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The Epistemic Spirit of Divinity�

Pierpaolo Battigalli,y Emiliano Catoniniz

March 3, 2022

Abstract: We study strategic reasoning in a signaling game where players
have common belief in an outcome distribution and in the event that the re-
ceiver believes that the sender�s �rst-order beliefs are independent of her payo¤-
type. We characterize the behavioral implications of these epistemic hypotheses
through a rationalizability procedure with second-order belief restrictions. Our
solution concept is related to, but weaker than Divine Equilibrium (Banks and
Sobel, 1987). First, we do not obtain sequential equilibrium, but just Perfect
Bayesian Equilibrium with heterogeneous o¤-path beliefs (Fudenberg and He,
2018). Second, when we model how the receiver may rationalize a particular
deviation, we take into account that some types could have preferred a di¤erent
deviation, and we show this is natural and relevant via an economic example.

1 Introduction

We investigate the strategic interaction between an informed �rst mover (sender, she) and an
uninformed second mover (receiver, he) under the following hypotheses. At the beginning
of the game, the sender and the receiver have a belief about each other�s moves that is
consistent with the same distribution over terminal nodes, i.e., type-message-action triples.
Furthermore, the receiver believes that the sender�s beliefs are independent of her type.
There is initial common belief that players are rational (i.e., subjective expected utility
maximizers), and that their beliefs satisfy the properties above. For brevity, we call �on-path
(o¤-path) messages�those that have positive (zero) marginal probability according to the
given distribution. Thus, the receiver initially assigns probability 0 to o¤-path messages. Of
course, whether the sender, given her type, wants to choose an on-path message depends on
her conjecture about the receiver�s reaction to o¤-path messages, which should be compared
to the expected reaction to on-path messages speci�ed by the given outcome distribution.
In light of this, we assume that the receiver, after observing an o¤-path message, still tries
to interpret it with a theory about the sender such that her belief is consistent with the
given outcome distribution and independent of her type.1

�We thank Nicodemo De Vito and Julien Manili for helpful suggestions.
yBocconi University and IGIER, pierpaolo.battigalli@unibocconi.it
zNew York University in Shanghai, Department of Economics, emiliano.catonini@gmail.com
1The receiver continues to be certain that every type has the same belief about him, but he may well

be uncertain about what such belief is. We also require the receiver�s theory to maintain the unconditional
probabilities of types speci�ed by the given outcome distribution.
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The existence of a commonly expected outcome distribution can arise, for instance,
from the observation of long-run data in a situation of recurrent interaction. The receiver�s
hypothesis that the sender�s beliefs are independent of her type can be motivated in two
ways. The �rst is that there is an ex-ante stage of the game where the sender forms beliefs
about the receiver before learning her type and these beliefs do not change at the interim
stage. However, this interpretation cannot apply to a context where the sender already
knows her type before facing the game, as, for instance, in the context of a population
�meta-game�where (heterogeneous) senders and receivers are randomly matched in each
period. The second way is a principle of insu¢ cient reason for the receiver: If there is no
clear direction in which the sender�s type would in�uence her beliefs, it seems natural to
reason about the sender�s beliefs independently of her type.

To characterize the behavioral implications of these hypotheses, we employ a variant of
Strong-�-Rationalizability (Battigalli 2003, Battigalli and Siniscalchi 2003), a notion of ra-
tionalizability with belief restrictions for sequential games, which has well-understood epis-
temic foundations capturing forward-induction reasoning (Battigalli and Siniscalchi 2007,
Battigalli and Prestipino 2013). While the baseline notion of Strong-�-Rationalizability
only features restrictions on �rst-order beliefs, we put restrictions on the receiver�s second-
order beliefs to represent the independence hypothesis.

The seminal paper of Kohlberg and Mertens (1986) introduced in equilibrium analysis
the idea of �forward induction�.2 They show that their notion of strategic stability re�nes
o¤-path beliefs with the view that the deviator is trying to move on a preferred path
with respect to the underlying equilibrium. Following Kohlberg and Mertens (1986), other
equilibrium re�nements were introduced to capture the forward-induction implications of
strategic stability in a simpler and clearer way. The Intuitive Criterion (Cho and Kreps,
1987) and Divine Equilibrium (Banks and Sobel, 1987) address this issue for signaling games,
which combine a simple structure with widespread relevance. On top of the rationalization
of deviations in light of the equilibrium outcome distribution, which is a feature of both
re�nements, Divine Equilibrium is also inspired by the idea that the sender�s beliefs are
independent of her type. We aim to capture the spirit of Divine Equilibrium through
the approach of epistemic game theory. So, we formulate primitive hypotheses on players�
interactive beliefs and we calculate their behavioral implications with an iterated elimination
procedure. We �nd the following: Every outcome distribution of a Divine Equilibrium is
consistent with our hypotheses, but not the other way round. There are two reasons for
this. The �rst reason is that, di¤erently from Divine Equilibrium, we do not require the
sender to assign positive probability only to o¤-path reactions of the receiver that best
respond to the same updated belief about types. As a consequence, while Divine Equilibrium
re�nes sequential equilibrium (Kreps and Wilson, 1982), the outcome distributions that are
consistent with our hypotheses are induced by some Perfect Bayesian Equilibrium with
(possibly) heterogeneous o¤-path beliefs (Fudenberg and He, 2018). Requiring the sender
to be certain of the receiver�s belief after an unexpected message is in line with the spirit of

2The term �forward induction�was coined by Elon Kohlberg. See the survey by Kohlberg (1990) and
the relevant references therein.

2



sequential equilibrium and trembling-hand perfection.3 However, the idea that the sender
has purposedly deviated despite her belief in the receiver�s on-path equilibrium behavior
implies that the sender does not believe in the equilibrium reaction to the deviation, which
rules out this possible source of certainty about o¤-path beliefs.4 The second reason why
we cannot rule out every non-divine equilibrium outcome is that Divine Equilibrium re�nes
beliefs after each o¤-path message without taking into account the (possible) existence of
other o¤-path messages. This induces the receiver to raise the relative probability of type �
over an alternative type �0 whenever � �nds that particular deviation pro�table for a larger
set of beliefs than �0. But � may �nd another deviation even more pro�table, and choose
it under a belief that induces �0 to stick to the �rst deviation. As we will show in Section
2 through an example, this di¤erence has relevant and intuitive implications in meaningful
games.

Our analysis is closely related to that of Sobel, Stole and Zapater (1990). Sobel et al.
consider the complete-information game where the sender forms a belief at the ex-ante stage,
before observing the realization of the chance move that determines her �type�. Then, given
a sequential equilibrium of the signaling game, they substitute the equilibrium messages with
one message m� that directly yields the (type-dependent) equilibrium expected payo¤. Fi-
nally, they apply to the modi�ed game a version of extensive-form rationalizability assuming
type-independence of the sender�s conjecture about the receiver (unlike the original version
due to Pearce 1984). With this, they obtain a �Fixed-Equilibrium Rationalizable Outcome�
(FERO) of the original game if the pseudo-message m� survives such iterated elimination
procedure. In the appendix, we consider a complete-information scenario and show that
the implications of FERO (extended to non-sequential equilibria) are weaker than those of
our hypotheses. The reason is that FERO allows the receiver to change his theory of the
sender after di¤erent deviations in incoherent ways: for instance, the receiver can believe
after an o¤-path message m that some type � would have sent a di¤erent o¤-path message
m0, and after m0 that � would have sent m, so he uses di¤erent theories after m and m0

although both theories are able to explain both messages (see the appendix for an example).
We adopt a notion of �belief consistency�that avoids this. In particular, we model the re-
ceiver�s �rst-order beliefs as complete conditional probability systems (henceforth, CCPSs):
one conditional belief for every nonempty subset of the relevant space of uncertainty.5 This
has two advantages. First, it provides the language to formulate and restrict the theories
about the sender that the receiver uses to rationalize deviations, i.e., from which he derives
his beliefs conditional on the received messages.6 Second, a CCPS induces a completely
consistent belief system (Battigalli et al., 2021, Siniscalchi, 2020) over information sets;
as shown by Battigalli et al. (2021) and Catonini (2022), complete consistency translates
into natural properties for an agent�s beliefs, which can be expressed in terms of coherence
between di¤erent odds ratios at di¤erent information sets, and interpreted as a matter of

3Kreps and Wilson (1982) show that sequential equilibrium is obtained by simultaneously imposing
robustness to trembling-like perturbations as well as perturbations of payo¤s at terminal nodes.

4See Catonini (2021) for a related criticism of subgame perfection.
5Conditional probability systems were introduced by Renyi (1995) for arbitrary collections of conditioning

events. Myerson (1986) introduced complete CPSs in the analysis of �nite games.
6The notion of CPS de�ned on the collection of observable events (corresponding to information sets,

i.e., the root and the messages) feature only the latter beliefs.

3



introspection or a �wired-in�process of belief formation.7

Our analysis is also related to Battigalli and Siniscalchi (2003), who consider a com-
monly believed outcome distribution, but do not make the independence hypothesis. With
this, they show that non-emptiness of the resulting version of Strong-�-Rationalizability:
(i) is equivalent to passing the Iterated Intuitive Criterion; (ii) implies that the outcome
distribution is induced by a self-con�rming equilibrium (Fudenberg and Levine, 1993). Cho
(1987) strengthens the Intuitive Criterion by requiring that one distribution over the reac-
tions of the receiver that are consistent with the criterion induces all types of the sender
to stay on path, coherently with the spirit of Nash equilibrium. We directly obtain Nash
equilibrium because of the independence hypothesis: The receiver must be able to believe
that all types stay on-path for the same �rst-order belief.

The paper is structured as follows. In Section 2 we illustrate similarities and di¤er-
ences between our approach and Divine Equilibrium through an example. In Section 3 we
formalize �path rationalizability with second-order independence�, which characterizes in
a transparent way the behavioral implications of our epistemic hypotheses. In Section 4
we formalize the relation between our solution concept and Divine Equilibrium, and the
solution of the example of Section 2. In the Appendix, we o¤er a less transparent but
operationally simpler version of path rationalizability with second order independence, we
analyze the complete-information scenario and the relation with FERO, and we collect the
proofs that are omitted from the main body of the paper.

2 Job market example

A potential employee can be of two types, good (�h) or bad (�`). She can stop studying after
graduating from the BSc (m1), or she can continue to an MSc (m2) or to a PhD program
(m3). The employer can hire the employee in three di¤erent positions, a1, a2, a3, with
increasing responsibilities and salaries. The employer prefers to hire a good employee in the
position she is best quali�ed for: a BSc graduate in position a1, a MSc graduate in position
a2, and a PhD graduate in position a3. The reason is that there is a productivity boost from
education to a good employee, but overquali�cation does not carry any additional bene�t.
There is no productivity boost from education to a bad employee, so the employer always
prefers to hire her in position a1. (Any additional bene�t of hiring a good type rather than
a bad type independently of education is immaterial for the analysis.) Education has an
increasing cost, which is higher for the bad type, but worth paying for both types if the
employee does not end up overquali�ed for the position. The following table summarizes
players�payo¤s � the �rst entry in each box is the payo¤ of the employee.

m1 a1 a2 a3
�h 0; 3 4; 2 9; 0

�` 0; 3 4; 2 9; 0

m2 a1 a2 a3
�h �2; 3 2; 5 7; 3

�` �3; 3 1; 2 6; 0

m3 a1 a2 a3
�h �5; 3 �1; 5 4; 6

�` �8; 3 �4; 2 1; 0

7 It is worth noting that the classical notions of structural consistency (Kreps and Wilson, 1982), adopted
by FERO, and of CPS on the collection of observable events do not induce this coherence. Catonini (2022)
shows that this lack of coherence exposes an agent to the possibility of being Dutch-booked in objective
expected terms, across a collection of counterfactual contingencies.
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Suppose that the two types are a priori equally likely, and this is commonly believed. Con-
sider the following pooling equilibrium, where getting an MSc or a PhD leads to overqual-
i�cation: both types choose m1, and the employer chooses a1 after m1 and m2, and a2
after m3. This equilibrium is not divine. The reason is the following. Under the belief that
m1 will lead to position a1, all the beliefs that induce �` to prefer m2 to m1 (also after
eliminating the dominated response a3) also induce �h to strictly prefer m2 to m1. Hence,
according to divinity, after m2 the employer must assign to �h at least the prior probability,
and for every belief where �h is not less likely than �`, the optimal response is a2.

However, the pooling equilibrium is consistent with our epistemic hypotheses. Suppose
the employer interprets a deviation to m2 or m3 with the following theory: the employee
expects to get the position she is quali�ed for, that is, position ai aftermi for each i = 1; 2; 3.
Given this belief, �h strictly prefers m3, while �` is indi¤erent between m2 and m3.8 Then,
whenever the employer believes that �` picks m2 with positive probability, he must assign
probability one to �` after m2, and this justi�es a1. Moreover, if the employer believes that
�` breaks her tie at random, she must assign probability 1=3 to �` after m3 and this justi�es
a2.

3 Main analysis

Primitives of the game We consider the following signaling game. There is a payo¤-
relevant parameter �, and it is common knowledge that � belongs to a �nite set �. The
sender (i = 1) knows the true value of � (henceforth, the sender�s �type�), and chooses a
message m from a �nite set M (we assume that M does not depend on �). The receiver
(i = 2), who does not know the true value of �, observes m and then chooses an action a
from a �nite set A (we assume that A does not depend on m).9 The payo¤s of the sender
and the receiver are given by

ui : ��M �A! R; i = 1; 2:

Derived objects We let AM denote the set of strategies of the receiver, i.e., maps from
M to A, and we let M� denote the set of choice functions of the sender, i.e., maps from
� to M . In the main body of the paper, we will use the choice functions of the sender
only to formulate conditional statements about the sender�s behavior in the mind of the
receiver. Given that we do not posit an ex-ante stage where the sender can reason about
the game before learning her type, such choice functions shall not be interpreted as plans
of the sender. With this, it is useful to introduce notation for the choice functions of the
sender where a speci�c type � chooses a given message m and the set of choice functions
allowing for message m:

M�(�;m) =
�
s1 2M� : s1(�) = m

	
,

8The tie between the payo¤s of �` after (m2; a2) and (m3; a3) is only for simplicity: the employer could
give positive probability to two di¤erent beliefs of the employee that induce �` to choose, respectively, m2

and m3.
9We assume that every type of the sender has the same set of available messages, and that the receiver

has the same set of available actions after every message only to simplify notation.
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M� (m) =
�
s1 2M� : 9� 2 �; s1 (�) = m

	
.

Beliefs The primitive space of uncertainty for the sender is AM , the set of strategies of
the receiver. Since the sender only makes one choice at the beginning of the game, we can
model her �rst-order beliefs with just one probability measure �1 2 �(AM ).

The primitive space of uncertainty for the receiver consists of the sender�s type and
choice functions: � � M�.10 The receiver moves after observing the message, but we
require him to derive his revised belief from a more general theory about the sender, where
di¤erent types may send di¤erent messages. Therefore, we represent his �rst-order beliefs
as a complete Conditional Probability System over � �M�. Actually, since we also want
to restrict his second-order beliefs in compliance with the independence hypothesis, for
each C 2 2��M�n f;g, we directly introduce a second-order belief conditional on the event
C � �(AM ). Thus, we model the receiver�s system of second-order beliefs as an array
�2 = (�2(�jC))C22��M�nf;g of probability measures over � �M

� � �(AM ) that satis�es
the following two conditions:11

1. for every C 2 2��M�n f;g, �2
�
C ��(AM )jC

�
= 1;

2. (chain rule) for every C;D 2 2��M�
, if D � C, then

8E � D ��(AM ); �2 (EjC) = �2 (EjD) � �2
�
D ��(AM )jC

�
:

Belief restrictions Suppose there exists a commonly believed distribution over terminal
nodes � 2 �(��M �A) with strictly positive marginal (prior) belief over types p =
marg�� 2 ��(�). For each type � 2 �, we let �� = margM� (�j�) 2 �(M) denote the
probability over messages conditional on �, and we let

M�(�) =
n
m 2M : ��(m) > 0

o
;

M� = suppmargM� = [�2�M�(�)

respectively denote the set of messages sent with positive probability by type � and the
set of messages sent with positive probability. For each message m 2 M�, we let �m =
margA� (�jm) 2 �(A) denote the probability over actions of the receiver conditional on m.
We assume that � factorizes as � (�;m; a) = p (�) �� (m) �m (a): as customary, the actions
of the receiver are not correlated with the (unobserved) sender�s type. Furthermore, to
avoid uninteresting cases, we also assume that each �m assigns positive probability only to
optimal actions of the receiver, given his posterior belief about the sender�s type.

Technically,
�
��
�
�2� 2 �(M)

� is a behavior strategy of the sender, but we interpret it
as a conjecture of the receiver about the sender. Indeed, (i) we are silent about the existence

10One may wonder why we do not take just ��M as the receiver�s relevant uncertainty space. The reason
is that the receiver will rationalize a message m with a theory of the sender where some types choose m and
other types choose di¤erent messages. With this, the corresponding conditioning event cannot be expressed
in the ��M space.
11With a slight abuse of terminology and notation, we call belief conditional on C, and write �2(�jC), the

receiver�s belief conditional on event C ��(AM ).
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of an ex ante stage at which the still ignorant sender supposedly plans,12 (ii) and we do not
assume that the sender randomizes when indi¤erent. Similarly, (�m)m2M� is interpreted as
part of a conjecture of the sender about the receiver, not as a partial behavior strategy of
the receiver.13

Given this interpretation, we consider the restricted set of sender�s �rst-order beliefs
consistent with the commonly believed distribution over terminal nodes:

�1 =
�
�1 2 �(AM ) : 8m 2M�;8a 2 A;�1

��
s2 2 AM : s2(m) = a

	�
= �m(a)

	
:

Note that, in principle, the sender can have correlated beliefs about the actions of the
receiver after di¤erent messages, but these correlations are immaterial for her choice prob-
lem.14

To restrict the beliefs of the receiver, we start by letting P2 denote the set of all �nite-
support probability measures � over ��M� ��(AM ) that conform to the prior on types
and feature no correlation between types and choice function-belief pairs:

B1 for every � 2 �, �(f�g �M� ��(AM )) = p(�);

B2 for every (�; s1; �1) 2 ��M� ��(AM ),

�(�; s1; �1) = �(f�g �M� ��(AM )) � �(�� f(s1; �1)g):

We impose independence between types and choice function-belief pairs, not just sender�s
beliefs, because the belief about types and the belief about how types determine messages
(that is, about the choice function) are naturally uncorrelated, as long as one conditions
on a Cartesian event. In particular, conditional on an event � � E � �(AM ) with E �
M�, the receiver�s belief will satisfy independence � of course, correlations will appear
conditional on the observation of a message m, i.e., on the non-Cartesian event [�2� f�g�
M�(�;m) (di¤erent types may need to be paired with di¤erent choice functions to induce
m).15 Conditions B1 and B2 boil down to saying that P2 is the set of �nite-support product
measures p� � (with � 2 �(M� ��(AM )).

Let P �2 � P2 denote the set of all � 2 P2 that are consistent with the commonly believed
distribution on terminal nodes, i.e., that satisfy the following additional condition:16

12 In the Appendix, we specialize the analysis for the case in which the ex-ante stage does exist.
13�Partial�, because M� may be a strict subset of M .
14This is not the case if the sender also has the incentive to learn about the receiver�s reactions, in a

repeated interaction setting. We abstract away from these learning incentives.
15A paradoxical consequence of allowing for correlated beliefs over types and choice functions is that, even

conditioning on � �M�(m) for some message m, and even deeming every type possible, the belief could
still give probability zero to type-functions pairs where the message assigned by the function to the type is
m. This would imply that the theory of the sender conditional on ��M�(m) fails to rationalize m.
It is worth noting that independence between types and choice functions also follows from independence

between types and �rst-order beliefs whenever each type best replies to the �rst-order belief, and no �rst-
order belief that leaves some type indi¤erent between di¤erent messages is assigned positive probability.
16Recall, all beliefs in P2 agree with the prior p on types.
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B3 for every (�;m) 2 ��M ,

�
�
��M�(�;m)��(AM )

�
= ��(m).

Since the sender has �nite sets of types and messages, the focus on �nite-support beliefs
is without loss of generality for the justi�able behaviors of the receiver, for the following
reason: from every � = p� � we can derive a �nite-support probability measure � 0 = p� �0
with the same marginal over type-function pairs by associating each choice function s1 in
the marginal support of � with just one belief �1 such that (s1; �1) 2 supp�.17

With this, we restrict the beliefs of the receiver so that they agree with the prior on
types, with the expected behavior of the sender, and with the independence hypothesis;
conditional on contemplating some unexpected messages, we still require the beliefs to
agree with the prior on types and with the independence hypothesis. Thus, we consider
systems of second-order beliefs �2 such that:

D1 �2(�j��M�) 2 P �2 ;

D2 for each E � 2M�
, �2 (�j�� E) 2 P2.18

We let �2 denote the set of systems of second-order beliefs that satisfy D1 and D2. To
ease notation, we let �2(�j?) = �2(�j��M�) denote the receiver�s ex ante belief on types
and choice functions; for each m 2M , we let

�2(�jm) = �2(�j [�2� f�g �M�(�;m))

denote the receiver�s belief conditional on receiving message m.
After an on-path message m� 2 M�, the receiver can update his initial theory: by D1

and B3, �2(�j?) assigns positive probability to some type-function pair such that the type is
associated with m� by the choice function. Now consider an o¤-path message m 2MnM�;
by endowing the receiver with a system of second-order beliefs, we can decompose his belief-
revision process in two steps. First, the receiver revises his initial theory by conditioning on
��M�(m), an event concerning only the sender�s choice function. Second, he updates the
revised theory �2(�j��M�(m)) by considering that m gives joint information about type
and choice function, i.e., by conditioning on the non-Cartesian event [�2� f�g�M�(�;m):
this is possible because, by D2 and the de�nition of P2, the support of �2(�j� �M�(m))
is a cross-product of the form � � E, so every choice function s1 2 E is associated with
every type, including the subset of types that pick m according to s1.19 Deriving �2(�jm)
from some � 2 P2 has bite when � is also required to assign probability one to a subset
of � �M� � �(AM ) � Example 1 will clarify this point. Conditional on each on-path
message m 2M�, every � 2 P �2 induces the same belief pm over the sender�s types:

pm (�) =
p (�) �� (m)P

�02� p
�
�0
�
��

0
(m)

.

17 In technical terms, �x a map  :suppmargM�� ! �(AM ) such that (s1;  (s1)) 2 supp� for every
s1 2 suppmargM��, let  0 :supp� ! M� ��(AM ) be the map that associates each (s1; �1) 2supp� with
(s1;  (s1)), and �nally let �0 be the pushforward of � through  0.
18Of course, conditional on events that do not rule out any choice function consistent with (��)�2�, the

receiver could keep a belief in P �
2 . However, this is irrelevant for our analysis, so it is not formalized.

19Recall that, by de�nition, for each s1 2M� (m) there is some � such that s1 (�) = m.
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So, for every �2 2 �2, we have marg��2(�jm) = pm for each m 2M�.
A messagem could be explained also by a more general theory than �2(�j��M�(m)). It

will be useful to start from the theory �12 conditional on the event that some type would not
send an on-path message, i.e., event [m2MnM�M�(m). Take note of the set M1 of o¤-path
messages that have strictly positive probability according to �12, then move to the theory
�22 obtained by conditioning on the residual o¤-path-message event [m2Mn(M�[M1)M

�(m),
and so on.

Remark 1 Fix �2 2 �2. There exists a partition M1; :::;Mn of MnM� such that, for each
k = 1; :::; n andm 2Mk, the revised belief �2(�jm) is derived from �2(�j��([ �m2Mk[:::[MnM�( �m))).
Moreover, all these conditional beliefs have disjoint supports.

As a consequence of Remark 1, either two beliefs �2(�jm) and �2(�jm0) are derived from
the same theory, or one is derived from a theory that cannot explain the other. This is the
coherence among conditional beliefs anticipated in the Introduction.

Epistemic hypotheses We want to characterize the behavioral implications of the fol-
lowing epistemic hypotheses. We assume each player i is rational, i.e., maximizes subjective
expected utility, and that i�s (system of) beliefs satisfy the restrictions explained above, that
is, they belong to �i. Moreover, we assume that there is common strong belief (Battigalli
and Siniscalchi 2002) of this. For the receiver, strong belief in an event E means that he
assigns probability 1 to E conditional on every event that is consistent with E. For example,
the receiver will assign probability 1 to the event that the sender is rational and has a �rst-
order belief in her restricted set�1 conditional on receiving a message that is consistent with
this, i.e., that is optimal for at least one type under a belief that conforms to (�m)m2M� .
For the sender, we only consider the belief at the beginning of the game, therefore belief and
strong belief coincide. Common strong belief in rationality and the belief restrictions can
be formally de�ned with the language of epistemic game theory, which provides a complete
description of players�hierarchies of conditional beliefs. Here we only provide an informal
description of our epistemic conditions, before characterizing their behavioral implications,
step by step, with an elimination procedure:

1.S: Whatever her type, the sender is rational and her �rst-order belief belongs to �1;

1.R: the receiver is rational and his system of second-order beliefs belong to �2.

n.S: Whatever her type, the sender satis�es n-1.S and believes that the receiver satis�es
n-1.R;

n.R: the receiver satis�es n-1.R and strongly believes that, whatever her type, the sender
satis�es n-1.S.

1.S-R: For every n, the sender satis�es n.S whatever her type and the receiver satis�es
n.R; that is, 1.S and 1.R hold, and there is common strong belief thereof.
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Of course, common strong belief of 1.S and 1.R may be incompatible with the belief
restrictions imposed at the outset: this will happen when the belief that all types choose
the expected messages and that they can rationally do so under the same �rst-order belief
is at odds with strategic reasoning, that is, with some order of mutual strong belief in 1.S
and 1.R.

Path rationalizability with second-order independence Our goal is now to de�ne
a rationalizability procedure that either rejects the epistemic conditions (that is, rejects the
expected outcome distribution as inconsistent with the other hypotheses), or calculates their
behavioral implications (which may be weaker than what is expected). We will construct a
version of Strong-�-Rationalizability (Battigalli 2003, Battigalli and Siniscalchi 2003) that
accommodates not only the restrictions on �rst-order beliefs given by the prior and by the
expected on-path behavior, but also the restriction on the second-order beliefs of the receiver
given by the independence hypothesis. We call it �Path-rationalizability with second-order
independence�. The baseline de�nition of Strong-�-Rationalizability has been given an
epistemic justi�cation of the kind outlined above by Battigalli and Siniscalchi (2007) for
the case of �rst-order belief restrictions;20 the extension to second-order belief restrictions
is relatively straightforward.

For each (�;m; �1) 2 ��M ��(AM ), slightly abusing notation, let u1(�;m; �1) denote
the expected payo¤of type � given messagem and the belief induced by �1 over the receiver�s
actions after m. Similarly, for each (p0;m; a) 2 �(�)�M �A, let

u2
�
p0;m; a

�
=
P
�2�

p0(�)u2(�;m; a)

be the receiver�s expected payo¤ after message m and action a, given the belief about types
p0.

De�nition 1 Consider the following elimination procedure.

Step 0 For every � 2 �, let �01;� =M ��1. Let �01 = ��M� ��1, �02 = AM .

Step n > 0 For every � 2 � and (m;�1) 2M ��1, let (m;�1) 2 �n1;� if:

S1 �1
�
�n�12

�
= 1;

S2 for every m0 2M ,
u1(�;m; �1) � u1(�;m0; �1):

Let
�n1 = �� f(s1; �1) 2M� ��1 : 8� 2 �; (s1(�); �1) 2 �n1;�g:

For every s2 2 AM , let s2 2 �n2 if there exists �2 2 �2 such that:
20Battigalli and Prestipino (2013) provide an alternate epistemic justi�cation where the �rst-order belief

restrictions are transparent, i.e., there is common belief at every node of the game that the restrictions hold.
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R1 for every k = 1; :::; n� 1 and C 2 2��M�
,�

C ��(AM )
�
\ �k1 6= ; ) �2

�
�k1jC

�
= 1;

R2 for every m 2M and a 2 A,

u2 (marg��2(�jm);m; s2(m)) � u2 (marg��2(�jm);m; a) :

Finally, let �11;� = \n�0�n1;� for each � 2 �, and �12 = \n�0�n2 . The elements of each
�11;� and of �

1
2 are called path-rationalizable (with second-order independence).

Path-rationalizability with second-order independence works as follows. At every step n,
since �1 2 �1, the sender�s belief is consistent with �m for each on-path message m 2M�.
After every other message m 2MnM�, by S1, the sender believes that the receiver will play
actions that are consistent with step n� 1. Then, by S2, the sender chooses a message that
is optimal given her type and belief. The receiver reasons as follows. At the beginning of the
game, since �2 2 �2, his belief is consistent with the prior on types, with the independence
hypothesis, and with each ��. Moreover, by R1, the receiver also believes that every type of
the sender would choose a message that is consistent with step n�1. The two requirements
can be mutually inconsistent: for an arbitrarily given outcome distribution, it may be the
case that there is no �2 2 �2 such that �2

�
�n�11 j?

�
= 1. This is the only way Path-

rationalizability with second-order independence can yield the empty set; we will expand
on this later. After receiving an on-path message m 2 M�, the receiver simply updates
his initial belief (recall that the actions in the support of �m are optimal by assumption).
After an o¤-path message m 2 MnM�, by R1, the receiver follows a version of the best
rationalization principle:21 If message m is consistent with step of reasoning k � n� 1 for
at least one type, the receiver revises his initial belief by conditioning on m an alternative
theory that is consistent with k steps of reasoning of the sender. The restrictions to o¤-
path beliefs imposed by �2 cannot induce the empty set (second-order independence and
R1 are always mutually compatible), but they can re�ne the set of actions that, by R2, the
receiver could choose after m. The following example of Path-rationalizability illustrates
this re�nement of the receiver�s o¤-path beliefs. The �rst entry in each box is the payo¤ of
the sender.

Example 1
m1 a1 a2 a3
� 1; 1 0; 0 0; 0

�0 1; 1 0; 0 0; 0

m2 a1 a2 a3
� 3; 0 0; 3 0; 2

�0 2; 3 0; 0 0; 2

We will write a choice function s1 2 M� as s1(�):s1(�0), and a strategy s2 2 AM as
s2(m1):s2(m2).

Let p(�) = p(�0) = 1=2, ��(m1) = �
�0(m1) = 1, �m1(a1) = 1. So, �1 is the set of beliefs

that assign probability 1 to strategies s2 2 AM with s2(m1) = a1. For the receiver, every

21See Battigalli (2003) and the relevant references therein.
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initial belief � 2 P �2 is the product of the prior (by B1), a Dirac on m1:m1 (by B3), and a
(�nite-support) probability measure over �(AM ) (by B2). So, for every �2 2 �2, we have

�2(f(�;m1:m1)g ��(AM )j?) = �2(
�
(�0;m1:m1)

	
��(AM ))j?) = 1=2:

Given the belief that m1 would be followed by a1, the sender has the incentive to deviate to
m2 only if she assigns su¢ ciently high probability to a1 after m2: at least 1=3 for type �
and 1=2 for �0. So we have

�11;� = fm1g � f�1 2 �1 : �1(a1:a1) � 1=3g [ fm2g � f�1 2 �1 : �1(a1:a1) � 1=3g ;
�11;�0 = fm1g � f�1 2 �1 : �1(a1:a1) � 1=2g [ fm2g � f�1 2 �1 : �1(a1:a1) � 1=2g :

From this, in preparation for step 2, observe that

�� fm1:m1g � f�1 2 �1 : �1(a1:a1) � 1=3g � �11; (1)

�� fm2:m1g � f�1 2 �1 : �1(a1:a1) 2 [1=3; 1=2]g � �11 � �� (M�n fm1:m2g)��1;(2)

where the last inclusion follows from the fact that for every �1 2 �1 such that (m2; �1) 2
�1
1;�0, (m1; �1) 62 �11;�. For the receiver, the �rst step eliminates the strategies that prescribe
the dominated actions a2 and a3 after m1.

The elimination of a2 and a3 after m1 does not re�ne the sender�s beliefs at the second
step. For the receiver, by (1), there exists � 2 P �2 such that �(�11) = 1, thus there are beliefs
�2 2 �2 that satisfy R1 at the second step. Now recall how we break down the receiver�s
belief revision in two parts: �rst he revises his initial theory by conditioning on ��M� (m2)
(the event that the choice function of the sender allows for m2) and then he updates the
revised theory taking into account the interaction between type and choice function, i.e.,
conditioning on f�g � fm2:m1;m2:m2g [

�
�0
	
� fm1:m2;m2:m2g, which yields the choice-

relevant belief �2(�jm2). With this, the o¤-path beliefs that satisfy R1 do not justify a1:
by the �rst inclusion in (2), R1 imposes �2(�

1
1j� �M� (m2)) = 1, but then by the second

inclusion in (2) �2(�j��M� (m2)) must assign marginal probability 0 to m1:m2. Therefore,
�2(�jm2) cannot assign to �0 higher probability than the prior, which implies

�22 = fa1:a2; a1:a3g :

At the third step, both types of the sender eliminate m2, because every belief over �22
justi�es only m1. Therefore, we have

�31;� = �
3
1;�0 = fm1g �

�
�1 2 �1 : �1

�
�22
�
= 1

	
:

At the fourth step, the receiver re�nes his initial beliefs by assigning probability 1 to the
beliefs of the sender that are compatible with step 3, but cannot re�ne the beliefs after m2

compared to step 2, because m2 is incompatible with step 3 for both types of the sender.
Therefore, the path-rationalizable strategies of the receiver are fa1:a2; a1:a3g, and for each
type of the sender the only path-rationalizable message is m1. So, ��, ��

0
, and �m1 are

compatible with strategic reasoning. Note also that every type and the receiver have only
one path-rationalizable move, so no path-rationalizable move is unexpected. This is far from
true in general: In Example 3, the expected moves are compatible with strategic reasoning,
but also di¤erent moves are. 4
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Given the assumption that every action in the support of �m is optimal under the
belief pm induced by (��)�2�, as long as �

n�1
2 is non-empty, it contains strategies that

make S1 compatible with �1, thus each �n1;� is non-empty as well. Instead, we obtain
an empty �n2 when M

�(�) 6� ProjM�
n�1
1;� for some � 2 �. In this case, R1 cannot be

satis�ed by any �2 2 �2, because it implies disagreement with the given distribution on
terminal nodes. The interpretation is that sending some messagem 2M�(�) is incompatible
with the (belief-restricted) strategic reasoning for type �. But �n2 can be empty even if
M�(�) � ProjM�

n�1
1;� for every � 2 �. This happens when di¤erent types of the sender

�nd the messages in M� optimal only for di¤erent beliefs. This means that no choice
function in ProjM��n�11 prescribes a message in M�(�) to every type �,22 and then, by
second-order independence, every � 2 P2 with �(�n�11 ) = 1 assigns positive probability to
a triple (�; s1; �1) with s1(�) 62M�(�), which implies disagreement with the given outcome
distribution. The interpretation is the following: the belief that every type � would send a
message inM�(�), even when her beliefs are independent of her type, is not compatible with
the (belief-restricted) strategic reasoning for the receiver. The following example illustrates
this second kind of inconsistency.

Example 2
m1 a1 a2
� 1; 0 0; 0

�0 1; 0 0; 0

m2 a1 a2
� 3; 0 0; 0

�0 0; 0 3; 0

Let p(�) = p(�0) = 1=2, ��(m1) = ��
0
(m1) = 1, �m1(a1) = 1. So, �1 is the set of beliefs

that give probability one to strategies s2 2 AM with s2(m1) = a1, and for every �2 2 �2,
we have

�2(f(�;m1:m1)g ��(AM )j?) = �2(
�
(�0;m1:m1)

	
��(AM )j?) = 1=2:

Given the belief in a1 after m1, types � and �0 have the incentive to deviate to m2 if they
assign at least probability 1=3 to, respectively, a1 and a2. So we have

�11;� = fm1g � f�1 2 �1 : �1(a1:a1) � 1=3g [ fm2g � f�1 2 �1 : �1(a1:a1) � 1=3g ;
�11;�0 = fm1g � f�1 2 �1 : �1(a1:a1) � 2=3g [ fm2g � f�1 2 �1 : �1(a1:a1) � 2=3g :

Note that there is no �1 2 �1 such that both (m1; �1) 2 �11;� and (m1; �1) 2 �11;�0. Hence,
m1:m1 62 ProjM��11. Therefore, there is no �2 2 �2 that satis�es R1 at step 2. 4

How can we check that �n2 (n > 1) is not empty? First, we need every type to be indif-
ferent among all her on-path messages: Every �1 2 �1 induces the same beliefs (�m)m2M�

after the messages in M�, so if � had a strict ranking over M�(�) under some �1 2 �1, this
ranking would be the same under all �1 2 �1, and there would be some message m 2M�(�)

22Even if only one possible assignment of on-path messages to types was missing from ProjM��n�11 ,
R1 and B2 would still be incompatible with B3. In any case, if one assignment is missing, then all the
assignments are missing, because all on-path messages of a type must be justi�ed by the same beliefs, as we
will argue later.
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such that m 62 ProjM�11;�. Second, we need that one belief of the sender compatible with
step n�1 justi�es an on-path message for every type. Provided that every type of the sender
is indi¤erent among all her on-path messages, this belief justi�es all on-path messages of
all types.

Lemma 1 Fix n > 1. We have �n2 6= ; if and only if:

1. every � 2 � is indi¤erent among all messages in M�(�) under beliefs (�m)m2M�;

2. there exists �1 2 �1 such that, for every � 2 �,
�
m;�1

�
2 �n�11;� for any m 2M�(�).

Lemma 1 guarantees that, if (��)�2� and (�m)m2M� are compatible with strategic rea-
soning, there is a belief �1 2 �1 over the strategically sophisticated strategies of the receiver
so that every type of the sender has the incentive to stay on path. For each o¤-path mes-
sage m, the probability measure induced by �1 after m can assign positive probability to
actions that are optimal for the receiver only under di¤erent beliefs about the sender�s type.
Then, (��)�2� and �1, which induces �m after each m 2 M�, de�ne the behavioral strate-
gies of a Perfect Bayesian Equilibrium with (possibly) heterogenous o¤-path beliefs (PBH;
Fudenberg and He, 2018).

Proposition 1 Suppose that �32 6= ;. Then, there exists a PBH (�1; �2) 2 (� (M))� �
(� (A))M such that �1(�j�) = �� for each � 2 � and �2(�jm) = �m for each m 2M�.

We obtain a PBH, and not just a self-con�rming equilibrium (Fudenberg and Levine
1993), because of our restriction on the receiver�s second-order beliefs.23 Battigalli and
Siniscalchi (2003) have shown that when the �rst-order beliefs are restricted by a given
outcome distribution (as we assume), non-emptiness of Strong-�-Rationalizability guaran-
tees that the distribution is induced by a self-con�rming equilibrium.24 Moreover, they
show that in a signaling game non-emptiness of Strong-�-Rationalizability is equivalent to
passing the Iterated Intuitive Criterion (Cho and Kreps 1987). Since our restrictions on
�rst-order beliefs are of the same kind, also Path-rationalizability with second-order inde-
pendence, when non-empty, guarantees that the corresponding PBH satis�es the Iterated
Intuitive Criterion.25 The examples above illustrate how the independence restriction on
the receiver�s second-order beliefs further re�nes his �rst-order beliefs: in Example 1, at
step 2, the Intuitive Criterion would allow the receiver to assign high probability to �0 after
m2 and thus to play a1, because in his mind � and �0 could have di¤erent beliefs where �0

has the incentive to play m2 and � has the incentive to play m1; in Example 2, it would
be allowed to justify m1 with di¤erent beliefs for di¤erent types, so we would not get the
empty set.

23On top of this, we obtain a PBH and not just a Bayes-Nash equilibrium because the �rst step of reasoning
guarantees that the receiver best replies to some o¤-path beliefs.
24Also in absence of the independence hypothesis, for a given type � 2 �, the messages in the support of ��

would still have to be justi�ed by the same belief, because of the indi¤erence among them given (�m)m2M� .
Fudenberg and Kamada (2015) call this property of a self-con�rming equilibrium �unitary beliefs�.
25Given the non-monotonicity of strong belief, this observation requires proof. In the Appendix, we prove

that path rationalizability is stronger than FERO, and Sobel et al. (1990) show that FERO is stronger than
the iterated intuitive criterion. A direct proof can be provided by observing that there are no restrictions
on the �rst-order beliefs of the sender about the o¤-path reactions of the receiver, and then adapting the
techniques of Catonini (2020) to a signaling game.
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4 Comparison with divinity

Banks and Sobel (1987) call a sequential equilibrium �divine�when it survives an iterated
procedure of re�nement of o¤-path beliefs inspired by the idea that the beliefs of the sender
do not di¤er across types. To appreciate similarities and di¤erences between our analysis
and Divine Equilibrium, it is enough to focus on the �rst two steps of reasoning. To facilitate
this comparison, we report here the �rst two steps of the iterative procedure that de�nes
Divine Equilibrium, and we jointly call them �divinity criterion�.26 Banks and Sobel focus
directly on sequential equilibrium, which in signaling games coincides with Perfect Bayesian
Equilibrium (with common o¤-path beliefs). However, we start from a Bayes-Nash equilib-
rium (��1; �

�
2) 2 (� (M))

� � (� (A))M to show that PBE emerges endogenously from their
conditions. For each � 2 �, let M�(�) = supp��1(�j�), and let M� := [�2�M�(�). For any
m 2MnM� and any map � 2 [0; 1]� that assigns to each � 2 � a probability of playing m
(positive for some �), let p(�jm;�) denote the probability measure over types derived from
the prior with Bayes rule. Let �0 denote the constant map that assigns 0 to every type.
Finally. let Conv (Y ) denote the convex hull of a set Y .

De�nition 2 Fix a Bayes-Nash equilibrium (��1; �
�
2). For each m 2MnM�, let

�d1(m) : =

�
� 2 [0; 1]� : 9� 2 �(A);8� 2 �; �(�) 2 arg max

�2[0;1]
�u1(�;m; �) + (1� �)u1(�; ��1; ��2)

�
;

�(m) : =
n
p0 2 �(�) : 9� 2 �d1(m)n

�
�0
	
; p0 = p(�jm;�)

o
;

�d2(m) : =

�
� 2 �(A) : 9p0 2 Conv (�(m)) ; supp� � argmax

a2A
u2(p

0;m; a)

�
:

We say that (��1; �
�
2) satis�es the divinity criterion if for each m 2MnM�

�(m) 6= ; ) ��2 (�jm) 2 �d2(m);
�(m) = ; ) 9p0 2 �(�); supp��2 (�jm) � argmax

a2A
u2(p

0;m; a):

Note that all the actions in the support of each ��2 (�jm) must best reply to the same
belief over the sender�s types. Then, we have the following.

Remark 2 If (��1; �
�
2) satis�es the divinity criterion, then it is a Perfect Bayesian Equilib-

rium.

The divinity criterion guarantees that the equilibrium distributions over messages and
actions are compatible with the �rst two steps of reasoning under our hypotheses.

Theorem 1 Fix a Bayes-Nash Equilibrium (��1; �
�
2) that satis�es the divinity criterion and

let �� := ��1(�j�) for each � 2 �, �m := ��2 (�jm) for each m 2M�. Then

�m2M supp��2 (�jm) � �22:
26This is terminologically analogous to Cho and Kreps�(1987) �Intuitive Criterion�, which also requires

two steps.
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Proof of Theorem 1. Fix m 2 MnM�. Suppose �rst that �(m) = ;. Then, there is
p0 2 �(�) such that

supp��2 (�jm) � argmax
a2A

u2(p
0;m; a):

Fix �2;m 2 P2 such that marg�(�2;mjm) = p0; it exists because the prior has full support.
Now suppose that �(m) 6= ;. Then, there is p0 2 Conv (�(m)) such that supp��2 (�jm) �

argmaxa2A u2(p
0;m; a). Write p0 = 
1p1 + :::+ 
npn � a convex combination of points in

�(m). Fix j = 1; :::; n. Then, there is �j 2 �d1(m) such that pj = p(�jm;�j). Hence, there
is � 2 �(A) such that

�j(�) 2 arg max
�2[0;1]

�u1(�;m; �) + (1� �)u1(�; ��1; ��2) (3)

for each � 2 �. Construct �1 2 �(AM ) that induces � after m and ��2(�jm0) after each
m0 6= m. Since (��1; ��2) is an equilibrium, for each � 2 � we have

u1(�;m
0; �1) � u1(�;m00; �1)

for each m0 2M� and m00 2MnM� with m00 6= m. But then, for each � 2 �, by (3) we get

m 2 argmax
m0

u1(�;m
0; �1) if �j(�) > 0; (4)

M�(�) � argmax
m0

u1(�;m
0; �1) if �j(�) < 1: (5)

De�ne e�� 2 �(M) as e��(m) = �j(�) and e��(m0) = ��(m0)
�
1� �j(�)

�
for each m0 6= m.

De�ne �j 2 �(M�) as

8s1 2M�; �j(s1) =
Q
�2� e��(s1(�)):

Let b�j = �j � ��1 . Note that, for each � 2 �,b�1(M�(�;m)��(AM )) = �1(M�(�;m)) = �j(�) (6)

For every s1 2 M� with �j(s1) > 0, for each � 2 �, we have �j(�) > 0 if s1(�) = m, and
�j(�) < 1 if s1(�) 2 M�(�) (there is no third possibility). Then, by (4) and (5), we have
(s1(�); �1) 2 �11;�. Thus, � � f(s1; �1)g � �11. Hence, b�j(ProjM���(AM )�

1
1) = 1. Finally,

let

e�j =

jP

�2�
p(�)�j(�)

;

�j =
e�jP

k=1;:::n

e�k ;
and for future reference, observe that

�jP
k=1;:::n

�k
P
�2�

p(�)�k(�)
=


jP
�2�

p(�)�j(�) �
P

k=1;:::n

e�k �
P

k=1;:::n

e�kP
k=1;:::n


k
=


jP
�2�

p(�)�j(�)
: (7)
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Now let b� = �1b�1 + :::+ �nb�n. Let �2;m = p� b�. Clearly, �2;m 2 P2 and �2;m(�11) = 1. Let
Cm =

�
[�2� f�g �M�(�;m)

�
��(AM ). For each � 2 �, we have

(�2;mjCm) (
�
�
	
�M�(�;m)��(AM ))

=
�2;m(

�
�
	
�M�(�;m)��(AM ))
�2;m(Cm)

=
�1p(�)b�1(M�(�;m)��(AM )) + :::+ �np(�)b�n(M�(�;m)��(AM ))

�1
P
�2�

p(�)b�1(M�(�;m)��(AM )) + :::+ �n
P
�2�

p(�)b�n(M�(�;m)��(AM )

=
�1p(�)�1(�)P

k=1;:::n

�k
P
�2�

p(�)�k(�)
+ :::+

�np(�)�n(�)P
k=1;:::n

�k
P
�2�

p(�)�k(�)

= 
1
p(�)�1(�)P

�2�
p(�)�1(�)

+ :::+ 
n
p(�)�n(�)P

�2�
p(�)�n(�)

= 
1p1(�) + :::+ 
npn(�) = p0(�);

where the third equality follows from (6) and the fourth from (7). So,

supp��2 (�jm) � argmax
a2A

u2(marg�(�2;mjCm);m; a):

Note that, for all m;m0 2 MnM� with m 6= m0, �2;m(��M�(m0)��(AM )) = 0. Hence,
there exists �2 2 �2 such that �2(�j?) = �� for some �� 2 P �2 , and �2(�jm) = �2;mjCm
for each m 2 MnM�. Fix s2 2 AM such that s2(m) 2 supp��2 (�jm) for each m 2 M . By
construction, �2 satis�es R1 at step 2 and R2 with s2. So s2 2 �22. �

The converse of Theorem 1 is not true: even if �m2M supp��2 (�jm) � �12 , (��1; ��2) might
not satisfy the divinity criterion. To see this, we now formalize the solution to the example
of Section 2.

Example 3

m1 a1 a2 a3
�h 0; 3 4; 2 9; 0

�` 0; 3 4; 2 9; 0

m2 a1 a2 a3
�h �2; 3 2; 5 7; 3

�` �3; 3 1; 2 6; 0

m3 a1 a2 a3
�h �5; 3 �1; 5 4; 6

�` �8; 3 �4; 2 1; 0

The prior is p(�h) = p(�`) = 1=2. Consider the equilibrium (��1; �
�
2) with �

�
1(m1j�h) =

��1(m1j�`) = 1, ��2(a1jm1) = �
�
2(a1jm2) = �

�
2(a2jm3) = 1. We have

�d1(m2) = �
d
1(m3) = f[0; 1]� f0gg [ ff1g � [0; 1]g :

For each k = 2; 3, the �rst component in the union is justi�ed by beliefs of the sender
that make �h indi¤erent between m1 and mk, thus �` strictly prefer m1, and the second
component by beliefs that make �` indi¤erent between m1 and mk, thus �h strictly prefer
mk. With this, we get

�(m2) = �(m3) =
n
p0 2 �(�)

���p0(�h) � 1=2o :
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But then (abusing notation),

�d2(m2) = fa2g ; �d2(m3) = �(fa2; a3g).

so ��2 (�jm2) 62 �d2(m2): (��1; �
�
2) does not satisfy the divinity criterion (and no equilibrium

with ��1(m1j�h) = ��1(m1j�`) = 1 does).
Now we turn to Path-rationalizability with second-order independence. We have

f(m1; �a1:a1:a2) ; (m3; �a1:a2:a3)g � �1
1;�h
; (8)

f(m1; �a1:a1:a2)g [ (fm2;m3g � f�a1:a2:a3g) � �1
1;�`
: (9)

We check whether a1:a1:a2 2 �22. Consider any �2 2 �2 such that

�2(�j��
�
M�n fm1:m1g

�
) = p� � � ��1 ;

where ��1 = �a1:a2:a3 and � assigns probability 1=2 to m3:m2 and m3:m3. By (8) and (9), �2
satis�es R1. We get

marg� (�jm2) (�
`) = 1;

marg� (�jm3) (�
`) = 1=3;

thus a1:a1:a2 satis�es R2 with �2. Hence, a1:a1:a2 2 �22.
Since also a1:a2:a3 survives the second step, an easy inductive argument shows that the

equilibrium survives all steps of path rationalizability. 4

To conclude, note that in the example, afterm3, a1 and a3 best reply only to disjoint sets
of beliefs about the sender�s type. Path-rationalizability with second-order independence
allows the sender to assign positive probability both to a1 and a3 at all steps. For Divine
Equilibrium, this is not allowed, because a mix of a1 and a3 is not a best response to any
belief.27

5 Appendix

5.1 A simpler algorithm

The systems of second-order beliefs of the receiver allow for a transparent representation
of his process of belief formation. However, they are redundant in two dimensions for the
calculation of the behavioral implications of the epistemic conditions. First, using choice
functions in place of messages in the space of uncertainty of the receiver allows for an
indirect representation of the independence hypothesis through his �rst-order belief: the
receiver�s �rst-order belief shall (be a product measure and) assign probability 1 to the
choice functions of the sender that prescribe to each type a message that is optimal under

27Taking the perspective of Bayesian statistics, we o¤er the following interpretation of this di¤erence.
We take the sender�s belief to be the predictive measure of a subjective belief over �probability models,�
behavior strategies of the receiver. Banks and Sobel instead consider a Dirac belief assigning probability 1
to a speci�c behavior strategy. A similar comment applies to the structural consistency condition considered
by Kreps and Wilson (1982) and used by Pearce (1984).
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the same belief. Second, just a few conditional beliefs are su¢ cient to derive the beliefs of
the receiver at the moment of choosing an action � those described in Remark 1. Note also
that the corresponding conditioning events have disjoint supports. Then, adding the initial
theory as �rst measure, they can be organized in a Lexicographic Conditional Probability
System (Blume et al., 1991; henceforth, LCPS), a �nite sequence of probability measures
with disjoint supports. Conversely, from an LCPS, coupled with a full-support probability
measure �, one can derive a CCPS as follows: for each conditional event C, derive the belief
from the �rst measure in the LCPS that assigns positive probability to C, if any, otherwise
from �. With this, we can rewrite path rationalizability with second-order independence as
a simpler procedure that uses only �rst-order LCPSs. So, let �`2 denote the set of LCPSs
��2 = (�

1
2; :::; �

l
2) over ��M�, such that:

D1` �12 = p� ��, where ��(s1) =
Q
�2� �

�(s1(�)) for each s1 2M�;

D2` for each j = 2; :::; l, �j2 = p� � for some � 2 �(M�).

Conditions D1` and D2` mirror conditions D1 and D2: the theories about the sender
must be product measures between the prior on types and, for the primary theory, a prob-
ability measure over strategies that is consistent with (��)�2�. In the following de�nition,
conditioning on m means conditioning on [�2� f�g�M�(�;m), the set of pairs (�; s1) such
that s1(�) = m. The usual abuses of notation for expected payo¤s apply.

De�nition 3 Consider the following reduction procedure.

Step 0 Let �`;01 =M� and �`;02 = AM .

Step n > 0 For each s1 2 �`;n�11 , let s1 2 �`;n1 if there exists �1 2 �1 such that:

S1` �1(�
`;n�1
2 ) = 1;

S2` for every � 2 �, for every m 2M ,

u1(�; s1(�); �1) � u1(�;m; �1):

For each s2 2 �`;n�12 , let s2 2 �`;n2 if there exists ��2 = (�
1
2; :::; �

l
2) 2 �`2 such that:

R1` �j2(�� �
`;n�1
1 ) = 1 for each j = 1; :::; l;

R2` for each m 2 M with M�(m) \ �`;n�11 6= ;, there exists j 2 f1; :::; lg such that
�j2(��M�(m)) > 0, and calling k the smallest of such j�s,

u2

�
marg�(�

k
2jm);m; s2(m)

�
� u2

�
marg�(�

k
2jm);m; a

�
for every a 2 A.

Finally, let �`;11 = \n�0�`;n1 and �`;12 = \n�0�`;n2 .
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Requirements S1` and S2` coincide with S1 and S2, except that here we directly con-
struct the choice functions of the sender where every type best replies to the same belief.
Requirement R1` is simpler than R1 in that it only deals with beliefs over the choice func-
tions of the sender that survived the previous step of elimination, not the earlier ones. After
the messages that cannot be rationalized based on such choice functions, the optimality of
the reaction is guaranteed by the fact that only the strategies of the receiver that survived
the previous step are considered (that is, we de�ned a reduction procedure). On the other
hand, by R2` the beliefs in the LCPS must be able to explain all the messages that survived
the previous step, and the �rst belief that can explain a message m must justify the reaction
of the receiver (as in R2). We now formalize the equivalence between the two procedures.

Proposition 2 For every n � 0, we have �`;n2 = �n2 , and for every (�;m) 2 � �M , we
have m 2 ProjM�n1;� if and only if M�(�;m) \ �`;n1 6= ;.

The proof of Proposition 2 is deferred to the end of the appendix because it exploits the
analysis of the complete-information scenario of the next subsection.

It is also worth noting that considering theories with overlapping supports would not
expand the set of justi�able strategies of the receiver, because the recevier relies on theory �k

only conditional on the event that no type-function pair that is assigned positive probability
by the theories �1; :::; �k�1 is consistent with the observed message.

5.2 Complete-information scenario

In this appendix, we analyze the sender-receiver game as a complete-information game with
asymmetric observation of an initial chance move. Then, we show the equivalence of the
analysis with the incomplete-information approach of Section 3, and the relationship with
the notion of �xed-equilibrium rationalizable outcome (henceforth, FERO) of Sobel et al.
(1990).

The timing of the game is as follows.

1. The pseudo-player chance chooses the value of � from �, according to the commonly
known distribution p.

2. The sender observes � and chooses a message m from M .

3. The receiver observes m but not � and chooses an action a from A.

At the beginning of the game, the sender and the receiver have a belief over the strate-
gies28 of the other player and chance. We assume that the sender believes that there is
no correlation between the realization of the chance move and the strategy of the receiver.
Therefore, after observing the realization of the chance move, her conditional belief about
the strategy of the receiver will be the same as the ex-ante marginal belief. For this reason,

28Here we talk of strategies of the sender because the sender can formulate a plan at the ex ante stage,
before observing the realization of the chance move.
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instead of writing the sender�s entire conditional probability system, we simply write one
probability measure �1 2 �(AM ) over the receiver�s strategies, with the understanding that
the initial belief of the sender is p��1 2 �

�
��AM

�
.29 As in the main body of the paper,

the sender�s belief about the actions of the receiver after the messages in M� is given by
(�m)m2M� . So, �1 must belong to the following restricted set:

�̂1 =
�
�1 2 �(AM ) : 8(m;a) 2M� �A;�1

��
s2 2 AM : s2(m) = a

	�
= �m(a)

	
;

which coincides with the set �1 de�ned in Section 3.
Given the independence restriction on the sender�s �rst-order beliefs, we do not need

to restrict the second-order beliefs of the receiver. Therefore, we endow the receiver with
a CCPS over ��M�, thus considering the collection of conditioning events: 2��M

�n f;g.
Let �̂2 be the set of CCPSs �̂2 that satisfy the following two conditions:

D1� �̂2(�j?) = p� ��, where ��(s1) =
Q
�2� �

�(s1(�)) for each s1 2M�;

D2� for each E 2 2M�n f;g, �̂2 (�j�� E) = p� � for some � 2 �(M�).

Condition D1�requires that the initial belief of the receiver is a product measure be-
tween the objective chance probabilities p and a distribution over sender�s strategies that
is consistent with (��)�2�. Condition D2�requires that, conditional on every subset E of
sender�s strategies, the receiver�s belief is the product of measure p and some measure over
strategies (which must assign probability 1 to E, because �̂2 is a CPS). While imposing
independence between the chance move and the strategy of the sender is natural (for the
reasons we mentioned in Section 1), one may wonder why we need to do it here, given the
independence condition we have already imposed on the sender�s beliefs. The reason is the
following: assigning probability 1 to strategies of the sender that are justi�able under inde-
pendence does not automatically imply that the receiver believes in independence, because
his belief could still match di¤erent chance moves with di¤erent sender�s strategies.

It is easy to see that a CCPS �̂2 belongs to �̂2 if and only if it can be obtained by
marginalization from some second-order belief system �2 2 �2, the restricted set de�ned in
Section 3.

Remark 3 Fix a CCPS �̂2 on � � M�. We have �̂2 2 �̂2 if and only if there exists
�2 2 �2 such that, for each non-empty C in 2��M

�
, �̂2(�jC) = marg��M��2(�jC).

Proof. If: Fix a CCPS �̂2 such that, for some �2 2 �2, �̂2(�jC) = marg��M��2(�jC)
for each C 2 2��M�n f;g. Let D denote the collection of all D 2 2��M�n f;g such that
�2(D ��(AM )jC) = 0 for every C � D. Thus, D is also the collection of all D 2 2��M�

such that �̂2(DjC) = 0 for every C � D. By D2, for each D 2 D, �2 (�jD) = p � �
for some � 2 �(M� � �(AM )). Thus, �̂2(�jD) = p � margM��. Hence, �̂2 satis�es
D2�. Moreover, by D1, there exists � 2 �(M� � �(AM )) such that �2(�j?) = p � � and
�(M�(�;m)��(AM )) = ��(m) for each (�;m) 2 ��M . Hence, �̂2 satis�es D1�.
29More generally, the sender�s prior might be any product measure q � �1 with q 2 �� (�). What is

important is that it is commonly believed that the receiver�s prior on � is p.
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Only if: Fix �̂2 2 �̂2. Fix any �1 2 �(AM ) and de�ne �2 as �2(�jC) = �̂2(�jC)���1 for
each C 2 2��M�

. The proof that �2 2 �2 mirrors the one above and is therefore omitted.
�

Given our �rst-order belief restrictions, we now de�ne Strong-�-Rationalizability for the
game with complete information, which for future reference we call �Path-rationalizability
with �rst-order independence�.

De�nition 4 Consider the following elimination procedure.

Step 0 Let �01 =M
�, �

0
�2 = ��M�, and �

0
2 = A

M .

Step n > 0 For each s1 2M�, let s1 2 �
n
1 if there exists �1 2 �̂1 such that:

S1� �1(�
n�1
2 ) = 1;

S2� for every m 2M ,
u1(�; s1(�); �1) � u1(�;m; �1):

Let �
n
�2 = �� �

n
1 .

For each s2 2 AM , let s2 2 �
n
2 if there exists �̂2 2 �̂2 such that

R1� for every k = 1; :::; n� 1 and C 2 2��M�
, if C \ �k�2 6= ;, then �̂2(�

k
�2jC) = 1;

R2� for every m 2M and a 2 A,

u2 (marg��̂2(�jm);m; s2(m)) � u2 (marg��̂2(�jm);m; a) :

Finally, let �
1
1 = \n�0�

n
1 and �

1
2 = \n�0�

n
2 . The elements in �

1
1 and �

1
2 are called

path-rationalizable with �rst-order independence.

The di¤erence between Path-rationalizability with �rst-order and second-order indepen-
dence lies in the substitution between the restriction that the sender�s �rst-order belief is
independent of the chance move/type, and the restriction that the receiver believes this is
the case. While the �rst restriction truly constrains the strategy of the sender, the second
only establishes connections between the moves of d¤erent types in the mind of the receiver.
Nonetheless, the two scenarios are equivalent for the receiver�s choices, and then also for
the choices of the sender for each chance move/type after strategic reasoning.

Proposition 3 A strategy of the receiver is path-rationalizable with �rst-order indepen-
dence if and only if it is path-rationalizable with second-order independence.

Every strategy of the sender that is path-rationalizable with �rst-order independence
prescribes after each realization of the chance move a message that is path-rationalizable
with second-order independence for the corresponding type.

Every message that is path-rationalizable with second-order independence for a type is
prescribed after the corresponding realization of the chance move by a strategy that is path-
rationalizable with �rst-order independence.
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Proof. The proof is by induction on the steps of the two procedures. So �x n � 0 and
suppose that, for all k = 0; :::; n,

(i) �
k
2 = �

k
2,

(ii) for every s1 2 �
k
1, for every � 2 �, s1(�) 2 ProjM�k1;�,

(iii) for every �1 2 �1 with �1(�k�12 ) = 1, for every s1 2M� such that (s1(�); �1) 2 �k1;�
for all � 2 �, s1 2 �

k
1.

The basis step (n = 0) is trivial. Now we prove the inductive step.

Recall that �1 = �̂1. Moreover, by the induction hypothesis (i), S1 and S1�at step
n+ 1 coincide. Then, (ii) and (iii) for n+ 1 follow.

To prove (i) for n + 1, we will show in the next paragraph that, for each k = 1; :::; n,

�
k
�2 = Proj��M��k1. But then, �2 2 �2 satis�es R1 if and only if its marginal over
� � M� satis�es R1�. At the same time, by Remark 3, the beliefs in �2 and �̂2 have
the same marginals over � �M�. Therefore, the subset of �2 that satis�es R1 and the
subset of �̂2 that satis�es R1�have the same marginals over �. Given that R2 and R2�are
identical for the same marginal over �, we obtain �

n
2 = �

n
2 .

Now we prove �
k
�2 = Proj��M��k1. We �rst show the inclusion �

k
�2 � Proj��M��k1.

Fix (�; s1) 2 �
k
�2. Thus, there is ��1 2 �̂1 with ��1(�

k�1
2 ) = 1 such that s1 and ��1 satisfy

S2�. By the induction hypothesis (i), ��1(�
k�1
2 ) = 1, and by �1 = �̂1, ��1 2 �1, so by S2�,

s1(�
0) is optimal for every �0 2 � under ��1, thus (s1(�0); ��1) 2 �k1;�0 . Then, (�; s1; ��1) 2 �

k
1.

Now the opposite inclusion. Fix (�; s1; �1) 2 �k1. Thus, �1 2 �1, �1(�
k�1
2 ) = 1, and

(s1(�
0); �1) 2 �k1;�0 for each �

0 2 �. Then, by the induction hypothesis (iii), s1 2 �
k
1, thus

(�; s1) 2 �
k
�2. �

Comparison with Fixed-Equilibrium Rationalizable Outcomes (Sobel et al. 1990)
Now we present Fixed Equilibrium Rationalizable Outcomes of Sobel et al. (1990). To fa-
cilitate the comparison with Path rationalizability, we will slightly modify their de�nition
in terms of language and we consider both players at each iteration instead of alternating
between them.30 Fix an equilibrium (��1; �

�
2) 2 (� (M))

� � (� (A))M . For each � 2 �, let
M�(�) = supp��1(�j�), and let M� := [�2�M�(�). Modify the game by substituting the on-
path messages M� with a unique message m� that terminates the game. Let fM = MnM�

and cM = fM [ fm�g. Let ŝ�1 be the strategy ŝ1 2 cM� such that ŝ1(�) = m� for each
� 2 �. For each m 2 cM , let cM�(m) denote the set of strategies ŝ1 such that ŝ1(�) = m
for some � 2 �. Finally, for each � 2 �, let u1(�;m�; �) = u1(�;m; ��2) for any m 2 M�(�)
(by equilibrium, every m 2 M�(�) gives the same expected payo¤). The usual abuse of
notation for conditioning on m applies.

De�nition 5 Consider the following reduction procedure.
30For simplicity, we also maintain the assumption that the sender has the same available messages after

every chance move, although this is not assumed by Sobel et al (1990).
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Step 0 Let b�01 = cM� and b�02 = AfM .
Step n > 0 For each ŝ1 2 b�n�11 , let ŝ1 2 b�n1 if there exists �1 2 �(AfM ) such that:

S1f �1(b�n�12 ) = 1;

S2f for each � 2 � and m 2 cM ,
u1(�; ŝ1(�); �1) � u1(�;m; �1):

For each ŝ2 2 b�n�12 , let ŝ2 2 b�n2 if, for each m 2 fM with b�n�11 \ cM�(m) 6= ;, there exists
� 2 �(cM�) such that:

R1f �
�b�n�11

�
= 1;

R2f �
�cM�(m)

�
> 0;

R3f for every a 2 A,

u2(marg� ((p� �) jm) ;m; ŝ2(m)) � u2(marg� ((p� �) jm) ;m; a):

Say that (��1; �
�
2) determines a �xed-equilibrium rationalizable outcome if ŝ�1 2 \n>0b�n1 .

FERO is weaker than Path-rationalizability with �rst-order independence because it
only requires the belief of the receiver after each message to be derived from a product
measure over chance moves and strategies � an assumption of structural consistency (Kreps
and Wilson, 1982) � without requiring any relationship between beliefs after di¤erent
messages. In other words, there is no analog of Remark 1 for FERO. The following example
shows this point.

Example 4 A �rm is looking for funds from an investor. The �rm is privately informed of
its potential, which can be high (� = �h) or low (� = �l). This year the �rm has generated
some pro�ts, which can be distributed as dividends to the current shareholders (m = m0),
or re-invested in two possible ways (m = m1;m2), identical for payo¤s. After observing
this choice, the investor can decide to provide equity (a = ae), debt (a = ad), or nothing
(a = a0). A �rm with high potential prefers debt, a �rm with low potential prefers equity;
either way, for the �rm it is worth re-investing its pro�ts if and only the investor injects
additional funds, and the returns are greater in case of high potential. The investor prefers
to provide equity in case of high potential and debt in case of low potential; either way, for
the investor it is worth providing funds if and only if the �rm re-invests its pro�ts and high
potential is at least half as likely as low potential. Players� incentives can be summarized
by the following payo¤s.31

m0 a0 ae ad

�h 0; 0 �;<0 �;<0
�l 0; 0 �;<0 �;<0

mk a0 ae ad

�h �1; 0 2; 3 3; 2

�l �1; 0 1;�2 0;�1
; k = 1; 2:

31To facilitate comparisons, the �rm�s payo¤s after m0 and a0 are normalized to 0 for both � and �.
The payo¤s after m0 and ae or ad are omitted because irrelevant for the analysis. Note that the investor�s
expected payo¤ after each mk and ad still depends on the type because it incorporates an (unmodeled)
probability of default.
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The prior is that high potential is twice more likely than low potential. The outcome dis-
tribution that assigns probability 2=3 to (�h;m0; a0) and 1=3 to (�l;m0; a0) is a FERO but
it is not compatible with our hypotheses.

FERO (more generally, structural consistency) allows the investor to rationalize m1 with
a belief of the �rm that assigns probability 1 to ae after m1 and to ad after m2, so that �h

chooses m2 and �l chooses m1, and to rationalize m2 with a belief of the �rm that assigns
probability 1 to ae after m2 and to ad after m1, so that �h chooses m1 and �l chooses m2.
With this rationalization, the investor assigns probability 1 to �l after both m1 and m2, so
he chooses a0. Given this, it is easy to see that FERO only eliminates the strategies of the
sender ŝ1 such that ŝ1(�h) = m0 and ŝ1(�l) 6= m0.32

Under our hypotheses, if the receiver rationalizes, say, m1 with a theory such that the
sender of type �h may choose m2, this theory must also be used to rationalize m2, but then
the receiver cannot raise the probability of �l compared to the prior after both m1 and m2.
We indeed show that path rationalizability with �rst-order independence yields the empty set
given the outcome distribution. For every �1 2 �̂1, if some m 6= m0 is optimal for �l, it is
strictly optimal for �h. Hence, for every s1 2 �

1
1, if s1(�

l) 6= m0, then s1(�h) 6= m0. Let
C = ��

�
M�(m1) [M�(m2))

�
. Thus, for every �̂2 2 �̂2 such that �̂2(�

1
�2jC) = 1, there

exists � 2 �(M�) such that �̂2(�jC) = p � � and �(s1) = 0 for every s1 2 M� such that
s(�h) = m0 and s(�l) 6= m0. Then, there exists m 2

�
m1;m2

	
such that �(M(�l;m)) �

�(M(�h;m)). Given this and the prior, �2(
�
�l
	
�M�jm) � �2(

�
�h
	
�M�jm). Hence, for

every s2 2 �
2
2, there exists m 2

�
m1;m2

	
such that s2(m) 6= a0. So, for every �1 2 �̂1 such

that �1(�
2
2jC) = 1, there exists m 2

�
m1;m2

	
such that the probability distribution over

actions of the receiver after m induced by �1 assigns at most probability 1=2 to a
0. Hence,

for every s1 2 �
3
1, s1(�

h) 6= m0. Thus, there is no �̂2 2 �̂2 such that �̂2(�
3
�2jC) = 1, and

we obtain �
4
2 = ;. 4

To conclude, we prove that our solution concept is indeed stronger than FERO.

Proposition 4 Fix an equilibrium (��1; �
�
2) and let

�
��
�
�2� = (��1(�j�))�2�, (�m)m2M =

(��2(�jm))m2M . If �
1
1 6= ;, then (��1; ��2) determines a �xed-equilibrium rationalizable out-

come.

Proof. Let ' be the map that associates each m 2 fM with itself and each m 2M� with
m�. Let & be the map that associates each s1 = (s1(�))�2� with &(s1) = ('(s1(�)))�2� 2cM�. Let % be the map that associates each s2 = (s2(m))m2M 2 M� with %(s2) =

(s2(m))m2fM 2 A
fM . Suppose by contraposition that ŝ�1 62 b�11 . Then, by �niteness of

the game there exists n 2 N such that ŝ�1 62 b�n1 , and let k be the smallest of such n�s. Ifb�k1 � &(�k1), ŝ�1 62 b�k1 implies that for every s1 2 �k1, there exists � 2 � such that s1(�) 62M�.

But then, there is no �̂2 2 �̂2 with �̂2(�
k
�2j?) = 1, thus �

k+1
2 = ;, and then �k+21 = ;,

completing the proof. So there only remains to show that b�k1 � &(�k1).
32The strategies of the investor that prescribe the dominated actions after m0 are eliminated by design

because m0 is substituted with m�.
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Fix n = 0; :::; k � 1 and assume by way of induction that b�n1 � &(�n1 ) and b�n2 � %(�n2 ).
(The basis step is given by &(M�) = cM� and %(AM ) = AfM .)

Fix s2 2 �
n+1
2 . Then, by R1�and R2�, there exists �̂2 2 �̂2 such that �̂2(�

n
�2j� �

M�(m)) = 1 for every m 2M with �
n
1 \M�(m) 6= ;, and

u2(marg��̂2(�jm);m; s2(m)) � u2(marg��̂2(�jm);m; a) (10)

for each m 2M and every a 2 A. Fix m 2 fM . By D2�, we have �2(�j��M�(m)) = p��m
for some �m 2 �(M�). De�ne b�m 2 �(cM�) as follows: for each ŝ1 2 cM�, let b�m(ŝ1) =
�m(&�1(ŝ1)). Thus, by �m(�

n
1 ) = 1 and the induction hypothesis, b�m(b�n1 ) = 1 (R1f ). For

each s1 2 M� and � 2 �, we have &(s1)(�) = m if and only if s1(�) = m. Therefore,b�m(cM�(m)) > 0 (R2f ) and

marg�((p� �m) jm)) = marg�((p� b�m) jm)): (11)

Therefore, by (10) and %(s2)(m) = s2(m), %(s2) and b�m satisfy R3f . By the induction
hypothesis, %(s2) 2 b�n2 . Thus, %(s2) 2 b�n+12 . Hence, b�n+12 � %(�n+12 ).

Now �x s1 2 �
n+1
1 . By S1�and S2�, there exists �1 2 �̂1 with �1(�

n
2 ) = 1 that justi�es

s1. De�ne �̂1 2 �(A
fM ) as �̂1(ŝ2) = �̂1(%

�1(ŝ2)) for each ŝ2 2 A
fM . By the induction

hypothesis, �̂1(b�n2 ) = 1, thus �̂1 satis�es S1
f . The sender expects the same payo¤ under

�̂1 and �1 after each m 2 fM , and the equilibrium payo¤ after m� or each m 2 M�.
So, �̂1 justi�es every ŝ1 2 &(s1) (S2f ). By the induction hypothesis, &(s1) � b�n1 . Thus,
&(s1) � b�n+11 . Hence, b�n+11 � &(�n+11 ). �

5.3 Omitted proofs

Proof of Lemma 1. Necessity. Since �n2 6= ;, there exists �2 2 �2 such that �2(�n�11 j?) =
1. For any (s1; ��1) 2 M� � �(AM ) such that �2(� � f(s1; ��1)g j?) > 0, by B2 we have
�2((�; s1; ��1)j?) > 0 for every � 2 �. So, to satisfy B3, we need ��(s1(�)) > 0. This yields
2. We prove 1 by contraposition: if some m 2M�(�) were to give � a strictly lower expected
payo¤ than some other m0 2 M�(�) under (�m)m2M� , we would have m 62 ProjM�11;�, and
therefore we would get �22 = ;.

Su¢ ciency. Let S�1 = ��2�M�(�). De�ne � 2 �(M�) as follows:

8s1 2 S�1 ; �(s1) =
Q
�2� �

�(s1(�));

8s1 62 S�1 ; �(s1) = 0:

Let �� = p � � � ��1 , where ��1 denotes the Dirac measure supported by ��1. We have
�� 2 P �2 because �(M�(�;m)) = ��(m) for each (�;m) 2 � �M . By 1 and 2, we have
(�; s1; ��1) 2 �n�11 for each � 2 � and s1 2 S�1 . Hence, �

�(�n�11 ) = 1. Hence, letting
�2(�j?) = ��, we can construct �2 2 �2 that satis�es R1. Thus, �n2 6= ;. �

Proof of Proposition 1. By Lemma 1, there exists ��1 2 �1 such that ��1
�
�12
�
= 1,

and for each (�;m) 2 ��M with m 2M�(�),

m 2 arg max
m02M

u1(�;m
0; ��1):
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Consider the pro�le of behavioral strategies (�1; �2) 2 (� (M))� � (� (A))M de�ned by:

1. �1(�j�) = �� for each � 2 �;

2. �2(�jm) = �m for each m 2M�;

3. for each m 2MnM� and a 2 A,

�2(ajm) = ��1
��
s2 2 AM js2(m) = a

	�
.

For each (�;m) 2 � �M� with �1(mj�) > 0, i.e., ��(m) > 0, m is optimal against �2
because �2 and ��1 induce the same belief after every m

0 2M . Moreover, �1 induces belief
pm after every m 2M�, and by assumption the actions in the support of �2(�jm) = �m are
optimal under pm. Finally, for each m 2 MnM� and a 2 A with �2(ajm) > 0, we have
��1
��
s2 2 AM js2(m) = a

	�
> 0, thus there is s2 2 �12 such that s2(m) = a. Hence, by R2,

8a0 2 A, u2 (marg��2(�jm);m; a) � u2
�
marg��2(�jm);m; a0

�
:

Thus, a is optimal given marg��2(�jm). �

Proof of Proposition 2.
We show the equivalence between the reduction procedure for LCPS and path rational-

izability with �rst-order independence; then Proposition 2 follows from Proposition 3.
Assume by way of induction that the two procedures are equivalent at step k. For step

k + 1 of the sender, the equivalence between S1`,S2` and S1�,S2�can be seen by inspection
of the de�nitions. Consider step k + 1 of the receiver.

For every CPS �̂2 2 �̂2 that satis�es R1�one can derive an LCPS ��2 2 �`2 that satis�es
R1` and the �rst part of R2` with the procedure for Remark 1, stopping at the conditional
events that are consistent with step k. Then, every s2 that satis�es R2�with �̂2 satis�es
R2` with ��2 because the �rst measure of ��2 consistent with a message m, after conditioning
on ��M�(m), coincides with �̂2(�jm).

For every s2 that survive step k+1, for each j = 1; :::; k+1, one can �nd a LCPS ��2;j 2 �`2
that satis�es R1` and R2` at step j with s2. Given the concatenation (��2;k+1; :::; ��2;1), derive
�̂2 2 �̂2, for each conditional event C, from the �rst measure that gives positive probability
to C. From R1`, it is easy to check that �̂2 satis�es R1�. Moreover, for each m 2M , �̂2(�jm)
coincides with the �rst measure of the concatenation consistent with m, after conditioning
on � �M�(m). Then, since s2(m) satis�es R2` with it, it also satis�es R2�with �̂2(�jm).
�
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