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Abstract

We propose that the mathematical representation of situations of
strategic interactions, i.e., of games, should separate the description of
the rules of the game from the description of players’ personal traits.
Yet, we note that the standard extensive-form partitional representa-
tion of information in sequential games does not comply with this sepa-
ration principle. We offer an alternative representation that extends to
all (finite) sequential games the approach adopted in the theory of re-
peated games with imperfect monitoring, that is, we describe the flow
of information accruing to players rather than the stock of information
retained by players, as encoded in information partitions. Mnemonic
abilities can be represented independently of games. Assuming that
players have perfect memory, our flow representation gives rise to in-
formation partitions satisfying perfect recall. Different combinations
of rules about information flows and of players mnemonic abilities may
give rise to the same information partitions. All extensive-form rep-
resentations with information partitions, including those featuring ab-
sentmindedness, can be generated by some such combinations.

1 Introduction

All games whose play can be impemented on IT platforms—including mar-
ket games, auctions, games played in the lab, and games like poker and
chess—are defined by formal rules clearly specifying (i) the feasible alter-
natives of active players according to previous play, (ii) what information
accrues to players, and (iii) the material consequences of each complete play
(terminal sequence of actions and, possibly, realizations of chance moves).
Such rules should be amenable to a description using a formal mathematical
language and that this description should be independent of the personal
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features of the agents playing the game in each role in any particular in-
stance of play. Indeed, we propose as a general methodological tenet the
following separation principle: the formal description of the rules of the
game should be independent of the personal features of those who happen to
play the game.

This is easily done as far as the concerned personal features are related to
taste, or preferences. For example, in simultaneous-move games with mon-
etary consequences, one can describe preferences over monetary lotteries as
von Neumann-Morgenstern utility functions, under a set of well understood
behavioral assumptions. Appending such utility functions to the formal de-
scription of the rules of the game and adding assumptions about players’
interactive knowledge (or interactive beliefs) about the relevant aspects of
the situation of strategic interaction, one obtains a mathematical structure
amenable to game-theoretic analysis.1

Yet, as we consider games with sequential moves, it is not obvious that
the extant game-theoretic formalism complies with the aforementioned sep-
aration principle. Indeed, with very few notable exceptions concerning mul-
tistage games (such as Myerson, 1986, and Myerson & Reny, 2020, whose
purposes are different from ours), the information that accrues to players as
the play unfolds is described by information partitions of the set of partial
plays (or nodes): two partial plays x and y are indistinguishable by player
i if and only if they belong to the same cell (equivalence class) of her in-
formation partition.2 Furthermore, it is usually assumed that information
partitions satisfy a property called “perfect recall”. The interpretation of
this property is that a player remembers all the information previously pro-
vided to her and all the actions previously taken by her.3 This clarifies that
a player’s information partition represents a kind of stock of information
at every relevant node.4 Put differently, an information partition provides

1See, e.g., Osborne and Rubinstein (1994), or Battigalli, Catonini, and De Vito (2021).
2Of course, we are considering work on general games. The literature on repeated

games with imperfect monitoring (e.g., Mailath & Samuelson, 2006) provides a whole
class of “exceptions”, that is, works that describe information in compliance with the
separation principle.

3In the words of Kuhn (1953, p. 213), perfect recall is “equivalent to the assertion
that each player is allowed by the rules of the game to remember everything he knew
at previous moves and all of his choices at those moves”. However, it is not clear at all
how the rules of the game could prevent players from remembering things they did and
observed, as memory is a subjective attribute of players – this seems to suggest a potential
violation of our separation principle.

4We use “relevant” loosely to refer to all the nodes for which a given player’s information
matters, which include all the nodes where she is active.
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“snapshots” of a player’s information at each point of the game. Yet, the
formalism is crucially silent on where such information comes from: should
this be interpreted as the information that this player is able to retain and
use, or as an objective representation of the cumulated information that
accrued to her? The former interpretation implies that information parti-
tions are hybrid representations mixing objective features of the rules of the
game with a player’s personal cognitive abilities, thus violating the separa-
tion principle. The latter interpretation is possible if information partitions
have the perfect recall property, provided one maintains that the agents who
happen to play the game have perfect mnemonic abilities.

In this paper we put forward and analyze a general mathematical de-
scription of the rules of (finite) games, whereby we represent the flows of
information accruing to players. Specifically, we assume that throughout the
game players observe some signals informing them of the play unfolding. For
instance, in a game played in a lab or on an online platform a mediator may
provide players with some details about how the game has been played and
with some instructions about how to proceed (the feasible actions). The se-
quence of actions taken and signals observed form the stream of information
potentially available to players. Importantly, this description is independent
of players’ personal features, thus complying with the separation principle.

We obtain formal relationships between our “flow” representation and
the traditional “stock” representation with information partitions, and we
show in passing that a game with information partitions (satisfying perfect
recall) is consistent with different flow representations, hence with differ-
ent rules about the accrual of information to players. Under the informal
assumption that players have perfect memory (and that this is common
knowledge), such differences are immaterial. We also prove that an infor-
mation partition satisfies perfect recall if and only if it can be obtained from
a flow-based description of a game, under the as yet informal assumption
that players have perfect memory (Proposition 4). We first develop our
analysis for the case of multistage games, which is simpler and easier to
grasp. Next we generalize to all finite games. This sequence implies some
redundancies, but we find it pedagogically useful.

We also put forward a game-independent, rudimentary analysis of mem-
ory. In compliance with the separation principle, this allows us to combine
a flow-based description of a game with a formal specification of players’
personal mnemonic abilities. An analogy may help clarify our position: just
like risk attitudes are framed within the theory of choice and only subse-
quently embedded in game-theoretic analysis, we believe that a formalization
of agents’ mnemonic abilities should come from a suitable “theory of mem-
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ory” conceptually unrelated (although complementary) to game theory. We
follow this route by appending to a given game described with information
flows a specification of players’ mnemonic features and thus obtain a game
with possibility correspondences5 (which may or may not be information
partitions), just like appending to a game form a specification of players’
preferences over lotteries allows the derivation of the utilities of terminal
nodes.6

This explicit account of memory allows us to make the aforementioned
informal assumption of “perfect memory” precise (Proposition 5): when
the cognitive features of the agents who happen to play the game satisfy
“perfect memory”, we obtain information partitions satisfying perfect recall
from our flow-based description of the game. Furthermore, we prove that any
standard information partition (even those that fail perfect recall) can be
retrieved in our setting by considering a suitable combination of information
flows and descriptions of memory (Proposition 6): this makes our approach
at least as expressive as the traditional one.

Our flow approach also naturally lends itself to the analysis of issues
concerning the information of inactive players, which is key – for example
– in the theories of self-confirming equilibrium and of psychological games.7

Finally, we elucidate “absentmindedness”, i.e., the possibility that a player
forgets not just what actions she took, but also whether she took some action
at all (see, e.g., Chapter 11 in Osborne & Rubinstein, 1994). According to
our approach, absentmindedness is the consequence of quite natural personal
cognitive limitations that our analysis of memory can easily capture.

Roadmap The remainder of this paper is organized as follows. Section
2 introduces some notation. Section 3 proposes our flow-based description
of the rules of interactions for multistage games. Section 4 illustrates the
conventional approach to modeling multistage games. Section 5 presents
results relating the two approaches. Section 6 generalizes the framework
allowing for non-multistage structures. Section 7 explores the possibility of
explicitly describing players’ ability to recall the pieces of information they

5This means that the formal description of a player’s memory allows us to identify the
partial or complete plays (nodes) that are deemed possible by such player at some point
of the game, based on what she remembers.

6Misleadingly called “payoffs” in the technical jargon of game theory.
7On psychological games, see the survey by Battigalli and Dufwenberg (forthcoming).

The self-confirming equilibrium idea was independently put forward by several authors,
including Fudenberg and Levine (1993), who coined the term. See the literature review in
the Discussion section of Battigalli, Cerreia-Vioglio, Maccheroni, and Marinacci (2015).
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are exposed to. Section 8 concludes and discusses the related literature.
Appendix A collects proofs.

2 Preliminaries

Maintained assumptions In the following, we assume that the set of
players I and the sets of actions Ai (i ∈ I) potentially available to each
player i are finite. Furthermore, we also assume that the game always ter-
minates after a finite sequence of actions, or profiles of simultaneously chosen
actions.8

Sequences For a generic set X and n ∈ N, we let Xn :=×n
k=1X denote

the n-fold Cartesian product of X, with generic element xn = (xk)
n
k=1.

By convention, we let X0 := {∅X} denote the singleton with the empty
sequence of elements ofX as its unique element; we often drop the subscript
and just write ∅ when this causes no confusion. The empty set is denoted
by the (different) symbol ∅. For N ∈ N, X≤N :=

⋃N
n=0X

n denotes the set
of sequences of elements of X of length N or less. While superscripts are
used to denote the length of a given sequence (i.e., we write xn to denote
a generic element of Xn), we often use Greek letters to denote sequences
whose length is left unspecified. Hence, ξ is a generic element of X≤N . For
each ξ ∈ X≤N , we let ℓ(ξ) denote the length of ξ. Finally, we let ⪯ denote
the reflexive “prefix of” relation defined as follows: for each α = (ak)

m
k=1 and

β = (bk)
n
k=1 in X≤N , α ⪯ β if m ≤ n and ak = bk for each k ∈ {1, . . . ,m}.

Trees Fix a generic set X and consider V ⊆ X≤N (with N ∈ N). We say
that V is a tree if, whenever β ∈ V and α ⪯ β, then α ∈ V – i.e., V is a tree
if it is closed under the “prefix of” relation ⪯ (cf. Kechris, 1995, Definition
2.1).9 Given a tree V ⊆ X≤N , for each element ξ ∈ V , we are going to
denote as pre ξ the immediate predecessor, or parent, of ξ, that is, the
unique element of V such that ℓ(pre ξ) = ℓ(ξ)− 1 and pre ξ ⪯ ξ.

Notation We denote correspondences with calligraphic letters and collec-
tions of sets with script letters. We try to make our notation suggestive,

8The finiteness assumption is only a simplification. Our approach extends seamlessly
to infinite games (cf. Myerson & Reny, 2020 for the special case of multistage games).

9Any tree V defined in this way can be naturally mapped into an equivalent tree defined
in a graph-theoretic fashion. In particular, the set of vertices of such graph is isomorphic
to V , and any two distinct vertices u, v are connected by a path if and only if u ⪯ v or
v ⪯ u.
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and the symbols used to indicate the mathematical objects of interest will
often be mnemonics for the role of such objects. Similarly, equations and
logical statements in display mode will be associated with mnemonic labels.

3 Multistage game structures and flows of infor-
mation

We call “game structure” the mathematical description of the rules of in-
teraction, without the function mapping complete paths to outcomes (see
Battigalli, Leonetti, & Maccheroni, 2020). We relate descriptions featur-
ing “flows” of information to descriptions featuring “stocks” of information,
represented by information sets. Here we start with the former, assuming a
multistage structure.

We assume that, after each stage, players receive some messages about
the previous play, in addition to observing their own actions. Such messages
play a double role: on one hand, they (perhaps imperfectly) inform players
of how the game has unfolded; on the other hand, they inform players of
the actions they can take. For instance, in an ascending auction played on
an online platform, a player may be notified right after the beginning that
“the first bid was $100: bid at least $101 to continue”. Or, more generally,
messages could look like: “your opponent moved, now you can choose a or
b”, or “your opponent chose c, now you can choose a or b”. The bottom line
is that such messages can be more or less informative about the behavior of
others, but they provide players with all the instructions needed to play the
game (which requires, of course, knowing one’s own feasible actions).

More specifically, we are going to assume in this first part that all players
simultaneously receive some message before and after each stage is played.
This is in line with the multistage restriction, as multistage games are pre-
cisely those in which players always “know” how many stages have been
played (cf. Kuhn, 1953): in our setting, the messages accrual allows players
to keep track of the stage the game is at. In the following, we illustrate the
key ingredients of the analysis.

Players, actions, and messages We start by positing a finite set of
players I, a maximal duration T ∈ N of the game, and, for each player
i ∈ I, a finite set Ai of actions that will potentially be available to player
i. As already mentioned, we assume that players receive some game-specific
messages as the play unfolds: this is why we posit, for each player i ∈ I
and stage t, a finite set Mi,t of messages that i can receive in stage t, with
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Mi,s ∩Mi,t = ∅ if s ̸= t, meaning that the message always reveals the stage

just completed. With this, we let A :=×i∈I Ai, Mi =
⋃T

k=0Mi,k (where
Mi,0 contains only the “start” messagemi,0), andM :=×i∈I Mi respectively
denote the sets of action profiles, messages for i, and message profiles.

A rule to determine feasible actions We said that messages inform
players of their feasible actions. In particular, players need not remember
the actions they previously took or the messages they previously received
to be able to understand what they can do: the message just received also
encodes the set of feasible actions.

To formalize this idea, we introduce, for each player i ∈ I, an action
feasibility correspondence Ai : Mi ⇒ Ai. Thus, Ai(mi) ⊆ Ai (i ∈ I,
mi ∈ Mi) is the set of actions that player i can take after receiving message
mi. As a matter of terminology, we say that player i ∈ I is active after
message mi ∈ Mi if |Ai(mi)| > 1 – that is, if she can choose from at least two
actions after observing message mi. If a player has only one feasible action
at some stage, it means that she is inactive and her only feasible action is
to “wait”. This dummy action is neglected in our notation. An empty set
of feasible actions means “game over.”

It is convenient to introduce the joint feasibility correspondenceA : M ⇒
A, defined as (mi)i∈I 7→×i∈I Ai(mi), that specifies which profiles of actions
are feasible after some profile of messages is observed. We also assume that
A((mi)i∈I) = ∅ if and only if Aj(mj) = ∅ for all j ∈ I. That is, as soon as
the game is over for some player (i.e., such player does not have any feasible
action to take) it is over for everyone.

Note that this formulation assumes that players are always “alert”, that
is, they are always able to receive and process information. This assumption
will be relaxed to generalize our framework to non-multistage games (cf.
Section 6).

A rule to generate messages At this point, we need to discuss how
messages are generated. Obviously such generative process make messages
depend on the action profiles chosen in the game. With this in mind, we
posit a profile of individual feedback functions fi := (f t

i : A
t → Mi,t)

T
t=0

(i ∈ I). Intuitively, for each i ∈ I and t ∈ {1, . . . , T}, f t
i : At → Mi,t is

player i’s end-of-stage-t feedback function, which specifies which message
player i would observe after any conceivable sequence of action profiles of
length t. Recalling that A0 = {∅A}, function f0

i : A0 → Mi,0 instead
specifies the first message that player i receives at the beginning of the
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game: such message informs i that the game is starting, and it specifies (via
the feasibility correspondence Ai) i’s initial set of feasible actions.

As for the feasibility correspondences, it is useful to derive a finite se-
quence of collective feedback functions f := (f t : At → Mt)

T
t=0, where,

for each t ∈ {0, . . . , T}, f t is the map at 7→ (f t
i (a

t))i∈I . In this first part on
multistage games, the first message profile received by players at the root of
the game is denoted as m0 := f0(∅A). Note that each player’s stage feed-
back may well depend on the action she just played, or on past actions of
everyone. To make sense of our analysis, it is necessary to informally assume
that either messages are explicit sentences in a language understood by play-
ers, or that each player knows at least her own feasibility correspondence
and feedback function.

To give a better sense of the feedback functions, we introduce some ter-
minology and we discuss some examples. We say that feedback is perfect
if at each stage and for each player the feedback received allows that player
to exactly infer the actions just chosen by others, regardless of the action
she played. Formally, for each i ∈ I, t ∈ {1, . . . , T}, at−1 ∈ A≤T , and
ai ∈ Ai, f

t
i (a

t−1, (ai, · )) is injective.10 We say that feedback is cumulative
if new messages remind players of previously available pieces of informa-
tion (i.e., actions chosen and messages received). Formally, for each pair of
sequences of action profiles at, bt ∈ A≤T of the same length and for each
player i ∈ I, proj

A≤T
i

at ̸= proj
A≤T

i
bt or f t

i (a
t) ̸= f t

i (b
t) imply that, for each

pair of successors cu ≻ at and du ≻ at, fu
i (c

u) ̸= fu
i (d

u). The condition
says that, for each player, whenever two sequences of action profiles differ
in the information they convey to that player (via either the actions chosen
or the feedback observed), then also subsequent action profile sequences will
result in different messages. To put it differently, future feedback incor-
porates past information, which includes information about own actions in
previous stages. A couple of informal examples may help shed light on the
terminology we use, as well as on the nature of feedback.

Example 1 (Chess) In chess, players observe all the moves performed at
each stage, as well as the resulting positions of pieces on the chessboard.
However, information about the previous play differs based on how and
where the game is played.

Consider first a friendly, in-person match played by amateurs, where we
assume that players do not write down the moves they take. In such setting,
in each stage they observe the move of the active player and the end-of-stage

10Obviously, this does not involve function f0
i (i ∈ I), which determines the initial

message, generated before any actions are chosen.
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positions of pieces on the board, but they are not reminded of past play. If
players recall some past moves, then it is just because they memorized them.
Hence, feedback is perfect but not cumulative.

If instead the game is played in a competitive tournament, or on an
online platform such as chess.com, the rules of the game themselves provide
players with a complete account of the game unfolding. Indeed, in both such
settings the log of moves taken throughout the game is publicly available.
This makes feedback both perfect and cumulative.

Lastly, blind chess provides yet another feedback structure: in such
game, the only available feedback pertains to the last move taken, and play-
ers have to remember past moves and figure out the positions of pieces on
the board.11 As in the first case, feedback is perfect but not cumulative. ▲

Example 2 (Auctions) Suppose that a number of agents repeatedly en-
gage in first-price sealed-bid auctions. This may be due, for example, to the
fact that multiple items are being sold. After each round of bids, players
may have access to different forms of feedback. For instance, players may
be informed only of the current-round winning bid: in such case feedback
is neither perfect nor cumulative. If instead players are told the sequence
of winning bids of all previous rounds, feedback is cumulative but not per-
fect. Specifically, “cumulativeness” comes from the fact that the feedback of
a given stage incorporates previous feedback, as the communication of the
previous-rounds winning bids is repeated as the interaction progresses. For
feedback to be both perfect and cumulative, players must be informed after
each round of all the bids made in previous rounds. ▲

Game structure We can now put things together, and we obtain the
following definition.

Definition 1 A flow-based multistage game structure is a tuple

ΓFM = ⟨I, (Ai,Mi, fi,Ai)i∈I⟩.

Importantly, the foregoing discussion clarifies that all the mathematical
objects forming a flow-based multistage game structure represent properties
of the game that do not hinge in any way on the personal features of those

11Of course, the rules have to account for the possibility that a player with imperfect
memory, or an imperfect ability to figure out the positions of pieces on the board, might
attempt an illegal move. For example, they could stipulate that moves consist of instruc-
tions, every instruction can be given, and instructions to execute illegal moves terminate
the game with the loss of the moving player.
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who happen to play the game. To see this, note that it would be possible to
give an explicit and objective description or definition of each of the objects
in Definition 1 if one were to design, for example, a lab experiment.

Note that we can retrieve a tree H of histories of actions and messages
in a constructive way:

H :=
{
(m0, (ak,mk)

t
k=1) ∈ M × (A×M)≤T : ∀ k ∈ {1, . . . , t},

ak ∈ A(mk−1), mk = fk(ak)
}
∪
{
∅
}
,

where ∅ represents the empty history (the root of the game), and m0 is
the profile of initial messages received by players. One can check that H is
indeed a tree. The elements of H are called extended histories.12

In the present framework, extended histories are sequences of profiles
of actions and messages, where each player is assumed to observe only the
action she chooses and the message she receives at the end of each stage.
Importantly, this approach assumes that players are always alert (i.e., they
are always able to receive and process information), as messages can be
observed even when players are not active.

A generic extended history has the form h = (m0, (a1,m1), . . . , (at,mt)),
where the subscript denotes the stage at which an action profile is played or a
message profile is received. Hence, each extended history features an initial
profile of messages followed by a sequence of pairs of action and message
profiles, one for each stage through which the extended history unfolds.
This formalism highlights the double role of messages. On one hand, they
inform players of their feasible actions, and hence an initial message profile
m0 is needed for players to realize what they can do at the beginning. On
the other hand, messages give players information about previous play. In
particular, a final message profile mt lets players know the game is over and
may give them some further information about the just completed play.

It is possible to derive from H the feasible sequences of action profiles
that can be played according to the rules of the game. The set of such
sequences is P := projA≤T H, and its elements are called plays.13 Of course,

12Our representation in terms of sequences of (messages and) actions is similar to that of
Osborne and Rubinstein (1994), who use the term “history” to denote feasible sequences
of (profiles of) actions. Here the adjective “extended” refers to the fact that our formalism
includes profiles of messages in addition to profiles of actions.

13The term “play” has been used in the literature to refer to complete plays, which
correspond to terminal nodes (cf. Kuhn, 1953). However, for the sake of clarity, we find
it convenient to use the same term to include also partial plays, which correspond to
non-terminal nodes.
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the rules of the game allow play (ak)
t
k=1, only if they allow every prefix

(ak)
ℓ
k=1 (ℓ ≤ k). Therefore:

Remark 1 The set of possible plays P ⊆ A≤T is a tree. ♦

As the game unfolds, players are informed only of the actions they take
and of the messages they receive. To formalize this idea, for each i ∈ I,
let Ci := projM×(Ai×Mi)≤T : M × (A ×M)≤T → Mi × (Ai ×Mi)

≤T be the

projection map (m0, (a
t
j ,m

t
j)j∈I) 7→ (m0,i, (a

t
i,m

t
i)). In words, Ci(h) (i ∈ I,

h ∈ H) is the personal history experienced by i given extended history h,
and it can be interpreted as the cumulated information (i.e., actions played
and messages received) player i has access to given h. We may also refer to
Ci(h) (h ∈ H) as the stream of information, or personal history experienced
by player i within extended history h. The set of personal histories player
i can experience as the game unfolds is defined as Hi := Ci(H).

4 Stock description of information

In this section, we describe the conventional approach used to model in-
formation. In particular, Section 4.1 draws on Battigalli, Leonetti, and
Maccheroni (2020) to give a standard definition of multistage game struc-
ture similar to that of Osborne and Rubinstein (1994) . Section 4.2 then
explains how such formalism can be extended to facilitate the comparison
with flow-based multistage game structures.

4.1 Standard information structures

We start with the definition of a game structure à la Osborne and Ru-
binstein (1994), whereby information is described by means of information
sets, as is standard for the description of abstract sequential games since
the seminal work of von Neumann and Morgenstern (1944). For a fixed tree
V ⊆ A≤T and all vertices/sequences v ∈ V and players i ∈ I, let A(v) :=
{a ∈ A : (v, a) ∈ V } and Ai(v) := {ai ∈ Ai : ∃ a−i ∈ A−i, (v, (ai, a−i)) ∈ V }
(i.e., the projection of A(v) onto Ai) respectively denote the sets of action
profiles and actions of i consistent with V given v.

Definition 2 (cf. Osborne & Rubinstein, 1994, Definition 200.1) A
(finite) standard multistage game structure is a tuple

ΓMS = ⟨I, V, (Ai,Qi)i∈I⟩,

where:
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� V ⊆ A≤T is a tree (with vertices called “plays”) satisfying:

∀ v ∈ V, A(v) =×
i∈I

Ai(v). (APF)

� Qi is the collection of information sets of player i (i ∈ I), with Qi

being a partition of {v ∈ V : |Ai(v)| > 1} ∪ {∅} =: Vi ∪ {∅} that
satisfies the following properties:14

∀ v, w ∈ Vi,
(
Qi(v) = Qi(w) =⇒ Ai(v) = Ai(w)

)
; (KfA)

∀ v, w ∈ Vi,
(
Qi(v) = Qi(w) =⇒ ℓ(v) = ℓ(w)

)
. (KS)

In the definition above, Qi(v) (i ∈ I, v ∈ V ) denotes the cell of Qi that
contains v. The same notation will be used subsequent sections.

A few comments are in order. First, the tree V specifies what sequences
of action profiles can be played throughout the game, and, for each v ∈ V
and i ∈ I, Ai(v) ⊆ Ai is the set of player i’s available actions at v.15 By
definition, for each v ∈ V and a ∈ A, we have that (v, a) ∈ V if and only
if a ∈ A(v), and condition (APF) (action profile feasibility) imposes that
what is feasible for i given v is logically independent of what is feasible for
j given v. A play (or node, or vertex) v is terminal if and only if A(v) = ∅.
Under such representation, being inactive at some play v amounts to having
only one available action. The foregoing observations are consistent with
the analysis of Section 3.

Second, an information set Qi ∈ Qi of player i is a set of plays where
player i is active that player i cannot distinguish, and we refer to collec-
tion Qi as the (standard) information structure of player i. Note that
condition (KS) implies that Qi(∅) = {∅}. That is, the information set con-
taining the empty play is a singleton, and hence “being at the root of the
game” is a situation that can be correctly recognized by players.

Third, condition (KfA) (knowledge of feasible actions) requires that two
plays be indistinguishable for a player only if the set of actions available to
such player after the two plays is the same – otherwise, players would not
even able to play the game, as they might be unsure of the actions they can
take at some point of the play. Condition (KS) (know-the-stage) further

14As a shorthand, for each v ∈ V and i ∈ I, we let Qi(v) denote the unique Qi ∈ Qi

such that v ∈ Qi.
15Note, in this axiomatic approach, a (game) tree V is posited as primitive element

of the analysis, and the feasible action profiles are derived from V . This should be con-
trasted with the more constructive approach of Definition 1, whereby action feasibility
correspondences are taken as primitives.
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imposes that plays belonging to the same information set of a player must
have the same length. That is, players always know at which stage the game
is. This condition is needed for the game (structure) of interest to be of the
multistage kind (cf. Kuhn, 1953).

As already mentioned, information sets are hybrid concepts that may
fail to adhere to the separation principle, as they may represent situations
of genuine ignorance about the game unfolding, or cognitive failures in in-
formation retention, or both. The following one-player game illustrates a
failure of memory.

Example 3 (Did I lock the door?) After leaving her home, Alice no
longer remembers whether she locked the door or not. When she realizes
this, she can either go back and check or not. The standard multistage game
structure portraying this situation is as follows.

Not

Lock
Not

Check

Not

Check

Alice moves

Figure 1 Alice does not remember if she locked the door.

In the graphical representation of game structures we are going to use
shaded areas to represent information sets.

It is easy to check that all the conditions of Definition 2 are met. Specif-
ically, (APF) is trivially satisfied because the set of players is a single-
ton. Moreover, (APF) holds because QAlice = {{(Lock), (Not)}, {∅}},
and AAlice(Lock) = {Check,Not} = AAlice(Not). Lastly, ℓ((Lock)) =
ℓ((Not)) = 1, and this verifies (KS).

Alice’s failure in distinguishing plays (Lock) and (Not) is a personal
cognitive shortcoming made relevant by the fact that the rules of the game do
not provide Alice with an automatic reminder of what she did. This clarifies
the hybrid nature of information sets: in general, we have no guarantee at

13



all that they represent a situation where players’ ignorance of the game
unfolding is induced by the rules of the game alone. ▲

To rule out situations where information sets encode some sorts of cogni-
tive failures such as the one represented in Example 3, the notion of perfect
recall has been proposed (cf., e.g., Kuhn, 1953, or Selten, 1975). As the
name suggests, perfect recall rules out all the situations where information
sets incorporate failures in players’ ability to retain information.

The notion of perfect recall we are going to employ is formalized by
means of the concept of “experience”, as introduced by Osborne and Ru-
binstein (1994). As the game unfolds, a player goes through a sequence of
information sets. Such sequence of information sets, coupled with the ac-
tions played at each such information set, forms the “experience” of a player
within a play. To provide a formal definition of experience, we introduce the
following notation. For each pair of plays (v′, v′′) ∈ V ×V such that v′ ≺ v′′

and for each player i ∈ I, we denote by ai(v
′, v′′) the unique action such

that (v′, (ai(v
′, v′′), a−i)) ⪯ v′′ for some a−i ∈ A−i. In words, ai(v

′, v′′) is
the unique action of player i that does not prevent v′′ from realizing when
taken at v′. With this, the experience function Xi of player i ∈ I can be
defined recursively as follows. Fix a generic play v ∈ Vi ∪ {∅}.

� If ℓ(v) = 0 (i.e., v = ∅), we define Xi(∅) := (Qi(∅)) = ({∅}).

� Assume that Xi(u) has been defined for each u ∈ Vi with 0 ≤ ℓ(u) ≤
k. Fix v ∈ Vi with ℓ(v) = k + 1 (if any), and let lasti v be the
longest predecessor of v where i is active (if any), or the empty play
(otherwise). Note that lasti v ∈ Vi∪{∅} and ℓ(lasti v) ≤ k. With this,
we can define Xi(v) := (Xi(lasti v), ai(lasti v, v), Qi(v)).

The definition of perfect recall of Osborne and Rubinstein (1994) requires
that, whenever two plays belong to the same information set of a player, then
they induce the same experience for such player.

Definition 3 (Osborne & Rubinstein, 1994, Definition 203.3) Fix
a standard multistage game structure ΓSM = ⟨I, V, (Ai,Qi)i∈I⟩; perfect
recall holds if:

∀ i ∈ I, ∀ v, w ∈ Vi,
(
Qi(v) = Qi(w) =⇒ Xi(v) = Xi(w)

)
. (PR)

A crucial feature of standard multistage game structures is that the
information received and processed by players when they are not active is
not modeled. This is in contrast with the flow-based approach presented
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above, where one message is received by each player after each stage. This
observation motivates the “extension” of standard information structures
in order to model the information players receive when they are inactive –
this is necessary if we want to carry out a meaningful comparison of such
stock-based information structures with flow-based ones.

4.2 Completions of standard information structures

We are now interested in “extending” standard information structures. The
most intuitive way to do so consists in letting an information structure of
a player be a partition of all the plays, even of those where such player is
not active. We label the resulting information structures (as well as the
corresponding game structures) as “synchronic”, to convey the idea that all
players simultaneously receive some information at each stage.16

Definition 4 A synchronic-information (SI) multistage game struc-
ture is a tuple

ΓSI = ⟨I, V, (Ai,Ri)i∈I⟩,

where I, Ai, and V are as in Definition 2 and Ri is the SI information
structure of player i (i ∈ I), with Ri being a partition of V that satisfies
the following properties:

∀ v, w ∈ V,
(
Ri(v) = Ri(w) =⇒ Ai(v) = Ai(w)

)
; (KfA-SI)

∀ v, w ∈ V,
(
Ri(v) = Ri(w) =⇒ ℓ(v) = ℓ(w)

)
. (KS-SI)

Conditions (KfA-SI) and (KS-SI) are essentially the same as in Definition
2, and their labels remark the fact that they are defined for an SI information
structure rather than for a standard one.

The notion of perfect recall is straightforwardly extended to the SI case.
The definition of experience functions is adapted in a natural way: given that
players receive some information after each stage, in the recursive definition
of experience it is enough to focus on the immediate predecessor of a given
play, rather than on the longest predecessor where a given player was active.

Definition 5 (Perfect recall, SI) Fix an SI multistage game structure
ΓSI = ⟨I, V, (Ai,Ri)i∈I⟩. Perfect recall holds if:

∀ i ∈ I, ∀ v, w ∈ V,
(
Ri(v) = Ri(w) =⇒ Xi(v) = Xi(w)

)
. (PR-SI)

16The terminology is borrowed from Battigalli and Bonanno (1999).

15



We can now analyze how a standard information structure can be turned
into an SI one. As one may expect, one should first impose that the standard
information structure and the SI one “agree”, for each player, on how to
partition the sets where such player is active. However, this is in general
not enough, as the next example shows.

Example 4 (A quartet game) Assume that a game has to be played
among Ann, Bob, Chloe, and Dave, so that I = {A,B,C,D}. As for poten-
tially available actions, assume AA = AB = {ℓ, r, w}, AC = {Ann,Bob, w},
AD = {u, d, w}, where w is the dummy action “wait”.

The following is a graphical portray of a game structure, with Dave’s
(both standard and SI) information structure. For the sake of the argument,
we can assume that all other players are perfectly informed – that is, that
their information structures are made of singletons.

Bob

Ann

Chloe moves

r

ℓ

Ann moves

r

ℓBob moves

d

u

d

u
Dave moves

d

u

d

u

Figure 2 A game tree with Dave’s standard (in light blue) and SI informa-
tion structures (in light and darker blue): (PR) holds, but (PR-SI) fails.

In Figure 2, the two information structures intuitively “agree”. Yet, it is
easy to check that the standard information structure satisfies perfect recall,
while the SI one does not. To appreciate it, note that (PR-SI) implies that
whenever two plays belong to different information sets, their successors
must also belong to different information sets. This obviously fails in Figure
2, as (Ann) and (Bob) belong to different information sets of Dave, but
(Ann, ℓ) ≻ (Ann) and (Bob, ℓ) ≻ (Bob) belong to the same information set.
In words, the SI information structure of Figure 2 describes a situation in
which Dave observes Chloe’s move, but later on he forgets it. ▲
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Example 4 shows that something more than “agreement” is needed for
perfect recall in a standard information structure to be preserved when we
move to an SI setting. In the following, we are going to denote generic
standard and SI information structures (obviously defined starting from the
same tree V ) as (Qi)i∈I and (Ri)i∈I , respectively. For (Ri)i∈I to “reasonably
complete” a standard information structure (Qi)i∈I satisfying perfect recall,
some requirements have to be met.17 First, Ri (i ∈ I) must be consistent
with Qi in the way it partitions Vi. Second, information structure (Ri)i∈I
must be such that players do not forget the past: whenever w is a successor
of v, then plays that can be reachable from w must also be reachable from
v or from some play which is indistinguishable from v according to (Ri)i∈I
(and the same must apply to each player). Third, players must recall their
own actions: for each player i, if play w comes immediately after play v
(which belongs to information set Ri(v)) and player i took action a at v,
then all plays in Ri(w) must be such that player i took action a after some
play in Ri(v).

We need some preliminary notation. Let V (Ri, ai) denote the set of
plays that immediately follow those in information set Ri, in which player
i chooses ai at Ri – that is, V (Ri, ai) := {w ∈ V : ∃ v ∈ Ri, ∃ a−i ∈
A−i(v), (v, (ai, a−i)) = w}.

Definition 6 Fix a standard information structure (Qi)i∈I satisfying per-
fect recall. An SI information structure (Ri)i∈I is a completion of (Qi)i∈I
if it satisfies the following:

∀ i ∈ I, ∀ v ∈ Vi, Qi(v) = Ri(v); (C)

∀ i ∈ I, ∀ v, w ∈ V,
(
v ≺ w =⇒ ∀w′ ∈ Ri(w),∃ v′ ∈ Ri(v), v

′ ≺ w′); (NF)

∀ i ∈ I, ∀ v ∈ V,∀ ai ∈ Ai(v),(
v ∈ V (Ri(pre v), ai) =⇒ Ri(v) ⊆ V (Ri(pre v), ai)

)
. (ROA)

For each standard multistage game structure ΓSM = ⟨I, V, (Ai,Qi)i∈I⟩
with perfect recall, we call a completion of ΓSM any SI multistage game
structure ΓSI = ⟨I, V, (Ai,Ri)i∈I⟩, such that (Ri)i∈I is a completion of
(Qi)i∈I . Conversely, for each SI multistage game structure ΓSI = ⟨I, V, (Ai,Ri)i∈I⟩,
we let its standard restriction be the standard multistage game structure
ΓSM = ⟨I, V, (Ai,Qi)i∈I⟩ where (Qi)i∈I is such that, for each i ∈ I and
v ∈ Vi, Qi(v) := Ri(v).

As one may expect, a completion is a way to “extend” a standard infor-
mation structure that preserves perfect recall. Indeed, condition (C) ensures

17The following conditions are taken verbatim from Battigalli and Bonanno (1999).
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“agreement” between the standard information structure and its completion.
Then, the other conditions ensure that perfect recall holds in the derived
setting, as the next result shows.18

Lemma 1 Fix a standard multistage game structure ΓSM = ⟨I, V, (Ai,Qi)i∈I⟩
satisfying (PR), and let ΓSI = ⟨I, V, (Ai,Ri)i∈I⟩ be one of its completions.
Then, ΓSI satisfies (PR-SI).

For instance, the SI information structure of Figure 2 is not a completion
because it allows Dave to forget about some previously known information
– that is, he observes Chloe’s action, but later on he forgets it. In a proper
completion of such information structure, Dave must also be uncertain of
Chloe’s action in the first place (cf. Figure 3 below). Conversely, it is also
easy to check that, starting from a SI multistage game structure with perfect
recall, its standard restriction also satisfies perfect recall.

Now, it is legitimate to ask whether these descriptions of a game struc-
ture can be turned into “equivalent” representations using the flow-based
approach.

5 Information flows and perfect recall

The aim of this section is to relate the two approaches described so far.
Section 5.1 discusses how SI information structures can be derived by flow-
based representations, under the interpretive assumption that players mem-
orize and efficiently use the information they observe to make inferences.
Section 5.2 establishes an equivalence result between our formalism and the
conventional one.

5.1 Making inferences through messages

In this subsection, we describe the inferences a player can make using the
flows of information determined by the rules of the game. In particular,
we are going to show how a flow-based multistage game structure can be
turned into an SI one under the interpretive assumptions that players know
how feedback is generated and have perfect mnemonic abilities. To do this,
we first restrict attention to plays, rather than to extended histories, con-
sistently with the standard approach. Then, we show how information sets
may be derived from the feedback functions.

18Proofs are collected in Appendix A.
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Our approach is intuitive: as a player receives messages about how the
play is unfolding, she is able to combine such stream of pieces of information
with the actions she took to identify the set of plays that are consistent with
this evidence. Such “set of indistinguishable plays” is an information set of
the derived SI multistage game form: we then show that (PR-SI) is satisfied,
that is, the derived collection of information sets is a partition satisfying the
perfect recall property.

Fix a flow-based multistage game structure ΓFM = ⟨I, (Ai,Mi, fi,Ai)i∈I⟩.
For each play (ak)

t
k=1 ∈ P , there is a unique extended history in H consis-

tent with it, namely, (m0, a1, f
1(a1), a2, f

2((a1, a2)), . . . , at, f
t((a1, . . . , at))).

For each play p ∈ P , we let E(p) denote the extended history derived as
above. Formally, E : P → H is the inverse of the projection projP : H → P
that maps each extended history to the corresponding play. One can check
that E is a well-defined map because projP is a bijection.19

Note that two extended histories g, h ∈ H cannot be distinguished by
player i (i ∈ I) if they correspond to the same personal history (or cumulated
information) of i, that is, if Ci(g) = Ci(h). Thus, we say that two plays
p, q ∈ P are indistinguishable for player i (i ∈ I), written p ∼i q, if
the extended histories in H inducing them result in the same stream of
information for i:

p ∼i q ⇐⇒ Ci(E(p)) = Ci(E(q)),

where E(p) is the unique extended history induced by play p. To ease
notation, for each i ∈ I, we let Fi := Ci ◦ E : P → Hi denote the map from
plays to personal histories for i. It is easily verified that, for each i ∈ I, ∼i is
an equivalence relation on P .20 The following can be checked by inspection
of the definition of ∼i.

Remark 2 Fix a flow-based multistage game structure ΓFM . For each i ∈ I
and p, q ∈ P , p ∼i q implies: (1) ℓ(p) = ℓ(q), (2) proj

A≤T
i

p = proj
A≤T

i
q, (3)

pre p ∼i pre q, (4) Ai (fi (p)) = Ai (fi (q)). ♦

19To check that projP is injective, consider g, h ∈ H such that g ̸= h. If the two extended
histories have different lengths, then so will their projections, proving projP g ̸= projP h.
Assume then ℓ(g) = ℓ(h) and proceed by induction. For the basis step, let ℓ(g) = ℓ(h) = 1,
so that g = (a, f(a)) and h = (b, f(b)) for some a, b ∈ A. Obviously, g ̸= h if and only if
a ̸= b, in which case we also have projP g = a ̸= b = projP h. The proof of the inductive
step is analogous. Surjectivity of projP is obvious.

20We find it more convenient to state this condition in terms of plays rather than
extended histories. In any case, the (finite) sets P and H are isomorphic, as mentioned in
Section 3.
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For each p ∈ P , we let [ p ]∼i := {q ∈ P : p ∼i q} be the equivalence
class of p. For each i ∈ I, the quotient space P/ ∼i, defined as Ri := {Ri ⊆
P : ∃ q ∈ P,Ri = [ p ]∼i}, is a partition of plays according to player i’s
indistinguishability relation. It will represent the collection of information
sets of player i in the SI multistage game structure derived from ΓFM :
indeed, when p ∈ P realizes, player i observes the information stream Fi(p)
and she may deem possible all the plays that induce the same stream, that
is, all the plays in [ p ]∼i . The fact that P is a tree (Remark 1) and Remark
2 imply:

Remark 3 Structure ⟨I, P, (Ai,Ri)i∈I⟩ is an SI multistage game structure.
♦

With this, we let SI(ΓFM ) = ⟨I, P, (Ai,Ri)i∈I⟩ denote the SI multi-
stage game structure derived from ΓFM .

Proposition 1 For any flow-based multistage game structure ΓFM , SI(ΓFM )
satisfies the perfect recall property (PR-SI).

Proposition 1 gives an important intuition. We talked of information
sets as representing stocks of information, or snapshots of what players deem
possible as the game unfolds: if the realized play is p, then player i (i ∈ I)
“knows” that the one of the plays in Ri(p) has realized. But the formalism
behind information sets is silent on how and from what such “knowledge” is
derived. If we stick to the proposed flow-based representation, instead, not
only can such snapshots be seamlessly derived, but it also becomes crystal
clear that they reflect players’ accumulated information as specified by the
rules of interaction, in compliance with the separation principle.

It is worth noting that, in the current formulation, two distinct plays can
be distinguished by player i ∈ I if and only if they induce different realized
streams of pieces of information (i.e., played actions and received messages).
This means that one must keep track of previous evidence in order to as-
sess indistinguishability of plays according to relations (∼i)i∈I . To interpret
this requirement, we can think of indistinguishability of plays (from some
player’s perspective) as something that can be assessed either by an external
observer, or by a player that memorizes the pieces of evidence she observes
throughout the game. This is obviously an informal and interpretive as-
sumption, and a formal analysis would involve a mathematical description
of players’ ability to retain information. In Section 7 we are going to revisit
Proposition 1 by introducing a formal description of players’ memory.21

21We reserve the term “recall” to denote properties concerning the standard represen-
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Lastly, it is interesting to observe that a possibly different standard mul-
tistage game structure could be obtained by making indistinguishability a
different requirement. Indeed, we could consider a profile (≈i)i∈I of rela-
tions on P such that, for each i ∈ I and p, q ∈ P , p ≈i q if and only if
fi(p) = fi(q): in such case, we say that p and q are minimally indistin-
guishable. That is, two plays are minimally indistinguishable for player
i ∈ I if and only if they result in the same message for player i: in such
case, one no longer has to keep track of all the evidence observed, but only
of the last message. Then, the standard multistage game structure obtained
considering the quotient spaces (P/ ≈i)i∈I as the players’ information struc-
tures satisfies perfect recall if and only if the rules of the game themselves
remind to each player and at each stage all the information previously pro-
vided to such player. It is possible to check that perfect recall holds in the
derived game if and only if the original flow-based multistage game features
cumulative feedback.22

5.2 Characterizing perfect recall

We showed in Proposition 1 that a flow-based multistage game structure in-
duces an SI multistage game structure that naturally satisfies perfect recall.
In this section, we go a step further in investigating the link between perfect
recall and flows of information. Specifically, we characterize perfect recall
in SI multistage game structures (Proposition 2), and then we adapt such
result to standard multistage game structures (Corollary 1) by exploiting
the notion of completion introduced in Section 4.2.

tation of information sets, because such meaning is entrenched in the literature. Thus,
we use the word “memory” whenever we (formally or informally) refer to players’ ability
to retain information in a flow-based setting. This terminological distinction is useful to
remind of a relevant difference: while (perfect of imperfect) recall is a property of a stan-
dard game structure, memory is something that we append to a flow-based description of
the rules of the game. To put it differently, unlike “recall”, “memory” is a personal feature
of players.

22Indeed, an implicit assumption of our flow-based approach is that players correctly
perceive and remember the last message they observe, as such message is needed to figure
out the feasible actions. Under cumulative feedback, the messages a player receives encode
all the previous information available to such player, including her past actions. Hence,
remembering the last message implies being able to retrieve all previous information.
Therefore, a standard multistage game tree with perfect recall may be interpreted as
either a game played by agents that correctly recall what they do and observe, or as a
game where players are constantly reminded of the information they have been provided
with. In any case, the conventional representation fails to specify how much of players’
“knowledge” of the game unfolding may be ascribed to the rules of the game, as opposed
to cognitive considerations.
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Proposition 2 Fix an SI multistage game structure ΓSI . (PR-SI) holds in
ΓSI if and only if there exists a flow-based multistage game structure ΓFM

such that ΓSI = SI(ΓMF ).

The intuition behind the proof of Proposition 2 is as follows. The “if” di-
rection is given by Proposition 1. As for the “only if” direction, it is enough
to construct a suitable flow-based multistage game structure ΓFM that in-
duces ΓSI . To do so, one may simply define the feedback functions to be
such that, after a play realizes, each player is told her information set in ΓSI

to which such play belongs. Action feasibility correspondences are instead
directly retrieved from the game structure ΓSI , noting that the messages
players observe are actually information sets of ΓSI , which therefore also
inform players of their feasible actions as per condition (KfA). In this way,
the sets of feasible histories of ΓSI and SI(ΓFM ) are the same. With such
construction, for each player, two plays are indistinguishable if and only if
they induce the same experience: this, together with perfect recall, ensures
that the information structure ΓSI coincides with that of SI(ΓFM ).

While Proposition 1 established that each flow-based multistage game
structure induces an SI multistage game structure satisfying perfect recall,
Proposition 2 adds the other direction: any SI multistage game structure
with perfect recall is induced by some flow-based multistage game structure.
All in all, it is possible to claim that, for an SI information structure, sat-
isfying perfect recall is equivalent to being obtainable from some suitable
structure with information flows under the maintained interpretive assump-
tion that players have perfect mnemonic abilities. We are going to make
such assumption precise in Section 7.

We now turn to standard multistage game structures. As expected,
the concept of completions of standard information structures makes the
transition smooth. Combining Proposition 2 and Lemma 1, the following
obtains.

Corollary 1 The following are true:

1. Each of the completions of a standard multistage game structure sat-
isfying (PR) is induced by some flow-based multistage game structure.

2. Each flow-based multistage game structure induces the completion of
some standard multistage game structure satisfying (PR).

We illustrate the foregoing results by means of an example.
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Example 5 (A quartet game, continued) The two possible completions
of Dave’s standard information structure of Figure 2 are in Figure 3. With
either of them,23 (PR-SI) holds as per Lemma 1 (point 1).

Bob

Ann r

ℓ

r

ℓ

d

u

d

u

d

u

d

u

Bob

Ann r

ℓ

r

ℓ

d

u

d

u

d

u

d

u

Figure 3 Two completions of Dave’s standard information structure of
Figure 2: (PR-SI) holds.

As per Corollary 1 (point 1), each of the information structures of Figure
3 can be induced by a suitable stream of pieces of information. Table 1
reports the key features of MD, fD, and AD of the flow-based multistage
game structure mimicking the information structure on the left of Figure 3.

Play Message Feasible actions

∅A The game started. {w}
(Ann), (Bob) Chloe moved. {w}

(Ann, ℓ), (Bob, ℓ) Someone played ℓ. {u, d}
(Ann, r), (Bob, r) Someone played r. {u, d}

(Ann, ℓ, u), (Ann, ℓ, d), Ann played. ∅
(Ann, r, u), (Ann, r, d)

(Bob, ℓ, u), (Bob, ℓ, d), Bob played. ∅
(Bob, r, u), (Bob, r, d)

23Recall that, for the sake of simplicity, we assume that the other players are perfectly
informed about the game unfolding.
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Table 1 Information flow inducing Dave’s information structure of Fig-
ure 3 (left).

Note that the last message Dave can get according to the information
flows described in Table 1 does not per se allow him to understand which
terminal play realized. To figure this out, it has to be combined with the
previous message. Such inference is allowed by the rules of the game, and
it is possible under the informal assumption of perfect memory (see the
discussion about indistinguishability of plays in Section 5.1).

We easily obtain an analogous table for the information structure on the
right of Figure 3. The only difference is that messages are less informative
in such case, as the messages Dave observe after acting do not shed light on
who moved before him. Hence, information is in some sense coarser here.

Play Message Feasible actions

∅A The game started. {w}
(Ann), (Bob) Chloe moved. {w}

(Ann, ℓ), (Bob, ℓ) Someone played ℓ. {u, d}
(Ann, r), (Bob, r) Someone played r. {u, d}

(Ann, ℓ, u), (Ann, ℓ, d) Game over! ∅
(Ann, r, u), (Ann, r, d)

(Bob, ℓ, u), (Bob, ℓ, d)

(Bob, r, u), (Bob, r, d)

Table 2 Information flow inducing Dave’s information structure of Fig-
ure 3 (right).

Point 2 of Corollary 1 is immediate once we consider the standard mul-
tistage game structure which is PM information equivalent to any of the
information flow specifications of Tables 1 and 2: such standard multistage
game structures feature the information structures depicted in Figure 3,
which clearly are completions of their standard restrictions as per point 2 of
Lemma 1. ▲

6 Generalizing the framework

Games with a multistage structure form a rich and widely studied class, and
our approach is well-suited to analyze them. In this section we describe how
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to extend the analysis to relax the multistage assumption. An example may
be useful to build the intuition.

Example 6 (Selten’s horse) The following (standard) game structure is
well-known. Figure 4 portrays a game structure and Chloe’s information
sets.

D

A

D

A

L R L R

Ann moves

Chloe moves Bob moves

Figure 4 Selten’s horse with Chloe’s information sets.

It is easy to verify that condition (KS) of Definition 2 fails here, as the
plays in information set {(D), (A,D)} have different lengths. In particular,
when she has to move, Chloe does not know whether both her co-players
already acted or Ann gave her the move right away. ▲

Our flow-based approach as specified in Section 3 fails to give an account
of the information structure of Figure 4. This is due to the fact that so far
we assumed that a message profile is generated immediately after a move is
taken. However, it is possible to overcome such limitation in a natural way,
as the inspection of Example 6 reveals. Specifically, we need to allow for the
possibility that no message be received by some players after some plays.
For instance, in Example 6, Chloe should not observe any message after (A).
Indeed, suppose she were told “Ann moved, now you can only wait.” Then
at her information set she would have to forget that she waited.24

Next, we first describe how to adapt our flow-based approach to non-
multistage games (Section 6.1), then we generalize the standard approach
(Section 6.2), and we conclude by extending the results of Section 5 to the
non-multistage case (Section 6.3).

24The only way to transform the “horse” of Figure 4 into a multistage game where
players are always “alert” is to introduce a dummy node after (D) and have plays (D)
and (A) generate the same message for Chloe saying that Ann moved and she can only
wait. If Bob does not go across (because he does not move, or he goes down), then Chloe
is told “it is your turn, you can go left or right.” According to traditional game theory,
the game tree of Figure 4 and the multistage game tree resulting from this transformation
are “equivalent.” Yet, it can be shown by example that some non-multistage game trees
cannot be turned into multistage ones (see Battigalli & Bonanno, 1999).
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6.1 Flows

This subsection is similar to Section 3, and it discusses the key ingredients
for the definition of a flow-based game structure.

Players, messages, and actions The sets I, (Ai)i∈I are as before, the
message sets (Mi)i∈I are posited as primitive objects. In this more general
setting, messages serve an additional purpose. Unlike in Section 3, players
are not assumed to be always “alert” – see Example 6, where Chloe does not
process any information immediately after Ann chooses A. Therefore, we
can think of messages as ways to alert players – that is, they inform players
that something happened in the meantime.

Moreover, not all players necessarily move or receive messages at the
same time: for instance, in Example 6 some message needs to be generated
after Ann’s action A to inform Bob that he can move, but Chloe should
definitely not observe any message at that point. As a result, it is convenient
to define, for each nonempty J ⊆ I, the sets AJ :=×i∈J Ai and MJ :=

×i∈J Mi of profiles of actions and messages of players in subset J . Changing
our multistage notation, here we let A :=

⋃
∅̸=J⊆I AJ and M :=

⋃
∅≠J⊆I MJ .

In words, a ∈ A is a profile of actions (ai)i∈J for an unspecified and nonempty
J ⊆ I, and an analogous interpretation applies to elements ofM . Thus, from
this section onward, A and M no longer stand for×i∈I Ai and×i∈I Mi, but
rather for sets of profiles of actions or messages for some nonempty subset
of players.

Formally, profiles are functions that associate each player in a subset
J ⊆ I to a corresponding object, such as an action or a message. With
this, it is useful to define the correspondence D : M ∪ A ⇒ I to be such
that, for each b ∈ A ∪M , D(b) is the domain of profile (function) b. As a
matter of terminology, we say that player i ∈ I is alert given message profile
m ∈ M if i ∈ D(m). Equivalently, m alerts player i. The interpretation is
straightforward: alert players are the ones who receive information when a
message profile is generated.

A rule to determine feasible actions As discussed in Section 3, we
assume that players understand the action they can take by looking at the
last message they receive as the play unfols. Hence, for each player i ∈ I, we
posit an action feasibility correspondence Ai : Mi ⇒ Ai as in Section 3.

Our formalism then implies that being alert is a prerequisite for acting –
that is, players can move only if they receive some message, and hence only
if they are alerted by some profile m ∈ M . Hence, we say that player i ∈ I
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is active after m ∈ M if i ∈ D(m) and |Ai(projMi
m)| > 1. As already

mentioned, moves are taken after receiving information, so a player is active
after some message profile if (i) she received some information, and if (ii)
she can choose from at least two actions based on the piece of information
she received. Note that point (ii) allows an alert player to have only one
feasible action – in such case, a player is alert but inactive, meaning that
she receives and processes information without acting.

Lastly, it is convenient to define the joint feasibility correspondence A :
M ⇒ A, as m 7→×i∈D(m)Ai(projMi

m). Thus, A(m) (m ∈ M) is the set of

action profiles that may be taken (by alert players) after m.

A rule to generate messages We represent how messages are generated
by means of a collective feedback function f̃ : A≤T → M . Note that
A≤T is a potentially large set, but combining the feedback function with
the action feasibility correspondences, one gets the subset of A≤T , which
contains all the feasible sequences of action profiles. So, we are ultimately
interested in considering the restriction of f̃ to such set. Yet, such set of
feasible plays is a derived object – that is, it needs to be retrieved in a
recursive way by exploiting the action feasibility correspondences (Ai)i∈I
and the feedback function f̃ .

It is convenient to refer to a player’s individual feedback function,
which directly specifies the message a given player i ∈ I would observe after
at ∈ A≤T (if any). For each player i ∈ I, let f̃i : dom f̃i → Mi be defined
as follows. First of all, dom f̃i := {at ∈ A≤T : i ∈ D(f̃(at))}. In words, the
domain of f̃i is the set of sequences of action profiles generating a message
that alerts player i: this is clearly motivated by the observation that player i
does not necessarily receive a message after an arbitrary sequence at ∈ A≤T .
Then, for each at ∈ dom f̃i, let f̃i(a

t) := projMi
f̃(at).

Some restrictions We can now combine feasibility correspondences and
message generating functions in order to see how they shape the game un-
folding. Before doing so, however, we have to impose some natural restric-
tions that apply to (Ai)i∈I and f̃ .

� Know that the game started.It is reasonable to assume that the first
message profile to ever be generated alerts everyone. Obviously, not
all players need to be active afterwards, but all players should be
informed that the game started. In this regard, the first message player
i ∈ I receives may be thought of as stating “the game is started” and
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specifying i’s initially feasible actions. Formally, we impose:

f̃(∅A) ∈ MI . (KGS-F)

� Know that the game ended. The game ends after m ∈ M if A(m) = ∅.
In such case, we say thatm terminates the game. Specifically, given
that A(m) =×i∈D(m)Ai(projMi

m) for each m ∈ M , we require that

whenever Aj(projMi
m) = ∅ for some j ∈ D(m), then Ai(projMi

m) =
∅ for all i ∈ D(m). Therefore, as soon as the game is over for some
player (i.e., such player does not have any feasible actions anymore)
it is over for everyone. Just like it was reasonable to require that
all players be informed of the game start, it is equally compelling to
require that all players be informed of the game end. That is, whenever
a message profile terminates the game, then it must alert everyone.
Furthermore, since the maximal duration of the game is T , the game
must end after each sequence of action profiles of length T . Formally:

∀m ∈ M, A(m) = ∅ =⇒ m ∈ MI , (KGE-F)

∀ aT ∈ AT , A
(
f̃(aT )

)
= ∅.

We can now give the definition of game structure.

Definition 7 A flow-based game structure is a tuple

ΓF = ⟨I, f̃ , (Ai,Mi,Ai)i∈I⟩,

where the elements are as above, and (KGS-F) and (KGE-F) are satisfied.

Possible plays Our objective is now to derive all the possible ways in
which the game may unfold given a structure ΓF = ⟨I, f̃ , (Ai,Mi,Ai)i∈I⟩.
In the following, we maintain the usual distinction between (partial or com-
plete) plays and extended histories. We will also define a feedback func-
tion f : P → M , which will be obtained by restricting the collective feedback
function f̃ : A≤T → M to the set of feasible sequences of action profiles (i.e.,
to the set of plays).

The starting point is obvious: define the sets of length-0 plays and ex-
tended histories as P 0 := {∅} and H0 := {∅}.25 Then, let f0 : P 0 → M be
such that f0(∅) := f̃1(∅).

25Recall that we drop the range subscript from the empty sequence symbol when no
confusion may arise; e.g., we write just ∅ instead of ∅A as the unique element of A0.
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Given P 0, H0, and f0, we can obtain the set of length-1 plays and
histories as

P 1 := A(f0(∅)), H1 := {f0(∅)} ×
( ⋃

a1∈P 1

{a1} × {f1(a1)}
)
,

where, f1 : P 1 → M is obtained by restricting f̃ to P 1. Lastly, the set of
length-1 terminal extended histories is26

Z1 := {(m0, a1,m1) ∈ H1 : A(m1) = ∅}.

Note that terminal histories feature as last element a message profile with
domain I that terminates the game, and this verifies condition (KGE-F).

Assume now that P t and Ht have been defined for 0 < t < T . Then,

P t+1 :=
⋃

at∈P t

{at} × A(f t(at)),

Ht+1 :=
⋃

h∈Ht

{h} ×
( ⋃

a∈A(f t(projPt h))

{a} ×
{
f t+1

(
(projP t h, a)

)})
,

Zt+1 := {(m0, . . . , at+1,mt+1) ∈ Ht+1 : A(mt+1) = ∅},

where f t and f t+1 are the restrictions of f̃ to P t and P t+1, respectively.
Wrapping up, we let P :=

⋃T
t=0 P

t be the set of feasible plays, H :=⋃T
t=0H

t the set of feasible extended histories, and Z :=
⋃T

t=1 Z
t the set

of feasible terminal extended histories. Let f : P → M denote the map
at 7→ f t(at). A play p ∈ P is terminal if f(p) terminates the game (or,
equivalently, if it is induced by a terminal extended history). Lastly, player
i ∈ I is alert after play p ∈ P if i ∈ D(f(p)). We let Pi (i ∈ I) denote the
set of plays after which player i is alert.

As before, during the game players only observe the actions they play and
the messages they receive. It is therefore important to “extract” from each
extended history in H the pieces of information each player gets exposed in
such history. To this end, for each player i ∈ I, we let ci : M ∪A → Mi ∪Ai

be defined, for each b ∈ M ∪A, as

ci(b) :=

{
projMi∪Ai

b if i ∈ D(b);

∅Mi∪Ai otherwise.

In words, ci (·) (i ∈ I) isolates i’s component (if any) from a profile of
messages or actions. We use it to obtain a straightforward adaptation

26The length of extended histories is understood as the length of the induced play.
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of the cumulated information function introduced in Section 3, by letting
Ci : H → {m0} × (Ai × Mi)

≤T denote the map (m0, (ak,mk)
t
k=1) 7→

(mi,0, (ci(ak), ci(mk))
t
k=1).

27

With this, we define the set of personal histories of player i ∈ I as
Hi := Ci(H). The interpretation is as in Section 3: Ci(h) (i ∈ I, h ∈ H) is
the personal history of i induced by h, that is, the cumulated information i
is provided with given extended history h. Differently from Section 3, Ci(h)
and h need not have the same length, because i may not be alert given h or
some prefix of h.

Example 7 (Selten’s horse, continued) Chloe’s information structure
as depicted in Figure 4 can be induced by the following (partial) flow of
information. To generate the set of feasible plays, it is enough to specify
suitable feasibility correspondences for Ann and Bob.

Play Message Available actions

∅ The game is starting, please wait {wait}
(D), (A,D) It’s your turn, choose L or R {L,R}

(A) No message Not alert

Such flows are enough to induce the standard information sets of Fig-
ure 4. Yet, we said that such flows of information are partial because we
obviously need also to specify terminal information (i.e., which messages
are generated after terminal plays). Since players’ terminal information is
neglected in the standard approach, our partial flow is nonetheless enough
to obtain the desired information structure. ▲

Lastly, it is instructive to compare the present approach with the one
of Section 3. The multistage-case formalism with synchronic information
is retrieved by requiring that the range of function f̃ be included in MI .

28

This amounts to assuming that each play induces a message profile alerting
everyone – hence, each player receives some message after each move (or
profile of simultaneous moves), and this allows to recreate the SI multistage
structure.

27Note that for a generic set X and for each sequence ξ of elements of X, the following
holds: (ξ,∅X) = (∅X , ξ) = ξ. This is why we can neglect any ∅Mi∪Ai we may have in
the sequence (Ci(bk)

t
k=1).

28And distinguishing messages received in different stages.
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6.2 Stocks

The definition of a general standard game structure is very similar to the
one provided in Section 4. Of course, some notational adjustments need
to be made, and condition (KS) needs to be relaxed, as one may see by
considering the information structure depicted in Figure 4. For each tree
V ⊆ A≤T and v ∈ V , let A(v) := {a ∈ A : (v, a) ∈ V } denote the set of
action profiles that are feasible after v.

Definition 8 A standard game structure is a tuple

ΓS = ⟨I, V, I, (Ai,Ui)i∈I⟩,

where

� I is the set of players and, for each i ∈ I, Ai is the set of actions
potentially available to i;

� V ⊆ A≤T is a tree (call it “the tree”, and its elements “plays”);

� I : V ⇒ I is the alert-player correspondence, and it satisfies the
following properties:29

I(∅) = I; (KGS-S)

∀ v = (pre v, a) ∈ V, I(pre v) ̸= ∅, a ∈ AI(pre v); (APM)

∀ v ∈ V, A(v) = ×
i∈I(v)

projAi
A(v); (APF-G)

� for each i ∈ I, Ui is the collection of information sets of player i,
and it is a partition of Vi := {v ∈ V : i ∈ I(v)} satisfying30

∀ v, w ∈ Vi,
(
Ui(v) = Ui(w) =⇒ projAi

A(v) = projAi
A(w)

)
.

(KfA-G)

Some comments are in order. First, the requirements imposed on the
alert-player correspondence formalize restrictions that in some sense mimic
the ones we imposed in our flow-based approach. Specifically, condition
(KGS-S) (know that the game started) is the counterpart of (KGS-F) in a
standard setting, and it imposes that everyone must be alert at the root.

29Conditions (APF-G) and (KfA-G) are obviously analogous to (APF) and (KfA). The
letter “G” clarifies that they refer to the general, rather than to the multistage case.

30For each play v ∈ Vi, we denote as Ui(v) the unique element of Ui containing v.
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Condition (APM) (alert players move) also mirrors the assumption we made
in Section 6.1 that being alert is a prerequisite for being active. Condition
(APF-G) (action profiles feasibility) and (KfA) (knowledge of feasible ac-
tions) are analogous to the similar conditions of Section 4.

Second, as a matter of terminology, we say that player i ∈ I is alert
at v ∈ V if i ∈ I(v), and that she is active at v ∈ V if i ∈ I(v) and
| projAi

A(v)| > 1. The set of plays where player i ∈ I is alert is Vi, as
already defined. Note that under condition (APM) being active implies
being alert, so that decoupling “being alert” from “being active” allows us
to represent situations where not only active players receive and process
information.

The notion of experience function goes through almost verbatim as that
of Section 4.1. In the present setting, however lasti v (i ∈ I, v ∈ Vi) denotes
the longest strict predecessor of v where player i is alert.31 Perfect recall is
then easily defined.

Definition 9 Standard game structure ΓS = ⟨I, V, I, (Ai,Ui)i∈I⟩ satisfies
perfect recall if:

∀ i ∈ I, ∀ v, w ∈ Vi,
(
Ui(v) = Ui(w) =⇒ Xi(v) = Xi(w)

)
. (PR)

6.3 Revisiting previous results

As one may expect, we can retrieve from each flow-based game structure
ΓF a standard game structure Std(ΓF ), just like an SI multistage game
structure was derived from a flow-based one in Section 5.1. We start from a
flow-based game structure ΓF = ⟨I, f̃ , (Ai,Mi,Ai)i∈I⟩, and we consider the
derived objects H, P , and f . The mathematical objects forming the game
structure structure ΓS = ⟨I, V, I, (Ai,Ui)i∈I⟩ are derived as follows.32

� Tree (V ). Let V = P .

� Alert-player correspondence (I). Let I (v) = D(f(v)) for each v ∈ V .
The interpretation is straightforward: after v ∈ V = P , the message
profile f(v) is generated, and players who are alerted by f(v) are those
in D(f(v)). Hence, the alert players at v are the ones that are alerted
by the message profile generated immediately after v.

31Formally, lasti v is the ≺-maximal element of {u ∈ Vi : u ≺ v}.
32Throughout, we may assume that the set of players I and the set of feasible actions

(Ai)i∈I are held fixed.
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� Information sets ((Ui)i∈I). For each player i ∈ I, we define the in-
distinguishability relation ∼i as we did in Section 5.1. In particular,
we are going to make use again of the functions (Fi)i∈I that were
defined in Section 5.1.33 In this setting, however, the indistinguisha-
bility relation is defined only between plays after which player i is
alert. Hence, we have to first retrieve the set of plays where i is alert,
Vi := {v ∈ V : i ∈ I(v)} = {v ∈ V : i ∈ D(f(v))}. Then, for
each v, w ∈ Vi, v ∼i w if and only if Fi(v) = Fi(w), and we define
Ui := {U ⊆ Vi : ∃ v ∈ Vi, U = [ v ]∼i}.

It can be verified that all the requirements of a standard game structure
spelled out in Definition 8 are satisfied by construction. With this, for each
flow-based game structure ΓF , we let Std(ΓF ) = ⟨I, V, I, (Ai,Ui)i∈I⟩ denote
the standard structure whose elements are derived from ΓF in the way we
just described.

The following results adapt Propositions 1 and 2 to the general setting
examined in the current section.

Proposition 3 For each flow-based game structure ΓF , Std(ΓF ) satisfies
the perfect recall property (PR).

Proposition 4 Fix a standard game structure ΓS. (PR) holds in ΓS if and
only if there is a flow-based game structure ΓF such that Std(ΓF ) = ΓS.

The intuition behind the last results is very similar to that underpinning
their multistage-case versions given the appropriate adjustments to allow
players to be alert only at some points of the game. The formal proofs are
in Appendix A.

7 Memory

In this section, we present a very basic and unstructured way to model in-
dividuals’ ability to memorize information, which is independent from any
specific context or game. As already stressed, our flow-based approach al-
lows to cleanly and explicitly isolate players’ game-specific information as
implied by the rules of interaction, in adherence to the separation principle.
Therefore, a rigorous and expressive language can be derived by combining

33Recall that, for each i ∈ I, Fi : P → Hi is the function mapping each play to the
personal history of player i it induces. In the general setting, however, Fi(p) (p ∈ P , i ∈ I)
need not have the same length of p, as player i need not be always alert.
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these two accounts of objectively provided and subjectively retained infor-
mation. In particular, appending a description of players’ cognitive features
to a flow-based game structure allows to embed a wide array of cognitive
limitations into specific interactive situations, and it allows to analyze them
in a rigorous way. We believe this to be a key step towards the meaningful
integration of cognitive failures into game-theoretic analyses.

To keep our analysis as general as possible, we are going to model mem-
ory using possibility correspondences. Hence, we are first going to presents
basic definitions about such objects (Section 7.1). Then, we give a game-
independent account of memory (Section 7.2). Lastly, we embed such anal-
ysis in a game-theoretic framework (Section 7.3).

7.1 Possibility correspondences

For an abstract set X, a possibility correspondence is any correspon-
dence P : X ⇒ X. The conventional interpretation, which justifies the
terminology used, is that X is a set of states, and P(x) (x ∈ X) is the set
of states that are deemed possible by an agent when the true state is x (cf.
Chapter 5 of Osborne & Rubinstein, 1994).

From a purely mathematical point of view, possibility correspondences
can be thought of as ways to express binary relations over some set. In
particular, consider a possibility correspondence P : X ⇒ X and x, y ∈ X:
if y ∈ P(x), then y is in relation with x. Therefore, it is natural to adapt
properties of binary relations to possibility correspondences.

Definition 10 Consider a possibility correspondence P : X ⇒ X.

1. P is serial if
∀x ∈ X, P(x) ̸= ∅.

2. P is reflexive if
∀x ∈ X, x ∈ P(x).

3. P is symmetric if

∀x, y ∈ X,
(
x ∈ P(y) =⇒ y ∈ P(x)

)
.

4. P is transitive if

∀x, y, z ∈ X,
(
x ∈ P(y), y ∈ P(z) =⇒ z ∈ P(x)

)
.

5. P is partitional if it is reflexive, symmetric, and transitive.
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Under the aforementioned interpretation of possibility correspondences,
the names of the properties listed in Definition 10 are familiar. Seriality
means that, at each state, some state is deemed possible. The other features
are standard properties of binary relations, and their meaning is intuitive.

7.2 A game-independent analysis of memory

Consider a generic set X, and the set of sequences of elements of X of length
equal to N ∈ N at most, X≤N . To ease the comparison with previous
sections, X should be interpreted as a universal set of actions and messages
– that is, X = A⋆ ∪M⋆, where A⋆ and M⋆ are universal sets of actions and
of messages, respectively.34 Elements of X≤N instead represent sequences of
pieces of information an agent can observe. A memory correspondence35

for agent i is a serial possibility correspondence Mi : X≤N ⇒ X≤N . In
words, after observing sequence ξ ∈ X≤N , Mi(ξ) ⊆ X≤N is the set of
sequences that are consistent with what agent i can recall of the actual
sequence ξ. Hence, a correspondence Mi is ultimately a description of how
precisely agent i stores and retains the information she receives.36

The most natural specification is the following.

Example 8 (Perfect memory) Agent i satisfies perfect memory if Mi is
the correspondence ξ 7→ {ξ}. ▲

This way of formalizing an agent’s cognitive abilities allows to flexibly
relax the assumption of perfect retention of information in interesting ways.
For instance, allowing for bounded memory may be interesting in many
economic applications involving interactions that are repeated many times.

34With the term “universal” we want to stress the idea that these are sets of conceivable
actions the agent can take or of messages the agent can imagine to receive, and such
actions and messages are not tied to any specific context or situation. Obviously, when a
description of an agent’s memory is embedded in a game tree, the set of actions she can
take and of messages she can receive will be determined by the rules of interaction.

35Recall that we use the term “memory” when we consider an agent’s personal cognitive
feature, and we keep “(perfect) recall” to mean a property of information partitions in
standard game structures.

36To be precise, memory can be though of as a two-step process involving both the
storage and the subsequent retrieval of information. The latter process may well depend
on the environmental cues an individual may observe: for instance, a cue may facilitate
the retrieval of similar past experiences, while inhibiting that of less similar ones (see, e.g.,
Bordalo, Gennaioli, & Shleifer, 2020). In this setting, we are focusing on the first channel
– that is, on how information is stored by agents. However, the analysis of the current
section is abstract enough that it can easily be enriched in order to model phenomena
involving cued recall of stored information.
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In such cases, it may be reasonable to assume that players fail to keep track
of all the outcomes of previous interactions.

Example 9 (Bounded memory) Agent i satisfies k-bounded memory
(k ≤ N) if Mi is the correspondence

(xℓ)
n
ℓ=1 7→

{
(yℓ)

n
ℓ=1 ∈ X≤N : ∀ j ∈ {0, . . . ,min{k, n}}, yn−j = xn−j

}
.

For an illustration, consider {0, 1}≤3, and assume agent i exhibits 1-
bounded memory. Then,Mi

(
(0, 0, 1)

)
=

{
(1, 1, 1), (1, 0, 1), (0, 1, 1), (0, 0, 1)

}
.

Note that this definition assumes that agent i can recall the number
of pieces of information she observed. That is, all the sequences in Mi(ξ)
(ξ ∈ X≤N ) must have the same length of ξ. We may want to allow agent i
to forget such detail. In that case, we let Mi be

(xℓ)
n
ℓ=1 7→

{
(yℓ)

m
ℓ=1 ∈ X≤N : ∀ j ∈ {0, . . . ,min{k,m, n}}, ym−j = xn−j

}
.

For example, considering {0, 1}≤3 and 1-bounded recall, we obtainMi

(
(0, 0, 1)

)
={

(1), (0, 1), (1, 1), (1, 1, 1), (1, 0, 1), (0, 1, 1), (0, 0, 1)
}
. ▲

Another interesting case is when an agent is able to remember all the
pieces of information she received, and how many times she received them,
but fails to memorize their order. In other words, the length of the sequence
of pieces of information observed is retained, and so is the frequency of each
observed piece of information.37

Example 10 (Statistical memory) An agent with statistical memory
memorizes a statistical distribution over the set of conceivable pieces of
information X, and this justifies our terminology.

For each n ∈ N, denote as Sn the set of all permutations on {1, . . . , n}.38
Then, agent i exhibits statistical memory if Mi is the correspondence

ξ 7→
{
ρ ∈ X≤N : ∃π ∈ Sℓ(ξ), ρ = ξ ◦ π

}
.

The mathematical intuition is as follows. First note that ξ is a map from
{1, . . . , n} to X, where we let n denote the length of ξ.39 Then, each element

37Obviously, retaining the number of instances a given piece of information is received
implies being able to remember how many pieces of information were received, and this
explains why we assume that the length of the sequence is retained.

38Our notation comes from the fact that, in abstract algebra and group theory, Sn

(endowed with the composition operator) is the symmetric group of {1, . . . , n}.
39To stress this interpretation, we may denote as ξ(j) instead of xj the j-th coordinate

of ξ (with j ∈ {1, . . . , n}).
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ρ ∈ Mi(ξ) is obtained by first permuting {1, . . . , n} through some π ∈ Sn,
and then by mapping each permuted element to X through ξ, obtaining
(ξ(π(1)), . . . , ξ(π(n))). Thus, the elements of Mi (ξ) are the sequences ρ
with the same number of occurrences of each element of X as ξ.

For an illustration, consider {0, 1}≤3, and ξ = (1, 0, 1). If agent i exhibits
statistical memory, Mi(ξ) = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}. ▲

If we allow an agent to remember the pieces of information she observed
but not their frequencies we obtain a more imprecise information storage
than that of statistical memory.

Example 11 (Range memory) For a generic function g : X → Y , its
range is the image of its domain. That is, range g := g(X). Then, we say
that agent i satisfies range memory if Mi is the correspondence

ξ 7→
{
ρ ∈ X≤N : range ρ = range ξ

}
.

In words, agent i retains the range of the observed sequence of pieces of
information. Hence, as mentioned, the agent is able to memorize which
pieces of information she observed, but not their frequencies. Thus, it is not
required that the agent correctly retain the length of the observed sequence,
which can be imposed as an additional assumption.

For example, consider {0, 1}≤3, and ξ = (1, 0, 1): with range memory,
Mi(ξ) = {(0, 1), (1, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1), (0, 0, 1), (0, 1, 0), (1, 0, 0)}. ▲

We may also allow an agent to retain sequences of pieces of information
that are somewhat “similar” to what she actually observed.

Example 12 (Fuzzy memory) Suppose that the set X is equipped with
some distance d. Then, Xn (n ∈ N) can be endowed with the metric d1
defined as follows: for each α = (aj)

n
j=1, β = (bk)

n
k=1 ∈ Xn, d1(α, β) :=∑m

j=1 d(aj , bj). With some abuse, we may refer to d1 as a metric on X≤T ,
which is however defined only between sequences of the same length.

For each ε ∈ R+, we say that agent i exhibits ε-fuzzy memory if Mi is
the correspondence

ξ 7→ {ρ ∈ X≤T : d1(ξ, ρ) ≤ ε}.

In words, the sequence ξ of pieces of information that is actually observed
leads the agent to recall sequences that are “close enough” to ξ. To put it
differently, ξ provides the agent with some evidence, but agent i’s ability
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to store information to be “fuzzy”: she retains information that is close to
(but not necessarily equal to) what she observed.40

Note that we could use alternative distances to formulate the notion of
fuzzy memory. Specifically, we could consider d2 and d∞, which are defined
for each α = (aj)

n
j=1, β = (bk)

n
k=1 ∈ X≤T with ℓ(α) = ℓ(β) as d2(α, β) =

(
∑n

j=1(d(aj , bj))
2)1/2 and d∞(α, β) = maxj∈{1,...,n} d(aj , bj). Note that per-

fect memory is in any case obtained by setting ε = 0. ▲

Note that the correspondences proposed so far are partitional. In par-
ticular, they are such that the agent never rules out the observed sequence.
However, we may also think of more severe failures in the process of infor-
mation storage.

Example 13 (Information distortion) Agent i distorts information if
Mi is not reflexive. That is, if there exist ξ ∈ X≤N such that ξ ̸∈ Mi(ξ).
This amounts to assuming that agent i’s stored information does not neces-
sarily include the actual experienced stream of pieces of information. ▲

The ability to retain information seems to be influenced by the emo-
tional valence of information, or on an individual’s ability to establish a link
between the information received and some emotionally-relevant aspect or
event. If we allow for set X to be richer, this mechanisms can be captured
by memory correspondences.

Example 14 (Emotional memory) Assume that X = (A⋆ ∪ M⋆) × E,
where E = {0, 1}. For each observed (x, e) ∈ X, we say that x has (positive
or negative) emotional valence if e = 1. That is, the pieces of information
observed by an agent are now enriched by an admittedly rough description
of whether they hold some sort of emotional valence for the agent.

We say that agent i exhibits emotional memory if Mi is the correspon-
dence

(xk, ek)
n
k=1 7→ {(yk, ek)nk=1 ∈ X≤T : ∀ k ∈ {1, . . . , n}, ek = 1 =⇒ xk = yk}.

In words, agent i retains only the observed pieces of information that bear
some emotional valence for her or whose observation was associated with a
relevant emotional state, as well as the length of the observed sequence.41

40Fuzzy memory could be though of as describing some features of the process of infor-
mation retrieval as well. In such case, the observed sequence of information may be seen
as a cue that leads an agent to deem possible similar sequences. However, we stick to our
preferred interpretation of memory correspondences as possibility correspondences, and
from this point of view it is more natural to think of fuzzy memory as a slightly imprecise
way of storing information.

41The last assumption can easily be relaxed.
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Obviously, a more detailed account of emotions may be conceived. For
instance, one could posit a richer spectrum of emotional states, ranging from
negative to positive ones, and then allow for an individual to remember only
the pieces of information that were associated with an emotional state that
is similar to the one being currently experienced. With such formalism,
for instance, happy individuals would be able to retrieve from their memory
those pieces of information they observed when they were happy. Proceeding
in this way would allow to shift the emphasis from the storage to the retrieval
of information. ▲

We conclude by mentioning a slight modification of the approach pre-
sented so far that is achieved by endowing the set of conceivable pieces of
information with a different structure. Specifically, we can partition the
set of conceivable pieces of information in several categories, representing
different kinds of information (e.g., actions taken versus messages received,
or even messages pertaining to different topics). Our analysis in the next
section will be based on such approach. That is, the sequence of pieces of
information available to a given agent will be a sequence of pairs of messages
and actions, which obviously represent two different sources of information.

Example 15 (Memory and categories) Suppose that the set X is en-
dowed with a finite partition C = {C1, C2, . . . , CK}, whose elements are
called categories. Building on the formalism used so far, the set X may be
partitioned into two categories, one being that of “actions” and the other
one being that of “messages”, but we can also imagine finer partitions (e.g.,
one could envisage categories such as “political news” or “football results”
in which messages may be further partitioned).

Then, consider the set X̃ :=×k∈K Ck. An element of such set may be
thought of as the information received in some situation, divided into the
relevant categories. Obviously, an agent need not be exposed to information
from all categories at the same time, so we might as well assume that each
category includes a dummy element that specifies that no information from
such category is observed at some point. For example, if C = {A⋆,M⋆},
it may well be that in some instances a given agent is exposed to some
information (i.e., receives a message) without necessarily taking an action.

As before, it is natural to consider the set X̃≤N (with N ∈ N), which
represents a sequence of (categorized) information a given agent may receive.
The product structure given to set X̃ is then convenient to allow an agent to
treat information of different categories in different ways. For an illustration,
assume that C = {A⋆,M⋆}. If we want agent i to correctly memorize the
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actions she took but not the messages she received, we can let Mi be the
correspondence ξ 7→ {ρ ∈ X̃≤N : proj(A⋆)≤N ρ = proj(A⋆)≤N ξ}.

Moreover, virtually all the examples mentioned so far can be analyzed
within this category-enriched approach. Statistical memory could then be
used to formalize the idea that an agent memorizes the frequencies with
which she receives information belonging to each category. Or, fuzzy mem-
ory could be leveraged to allow for more or less precise storage of different
kinds of information. Lastly, note that the emotional message described
in Example 14 is formally a special case of this approach, where pieces of
information are partitioned based on whether they are emotionally relevant
or not. ▲

7.3 Memory in games

The memory correspondences just introduced fit naturally in our framework.
If we fix a flow-based game structure ΓF = ⟨I, (Ai,Mi, fi,Ai)i∈I⟩, we can
consider a profile of memory correspondences (Mi)i∈I such that, for each i ∈
I, Mi is a serial (i.e., nonempty-valued) possibility correspondence defined
over the set (Ai ∪ Mi)

≤2T+1.42 The obtained structure ⟨ΓF , (Mi)i∈I⟩ is a
flow-based game with memory.

When we derived the standard game structure Std(ΓF ) induced by a
flow-based game structure ΓF , we leveraged the concept of indistinguishable
plays to construct information sets (cf. Sections 5.1 and 6.3). To make sense
of such derivation, we mentioned the informal interpretive assumption that
players are able to memorize the pieces of information they receive. With the
theoretical apparatus just defined, we can make justice to such assumption:
it can be rigorously stated by appending a profile of memory correspondences
satisfying perfect memory to the flow-based game structure of interest.

To see this in detail, consider a flow-based game structure with memory
⟨ΓF , (Mi)i∈I⟩, as well as the set of plays P derived from ΓF . Recall that
two plays p, q ∈ Pi are indistinguishable for player i ∈ I, written p ∼i q,
if and only if Fi(p) = Fi(q) (cf. Sections 5.1 and 6.3). Two plays are
indistinguishable for a player if they induce the same realized stream of
information for such player. Importantly, such stream is entirely determined
by the rules of the game. Now, for any two plays p, q ∈ Pi, we say that q is
mistakable for p by player i ∈ I, written p⇝i q, if Fi(q) ∈ Mi(Fi(p)). In
words, play q can be mistaken for (or confused with) play p if the stream of

42Specifically, the sequences of pieces of information a player may get to observe accord-
ing to the rules of the game are such that (i) their length is odd, and (ii) they map odd
numbers to Mi and even numbers to Ai.
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information it induces (i.e., Fi(q)) is consistent with what player i recalls of
the flow induced by p (i.e., it belongs to Mi(Fi(p))).

It is worth noting that indistinguishability is an objective notion: two
plays are indistinguishable if the rules of the game themselves do not allow
a player to distinguish between them. On the other hand, mistakability is
subjective, as it arises from a player’s cognitive features.

At this point, we can mimic the construction of Sections 5.1 and 6.3 to de-
rive what we call a “generalized standard game structure” ⟨I, V, I, (Ai,Mi)i∈I⟩
from a flow-based game structure with memory ⟨ΓF , (Mi)i∈I⟩. Specifically,
the derivation of V and I is as in Section 6.3. Here, however, we retrieve
sets of mistakable plays of each player i ∈ I through the relation ⇝i, as we
want to explicitly account for subjective cognitive features. Note that the
resulting collection of sets need not be a partition.43 Hence, for each i ∈ I
and for each play v ∈ Vi at which i is alert, let Mi(v) := {w ∈ Vi : v ⇝i w}
be the set of plays v may be mistaken for by i. Then, define

Mi := {Mi(v) ⊆ Vi : v ∈ Vi}.

Note that Mi (i ∈ I) is a partition whenever Mi is partitional.
44 Moreover,

condition (KfA-G) of Definition 8 need not hold in general.
We denote as GStd(ΓF , (Mi)i∈I) the structure ⟨I, V, I, (Ai,Mi)i∈I⟩ ob-

tained as just described from ΓF and (Mi)i∈I , and we call it the general-
ized standard game structure induced by the flow-based game structure
with memory ⟨ΓF , (Mi)i∈I⟩. We use the word “generalized” because, as
mentioned, the collections (Mi)i∈I need not be partitional, and condition
(KfA-G) of Definition 8 may fail. If these two conditions are both satisfied,
however, GStd(ΓF , (Mi)i∈I) is a standard game structure.

As a matter of terminology, for a profile of memory correspondences
(Mi)i∈I , we say that a property holds for the profile (Mi)i∈I if it holds for
each Mi with i ∈ I. Now note that, if Mi satisfies perfect memory, two
plays after which i is alert can be mistaken for each other if and only if they
are indistinguishable.45 The following result gives a formal justification of
the interpretive assumption we mentioned to make sense of the constructions
of Sections 5.1 and 6.3, as well as of Propositions 1 and 3.

43In contrast, in Section 6.3, we used the (objective) indistinguishability relation ∼i

(i ∈ I) to retrieve the information sets of player i. Since ∼i is an equivalence relation, the
resulting collection of sets was ensured to be a partition of the set of plays where player i
is alert.

44In such case,⇝i is an equivalence relation and Mi is simply the quotient space Vi/⇝i.
45Formally, whenever Mi satisfies perfect memory, Pi/ ∼i= Vi/⇝i.
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Proposition 5 Fix a standard game structure ΓS. The perfect recall prop-
erty (PR) holds in ΓS if and only if there exist a flow-based game struc-
ture ΓF and a profile of memory correspondences (Mi)i∈I satisfying perfect
memory such that ΓS = GStd(ΓF , (Mi)i∈I).

Unsurprisingly, Proposition 5 ensures that a standard game structure
satisfying perfect recall can be retrieved from a flow-based game structure
with memory where the memory correspondences satisfy perfect memory.
Conversely, if a standard game structure satisfies perfect recall, then it must
be retrievable from some flow-based game structure with memory where per-
fect memory holds. This is yet another way to clarify that information sets
do in general entail assumptions about players’ cognitive abilities. However,
we can say more: any standard game structure can be retrieved from a
suitable flow-based game structure with memory where the memory corre-
spondences are partitional.

Proposition 6 Fix a standard game structure ΓS. There exist a flow-
based game structure ΓF and a profile of partitional memory correspondences
(Mi)i∈I such that ΓS = GStd(ΓF , (Mi)i∈I).

Note that Proposition 6 ensures that any situation that can be described
by a standard formalism can be framed within our memory-enriched ap-
proach. On the other hand, there are situations that are easily described
with our language while at the same time being inexpressible in a stan-
dard setting. Indeed, consider a flow-based game structure with memory
⟨ΓF , (M)i∈I⟩, and suppose that player i ∈ I distorts information (cf. Ex-
ample 13). The resulting mistakability relation for i is not an equivalence re-
lation, as it fails reflexivity. Hence, the Mi is not a partition, and this makes
it impossible to retrieve a standard game structure from ⟨ΓF , (M)i∈I⟩. Intu-
itively, information distortion implies that, when some play realizes, player
i deems such play impossible: this is obviously inexpressible in a standard
setting, where each player’s information structure is a partition of the set of
plays where such player is alert.

It is worth stressing that Proposition 6 applies to any game structure,
and this includes of course those where perfect recall fails, as well as those
encoding “problematic” cognitive failures such as absentmindedness.

Example 16 (Absentminded driver) The following game structure is
taken from Piccione and Rubinstein (1997). A driver is heading back home
and he needs to get off the highway at the second exit. However, when he
reaches an exit, he cannot understand if it is the first or the second one –
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that is, he does not remember if such exit is the first one he crosses or if he
already passed past one. The graphical representation is as follows.

Exit

Not
Exit

Not

Driver moves

Figure 5 Driver’s information sets.

To retrieve a flow-based game structure with memory inducing such sit-
uation, focus on the following flow of information.

Play Message Available actions

∅ m∗ =You are at a crossing. {Exit,Not}
(Exit) mw =Wrong exit! ∅
(Not) m∗ =You are at a crossing. {Exit,Not}

(Not,Exit) mh =You arrived home! ∅
(Not,Not) mm =You missed your exit! ∅

Table 3 A flow of information for Driver.

The feasible extended histories are straightforwardly derived. Moreover
it is easy to verify that distinct plays are always distinguishable. For in-
stance, consider ∅ and (Not): their induced streams of information are
FD(∅) = (m∗) and FD(Not) = (m∗, Not,m∗), which are obviously differ-
ent. Hence, confusion between such two plays cannot arise as a byproduct
of the rules of the game. Rather, we have to introduce a memory cor-
respondence MD such that Driver only retains the last message induced
by a play, and nothing more. Specifically, this implies that MD((m

∗)) =
MD((m

∗, Not,m∗)) = {(m∗), (m∗, Not,m∗)}. Therefore, despite being some-
times regarded as a pathological feature that can arise from a flawed spec-
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ification of the information structure of a standard game structure,46 ab-
sentmindedness can be modeled smoothly in our memory-enriched frame-
work. ▲

Propositions 5 and 6 are existence results. This means that one may find
many flow-based game structures with memory inducing the same standard
game structure. In particular, it is interesting to note that a standard game
structure with perfect recall may be induced by a flow-based game struc-
ture with memory where the memory correspondences do not satisfy perfect
memory. The following example illustrates.

Example 17 (A quartet game, continued) Consider the game struc-
ture introduced in Example 4, and focus on Dave’s standard information
structure as depicted by the light blue information sets in Figure 2. To
retrieve such information structure, assume that Dave is alert (at the root,
and) at the plays after which he is active – namely, (Ann, ℓ), (Ann, r),
(Bob, ℓ), and (Bob, r).47 Then, further assume that he perfectly observes
the actions taken by Ann, Bob, and Chloe: we can imagine that the mes-
sages he may observe before acting are precisely (Ann, ℓ), (Ann, r), (Bob, ℓ),
and (Bob, r). Then, a memory correspondence MD that partitions the
set {(Ann, ℓ), (Ann, r), (Bob, ℓ), (Bob, r)} into the two equivalence classes
{(Ann, ℓ), (Bob, ℓ)} and {(Ann, r), (Bob, r)} would result in the light blue
information structure of Figure 2.

On the other hand, perfect recall holds in such information structure,
so we know from Proposition 5 that such situation may be induced by a
suitable flow of information, under the assumption that Dave exhibits perfect
memory. In particular, the desired flow of information will inform Dave on
the action taken immediately before his turn, but not of who chose it.

Therefore, the situation depicted in such graph may arise in (at least)
the following two cases: (i) the rules of the game prevent Dave from knowing
who acted before him, but allow him to know which action was chose, and
(ii) the rules of the game perfectly inform Dave of the game unfolding, but
Dave’s cognitive features prevent him from correctly memorizing who acted
before him. ▲

The foregoing example and discussion provides another illustration of
how the formalism of information sets may fail to comply with the sep-

46For instance, absentmindedness is ruled out by the defining features of the model-
ing framework introduced by Kuhn (1953). See also the discussion in Alós-Ferrer and
Ritzberger (2016), pp 75-78.

47Recall that in such game tree Chloe first decides whether to give the move to Ann or
Bob, and later on the chosen player decides between ℓ and r.
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aration principle: while it describes how informed players are during the
game unfolding, it does not fully specify where their “knowledge” comes
from. The example clarifies that, even when the information structure of
a standard game structure is well-behaved enough to satisfy perfect recall,
it may arise from different combinations of objectively-determined rules of
interaction and subjective cognitive features.

Given the foregoing results, and Propositions 5 and 6, we can make our
earlier discussion about the objective and subjective features of the perfect
recall property more precise: under the assumption of perfect memory (a
feature of the agents who happen to play the game), information structures
with perfect recall express players’ knowledge of the game unfolding as de-
termined by the rules of interaction. If we drop such assumption, perfect
recall is no longer justifiable or interpretable in this way, and Example 17 is
a case in point.

8 Conclusion

Related literature The present paper relates to several strands of the
literature. First of all, it is closely tied to the theory of the detailed repre-
sentation of sequential games (or, extensive-form games, as they are com-
monly called).48 The first definition of “extensive-form games” is due to the
seminal work of von Neumann and Morgenstern (1944), who start with a
set of “outcomes” that are progressively refined by players’ choices. This
yields as a derived object a graph-theoretic representation with trees sat-
isfying a multistage structure, i.e., all nodes in the same information set
have the same number of predecessors. Information is assumed to have a
partitional structure and perfect recall is not a maintained assumption. To
remove the built-in multistage assumption of von Neumann and Morgen-
stern (1944), Kuhn (1953) posited the tree representation as primitive and
defined the perfect recall property of information partitions. Alós-Ferrer and
Ritzberger (2008, 2013) generalized the representations of von Neumann and
Morgenstern (1944) and Kuhn (1953). Like the former, they start with a set
of outcomes and let choices select subsets of outcomes, like the latter they
do not assume a multistage structure; furthermore, they allow for all kinds
of infinite games studied in applications and not impose a partitional infor-
mation structure. The book by Alós-Ferrer and Ritzberger (2016) provides

48We are critical of the “normal/extensive form game” terminology: as von Neumann
and Morgenstern (1944) make clear, the normal and extensive form are different kinds of
representations of games, not different kinds of games.
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a broad overview of the field. Finally, seminal work of Harris (1985) intro-
duced the sequence representation later used by Osborne and Rubinstein
(1994, Definition 203.3) in their texbook. Like them, we use the sequence
representation, but—as we explained at length—, we represent information
in a crucially different way.

As for perfect recall, several definitions of the same concept have been
proposed in addition to the recent one by Osborne and Rubinstein (1994,
Definition 203.3) used here. The first one is due to Kuhn (1953, Definition
17), and it leverages the derived concept of strategy, rather than primitive
elements of the analysis. Other notions are proposed by Selten (1975) and
Perea (2001, Definition 2.1.2). Alós-Ferrer and Ritzberger (2016, Proposi-
tion 6.6) and Alós-Ferrer and Ritzberger (2017, Theorem 1 and Corollary 1)
prove the equivalence of all the aforementioned notions. Remarkably, the
equivalence continues to hold in games with infinite horizon, and in games
where agents can choose their actions from an infinite set.

Other works focused on the interpretation and on the characterizations of
perfect recall (Alós-Ferrer & Ritzberger, 2017; Bonanno, 2003, 2004; Okada,
1987; Ritzberger, 1999). The most important insight that comes from this
branch of the literature is that perfect recall indeed captures a situation
where (i) players never forget what they did, (ii) players never forget what
they knew, and (iii), past, present, and future have an unambiguous mean-
ing (Ritzberger, 1999). A similar decomposition of perfect recall in “memory
of past knowledge” and “memory of past actions” is obtained by Bonanno
(2003, 2004) following a syntactic approach that relies on tools from tempo-
ral logic. Our framework provides another perspective to look at the same
issues, and our results are complementary to the aforementioned ones.

A burgeoning body of literature analyzed the role of memory in decision
problems (Bordalo, Coffman, Gennaioli, Schwerter, & Shleifer, 2020; Bor-
dalo, Gennaioli, & Shleifer, 2019, 2020). Such works underline the role of
environmental cues in facilitating the retrieval of similar past experiences
from memory, and they show how this process influences an agent’s assess-
ment of given information. Our general analysis of memory is somewhat
complementary: while this literature focused on the retrieval of stored in-
formation, we aimed at modeling the process of information storage. Given
the generality of the approach proposed in the present paper, we believe
that blending the two perspectives may be both feasible and insightful.

As already hinted, our approach allows to describe the information that
may accrue to alert but inactive players, which is instead usually neglected.
This relates our analysis to two strands of the literature. On the one hand,
the information an inactive player receives throughout the play may well be
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relevant for psychological reasons (cf. Battigalli & Dufwenberg, forthcoming
for a survey of the literature on psychological games). On the other hand,
the end-game information available to player is key when self-confirming
equilibrium is studied. In the setting presented so far, such information
is the cumulated information available to a given player after some termi-
nal play (i.e., the personal history induced by such terminal play). The
literature on self-confirming equilibrium indeed usually posits an end-game
feedback function about the play, but, when sequential games are studied,
the information available to players during the game is described by means
of information sets (cf. Battigalli, Catonini, Lanzani, & Marinacci, 2019).
A flow-based description of information may help harmonize such hybrid
representation.

Lastly, we mentioned that a flow-based approach has already been used
to describe the information accrual to players throughout a game. In par-
ticular, in the vast majority of models of repeated games information is
modeled as a flow. Specifically, after each round of interaction players ob-
tain a novel piece of information, which may be somewhat revealing of the
actions chosen by co-players. For instance, in the oligopoly model of Green
and Porter (1984) firms observe the price realization at each period, which
is an noisy signal of the competitors’ production choices. A sequence of such
signals and of chosen actions is the information available to a given firm at a
given point in time: the similarity with our approach is obvious. Outside of
the literature on repeated games, the same approach was used in Myerson
(1986) and Myerson and Reny (2020).

Concluding remarks This paper proposed a framework to explicitly de-
scribe players’ information in sequential games as provided by the rules of
interaction. In doing so, we focused on flows of information, as opposed to
the standard information-set-based representation which treats information
as a stock. While this approach is admittedly not new, we tried to offer
a systematic exposition, and we enriched it with a formal description of
players’ ability to retain information. We argued that flows of information
provide an explicit and complete description of the information that objec-
tively accrues to players in a sequential way as the game unfolds, while the
memory correspondences we introduced give a formal definition of players’
subjective ability to retain the observed information. Decoupling objective
and subjective informational aspects allows us to comply with the separa-
tion principle, it makes our language more expressive, and it is a key step to
introduce cognitive limitations in game theoretic analyses in a formal way.
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In this regard, we believe that one of the most promising avenues for
future research would consist in trying to enrich our understanding of and
our ability to formalize the cognitive aspects linked to memory. This may
hopefully help to combine our model of information storage with the already
mentioned works on information retrieval given some environmental cues, or
to shed light on the emotional aspects influencing mnemonic abilities.

Moreover, it would be interesting to embed such memory-related ele-
ments of bounded rationality in interactive situations. In particular, it could
be possible to model situations where (not necessarily rational) players won-
der about others’ cognitive abilities when reasoning strategically. Expressing
this kind of assumptions in a formal way would require an expressive lan-
guage – in particular, one should work with a rich space of states of the
world, where irrationality and cognitive failures are allowed to persist at
some states.49 We believe this to be crucial for a better understanding of
the implications of bounded rationality and cognitive limitations in strategic
interactions.

Lastly, it is worth noting that several of our assumptions may be relaxed
in a straightforward way. In particular, we can seamlessly allow for infinite
sets of actions and messages, as well as for an infinite length of the game
of interest: this would imply virtually no changes as far as definitions are
concerned, while some additional requirements may be needed to generalize
our results.50 We can also allow for stochastic elements in a relatively simple
way: it is enough to allow for some chance moves by including chance in
the set of players. Given that we are interested in the representation of a
game structure with possibly some chance moves, we are not even required
to specify which are the probabilities of such moves. Note that this device
could allow us to make players’ mnemonic abilities depend on stochastic
elements.

A Proofs

A.1 Proof of Lemma 1 (p. 18)

Fix a standard multistage game structure ΓSM = ⟨I, V, (Ai,Qi)i∈I⟩ satis-
fying perfect recall, and denote its completion as ΓSI = ⟨I,H, (Ai,Ri)i∈I⟩.
We begin by noting that, as per condition (KS-SI), two plays v, w ∈ V may

49This formalism is employed by Battigalli, Corrao, and Sanna (2020), even though
attention is restricted to rational players there.

50Specifically, one should impose appropriate measurability conditions to the feedback
functions.
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belong to the same information set of a player only if they have the same
length. Hence, we proceed by induction on the length of v and w to show
(PR-SI). The statement trivially holds for ℓ(v) = ℓ(w) = 0. Assume that it
holds for ℓ(v) = ℓ(w) ≤ k ∈ N0. Then, suppose that ℓ(v) = ℓ(w) = k + 1
and Ri(v) = Ri(w). By definition of experience, we have

Xi(v) = (Xi(pre v), ai(pre v, v), Ri(v)), Xi(w) = (Xi(prew), ai(prew,w), Ri(w)).

Now, note the following. First, conditions (NF) and (KS-SI) ensure that
Xi(pre v) = Xi(prew). To see why this holds, consider play x ∈ V and its
immediate predecessor prex. Clearly, prex ≺ x, and (NF) implies

∀x′ ∈ Ri(x), ∃ y ∈ Ri(prex), y ≺ x′.

Then, given that both prex and y belong to the same information set
Ri(prex), condition (KS-SI) implies that they have the same length – that
is, ℓ(prex) = ℓ(y). In particular, such length will obviously be equal to
ℓ(x)− 1 = ℓ(x′)− 1. Finally, note that there is only one predecessor of x′ of
length ℓ(x′)− 1, so it must be the case that y = prex′. All in all, conditions
(NF) and (KS-SI) allow to conclude that, if two plays belong to the same
information set, then so do their immediate predecessors. In light of this, we
can say that Ri(pre v) = Ri(prew), and given that ℓ(prex) = ℓ(prew) ≤ k,
Xi(pre v) = Xi(prew) by the inductive hypothesis.

Second, condition (ROA) straightforwardly implies that, ai(pre v, v) =
ai(prew,w) since Ri(v) = Ri(w).

Third, Ri(v) = Ri(w) by assumption.
Wrapping up, the foregoing observations show that Xi(v) = Xi(w), and

this concludes the induction. ■

A.2 Proof of Proposition 1 (p. 20)

Proposition 1 is a special case of Proposition 3, so we refer the reader to
Section A.4 for the general proof.

A.3 Proof of Proposition 2 (p. 22)

Proposition 2 is a special case of Proposition 4, so we refer the reader to
Section A.5 for the general proof.
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A.4 Proof of Proposition 3 (p. 33)

Fix a player i ∈ I, and p, q ∈ P = V such that Ui(p) = Ui(q). We may as
well assume that p ̸= ∅ and q ̸= ∅, as (PR) trivially holds for the empty
play (given that Ui(∅) = {∅}). Now note that Ui(p) = Ui(q) means that
Fi(p) = Fi(q), which in turn implies that ℓ(Fi(p)) = ℓ(Fi(q)). We can then
proceed by induction on such length.

Basis step. Assume that ℓ(Fi(p)) = ℓ(Fi(q)) = 1. This implies that
lasti p = lasti q = ∅. Hence, Fi(p) = (projMi

f(∅), ai(∅, p)) and Fi(q) =
(projMi

f(∅), ai(∅, q)). Since Fi(p) = Fi(q), we conclude that ai(∅, p) =
ai(∅, q). At this point, note that

Xi(p) = (Xi(lasti p), ai(lasti p, p), Ui(p)) = ({∅}, ai(∅, p), Ui(p)),

Xi(q) = (Xi(lasti q), ai(lasti q, q), Ui(q)) = ({∅}, ai(∅, q), Ui(q)).

Since ai(∅, p) = ai(∅, q) as already mentioned, and Ui(p) = Ui(q) by
assumption, we obtain Xi(p) = Xi(q).

Inductive step. Assume that the claim holds for ℓ(Fi(p)) = ℓ(Fi(q)) =
k ∈ {1, . . . , t}, and focus on p, q ∈ P such that ℓ(Fi(p)) = ℓ(Fi(q)) = t+1 ∈
N and Qi(p) = Qi(q). Note that Ui(p) = Ui(q) implies that Ui(r) = Ui(s)
for each r ⪯ p and s ⪯ q where player i is alert. Given that lasti p ⪯ p and
lasti q ⪯ q, we have Ui(lasti p) = Ui(lasti q). Since ℓ(lasti p) = ℓ(lasti q) ≤ t,
the inductive hypothesis implies that Xi(lasti p) = Xi(lasti q). Now note
that

Xi(p) = (Xi(lasti p), ai(lasti p, p), Ui(p)),

Xi(q) = (Xi(lasti q), ai(lasti q, q), Ui(q)).

We already showed that Xi(lasti p) = Xi(lasti q). Moreover, Ui(p) = Ui(q)
by assumption. Lastly, ai(lasti p, p) = ai(lasti q, q) because Fi(p) = Fi(q).
Therefore, Xi(p) = Xi(q), and this concludes the proof. ■

A.5 Proof of Proposition 4 (p. 33)

“Only if” direction. Consider ΓS = ⟨I, V, I, (Ai,Ui)i∈I⟩ satisfying perfect
recall. We begin by noting that Definition 9 and the definition of experience
functions allow to conclude that the following holds in ΓS :

∀ i ∈ I, ∀ v, w ∈ Vi, Ui(v) = Ui(w) ⇐⇒ Xi(v) = Xi(w). (U↔X)

Now, we want to construct a flow-based game structure ΓF = ⟨I, f̃ , (Ai,Mi,Ai)i∈I⟩
such that Std(ΓF ) = ΓS . We begin with the construction.
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First of all, for each i ∈ I, let Mi := Ui.
Then, define f̃i : A

≤T → Mi to be, for each at ∈ A≤T ,

f̃i(a
t) :=

{
Ui(a

t) if at ∈ Vi;

Ui otherwise;

where Ui is a generic element of Ui. Now let f̃ : A≤T → M be, for each
at ∈ A≤T ,

f̃(at) :=

{
(f̃i(a

t))i∈I(at) if at ∈ V ;

(fi(a
t))i∈I otherwise.

Moreover, for each i ∈ I define Ai : Mi ⇒ Ai to be such that, for each
mi ∈ Mi,

Ai(mi) := projAi
A(w),

where w is a generic element of {v ∈ Vi : Ui(v) = mi}. Note that player
i’s feasible actions (i ∈ I) are the same for each play in such set thanks to
property (KfA), so that Ai is always well-defined.

Consider now ΓF := ⟨I, f̃ , (Ai,Mi,Ai)i∈I⟩, where Mi, f̃ and (Ai)i∈I are
defined in the way just described. It is now time to check that Std(ΓF ) = ΓS .
To ease the comparison, write Std(ΓF ) = ⟨I, Ṽ , Ĩ, (Ai, Ũi)i∈I⟩, and recall
that ΓS = ⟨I, V, I, (Ai,Ui)i∈I⟩. We want to prove that (i) V = Ṽ , (ii),
I = Ĩ, and (iii) (Ui)i∈I = (Ũi)i∈I .

From ΓF we can derive P , H, and f in a standard way (cf. Section
6.1). Obviously, P = Ṽ , but is is straightforward to check that also P = V ,
and this yields (i). Moreover, the alert-player correspondence Ĩ : V ⇒ I
is v 7→ D(f̃(v)) by definition (cf. Section 6.3). But, by definition of f̃ ,
D(f̃(v)) = I(v) for each v ∈ V , and therefore (ii) is met as well.

To check condition (iii), we proceed in two steps. The way in which we
defined the feedback function f̃ implies the following:

∀ i ∈ I, ∀ v, w ∈ Vi, Xi(v) = Xi(w) ⇐⇒ Fi(v) = Fi(w). (X↔F)

To see why this holds, fix i ∈ I and v, w ∈ Vi. Then:

� Assume Xi(v) = Xi(w). This implies ℓ(Xi(v)) = ℓ(Xi(w)), so we can
proceed by induction on such length.
Basis step. Assume ℓ(Xi(v)) = ℓ(Xi(w)) = 1. This can only happen
if v = w = ∅, so that Xi(v) = Xi(w) = ({∅}). Then, Fi(v) = Fi(w)
trivially holds as v = w.
Inductive step. Now assume that the claim holds for ℓ(Xi(v)) =
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ℓ(Xi(w)) ∈ {1, . . . , n} for some n ∈ N, and suppose ℓ(Xi(v)) =
ℓ(Xi(w)) = n + 1. By perfect recall, it can be checked that Xi(t) =
Xi(u) for each t ⪯ v and u ⪯ w where player i is alert. Hence,
Xi(lasti v) = Xi(lastiw), which implies Fi(lasti v) = Fi(lastiw) thanks
to the inductive hypothesis (as ℓ(Xi(lasti v)) = ℓ(Xi(lastiw)) ≤ n).
Therefore,

(Xi(lasti v), ai(lasti v, v), Ui(v)) = (Xi(lastiw), ai(lastiw,w), Ui(w)),

which implies ai(lasti v, v) = ai(lastiw,w) and Ui(v) = Ui(w). By
construction of f̃ , Ui(x) = f̃i(x) = fi(x) for x ∈ {v, w}, and this
allows to say that fi(v) = fi(w). Wrapping up, we write

Fi(v) = (Fi(lasti v), ai(lasti v, v), fi(v)),

Fi(w) = (Fi(lastiw), ai(lastiw,w), fi(w)),

and we conclude that Fi(v) = Fi(w) in light of the foregoing observa-
tions.

� Assume Fi(v) = Fi(w). Again, we proceed by induction on ℓ(Fi(v)) =
ℓ(Fi(w)) ∈ N0.
Basis step. The result trivially holds for ℓ(Fi(v)) = ℓ(Fi(w)) = 0.
Inductive step. By arguments analogous to the proof above.

At this point, (U↔X) and (X↔F) yield

∀ i ∈ I, ∀ v, w ∈ Vi, Ui(v) = Ui(w) ⇐⇒ Fi(v) = Fi(w).

Given that, for each i ∈ I and v, w ∈ Vi, Fi(v) = Fi(w) is equivalent to
v ∼i w, it is also equivalent to Ũi(v) = Ũi(w), and this is easily verified by
inspecting the way in which we derived the information sets of the standard
game structure induced by a flow-based one. This establishes point (iii).

In light of the foregoing observations, we can say that Std(ΓF ) = ΓS ,
and this concludes the proof of the “only if” direction of the statement.

“If” direction. Fix a standard game structure ΓS and assume that ΓS =
Std(ΓF ) for some flow-based game structure ΓS . By Proposition 3, Std(ΓF )
satisfies prefect recall, hence so does ΓS . ■

A.6 Proof of Proposition 5 (p. 42)

We first report the following fact, which is rather straightforward.
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Lemma A1 Fix a flow-based game structure ΓF and a profile of memory
correspondences (Mi)i∈I . If (Mi)i∈I satisfies perfect memory, GStd(ΓF , (Mi)i∈I) =
Std(ΓF ).

Proof of Lemma A1. Note that perfect memory implies that Mi is parti-
tional for each i ∈ I. Consistently with the notation used in earlier sections,
let Mi (i ∈ I) denote the partition of mistakable plays for player i in the gen-
eralized standard game tree GStd(ΓF , (Mi)i∈I), as derived in Section 7.3.
Also, let Ui (i ∈ I denote player i’s information structure in the standard
game tree Std(ΓF ).

To prove the result, we show that, for each i ∈ I, Mi = Ui. To this end,
fix a generic i ∈ I. Then, it is enough to note that perfect memory implies
that Vi/ ∼i= Vi/ ⇝i, where Vi is the set of plays where i is alert. Given
that Vi/ ∼i= Ui and Vi/⇝i= Mi, the desired result follows. ■

We now proceed with the proof of Proposition 5.
“Only if” direction. Consider a standard game structure ΓS = ⟨I, V, I, (Ai,Ui)i∈I⟩

satisfying (PR). By Proposition 3, there exists a flow-based game structure
ΓF such that ΓS = Std(ΓF ). By Lemma A1, Std(ΓF ) = GStd(ΓF , (Mi)i∈I),
where (Mi)i∈I satisfies perfect memory. Hence, ΓS = GStd(ΓF , (Mi)i∈I),
and this proves this direction of the statement.

“If” direction. Suppose that ΓS = GStd(ΓF , (Mi)i∈I) for some flow-
based game structure ΓF and profile of memory correspondences (Mi)i∈I
satisfying perfect memory. By Lemma A1, GStd(ΓF , (Mi)i∈I) = Std(ΓF ).
By Proposition 3, Std(ΓF ) satisfies (PR), and this concludes the proof. ■

A.7 Proof of Proposition 6 (p. 42)

Consider a standard game structure ΓS = ⟨I, V, I, (Ai,Ui)i∈I⟩. We want to
construct a flow-based game structure ΓF = ⟨I, f̃ , (Ai,Mi,Ai)i∈I⟩ inducing
V as the set of feasible plays, where each play induces a different stream of
information. Then, it is enough to consider a partitional profile of memory
correspondences (Mi)i∈I such that, for each i ∈ I and v ∈ Vi, Ui(v) =
Mi(Fi(v)) = [ v ]⇝i : this implies that ΓS = GStd(ΓF , (Mi)i∈I), yielding the
desired result. In the following, we only show the existence of a suitable
flow-based game structure.

As a matter of notation, denote as V t ⊆ At (t ∈ {0, . . . , T}) the set of
t-long plays in V : formally V t := {v ∈ V : ℓ(v) = t}. Similarly, let V t

i ⊆ At

(i ∈ I, t ∈ {0, . . . , T}) the set of t-long plays in V after which player i is
alert: formally V t

i := {v ∈ Vi : ℓ(v) = t}.
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Step 1: construction of the flow-based game structure. To construct the
desired flow-based game structure, we proceed as follows. First, for each
i ∈ I, let Mi := A≤T . Second, let f̃ : A≤T → A≤T be the map defined for
each at ∈ A≤T as

f̃(at) :=

{
(at)i∈I(at) if at ∈ V ;

(at)i∈I otherwise.

Third, for each i ∈ I, let Ai be defined for each at ∈ A≤T as

Ai(a
t) :=

{
projAi

A(at) if at ∈ Vi;

∅ otherwise.

Step 2: verify that P = V . Let P be the set of feasible plays induced
by the flow-based game structure ΓF = ⟨I, f̃ , (Ai,Mi,Ai)i∈I⟩. We proceed
by induction on the length of such plays. Let P t := {p ∈ P : ℓ(p) = t}
(t ∈ {0, . . . , T}) be the set of feasible plays with length t.

Then, P 0 = {∅} = V 0 holds trivially. Assume by way of induction that
P t = V t for t ∈ {0, . . . , T − 1}: we want to show that P t+1 = V t+1.

Consider p = (pre p, a) ∈ P t+1. We have that (i) D(a) = D(f̃(pre p)) =
I(pre p), and (ii) a ∈×i∈I(pre p)Ai(pre p) =×i∈I(pre p) projAi

A(pre p). In

particular, this implies that a ∈ A(pre p). Hence, we have pre p ∈ V t ⊆ V ,
and a ∈ A(pre p), so that (pre p, a) ∈ V – specifically, (pre p, a) ∈ V t+1.

Conversely, fix v = (pre v, a) ∈ V t+1. We have that pre v ∈ V t =
P t. Moreover, by condition (APF-G) of Definition 8, we have A(pre v) =

×i∈I(pre v) projAi
A(pre v). Lastly, note that I(pre v) = D(a) = D(f̃(pre v)),

where the first equality follows from condition (APM) of Definition 8 and
the second one from the definition of f̃ . Therefore, we conclude that a ∈
×i∈D(f̃(pre v)) projAi

A(pre v) =×i∈D(f̃(pre v))Ai(pre p), with the second equal-

ity following from the definition of (Ai)i∈I . As a result, we obtain that
v = (pre v, a) ∈ {pre v}×

(×i∈D(f̃(pre v))Ai(pre p)
)
⊆ P , where the inclusion

holds by the recursive definition of set P (cf. Section 6.1). In particular,
p ∈ P t+1, and this concludes the induction.

Step 3: verify that, for each player, distinct plays are always distin-
guishable. Note that the feedback function f̃ is injective. Hence, for each
p, q ∈ P = V with p ̸= q, Fi(p) ̸= Fi(q). ■
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