7 concludes.

2A number of recent papers deploys markup estimates using the De Loecker and Warzynski (2012) methodology
in specific applications. Burstein et al. (2020) show that markups in French data are either cyclical or countercyclical
depending on the level of aggregation that is considered. Meier and Reinelt (2020) add that markups become more
dispersed after monetary policy shocks, negatively affecting total factor productivity. Calligaris et al. (2018) find that
markups have increased most in sectors with high digitization, a result confirmed at the firm level by De Ridder
(2019). Crouzet and Eberly (2019) find a relationship between markups and a firm’s intangible investment share.

3The bias arising from a violation of this assumption, in particular on correlations between markups and de-
mand determinants, is analyzed in Doraszelski and Jaumandreu (2020).

4Our estimation also requires sufficient variation in input prices for the variable input to allow separate identifi-
cation of the variable input and productivity (e.g. Blundell and Bond 2000, Gandhi et al. 2020).

5Gutiérrez and Piton (2020) note that, outside of North America, the decline in the labor share is not present
outside of the housing sector.

6Neiman and Vavra (2019) note that unmeasured inputs would also appear as a rise in profits from this calcula-
tion, and therefore label the residual of national income after labor and capital payments ‘factorless income’.

7Cavenaile et al. (2019) note that the rise of markups also incentives firms to invest in R&D.
8Bornstein (2018) show that consumer demand has become less sensitive to price changes, a trend that might

be driven by aging, while Neiman and Vavra (2019) consumption baskets are increasingly narrow.

5



2 Analytical Framework

In this section, we discuss the properties of the two-stage Generalized Method of Moments

(GMM) estimator of the production function. The first stage purges a firm’s observed output

from measurement error. The second stage then consists of a GMM instrumental variable es-

timation to estimate the actual production function on purged output. For this section, we

assume that the researcher observes prices and quantities. We start by describing the second

stage of the GMM estimator in the simplest possible environment where output is log-linear

in a single production factor and productivity is idiosyncratic. We then extend this simple

model by introducing persistent productivity, multiple production factors and more sophis-

ticated production functions. Finally, we discuss measurement error and its purging in the first

stage of the procedure, in particular when firms have market power.

2.1 The Baseline Estimator

To understand the basic intuition behind the identification of production functions, consider

the case where firms produce their output Yit using one input Vit. Both output and the input

are observed without measurement error. Firms are subject to total factor productivity (TFP)

shocks, denoted ωit in logs, that are unobserved to the econometrician. All firms minimize

costs and share the following Cobb-Douglas production function:

yit = αvit + ωit,

where the parameter α is the true output elasticity of vit and where lower-caps denote log-

deviations from the mean.9 We assume that the input, vit, is variable and static, that is, the

choice of this inputs usage is entirely determined within the period and is not subject to any

adjustment cost or information frictions. We further assume that the productivity ωit is inde-

pendently and identically distributed (i.i.d.) across time and firms. Because vit is a flexible

input, we can use it to calculate markups along the ratio estimator. Denoting the firm’s price by

Pit and the factor price of Vit by Wt, the true markup is given by µit = α(PitYit)/(WtVit).

To calculate these markups we must estimate the output elasticity α. A least-square regression

of input vit on output yit is likely to be biased, because unobserved productivity ωit serves as

a residual and is likely to affect a firm’s choice of vit, violating orthogonality. The solution is to

construct a GMM estimator of α using the past value of input vit−1 as an instrument for vit:

Definition 1 (GMM estimator) the GMM estimator is α̂ ∈ R such that the moment E [ω̂itvit−1] is

equal to zero where ω̂it = yit − α̂vit = (α− α̂)vit + ωit .10

9To be precise, xit = logXit−E [logXit]whereE [logXit] is the limit of the empirical average across observations.
This normalization allows to get rid of any constant in the production function and ensures ωit has mean zero.

10In the above definition, the expectation operator E denotes the limit of the empirical average across observa-
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It is straightforward to compute the estimator α̂. Inserting the production function into the

moment condition yields:

E [((α− α̂)vit + ωit)vit−1] = (α− α̂)E [vitvit−1] = 0,

which uses E [ωitvit−1] = 0. It is clear that the condition above is only satisfied when α = α̂ or

when E [vitvit−1] = 0. Hence as long as there is a non-zero correlation between vit and vit−1, the

estimator α̂ is asymptotically unbiased with a unique value equal to the true elasticity α.

What assures that there is a non-zero correlation between vit and vit−1, or in other words, that

the lagged variable input is a relevant instrument? We have assumed that productivity is i.i.d.

and thus have no persistence, which means that persistence in the variable input must come

from some other source. The first order condition for a cost-minimizing firm’s vit reads:

vit =
1

1− α
(ωit +mcit − wt) . (1)

It follows that the persistence of vit has to come from either persistence in the input price wt
or in log marginal cost mcit. Note that marginal cost is equal to Pit/µit and is determined in

equilibrium by the demand system and the competition games among firms. This argument

is not unlike Gandhi et al. (2020) which point to the need of persistence in the variable inputs

independently of productivity persistence for the identification of production function. We

collect these results in the following proposition.

Proposition 1 The GMM estimator is identified and asymptotically unbiased, that is, α̂ = α.

In appendix A.1, we derive the asymptotic variance of the above defined GMM estimator which

satisfies Var [α̂] ∼ E[ω2
it]E[v2it−1]

nE[vitvit−1]2
. The precision of this estimator is then proportional to the vari-

ance of productivity, E
[
ω2
it

]
, and increases in the power of the instrument E[vitvit−1]

2.

To conclude, the GMM estimator is identified and asymptotically unbiased. In the next sub-

section, we show that this results holds when we relax the simplifying assumptions of this

model. For a first reading, the reader can skip the next section.

2.2 Extensions

We now show that the consistency of the GMM estimator is robust to several extensions that

are common in practical applications. We study (i) the case of translog production function,

(ii) the case of several inputs, and (iii) the case of AR(1) productivity. We discuss the case with

all these extensions together in the appendix.

tions. We therefore study the asymptotic properties of the GMM estimator, which allows us to keep the argument as
transparent as possible. In appendix A.1, we first derive the estimator for finite sample before deducing its asymp-
totic variance.
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2.2.1 Translog Production Function

We first ease the assumption that output is log-linear by replacing the Cobb-Douglas produc-

tion function with a translog specification:

yit = αvit + βv2it + ωit.

The other assumptions are unchanged. Our aim is to identify the parametersα and β, to be able

to calculate the size-dependent output elasticity of the variable input for the calculation of the

true markup µit = (α + 2βvit)(PitYit)/(WtVit). The least-squares estimation of the production

function suffers from the same bias as before, which we address by instrumenting vit and v2it by

their respective lags. Econometrically, estimating the more sophisticated translog production is

therefore simply akin to estimating a multivariate GMM regression with instrumental variables.

Formally, we define the estimator as:

Definition 2 The GMM estimator is a pair (α̂, β̂) such that E [ω̂itvit−1] = 0 and E
[
ω̂itv

2
it−1
]

= 0

where ω̂it = yit − α̂vit − β̂v2it = (α− α̂)vit + (β − β̂)v2it + ωit.

It is again straightforward to solve for the estimator (α̂, β̂) in our parsimonious setting. It in-

volves solving the system of linear equations implied by the moment conditions:

E [ω̂itvit−1] = 0
E
[
ω̂itv

2
it−1
]

= 0
⇐⇒ (α− α̂)E[vitvit−1] + (β − β̂)E[v2itvit−1] = 0

(α− α̂)E[vitv
2
it−1] + (β − β̂)E[v2itv

2
it−1] = 0

.

This system can be rewritten in matrix form with V (B − B̂) = 0 where

B − B̂ =

(
α− α̂
β − β̂

)
and V =

(
E[vitvit−1] E[v2itvit−1]
E[vitv

2
it−1] E[v2itv

2
it−1]

)
.

As long as the determinant of V is not zero, the GMM estimator on translog is identified and

asymptotically unbiased such that α̂ = α and β̂ = β. This is the case as long as vit and its square

are not colinear and when the lagged values of vit and v2it are relevant instruments.

2.2.2 Several Inputs

In the next extension, we assume that firms produces with two inputs, a variable input vit and

another input kit. We assume that the additional input is, in the terminology of the produc-

tion function literature, dynamic. This means that firms face adjustment costs and other inter-

temporal constraints when setting kit, that lead firms to choose kit before observing contem-

poraneous productivity. The production function in logs reads yit = αvit +βkit +ωit and we are

interested in estimating the parameters (α,β). Because kit is set before productivity is observed,

we only need to instrument the variable input with its lag. The estimation is therefore akin to a
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GMM regression with one endogenous and one exogenous variable. The estimator is:

Definition 3 The GMM estimator is a pair (α̂, β̂) such that E [ω̂itvit−1] = 0 and E [ω̂itkit−1] = 0

where ω̂it = yit − α̂vit − β̂kit = (α− α̂)vit + (β − β̂)kit + ωit.

Solving for the estimator, (α̂, β̂), implies solving for the following system of equations defined

by the moment conditions:

E [ω̂itvit−1] = 0
E [ω̂itkit−1] = 0

⇐⇒ (α− α̂)E[vitvit−1] + (β − β̂)E[kitvit−1] = 0

(α− α̂)E[vitkit−1] + (β − β̂)E[kitkit−1] = 0
.

This system can be rewritten in matrix form with V (B − B̂) = 0 where

B − B̂ =

(
α− α̂
β − β̂

)
and V =

(
E[vitvit−1] E[kitvit−1]
E[vitkit−1] E[kitkit−1]

)
.

Note that if the input kit is perfectly correlated with the variable inputs vit (and hence also

variable), the matrix V won’t be of full rank leading to non-identification of the estimator (α̂, β̂).

However, if kit is not variable, it is thus not perfectly correlated with vit and the determinant of

V can be different from zero. As long as the determinant of V is not zero, the GMM estimator is

identified and asymptotically unbiased such that α̂ = α and β̂ = β.

2.2.3 Persistent Productivity

In the final extension, we assume that total factor productivity follows a first-order autoregres-

sive (AR1) process in logs. The production function is still yit = αvit +ωit while the productivity

process is ωit = ρωit−1+ξit. We would like to show the properties of GMM estimator (α̂, ρ̂) using

vit−1 and ω̂it−1 as an instrument for vit and ω̂it, where productivity is fitted based on a guess for

α, because the true level of productivity is unobserved. The estimator is now defined as:

Definition 4 The GMM estimator is a pair (α̂, ρ̂) such that E
[
ξ̂itvit−1

]
= 0 and E

[
ξ̂itω̂it−1

]
= 0,

where ω̂it = yit − α̂vit = (α− α̂)vit + ωit and ξ̂it = ω̂it − ρ̂ω̂it−1 = ξit + (α− α̂)(vit − ρvit−1) + (ρ−
ρ̂)ωit−1 + (ρ− ρ̂)(α− α̂)vit−1.

In practice, this estimator is solved for iteratively. Because the fitted productivity ω̂it depends

on α, the econometrician iterates over potential output elasticities α̂ until both the moment

conditions for productivity and for the variable input are satisfied. This is why De Loecker and

Warzynski (2012) label this procedure “iterative GMM”. The estimator, (α̂, ρ̂), is characterized

by the following system of equations defined by the moment conditions:

E
[
ξ̂itvit−1

]
= 0

E
[
ξ̂itω̂it−1

]
= 0

⇐⇒ (α− α̂)E [(vit − ρvit−1)vit−1] + (ρ− ρ̂)E [ωit−1vit−1] + (α− α̂)(ρ− ρ̂)E
[
v2it−1

]
= 0

(α− α̂)E [(vit − ρvit−1)ωit−1] + (ρ− ρ̂)E
[
ω2
it−1

]
+ (α− α̂)(ρ− ρ̂)E [vit−1ωit−1] = 0
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In general, the above system of equations admits two solutions. One is the true solution with

α̂ = α and ρ̂ = ρ, while the other solution converges to (α, ρ) as variation in the data increases.

We leave the full and formal discussion of this case in Appendix A.2. To understand the essence

of the argument consider the following proof sketch, when α̂ and ρ̂ are not too far from α and ρ

respectively, the terms of the form (α̂ − α)(ρ̂ − ρ), are of second order. In this case, the system

characterizing the estimator (α̂, ρ̂) reduced locally to the matrix equation V (B − B̂) = 0 where

B − B̂ =

(
α− α̂
ρ− ρ̂

)
and V =

(
E[(vit − ρvit−1)vit−1] E[ωit−1vit−1]
E[(vit − ρvit−1)ωit−1] E[ω2

it−1]

)
.

As long as the determinant of V is not zero, the GMM estimator is locally identified and asymp-

totically unbiased. In Appendix A.2, we show that the GMM estimator is globally identified and

asymptotically unbiased as long as there is enough variation in the data.

2.3 Measurement Error and the Two-Stage Procedure

So far, we have abstracted from the first stage of the two-stage GMM procedure by assuming

that output is observed without error. In this section we add measurement error to observed

output. We first show that our previous results on the consistency of the GMM estimator are

unaffected by the presence of measurement error although it reduces the precision of the esti-

mates. We then discuss how a first stage “proxy regression” can remove the measurement error

and therefore improve precision of the production function parameter and markup estimates.

As in the baseline framework, assume that firms produce yit using the single variable input

vit while being subject to idiosyncratic productivity shocks ωit. Furthermore, assume that the

firms’ output is observed subject to measurement error, or equivalently, that firms are subject

to unexpected productivity shocks that occur after input vit is set. The measurement error is

log-additive and denoted by ηit. All firms produce along:

yit = αvit + ωit + ηit,

where yit denotes observed output or output inclusive of the unexpected productivity shock.

We assume that measurement errors at time t are independent of past value of the variable

input, that is, E [η̂itvit−1] = 0. If the econometrician ignores the presence of these measurement

errors, the GMM estimator is defined as follows:

Definition 5 The GMM estimator is α̂ ∈ R such that the moment E
[
( ̂ωit + ηit)vit−1

]
is equal to

zero where ̂ωit + ηit = yit − α̂vit = (α− α̂)vit + ωit + ηit.

The GMM estimator is characterized by:

E
[
( ̂ωit + ηit)vit−1

]
= (α− α̂)E[vitvit−1] = 0,
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where we use the fact that E [ω̂itvit−1] = 0. As was the case in the baseline framework, the

GMM estimator α̂ of the variable input’s output elasticity is equal to α as long as E[vitvit−1] 6= 0.

The estimator remains unbiased and unidentified as the additional measurement error only

increases the variance of the composite error term ωit + ηit in the production function. This

point is known and has been discussed, for example, in Blundell and Bond (2000).

If the single-stage GMM estimator is consistent, then why bother purging output from mea-

surement error? There are two advantages to purging. The first is that the increase in the vari-

ance of the composite error term ωit + ηit in the production function raises the standard errors

of the production function estimation. Indeed, a similar derivation to the one in Appendix A.1

yields that the asymptotic variance of estimator is

Var [α̂] ∼
E
[
v2it−1

]
nE[vitvit−1]2

(
E
[
ω2
it

]
+ E

[
η2it
])
,

which increases in measurement error variance. The second advantage is that purging allows

the econometrician to identify true productivity ωit, which is relevant in many applications.11

2.3.1 Two-Stage Estimator with an Unbiased First-Stage

To purge output of measurement error, we perform a first-stage proxy regression regression

before applying the GMM estimator in the second stage. This is the standard two-stage GMM

procedure which has been developed and extensively studied by (Ackerberg et al., 2007, 2015)

and frequently applied to markup estimation after De Loecker and Warzynski (2012). We first

discuss the properties of the two-stage estimator when a researcher has an unbiased estimate

of the measurement errors ηit. We then discuss how such an unbiased estimate of the measure-

ment errors can be obtained.

For unbiased estimates η̂it of the measurement error ηit, define the GMM estimator as follows:

Definition 6 The GMM estimator is α̂ ∈ R such that the moment E [ω̂itvit−1] is equal to zero

where ω̂it = yit − α̂vit − η̂it = (α− α̂)vit + ωit + ηit − η̂it.

Solving for the above defined GMM estimator where we use E [ωitvit−1] = 0 yields α̂ = α +
E[(ηit−η̂it)vit−1]

E[vitvit−1]
. It follows that as long as ηit − η̂it converges to zero, that is η̂it is asymptotically

unbiased and orthogonal to past values of the variable input, vit−1, then the GMM estimator is

identified and asymptotically unbiased such that α̂ = α. The variance of this estimator is such

that Var [α̂] ∼ E[v2it−1]
nE[vitvit−1]2

(
E
[
ω2
it

]
+ E

[
(ηit − η̂it)2

])
. It follows that if the first-stage estimation

η̂it of ηit is good, meaning that E
[
(ηit − η̂it)2

]
is smaller than E

[
η2it
]
, then the two-stage estima-

tor has potential to improve the precision of the estimates of α. A good first-stage estimation

can reduce the variance of the GMM estimator.
11A further benefit of purging output from measurement error is that it allows more sophisticated persistent

productivity processes than the linear AR(1).
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How does one perform a good first stage? The aim is to identify measurement errors ηit and

the identification challenge is to separate the measurement error from the firm’s productivity

ωit, both of which are unobserved. The difference between the terms is that ωit is observed

by the firm, and affects its choice of the variable input. We obtain unbiased estimates η̂it of

these errors by running a so-called “proxy regression”. The idea is that the demand for material

inputs is an invertible function in productivity (∂v(·)/∂ωit > 0) such that productivity can be

expressed as ωit = v−1(vit,Ξit), where Ξit is a set of control variables that determines the firms’

demand for the variable input besides productivity ωit. Output can therefore be written as:

yit = αvit + v−1(vit,Ξit) + ηit.

We can estimate ηit by running a non-parametric regression along:

yit = Φ(vit,Ξit) + ηit,

which is the first stage of the two-stage GMM procedure.

The first stage gives unbiased estimates of the measurement errors ηit as long as the equation

is correctly specified. This means that we must include all relevant variables Ξit to control for

productivity. This is straightforward under perfect competition but requires extra care under

imperfect competition. Recall that a cost minimizing firm in our simple framework demands

variable inputs along (1). This first-order-condition allows to solve for the productivity as a

function of the variable input usage, marginal cost and variable input price:

ωit = (1− α)vit −mcit + wt.

We can substitute this expression for productivity in the production function and use that

marginal costs can be written as mcit = pit − logµit
12 to get

yit = vit − pit + logµit + wt + ηit.

Under perfect competition, firms are price takers which implies that markups equal to one

and prices are orthogonal to firms’ choices. The production function, after substituting the

expression for productivity, reduces to yit = vit+wt+ηit−pit. The last two terms are orthogonal

to input usage, vit, and input price pit. We then regress output on input usage and time fixed

effect to get the predicted residual ̂ηit − pit. The residual of this regression is used in the second

stage GMM estimator of Definition 6 which boils down to the moment condition

E [((α− α̂)vit + ωit + ηit − η̂it + pit − p̂it) vit−1] .
12Note that the expression of the marginal cost MCit = Pit/µit in log deviation from its mean mcit is equal to

pit − logµit up to a constant E [logµit]. In theory, in the first-stage estimation, we also need to add a constant which
is in practice absorbed by the time fixed effect.
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Since E [(ηit − η̂it + pit − p̂it)vit−1] = 0, thanks to the price taker assumption and the measure-

ment error properties, this estimator is also identified, that is α̂ = α.

Under imperfect competition, we can construct an estimate η̂it of the measurement errors ηit
by using the equation yit = vit − pit + logµit + wt + ηit. To be precise, we construct η̂it as the

residual of the regression of quantity, yit, on the variable input usage vit, on the output price pit,

on controls for the markup µit, and, on time fixed effectwt.13 As pointed out by Doraszelski and

Jaumandreu (2020), our main objective is to estimate firm-level markup, the needs to control

for markups in this first stage estimation seems to be contradictory. However, we only need to

know that there is a structural relationship between markup and controls, we do not need to

know the parameters that governs this relationship. In our simulations and empirical sections,

we assume that markups are determined by a firm’s market share. We therefore include prices

and market shares as controls in the first-stage of our baseline two-stage estimator.

2.3.2 Two-Stage Estimator with a Biased First-Stage

As we saw in the previous section, under imperfect competition, an unbiased first-stage re-

quires the use of price pit and markups controls, such as market share sit, which are not always

available to the econometrician. In this section, we discuss the properties of the GMM two-

stage estimator when price and markup controls are not included in the first-stage.

When these controls are not included in the first-stage, the GMM estimator is biased. Indeed,

under imperfect competition, pit and logµit are not orthogonal to vit which implies that the

residual of the regression of output on inputs η̂it is biased and does not asymptotically converge

to the true ηit. The second stage estimator of Definition 6 is α̂ = α + E[(ηit−η̂it)vit−1]
E[vitvit−1]

where the

second term is not asymptotically zero. In other words, the two-stage estimator is biased.

2.4 Taking Stock

To summarize, the GMM estimator of the production function is asymptotically unbiased when

information on quantity is available and the lag of the variable input is used as an instrument.

This also holds true when quantity is measured with error. To improve the precision of the

GMM estimator, a first stage can be added, in which output is purged of measurement er-

ror. Under perfect competition, this first stage does not require price or controls for markups.

Under imperfect competition, the first-stage does require a control for price and controls for

markups. Finally, if price or markup controls are not available under imperfect competition,

the first-stage will create a bias that contaminates the second-stage GMM estimator.

13In the more general multi-inputs non Cobb-Douglas case, the first-order-condition of the cost minimization
problem is not linear in inputs usage and cannot be inverted analytically. Although the functional relationship
between productivity and inputs, price and markup is well defined and is approximated by a polynomial of inputs.
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3 Potential Biases

We have established that if the econometrician specifies the correct production function and

observes the firms’ output and prices, the (two-stage) GMM estimator provides an unbiased

estimate of the production function and therefore of the markup. In this section we investi-

gate what happens if this is not the case, by analyzing the theoretical properties of production

function estimates under two common data limitations: (i) the use of revenue data in place of

quantity data, and, (ii) misspecification in the production function.

3.1 Revenue versus Quantity

Most firm-level datasets do not contain information on prices and quantities. Researchers usu-

ally rely on revenue data to measure a firm’s output. In this section we study the bias that this

causes and its consequences for the markup computation. The revenue for a firm i at time t, is

denoted Rit whose log mean deviation is denoted rit and is equal to the sum of the log mean

deviation of price, pit, and quantity, yit. Substituting the baseline production function yields:

rit = yit + pit = αvit + ωit + pit,

where α is the parameters of interest. Let us define the GMM estimator using vit−1 as an instru-

ment for vit when revenue is used in place of quantity.

Definition 7 (GMM estimator on revenue) the GMM estimator is α̂ ∈ R such that the moment

E[t̂fpr itvit−1] is equal to zero where t̂fpr it = pit + yit − α̂vit = (α− α̂)vit + pit + ωit .

In the above definition, t̂fpr it is an estimate of (log) revenue TFP; the product of price and actual

TFP. In our baseline framework, there are no reason for this revenue TFP to be orthogonal to

past value of the variable inputs since price can correlate with the variable input. The revenue

GMM estimator could therefore be biased. To check the consistency of this estimator, let us

solve for α̂ such that E[t̂fpr itvit−1] = (α − α̂)E [vitvit−1] + E [pitvit−1] = 0 where we use the fact

that E [ωitvit−1] = 0. If E [vitvit−1] 6= 0, we find the following unique value of the estimator:

α̂ = α+
E [pitvit−1]

E [vitvit−1]
. (2)

This estimator does not have to equal the true value α, which means that the estimator is

asymptotically biased if E [pitvit−1] differs from zero. The bias is determined by the correlation

between output price and past value of the variable input, that is the instrument. In a prac-

titioner’s setting, this correlation is the sample correlation between price and the instrument.

The revenue-based estimates of α can therefore be smaller, larger or equal to the true output

elasticity. The same holds for revenue-based markup estimates.
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Revenue Markups and Oligopolies What is E [pitvit−1] in practice? There are no model-free

constraints on either its size or sign. If firms face persistent aggregate demand shocks and

decreasing returns to scale, for example, positive shocks drive up marginal costs and prices,

causing a positive correlation between prices and lagged variable inputs. Conversely, firms that

face downward-sloping demand curves must reduce prices to sell additional output, causing a

negative correlation. The correlation is zero in case there are no aggregate shocks and firms

are atomistic price takers, such that their individual decisions (including input choice) do not

affect the equilibrium price. But firms are usually assumed to be price setters when markups

are estimated. So what is the bias caused by revenue data under oligopolistic competition?

To answer this question, we need to add more structure on the demand side of our benchmark

framework. We want to keep assumptions to the minimum while offering a clear exposition.

To this end, we assume a very general invertible demand system, where quantity of all firms

depends on price of all firms. We abstract from aggregate shocks that change the price-quantity

relationship across periods. For all firms i at time t, the quantity vector Y = {Yit} is a function

of the price vector P = {Pit} such that Y = Dt(P ). A log-linear approximation yields

pit = −
∑
j

dijtyjt, (3)

where dijt is the cross-elasticities of firm i’s price with respect to firm j’s quantity. In appendix

B.1, we derive this approximation formally.14 With this demand system, we can write (2) as:

α̂ = α

1−
∑
j

E
[
dijt(vjt + ωjt

α )vit−1
]

E [vitvit−1]

 .

It follows that the bias due to the use of revenue data is equal to one minus the weighted aver-

age of demand elasticities and cross-elasticities among the firms sharing the same production

function. This biased estimate of the production function can be used to estimate a firm-level

markup based on revenue data, µ̂Rit = α̂PitYitWtVit
. It follows that the revenue-based markup equals:

µ̂Rit = µit

1−
∑
j

E
[
dijt(vjt + ωjt

α )vit−1
]

E [vitvit−1]

 ,

where we use the Hall (1988)’s formula to substitute for the true value of the markup, µit =

αPitYitWtVit
. The revenue-based markup is equal to the true markup, up to a constant. It follows that

revenue-based markups correlate with true markups while their level might differ.

To understand this point, assume that demand is such that pit = −γyit and that firms are

in monopolistic competition. This assumption is satisfied by CES preferences with atomistic

14We implicitly assume a static demand system, where only current period quantity is affecting current prices.
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firms. In terms of the demand system introduced by equation (3), this assumption implies that

∀i, diit = γ and for j 6= i, dijt = 0. Under these assumptions, as point outed by Bond et al.

(2020), the revenue estimator equals the revenue elasticity with respect to the variable input

α̂ = α(1 − γ) = ∂yit
∂vit

(1 + ∂pit
∂yit

) = ∂rit
∂vit

. The revenue elasticity and the true markup are identical

across firms where the latter is equal to (1 − γ)−1. It follows that the revenue markup is equal

to one µ̂Rit = (1 − γ)−1(1 − γ) = 1. When markups are identical across firms sharing the same

production function, revenue markups do not contains any information on the true markup.

If firms do not have homogeneous markups, however, estimates of the markup from revenue

data will generally not equal one. This is because in models with heterogeneous markups (e.g.

Atkeson and Burstein (2008), Kimball (1995) or Klenow and Willis (2016)), demand elasticities

differ across firms, while we estimate a single output elasticity of the variable input α. To see

this formally, assume that demand is such that diit 6= djjt and that firms play a static oligopolis-

tic competition game.15 In that case, the true markup of firm i is µit = (1 − diit)
−1 and is

heterogeneous across firms. Firm’s i elasticity of revenue with respect to the variable input is

equal to the output elasticity times one minus the demand elasticity:

∂rit
∂vit

=
∂yit
∂vit

(1 +
∂pit
∂yit

) = α(1− diit).

The estimator on revenue is equal to the output elasticity times one minus the average demand

elasticities among firms in the sample:

α̂ = E
[
α

(
1− diit

vitvit−1
E [vitvit−1]

)]
.

Computing the revenue markup from this estimate gives µ̂Rit = E
[(

1− diit vitvit−1

E[vitvit−1]

)]
(1 −

diit)
−1, which will not equal one for at least one i. The revenue markup contains information as

it correlates with the true value of the markup. The key intuition comes from the fact that when

the production function is estimated among a set of firms, the estimated elasticity is equal to an

average revenue elasticity which in general, is not the same for all firms in the sample. Variation

in the revenue markup does reflects the variation in true markup.

What are the moments of these revenue markups under oligopolistic competition? The average

revenue markup is equal to the average true markup up to a constant, which is some weighted

average of demand elasticities among firms sharing the same production function:

E
[
log µ̂Rit

]
= E [logµit] + log

1−
∑
j

E
[
dijt(vjt + ωjt

α )vit−1
]

E [vitvit−1]

 .

15Here we assumed that E [diitωitvit−1] = 0. For example this assumption is satisfied when conditional on the
past value of the variable input vit−1, productivity ωit and demand elasticity dit are orthogonal. This assumption is
also satisfies when conditional on dit productivity ωit and past value of the variable input vit−1 are orthogonal. This
assumption is in place just to clarify the argument.
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As we discussed above, the (average) log-markup equals zero in case firms have homogeneous

markups and price-elasticities of demand. In the case where price elasticities are heteroge-

neous, the average revenue markup is

E
[
log µ̂Rit

]
= −E [log(1− diit)] + log

(
1− E

[
diit

vitvit−1
E [vitvit−1]

])
which is equal to zero up to a Jensen’s inequality.16 In both cases, the average revenue markup

has none to little information about the average true markup.17

Next, consider the variance of the revenue-based markup and its correlation with the true

markup. Since the revenue markup is equal to the true markup up to a constant, after tak-

ing log, their variance is equal: Var[log µ̂Rit ] = Var[logµit]. For the same reason, the correlation

between the (log) revenue markup and the (log) true markup is equal to one. While the average

revenue markup has close to no information on the true markup, the variance and the shape of

the (log) revenue markup is informative on the distribution of true markup.

Revenue Markup with Translog Production The result that revenue and quantity markups

perfectly correlate depends on the Cobb-Douglas assumption that output-elasticity is a con-

stant. In Appendix B.2 we discuss what happens if the output elasticity is not constant, in the

more general case of a translog production function, and show that the main insights remain.

3.2 Cobb Douglas versus Translog

The second bias that we discuss is the one arising from misspecification of the production func-

tion. As we have shown in the previous section, the Cobb-Douglas production function has the

attractive feature that bias in the estimated level of the markup does not affect the correlation

between (log) markup estimates and the true markup. This is why some researchers impose a

Cobb-Douglas production function when, for example, data on prices is not available. In this

section we analyze the properties of the resulting markup estimates if the true production is

more sophisticated. In particular, we assume here that the true production function is translog

as in Section 2.2.1, that is, yit = αvit + βv2it + ωit. The misspecified GMM estimator is:

Definition 8 (Misspecified GMM estimator) the GMM estimator is α̂ ∈ R such that the moment

E
[
ω̂Mis
it vit−1

]
is equal to zero, where ω̂Mis

it = yit − α̂vit = (α− α̂)vit + βv2it + ωit .

By wrongly assuming a Cobb-Douglas production function, the econometrician does not take

into account that the output elasticity of vit varies with vit. This leads to invalid estimates of
16Here we are making the similar assumption as in the footnote 15.
17Note that in the latter case of heterogeneous demand elasticity, when firms’ demand elasticity converge to zero,

that is, when firms quantity does not affect their price, markup is converging to one, while the value of the second
term is converging to zero. Conversely, when firms’ demand elasticity converge to one, the markup diverge to infinity
and the second term diverge to minus infinity.
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productivity. ω̂Mis
it is the sum of true productivity and an additional term that differs from zero

unless β = 0, even if the estimated α̂ = α. As soon as β 6= 0, that is, when the production

function is not log-linear, the productivity estimate at the true value of α is biased.

This biased estimate of the productivity leads to a biased estimate of α. We can solve for the

estimator defined above, that is, solve for the α̂ such that E
[
ω̂Mis
it vit−1

]
= (α − α̂)E[vitvit−1] +

βE[v2itvit−1] = 0. If E[vitvit−1] 6= 0, solving for α̂ gives:

α̂ = α+ β
E[v2itvit−1]

E[vitvit−1]
.

The misspecified estimator is identified, as there is a unique value of α̂ that satisfy the above

definition, but biased as this value is not equal to α. The bias is due to the omitted variable

v2it, which is correlated with the instrument vit−1. To see how the biased production function

estimates contaminate markups, substitute the value of α̂ in the Cobb-Douglas version of the

Hall (1988)’s formula µ̂Miss
it ≡ α̂ PitYit

WitVit
. The true markup is such that µit = (α+ 2βvit)

PitYit
WitVit

,

which allows us to write the estimated markup as

µ̂Miss
it =

α+ β E[v2itvit−1]
E[vitvit−1]

α+ 2βvit
µit. (4)

The estimated markup is equal to the true markup times a factor decreasing in the input usage

vit. A direct implication of this is that estimated and true markup do not correlate perfectly, as

long as the true markup is correlated with input usage.

What is the implication of this misspecification for the estimated average markup? We can

answer this by taking expectations of (4) in logs:

E
[
log(µ̂Miss

it )
]

= E [logµit] + log

(
α+ βE

[
vit

vitvit−1
E[vitvit−1]

])
− E [log(α+ 2βvit)] .

The average (log) estimated markup is therefore equal to the average true markup up to a

Jensen’s inequality. Therefore, the average log markup estimated with a misspecified produc-

tion function contains information about the true level of markups.

We next analyze the second moment of the misspecified markup distribution. From equa-

tion (4), the variance of the misspecified markup is equal to Var
[
log(µ̂Miss

it )
]

= Var [logµit] +

Var [log(α+ 2βvit)] − 2Cov [logµit, log(α+ 2βvit)]. The variance of misspecified markup is dif-

ferent from the true markup variance for two reasons. First, the output elasticity log(α+ 2βvit)

is not constant across firms under translog production function, since β 6= 0. Second, the

correlation between markup and the output elasticity can be non-zero. To see this, let us

substitute the Hall (1988)’s formula in the covariance between markup and output elasticity

to get Cov [logµit, log(α+ 2βvit)] = Var[log(α + 2βvit)] + Cov
[
log PitYit

WtVit
, log(α+ 2βvit)

]
. The

first term is positive, while the second term can be positive or negative. Finally, the co-
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variance between misspecified markup and true markup is given by Cov
[
log µ̂Miss

it , logµit
]

=

Var [logµit] − Cov [log(α+ 2βvit), logµit]. This can be positive or negative depending on the

covariance between true markups and output elasticity relative to the true markup variance.

To conclude, misspecification in the production function leads to a markup estimate whose

average level reflects the average level of true markup, up to Jensen’s inequality. However, both

correlation and variance of misspecified markup are different from the true ones.

4 Data

We use administrative data on French manufacturing firms to both quantify our simulations

and to empirically analyse the properties of markup estimates. We combine two main datasets.

The FARE dataset (Fichier Approaché des Résultats d’Esane) provides a detailed balance sheet

and income statement while the EAP survey (Enquête Annuelle de Production) provides data on

both revenues and the quantities of products that firms ship, which we use to obtain a proxy for

prices. FARE covers the universe of non-financial French firms and originates from filings to the

tax administration (DGFiP). EAP is based on a product-level statistical survey by the statistical

office (INSEE) which exhaustively covers manufacturing firms with at least 20 employees or

revenue in excess of 5 million euros, and a representative sample of smaller firms.18

With the exception of prices, we obtain all variables for the production function estimation

from FARE. Revenue is a firm’s total sales (including exports),19 the wage bill (measured as the

sum of wages and social security payments), capital (measured by fixed tangible assets on the

balance sheet),20 expenditure on purchased services and expenditure on purchased materials.

Materials are defined as physical intermediate goods and raw materials that firms purchase

from others. We use NACE Rev. 2 industry codes and define industries j (at which firms have

the same production technologies) at the 2-digit level. Market share is defined as the ratio of

the firm’s revenue over total revenue of all firms in FARE in the 5-digit industry in a given year.

We obtain data on prices from EAP. EAP is a product-level dataset detailing the firms revenue

and quantity produced across 10-digit industries.21 We define a product as the combination of

18Smaller firms are sampled with a new sample being drawn annually. Because our production function esti-
mation requires lagged instruments, small firms are not included in the data unless they were randomly sampled
for two consecutive years. Our data should therefore be seen as exhaustive of manufacturing firms with at least 20
employees or revenue in excess of 5 million euros.

19Data on domestic sales is also available separately, but because we do not have data on the fraction of inputs
that account for exports we cannot rely on data on domestic sales to estimate the production function.

20We do not rely on the perpetual inventory method because that would require a guess for the firm’s initial value
of capital. Because our data only covers 11 years, this would lead to a particularly large measurement error (see, e.g.,
Collard-Wexler and De Loecker 2020). Data on investments is furthermore missing from FARE in 2008. For 2009 to
2018, the correlation between balance sheet capital and estimates of capital from the perpetual inventory method
have a correlation of 0.92 to 0.99, depending on the assumed rate of depreciation.

21EAP separately reports data for various models of production based on the degree to which the producer is a
subcontractor or subcontracts production. We define revenue and quantities for a product as the sum of revenues
and quantities over all modes of production for a product in a given firm year.
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Table 1: Summary Statistics

Variable Mean St. Dev. Median 10th Pct. 90th Pct. Observations
Revenue 15,853 64,539 27,82 488 28,502 194,702
Quantity 14,154 60,984 1762 210 25,531 194,702
Wage Bill 3,162 12,201 784 176 6,021 194,702
Capital 7,749 34,261 773 98 12,257 194,702
Purchased Materials 7,114 29,154 924 103 12,562 194,702
Purchased Services 3,994 21,608 700 109 6,843 194,702
Normalized Price 9.31 86.37 1.23 .77 6.32 194,702

Note: Summary statistics for French manufacturing firms from 2009 to 2018. Data is obtained from FARE (balance sheet and
income statement variables) and EAP (normalized prices). Nominal values are deflated using two-digit EU-KLEMS deflators and
are expressed in thousands of 2010 euros. Quantity is measured as firm-deflated revenue. The dataset contains 31,476 unique
firms across 206 (18) sectors at the five (two) digit level. All variables are winsorized at their 1% tails.

a 10-digit product code and a unit of account.22 We drop around one-third of firm-products

without quantity data. For each combination of a firm and a product we calculate a price as

the ratio of revenue over the quantity of the product sold. We then standardize this price by

dividing it by the revenue-weighted average price of the product across the entire sample.23

The firm’s price in a year is then given by the sales-weighted average of standardized prices

across the products that it produces. We define quantity as the ratio of revenue over this price.

To deflate input variables we use two-digit industry deflators from EU-KLEMS. This is consis-

tent with the assumption that firms operate on competitive input markets with equal prices

across the two-digit level. Revenue is deflated with the gross output deflator, material inputs

and purchased services are deflated using the intermediate input deflator. Wages and the cap-

ital stock are deflated using the GDP deflator.24

We drop firms with missing, zero or negative revenue, material purchases, service purchases,

wage bills or capital. We also drop firms in sectors with fewer than 12 firms in a given year to

comply with confidentiality requirements.25 We drop firms without price data in EAP, which

restricts the sample to manufacturing firms. We also drop firms with fewer than 2 employees as

the number of single-employee firms grows rapidly over our sample due to a regulatory change.

To treat for outliers in the remaining sample we winsorize sales, quantity, prices, material and

service inputs, and capital at the 1% level within two-digit industries. The resulting sample

contains 194,702 firm-years for 31,476 unique firms across 206 five-digit sectors. Summary

statistics are provided in Table 1. A description of the two-digit sectors included in our analysis

is provided in Table 2.

22Examples of units of accounts are kilos, tons or pieces. We combine units of accounts and product codes as
firms that use different units of accounts for the same product might produce relatively heterogeneous goods

23As a robustness check we standardize prices using the revenue-weighted average price at the 8-digit sector level.
The resulting firm-level prices have a 0.89 correlation with prices standardized at the 10-digit product level.

24At the time of writing, the most recent year for EU-KLEMS deflators is 2017. To deflate 2018 variables we ex-
trapolate the price index using the sector’s average inflation in other years.

25We calculate market share before restricting the sample.
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Table 2: Sectors (two-digit) in the Cleaned EAP-FARE Dataset
Description NACE code Observations
Manufacturing of ...
... textiles 13 7,499
... wearing apparel 14 6,025
... leather and related products 15 2,500
... wood and of products of wood and cork, except furniture 16 10,517
... paper and paper products 17 6,913
... printing and reproduction of recorded media 18 11,275
... chemicals and chemical products 20 9,170
... rubber and plastic products 22 19,251
... other non-metallic mineral products 23 15,519
... basic metals 24 4,816
... fabricated metal products, except machinery and equipment 25 28,818
... computer, electronic and optical products 26 7,170
... electrical equipment 27 8,161
... machinery and equipment n.e.c. 28 18,067
... motor vehicles, trailers and semi-trailers 29 6,002
... other transport equipment 30 1,030
... furniture 31 12,486
Other manufacturing 32 5,787
Repair and installation of machinery and equipment 33 13,696

5 Simulation

In this section we analyse estimates of production function elasticities and markups in cases

where the true elasticities and markups are known. To do so, we estimate the production func-

tion for a set of simulated firms in a rich macroeconomic model. Firms are heterogeneous in

their productivity, the quantity of a fixed input at their disposal, and therefore the market share

that they achieve. Heterogeneous market shares cause differences in markups across firms, de-

termined endogenously as a consequence of oligopolistic competition. The model is outlined

in Section 5.1 while the calibration is detailed in 5.2. Results are presented in 5.3.

5.1 Model

We analyze a single sector. In line with our setup in Section 2, a sector is defined as a collection

of firms that have the same structural parameters of their production function and that face

the same prices on input markets.

Demand We choose a market structure that allows firms to have heterogeneous markups that

are determined by a combination of structural parameters and their market share. Following

Atkeson and Burstein (2008), we implement this by assuming that firms compete in a double-

nested CES demand system. The sector consists of a discrete N markets, where a market is

defined as a group of firms that compete oligopolistically with one another. Output across

markets is aggregated to the sector level along:
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Yt =

[
N∑
h=1

Y
σ−1

σ

ht

] σ

σ−1

, (5)

where h indexes markets and where σ denotes the elasticity of substitution across market-level

goods. Output of the market-level good Ykt is the aggregate of firm-level output across the Nh

firms that operate in h along:

Yht =

[
Nh∑
i=1

Y
ε−1

ε

iht

] ε

ε−1

, (6)

where Yiht denotes the output of firm i and where ε denotes the elasticity of substitution across

firm-level goods within a market. Following Atkeson and Burstein (2008) we assume that ε > σ,

reflecting that it is easier to substitute goods across firms than across markets. The double-

nested CES system gives rise to the standard demand function for firm i’s output:

Yiht =

(
Piht
Pht

)−ε
Yht where Yht =

(
Pht
Pt

)−σ
Yt, (7)

where aggregate demand P σt Yt is exogenous and where Pht is the usual CES market price index:

Pht =

(
Nh∑
i=1

P 1−ε
iht

) 1

1−ε

. (8)

The price-setting firm internalizes that Pht increases when it raises its own prices. Following

Burstein et al. (2020), we assume for tractibility that firms do not internalize that it may induce

an increase in the overall price level Pt. As such, we assume that firms behave as if markets are

atomistic (as in Atkeson and Burstein 2008), despite the actual setup featuring a finite number

of markets. Under Cournot competition, the resulting profit-maximizing markup reads:26

µiht =
ε

ε− 1

(
1−

ε
σ − 1

ε− 1
siht

)−1
, (9)

where market share siht is defined as the firm’s share in market revenue:

siht =
PihtYiht
Ph(i)tYh(i)t

, (10)

where subscript h(i) indicates the market in which firm i operates. The firm’s markup ranges

from ε/(ε − 1) for a firm whose market share approaches zero to σ/(σ − 1) for a monopolist,

which is higher than the small firm’s markup given the assumption that ε > σ.

26Bertrand competition, where the firm’s first order condition takes prices rather than quantities as given, yields
a similar expression. See Atkeson and Burstein (2008), Grassi (2018), and Burstein et al. (2020) for an elaborate
discussion. For the purpose of these simulations we require that markups are determined by demand elasticities
and market share, which is it the case for both Cournot and Bertrand competition.
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Technology Firms produces their a variable input Viht and a fixed input Kiht, with log-inputs

respectively denoted by viht and kiht. The production function for log output yiht is translog:

yiht = ωit + γαviht + γ(1− α)kiht + γ
α(1− α)

2

φ− 1

φ

(
v2iht + k2iht − 2kihtviht

)
, (11)

where ωit is the log of (hicks-neutral) total factor productivity, γ measures the degree of re-

turns to scale, α determines the weight of the variable input in the production function, while

φ approximates the elasticity of substitution between the flexible and the fixed input. Our log

production function (11) is motivated by the following generalized constant elasticity of sub-

stitution production function:

Yiht = Ωiht

(
αV

φ−1

φ

iht + (1− α)K
φ−1

φ

iht

) φ

φ−1
γ

,

where Ωiht ≡ exp ωiht. In Appendix B we show that this production function converges to the

Cobb-Douglas production function as φ → 1 and that an approximation of the production

function around φ = 1 yields translog function (11). We specify the production function with

a constant degree of homogeneity (γ) such that the model admits an analytical expression for

(size-dependent) marginal costs, facilitating the calculation of the equilibrium.

Equilibrium We consider the following partial equilibrium. Given an exogenous sequence

for variable input prices Wt, aggregate demand P σt Yt, productivities ωiht and fixed factors kiht,

the equilibrium is defined as a sequence of markups µiht, prices Piht, log marginal costs mciht,

market shares siht, log variable inputs viht,and log outputs yiht and sector price indices Pht such

that output follows from demand function (7), sector price indices follow from (8), markups are

set along equation (9), market share is given by (10), prices are the product of marginal costs

and markups, variable inputs are in line with the firm’s first order condition and marginal costs

follow from (11), for all i, h and t. Derivations are provided in Appendix C.

5.2 Calibration

We simulate the behavior of 1440 firms, which is the average number of firms in two-sector in-

dustries in the EAP data. We divide these firms into 180 markets and simulate the economy for

40 periods.27 There are 13 parameters, each of which we calibrate externally. The parameters

are summarized in Table 3. In calibrating the model, we are constrained by the fact that the

true values of many parameters (such as those of the production function and the productivity

27Recall that markets define the level at which firms compete on product markets. By modeling a large number of
small markets rather than a small number of large numbers we reduce the computational complexity of the simula-
tion. An appropriate calibration of the volatility of the productivity process assures that markets have realistic levels
of concentration and sufficient markup dispersion.
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Table 3: Overview of Example Parameter Calibration for Simulation

Parameters Value Description

α 0.4 Share of variable input
γ 0.8 Returns to scale
φ 1.1 Elasticity of substitution
σ 1.1 Demand elasticity across markets
ε 10 Demand elasticity across firms in a market
N , Nh 180, 8 Number of markets and firms per market
ρw, σw 0.87 , 0.06 AR(1) persistence and std. dev. of Wt

ρD, σD 0.78 , 0.19 AR(1) persistence and std. dev. of P−σt Yt
ρω, σω 0.70 , 0.10 AR(1) persistence and std of firm-level ωit
ρk, σk 0.66 , 0.66 AR(1) persistence and std of firm-level kit
σ̃η 0.122 std. dev. meas. error on output

Note: a detailed description of the calibration is provided in the text. EAP-FARE refers to the cleaned dataset of French manufac-
turing firms, exhaustive for firms with at least 20 employees or 5 million euros in revenue, for 2009-2018. EU-KLEMS IIP refers to
the two-digit sector intermediate input price index while EU-KLEMS VA refers to detrended nominal two-digit value added.

process) are in fact the object of our empirical analysis. Our approach is therefore to assume

reasonable values in line with the literature as an example quantification.

There are two aggregate shocks: aggregate demand P σt Yt and prices of the variable input Wt.

We assume both series follow a log-linear first-order autoregressive process with persistence

ρPY and ρW , respectively, with shocks ξPY ∼ N(0, σPY ) and ξW ∼ N(0, σW ). Fluctuations in ag-

gregate demand assure that the relationship between output and market share vary over time.

Fluctuations in the price of the variable input assures that firms’ lagged productivity and lagged

variable inputs are not co-linear after conditioning on the fixed inputs, which is needed to be

able to separately identify the productivity process and the production function parameters, as

discussed in Section 2. To calibrate the process for the price of the flexible inputs, we estimate

an autoregressive process for the price index of intermediate inputs from sector-level manu-

facturing data in EU-KLEMS. We run simple autoregressive regressions for the log of the index

and find an autoregressive coefficient ρw of 0.87 at the 2-digit sector level when controlling for

industry and year fixed effects. Residuals have a standard deviation σw of 0.06.28 For aggregate

demand P−σt Yt we estimate a similar autoregressive process, using the detrended sector-level

nominal value added as the dependent variable.29 We find a high degree of persistence in ag-

gregate demand with a ρD of 0.78 while the residuals have a standard deviation of 0.19.

There are two sources of firm heterogeneity in the model: the firm’s log-endowment of the fixed

input fiht and the firm’s log-total factor productivity ωit. Both evolve exogenously through lin-

ear first order autoregressive processes with persistence ρf and ρω, respectively, and are subject

to shocks ξf ∼ N(0, σf ) and ξω ∼ N(0, σω). Both sources of firm heterogeneity are similar in

28Appendix Table A2 presents AR(1) coefficients for various specifications, which suggest a narrow range of 0.86
to 0.90 for the AR(1) coefficient and 0.042 to 0.046 for the standard deviation of the shocks.

29We detrend P−σt Yt using nominal GDP to account both for trend increases in prices and for aggregate growth
in order to obtain a stationary nominal series. Results are similar when detrending with the GDP deflator.
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that firms with either higher productivities or higher values for the exogenous fixed input have,

ceteris paribus, greater output. They are different in that the fixed input is observable, while

productivity is not. To calibrate the persistence and volatility of the fixed factor, we run autore-

gressive regressions on the log of capital for firms in the EAP data. We find a persistence pa-

rameter ρk of 0.66 and a volatility of shocks σk of 0.66.30 A particular challenge is the estimation

of the persistence ρω and volatility σω of the productivity process. To obtain these empirically

requires knowledge of the parameters of the production function, which is the objective of our

analysis. We take the pragmatic approach of calibrating ρω and σω in line with common values

of the literature, and assure that these values are in line with our findings in Section 4. We set

ρω to 0.6 in line with Decker et al. (2020) and set productivity volatility σω to 0.1.

When calibrating the production function parameters, we think of purchased materials as viht
and a composite of all other factors as the fixed factor kiht. We calibrate the variable input share

parameter α to 0.4 to match the average ratio of expenditure on materials over revenue in the

EAP-FARE data, which is 0.38. We calibrate the returns to scale parameter γ to 0.8 in order

to have a modest degree of decreasing returns to scale, in line with the estimate by Basu and

Fernald (1997). We assume an elasticity of substitution φ of 1.1 as purchased materials include

intermediate inputs from other firms, which can substitute in-house production.

We introduce measurement error in observed quantity yiht, denoted by ηiht, after performing

the simulations. This is the error that we aim to purge in the first stage of the iterative GMM

procedure. We assume that ηiht ∼ N(0, σyσ̃η), where σy is the standard deviation of true output

across all firm-years in the sector and σ̃η is a scalar that determines the magnitude of mea-

surement error relative to standard deviation of true output. We calibrate σ̃η to 0.122, in line

with the relative variance of output and fitted values of a regression of output on prices, market

share, time fixed effects and a third degree polynomial in the firms’ inputs in EAP.

5.3 Results

We take the simulated firm-level data on revenue, output and inputs and use it to estimate

markups along the two-step iterative GMM procedure. We estimate various alternative spec-

ifications of the procedure to match the approaches typically followed in the literature. In all

specifications we assume that the researcher correctly assumes that the variable input is viht.

This is therefore also the variable that we use to calculate markups after estimating the produc-

tion function. We further assume that the researcher chooses the moment condition such that

the residual of the AR(1) process for productivity, ξiht, is orthogonal to the lagged variable input

and the contemporaneous fixed input.31

30Appendix Table A3 presents the AR(1) estimates for capital.
31We add a constant to the second stage auto-regressive productivity estimation, so that no constant need to be

added to the production function itself. It is straightforward to show that estimating a constant in the production
function or estimating a constant in the AR process is equivalent. If both are included in the procedure then they are
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We start by estimating a preferred specification in order to establish that it is feasible to estimate

the production function parameters and markups in our setup. The preferred specification has

three components, each of which we deviate from in subsequent specifications. Firstly, we

estimate our preferred specification using quantity as the measure of a firm’s output, hence we

assume that the researcher perfectly observes the prices that firms set. Secondly, we estimate

the preferred specification using a theoretically valid first-stage regression. As shown in Section

2, to correctly control for ωiht in the regression that purges measurement error ηiht, the control

variables must account for the log of marginal costs. To do so, we include both the log of the

price and the firm’s market share as additional controls in the first stage, where the latter is the

proxy for the markup.32 Combined with a third order expansion of the inputs vit and kit, this

should allow us to identify the measurement error ηiht with reasonable precision. Thirdly, the

preferred specification estimates a production function of the translog form, in line with (11):

yiht = βvviht + βkkiht + βvvv
2
iht + βkkk

2
iht + βvkkihtviht + ωiht, (12)

where the true values of the production functions satisfy the following relations with the true

production function parameters (α, γ, η):

βv = γα, βk = γ(1− α), βvv = γ
α(1− α)

2

φ− 1

φ
, βkk = βvv, βvk = −2βvv.

Note that we do not impose these theoretical restrictions when estimating (12). We then con-

sider various ‘imperfect’ specifications of the two-stage GMM procedure and see how the pro-

duction function and markup estimates change.

Our estimates of the translog production function parameters are presented in Table 4. Coef-

ficients in the column titled ‘True’ are directly calculated from the deep production function

parameters (α, γ, φ). The three subsequent columns present estimates of the production func-

tion where output is measured in quantities while the final three columns present estimates

where revenue is used. Bootstrapped standard errors are in parentheses.

Our preferred specification is presented in the second column, where ‘Full’ indicates that the

first stage includes log price and market share controls. The estimates show that the preferred

specification is able to identify the parameters of the production successfully. All coefficients

are within one tenth of a decimal point of their true value, which is also the case for the model’s

deep parameters. Bootstrapped standard errors are generally small and coefficients are highly

significant.33 The markups which arise from these production function estimates are sum-

marized in the second row of Table 5. Results for the preferred specification with a translog

not identifiable, as one can identify only a linear combination of the two.
32We do not include a polynomial of market share to control for non-linearities in the markup-market share

relationship because the correlation between market share and its square exceeds 0.99.
33Standard errors differ from zero because (1) the first stage approximates the implicit relationship between pro-

ductivity and inputs through a third-order polynomial and (2) market share proxies imperfectly for markups.
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Table 4: Estimated Translog production function parameters by Specification

Quantity Revenue
Coefficients True Full Basic None Full Basic None

βv = αγ 0.32 0.32 0.32 0.44 0.67 0.67 0.87
(0.012) (0.013) (0.031) (0.031) (0.029) (0.047)

βk = (1− α)γ 0.48 0.47 0.48 0.42 0.21 0.21 0.12
(0.007) (0.007) (0.015) (0.022) (0.02) (0.027)

βvv = γ α(1−α)
2

φ−1
φ

0.009 0.009 0.008 0.032 0.034 0.032 0.073
(0.002) (0.003) (0.006) (0.007) (0.007) (0.01)

βkk = βvv 0.009 0.009 0.007 0.012 0.005 0.005 0.011
(0.001) (0.001) (0.001) (0.002) (0.002) (0.003)

βvk = −2βvv -0.017 -0.019 -0.016 -0.037 -0.032 -0.030 -0.064
(0.003) (0.003) (0.006) (0.008) (0.008) (0.01)

Implied parameters:
α 0.400 0.405 0.403 0.511 0.762 0.757 0.875
γ 0.800 0.798 0.797 0.864 0.880 0.879 0.990
φ 1.100 1.110 1.092 1.207 1.251 1.226 2.475

Note: Estimated production function coefficients for different specifications. The top panel presents production function esti-
mates. The bottom panel presents the deep parameters implied by the estimated production function.The first column presents
true values for comparison. Bootstrapped standard errors are in parentheses. Full, Basic and None describe the specification of
the first-stage regressions. Full first-stages include a third order expansion in the production function inputs, time fixed effects and
additional controls for log price and market share. Basic first-stages do not include the additional controls. Columns headed None
do not deploy a first stage and therefore estimate markups on output variables that include measurement error ηiht.

production function, quantity data and a full first stage are closely in line with true markups.

The estimated markups have a correlation of 1.00 with the true markup, although the level and

standard deviation of the markup are estimated with slight error. This is in line with the modest

differences between the true and estimated production function parameters in Table 4.

Revenue versus Quantity We next deviate from the preferred specification by using revenue

instead of quantity data to estimate the production function. In the fifth column of Table 4 we

report a significantly higher estimate for βv, which increases from 0.32 to 0.67. Conversely, we

find a significantly lower linear coefficient for the fixed input, βk, falling from 0.47 to 0.21. The

increase in βv might be surprising, because the revenue elasticity of an input should fall short

of the quantity elasticity when demand curves are sloping downward. Recall, however, that

equation (2) showed that revenue-based coefficients can be biased upwards, downwards or be

unaffected, depending on the correlation between prices and inputs over all firms in the sec-

tors. The result that log-markups average zero up to Jensen’s inequality was conditional on the

absence of time fixed effects. Firms in our simulation are subject to aggregate demand shocks,

which create a positive correlation between input usage and prices under diminishing returns

to scale. In line with this, we find that log-prices have a 0.42 correlation with log-variable inputs
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Table 5: Overview - Translog Productivity and Log Markup Estimates

Correlation ln µ̂iht Log Markup Moments
with true markup Mean St. Dev. Median IQR

True values 1.00 0.238 0.042 0.220 0.239

Quantity
Full first stage (preferred) 1.00 0.268 0.063 0.221 0.342
Basic first stage 1.00 0.265 0.067 0.220 0.366
No first stage 0.45 0.316 0.167 0.204 1.156

Revenue
Full first stage 0.77 0.799 0.118 0.713 0.222
Basic first stage 0.80 0.798 0.115 0.714 0.213
No first stage 0.38 0.813 0.277 0.651 0.588

Note: Table of moments of estimated productivity. The first column present correlations of estimated markups with the true values.
Full first-stages include a third order expansion in the production function inputs and additional controls for log price and market
share. Basic first-stages do not include the additional controls.

in our simulated data. Controlling for time fixed effects the correlation is negative, as expected.

In the first row of the bottom panel of Table 5 we compare estimates of the markup based on the

revenue-production function. The level of the markup is overestimated, which is caused by the

overestimation of βv. We do find that the revenue-based markups are highly informative of true

markups, with a point correlation of 0.77 between both. We conclude that these results confirm

that the revenue-based estimates of the production function elasticities are not the revenue

elasticities of an input. If they were, Bond et al. (2020) show that the log markups should equal

0 and be uninformative of true markups. Instead, one should think about the revenue-based

elasticities as biased estimates of output elasticities of the inputs. This bias causes the log-

markup to average 0 up to a Jensen’s inequality, or to have a further bias due to the presence of

time effects such as demand shocks.

First Stage In a second deviation from the preferred specification, we compare production

function estimates with different first stages. Results so far include a third-order expansion of

the inputs as well as additional control variables for price and market share. We next consider

a ‘basic’ first stage where we drop the control variables for price and market share. The re-

sulting first-stage specification is frequently used in markup estimations (e.g. De Loecker and

Warzynski 2012 De Loecker et al. 2020). We find similar estimates for the parameters in the

production function when using the basic first stage. The linear coefficients βv and βk are un-

affected for both quantity and revenue-based estimations, although all the higher-order terms

are slightly underestimated. Looking at the correlation with the true (log) markup, 5 shows that

markups from the basic first stage again have a correlation of 1.00 with true markups. The mo-

ments of the markup distribution are similar to the full-first stage markups. Conversely, we find
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Table 6: Estimated Cobb-Douglass production function parameters by Specification

Quantity Revenue
Coefficients True Full Basic None Full Basic None

βv = αγ 0.32 0.31 0.31 0.32 0.52 0.52 0.52
(0.003) (0.002) (0.002) (0.003) (0.003) (0.003)

βk = (1− α)γ 0.48 0.49 0.49 0.49 0.3 0.3 0.29
(0.001) (0.001) (0.001) (0.002) (0.002) (0.002)

Implied parameters:
α 0.40 0.39 0.39 0.40 0.64 0.64 0.64
γ 0.80 0.81 0.80 0.81 0.81 0.81 0.82
φ 1.10 1.00 1.00 1.00 1.00 1.00 1.00

Note: Estimated production function coefficients for different specifications. The top panel presents production function esti-
mates. The bottom panel presents the deep parameters implied by the estimated production function.The first column presents
true values for comparison. Bootstrapped standard errors are in parentheses. Full, Basic and None describe the specification of
the first-stage regressions. Full first-stages include a third order expansion in the production function inputs, time fixed effects and
additional controls for log price and market share. Basic first-stages do not include the additional controls. Columns headed None
do not deploy a first stage and therefore estimate markups on output variables that include measurement error ηiht.

that the accuracy of the production function estimates declines sharply when no first stage is

conducted.34 In this case, the production function estimation becomes a simple IV-GMM esti-

mation with lagged variable inputs used to instrument for current variable inputs. The uniden-

tified measurement error causes an overestimation of the output elasticity of the variable input.

This causes an overestimation of the average log markup in Table 5 and a significant reduction

(from 1.00 to 0.45) in the correlation between estimated and true markups.

Cobb-Douglas In a third deviation, we perform the production function estimation on the

same data while assuming that production is Cobb-Douglas:

yiht = βvviht + βkkiht + ωiht, (13)

which is akin to forcing the higher-order terms in (12) to equal 0 and the elasticity of substitu-

tion between the variable input and the fixed input (φ) to be 1. Table 6 presents the estimates.

We find that the Cobb-Douglas estimates of the linear coefficients are closely in line with the

true values. Looking at the implied deep parameters, the estimations are within a tenth of a

decimal for both the variable input share α and for the degree of returns to scale γ. Cobb-

Douglas production function estimates from revenue data show a similar bias as translog esti-

mates: the coefficient for the variable input is upwardly biased, while the fixed correlation with

the fixed input is negatively biased.

Table 7 presents the moments of the resulting log markups correlates these markups with the

34The importance of the first stage increases in the variance of measurement error ηiht. If the measurement error
is reduced to zero, estimates without a first stage become equivalent to estimates from the full first stage.
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Table 7: Overview - Cobb-Douglas Productivity and Log Markup Estimates

Correlation ln µ̂iht Log Markup Moments
with true markup Mean St. Dev. Median IQR

True 1.00 0.238 0.042 0.220 0.239

Quantity
Full first stage 0.82 0.280 0.100 0.250 0.530
Basic first stage 0.82 0.270 0.100 0.250 0.540
No first stage 0.82 0.300 0.100 0.270 0.480

Revenue
Full first stage 0.82 0.780 0.100 0.760 0.170
Basic first stage 0.82 0.780 0.100 0.760 0.180
No first stage 0.82 0.780 0.100 0.760 0.170

Note: Table of moments of estimated markups. The first column presents correlations markups with the true values. Full first-
stages include a third order expansion in the production function inputs and additional controls for log price and market share.
Basic first-stages do not include the additional controls.

true ones.35 Because all firms have the same variable elasticity, the correlation between log-

markup estimates and true markups is equal across specifications at 0.82. The same holds

for the dispersion of markups, which is dictated by the dispersion of the ratio of revenue over

spending on the variable input. The Cobb-Douglas markup have a standard deviation of 0.1 in

log, which is more than twice as high as the standard deviation of true markups.

An illustration of the bias in both the level and the dispersion of the markup arising from as-

suming a Cobb-Douglas instead of a translog production function is illustrated in Figure 1. It

Figure 1: Distribution of (Log) Markup by Output Variable and First Stage Specification
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Notes: The figure plots the distribution of markups (in logs). Green-solid lines present the distribution of the true markups. Blue-
dashed lines present markup estimates based on a translog production function. Red-dashed dotted lines present markups based
on a Cobb-Douglas production function. The first stage specification includes price and market share controls.

35A correlation matrix across all markup specifications is provided in Appendix Table A6.
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provides kernel plots for the distribution of log markups for the true markups (green-solid),

markups from the translog production function (blue-dashed) and the Cobb-Douglas produc-

tion function (red-dash dotted). The left-hand figure presents results based on revenue, the

right-hand side presents results based on quantity. The graph reaffirms the results from the

tables. Cobb-Douglas estimates of the markup are similar in terms of average values, but un-

derstate the dispersion of the markup. This is because the Cobb-Douglas estimation forces the

elasticity of substitution between variable and fixed production factors to equal 1. If the ac-

tual elasticity of substitution exceeds 1, firms with higher fixed-factor endowments have lower

output elasticities with respect to the variable input, because βvk is negative. This reduces the

markup of these firms, which generally have high markups because of their size. Hence this

lowers markup dispersion. Conversely, with φ < 1, the coefficient βvk is positive and the overall

variable input elasticity is higher for these firms. This raises markup dispersion.

6 Empirics

This section describes the results from the production function and markup estimation on the

French EAP-FARE manufacturing data from 2009 to 2018. We start by assessing the elasticities

of quantity and revenue with respect to materials. We then compare the levels and dispersion

of markups from various specifications, and assess the correlation between the various markup

estimates. Finally, we look at how estimated key relationships such as the markup-market share

and the markup-profit relationship depend on production function specifications.

6.1 Production Function Estimates

In line with our simulations, we estimate the production function in twelve specifications by

running all possible combinations of a Cobb Douglas or translog production function, quantity

or revenue as the measure of output, and either the full first stage (with price and market share

controls), basic (with only the polynomial in inputs), or absent first stage. We assume that

the production function consists of the following (log) inputs: materials mit, the wage bill lit,

capital kit and services oit. Following Burstein et al. (2020) we assume that materials involve no

adjustment costs and therefore correspond to the freely-set variable input viht in Section 2.

Table 8 presents the estimated material elasticities θMit for each of our specifications. Specifica-

tions in the first six columns use quantity as the measure of output. Specifications for the final

six columns use revenue as the dependent variable. Columns headed CD present estimated

elasticities from the Cobb-Douglas production function at the two-digit level while columns

headed TL present average elasticities calculated along

θMit = βm + 2 · βmmmit + βmooit + βmllit + βmkkit,
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Table 8: Estimated Material-Output Elasticity by Sector and Specification

Quantity Revenue
Full Basic None Full Basic None

NACE CD TL CD TL CD TL CD TL CD TL CD TL
Avg. 0.5 0.55 0.46 0.47 0.49 0.56 0.44 0.41 0.39 0.42 0.35 0.41

(0.43) (0.30) (0.55) (0.19) (0.19) (0.18)
13 0.29 0.45 0.18 0.41 0.28 0.46 0.18 0.41 0.18 0.41 0.26 0.42

(0.23) (0.21) (0.26) (0.16) (0.16) (0.18)
14 0.35 0.54 0.21 0.43 0.33 0.54 0.40 0.32 0.40 0.32 0.02 0.36

(0.28) (0.25) (0.32) (0.24) (0.24) (0.37)
15 0.30 0.42 0.26 0.38 0.26 0.38 0.09 0.33 0.09 0.32 0.13 0.37

(0.16) (0.19) (0.20) (0.23) (0.21) (0.35)
16 0.58 0.6 0.55 0.53 0.56 0.57 0.55 0.47 0.55 0.72 0.48 0.46

(0.13) (0.13) (0.14) (0.11) (0.32) (0.18)
17 0.42 0.53 0.44 0.54 0.44 0.53 0.48 0.83 0.47 0.54 0.39 0.46

(0.17) (0.18) (0.13) (0.34) (0.21) (0.13)
18 0.31 0.36 0.31 0.37 0.30 0.35 1.19 0.30 0.05 0.30 0.24 0.29

(0.16) (0.17) (0.15) (0.11) (0.11) (0.11)
20 0.41 0.91 0.31 0.72 0.43 0.88 0.65 0.49 0.64 0.48 0.36 0.51

(0.56) (0.42) (0.58) (0.17) (0.16) (0.19)
22 0.59 0.61 0.55 0.53 0.58 0.61 0.45 0.45 0.45 0.45 0.44 0.45

(0.20) (0.18) (0.20) (0.13) (0.13) (0.13)
23 0.46 0.46 0.41 0.4 0.48 0.45 0.32 0.34 0.32 0.35 0.38 0.44

(0.07) (0.07) (0.10) (0.11) (0.12) (0.15)
24 0.65 0.63 0.77 0.71 0.65 0.63 0.61 0.44 0.61 0.44 0.46 0.43

(0.23) (0.17) (0.25) (0.19) (0.19) (0.21)
25 0.41 0.41 0.42 0.40 0.40 0.40 0.39 0.37 0.39 0.37 0.35 0.36

(0.21) (0.17) (0.19) (0.16) (0.16) (0.17)
26 0.85 0.75 0.57 -0.31 0.81 0.89 0.36 0.40 0.36 0.40 0.39 0.41

(0.66) (0.62) (0.66) (0.13) (0.14) (0.18)
27 0.43 0.6 0.48 0.58 0.42 0.61 0.33 0.46 0.77 0.46 0.38 0.45

(0.32) (0.21) (0.33) (0.13) (0.13) (0.13)
28 0.24 0.21 0.66 0.59 0.32 -0.03 0.31 0.43 0.31 0.43 0.35 0.43

(0.35) (0.17) (0.69) (0.16) (0.15) (0.14)
29 1.07 1.03 0.47 0.76 0.68 1.02 0.54 0.54 0.54 0.54 0.50 0.53

(0.45) (0.26) (0.48) (0.15) (0.15) (0.21)
30 0.24 0.30 0.40 0.5 0.23 0.34 0.33 0.41 0.34 0.41 0.30 0.41

(0.26) (0.18) (0.22) (0.13) (0.13) (0.16)
31 1.19 1.29 0.68 0.71 1.19 1.77 0.40 0.39 0.4 0.39 0.36 0.38

(0.78) (0.14) (0.74) (0.11) (0.11) (0.11)
32 0.44 0.44 0.40 0.38 0.48 0.51 0.17 0.31 0.17 0.32 0.29 0.36

(0.31) (0.33) (0.4) (0.14) (0.13) (0.20)
33 0.35 0.33 0.35 0.32 0.34 0.30 0.36 0.32 0.36 0.32 0.32 0.32

(0.09) (0.1) (0.17) (0.12) (0.12) (0.13)

Note: The table presents estimated elasticities of materials on output (measured in terms of quantity or revenue) from the estima-
tion of Cobb Douglas (CD), or Translog (TL) production functions. The first-stage regression includes a third-degree polynomial of
inputs, price and market share controls, and time fixed effects (“Full”), only the polynomial and time fixed effects (“Basic”) or no
first stage ("None"). Translog specifications have heterogeneous elasticities within industries, with standard deviations presented
in brackets. Industry codes refer to two-digit NACE codes. Industry names are provided in Table 2.
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where the production function elasticities βx are constant within two-digit sectors but θMit is

heterogeneous across firms within the sector. We report the standard deviation of the firm-

level translog elasticities in parentheses.

In line with the notion that firms face downward-sloping demand curves, we find that the elas-

ticity of revenue with respect to materials is usually lower than the elasticity of quantity. For our

preferred specification in the second column, where the elasticity comes from a translog pro-

duction function using the full first stage and quantity data, we find higher average elasticities

than the revenue-based counterpart in 16 out of 19 industries. On average, the quantity-based

output elasticity exceeds the revenue-based elasticity by 34%. As derived by Bond et al. (2020),

this implies that the true average markup of French manufacturing firms is 1.34.36

The estimated elasticities only modestly depend on the first-stage equation used. Notably,

both for Cobb-Douglas and translog, we only find minor differences between the (average) es-

timated elasticities between the specification with the full first stage and the specification with

no first stage at all. This is in line with the finding in Section 5 that the variance of the estimated

ηit is low at around 3% of output. This means that the first-stage purging of the production

function estimation procedure has only modest effect on the output used for the production

function estimation. The columns with the “basic” first stage that does not have price or mar-

ket share controls seem to have a slight downward bias in the estimated coefficients, but the

difference in sector-level Cobb-Douglas elasticities and average translog elasticities is small.

The results in Table 8 shows that industries differ significantly in the elasticity of output with

respect to materials. Industries with low elasticities include NACE industry 13 (manufactur-

ing of textile) and 15 (manufacturing of leather) while industries with high elasticities include

NACE industry 31 (manufacturing of furniture) and 20 (manufacturing of chemicals). While

Cobb-Douglas elasticities are usually close to the average elasticities under a translog produc-

tion function, the table does show that there is sizable heterogeneity in elasticities across firms

within industries. Standard deviations, which arise from non-zero values for the quadratic or

interaction terms in the production function, are at least half the size of the average elasticity in

the majority of specifications. Because we estimate markups by multiplying these elasticities

with a firm’s ratio of sales over materials, the dispersion of elasticities within sectors will cause

a significant difference in the distribution of markups under a translog and a Cobb-Douglas

production, as we show in the next section.

36This comparison uses the revenue production function with the full first stage, which includes controls for
price. If the econometrician did not have price data, they would estimate the elasticity in the Basic first-stage col-
umn, which yields lower elasticities than for quantity in 15 out of 19 industries and implies a true average markup of
1.31. Note that the ratio of the average quantity and average revenue-based elasticities only needs to reflect the true
markup in the absence of aggregate demand shocks.
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Table 9: Overview - Log Markup Estimates

Mean St. Dev. Median 10th Pct. 90th Pct. Observations
Cobb Douglas Production Function

Quantity data
Full first stage 0.29 0.52 0.24 -0.34 1.02 144686
Basic first stage 0.22 0.48 0.21 -0.36 0.85 144686
No first stage 0.28 0.49 0.22 -0.31 0.99 144686

Revenue data
Full first stage 0.18 0.60 0.09 -0.48 0.95 144686
Basic first stage 0.04 0.60 0.07 -0.64 0.75 144686
No first stage 0.01 0.50 -0.02 -0.47 0.60 144686

Translog Production Function
Quantity data
Full first stage 0.39 0.42 0.34 -0.04 0.91 144686
Basic first stage 0.31 0.28 0.29 -0.02 0.68 144686
No first stage 0.40 0.48 0.34 -0.07 0.97 144686

Revenue data
Full first stage 0.14 0.20 0.13 -0.08 0.38 144686
Basic first stage 0.15 0.19 0.13 -0.07 0.38 144686
No first stage 0.14 0.18 0.12 -0.06 0.37 144686

Note: All markups are expressed in log. Each markup series is trimmed at 1.5% tails by specification and the sample consists of the
subset of firm-years for which all specifications are available after trimming. Data for 2009-2018 from EAP-FARE.

6.2 Markups

We next compute markups along the Hall (1986, 1988) equation using the estimated sector and

firm-level elasticities. In the remaining analysis we focus on the log of markups. To treat for

outliers we trim the bottom and top of the log markup distribution at the 1.5% level for each of

the specifications. We focus on the non-trimmed sample to facilitate comparison. This leaves

144,686 firm-year observations. Summary statistics are provided in Table 9.

A clear pattern emerges from the table. First, the table shows that markups estimated from rev-

enue data are consistently lower than markups estimated from quantity data. Average revenue-

based markups are between 0.01 and 0.15 in logs and close to one in levels, in line with the bias

described by Bond et al. (2020). The average of the log markup of the preferred specification,

translog in quantity with the full first stage, is 0.39. This is in line with the markup implied by

the ratio of the average revenue and quantity production function elasticities of 1.34, as dis-

cussed in the previous section. The average and median markups for the same specifications

are similar for Cobb-Douglas and translog production functions, with the translog estimates

being slightly higher for most specifications.

The second pattern is that the standard deviation of the estimated markups is significantly

higher for the Cobb-Douglas production function. Standard deviations across markups from

Cobb-Douglas production function specifications range from 0.48 to 0.60, while standard de-
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Figure 2: Distribution of (Log) Markup by Production Function and Output Measure
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Notes: The figure plots the distribution of markups (in logs) for four specifications. Solid lines denote markups from translog
production functions, dashed lines from Cobb-Douglas production functions. Red lines denote markups from revenue data, blue
lines from quantity data. The preferred series (translog production function, quantity data) is blue-solid.

viations for translog estimates range from 0.18 to 0.48. An illustration of this dispersion is pro-

vided in Figure 2, which plots the Kernel densities for a subset of the markup series. Red lines

plot distributions of markup series that do not require pricing data and therefore use revenue

for output and the basic first stage (without price controls), while blue lines plot distributions

for the full first stage and quantity as the output variable. Solid lines plot distributions for the

translog production function, dashed lines for the Cobb-Douglas production function. The

figure confirms that Cobb-Douglas markup estimates are significantly more dispersed.

To see what drives the difference in dispersion, note that Cobb-Douglas markups are given by:

ln µ̂CDit = ln θ̂M + ln
PitYit

PMit Mit
,

where θ̂M is the estimated material elasticity at the sector level, such that the variance is:

V ar(ln µ̂CDit ) = V ar

(
ln

PitYit

PMit Mit

)
.

Conversely, because the translog production function admits firm-specific elasticities, we have:

V ar(ln µ̂TLit ) = V ar(ln θ̂Mit ) · V ar
(

ln
PitYit

PMit Mit

)
+ 2 · Cov

(
ln

PitYit

PMit Mit
, ln θ̂Mit

)
,

where the first two right-hand terms are positive. Hence, the lower dispersion of markups in
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Table 10: Costs of Markup Dispersion by Production Function Estimate

St. Dev. of Log Markups Dispersion costs
Translog - Quantity 0.42 8.15%
Translog - Revenue 0.20 1.78%
Cobb-Douglas - Quantity 0.52 11.8%
Cobb-Douglas - Revenue 0.60 18.5%

Notes: Example calculation of how the costs of markup dispersion change when using alternative production function estimates
using the formula in Peters (2020). Data for the EAP-FARE sample (2009-2018). Dispersion costs are expressed as (1−M) · 100%.
Markups from quantity data are estimated using the full first stage that includes price as a control, markups from revenue data are
estimated using the basic first stage that does not include price as a control.

the translog specification implies that there is a negative correlation between a firm’s revenue-

over-materials share and the elasticity of its output with respect to materials.

The overstatement of markup dispersion in the Cobb-Douglas specifications is particularly im-

portant because researchers frequently assume a Cobb-Douglas production function to ‘pre-

vent’ having to estimate a production function: when studying log markups, by taking indus-

try fixed effects to correct for θM , researchers can analyze within-industry markup dispersion

simply from observing revenue and material expenditures. Figure 2, however, shows that the

Cobb-Douglas assumption is rejected in the French data. This is important for a number of

applications, for example when analyzing the effect of heterogeneous markups on allocative

efficiency and productivity. The idea is that firms with higher markups produce inefficiently

little because they raise prices above marginal costs. As the Cobb-Douglas production function

estimates overstate the degree of markup dispersion, a researcher relying on these estimates

would therefore overstate the degree of misallocation in the economy.37

By how much a researcher would overstate the costs of markups when using Cobb-Douglas es-

timates would depend on assumptions about the demand system and on the drivers of markup

dispersion. By means of a back-of-the-envelope exercise, we perform the simple misallocation

cost calculating in Peters (2020) for the case of innovation-driven markup dispersion with a

Cobb-Douglas aggregator. He shows that the ratio of true aggregate productivity and produc-

tivity under allocative efficiency is given by:

M =
exp

(∑
i∈I ln µ−1i

)∑
i∈I µ

−1
i

,

where I denotes the set of all firms. The denominator and numerator are equal if firms have

homogeneous markups, such that aggregate productivity equals its efficient benchmark. Ta-

ble 10 presents the results. Assuming that the translog quantity markups are correct, the true

reduction in aggregate total factor productivity because of markup dispersion is 8.15%. A re-

37A researcher could equally underestimate the costs of markup dispersion in case the ratio of sales over material
spending is positively correlated with the output elasticity of materials. The point here is that the Cobb-Douglas
production function assumption is not without loss of generality.
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Figure 3: Distribution of (Log) Markup by Output Variable and First Stage Specification
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Notes: The figure plots the distribution of markups (in logs). Blue lines present markups estimated with a first stage that includes
price and market share controls. Green lines present specifications that exclude price and market share controls. Red lines present
results from specifications without a first stage.

searcher that would use Cobb-Douglas estimates from revenue data would measure the cost of

dispersion at 18.5%, an overstatement of 126%.

A third pattern in Table 9 is that the distributions of markups across first-stage specifications

are similar when holding the production function and output variable constant. For translog,

nearly all published moments are within five log-points of eachother. An illustration of how

similar these distributions are is provided in Figure 3. For the translog production function it

plots the full (blue), basic (green) and no (red) first stage specifications. The left figure plots

the kernel densities for quantity while the right figure plots them for revenue. While there are

some differences, especially at the tails of the distribution, the distributions are overall very

similar in terms of mean, median and standard deviation. It therefore seems hat the choice

of the functional form of the production function and the choice of the output variable has a

much larger effect on the estimated markups than the exact specification of the first stage.

6.3 Markups: Correlations

We next assess how markup estimates correlate. First we measure correlations between

markups from alternative specifications and then analyze whether the relationship between

markups and key variables depend on the measure of the markup that is deployed.

The correlation between markups from various specifications is presented in Table 11. The top

panel in the table presents correlations for markups from Cobb-Douglas production functions

while the bottom panel in the table presents correlations from the translog production func-

tion. For the Cobb-Douglas production function, the table generally shows high correlations

across specifications. With few exceptions correlations exceed 0.5. Correlations are particularly
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Table 11: Correlations across Specifications - Log Markups

Full - Q Full - R Basic - Q Basic - R None - Q None - R
Cobb-Douglas Production Function

Full first stage - Quantity data 1.00 0.60 0.80 0.52 0.98 0.66
Full first stage - Revenue data 0.60 1.00 0.64 0.19 0.60 0.55
Basic first stage - Quantity data 0.80 0.64 1.00 0.54 0.87 0.77
Basic first stage - Revenue data 0.52 0.19 0.54 1.00 0.53 0.48
No first stage - Quantity data 0.98 0.60 0.87 0.53 1.00 0.68
No first stage - Revenue data 0.66 0.55 0.77 0.48 0.68 1.00

Translog Production Function
Full first stage - Quantity data 1.00 0.30 0.77 0.34 0.79 0.36
Full first stage - Revenue data 0.30 1.00 0.47 0.71 0.23 0.56
Basic first stage - Quantity data 0.77 0.47 1.00 0.45 0.71 0.45
Basic first stage - Revenue data 0.34 0.71 0.45 1.00 0.23 0.59
No first stage - Quantity data 0.79 0.23 0.71 0.23 1.00 0.25
No first stage - Revenue data 0.36 0.56 0.45 0.59 0.25 1.00

Note: Each cell presents the pairwise correlation between the markup in the row and the column header. The first-stage regression
includes a third-degree polynomial of inputs, price and market share controls, and time fixed effects (“Full”), only the polynomial
and time fixed effects (“Basic”) or no first stage. All markups are expressed in log. Each markup series is trimmed at 1.5% tails by
specification and the sample consists of the subset of firm-years for which all specifications are available after trimming. Data for
2009-2018 from EAP-FARE.

high for markups based on the same output variable. For quantity, for example, the correlation

between markups estimated using the full first stage and no first stage is 0.98. Correlations

across output variables are lower. The correlation between markups using the full first stage

from quantity and revenue data have a correlation, for example, is 0.6. While that is lower than

correlations within the same output variable, it still implies that revenue-based markups are

informative about a firm’s actual markup.

Correlations across markups from translog production function estimates are generally lower.

This is expected, as variation in markups for the same firm across specifications under Cobb

Douglas only comes from sector-level production function estimates. For the translog produc-

tion function each firm’s estimated output elasticity changes, causing greater differences across

specifications. Nevertheless we find consistently positive correlations across the specifications.

Like before, these correlations are particularly strong when comparing markups with produc-

tion functions that use the same output variable. For quantity, for example, the correlation

between markups estimated using the full first stage and no first stage is now 0.79, while the

correlation between markups from full-first stage quantity and revenue data is now 0.3.

Note that the correlation between markups from various specifications is significantly greater

when analyzing log-differences (Table 12). For Cobb-Douglas the correlation across all spec-

ifications equals unity trivially, because the output elasticity of materials is constant within

the industry and constant over time. There is also a marked increase, however, in the correla-

tion between translog markups. In particular, there is a stronger correlation in first differences

between translog markups estimated with revenue and quantity, with the full-first stage spec-
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Table 12: Correlations across Specifications for Log-Differenced Markups

Full - Q Full - R Basic - Q Basic - R None - Q None - R
Cobb-Douglas Production Function

Full first stage - Quantity data 1.00 1.00 1.00 1.00 1.00 1.00
Full first stage - Revenue data 1.00 1.00 1.00 1.00 1.00 1.00
Basic first stage - Quantity data 1.00 1.00 1.00 1.00 1.00 1.00
Basic first stage - Revenue data 1.00 1.00 1.00 1.00 1.00 1.00
No first stage - Quantity data 1.00 1.00 1.00 1.00 1.00 1.00
No first stage - Revenue data 1.00 1.00 1.00 1.00 1.00 1.00

Translog Production Function
Full first stage - Quantity data 1.00 0.61 0.75 0.61 0.60 0.61
Full first stage - Revenue data 0.61 1.00 0.82 0.96 0.62 0.90
Basic first stage - Quantity data 0.75 0.82 1.00 0.81 0.70 0.79
Basic first stage - Revenue data 0.61 0.96 0.81 1.00 0.59 0.90
No first stage - Quantity data 0.60 0.62 0.70 0.59 1.00 0.60
No first stage - Revenue data 0.61 0.90 0.79 0.90 0.60 1.00

Note: Each cell presents the pairwise correlation between the markup in the row and the column header. The first-stage regression
includes a third-degree polynomial of inputs, price and market share controls, and time fixed effects (“Full”), only the polynomial
and time fixed effects (“Basic”) or no first stage. All markups are expressed in log difference. Each markup series is trimmed at 1.5%
tails by specification and the sample consists of the subset of firm-years for which all specifications are available after trimming.
Data for 2009-2018 from EAP-FARE.

ification now having a 0.61 pairwise correlation coefficient. Researchers interested in changes

rather than levels of markups may face lower bias from the use of revenue data in production

function estimations than researchers interested in the level of the markup.

In a final exercise, we assess whether relationships between markups and key variables de-

pends on the markup specification. To do so, we estimate a series of simple regressions of the

following kind for each markup specification s:

xit = χln µ̂sit + ϕi + ψt + εit,

where respectively ϕi and ψt denote firm and time fixed effects, and where xit denotes some

variable of interest. We estimate this regression using a firm’s profit rate (defined as the ratio

of operating profits over sales), labor share (defined as the ratio of its wagebill over sales), its

material cost share (defined as the ratio of materials purchased over sales), and its market share

(defined as its share in revenue at the 5-digit sector level) as dependent variables. Our aim is

not to causally estimate the relationship between these variables and markups, but rather to

see how the conditional correlation between these variables and markups depends on how the

production function was estimated. We only include translog markup estimates, because the

relationship between the explanatory variable is identical for all Cobb-Douglas estimates given

the inclusion of firm fixed effects.

Results are presented in Table 13. Each row presents regression coefficients for a particular

explanatory variable (described in italics), while each column contains results for a specific
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Table 13: Relation between Markup and Explanatory Variables by Markup Specification

Quantity Revenue
Full Basic None Full Basic None

Profit Rate
Estimated χ 0.190*** 0.424*** 0.237*** 0.666*** 0.632*** 0.580***

(0.005) (0.006) (0.005) (0.006) (0.006) (0.006)

R-squared 0.128 0.300 0.175 0.491 0.464 0.437

Labor Share
Estimated χ -0.024*** -0.111*** -0.0923*** -0.190*** -0.158*** -0.183***

(0.003) (0.004) (0.003) (0.004) (0.004) (0.004)

R-squared 0.015 0.061 0.076 0.110 0.083 0.118

Materials Share
Estimated χ -0.142*** -0.292*** -0.128*** -0.403*** -0.367*** -0.304***

(0.003) (0.003) (0.003) (0.004) (0.004) (0.004)

R-squared 0.192 0.376 0.143 0.472 0.415 0.321

Market Share (%)
Estimated χ 0.0792*** 0.124*** 0.101*** 0.184*** 0.160*** 0.162***

(0.009) (0.019) (0.013) (0.021) (0.020) (0.017)

R-squared 0.006 0.007 0.007 0.008 0.007 0.007

Firm Fixed Effects Yes Yes Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes Yes Yes
Observations 144,686 144,686 144,686 144,686 144,686 144,686

Note: Each entry gives the OLS regression coefficient with the cursive variable as the explanatory variable and the markup series in
the column header as the explanatory variable. Markups are estimated using two stage regression where the first-stage regression
includes a third-degree polynomial of inputs, price and market share controls, and time fixed effects (“Full”), only the polynomial
and time fixed effects (“Basic”) or no first stage (“None”). All markups are expressed in log difference. Each markup series is
trimmed at 1.5% tails by specification and the sample consists of the subset of firm-years for which all specifications are available
after trimming. Explanatory variables are winsorized at 1.5% tails. Firm-clustered standard errors in parentheses. *** denotes
significance at the 1% level. Data for 2009-2018 from EAP-FARE.

markup specification. Before describing differences across specifications, note that all relation-

ships in the table run in the expected direction. Firms with higher markup estimates are more

profitable, have higher labor shares, lower material shares, and greater market shares. This is

the case irrespective of whether revenue or quantity data was used to estimate the production

function elasticities, and the relationships are all significant at the 1% level. Looking more care-

fully at the specifications, we see that estimated βs do differ across specifications, both when

changes are made to the first stage or when quantity or revenue is used. The estimated βs tend

to be smaller for quantity-based markups than for revenue-based markups. This is in line with

the finding in Figure 2 that there is more dispersion in the quantity-based markup estimates; a
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higher variance of the markup mechanically reduces the estimated βs holding everything else

equal. Overall, however, the results in Table 13 suggest that relationships between markups and

key relationships are qualitatively robust to using imperfect first stage regressions or revenue-

based markup estimates. This further supports our derivation in Section 2 that these estimates

do contain useful information about a firm’s true markup.

7 Conclusion

This paper provides an assessment of the validity of the ratio estimator of firm-level markups.

We start by deriving the conditions under which the commonly used two-stage iterative GMM

estimator is able to consistently estimate the parameters of the production function, in a sim-

plified framework and relaxing the assumption that firms are price setters. We then use the

simple framework to look at three common critiques and practical difficulties of using the ra-

tio estimator (and the iterative GMM production function estimates) to gauge markups: the

assumption of a Cobb-Douglas production function, the use of revenue instead of quantity to

measure firm output, and the improper specification of the first-stage regression. We confirm

the resulting insights with simulations from a rich macro model and empirical data on prices

and production for French manufacturing firms.

We find that, while the average markup is estimated reasonably well under Cobb-Douglas, the

dispersion of markups is not. In the French data, a researcher that measures misallocation costs

of markup dispersion would overstate costs by 126% if relying on a Cobb-Douglas production

function. Conversely, we find that the use of revenue rather than quantity to estimate produc-

tion functions affects the level of the estimated markups, but has modest effects on dispersion.

The correlation between markups from quantity and revenue data ranges from 0.3 to 0.7 in log-

levels and is at least 0.59 in log-differences. The correlation between various markup estimates

and variables such as market share, profitability and the labor share is also similar across the

use of revenue or quantity data. We find that empirical estimates of the markups do not depend

strongly on the specification of the first-stage regression in the two-stage procedure.

Practically, we conclude that if a researcher is faced with imperfect data it depends on indi-

vidual applications whether the analysis can proceed. Optimally, production functions for

markups should be estimated with quantity rather than revenue data. In the absence of data

on prices however, researchers that are interested in the dispersion or correlations of markups

should hesitate to assume a Cobb-Douglas production function. Conversely, in applications

where researchers are interested in the average level of the markup, revenue data may not be

appropriate. Revenue data may be used to estimate trends of markups (as differences over

time are a part of dispersion), provided the researcher is willing to assume that the production

function parameters do not change over time.
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A Analytical Framework Derivations

A.1 Finite Sample Estimator and its Asymptotic Variance

In this section, we derive the estimator for a finite sample. We also use this derivation to com-

pute the asymptotic variance of the GMM estimator. First, let us defined the estimator for a

finite sample.

Definition: GMM estimator is α̂ such that
∑

i,t ω̂itvit−1 = 0 with ω̂it = yit−α̂vit = (α−α̂)vit+ωit.

Second, to solve for the estimator, we need to find the value of α̂ such that
∑

i,t ω̂itvit−1 =

(α − α̂)
∑

i,t vitvit−1 +
∑

i,t ωitvit−1 = 0. As long as
∑

i,t vitvit−1 6= 0, the unique α̂ that solve this

equation is

α̂ = α+

∑
i,t ωitvit−1∑
i,t vitvit−1

whose limit is α when the sample size increase where since E[ωitvit−1] = 0.

Finally, let us derive the asymptotic variance of the GMM estimator. Using the (finite sample)

expression of the estimator, we have

√
n(α̂− α) =

√
n 1
n

∑
i,t ωitvit−1

1
n

∑
i,t vitvit−1

.

By the (weak) law of large number, 1
n

∑
i,t vitvit−1

p−→ E[vitvit−1], and, by the central limit the-

orem,
√
n 1
n

∑
i,t ωitvit−1

d−→ N
(
0,E

[
ω2
itv

2
it−1
])

. The Slutsky theorem implies
√
n(α̂ − α)

d−→

N
(

0,
E[ω2

itv
2
it−1]

E[vitvit−1]2

)
, that is,

Var [α̂] ∼
E
[
ω2
it

]
E
[
v2it−1

]
√
nE[vitvit−1]2

.

A.2 Global results on GMM estimator with AR(1) in productivity

The GMM estimator with AR(1) productivity (Definition 4) is characterized by the system of
equations:

 E
[
ξ̂itvit−1

]
= 0

E
[
ξ̂itω̂it−1

]
= 0

⇐⇒

 E
[
ξ̂itvit−1

]
= 0

(α− α̂)E
[
ξ̂itvit−1

]
+ E

[
ξ̂itωit−1

]
= 0

⇐⇒

 E
[
ξ̂itvit−1

]
= 0

E
[
ξ̂itωit−1

]
= 0

⇐⇒

 E [ξitvit−1] + (α− α̂)E [(vit − ρvit−1)vit−1] + (ρ− ρ̂)E [ωit−1vit−1] + (α− α̂)(ρ− ρ̂)E
[
v2it−1

]
= 0

E [ξitωit−1] + (α− α̂)E [(vit − ρvit−1)ωit−1] + (ρ− ρ̂)E
[
ω2
it−1

]
+ (α− α̂)(ρ− ρ̂)E [vit−1ωit−1] = 0

⇐⇒
{

g + aX + bY + cXY = 0

h+ dX + eY + fXY = 0

where X = α − α̂, Y = ρ − ρ̂, and, a = E [(vit − ρvit−1)vit−1], b = E [ωit−1vit−1], c = E
[
v2it−1

]
,

d = E [(vit − ρvit−1)ωit−1], e = E
[
ω2
it−1
]
, f = E [vit−1ωit−1] = b, g = E [ξitvit−1], h = E [ξitωit−1] .
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Let us look at the asymptotic where g = 0 and h = 0. Assuming c 6= 0, we get

{
aX + bY + cXY = 0

dX + eY + fXY = 0
⇐⇒

{
X = 0

Y = 0
or

{
X = − bd−ae

cd−af
Y = bd−ae

ce−bf
if cd− af 6= 0 and ce− bf 6= 0.

It follows that there is two global solutions for the GMM estimator with AR(1):

 α̂ = α

ρ̂ = ρ
or


α̂ = α− bd−ae

cd−af = α−
√

Var[ωit−1]
Var[vit−1]

Corr(ṽit,vit−1)−Corr(ṽit,ωit−1)Corr(ωit−1,vit−1)
Corr(ṽit,ωit−1)−Corr(ṽit,vit−1)Corr(ωit−1,vit−1)

ρ̂ = ρ+ bd−ae
ce−bf = ρ+

√
Var[ṽit]

Var[vit−1]
Corr(ṽit,vit−1)−Corr(ṽit,ωit−1)Corr(ωit−1,vit−1)

1−Corr(ωit−1,vit−1)2

where ṽit ≡ vit−ρvit−1 = 1
1−α (ξit +mcit − ρmcit−1 + wt − ρwt−1).38 The GMM estimator admits

(exactly) two possible solutions. One solution giving the true value of the parameters, while the

second solution giving a bias estimate of the true parameters. However, if Var[vit−1] is large

compared to Var[ωit−1] and Var[ṽit], that is, their ratio goes to infinity while keeping fix the

correlation structure, then there a unique solution for α̂ and ρ̂. To conclude, if there is enough

variation in the data, the GMM estimator is identified.

A.3 Full Proof

TBD

B Potential Bias

B.1 Approximation of Demand System

In this appendix, we show how to approximate the demand system specify by Y = D(P ) or P =

D−1(Y ). Note that both of these demand system allows for differentiated goods across firms as

described in ?. For the former case, let us defined the function Dit(P ) such that Yit = Dit(P ).

Around some symmetric equilibrium, (P ∗0 , Y
∗
0 ), at the first-order we have, for all i, t

yit = log Yit − log Y ∗0 ≈
∑
jt

∂ logDit

∂ logPjt
(logPjt − logP ∗0 ) =

∑
jt

Jijtpjt

where the matrix whose element are Jijt is the Jacobian of the log of the demand D. Inverting

this system of equation yields that for all i, pit =
∑

jt dijtyjt where dijt are the element of the

inverse of the Jacobian matrix of the (log) demandD. For this case, when the demand is specify

by Y = D(P ), we need to assume that the Jacobian of logD is invertible.

For the case where the demand is given by the inverse demand directly, P = D−1(Y ), let us

38Note that Corr(ṽit, ωit−1) = Corr(mcit − ρmcit−1 + wt − ρwt−1, ωit−1). Intuitively, if input price and marginal
cost (= Pit/µit) are uncorrelated with past value of productivity, this correlation will be equal to zero.

46



defined the function D−1it such that Pit = D−1it (Y ). A first-order approximation around a sym-

metric equilibrium (P ∗0 , Y
∗
0 ) yields

pit = logPit − logP ∗0 ≈
∑
jt

∂ logD−1it
∂ log Yjt

(log Yjt − log Y ∗0 ) =
∑
jt

dijtyjt,

where, here, the dijt are the element of the Jacobian matrix of the (log) inverse demand D−1.

These formulation are useful when deriving the markup of firms of static oligopolistic Cournot

or Bertrand competition. Under Bertrand, that is when firms takes other firm’s prices as given,

the profit of firm i at time t can be written as Πit = PitYit − Cit(Yit) = PitDit(P ) − Cit(Dit(P ))

where Cit(Yit) is the total cost of producing Yit units. Under Bertrand, firms maximize their

profit by setting their price Pit taking others’ price as given. The first-order condition of this

profit maximization problem yields that the markup is µit ≡ Pit
∂Cit
∂Yit

=

(
1 +

(
∂ logDit
∂ logPit

)−1)−1
. Sim-

ilarly, under Cournot, the profit of firm i at time t can be written as Πit = PitYit − Cit(Yit) =

D−1it (Y )Yit − Cit(Yit). Under Cournot, firms choose their quantity, taking other firm’s quan-

tity as given, which implies that the markup is µit ≡ Pit
∂Cit
∂Yit

=
(

1 + ∂ logD−1
it

∂ log Yit

)−1
. To con-

clude, in most static oligopolistic competition model the firm-level markup can be written as

µit = (1 + diit)
−1.39

B.2 Revenue Markup and Translog Production Function

We next compare markups from revenue and quantity production functions in a more general

framework with a translog production function. The main intuition remains valid: the bias of

the estimator on revenue data is equal to the average demand elasticity among firms sharing

the same production function.

Assume that the production function is as in section 2.2.1, that is, yit = αvit + βv2it + ωit while

we maintain the other assumptions of our baseline framework. Let us study the bias implied

by the use of revenue data in place of quantity data. Following the same logic as above, the

coefficients of the production function estimated on revenue are such that(
α̂

β̂

)
=

(
α
β

)
+ V −1

(
E[pitvit−1]
E[pitv

2
it−1]

)
, with V =

(
E[vitvit−1] E[v2itvit−1]
E[vitv

2
it−1] E[v2itv

2
it−1]

)
.

As in the Cobb-Douglas case, these estimates are biased. The above equation is the translog

equivalent of equation (2) where the correlation of the instruments (lagged variable inputs and

lagged variable inputs squared) with the output price is the case of the bias.

In the case of translog production function, the true markup is such that µit = (α +

39Under Cournot, we always have µit = (1 + diit)
−1, while under Bertrand, we further need to assume that diit

the diagonal term of the Jacobian matrix of the (log) inverse demand D−1 is equal to
(
∂ logDit
∂ logPit

)−1

.
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2β log Vit)
PitYit
WtVit

, and, the revenue markup is thus µ̂Rit = α̂+2β̂ log Vit
α+2β log Vit

µit. As pointed out by Bond

et al. (2020) and as in the Cobb-Douglas case, if we assume homogeneous inverse demand

elasticities among firms in the sample, that is for all i we have pit = −γyit, the revenue markup

is equal to one.40 However, in general the revenue markup is different from one and contains

information on the true markup. To see this formally, we assume again that inverse demand

elasticities are heterogeneous among firms, such that for all i by pit = −diityit where there is at

least one pair (i, j) such that diit 6= djjt. As above, the true markup is given by µit = (1− diit)−1.

In this heterogeneous inverse demand elasticity case, we have(
α̂

β̂

)
=
(
I − E

[
Xit−1X

′
it

]−1 E [diitXit−1X
′
it

])( α
β

)
whereXit is the vector (vit, v

2
it−1)

′ and I is the identity matrix. It follows that the revenue markup
satisfies

µ̂R
it =

[
1− (α+ 2β log Vit)

−1

(
α

β

)′ (
E
[
diitXitX

′
it−1

]
E
[
XitX

′
it−1

]−1)( 1

2 log Vit

)]
(1− diit)−1. (1)

This markup is in general different from one for at least some firms. To see that clearly, let

us further assume that the inverse demand elasticities are independent of the variable input

usage and its square, such that, for any n,m ∈ N, E
[
diitv

n
itv

m
it−1
]

= E [diit]E
[
vnitv

m
it−1
]
.With these

assumptions in place, one can show that α̂ = α(1− E [diit]) and β̂ = β(1− E [diit]). The revenue

markup is equal to µ̂Rit = (1 − E [diit])(1 − diit)−1 which is different from one since there exist

a pair (i, j) such that diit 6= djjt. As for the Cobb-Douglas case, the bias is determined by an

average inverse demand elasticities.

In the translog case, the average revenue markup is E
[
log µ̂Rit

]
= E [log(µit)]+E

[
log α̂+2β̂ log Vit

α+2β log Vit

]
.

Let us assume that the inverse demand elasticities are heterogeneous across firms in the sam-
ple. From equation (1), we can see that the average of the log revenue markup is equal to zero
up to a Jensen like inequality:

E
[
log µ̂Rit

]
= −E [log(1− diit)]+E

[
log

(
1− (α+ 2β log Vit)

−1

(
α

β

)′ (
E
[
diitXitX

′
it−1

]
E
[
XitX

′
it−1

]−1
)( 1

2 log Vit

))]
.

When the inverse demand elasticities are homogeneous, ∀i, diit = γ, then the average log rev-

enue markup is exactly zero.

The relationship between the average revenue and true markup now depends on the distribu-

tion of the variable input log Vit and the extent of the bias in the production function estima-

tion. Importantly, the variance of the revenue markup is different from the variance of the true

markup and also depends on the distribution of inputs and the covariance of input and the true

markup. Finally, the correlation between the revenue and the true markup is no longer equal

40When pit = −γyit, the vector V −1

(
E[pitvit−1]
E[pitv2it−1]

)
= γ

(
α
β

)
and the revenue markup becomes µ̂Rit = (1 −

γ)α+2β log Vit
α+2β log Vit

(1− γ)−1 = 1.
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to one. To gauge the information contans of the revenue markup under translog production

function, we rely on the simulation where we estimate true and revenue markup on simulated

data.

C Derivation of the Translog Production Function

In this appendix we derive the translog approximation of the CES production function and

show that it nests the Cobb Douglas production function. We specify a CES production function

with homogeneity of degree γ:

Yiht = Ωiht

(
α[Viht]

η−1

η + (1− α)[Kiht]
η−1

η

) η

η−1
γ
,

Cobb Douglas derivation The generalized CES production function nests the Cobb Douglas

production function as η → 1. To see this, note that:

ln yiht = ωiht +
η

η − 1
γln

[
α[Viht]

η−1

η + (1− α)[Kiht]
η−1

η

]
.

The limit of this function for η → 1:

lim
η→1

ln yiht = ωiht + γ lim
η→1

ln
[
α[Viht]

η−1

η + (1− α)[Kiht]
η−1

η

]
η−1
η

,

= ωiht + γ lim
η→1

V
η−1

η

iht ln Viht αη2 +K
η−1

η

iht ln Kiht
(1−α)
η2

1/η2
(
α[Viht]

η−1

η + (1− α)[Kiht]
η−1

η

) ,
= ωiht + γ [ ln Vihtα+ ln Kiht(1− α)] ,

where the second step follows from l’Hopital’s rule. In levels, this yields the Cobb-Douglas

production function with returns to scale γ:

Yiht = Ωiht

(
V α
ihtK

1−α
iht

)γ
.

Translog derivation The function implies the translog production function (11) up to a first

order approximation around η = 1. To see this, start from:

ln yiht = ωiht +
η

η − 1
γ ln

[
α[Viht]

η−1

η + (1− α)[Kiht]
η−1

η

]
,

ln yiht = ωiht +
η

η − 1
γ ln

[
α[Viht]

η−1

η

(
1 +

(1− α)

α

[
Kiht

Viht

] η−1

η

)]
,
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ln yiht = ωiht +
η

η − 1
γ ln

[
α[Viht]

η−1

η

]
+

η

η − 1
γ ln

[
1 +

1− α
α

(
Kiht

Viht

) η−1

η

]
.

Moving the α back into the log term:

ln yiht = ωiht + γviht +
η

η − 1
γ ln

[
α+ (1− α)

(
Kiht

Viht

) η−1

η

]
.

Consider the final term. Rewriting gives:

f(x) =
η

η − 1
γ ln

[
1 + (1− α)

((
Kiht

Viht

) η−1

η

− 1

)]
,

f(x) =
γ

x
ln [1 + (1− α) (Bx − 1)] ,

whereB = Kiht/Liht and x = (η−1)/η, such that our approximation is around x→ 0. Rewriting:

f(x) =
γ

x
ln [1 + (1− α) ((exp (x ln B)− 1)] ,

≈ γ

x
ln
[
1 + (1− α)

(
x ln B− x2[ ln B]2

2

)]
,

≈ γ

x

[
(1− α)

(
x ln B− x2[ ln B]2

2

)
− (1− α)2

2

(
x ln B− x2[ ln B]2

2

)2
]
.

Given that we are approximating the function up to a first order we remove higher order terms,

such that the final equation simplifies to:

f(x) =
γ

x

[
(1− α)x ln B + α

1− α
2

x2[ln B]2
]
.

Hence the first order approximation of the generalized CES production function reads:

yiht = ωiht + γ ln Viht + γ(1− α) ln
(
Kiht

Viht

)
+ γα

1− α
2

η − 1

η

[
ln
(
Kiht

Viht

)]2
.

Grouping terms and denoting x ≡ ln X:

yiht = ωiht + γαviht + γ(1− α)kiht + γα
1− α

2

η − 1

η

(
v2iht + k2iht − 2kihtviht

)
,

which is the translog production function (11) with homogeneity of degree γ.

Variable input demand We next derive the demand for the variable input for the translog

production function. The firms’ cost minimization problem involves minimizing costs WtViht
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subject to the production function (11). Note that the output elasticity of the variable input is:

∂yiht
∂viht

= γα

(
1 + [1− α]

η − 1

η
[viht − kiht]

)
,

such that the first order condition of the cost minimization problem is:

Wt = λiht
Yiht
Viht

γα

(
1 + [1− α]

η − 1

η
ln
[
Viht
Kiht

])
where λiht is the Lagrange multiplier. Inverting the first order condition and inserting that

marginal costs MCiht equal λiht, we obtain (2).

Marginal costs As firms face an exogenous sequence of the fixed input Kiht, marginal costs

can be derived from the production function (11) and optimal demand for the variable input

(2). Inserting the latter into the former:

yiht = ωiht + γα ln
[(

MCiht
Wt

)
γα

(
1− [1− α]

η − 1

η
ln
[
Kiht

Viht

])
Yiht

]
+ γ(1− α)kiht + γα

1− α
2

η − 1

η

[
ln
(
Kiht

Viht

)]2
.

Isolating log marginal costs on the left hand side yields (3).

Put in nicely (moved from main text):

Firms within the sector are subject to the same sequence of factor prices. For a given price of a

unit of the variable inputWt, the firm solves the static cost-minimization problem by choosing

optimal variable input demand. This yields the first order condition:

Viht =

(
MCiht
Wt

)
γα

(
1 + [1− α]

φ− 1

φ
ln
[
Viht
Kiht

])
Yiht, (2)

where, from inserting optimal variable demand into the production function, log marginal

costs mciht ≡ ln MCiht can be expressed as:

mciht = ln
[
Wt

γ
Y

1−αγ
αγ

iht Ω
− 1

αγ

iht K
α−1

α

iht

]
− ln

(
1 + [1− α]

φ− 1

φ
ln
[
Viht
Kiht

])
+

1− α
2

φ− 1

η

(
ln
[
Viht
Kiht

])2

(3)
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D Additional Tables and Figures

Table A1: Estimation of AR(1) process for intermediate input prices
(1) (2) (3) (4)

Auto-regressive coefficient (ρw) 0.900*** 0.871*** 0.865*** 0.868***
(0.009) (0.011) (0.014) (0.014)

St. Dev. of shocks (σw) 0.046 0.042 0.042 0.045

Controls None Year F.E. Year F.E. & Ind. F.E. Time Pol. & Ind. F.E.
Observations 798 798 798 798
R-squared 0.922 0.936 0.918 0.908

Note: Results from auto-regressions for intermediate input price indices (log) at the 2-digit level. Data from EU-KLEMS for
France, 1995-2016. Standard errors in parentheses. *, ** and *** denote statistical significance at the 10, 5 and 1% level,

respectively. Time Pol. refers to the inclusion of a third-degree polynomial for time as a control.

Table A2: Estimation of AR(1) process for detrended nominal value added
(1) (2) (3) (4)

Auto-regressive coefficient (ρw) 0.999*** 1.001*** 0.677*** 0.708***
(0.00479) (0.00412) (0.0285) (0.0257)

St. Dev. of shocks (σw) 0.166 0.140 0.419 0.390

Controls None Year F.E. Year F.E. & Ind. F.E. Time Pol. & Ind. F.E.
Observations 798 798 798 798
R-squared 0.982 0.987 0.709 0.608

Note: Results from auto-regressions for nominal sector-level value added (log) at the 2-digit level, detrended with nominal GDP.
Data from EU-KLEMS for France, 1995-2016. Standard errors in parentheses. *, ** and *** denote statistical significance at the 10,

5 and 1% level, respectively. Time Pol. refers to the inclusion of a third-degree polynomial for time as a control.

Table A3: Estimation of AR(1) process for fixed input using capital
(1) (2) (3) (4)

Auto-regressive coefficient (ρw) 0.988*** 0.656*** 0.656*** 0.651***
(0.000) (0.008) (008) (0.002)

St. Dev. of shocks (σw) 0.215 0.215 0.662 11.79

Controls None Year F.E. Year F.E. & Ind-Year F.E. & Firm. F.E. Firm F.E.
Observations 160,124 160,124 160,124 160,124
R-squared 0.987 0.490 0.490 0.493

Note: Results from auto-regressions for French firms using EAP-FARE data for 2009-2018. Data on 27,857 firms. Standard errors in
parentheses are clustered by firm. *, ** and *** denote statistical significance at the 10, 5 and 1% level, respectively. Industry fixed

effects are at the 5-digit level.
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Table A4: Change in Bias under Alternative Calibrations

Translog - Revenue (Full) CD - Quantity (Full)
Coefficients True Nk = 16 Nk = 8 Nk = 4 φ = 1.05 φ = 1.1 φ = 1.3

Production Function
βv = αγ 0.32 0.77 0.67 0.67 0.32 0.31 0.29

(0.027) (0.0267) (0.0213) (0.003) (0.003) (0.002)

βk = (1− α)γ 0.48 0.14 0.21 0.18 0.49 0.49 0.52
(0.0188) (0.0159) (0.011) (0.001) (0.001) (0.001)

βvv = γ α(1−α)
2

φ−1
φ

0.009 0.05 0.034 0.043
(0.0053) (0.0058) (0.0047)

βkk = βvv 0.009 0.013 0.005 0.003
(0.0025) (0.0021) (0.0015)

βvk = −2βvv -0.017 -0.057 -0.032 -0.038
(0.0068) (0.0064) (0.0043)

AR(1) Productivity:
ρω 0.700 0.619 0.626 0.629 0.690 0.700 0.670

Implied parameters:
α 0.400 0.849 0.762 0.792 0.39 0.39 0.36
γ 0.800 0.901 0.88 0.851 0.80 0.81 0.82
φ 1.100 1.977 1.251 1.377 1.00 1.00 1.00

Note: Estimated production function coefficients for different specifications. The top panel presents production function esti-
mates. The bottom panel presents the deep parameters implied by the estimated production function.The first column presents
true values for comparison. Bootstrapped standard errors are in parentheses.

Table A5: Overview - Productivity and Log Markup Estimates on different specifications

Correlation Markup Moments (diff with true)
Markup Prod. Error Mean St. Dev. Median IQR

True 1.00 1.00 1.00 0.00 0.00 0.00 0.00

Translog - Revenue (Full FS)
Sector with Nk = 16 0.36 0.23 1.00 0.56 0.12 0.49 0.09
Sector with Nk = 8 0.77 0.23 1.00 0.54 0.05 0.50 -0.14
Sector with Nk = 4 0.77 0.21 1.00 0.51 0.06 0.46 -0.16

Cobb-Douglass - Quantity (Full FS)
Sector with φ = 1.05 0.93 1.00 1.00 0.01 0.02 0.02 0.06
Sector with φ = 1.1 0.82 0.99 1.00 0.02 0.04 0.04 0.16
Sector with φ = 1.3 0.57 0.94 1.00 0.04 0.18 0.10 0.66

Note: Table of moments of estimated productivity and markups. The first two columns present correlations of estimated produc-
tivity and markups with the true values. For Revenue TL Full and Quantity CD Full markup moments are reported as difference
with the true ones, since every sector has different markup values.
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Table A6: Correlations across Simulated Specifications - Log Markups

True Full - Q Full - R Basic - Q Basic - R None - Q None - R
Cobb-Douglas Production Function

True 1.00 0.82 0.82 0.82 0.82 0.82 0.82
Full First Stage - Quantity 0.82 1.00 1.00 1.00 1.00 1.00 1.00
Full First Stage - Revenue 0.82 1.00 1.00 1.00 1.00 1.00 1.00
Basic First Stage - Quantity 0.82 1.00 1.00 1.00 1.00 1.00 1.00
None First Stage - Revenue 0.82 1.00 1.00 1.00 1.00 1.00 1.00
No First Stage - Quantity 0.82 1.00 1.00 1.00 1.00 1.00 1.00
No First Stage - Revenue 0.82 1.00 1.00 1.00 1.00 1.00 1.00

Translog Production Function
True 1.00 1.00 0.77 1.00 0.80 0.45 0.38
Full First Stage - Quantity 1.00 1.00 0.80 0.99 0.83 0.51 0.44
Full First Stage - Revenue 0.77 0.80 1.00 0.72 1.00 0.91 0.88
Basic First Stage - Quantity 1.00 0.99 0.72 1.00 0.75 0.38 0.32
None First Stage - Revenue 0.80 0.83 1.00 0.75 1.00 0.89 0.85
No First Stage - Quantity 0.45 0.51 0.91 0.38 0.89 1.00 0.99
No First Stage - Revenue 0.38 0.44 0.88 0.32 0.85 0.99 1.00

Note: Each cell presents the pairwise correlation between the markup in the row and the column header. The first-stage regression
includes a third-degree polynomial of inputs, price and market share controls, and time fixed effects (“Full”), only the polynomial
and time fixed effects (“Basic”) or no first stage. All markups are expressed in log. Simulated data.

Table A7: Correlations across Simulated Specifications - Log-Differenced Markups

True Full - Q Full - R Basic - Q Basic - R None - Q None - R
Cobb-Douglas Production Function

True 1.00 0.89 0.89 0.89 0.89 0.89 0.89
Full First Stage - Quantity 0.89 1.00 1.00 1.00 1.00 1.00 1.00
Full First Stage - Revenue 0.89 1.00 1.00 1.00 1.00 1.00 1.00
Basic First Stage - Quantity 0.89 1.00 1.00 1.00 1.00 1.00 1.00
None First Stage - Revenue 0.89 1.00 1.00 1.00 1.00 1.00 1.00
No First Stage - Quantity 0.89 1.00 1.00 1.00 1.00 1.00 1.00
No First Stage - Revenue 0.89 1.00 1.00 1.00 1.00 1.00 1.00

Translog Production Function
True 1.00 1.00 0.85 1.00 0.87 0.55 0.44
Full First Stage - Quantity 1.00 1.00 0.87 0.99 0.89 0.59 0.48
Full First Stage - Revenue 0.85 0.87 1.00 0.83 1.00 0.89 0.83
Basic First Stage - Quantity 1.00 0.99 0.83 1.00 0.85 0.51 0.40
None First Stage - Revenue 0.87 0.89 1.00 0.85 1.00 0.87 0.81
No First Stage - Quantity 0.55 0.59 0.89 0.51 0.87 1.00 0.98
No First Stage - Revenue 0.44 0.48 0.83 0.40 0.81 0.98 1.00

Note: Each cell presents the pairwise correlation between the markup in the row and the column header. The first-stage regression
includes a third-degree polynomial of inputs, price and market share controls, and time fixed effects (“Full”), only the polynomial
and time fixed effects (“Basic”) or no first stage. All markups are expressed in log. Simulated data.
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