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Abstract

We consider a model of a limit order book and determine the optimal tick size set by a

social planner who maximizes the welfare of market participants. In a 2-period model where

only two agents arrive sequentially, the tick size is a friction that constrains investors to use

discrete price grids, and as a consequence the optimal tick size is equal to zero. However,

in a model with sequential arrival of more than two investors who can endogenously either

take liquidity or supply liquidity by undercutting or queuing behind existing orders, the

tick size is positive: it is a strategic tool a social planner uses to optimally affect the choice

made by investors between liquidity demand and supply. In addition, the optimal tick size

is a function both of the value of the asset and of trading volume. The policy implication

of such findings is that the European tick size regime and the “Intelligent Ticks” Nasdaq

proposal dominate Reg. NMS Rule 612 that formalizes the tick size regime for the U.S.

markets. Using data from the U.S. and the European markets we test our model’s empirical

predictions.
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"Many of the issues afflicting the market today can be traced back to the current tick size

regime drawing the ire of both investors and issuers." (Nasdaq, 2019)

Modern limit order books (LOBs) work as double auction markets with discrete prices, gov-

erned by two fundamental rules - price and time priority. On a LOB prices are discrete and the

combination of all possible prices at which traders can post their orders forms the so-called price

grid, which is based on the minimum distance between two consecutive prices, known as the tick

size. The tick size is generally set by regulators and sits right at the top of their agenda, all

around the world: it is the crucial feature of a LOB, as it impacts the effects that fundamental

priority rules have on the order submission strategies of investors willing to supply and demand

liquidity.

While there exists a vast empirical literature on the tick size, there only exist a few theoretical

contributions that show the effects of a tick size change on market quality and on the welfare of

market participants, and there is no theoretical contribution aiming to set the OTS in order to

maximize the welfare of market participants. The aim of this paper is to fill this gap by providing

a theoretical framework for a LOB where a social planner (SP) determines the optimal tick size

(OTS) that maximizes the welfare of market participants.

The equilibrium dynamics of a LOB depend on how the demand and the supply of liquidity

change over time. To demand liquidity, investors use market orders, whereas to supply liquidity

they use limit orders. Therefore, the equilibrium dynamics of a LOB crucially depend on how the

investors’ choice between market and limit orders changes over time. When choosing whether to

take liquidity and maximize the execution probability of their order by using a market order, or

to wait and maximize the price improvement of their order by supplying liquidity via a limit order

- either queuing or undercutting existing orders - investors have to take into account the value

of the tick size. Since the tick size determines both the minimum price improvement and the

cost of undercutting, it crucially affects the probability of execution of a limit order. It therefore

affects the trade-off between price opportunity costs and non-execution costs that governs the

choice between market and limit orders.

There are two central related questions regulators seek to answer in relation to the tick size.

The first one is about the optimal dimension of the tick size, namely whether it should be equal
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to zero or whether instead it should be set at a positive value. Is the tick size a rent for liquidity

providers that should be normalized to zero in competitive markets?1 Or, are there any relevant

transmission channels supporting the existence of a positive tick size that maximizes the welfare

of all market participants? The second research question that regulators seek to answer is about

how the tick size should be optimally set across different securities.

Answering the first of the two research question mentioned above, this paper shows that while

the tick size is a friction in markets where there is no competition in the provision of liquidity, it

is not a friction in a standard limit order book market where each market participant can choose

to either supply or demand liquidity. The contribution of this paper is precisely to show that in

a standard LOB model a SP does not set the OTS at zero, but at a value that optimizes the

strategic interaction of liquidity demand and liquidity supply, thus maximizing the total welfare

of market participants.

In relation to the second research question, intuitively investors crossing the spread to demand

liquidity may benefit from an ever smaller tick size resulting in a smaller bid-ask spread. Instead,

investors supplying liquidity may benefit - depending on the state of the book - either from a

smaller or from a wider tick size: a smaller tick size allows investors to cheaply undercut long

queues at the best prices in liquid markets (tick size constrained stocks), while a wider tick

size reduces aggressive undercutting thus incentivizing investors to post limit orders in markets

characterized by a large spread at the best bid offer (tick size unconstrained stocks). This paper

shows that the OTS should differ across securities with different share prices and trading activity.

Over the past twenty years, exchanges implemented several tick size changes extensively

documented by a substantial empirical literature that discusses the effects of the tick size changes

on the quality of the markets considered.2 Lacking theoretical guidelines on how to determine
1Early theoretical literature on the optimal tick size (among others, Kandel and Marx (1997), Chordia and

Subrahmanyam (1995) and Anshuman and Kalay (1998)) show that the tick size creates a wedge between the
underlying equilibrium price and the observed price that permits competitive market makers to realize economic
profits that could help recoup fixed costs.

2For an incomplete review see: Angel (1997), Bessembinder (2000), Bessembinder (2003), Chordia and Subrah-
manyam (1995), Chung, Chuwonganant, and McCormick (2004), Goldstein and Kavajecz (2000), Harris (1991),
Harris (1994) and Harris (1996), Hu, Hughes, Ritter, Vegella, and Zhang (2018), Comerton-Forde, Grégoire,
and Zhong (2019), Albuquerque, Song, and Yao (2020), Chung, Lee, and Rösch (2020) and Chakrabarty, Cox,
and Upson (2022), Dayri and Rosenbaum (2015) propose a statistical model designed in order to reproduce the
stylized facts observed on the market and to be useful for practitioners. They use this model to determine the
effects of a change in the tick size and to propose a concept of optimal tick size such that the ex post cost of a
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the OTS, historically the tick size was progressively reduced to minimize transaction costs. For

a long time the trend in both the U.S. and in the majority of existing markets was just to

gradually reduce the tick size in an undifferentiated way, aiming to reduce the trading costs for

investors demanding liquidity.3 The issue of the tick size is today particularly relevant in the U.S.

markets which have traditionally maintained a binary tick size regime which governs instruments

ranging from large capitalization stocks trading billions of dollars of notional value daily, to small

capitalization stocks trading a few lots per day, regardless of market capitalization, volume or

share price. These same stocks also have a very dispersed distribution of prices ranging from $1

to more than $2000 per share (Table 7).4

A one penny tick size is too wide for low priced stocks - especially the large liquid ones - that

are constrained to trade most of the time at the 1-tick spread (Bacidore (1997) and Goldstein

and Kavajecz (2000)). This distortion creates long quotation queues at the best bid-offer (BBO)

which slows down execution and leads investors to focus on time rather than price priority (Ye

and Yao (2014)). A one penny tick size is otherwise too small for a number of high-priced

stocks, especially those trading at wider spreads: the value of time priority for resting limit

orders decreases when the tick size is too small relative to the average quoted spread, with the

result that patient limit orders are outbid by economically insignificant amounts. When the tick

size is so small that undercutting resting orders becomes inexpensive, the value of time priority

decreases thus eliminating the incentive to supply liquidity by posting patient limit orders. If

the incentive to post patient limit orders declines, spreads widen and liquidity worsens.5

Fairly recent criticisms to the current “one-size-fits-all” U.S. tick size highlight the need to

consider not only the effects that the tick size may have on the demand for liquidity but also its

effects on the supply of liquidity. In the U.S. while the tick size was gradually reduced from one

eighth of a dollar to one cent,6 the Securities and Exchange Commission (SEC) launched the

limit order is equal to the ex post cost of a market order, and that the spread is stable and close to one tick.
3The smaller the tick size, the finer the price grid and the smaller the minimum inside spread. This may

reduce transaction costs for liquidity demanders, making it cheaper for them to operate.
4In the U.S. markets the tick size is equal to $0.01 for stocks priced above $1 and it is equal to $0.0001 for

stocks priced below $1.
5O’Hara, Saar, and Zhong (2019) show that in a tick-constrained (tick-unconstrained) environment, larger

relative ticks result in greater (less) depth. Dyhrberg, Foley, and Svec (2019) show the effects of an increase in
the tick size in such markets hinting to the attractiveness of a wider tick size for tick size unconstrained stocks.

6The reduction process was gradual and spanned over two decades: the first shift was in September 1992,
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U.S. Tick Size Pilot (USTSP - running from October 2016 to October 2018), aimed at studying

the effects of an increase in the tick size.

The Nasdaq also commissioned an empirical analysis to a working group including represen-

tatives from buy-side, sell-side, market makers, and retail firms that shows how the current U.S.

“one-size-fits-all” tick size works optimally only for a limited group of stocks, which is gradually

shrinking. In 2019 the Nasdaq issued a proposal amending Rule 612 of Reg NMS to adopt an

"Intelligent Ticks" regime with a schedule of tick sizes that are adjusted regularly, based on

stock-specific trading conditions (Nasdaq (2019)). The proposal has not been implemented yet,

however on December 14, 2022 the SEC issued a new proposal to change the tick size. The

34-96494 SEC (2022) proposal aims to set the tick size as a function of average quoted spread

only for stocks with an avergae spread smaller than $0.04. Therefore the proposal only focuses

on tick size-constrained stocks thus neglecting the issue related to high priced stock trading at

one penny increment.

On the other hand, consistently with our results other markets (e.g., Australian Stock Ex-

change (ASX), Toronto Stock Exchange (TSX) and Singapore Stock Exchange (SGX)) have

adopted a discrete tick size grid set as a step function of the stock price (Table 1.A). Other

exchanges have a more sophisticated tick size regime (e.g., Hong Kong (HKEX), Tokyo (JPX))

where the tick size is a step function of both the stock price and the traded volume. Along these

same lines, in Europe in 2018 ESMA provided the European markets with a tick size model

embedding precise guidelines in relation to how the tick size should be set, based on both the

price and the liquidity of the instruments (ESMA (2017)). Before the release of Article 49 of Mi-

FID II which includes the ESMA table on the new tick size regime, AMF (2013) singled out the

trade-off that should govern the choice of the OTS: [t]oo big, a tick size can discourage investors

from placing orders at the best bid/offer prices as the queuing time at these limits becomes longer,

which in turn increases implementation risk. A smaller tick size, [instead], increases the room to

overbid, and reduces the cost of overbidding. Following the MiFID II revision and the release of

the ESMA table on the new tick size regime, AMF (2018) presented empirical evidence showing

moving from a 1
8 to a 1

16 of a dollar minimum price regime. Then, in April 2001, the SEC introduced the current
decimal system.
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that the new regime had the desired effect on order lifetime (order-to-trade ratio), transaction

size and indicators of market quality. Our model’s results are consistent with this empirical

evidence as they not only show that the OTS cannot be set to zero, but they also show that the

OTS should differ depending on the characteristics of the instrument involved.

Existing theoretical literature (Werner, Rindi, Buti, and Wen (2022)) and empirical evidence

from both academia (e.g., Harris (1996), Ronen and Weaver (2001), Rindi and Werner (2019),

Chung et al. (2020) and Foley, Dyhrberg, and Svec (2022)) and the industry (e.g., AMF (2018),

Mackintosh (2020), Mackintosh (2022)) highlight three main effects of an increase in the tick

size: the mechanical increase of the inside spread; the potential increase in queuing induced by a

clustering of orders on a coarser price grid; and the potential reduction of a now more expensive

undercutting.

To determine the OTS and capture all of these effects it is necessary that the model is

characterized both by discrete prices and by the fully endogenous choice between market and limit

orders. Therefore, the assumption of continuous prices, such as in Roşu (2009) and Bhattacharya

and Saar (2021) must necessarily be relaxed. In addition, to ensure that the order submission

strategy of each trader conditional on the entire state of the book - i.e., the choice between market

orders and limit orders - is fully endogenous, in our sequential model the execution probability

of submitted limit orders must also be fully endogenous.

Besides, if investors choose to post a limit order they must be able to either queue behind

existing orders or to undercut previously posted limit orders. We therefore also need to depart

from setups such as Foucault, Kadan, and Kandel (2005) who have discrete prices but in order

to obtain an analytical stationary solution for the expected time to execution of submitted limit

orders, have to assume both that traders cannot queue behind previously posted limit orders

and that buyers and sellers alternate with certainty.7 Under these assumptions, investors cannot

fully endogenously choose between market and limit orders and the expected time to execution
7When relaxing these assumptions, Foucault et al. (2005) cannot find an analytic solution for their stationary

equilibrium because in this case the expected time to execution cannot be solved recursively: it depends on the
entire state of the limit order book at the time the order is placed and not simply on the inside spread. Therefore,
Foucault et al. (2005) propose some numerical examples in which they conjecture and verify equilibrium order
placement strategies for patient and impatient investors with the aim to calculate the expected execution time
for each limit order conditional on each possible state of the book.
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of submitted limit orders is only a function of the exogenous stationary state variables. Although

the objective of Foucault et al. (2005) is not to determine the OTS that maximizes the welfare of

market participants, they investigate the effects of imposing a positive tick size on the resilience

of a limit order book.8 While they do not have queuing and do not endogenously characterize

undercutting, they find that, all else equal, the resilience of the limit order market is always

larger when there is a minimum price variation, and this finding is consistent with our results.9

To determine the OTS, we must also necessarily depart from the protocol used by Goettler,

Parlour, and Rajan (2005), for a number of reasons. First and foremost, we need a protocol

where the price grid is potentially characterized by a high number of prices: Goettler et al.

(2005)’s numerical solution for a steady state equilibrium, instead, limits the number of price

levels involved as it requires a very large number of iterations. In addition, as we discuss in

Section 5, their algorithm for the stationary solution to the execution probability of a limit order

does not embed the strategic trade-off between queuing and undercutting, which is essential to

determine the OTS. The objective of Goettler et al. (2005)’s model is not to determine the OTS.

However, in one of their extensions, they study the effects of a change in the tick size on the

welfare of market participants and market quality. They find that a decrease in the tick size is

not Pareto improving as it improves the surplus of market order submitters, at the expense of

limit order submitters. This finding is consistent with our results.

For the reasons explained above a model, that determines the OTS and aims to capture

all of the relevant transmission channels, must necessarily depart from a steady state solution,

whether analytical or numerical. To obtain a closed form solution of the trading game, we

consider backwardly the entire state of the book in any period of the game such that all of the

possible paths investors can choose are taken into account.

Our model draws on Parlour (1998), Chao, Yao, and Ye (2018), and Riccó, Rindi, and Seppi

(2021) and determines the OTS by incrementally taking into account all of the effects that a
8In Foucault et al. (2005) resilience is measured by the probability that the spread reverts to its competitive

level before the next transaction occurs, where the competitive spread is the difference between the first available
ask and the first available bid respectively available above and below the mid-quote.

9Cordella and Foucault (1999) also have discrete prices but their model is based on a quote-driven dealership
market. They find that the OTS - the one minimizing the expected trading cost - is not zero as a larger tick size
facilitates the dealers’ convergence toward the equilibrium-competitive price.
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change in the tick size generates. We start from a 2-period model where only two agents arrive

sequentially and therefore neither queuing nor undercutting may take place so that the only effect

of an increase in the tick size is an increase in the inside spread.10 In this model the investor

arriving at t1 is a monopolistic liquidity provider as the investor arriving at t2 - the last period

of the trading game - cannot choose between taking or supplying liquidity and all he can do is to

take the limit order posted at t1 or decide not to trade. The tick size is therefore only a friction

that generates price discreteness thus limiting investors’ choice of limit prices on the price grid at

t1. We show that, absent queuing and undercutting, the OTS is the one which minimizes price

discreteness, hence it is equal to zero. This result is consistent with Li and Ye (2022)’s model

where a market maker posts competitive bid and ask prices and then informed and uninformed

investors hit the quotes. As in our 2-period model, in this setting there is no endogenous queuing

and undercutting and therefore the tick size only mandates price discreteness.

We then add a third trading period hence allowing the 2nd investor to undercut the 1st player’s

limit order. Adding the effect of undercutting, we show that the OTS is no longer equal to zero

as a positive tick size reduces the incentive for the 2nd player to undercut the 1st player’s limit

order, thus preserving his incentive to supply liquidity. When we extend the model to include a

fourth trading period, we allow investors to submit limit orders that queue behind existing ones.

Adding the effect of queuing, we show that the OTS is still positive: although the queuing effect

provides an incentive for the SP to set a smaller tick size - which may layer the orders eventually

clustering at the best quotes - a zero tick size is still sub-optimal. Intuitively, a zero tick size

would crowd the 1st player supplying liquidity out of the market, thus reducing total welfare.

By sequentially adding traders coming to the market over different trading periods - up to five

traders/periods - we single out all of the effects that a change in the tick size has on both liquidity

demand and liquidity supply. As already discussed, in order to allow investors to endogenously

choose between market and limit orders, we cannot rely on a stationary equilibrium, and therefore

in each period of our model the order submission probabilities must be the result of the strategic

endogenous interaction of the arriving investors with the current and the expected future states

of the limit order book.
10Results for a decrease in the tick size are symmetric.
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By progressively extending the number of arriving traders/trading periods, our model allows

us to fully understand the transmission channels in place when determining the OTS. To keep

our model tractable, it does not include either cancellation or asymmetric information. However,

since overall both cancellation and competition from informed investors lead to more aggressive

order submission strategies (e.g., Bhattacharya and Saar (2021) and Riccó, Rindi, and Seppi

(2022)), and since we show that an increase in investors’ aggressiveness induces the SP to set a

wider OTS, we speculate that adding these two features of a limit order book - that we discuss

in depth in Section 5 - would strengthen our result that the OTS should not be set to zero.

Our results have an important policy implication, namely that the current binary tick size

regime that governs the U.S markets is sub-optimal to both the ESMA protocol governing the

European markets and to the tick size regimes governing most of the exchange platforms around

the world. To test our model’s empirical predictions and gain insights on how the OTS should be

set across different stocks, we exploit a Nasdaq sample of the first two quarters of 2022 including

all of the stocks listed in the U.S. markets. We also collected data on the instruments that

belong to the main indexes of the major European countries between 1 October 2017 and 31

March 2018 and investigate the effects on market quality of the introduction of the MiFID II

tick size regime in 2018.

This paper proceeds as follows. In Section 1 we introduce a baseline T period model. Section

2 models a 2-traders/period framework and shows that absent queuing and undercutting the

OTS is zero. In Section 3 we add a third trader/period and show that adding undercutting, the

OTS is positive and a positive function of both the asset value and the type of population active

in the market. Section 4 models a market with 4 and 5 trader/trading periods respectively and

shows that by adding queuing the OTS remains positive and it is also a negative function of the

liquidity of the stock. Section 5 deals with robustness and in Section 6 we conduct our empirical

analysis. Section 7 concludes.
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1 The Model

We model a market as a finite game of ti periods - with i=1,..,T with T = 5 - in which investors

trade a unique asset with fundamental value, ν, publicly known. In each period ti a risk neutral

investor arrives with certainty therefore we can interpret time ti as traders’ arrival time rather

than clock time. In each period the trader arrives with a private valuation of the asset, βti ν,

where βti is drawn from a uniform distribution, βti
i.i.d.∼U [β, β], centered around the asset value ν,

where β = 1−b and β = 1+b and b ∈ (0, 1). Therefore, while in each period one investor arrives

with certainty, all types of investors may arrive in probability. βti defines traders’ willingness to

supply or take liquidity: the more the private value is close to the limits of the investors’ valuation

support, βν and βν, the more the trader is likely to opt for aggressive orders. Conversely, a βtiν

close to ν is associated with a trader opting for limit orders. Hence, the larger the support of

the βti distribution, Γ = 2b, the larger are the ex-ante gains from trade of investors.

The price grid pk ∈ {p−n, .., p−k, .., p+k, .., p+n} of our limit order book is centered around the

asset value ν with a tick size τ . Since τ measures the distance between two consecutive prices,

we can write the price grid in a recursive way (Appendix B.1):

p+k = ν +
(
k − 1

2

)
τ (1)

p−k = ν −
(
k − 1

2

)
τ (2)

where
(
k − 1

2

)
τ measures the distance between pk and the fundamental value ν, and shows

that the dimension of the tick size determines how coarse the price grid is.

Our model determines the OTS set by a SP in the following way. First, we solve the trading

game by backward induction and derive the investors’ optimal order submission strategies for

a given τ . We then solve for the OTS set by a SP that maximizes the welfare of all market

participants.

Given the valuation support, 2bν, the tick size domain of the SP’s objective function only includes

feasible τ values. These are the tick size values consistent with at least one feasible price on each

side of the market (Definition 1 here below). Without loss of generality, we do not consider price
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levels on the grid which have zero probability of execution.

Definition 1. A feasible price, pfk, is a limit price for which there exists a positive probability of

execution.11

The upper bound of the set of feasible τ , τ ∈ (0, τmax), is the tick size that is equal to the

investors’ valuation support:12

τmax = 2 b ν. (3)

Let the state of the limit order book at time ti be Λti , and let oti indicate the order an investor

arriving at the market at time ti chooses. Investors can choose between market orders to buy or

to sell oti ∈ {mbti ,msti} and limit orders to buy or to sell oti ∈ {lbti , lsti} at any price on the

price grid.13 Investors can alternatively choose not to trade (ntti).

Given the state of the book Λti−1
and the tick size τ , the expected payoff of an order oti for

an investor with private evaluation βtiν arriving at ti is:

Oti(oti |Λti−1
, τ, βti) =


(βtiν − p(oti))× I mbti or msti

(βtiν − p(oti))× I × Pr(Ψoti
|Λti−1

, τ) lbti or lsti

0 ntti

(4)

where I is an indicator function taking value +1 for buy orders and −1 for sell orders; p(o,ti)

is the price at which order oti is either executed with probability one if oti ∈ {mbti ,msti}, or

it is executed with probability Pr(Ψoti
|Λti−1

, τ) if oti ∈ {lbti , lsti}; and Ψoti
denotes the future

states of the book in which order oti may be executed. Limit order execution probabilities are

endogenous and depend parametrically on both the valuation support 2bv and the tick size τ .

For simplicity we assume that investors cannot cancel or modify their orders which therefore

reside on the book until execution.
11For a limit price to be a feasible price, the two terms of the limit order payoff in (4) must be positive. This

means that an investor will choose to post a limit order at pk only if (βtiν − pk)×I > 0, and Pr(Ψlk,ti
|Λti−1, τ) >

0. Note that the probability of execution Pr(Ψlk,ti
|Λti−1

, τ) is positive only if the private valuation of a potential
buyer (seller) hitting pk is smaller (greater) than the upper (lower) bound of the valuation support 2bν. We
derive in Appendix B.2 the set of feasible prices associated with the of feasible τ : pfk ∈ (βν, βν).

12Consistently with real market practice, we set the lower bound of the feasible τ to be non negative.
13The price at which market sell (msti) and market buy orders (mbti) are executed are the best prices available

on the opposite side of the book.
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An investor arriving at ti chooses his optimal order-submission strategy, given the state of

the book Λti−1
and τ , by maximizing his expected payoff in (4):

max
oti

Oti(oti |Λti−1
, τ, βti) (5)

where the optimal order submission strategy o?ti maps each possible investor valuation βti in the

support [β, β] with the order that maximizes (5) conditional on the standing book Λti−1
and

the tick size τ . As the investor expected payoffs Oti(oti |Λti−1
, τ, βti) are linear in the investor

valuations βti , the discrete choice optimization problem in (5) is tractable. The upper envelope

of the linear expected payoff functions maximizes the investors expected payoffs for each βti

evaluation in the support [β, β]. The intersection points of the linear payoff functions are the βti

thresholds which define a number of intervals of the βti evaluations in correspondence of which

different order submission strategies are optimal. In our model investors can choose between

market and limit orders endogenously and therefore they face the fundamental trade-off between

price opportunity cost (POC) and non-execution cost (NEC). POC is the cost of execution at the

less favourable price they face when choosing a market order, while NEC is the cost of execution

uncertainty investors face when choosing a limit order. As this fundamental trade-off is crucially

influenced by the tick size, so are investors’ order submission strategies.

For each period of the trading game, our model allows us to compute the probability that an

investor chooses either to consume liquidity via a market order, or to supply liquidity by adding

a limit order. As an investor’s action may affect the best bid-offer, it may alter - in probability -

the spread midpoint which is a proxy for the fundamental asset value, ν. Hence, while our model

does not embed the volatility of the asset value due to incoming news, it captures the volatility

due to the change in the state of the book driven by liquidity reasons. In our model there is no

asymmetric information - no adverse selection costs - and we focus on the strategic interaction

of investors with different gains from trade conditional on the state of the book. Hence, in our

model a positive spread may only be due to the liquidity component.
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2 Two-Period Model

The most parsimonious model we consider has only two periods, t1 and t2. As discussed in Riccó

et al. (2021), in a 2-period model each player has a specific and unique role. At the beginning of

the trading game the book opens empty. If the investor arriving at t1 decides to trade, he can

only post a limit order, lt1 , and he is forced to act as a monopolistic liquidity supplier. If the

investor arriving at t2 decides to trade, he is forced to act as a liquidity taker, as he can only

take the limit order posted by the investor at t1 (mt1), or refrain from trading.

As neither undercutting nor queuing are attainable strategies in this setting, in this framework

the relevant transmission channel of a variation in the tick size is only the mechanical change of

the inside spread. Hence, this framework is particularly suitable to discuss how a change in the

tick size affects investors’ order submission strategies via a change in transaction costs proxied

by the inside spread.

The game is solved by backward induction starting from the last round of trading, t2, when

investors can only post market orders. We can therefore determine the probability of a market

order to buy and to sell, mst2 or mbt2 , which are in turn the probabilities of execution of a limit

order to sell and to buy, lst1 or lbt1 , at t1. As shown in Lemma (1) (see Appendix B.2), if the

book is symmetric at time ti, then investors with βti > 1, hence βtiν > ν, are potential buyers

at time ti. Similarly, investors with βtiν < ν are potential sellers. We can therefore consider the

order submission strategies on the sell side of the book, the buy side being symmetric.

An investor arriving at t2 will market sell at pk if his payoff is strictly positive, pk−βt2ν > 0.

Given that βti is uniformly distributed over the support Γ and β = 1 − b, the probability of a

market sell at t2 is equal to:

Pr (msk,t2|Λt1 , τ) =
1

Γ

(pk
ν
− (1− b)

)
= Pr(Ψlbk,t1

|Λt0 , τ) (6)

which, in turn, is equal to the execution probability of a limit buy at t1.

We can therefore derive the probability of the optimal limit buy order at t1. This is the probability

that the investor chooses a limit order with a positive payoff, (βt1ν − pk)Pr(Ψlbk,t1
|Λt0 , τ), which
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must be greater than the payoff associated with a limit buy order at t1 posted at any other

feasible price, p∼k. The submission probability of the optimal limit buy order at t1 is the solution

to the following conditions:

Pr (lbk,t1|Λt0 , τ) =

Pr

[
(βt1ν − pk)Pr(Ψlbk,t1

|Λt0 , τ) > 0,

(βt1ν − pk)Pr(Ψlbk,t1
|Λt0 , τ) > (βt1ν − p∼k)Pr(Ψlb∼k,t1

|Λt0 , τ),∀ ∼ k

] (7)

Given a value of τ , the 2-period model has the equilibrium solution presented in Proposition 1.

Proposition 1. For any bv, if βt1 ν > ν - hence a buyer arrives at t1 - the optimal set of pk and

the optimal order submission probabilities are:

t1 : The set of optimal prices is p−k ∈
[
p− bv

2τ
, p−1

]
. The equilibrium order submission

probability for the optimal p−k is Pr (lb−k,t1|Λt0 , τ) = τ
bν
∀τ ∈ (0, τmax)

t2 : Defined in Lemma 1.3.

Symmetric results apply if βt1 ν < ν, hence a seller arrives at t1.

The proof of Proposition (1) is in Appendix (C.1). In a 2-period trading game the 1st player knows

that he is a monopolist in liquidity provision and therefore he never submits a limit buy order

at a price, p+k, higher than the fundamental asset value ν. In addition, the equilibrium order

submission probability of the 1st limit buy (sell) order is constant across the optimal pk prices

and equal to τ
bν
: the 1st buyer (seller) is ex-ante indifferent (before his βt1 is drawn) to submitting

a limit buy (sell) order at any of the optimal prices p−k ∈
[
p− bv

2τ
, p−1

]
(p+k ∈

[
p+1, p+ bv

2τ

]
). Being

the order submission probability constant across the optimal prices, the price opportunity cost

an investor bears to submit, for example, a limit buy at p−k−1 as opposed to p−k, is just equal

to the increase in the non execution cost that buying at lower price, p−k−1, entails.

In a 2-period model the probability of execution of a limit order at t1 is equal to the probability

of submission of a market order at t2. As we show that the order submission probabilities of the

last player of our trading game can be written recursively, in a 2-period model also the order
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submission probability of the 1st player can be written recursively as a function of the tick size.

This recursive solution is reminiscent of the Bhattacharya and Saar (2021) and Roşu (2009)’s

steady state solutions of their limit order book model where investors sequentially come to the

market and submit limit orders at prices that guarantee the same expected utility. Even in their

models, the price opportunity cost of choosing a different limit price perfectly counterbalances

the change in the non execution cost.

This property only characterizes the 2-period model but does not hold when we add one or

more periods to our trading game, as in this case the probability of order execution of the 1st

player does not depend exclusively on the probability of submission of the last player. It also

depends on the endogenous order submission strategies of the remaining players. When we allow

traders to queue behind or undercut existing limit orders, the limit order submission probabilities

of all potential liquidity suppliers can no longer be written in a recursive way as they change

with the tick size.

The SP chooses the tick size that maximizes the total welfare Ω(τ) of market participants:

max
τ∈(0,τmax)

Ω(τ) = ωt1(lbt1 |τ) + ωt2(mst2 |τ) (8)

The welfare of the investor at t1 is:

ωt1(lbt1 |τ) =
+nf∑

k=−nf
Pr(Ψlbk,t1

|Λt0 , τ)× 1

Γ

∫
βt1∈B(τ)

(βt1v − pk) dβt1 (9)

where B(τ) is the interval on the support Γ of the βt1 realizations for which any limit buy order,

lbk,t1 , is optimal. The welfare of the investor at t2 is given by:

ωt2(mst2|τ) =
+nf∑

k=−nf
Pr (lbk,t1|Λt0 , τ)× 1

Γ

∫ pk
v

(1−b)
(pk − βt2v) dβt2 (10)

Given the optimization problems solved by traders and the SP, we can define the equilibrium of

our trading game:

Definition 2. A sub-game Perfect Nash Equilibrium of the trading game is the set of limit order
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submission probabilities, Pr(lk,t1), that solves the optimization problem of investors at t1, such

that the equilibrium execution probabilities, Pr(Ψlk,t1
|Λt0 , τ

?), are consistent with the optimal

order submission probabilities at t2, and with a tick size, τ ? ∈ (0, τmax), set by the SP to

maximize total welfare Ω(τ).

2.1 Welfare Analysis

The SP expected welfare for the investor (e.g., a buyer) arriving at t1 depends on two components:

the execution probability of each optimal limit buy order, Pr(Ψlb−k,t1
|Λt1 , τ), and the price

improvement associated with that order which is the difference between the investor valuation

and the transaction price p−k. Without loss of generality, assume, by Proposition (1), that for

the generic tick size τ , there arem prices chosen with positive probability by the investor arriving

at t1. His welfare is therefore:

ωt1(lbt1 |τ) =
m∑
k=1

Pr(Ψlb−k,t1
|Λt0 , τ)× 1

Γ

∫
βt1∈B(τ)

(βt1v − p−k) dβ (11)

In Appendix (C.2) we express equation (11) as a function of τ̂ > τ , ωt1 (lbt1|τ̂), and show

that:

∆ωt1(lbt1 |τ̂ , τ) = ωt1(lbt1 |τ̂)− ωt1 (lbt1|τ) < 0 (12)

∆ωt1(lbt1 |τ̂ , τ) is decreasing in τ .

Figure 1 (Panel A) illustrates our general result that the welfare of the 1st player is negatively

related to the tick size for the parameterization b = 0.06 and ν = 10 and τ ∈ N+| bν
2τ
∈ (1, 50).14

For the generic tick size, τ , the SP expected welfare for the seller arriving at t2 and hitting
14We use a parameterization for gains from trade and stock value, 2bν, which is in line with both Goettler et al.

(2005) and Hollifield, Miller, Sandås, and Slive (2006). Following Goettler et al. (2005), we consider a private
evaluation of 2.5% from the empirically estimates of Hollifield et al. (2006) for three stocks on the Vancouver
exchange with asset value close to 10CAD. This private evaluation characterizes the average value between 32%
and 52% of all traders active on these stocks. We then compute this metric assuming a uniform distribution
instead of a normal distribution, and obtain b ≈ 0.06. Results based on different parameterizations with different
investors’ ex ante gains from trade do not change qualitatively.
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the limit buy order submitted at t1 is:

ωt2(mst2 |τ) =
m∑
k=1

Pr (lb−k,t1|Λt0 , τ)× 1

Γ

∫ p−k
v

(1−b)
(p−k − βt2v) dβt2 (13)

where Pr (lb−k,t1|Λt0 , τ) is the order submission probability of a limit buy order, lb−k,t1 , posted

at p−k at t1.

In Appendix (C.2.3) we express equation (13) as a function of τ̂ > τ , ωt2 (mst2|τ̂), and show

that:

∆ωt2(mst2 |τ̂ , τ) = ωt2(mst2 |τ̂)− ωt2 (mst2 |τ) < 0 (14)

∆ωt2(mst2 |τ̂ , τ) is decreasing in τ . These results lead to our Corollary 1:

Corollary 1. In the 2-period model, the welfare function of the investors arriving either at t1

or at t2 is decreasing in τ .

Figure 1 (Panel B) illustrates our general result that also the welfare of the 2nd player is negatively

related to the tick size for the same parameterization used in Figure 1 (Panel A).

Corollary (1) drives our result on the OTS which we summarize in Proposition (2):

Proposition 2. In the 2-period model, the OTS set by the SP is zero.

Appendix (C.2.4) provides an analytical proof of Proposition (2). Figure 1 (Panel C) illus-

trates our result that the total welfare is a decreasing function of the tick size, for the same

parameterization used in Figure 1 (Panel A and B).

In the 2-period model the tick size is a friction that constraints market participants to use a

limited set of prices. In particular, the tick size constraints the t1 liquidity supplier to post his

order at a price which is not necessarily equal to his private valuation. Therefore, by reducing

the tick size, the negative welfare effects induced by the tick size discretization decrease and the

welfare of the 1st player increases. Appendix C.2.2 provides a simple example that shows this

point.

The intuition behind the welfare of the 2nd player being decreasing in τ lies in how the 1st

player submits his limit order. The 2nd player can only execute the order posted at t1 in a
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Figure 1: Welfare Analysis Two Period Model
The figure reports the welfare of each market participant in a 2-period game and the total welfare: Panel A shows
the welfare of the 1st player (ωt1(τ), blue dotted line), Panel B the welfare of the 2nd player (ωt2(τ), red dotted
line) and Panel C the total welfare of market participants (Ω(τ), black dotted line) for b = 0.06, ν = 10 and
for a set of tick size values that define up to 50 equilibrium price levels

{
τ ∈ N+| bν2τ ∈ (1, 50)

}
. Results do not

change qualitatively by considering a larger set of tick size values encompassing a larger number of price levels.
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take or leave fashion. By Proposition (1), the investor - e.g., a buyer - arriving at t1 submits

an order only at prices below the fundamental value of the asset, and an increasing tick size

mechanically lowers these prices toward the lower bound. Hence, for an increasing tick size,

the investor arriving at t2 is automatically forced to sell at lower prices, diminishing his overall

welfare. Hence, the social planner optimally sets the tick size to zero.

Our results for the 2-period model are consistent with the existing literature. Setting the

proportion of informed investors to zero in the Glosten and Milgrom (1985) model, results in an

optimal zero bid-ask spread, hence in a zero tick size. Our results from the 2-period model are

also in line with Li and Ye (2022) model which shows that the tick size that maximizes liquidity in

an extended Budish, Cramton, and Shim (2015) model is zero. In this model only market makers

can undercut each other to supply liquidity ahead of the other market participants hitting their

quotes. For this reason, there is no endogenous choice between market and limit orders by all
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market participants with the result that all investors cannot queue behind existing limit orders

or undercut them to gain price priority. Absent queuing and undercutting, the only transmission

channel driving investors’ order submission strategies reacting to a change in the tick size is the

mechanical change in the inside spread.

3 Three-Period Model

We now extend our analysis to a 3-period framework. With a new further period to trade, the

investor arriving in the first period is no longer a monopolist in the provision of liquidity: the

investor arriving in the second period can now both offer and take liquidity. However, although

the 2nd player can offer liquidity and undercut the existing limit order posted by the 1st player at

t1, his actions are limited by the fact that he cannot queue behind that limit order, as at t3 the

trading game finishes. Therefore, the 3-period trading game does not include strategic queuing

although it now includes strategic undercutting and therefore it is a further step towards an

increasingly more realistic limit order book.

For any chosen value of Γν and therefore for any τ ∈ (0, τmax), we can solve our 3-period

model in closed-form. Appendix D.1 reports the objective functions of the investors arriving in

the three periods. As for the 2-period trading game, we derive the equilibrium order submission

strategies starting from the investor arriving at the last period t3. Figure 2 indicates the possible

trading actions available to market participants in our 3-period trading game. Without loss of

generality, taking advantage of Lemma 1.2 we focus on the case of a limit buy (lbk,t1) order

posted by the investor arriving at t1 at a generic price pk. The 2nd player has now three options:

he can hit the standing limit buy order posted at t1 and take liquidity via a market sell order

(msk,t2); he can instead supply liquidity at a price higher than pk both on the sell or on the buy

side of the market. If he decides to add liquidity on the sell side, the 2nd player posts a limit

sell order (lsk+j,t2) at pk+j, otherwise he would effectively take liquidity via a marketable limit

sell order. If instead the 2nd player decides to limit buy, he can only post a limit buy order at

a more aggressive price level (lbk+j,t2), higher than pk, thus undercutting the existing limit buy

order. Otherwise having only one period left to trade, his limit buy order at a price pk−j ≤ pk
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would be effectively queuing behind the previously posted limit buy order and would have zero

execution probability.

The novelty of the 3-period game is that the 2nd player has a wider range of equilibrium

strategic choices. The probability that the 2nd player will opt to supply liquidity crucially depends

on the distribution of the investors’ personal evaluation. The larger the evaluation support, Γν,

the greater is the probability that the 2nd player will aggressively either take liquidity by market

selling or undercut the existing limit order by limit buying. Investors with larger gains from

trade are generally more aggressive and they favor the faster execution probability granted by

either a market sell or an aggressive limit buy to the larger price improvement granted by the

more patient limit sell order. Figure 3 (Panel A) shows that for a given τ , undercutting is a

positive function of the gains from trade Γν. Jumping the queue by aggressively limit buying

implies a higher cost in terms of price improvement when the tick size is larger, therefore we

expect undercutting to decrease with the tick size as shown in Figure 3 (Panel B) where for a

given evaluation support Γν, undercutting is a negative function of the set of feasible tick sizes,

τ ∈ (0, τmax).15

Figure 2: Extensive Form of the Three Period Game.
This figure shows the different sets of actions for market participants in each period ti of the trading game. The
book opens empty and a buyer arrives at t1. A symmetric extensive form holds if a seller arrives at t1.

Limit Buy
lbk,t1

t1

Limit Buy
(Undercutting)

lbk+j,t2

Market Sell
msk+j,t3

Limit Sell
lsk+j,t2 Market Buy

mbk+j,t3

Market Sell
msk,t3

Market Sell
msk,t2

t2

No Trade
ntt3

t3

15In Appendix D.3, we also show that given a limit buy order posted at pk by the 1st player, the probability
that the 2nd player will undercut at pk+j increases as the tick size decreases.
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Figure 3: Three Period Model: Undercutting
This figure shows the probability of undercutting of a limit buy at t2: Pr(lbk+j,t2) =∑+nf−1
k=−nf

∑
j>1 Pr (lbk,t1 |Λt0 , τ)Pr (lbk+j,t2 |Λt1 , τ). Panel A shows Pr(lbk+j,t2) for τ = 0.278 (which as

we will show in Section 3.2, is the OTS for the 3-period benchmark case with b = 0.06 and ν = 10) and the set of
2bν values defined by all possible combinations of three values of b = {0.045, 0.06, 0.075} and ν = {8, 10, 13.333}.
b = 0.06 is estimated following Goettler et al. (2005) and Hollifield et al. (2006) and the two other b values are
b = 0.06(1 ± 0.25%). ν = 10 is our benchmark asset value and ν = 8, ν = 13.333 are obtain such that 2bν is
constant across the three pairs of values (b, ν). Results do not change qualitatively if we consider a different
chosen τ and set of 2bν. Panel B shows Pr(lbk+j,t2) for b = 0.06, ν = 10 and for a set of tick sizes, defined in
Appendix (D.6), that defines the price grids between 2 and 30 prices. Results do not change qualitatively if we
consider price grids embedding more prices.
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Figures 8 in Section 6 reports that in the U.S. markets both the percentage of Odd Lot Trade

and the percentage of Odd Lot Volume is inversely related to the relative tick size.16 If we assume

that traders resort to odd lot trading as a way to undercut existing quotes on the limit order

book, this could suggest that undercutting is negatively related to the relative tick size.

Figure 4 reports the equilibrium submission strategies of the 1st player (a buyer) for the set of

tick sizes (Appendix D.6) that defines the price grids between 2 and 30 prices. As expected, the

1st player supplies liquidity at a wider range of price levels when the tick size is small, whereas

he tends to supply liquidity at the best bid-ask prices (recall ν = 10) for wider values of the tick

size. In addition, the 1st player in equilibrium can supply liquidity at the best bid of his own

side of the market with increasingly higher probability - despite the fact that such a best price
16The relative tick size is the ratio between the tick size and the stock price in basis points.
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Figure 4: Three Period Model: Equilibrium Submission Strategies 1st Player
This figure shows the t1 equilibrium probability of a limit buy order Pr(lbk,t1 |Λt0 , τ) for b = 0.06, ν = 10 and for
a set of tick sizes (Appendix D.6) that defines the price grids between 2 and 30 prices. For each game considered
(defined by the triplet (b, ν, τ), the submission probabilities have been analytically computed following Appendix
D.1. The size of each dot is proportional to the submission probability Pr(lbk,t1 |Λt0 , τ).
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is gradually lower as the tick size widens - because a larger tick size reduces the probability that

the 2nd player undercuts his quote.

To study the properties of the OTS in a 3-period model, we first show analytically (Section

3.1) that the tick size is no longer a friction and therefore the OTS is not zero. We then (Section

3.2) characterize the OTS and show that it depends both on the fundamental asset value and

on the population of traders in the market. Specifically, we show that the OTS is a positive

function of ν and of b.

3.1 Optimal Tick Size

As shown in Figure 4, when a third period is added to the protocol, the space of the order

submission strategies increases substantially. To show analytically that the OTS is positive,

for tractability in this section only we assume that if the 2nd player wishes to undercut the 1st

player limit order posted at pk or wishes to supply liquidity on the other side of the book, he

can only do so at adjacent prices, pk+1. In Appendix D.1 we relax this assumption and show
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that the results for the OTS qualitatively hold. In the following proposition we summarize the

equilibrium properties of this 3-period game:

Proposition 3. For any b ν, if βt1 ν > ν, hence a buyer arrives at t1, the equilibrium order

submission strategies ∀τ ∈ (0, τmax) are:

t1: · ∀τ ∈ [(0, τmax) | nf ≥ 2] ∃ k < +nf |Pr (lbk,t1|Λt0 , τ) > 0 and Pr
(
lb+nf ,t1|Λt0 , τ

)
= 0

· ∀τ ∈
{

(0, τmax) | nf = 1
}
, Pr (lbk,t1|Λt0 , τ) > 0 ∀k ∈ {−1, 1}

and limτ→τmax Pr (lb+1,t1|Λt0 , τ)→ 0

t2: · Pr (msk,t2|Λt1 , τ) = max
[
0, P r

(
(1− b) < βt2 <

pk
ν
− τ

ν
w
)]

with w =
Pr(mbk+1,t3

|Λt2 ,τ)
1−Pr(mbk+1,t3

|Λt2 ,τ)
.

· Pr (lsk+1,t2|Λt1 , τ) = Pr
(
pk
ν
− τ

ν
w < βt2 <

pk
ν

+ τ
ν

)
if Pr (msk,t2|Λt1 , τ) > 0

and Pr (lsk+1,t2 |Λt1 , τ) = Pr
(
(1− b) < βt2 <

pk
ν

+ τ
ν

)
, otherwise.

· Pr (lbk+1,t2|Λt1 , τ) = Pr
(
pk
ν

+ τ
ν
< βt2 < (1 + b)

)
.

t3: Defined in Lemma 1.3.

Symmetric results apply if βt1 ν < ν, hence a seller arrives at t1.

Proposition 3, proved in Appendix D.4, characterizes the equilibrium order submission strategies

of the investors arriving at each period of the trading game. The investor arriving at t1 submits

a limit buy at any price pk < p+nf with positive probability and has no incentive to lock the

market when the price grid includes at least two prices on each side of the book (nf ≥ 2). When

instead investors’ gains from trade are so small relative to the tick size (Γν
τ
< 3) that the price

grid only includes one feasible price on each side of the market (nf = 1), the 1st player can either

limit buy at p−1 or act as a monopolist in liquidity provision at p+1 thus locking the market

with a positive probability. Under this extreme scenario, the equilibrium strategies at t2 of the

3-period model are the same as the equilibrium strategies at t2 of the 2-period model. As the

tick size increases relative to the valuation support, Γν
τ
→ 1, the 1st player limit buys at p−1

and the 2nd player in equilibrium posts a limit sell at p+1 with a probability that converges to
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1.17 Under this scenario, when the 3rd player arrives at t3, the book provides liquidity both on

the bid side where the 1st player makes the market, and on the ask side where the 2nd player

makes the market. Therefore as the value of the investors’ evaluation support tends to be equal

to the tick size, i.e., the gains from trades are extremely small relative to the tick size, the 3-

period model degenerates to an extended 2-period trading game with investors mainly acting as

liquidity providers at both t1 and t2. This type of market making model is consistent with Li,

Wang, and Ye (2021) who show that HFT dominate liquidity provision if the bid-ask spread is

binding at one tick.

Point t2 in Proposition 3 characterizes the equilibrium order submission strategies of the 2nd

player, which in turn depend on the aggressiveness of the limit order posted by the 1st player.

More specifically, the higher the chosen pk by the 1st player, the higher is the incentive for the

2nd player to take liquidity (Pr (msk,t2|Λt1 , τ)); while the lower is the chosen pk by the 1st player,

the higher is the probability that the 2nd player will supply liquidity. The 2nd player will limit

sell with a probability (Pr (lsk+1,t2|Λt1 , τ)) that is decreasing in pk - from (24) in Appendix

B.2 Pr (mbk+1,t3|Λt2 , τ) decreases and w increases when pk decreases - and will limit buy with

probability (Pr (lbk,t1|Λt0 , τ)) which is also decreasing in pk, thus undercutting the existing limit

buy order.

Our results for the 2-period model shows that the OTS that maximizes the welfare of market

participants is zero. In contrast, as we increase the number of trading periods to three, we show

that the OTS is different from zero as stated in the next proposition:

Proposition 4. In a 3-period trading game, the tick size that maximizes the welfare of market

participants is positive.

This result is analytically proved in Appendix D.5 where we show that the total welfare of market

participants for τ → 0+ is smaller than the total welfare of market participants associated with

a τ > 0 and therefore τ → 0+ cannot be the OTS set by the SP in a 3-period model.

Intuitively the SP will set the OTS that maximizes liquidity supply over time. This means

that the OTS will maximize the liquidity provision of both the 1st and the 2nd player. If the
17When Γν

τ = 1 there are no feasible prices and hence no trade.
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tick size is too small, the 1st player runs the risk of being undercut by the 2nd player with the

result that the 3rd player can only benefit of the liquidity posted by the 2nd player on one side

of the market. If instead the tick size is larger, the 2nd player will have less of an incentive to

undercut the 1st player or hit the 1st player’s limit order by taking liquidity (crowding out the

3rd player), and he will have more of an incentive to submit a limit sell order. If the 2nd player

supplies liquidity on the other side of the market, the 3rd player will benefit of the liquidity

supply on both sides of the market, and therefore both liquidity demand and liquidity supply

will be maximized. Taken together these transmission channels indicate that the OTS cannot be

zero as in order to maximize liquidity supply, it must induce the 2nd player to supply liquidity

on the opposite side of the 1st player’s limit order.

Our result that the OTS cannot be zero is reminiscent of Cordella and Foucault (1999) who

show that in a dealership market a zero minimum price variation never minimizes the expected

trading costs. In their dealership market model, the transmission mechanism behind this result

is different from our’s: a larger tick size increases the speed of convergence of the dealers’ selling

quotes toward the competitive price and therefore it does not necessarily result in a larger

expected trading costs for liquidity demanders.18

3.2 Optimal Tick Size and Welfare of Market Participants

We now study the properties of the optimal tick size without restricting the set of actions

available to the 2nd player, as we did in Section 3.1. We solve the 3-period game described in

Appendix D.1 in closed-form and then we determine the OTS in quasi-closed form. We can solve

the 3-period model analytically for any given β ν and any associated τ ∈ (0, τmax), and for each

value of τ we can compute the welfare of the three investors arriving at t1, t2 and t3 respectively.

The 3-period game implies a variety of actions that preclude the recursive property that

characterize the 2-period trading game. In a 2-period model, the execution probability of the

limit order posted at t1 is just equal to the market order submission probability at t2 (equation

(6)) that can be written recursively. This implies that also the order submission probability
18In Cordella and Foucault (1999) the competitive price is the first price above the dealers’ reservation price,

hence it is the first quoted price which cannot be undercut profitably.
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of the limit order posted at t1 can be written recursively (Proposition (1)). In the 3-period

model this property no longer applies: the 1st player strategically changes his trading behavior

conditional on different values of bν and τ as he now plays a strategic game with the 2nd player.

In turn, the 2nd player’s strategies are contingent on the 1st player’s actions and hence change

conditionally on different combinations of bν and τ (Figure 3-4). Therefore, as in real markets, in

the 3-period game each player’s optimal strategy depends on the other players’ reaction and all

strategies crucially depend on both the evaluation support b ν and the tick size which defines the

number of feasible prices on the grid. By changing the tick size the price grid changes and so do

the optimal reactions of all investors. As the limit order submission and execution probabilities

are endogenous and depend on the state of the book and the price grid, we cannot characterize

the OTS as a function of the parameter of the model, b and ν. For this reason, we solve the

3-period model for a discrete grid of tick size values and choose the tick size that maximizes the

welfare of all market participants:

max
τ∈(0,τmax)

Ω(τ) =

ωt1(lbt1 |τ) + ωt2(mst2 ∨ lst2 ∨ lbt2 |τ) + ωt2(mst2 |τ) + ωt3(mst3 ∨mbt3 |τ) + ωt3(mst3 |τ)

(15)

where 1G = 1 in ωt2(mst2 ∨ lst2 ∨ lbt2|τ), ωt2(mst2|τ), ωt3(mst3 ∨ mbt3|τ) and ωt3(mst3|τ)

and each component of equation (15) - investors’ welfare at ti - are defined in Appendix D.2.

Investors’ welfare depends on their order submission probabilities which in turn depend on the

number of prices on the grid. As shown in Appendix D.6, we therefore discretize the search grid

by considering a set of tick sizes consistent with price grids that includes between 2 to 30 feasible

prices. This upper bound is reasonable given the standard practice of investors using a limited

number of prices on the price grid of real markets limit order books.19 For each tick size in

the discretization grid, we solve the equilibrium order submission strategies and the associated

welfare of each market participant in closed-form. The SP then sets the OTS by choosing the tick
19In the emerging crypto-currencies limit books the number of prices generally considered by market participants

is larger than in markets for traditional instruments, where traders generally use around 20 price levels on each
side of the book.
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size associated with the highest total welfare, hence we solve the OTS problem in quasi-closed

form.

Figure 5 shows both the total welfare (black line) and the welfare of each market participant

associated with all of the tick sizes in the chosen discretization grid. In the 2-period game the

welfare of each market participant is a decreasing function of the tick size. Figure 5 shows instead

that in the 3-period game while the welfare of the 2nd player (red line) is still decreasing in τ ,

the welfare of the 1st (blue line) and of the 3rd player (green line) is a concave function of τ .

Therefore, total welfare is also a concave function of the tick size, τ . This means that the choice

of the OTS is no longer a straightforward problem as in the 2-period model but has to reconcile

the interest of different market participants, which is consistent with real market tick sizes being

set to mediate the interest of different traders.

Table 1.A shows that in the U.S. markets the tick size is a simple binary function of the

stock price, whereas in Europe - as well in the UK, Japan, Hong Kong and Switzerland - the tick

size is a more sophisticated function of both the stock price and the liquidity of the instrument.

Consistently, in the cryptocurrency markets the tick size is set by the owner of the trading

platform conditional on both the price and the liquidity of the instrument (Foley et al. (2022)).

To provide an intuition for the OTS, we consider how both the total welfare of market

participants and the welfare of each player change with the tick size. Figure 5 shows that the

welfare of the 2nd player is a decreasing function of the tick size as the smaller is the tick size,

the greater is the probability that the 2nd player will undercut the limit order posted by the 1st

player, thus increasing the probability of execution of his limit order. In addition, a smaller tick

size increases the space of the possible strategies available to the 2nd player without increasing

the probability that any of his limit order is undercut, as the 3rd player can no longer be a

liquidity provider.

In contrast, the 1st player faces the following trade-off: while - as for the 2nd player - a smaller

tick size widens his choice of the feasible prices at which he can post a limit order, thus increasing

his welfare, a smaller tick size increases the probability that the 2nd player will undercut his limit

order thus reducing his welfare. Therefore, the 1st player’s welfare is a concave function of the

tick size. When the tick size is extremely small the number of feasible prices is extremely large
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Figure 5: Welfare Three Period Game
This figure shows the welfare of the 1st (ωt1(τ), blue line), 2nd (ωt2(τ), red line), 3rd player (ωt3(τ), green line),
and the total welfare of market participants (Ω(τ), black line) for b = 0.06, ν = 10 and for a set of tick sizes,
defined in Appendix (D.6), that considers price grid between 2 and 30 prices. Results do not change qualitatively
considering more prices.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.05

0.1

0.15

0.2

0.25

 W
e

lf
a

re
 

( ) t
1

( )
t
2

( )
t
3

( )

but the probability of undercutting is also very high (Figure 3). As the tick size increases, still

conditional on a sufficient number of feasible prices among which the 1st player can choose, the

probability of undercutting decreases and his welfare increases. However, as the tick size further

increases, there will be a threshold beyond which the number of feasible prices becomes too

small, the inside spread widens, and the probability of limit order execution decreases so that

the 1st player’s welfare also decreases.

The 3rd player’s welfare is also a concave function of the tick size. With a small tick size, the

2nd player will most likely undercut the 1st player’s limit order and the 3rd player will be able to

take liquidity only from one side of the book. As the tick size increases, the probability that the

2nd player will offer liquidity on the other side of the book increases, and the 3rd player will have

the opportunity to take liquidity from both sides of the book. However, as the tick size further

increases, due to the mechanical increase of the bid ask spread, the 3rd player will take liquidity

at unfavorable prices, and his welfare will deteriorate.
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3.3 Optimal Tick Size, Stock Price and Market Quality

In this section we show how the effects discussed in Section 3.2 change with the gains from trade

of market participants. Gains from trade may change either due to a change in the dispersion

of investors’ private evaluations, or due to a change in the asset price. In Table 1 we report the

OTS and the total welfare of market participants. We also report the standard market quality

metrics - expected volume, expected quoted semi-spread, and expected total depth defined in

Appendix D.7 - associated both with different values of the investors’ evaluation support 2bν,

and with different combinations of b and of the fundamental asset value ν.

Table 1: Optimal Tick Size and Market Quality in the Three Period Game
The table reports the OTS and the associated total welfare (Ω), expected volume (vol), quoted spread
(quoted spread) and total depth (depth) for each combination of ν = {8, 10, 13.333} and b = {0.045, 0.06, 0.075}.
b = 0.06 is estimated following Goettler et al. (2005) and Hollifield et al. (2006) and the two other b values are
b = 0.06(1 ± 0.25%). ν = 10 is our benchmark asset value and ν = 8, ν = 13.333 are obtain such that 2bν
is constant across the three pairs of values (b, ν). The discretization grid used to derive the quasi-closed form
solution for each (ν, b) is defined in in Appendix D.6: for each (ν, b), we consider a set of tick sizes consistent with
price grids that include between 2 to 30 feasible prices. The results are rounded at the 3rd decimal digit.

ν
b

0.045 0.06 0.075

OTS

8.000

0.167 0.223 0.278
Ω 0.151 0.201 0.251
vol 0.384 0.384 0.384
quoted spread 0.200 0.267 0.333
depth 1.186 1.186 1.186

OTS

10.000

0.209 0.278 0.348
Ω 0.188 0.251 0.314
vol 0.384 0.384 0.384
quoted spread 0.250 0.333 0.416
depth 1.186 1.186 1.186

OTS

13.333

0.278 0.371 0.464
Ω 0.251 0.335 0.418
vol 0.384 0.384 0.384
quoted spread 0.333 0.444 0.555
depth 1.186 1.186 1.186

When all else equal either the dispersion of the investors’ gains from trade, b, or the asset
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value, v, increases, investors’ gains from trade also increase, and the SP sets a wider OTS. The

economic intuition for this result is the following. With larger gains from trade, the trade-off

that all investors face when choosing their orders changes. The 1st player knows that larger gains

from trade increase the execution probability of his marginal outside limit orders and therefore

he submits more patient orders. Larger gains from trade coupled with a higher probability of

facing patient limit orders posted by the 1st player induce the 2nd player’s to either undercut or

hit the 1st player limit order with a higher probability. As a result, the 2nd player offers liquidity

on the opposite side of the market with a smaller probability. Hence, the 3rd player’s welfare

decreases for two reasons. First, as discussed above, if the 2nd player takes the liquidity posted

by the 1st player with a higher probability, the 3rd player is crowded out of the market with a

higher probability; second, if the 2nd player offers liquidity on the other side of the market with

a lower probability, the trading opportunities offered to the 3rd player decrease as he is only able

to trade on one side of the book. Table 1 shows these results. An increase in either the asset

value or the dispersion of investors’ evaluation leads to an increase in the OTS and also - due to

the increased gains from trade - to an increase in total welfare. The OTS set by the SP takes

into account all of these effects. The SP therefore sets a larger tick size that leads the impatient

2nd player to switch from being aggressive - undercutting or executing the 1st player’s limit order

- to behave more patiently by supplying liquidity on the other side of the market. This result

is reminiscent of Foucault et al. (2005) who show that a reduction in the tick size may impair

market resiliency and have an adverse effect on spread when the proportion of impatient traders

increases.

When all else equal, either the asset value ν or the dispersion of investors evaluation b

increases, the SP widens the OTS and as a result the equilibrium investors’ order submission

probabilities do not change. The intuition behind this result is that in our 3-period model the

OTS associated with different values of b or ν all define a price grid with the same number of

price levels: two on the ask and two on the bid side of the book. As our proxy for volume and

depth are only function of the equilibrium order submission probabilities, they do not change in

correspondence of different OTS. Our proxy for quoted spread instead increases reflecting the

different OTS values.
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Up to here we have assumed that when the asset value increases, the dispersion of investors’

private evaluations does not change. If instead an increase in the asset value ν induces market

participants to revise the dispersion of their personal evaluations in such a way that the overall

evaluation support, 2bν, remains constant, our model shows (Table 1 - grey shaded diagonal) that

both total welfare, and the OTS, and our market quality metrics remain unchanged. Intuitively,

if the asset value increases from 8 to 10, and the dispersion of the investors’ evaluation support

decreases proportionally from 0.075 to 0.06 the price grid is simply shifted upward so that the

distance between the new asset value and the different price levels remain unchanged. These

results lead to our Corollary 2:

Corollary 2. When either the asset value or the dispersion of investors’ gains from trade in-

creases, the OTS set by a SP increases. Consequently, expected volume and expected depth do

not change, whereas expected quoted spread increases.

This result is consistent with the tick size schedules set by regulators in the majority of the

existing trading platforms where the tick size is a step function of the asset price. Although in

the U.S. markets the tick size differs for stocks priced above and below 1 USD, this binary tick

size schedule only aims to differentiate the tick size for penny stocks. Our model shows that the

tick size schedule should instead be a step function of the price of all stocks. Consistent with

our theoretical results, we reviewed most of the existing major trading platforms and found that

they have a tick size schedule with more than two bins (See Table 1.A).

4 Four-Period Model

When the trading game lasts three periods, orders cannot queue behind each other. Intuitively,

in a 3-period model the 2nd player never opts to queue behind the 1st player’s order as - due

to time priority - his order would never be executed at t3. In a 4-period model instead, orders

can profitably queue behind each other, and the creation of queues can actually affect the order

submission strategies of investors in future periods. Therefore with an extra period to trade, the

SP has to choose a tick size that takes into account both the undercutting effect and the queuing

effect.
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Figure 6: Extensive Form of the Four Period Game
This Figure shows the different sets of actions for the market participants in each period ti of the trading game.
The book opens empty and a buyer arrives at t1, j ≥ 1 and l ≥ 0. A symmetric extensive form of the game holds
if a seller arrives at t1.
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Figure 6 presents the extensive form of the 4-period trading game. Without loss of generality

(Lemma 1), we consider the case of a buyer (βt1 > 1) arriving at t1 who posts a limit buy order

(lbk,t1) in the empty book.

The incoming 2nd player has now three options. First, he can take liquidity by posting a

market sell order (msk,t2); second, he can supply liquidity on the other side of the market by
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submitting either a limit sell order at the next higher price (lsk+1,t1 ), or a limit sell order at

pk+1+j where j ≥ 1 (lsk+1+j,t2 ); and third, he can supply liquidity on the same side of the market

either by undercutting the existing limit buy order (lbk+j,t1) at pk+j ∈ {pk+1, p+nf}; or - new

compared to the 3-period model - by queuing behind that order at pk−l ∈ {p−nf , pk} (l ≥ 0).

The 3rd player can react to the 2nd player’s actions by either supplying or taking liquidity on

the buy or on the sell side of the market. If the 2nd player submits a limit sell order at pk+1

(lsk+1,t1), he locks the market and the only option available to the 3rd player is taking liquidity:

there are no price levels available between the best limit buy and the best limit sell order and

the execution probability of a limit order queuing behind the existing limit orders is zero when

there is only one period ahead before the end of the game.

If instead the 2nd player does not lock the market, he faces three options. First, he can post

a limit sell at pk+1+j: in this case the 3rd may either take liquidity on the buy (pk) or on the

sell (pk+1+j) side of the market, or he can supply liquidity at any price between the best bid

(pk) and ask (pk+1+j) posted by the 1st and 2nd player respectively. Second, he can undercut

the existing limit order at pk+j: in this case, the 3rd player can market sell at pk+j (msk+j,t3),

or, alternatively, he can either limit sell or limit buy at pk+j+1+l with l ≥ 0. Third, if the 2nd

player can queue behind the existing limit order at pk−l: in this last case the 3rd player can either

market sell at pk or supply liquidity at pk+j as there is already a limit buy order at pk posted by

the 1st player.

The 4th and last player can only take liquidity with probability defined by Lemma 1.3. It

is important to notice that the last player will be able to access liquidity on both sides of the

market only if: either the 2nd player supplies rather than take liquidity and does not lock the

market; or the 2nd player undercuts or queues behind the existing limit order and the 3rd player

supplies liquidity on the other side of the market.

4.1 Optimal Tick Size

In this section only - as for the 3-period model in Section 3.1 - we assume that an incoming trader

can react to an existing limit buy order posted at pk by submitting a limit buy or a limit sell
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order only at the next feasible price pk+1. He can alternatively join the queue with a limit buy

order at pk, or he can market sell hitting pk. Proposition (5) presents the equilibrium solution

to the 4-period model:

Proposition 5. For any b ν, if βt1 ν > ν, hence a buyer arrives at t1, the equilibrium order

submission probabilities are:

For a generic τ defined by τ ∈ [(0, τmax) | nf ≥ 2]:

t1: · ∀τ ∈ [(0, τmax) | nf ≥ 2] ∃ k < +nf |Pr (lbk,t1|Λt0 , τ) > 0 and Pr
(
lb+nf ,t1|Λt0 , τ

)
= 0

· ∀τ ∈
{

(0, τmax) | nf = 1
}
, Pr (lbk,t1|Λt0 , τ) > 0 ∀k ∈ {−1, 1}

and limτ→τmax Pr (lb+1,t1|Λt0 , τ)→ 0

t2: · Pr (msk,t2|Λt1 , τ) = max
[
0, P r

(
(1− b) < βt2 <

pk
ν
− τ

ν
f

1−f

)]
· Pr (lsk+1,t2|Λt1 , τ) = Pr

(
pk
ν
− τ

ν
f

1−f < βt2 <
pk
ν

+ τ
ν

f
f+l

)
if Pr (msk,t2|Λt1 , τ) > 0,

and Pr (lsk+1,t2 |Λt1 , τ) = Pr
(

(1− b) < βt2 <
pk
ν

+ τ
ν

f
f+l

)
, otherwise

· Pr (lbk,t2|Λt1 , τ) = Pr
(
pk
ν

+ τ
ν

f
f+l

< βt2 <
pk
ν

+ τ
ν

g
g−l

)
if pk

ν
+ τ

ν
g
g−l < 1 + b

and Pr (lbk,t2|Λt1 , τ) = Pr
(
pk
ν

+ τ
ν

f
f+l

< βt2 < 1 + b
)
, otherwise

· Pr (lbk+1,t2|Λt1 , τ) = Pr
(
pk
ν

+ τ
ν

g
g−l < βt2 < 1 + b

)
if pk

ν
+ τ

ν
g
g−l < 1 + b

and Pr (lbk+1,t2|Λt1 , τ) = 0, otherwise

t3: · Defined in Proposition (1) at t1, if Λt2 = {lbk,t1 ,msk,t2}.

· Defined in Lemma 1.3, if Λt2 = {lbk,t1 , lsk+1,t2}.

· Defined in Proposition (3) at t2, if Λt2 = {lbk,t1 , lbk+1,t2} or Λt2 = {lbk,t1 , lbk,t2}.

t4: Defined in Lemma 1.3

Symmetric results apply if βt1 ν < ν, hence a seller arrives at t1.

Where f = Pr (mbk+1,t3|Λt2 , τ) + (1− Pr (mbk+1,t3|Λt2 , τ))× Pr (mbk+1,t4|Λt3 , τ),

l = Pr (msk,t3|Λt2 , τ)× Pr (msk,t4|Λt3 , τ),

g = Pr (msk+1,t3|Λt2 , τ) + (Pr (ntk+1,t3|Λt2 , τ) + Pr (lsk+2,t3|Λt2 , τ))× Pr (msk+1,t4 |Λt3 , τ).

The proof of Proposition 5 is in Appendix (E.1).
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As for the 3-period protocol, with the exception of the extreme case in which the support-

to-tick ratio is Γν
τ
< 3 and the 1st player can lock the market at p+nf which may happen with a

negligible positive probability, in equilibrium the 1st buyer (symmetrically the 1st seller) submits

a limit buy order at pk, and the probability of the 2nd player choosing any of his four different

optional strategies depends on the value of pk. The higher is pk, the higher is the probability

that the 2nd player will either market sell (Pr (msk,t2|Λt1 , τ)) or queue behind the 1st player’s

limit buy order (Pr (lbk,t2|Λt1 , τ)). For lower values of pk instead, the 2nd player will either

limit sell (Pr (lsk+1,t2|Λt1 , τ)) on the other side of the market, or undercut the existing limit

buy order (Pr (lbk+1,t2 |Λt1 , τ)) at pk+1 with increasing probability. Depending on the state of

the book at the end of t2, the 3rd player will choose different orders. If the book at t3 opens

empty (Λt2 = {lbk,t1 ,msk,t2}), the 3rd player will limit buy (or symmetrically limit sell) with the

same submission probability and order aggressiveness as the 1st player in the 2-period trading

game (Proposition (1)). If instead the book opens with both a limit buy and a limit sell order

(Λt2 = {lbk,t1 , lsk+1,t2}), he will take liquidity with either a market sell or a market buy as shown

in Lemma 1.3. Finally, if the book opens with two limit buy orders (Λt2 = {lbk,t1 , lbk+1,t2} or

Λt2 = {lbk,t1 , lbk,t2}), the 3rd player will act exactly as the 2nd player in the 3-period trading game

(Proposition (3)): he will either market sell hitting the best limit buy order, or he will undercut

it submitting a more aggressive limit buy order, or alternatively he will offer liquidity at a higher

pk. The order submission strategies of the incoming investor at t4 will depend on the state of

the book at the end of t3 and the unconditional order submission probabilities are defined by

Lemma 1.3.

As for the 3-period trading game, we show that in a 4-period model the OTS is different from

0, leading to Proposition 6 :

Proposition 6. In a 4-period trading game, the tick size that maximizes the welfare of market

participants is positive.

Following the same line of reasoning of Appendix D.5, Proposition 6 is analytically proved in

Appendix E.2, and confirms Proposition 4: when market participants face the fundamental trade-

off between selecting limit and market orders in a LOB model and can endogenously decide to
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queue behind or undercut existing limit orders, the tick size is no longer a friction. In the next

Section 4.2 we study the properties of the new OTS.

4.2 Optimal Tick Size, Welfare and Market Quality

In this section, we solve the OTS problem described in Appendix E.3 and E.4 in quasi-closed

form without any restriction on the 2nd and 3rd player trading strategies and characterize the

properties of the OTS in the 4-period trading game. We also solve in quasi-closed form the

OTS problem for the 5-period trading game and use the results obtained to discuss how the

OTS changes with the asset value, the investor’s personal evaluation and the number of trading

periods (proxing average number of trade).

As for the previous trading games, the OTS in our 4-period protocol is the tick size associated

with the optimal total welfare of market participants. Figure 7 reports both the welfare of each

market participant arriving both in the 3-period and in the 4-period trading games, and the

welfare of all market participants, Ω(τ). This allows us to discuss how the new queuing trading

strategy available to the 2nd player with the addition of a new trading period affects the choice

of the OTS. Figure 7 confirms that in a 4-period trading game the OTS is positive, although

smaller that in the 3-period model.

We now provide an intuition and some additional results which explain why in a 4-period

trading game the OTS is smaller than in a 3-period game but has to be positive to optimally

balance the interaction between liquidity demand and liquidity supply and therefore to maximize

total welfare. Table 2 reports - for b = 0.06 and ν = 10 - the equilibrium order submission

strategies for both the 3-period (Panel A) and the 4-period trading game (Panel C), associated

with their respective OTS.20 Table 2 also reports the order submission strategies for the 4-period

trading game associated with the 3-period OTS (Panel B). Panel D reports the unconditional

order submission strategies of the 3rd player in the 4-period trading game.21 Starting from

the 3-period game, the equilibrium strategies show that the 1st player either aggressively limit
20For any chosen support relative to the OTS bν

OTS , the order submission strategies of the trading game are
unchanged.

21To economize space we report the unconditional order strategies for the 3rd player in the 4-period trading
game.

36



buys at pk = 10.139 above the fundamental asset value; or he limit buys at the best bid pk =

9.861 below the asset value. When he buys aggressively (Pr (lbk,t1 |Λt0 , τ) = 0.111), the 2nd

player mainly market sells (Pr (msk,t2 |Λt1 , τ) = 0.574), whereas when he buys more patiently

(Pr (lbk,t1|Λt0 , τ) = 0.389) , the 2nd player either supplies liquidity on the other side of the market

(Pr (ls>k,t2|Λt1 , τ) = 0.423) or undercuts the existing limit buy order (Pr (lb>k,t2|Λt1 , τ) = 0.338).

Therefore the 2nd player offers better liquidity when the 1st player is more patient.

Adding a fourth period - holding the OTS of the 3-period game (OTS 3P) constant - allows

us to focus on the effects that queuing may have on the order submission strategies of market

participants (Panel B). When the 2nd player is allowed to queue behind the 1st player’s limit

buy order, he does so substantially Pr (lb≤k,t2|Λt1 , τ) = 0.339 when the 1st player submits an

aggressive limit order above the fundamental value of the asset (Pr (lbk,t1 |Λt0 , τ) = 0.129). In this

case, the 2nd player substitutes his liquidity provision on the buy side (where he was undercutting)

or on the sell side, with queuing. Hence, overall, with an extra trading period and the OTS 4P,

the 2nd player offers worse liquidity to the incoming players.

However, if we do not restrict the new 4-period model to the OTS 3P but solve the 4-period

problem for the OTS 4P (0.214) - smaller than the OTS 3P (0.278) - results change. The main

effects of the reduction in the OTS are now twofold: first, to induce the 2nd player to switch from

queuing to undercutting, as now undercutting is cheaper; second, to increase the 2nd player’s

liquidity provision on the sell side (from Pr (ls>k,t2|Λt1 , τ) = 0.119 to Pr (ls>k,t2|Λt1 , τ) = 0.178),

as the new finer price grid allows him to limit sell more aggressively rather than market sell.

Therefore, the main effect of the reduction in the OTS is that it induces investors to offer better

liquidity to the incoming liquidity takers. The same intuition holds for the order submission

strategies of the 3rd player of the 4-period trading games reported in Panel D: the 3rd player can

no longer queue but substitutes market orders and no trade with more undercutting on the buy

side. This means that moving from the 3-period to the 4-period trading game, the SP reduces

the OTS to optimize the demand and the supply of liquidity which in turn leads to maximize

total welfare of market participants.22

22Replicating the comparative static analysis for the 4-period and the 5-period trading game, we obtain anal-
ogous results. Table 3.E in Appendix E compares the equilibrium order submission strategies for the 5-period
model solved for the OTS of both the 4-period and the 5-period trading game and shows that the SP adjusts the
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Table 2: Comparative Analysis of Equilibrium Submission Probabilities and Welfare
Panel A, B and C summarize the submission strategies of the first two players in 3 and 4-period games.
The first column report prices for which the 1st player attaches a positive equilibrium submission proba-
bility Pr (lbk,t1 |Λt0 , τ). The columns 3 − 6 of Panel A, B and C report the probabilities of market sell-
ing at t2 ( Pr (msk,t2 |Λt1 , τ)), limit sell (Pr (ls>k,t2 |Λt1 , τ)), queuing (Pr (lb≤k,t2 |Λt1 , τ)) and undercutting
(Pr (lb>k,t2 |Λt1 , τ)). Panel D reports the equilibrium unconditional submission probabilities of the 3rd player
for the 4-period model solved for the OTS of both the 3-period (2nd row) and 4-period trading game (3rd row).
We report the unconditional probability of market sell at t3 (Pr (mst3)) (column 2), of limit sell (undercutting)
(Pr (ls>k,t3)) (column 3), of limit sell (queuing) (column 4) (Pr (ls≤k,t3)), of no trade (Pr (ntk,t3)), of limit buy
(queuing) (Pr (lb≤k,t3)), of limit, buy (undercutting) (Pr (lb>k,t3)) and of market buy (Pr (mbk,t3)). Panel E
summarizes the welfare of each player (ωti(·)), the total welfare (Ω), and the measures of market quality (Ex-
pected Volume, Quoted Spread, and Total Depth) for OTS 3P in the 3 and 4-period game, for OTS 4P in the 4
and 5-period game and for OTS 5P in the 5-period game. Results are reported for the baseline example (b = 0.06
and ν = 10).

Panel A: 3-period game - 1st and 2nd player conditional order submission strategies with OTS 3P (0.278)

Price Limit Buy t1 Market Sell t2 Limit Sell t2 Queuing t2 Undercutting t2
pk Pr (lbk,t1|Λt0 , τ) Pr (msk,t2|Λt1 , τ) Pr (ls>k,t2|Λt1 , τ) Pr (lb≤k,t2|Λt1 , τ) Pr (lb>k,t2 |Λt1 , τ)

10.139 0.111 0.574 0.274 0.000 0.152
9.861 0.389 0.239 0.423 0.000 0.338

Panel B: 4-period game 1st and 2nd player conditional order submission strategies with OTS 3P (0.278)

Price Limit Buy t1 Market Sell t2 Limit Sell t2 Queuing t2 Undercutting t2
pk Pr (lbk,t1|Λt0 , τ) Pr (msk,t2|Λt1 , τ) Pr (ls>k,t2|Λt1 , τ) Pr (lb≤k,t2|Λt1 , τ) Pr (lb>k,t2 |Λt1 , τ)

10.139 0.129 0.525 0.119 0.339 0.017
9.861 0.371 0.005 0.615 0.029 0.351

Panel C: 4-period game 1st and 2nd player conditional order submission strategies with OTS 4P (0.214)

Price Limit Buy t1 Market Sell t2 Limit Sell t2 Queuing t2 Undercutting t2
pk Pr (lbk,t1|Λt0 , τ) Pr (msk,t2|Λt1 , τ) Pr (ls>k,t2|Λt1 , τ) Pr (lb≤k,t2|Λt1 , τ) Pr (lb>k,t2 |Λt1 , τ)

10.107 0.146 0.465 0.178 0.239 0.118
9.893 0.342 0.075 0.536 0.016 0.372
9.679 0.012 0.000 0.498 0.000 0.502

Panel D: 4-period game - 3rd player unconditional order submission strategies

Market Sell Undercutting Queuing No Trade Queuing Undercutting Market Buy
Pr (msk,t3) Pr (ls>k,t3) Pr (ls≤k,t3) Pr (ntk,t3) Pr (lb≤k,t3) Pr (lb>k,t3) Pr (mbk,t3)

OTS 3P (0.278) 0.199 0.058 0.000 0.052 0.000 0.071 0.083
OTS 4P (0.214) 0.183 0.056 0.000 0.033 0.000 0.100 0.081

Panel E: Welfare & Market Metrics

Game ωt1(·) ωt2(·) ωt3(·) ωt4(·) ωt5(·) Ω vol quoted spread depth

3-period game & OTS 3P 0.091 0.092 0.068 0.000 0.000 0.251 0.384 0.333 1.186
4-period game & OTS 3P 0.106 0.113 0.095 0.064 0.000 0.378 0.551 0.285 2.069
4-period game & OTS 4P 0.105 0.112 0.099 0.067 0.000 0.383 0.546 0.281 2.018
5-period game & OTS 4P 0.097 0.125 0.102 0.091 0.061 0.476 0.678 0.263 2.755
5-period game & OTS 5P 0.097 0.123 0.104 0.096 0.060 0.479 0.675 0.261 2.774
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This discussion also provides an intuition for the dynamic pattern of the welfare presented in

Figure 7. Specifically, Figure 7 indicates that in correspondence of the new smaller OTS 4P the

1st and 2nd players are worse off, whereas that the 3rd and 4th players are better off. Therefore

when setting the OTS the SP has to mediate the interests of different market participants. This

analysis highlights two important findings. First, the OTS cannot be zero in a 4-period game,

confirming our 3-period model results. Second, the SP faces a trade-off when setting the OTS for

a game with more trading periods and therefore with more trading opportunities: by reducing

the OTS it reduces the queues at the top of the book and enhances price-improving liquidity

provision thus making future players better off. However, a smaller tick size that increases the

probability of undercutting also harms the 1st and 2nd period liquidity providers. This result is

reminiscent of Goettler et al. (2005) who show that a smaller tick size (from 1
8
to 1

16
of a $) is

not Pareto improving.

Replicating for the 4 and 5-period frameworks the analysis done for the 3-period model

(Section 3.3), our results confirm that the OTS is a function of both the asset value and the

population active in the market, and also show that the OTS is a function of the number of

trading periods. Table 2 (Panel E) shows that - all else equal - when an extra period is added to

the trading game, - either moving from 3 to 4 periods or moving from 4 to 5 periods, the OTS

decreases and market quality measured by volume, spread and depth improves.

We can therefore conclude that the SP sets an OTS which is decreasing in the liquidity of

the instrument. This result leads to the following corollary:

Corollary 3. When the number of trading periods increases, the liquidity of the instrument -

proxied by expected volume, expected quoted spread and expected total depth - improves, and the

OTS set by the SP decreases.

If we consider the number of trading periods - or the expected volume in the 3, 4 and 5-period

trading game - as a proxy for the average number of trades, our results are consistent with the

ESMA tick size table introduced in 2018, suggesting exchanges to set the tick size as a decreasing

5-period OTS to induce investors arriving later in the trading game to switch from queuing to price improving
liquidity provision. Table 2 confirms that moving from the 4 to the 5-period trading game the SP sets the OTS
to optimally manage the liquidity of the book, and in turn to maximize the welfare of market participants.
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function of the liquidity of the instrument.

The reason why we further extend the model to include a fifth period, is that - as we discussed

- adding a fourth period not only makes the market more liquid but it also introduces the new

queuing transmission channel. Therefore, to isolate the effects of an increase in the liquidity of

the instrument (increase in the number of trading periods) on the equilibrium order submission

strategies of market participants, and to control for the effects of the introduction of the new

queuing channel, we add an extra fifth period.

Table 3 reports the OTS and the market quality results obtained from both the 4-period

(columns 2-4) and the 5-period (columns 5-7) trading game. Table 3 also shows the equilibrium

OTS for increasing values of both the investors evaluation support (b), and the asset value (ν).

Table 3 confirms that for any given number of trading periods, an increase in b and/or ν leads to

a larger tick size.23 Holding instead b and ν constant and moving from 4 to 5 periods, the OTS

set by the SP further decreases. As the number of trading periods increases, the SP still sets the

OTS to balance liquidity demand and liquidity supply, and the transmission channels that drive

this optimization process depends - as for the previous model with fewer number of periods -

on the trade-off between queuing and undercutting that investors face in each trading period.

Early liquidity suppliers benefit from a larger tick size that disincentives future undercutting.

More specifically, when the number of periods before the end on the game is sufficiently large -

hence the probability of execution is high - a larger tick size allows investors to queue behind

existing orders rather then undercutting them, thus enjoying a larger price improvement. When

instead the end of the game approaches, investors generally become more aggressive and willing

to undercut existing orders, and therefore they may benefit from a smaller tick size. Hence, when

setting the OTS to maximize the interaction between liquidity supply and liquidity demand, the

SP needs to trade-off the incentives of investors to either queue or undercut existing orders. If

the SP sets the OTS suboptimally, total investors’ welfare will not be maximized and liquidity

provision would be suboptimal. If the tick size is larger than the OTS, liquidity suppliers may

benefit but investors may excessively opt for queuing with the result that the number of tick
23Note that, as in the 3-period trading game, when the overall evaluation support (2bν) remains constant, both

OTS and total welfare and market quality remain unchanged (as indicated in the grey shaded columns).
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Table 3: Optimal Tick Size and Market Quality for the Four and Five Period Games
The table reports the OTS and the associated total welfare (Ω), expected volume (vol), quoted spread
(quoted spread) and total depth (depth) for each combination of ν = {8, 10, 13.333} and b = {0.045, 0.06, 0.075}
for the 4-period (column 3-5) and 5-period (column 6-8) respectively. b = 0.06 is estimated following Goettler
et al. (2005) and Hollifield et al. (2006) and the two other b values are b = 0.06(1 ± 0.25%). ν = 10 is our
benchmark asset value and ν = 8, ν = 13.333 are obtain such that 2bν is constant across the three pairs of values
(b, ν). The discretization grid used to derive the quasi-closed form solution for each (ν, b) is defined in Appendix
D.6: for each (ν, b), we consider a set of tick sizes consistent with price grids that include between 2 to 30 feasible
prices. The results are rounded at the 3rd decimal digit.

4-period game 5-period game

ν
b

0.045 0.06 0.075 0.045 0.06 0.075

OTS

8.000

0.128 0.171 0.214 0.096 0.128 0.160
Ω 0.230 0.306 0.383 0.287 0.383 0.479
vol 0.546 0.546 0.546 0.675 0.675 0.675
quoted spread 0.169 0.225 0.281 0.157 0.209 0.261
depth 2.018 2.018 2.018 2.774 2.774 2.774

OTS

10.000

0.161 0.214 0.268 0.120 0.160 0.199
Ω 0.287 0.383 0.479 0.359 0.479 0.598
vol 0.546 0.546 0.546 0.675 0.675 0.675
quoted spread 0.211 0.281 0.352 0.196 0.261 0.327
depth 2.018 2.018 2.018 2.774 2.774 2.774

OTS

13.333

0.214 0.285 0.357 0.160 0.213 0.266
Ω 0.383 0.510 0.638 0.479 0.638 0.798
vol 0.546 0.546 0.546 0.675 0.675 0.675
quoted spread 0.281 0.375 0.469 0.261 0.348 0.436
depth 2.018 2.018 2.018 2.774 2.774 2.774
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size constrained stocks may increase. If instead the tick is smaller than the OTS, then liquidity

takers may benefit but the probability of undercutting can be too high thus inducing investors

either to post excessively wider spreads or to worsen liquidity provision. These results lead to

our first empirical prediction:

Empirical Prediction 1. When the tick size is set sub-optimally, we expect that:

• If the tick size is larger than the OTS, queuing should increase and the number of tick size

constrained stocks should also increase.

• If the tick size is smaller than the OTS, market undercutting should increase and the number

of tick size constrained stocks should decrease.

So far we have considered the OTS set by a SP that maximizes the total welfare of market

participants. In real market however, this measure is difficult to quantify, hence we investigate

which metric of market quality could be used as a second best tool to set the tick size. Table

4 shows the tick size (OT) that optimizes each of our three metrics of market quality - volume,

quoted spread and total depth - for the 3, 4 and 5-period trading game respectively. It also shows

the welfare loss computed as the percentage difference between the total welfare associated with

the OTS (Ω(OTS)) and the total welfare associated with the new OT (Ω(OT )). We show that

the market metric that better proxies total welfare is quoted spread and this result leads to our

second empirical prediction:24

Empirical Prediction 2. If the SP sets the tick size across instruments of different liquidity

by using average spread rather than total welfare, the welfare loss is minimized.

Intuitively, by minimizing the spread as opposed to maximizing volume or depth to set the

optimal tick size the SP takes into account both the welfare effects on liquidity suppliers and the

welfare effects on liquidity takers.

This result has important policy implications as it instructs regulators on the choice of the

empirical metric to use when setting the tick size while taking into account both the price

and the liquidity of each instrument. Our results are also in line with the "Intelligent Ticks"
24We thank Bjorn Hagströmer for his comments on this point.
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Table 4: Tick Size Optimizer for Market Qualities
This table reports the Welfare Loss and the Optimizing Tick (OT) chosen by the SP in case he sets the tick size
in the 3, 4, and 5-period games by maximizing (minimizing) volume and depth (quoted spread). The Welfare
Loss is measured in each period of the game as the percentage difference between the total welfare associated
with OTS (Ω(OTS)) and the total welfare associated with OT (Ω(OT )). The last column reports the average
Welfare Loss for each market metric across the 3P, 4P and 5P trading game. We report the results for the baseline
parameterization (b = 0.06 and ν = 10). The discretization grid used to derive the quasi-closed form solution is
defined in Appendix D.6: we consider a set of tick sizes consistent with price grids that include between 2 to 30
feasible prices. We report the OT which defines at least 2 prices on each side of the book; results do not change
qualitatively by relaxing this assumption. The results are rounded at the 3rd decimal digit.

3P 4P 5P Avg. Welfare Loss

Volume Welfare Loss −0.509% −0.403% −4.562% −1.825%
OT 0.2 0.25 0.375

Quoted spread Welfare Loss −1.110% −0.014% −0.092% −0.405%
OT 0.375 0.225 0.1425

Depth
Welfare Loss −1.110% −4.988% −4.562% −3.553%
OT 0.375 0.375 0.375

Nasdaq proposal setting the tick size as a function of the weighted average quoted spread of the

instrument. They are also partially in line with the recent 34-96494 SEC (2022) proposal to set

the tick size as a function of the quoted spread for stocks characterized by an average spread

smaller than $0.04. As we discuss in the conclusions, our results instead suggest to take into

account all stocks, not only those with a small spread. This way the SEC proposal would also

address the issue of high priced stocks which we discuss in Session 6.
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Figure 7: Welfare Comparison of the Three and Four Period Games
This figure shows the welfare of market participants in a 3-period and 4-period game protocols. The welfare of the 1st player in a 3-period game is (ωt1(τ, 3P ),
blue line), while for a 4-period game is (ωt1(τ, 4P ), blue dashed line). The welfare of the 2nd player in a 3-period game is (ωt2(τ, 3P ), red line), while for
a 4-period game is (ωt2(τ, 4P ), red dashed line). The welfare of the 3rd player in a 3-period game is (ωt3(τ, 3P ), green line), while for a 4-period game is
(ωt3(τ, 4P ), green dashed line). The welfare of the 4th player in a 4-period game is (ωt4(τ, 4P ), yellow dashed line). The total welfare of market participants
in a 3-period game is (Ω(τ, 3P ), black line) while for a 4-period game is (Ω(τ, 4P ), black dashed line). The OTS of a 3-period game is marked as (OTS3P ,
black dot), while for a 4-period game is (OTS4P , black dot). The results are presented for b = 0.06, ν = 10 and for a set of tick sizes, defined in Appendix
(D.6), that considers price grid between 2 and 30 prices. Results do not change qualitatively considering more prices.
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5 Robustness

5.1 Steady state equilibrium vs. limited number of trading periods

To determine the OTS, we need to rely on a model that embeds a number of crucial features.

First of all, we need both queuing and undercutting to be fully endogenous. To accomplish this,

we need traders to be able to post orders that queue behind the existing ones. The equilibrium

steady state solution of Roşu (2009), Bhattacharya and Saar (2021) and Foucault et al. (2005)

models implies that traders do not queue behind existing orders. Therefore, we cannot use these

protocols to determine the OTS.

In Goettler et al. (2005), investors can actually queue behind other existing limit orders but

their numerical steady state solution of the probability of limit order executions requires that

the initial condition on the execution probability of each limit order is sequentially updated as

a weighted average of its past values with the weights depending on the frequency of execution

and cancellation associated with each state of the book. More specifically, in the spirit of Pakes

and McGuire (2001), the execution probability of a limit buy order posted at pi depends on the

exogenous probability of cancellation and on the net change of consensus value, as well as on

the probability that a trader who obtains a positive surplus from selling at pi will arrive, Fβ(pi).

Without cancellation this probability is equal to one and does not change over time. With

a positive probability of cancellation instead the estimated probability of execution delivers

conditional frequencies of buy and sell orders that generate a realistic distribution of the order

book depth.25 To determine the OTS, we need that the probability of limit orders execution

is the result of a fully endogenous strategic trading game in such a way that the length of the

queues affects the investors’ strategic choice between market and limit orders. In practice, a fully
25In Goettler et al. (2005), traders’ private valuation, βt, is drawn from a continuous distribution, Fβt , with

support B. Initial execution probability and sequential update are respectively given by:

µe1(·, i, ·, ·) =
(1− δ)FB(pi)

1− (1− δ)(1− FB(pi))

µet+1(k, i, Lτ , Xτ ) =
n

n+ 1
µet (k, i, Lτ , Xτ ) +

1

n+ 1

(16)

Cancellation obtains either when an order is cancelled - which may happen with probability δt(·) (Step 4 page
2159), or when some outside price levels with posted limit orders are cancelled following a jump in the asset value
(Step 5).
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endogenous limit order execution probability allows traders to strategically decide whether to

queue behind existing limit orders or undercut them, thus crucially affecting the aggressiveness

of their dynamic order submission strategies.

To build a protocol with fully endogenous and strategic limit order submission probabilities,

we need to compute the strategic optimal order submission decision of each possible trader

arriving conditional on each possible state of the book. This is analytically very complex as the

state space drastically increases with the number of trading periods. Therefore our approach

has a limited number of trading period, but allows us to identify all of the possible transmission

channels that affect the SP choice of the OTS. In each period of our trading game a trader arrives

with certainty. Therefore a limited number of trading periods is a realistic feature of our model

as the number of traders arriving in real markets over the trading day is finite. In addition, as

in real markets, in our model the equilibrium trading strategies change over time.

5.2 Asymmetric Information

In our model there is no asymmetric information. The existing literature shows that adding

informed investors in a model of limit order book induces market participants to trade more

aggressively in order to exploit their increased gains from trade. This is true both in the standard

models a’ la Kyle and Glosten and Milgrom (e.g., Harris (1998), Kaniel and Liu (2006) and

Glosten (1994)), and in the most recent models of limit order books (e.g., Bhattacharya and

Saar (2021), Riccó et al. (2022)). In both the 3-period and the 4-period trading games we have

shown that when traders become more aggressive due to an exogenous increase in the support

of their personal evaluation, the gains from trade increase and investors are more inclined to opt

for more aggressive limit orders (undercutting) or market orders. As shown in Tables 1 and 3,

the increased aggressiveness induces the SP to set a wider tick size that restores the equilibrium

liquidity supply and demand. We therefore envisage no transmission channel showing that adding

asymmetric information to our protocol would weaken our main results. In contrast, we speculate

that asymmetric information would induce the SP to set a wider tick size thus strengthening our

main results.
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5.3 Cancellations and Resubmissions

In our model we do not allow traders to cancel their orders. Embedding this feature in a

limit order book model with fully endogenous strategic choice of order submission strategies is

extremely complicated.

This important feature of real financial markets trading strategies is still not fully embedded

in models of limit order book as most models do not explicitly allow for cancellation and resub-

mission (e.g., Foucault et al. (2005), Riccó et al. (2021)). As discussed in Foucault et al. (2005),

one possible approach followed by Hollifield et al. (2006) and Goettler et al. (2005) assumes that

cancellation occurs exogenously at random points in time. Another more sophisticated approach

followed by Roşu (2009) and Bhattacharya and Saar (2021) in continuous time stationary models

without a tick size, is to assume that cancellation and resubmission is costless and instantaneous.

This mechanism is the necessary tool - the Nash threat - to find a stationary equilibrium and

avoid an infinite sequence of infinitesimal undercutting among market participants. With this

mechanism in place, in equilibrium investors have no incentive to cancel and resubmit their

orders, and therefore there is no effective cancellation and resubmission.

Allowing investors - in equilibrium - to cancel and resubmit their orders is an important

enhancement of any limit order book model as in real markets most sophisticated traders actually

cancel and resubmit orders (e.g. Hasbrouck and Saar (2013), Aquilina, Budish, and O’neill

(2022),Biais, Foucault, et al. (2014)). However, we suspect that our main results that the tick

size set by a SP differs from zero and it is a function of the characteristics of the trading

instruments would not qualitatively change had we included cancellation and resubmission.

There are two reasons why traders would strategically choose to cancel and resubmit their

orders. First, traders may wish to cancel and resubmit their orders to avoid sniping in case

of an unexpected jump in the fundamental value of the asset (Budish et al. (2015)). Second,

traders may decide to cancel their orders to strategically react to previously posted limit orders.

As in our model the fundamental asset value does not change, the only reason why players

would cancel and resubmit their orders would be the latter. If we allowed investors to cancel and

resubmit their orders starting from the 3-period trading game, in equilibrium traders would more
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frequently either post market orders or undercut existing limit orders. As discussed in Section

3, the SP would then set a wider OTS to incentivize liquidity provision and compensate the

increased aggressiveness of liquidity demanders. As a result, we speculate that with cancellation

and resubmission the wider tick size would enhance the welfare of market participants and our

results would be qualitatively stronger. Foley et al. (2022) show that in the crypto currency

market an increase in the tick size reduces undercutting, increases liquidity provision and quoted

depth, and reduces transactions costs for all market participants. AMF (2018) also shows that

a wider tick increases order lifetime, and therefore reduces both undercutting and the number

of unexecuted orders, quantified by the order-to-trade ratio.

5.4 Random Investor Arrival

In our baseline model investors arrive at each period ti with certainty. This means that over

a T-period game T investors arrive with certainty. Here we show that our results hold if we

assume that investors not necessarily arrive with certainty.26 As an example, we consider a 3-

period model in which the 2nd player comes to the market with probability q ∈ (0, 1), whereas

the 1st and the last player arrive with certainty. Differently from the baseline model considered

in Section 3, the 1st player no longer faces competition in liquidity supply from the 2nd player

with certainty, but with a probability equal to q. In Table 5 we report our results showing that

higher values of q are associated with higher values of OTS and total welfare Ω(OTS).

Table 5: OTS and Welfare in the Three Period Game with Random Investor Arrival
This table reports the OTS and the associated total welfare (Ω(OTS)) for a 3-period model with random arrival
probability q of the 2nd player. We report the results for the baseline parameterization (b = 0.06 and ν = 10)
and for the following set of arrival rate q = {0.1, 0.25, 0.5, 0.75, 0.9}. The quasi-closed form solution of the OTS
problem for each triplet (b, ν, q) follows Appendix D.6. The results are rounded at the 3rd decimal digit.

q
0.1 0.25 0.5 0.75 0.9

OTS 0.095 0.135 0.260 0.262 0.275
Ω(OTS) 0.143 0.161 0.193 0.222 0.239

As the potential undercutting faced by the 1st player increases with q, to incentivize liquidity

provision on both side of the market the SP sets a wider tick size. Given that a higher q implies
26We thank Stefano Lovo for suggesting this extension.
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a higher probability to have three rather than two investors active in the market, also total

welfare increases monotonically with q. It is worth noticing that even with small values of q -

e.g., q = 0.1 - the SP sets a positive OTS. Irrespective of the value of q, when liquidity suppliers

have to take into account that their order might be undercut in future periods, the SP sets a

positive OTS. This confirms our results in Sections 3 and 4 where we show that the tick size is

not a friction.

6 Empirical Analysis

We have shown that the OTS should be set as a function of both the asset value and the

liquidity of the instrument involved. We have also shown that an OTS set according to these

criteria dominates the U.S. binary tick size regime. In this section we aim to show how relevant it

is to set the tick size optimally as a function of both the liquidity and the price of the instrument

and we test our Empirical Predictions 1 and 2.

For the U.S. markets, we obtained from the Nasdaq’s Economic Research Team, market

quality data for the firms listed in the U.S. markets (3988) by 1 January 2021 during the period

1 January - 30 June 2022.27 For the European markets, we downloaded from Refinitiv DataScope

minute by minute bid and ask prices, transaction prices, volume, and number of trades for the

stocks included in the main indexes of the following countries: UK, France, Germany and The

Netherlands. We also downloaded for the last hour of trading Level II Refinitiv Data including

the best 10 levels of the book on each side of the market. Our sample spans from 1 January

2017 to 31 December 2018 and builds around 1 January 2018 when MiFID II introduced a new

tick size regime aimed at harmonizing the tick size among all the European trading platforms.

6.1 Undercutting, Queuing and TSC Stocks - Empirical Prediction 1

We have shown that to determine the OTS undercutting and queuing play a central role. To

test our Empirical Prediction 1 we need both proxies for undercutting and queuing, and proxies
27To avoid dealing with penny stocks moving through the $1 tick size threshold, we follow the standard practice

and remove from the initial sample stocks with an average price smaller than $3.
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for tick size constrained stocks. For the U.S. markets, we obtained from the Nasdaq’s Economic

Research Team the following metrics to proxy undercutting and queuing. We proxy undercutting

by the percentage use of Odd Lot Trade and Odd Lot Volume. Odd Lot Trade (Volume) (%) is

the daily number of odd lots (daily number of odd lots in number of shares) over the daily average

number of trades (average daily volume). The reason why this metric can proxy undercutting is

that when an investor wishes to post more aggressive orders, he posts liquidity at higher bid or

lower ask prices until he reaches the minimum price improvement which is equal to the tick size.

However, when the price of a stock is very high and trading takes place in lots of 100 shares as

in the U.S. markets, liquidity suppliers may find it cheaper to offer better liquidity by trading in

odd-lots, thus outbidding current best prices without paying the entire lot.

We proxy queuing by the following two measures:

Queue (min) =
Size at NBBO

ADV
× 23400

60

Inverted Share (%) =
V olume at Inverted V enues

U.S. Stocks Consolidated V olume

(17)

Where ADV is the Average Daily Volume, and Size at NBBO is the number of shares at the

NBBO. The intuition behind using Inverted Share as a proxy for queuing is that when queues at

the NBBO become longer, traders may have an incentive to move their liquidity supply to the

inverted fee platforms where queues are shorter as, due to the rebate on the take fee, liquidity

demanders find it cheaper to take liquidity.

Consistent with our Empirical Prediction 1, in Figures 8 we report the fitted lines of Odd-Lot

Trades and Odd Lot Volume on the Relative Tick (bsp) which indicate that for the U.S. markets

our proxy for undercutting is negatively related to the relative tick size. In Figure 9 we report

the fitted line of our proxies for queuing (Queuing and Inverted Share) on the Relative Tick

(bps) suggesting a positive relationship. We therefore expect liquidity to cluster at the minimum

price increment for low priced stocks, whereas we expect high price stocks to be less likely tick

size constrained.

We define a tick size constrained stock (TSC) a stock that satisfies two conditions. First, it has

an average number of shares at the (N)BBO greater than the 50th, 60th and 70th decile. Second,
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it has an average quoted spread that is less than or equal to one tick and a half (consistent with

common practice at the Nasdaq’s Economic Research Team). To test our Empirical Prediction

1, we then create three groups of stocks based on stock price terciles (T1 P, T2 P, T3 P). Table

6 shows that the percentage of U.S. TSC stocks is on average 7.75% for low priced stocks (T1 P)

and decreases to 0.98% for high priced stocks (T3 P). The number of TSC stocks decreases with

the stock price as - intuitively - an increase in stock price translates into a reduction of relative

tick size.

According to our model’s predictions, these results suggest that U.S. low priced stocks exhibit

a too large tick size which motivates both the Intelligent Tick Size Proposal of Nasdaq and the

recent 34-96494 SEC proposal to create new buckets of smaller tick size stocks.

Table 6: Tick Size Constrained Stocks: U.S. and E.U. comparison
This table reports the number of Tick Size Constrained (TSC) stocks in the U.S and the European markets Before
and After MIDID II. Stocks are grouped in terciles of prices (T1 P, T2 P and T3 P) and they are also grouped
by decile of depth at the NBBO. We define TSC a stock that satisfies two conditions. First, it has an average
number of shares at the NBBO greater than the 50th, 60th and 70th decile. Second, it has an average quoted
spread that is less or equal than a tick and a half.

U.S. E.U. BEFORE E.U. AFTER
T1 P T2 P T3 P AVG T1 P T2 P T3 P AVG T1 P T2 P T3 P AVG

50th D 7.75% 4.14% 0.98% 4.29% 4.17% 6.55% 1.19% 3.97% 2.98% 4.76% 0.00% 2.58%
60th D 7.75% 4.14% 0.98% 4.29% 4.17% 4.17% 0.60% 2.69% 2.98% 3.57% 0.00% 2.18%
70th D 7.75% 4.11% 0.98% 4.28% 4.17% 2.98% 0.00% 2.38% 2.98% 2.38% 0.00% 1.79%
AVG 7.75% 4.13% 0.98% 12.85% 4.17% 4.56% 0.60% 9.33% 2.98% 3.57% 0.00% 6.55%

For high priced stocks instead our model predicts that given the associated high degree of

undercutting, the tick size should be wider; however, it should also reflect the liquidity of the stock

with higher liquidity requiring a smaller tick size. Our empirical evidence shows that high priced

stocks are characterized by large undercutting, which according to our model’s results may harm

liquidity provision resulting in wider quoted spread. However, assessing the value of the spread

of the U.S. high-priced stocks is complicated by the fact that the wide odd-lot undercutting takes

place over the counter. It is therefore challenging to empirically determine whether high-priced

stocks should be assigned a tick size larger than one cent. Yet the distribution of the U.S. stock

prices and the associated market quality metrics provide some guidelines on this issue. Table 7

shows that 548 stocks with a price larger than $100 exhibit an average price of $255 and 13 stocks

with a price larger than $1000 exhibit an average price of $2184. It is therefore highly likely
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that a one cent tick size is not the optimal price improvement for giant stocks - e.g., GOOGLE,

AMZN, BKNG, AZO - as such a negligible cost of undercutting is likely to harm their liquidity

provision.

For high priced stocks instead our model predicts that given the associated high degree of

undercutting, the tick size should be wider. However, it should also reflect the liquidity of the

stock with higher liquidity requiring a smaller tick size. Our empirical evidence shows that high

priced stocks are characterized by large undercutting, which according to our model’s results

may harm liquidity provision resulting in wider quoted spread. The distribution of the U.S.

stock prices and the associated market quality metrics provide some guidelines on this issue.

Table 7 shows that 548 stocks with a price larger than $100 exhibit an average price of $255,

and 13 stocks with a price larger than $1000 exhibit an average price of $2184. It is therefore

highly likely that a one cent tick size is not the optimal price improvement for giant stocks -

e.g., GOOGLE, AMZN, BKNG, AZO - as such a negligible cost of undercutting is likely to harm

their liquidity provision. Table 7 provides the average %spread(bps) associated with each price

bucket of stocks. However, assessing the value of the spread of the U.S. high-priced stocks is

complicated by the fact that the wide odd-lot undercutting takes place over the counter. Yet, as

a first cut, we can adjust the spread measures reported in Table 7 by using the SEC’s estimate

in the MDI Rule SEC (2020) of a roughly 15% reduction in $spread for stocks priced 250− 1000

(28% reduction for stocks priced $1000− $10000) when taking into account odd lots quoting.28

This means that for stocks priced $250− $1000 the average %spread(bps) should decrease from

29.671bps to 16.959bps and for stocks priced > $1000 it should decrease from 49.729bps to

12.798bps. Considering that the relative tick size for stocks priced $250 − $1000 (> 1000) is

0.01
625
× 10000 = 0.16bps ( 0.01

5500
× 10000 = 0.018bps), the resulting %spread(bps) would still be

100 (700) times larger than the existing relative tick size.29 It is therefore likely that taking

odd-lots adjustment into account would only minimally alleviate our general concern about the

??’s proposal .
28See footnote 607, page 237 of SEC (2022).
29As the existing spread for these stocks is larger than $0.04 the proposed tick size would not change and

remain $0.01. Note that the average spreads reported in the SEC (2022) proposal differ somewhat from those
reported in Table 7 which are based on our Nasdaq sample. However, even with their parsimonious evaluation
the resulting %spread(bps) would be 30 (211) times larger than the relative tick size.
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Table 7: U.S. Price Distribution and Market Quality
This table reports the price distribution of the U.S. stocks considered in our analysis (3988 stocks). In column
2 we report the number of stocks belonging to the specific price bucket; in columns 3-6 we report the Average
Price, Spread, % Spread (bps), and Turnover (expressed in millions) of each price bucket.

Obs. Avg. Price Avg. Spread Avg. % Spread Avg. Turnover
($) ($) (bps) (Mill $))

p ≤ $10 988 5.965 0.068 122.022 8.867
$10 < p ≤ $50 1833 25.137 0.148 65.142 43.200
$50 < p ≤ $100 619 70.745 0.220 32.307 121.000
$100 < p ≤ $250 413 153.033 0.408 25.901 355.000
$250 < p ≤ $1000 122 394.292 1.247 29.671 709.000
p > $1000 13 2184.435 9.777 49.729 3780.000

Due to data availability, we cannot fully test our Empirical Prediction 1 for Europe. We can

only investigate the effects on the number of tick size constrained stocks of the new MiFID II tick

size regime introduced in 2018. Table 6 shows that consistently with our Empirical Prediction

1, the introduction of the MiFID II regime decreases the percentage number of TSC stocks

in Europe from 9.33% to 6.55% overall. It also shows that the European stocks have a non

monotonic relationship with the stock price. This is probably due to the fact that the European

tick size was already a positive step function of the stock price.

Figure 8: Odd Lot Trade/Volume (%) vs. Relative Tick Size (bps)
This figure reports for all the stocks listed on the U.S. markets by 1 January 2022 (3988) on the left (right) the
relationship between the percentage of Odd Lot Trades (Volume) and the relative tick size (tick size over price in
bps). Stocks are grouped by tercile of Average Number of Trades (T1 ANT -grey-, T2 ANT -cyan- and T3 ANT
-red).
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Figure 9: Queuing - Inverted Share vs. Relative Tick Size
This figure reports for all the stocks listed on the U.S. markets by 1 January 2022 (3988) on the left (right) the
relationship between Queue (min) (Inverted Share (%)) and the relative tick size (tick size over price in bps).
Stocks are grouped by tercile of Average Number of Trades (T1 ANT -grey-, T2 ANT -cyan- and T3 ANT -red).
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6.2 MiFID II New Tick Size Regime - Empirical Prediction 2

Our Empirical Prediction 2 allows us to evaluate the change in tick size introduced by MiFID

II in 2018. More specifically, if after the introduction of the new tick size regime market quality

measured by spread improves, our model suggests that the new tick size regime is likely to have

improved total welfare.

The figures presented on the first row of Figure 10 report the relationship between the av-

erage spread (bps) and the relative tick size (bps) for the European stocks before and after the

introduction of MiFID II. Along the dashed black line the average spread (bps) is equal to the

relative tick size (bps), hence the observations above this line correspond to stock-day observa-

tions with spreads greater than the minimum tick size. Consistent with the new MiFID II Tick

Size regime, the European stocks are grouped into three terciles based on the Average Number

of Trades (T1 ANT, T2 ANT and T3 ANT). The figures presented in the second row of Figure

10 report the fitted lines corresponding both to each group of stocks (grey, cyan and red solid

lines) and to the whole sample of stocks (blue solid line). First, note that as liquidity increases
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the fitted lines move towards the dashed black line: on average liquid stocks trade at spreads

which are nearer to the minimum tick size. Second, after the introduction of MiFID II, the fitted

line of the whole sample (blue line) moves substantially towards the dashed black line indicating

that spreads overall improve.

To study the effects of MiFID II on market quality by using our Empirical Prediction 2,

we perform a Difference in Difference (DD) analysis around the introduction of the new policy

regime. We collect minute by minute data for 168 Pan-European stocks from October 2017 to

March 2018. We use the following specification to evaluate the effectiveness of MiFID II:

MQi,t = α+γi+δt+φ1τi,t+β1(Iinc×AFTER)+β2(Idec×AFTER)+φ2V olati,t+φ3EUV IXt+εi,t

(18)

where MQi,t is a market quality metric - quoted spread, %− spread, depth at BBO, or volume

- aggregated at daily level; τi,t is the daily tick size;30 AFTER is an indicator variable equal to

1 after January the 1st 2018 and 0 otherwise; Iinc is an indicator variable equal to 1 if the tick

associated to stock i increases after MiFID II and 0 otherwise; Idec is an indicator variable is

equal to 1 if the tick associated to stock i decreases after MiFID II and 0 otherwise; V olati,t is

the daily volatility at the stock level, while EUV IXt is the daily STOXX volatility index. The

coefficients of interest are β1 and β2: they measure the impacts of the change in the tick size

regime. We do not include dummies on stock level (Iinc and Idec) and time level (AFTER) as

we consider both stock, γi, and day fixed effects, δt. The day fixed effects capture common linear

trends, while stock fixed effects capture unobserved stock characteristics. Despite the fact that

our sample is balanced in terms of change in tick size,31 we do not have a fully exogenous control

group and therefore we control for both idiosyncratic and common volatility.

Table 8 reports our results, indicating that after the introduction of MiFID II, %−Spread

significantly decreases for the treated stocks, while Spread decreases only for stocks that expe-
30To determine τi,t before the introduction of MiFID II, we use the different regimes in effect at LSE, Xetra

and Euronext respectively; after MiFID II we use the ESMA tick size table. As the ESMA table indicates to
compute ANT over the previous year (updated every year), to estimate ANT, we collected, for each stock, the
number of trades for the entire 2017 year.

31Out of the 168 stocks considered, 34 stocks experienced a tick size increase, 61 a tick size decrease and 73
did not experience any change in the tick size.
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Figure 10: Percentage Spread (bps) - Relative Tick Size (bps)
This figure reports the relationship between percentage spread (bps) and relative tick size (bps). The two graphs
on the first row correspond respectively to the European stocks before and after MiFID II. Stocks are grouped
by tercile of average number of trades (T1 ANT -grey-, T2 ANT -cyan- and T3 ANT -red). The two graphs on
the second row report both the fitted lines for the three terciles and also the fitted line for the overall sample
considered in each graph (blue solid line).
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Table 8: Effects of MiFID II on Market Quality
This table reports the results from the Difference in Difference (DD) analysis around the introduction of the
MiFID II regime. The specification is the following:

MQi,t = α+ γi + δt + φ1τi,t + β1(Iinc ×AFTER) + β2(Idec ×AFTER) + φ2V olati,t + φ3EUV IXt + εi,t

where MQi,t is a market quality metric - spread, percentage spread (s-spread), depth, and volume - aggregated
at daily level; τi,t is the daily tick size; AFTER is an indicator variable equal to 1 after January the 1st 2018
and 0 otherwise; Iinc is an indicator variable equal to 1 if the tick associated to stock i increased after MiFID II
and 0 otherwise; Idec is an indicator variable equal to 1 if the tick associated to stock i decreased after MiFID II
and 0 otherwise; V olati,t is the daily volatility at the stock level, while EUV IXt is the STOXX volatility index
at daily level. We report t-stats in parentheses obtained from robust standard errors clustered by stock.

Dependent Variable Spread %-Spread (bps) Depth Volume
τ 0.616 42.502 0.154 -4.599

(5.744) (3.871) (0.498) (−0.696)
Iinc × AFTER -0.004 -0.599 -0.005 0.277

(−2.921) (−1.827) (−0.463) (0.900)
Idec × AFTER -0.002 -0.736 -0.020 0.350

(−1.150) (−2.439) (−1.636) (0.861)
Volat 0.034 17.843 -0.014 94.102

(4.675) (5.652) (−0.391) (5.606)
EUVIX 0.001 0.030 -0.001 -0.010

(3.768) (3.386) (−3.287) (−0.527)

Stock Fixed Effects Yes Yes Yes Yes
Day Fixed Effects Yes Yes Yes Yes
Observations 20664 20664 20664 20664
N 168 168 168 168
R2 25% 13% 12% 7%

rienced a tick size increase. Volume and Depth are not significantly impacted by the change in

the tick size regime. Therefore, using our Empirical Prediction 2 we can conclude that the new

MiFID II regime has likely improved total welfare of market participants.

Up to here, we used indicators of top of the book market quality. To evaluate the effects

of the new tick size regime on the overall liquidity of the European markets we run the (18)

regression for each of the 20 levels of the book. Figure 11 reports the coefficients β1 and β2 with

the associated confidence intervals at 95% for both the case of a tick size increase (Panel A) and

the case of a tick size decrease (Panel B). Table 1.F in the Appendix reports the exact values

of the coefficients and associated t-statistics. Taken together these results confirm our analysis

of the top of the book market quality as our Spread measures tend to improve (grey shaded)

whereas the effects on Depth are negligible.32

32Note that %Spread decreases significantly for all levels of the book beyond the first one, whereas Spread
significantly improves only following a reduction in the tick size. The difference in the result reported in Table 8
is due to the fact that for Level II data we focused on the last hour of the trading day only.
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7 Conclusions and Policy Implications

This paper shows that in a limit order book where traders can endogenously choose between

taking and supplying liquidity, and therefore are allowed to undercut or queue behind existing

limit orders, the optimal tick size cannot be zero. The optimal tick size set by a social planner

optimally manages the dynamic interaction between liquidity supply and liquidity demand. This

paper also shows that the optimal tick size should be set as a positive function of the asset value,

and as a negative function of the liquidity of the instrument. Finally, this paper shows that the

tick size is a friction that should be set to zero only in quote-driven markets where there is no

endogenous liquidity provision.

Our paper has important policy implications as our results are in line with the tick size regime

proposed by ESMA within the MiFID II revision in January 2018. Our empirical results show

that the new MiFID II regime has overall improved market quality, measured by spread, and our

model’s predictions allow us to suggest that the tick size changes have probably been beneficial

for market participants.

Our results are also consistent with the proposal of an "Intelligent Ticks" regime suggested

by the Nasdaq on December 2019. The Nasdaq proposal aimed to renew the old tick size regime

imposed on the U.S. stock markets by the Regulation National Market System Rule 612 in 2007,

that defines a binary tick size protocol according to which for all stocks priced above 1$ the tick

size should be equal to 1 penny. According to the Nasdaq proposal, the tick size should be set

based only on the average quoted spread as opposed to being based on both the asset price and

the average number of trades as for the MiFID tick size regime.33

Our theoretical results are also partially consistent with the recent SEC (2022) proposal to

modify Rule 612 thus setting the tick size - only for instruments with an average spread smaller

than $0.04 - as a function of the average quoted spread of that instrument. Our empirical results

show that for the U.S markets low priced stocks are tick size constrained at the best bid offers
33The ESMA table - if used as a theoretical benchmark to set the U.S. OTS across instruments - should be

adequately adjusted to include the much larger ANT buckets that characterize the U.S. markets.For example,
the 21 October 2022 daily volume and $ volume for the Nasdaq are 4.7B and 218.8$B , whereas for the LSE
primary mark they are 1.3B and 4.2$B. The ESMA table - as it is set - would assign some gigantic high price
stocks (e.g., MSFT, APPL, DIS, MCD, WMT ) a much higher than current OTS, whereas the OTS derived from
buckets based on historical quoted spread would avoid this issue (Appendix Nasdaq (2019), Chart 17).

58



whereas high priced stocks tend to be less tick size constrained. They also show that when the

price of the U.S. stocks is relatively low (high), queues at the best bid-offer are relatively long

(short). When the relative tick size (tick-to-price ratio) is too wide, traders cannot undercut

existing best quotes thus creating long queues at the best bid-offers. When instead the relative

tick size is too small as the stock price is too high relative to the one cent tick size, undercutting

is cheap and induces investors to refrain from offering liquidity at the best bid offer. The 34-

96494 SEC (2022) proposal only addresses the issue of low-priced tick size constrained stock,

but it does not address the issue of high priced stocks trading at a too small tick size thus being

subject to excessive undercutting.

If the tick size were adjusted for the asset prices - as our model suggests - the smaller tick

size associated with lower priced stocks would allow trading at a smaller bid-ask spread thus

preventing the creation of long queues. Besides, the larger tick size associated with higher priced

stocks would increase the cost of undercutting existing quotes thus raising the incentive for

liquidity suppliers to safely post limit orders (Foley et al. (2022)).
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Figure 11: Effects of MiFID II on each Book Level
This figure reports the coefficients and confidence interval at 95% of a tick size increase in Panel A (Iinc×AFTER) and decrease in Panel B (Idec×AFTER)
from the Difference in Difference (DD) regression analysis around the introduction of the MiFID II regime using the following specification:

MQi,t,l = α+ γi + δt + φ1τi,t + β1(Iinc ×AFTER) + β2(Idec ×AFTER) + φ2V olati,t + φ3EUV IXt + εi,t

where MQi,t,l is a market quality metric - Spread, %-Spread (bps) and Depth - for stock i, day t and level l of the book with 1 ≤ l ≤ 10; τi,t is the daily tick
size; AFTER is an indicator variable equal to 1 after January the 1st 2018 and 0 otherwise; Iinc is an indicator variable equal to 1 if the tick associated to
stock i increased after MiFID II and 0 otherwise; Idec overleaf is an indicator variable is equal to 1 if the tick associated to stock i decreased after MiFID II
and 0 otherwise; V olati,t is the daily volatility at the stock level, while EUV IXt is the STOXX volatility index at daily level.
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Appendices

A Miscellaneous

Table 1.A: Tick Size Regimes
This table presents an overview of the tick regimes used in most of the major trading venues.

Trading Venue Binary Tick Size

USA USD 0.01 for stocks with price ≥ USD 1, and USD 0.0001 for stocks with price < USD 1.
https://www.sec.gov/divisions/marketreg/subpenny612faq.htm

CANADA CAD 0.01 for stocks with price ≥ CAD 0.5, and CAD 0.005 for stocks with price < CAD 0.5.
(CSE) https://www.thecse.com/en/support/dealers/order-types-and-functionality

SHANGHAI RMB 0.01 for A-share stocks and USD 0.001 for B-share stocks.
(SSE) http://english.sse.com.cn/start/trading/mechanism/

Discrete Tick Size

AUSTRALIA AUD 0.01 for stock with price > AUD1.995 and AUD 0.005 for stocks with price ∈ [AUD 0.1,AUD 1.995],
(ASX) AUD 0.001 for stocks with price ≤ AUD 0.099

https://www.asx.com.au/documents/resources/australian_cash_equity_market.pdf

CANADA CAD 0.125 for stock with price > CAD1000, and CAD 0.1 for stocks with price ∈ [CAD 0.5,CAD 1000],
(TSX) CAD 0.005 for stocks with price < CAD 0.5 .

https://www.tsx.com/resource/en/133

SINGAPORE SGD 0.01 for stock with price > SGD0.995, and SGD 0.005 for stocks with price ∈ [SGD 0.2, SGD 0.995],
(SGX) SGD 0.001 for stocks priced ≤ SGD 0.2.

http://rulebook.sgx.com/rulebook/833-0

Volume Adjusted Tick Size: step function of stock price and average number of trades (ANT)

EU ’MiFID II / MiFIR’ directions: 19 stock price buckets and 6 ANT buckets.
https://www.esma.europa.eu/system/files_force/library/2015/11/2015-esma-1464_annex_i_-_draft_r
ts_and_its_on_mifid_ii_and_mifir.pdf

SWITZERLAND 19 stock price buckets and 2 ANT buckets.
(SIX) https://www.ser-ag.com/dam/downloads/regulation/trading/directives/sdx-dir03-en.pdf

ENGLAND ’MiFID II / MiFIR’ directions: 19 stock price buckets and 6 ANT buckets.
(LSE) https://www.londonstockexchange.com/trade/equity-trading

HONG KONG 11 stock price buckets and 6 ANT buckets.
(HKEX) https://www.hkex.com.hk/-/media/HKEX-Market/Services/Rules-and-Forms-and-Fees/Rules/SEHK/Sto

ck-Options/Rule-UpdateOperational-Trading-Procedures-for-Options-Trading-Exchange-Participan
ts-of-the-Stock/14-13-OTP-StockOptionsRevamp_e.pdf?la=en#:~:text=The%20tick%20size%20for%20H
K,001.

JAPAN 11 stock price buckets and 2 ANT buckets; distinguished for TOPIX 100 Constituents (finer grid)
(JPX) and Other Issuers (corser grid).

https://www.jpx.co.jp/english/equities/trading/domestic/07.html
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B Appendix: T-period Model

B.1 Proof of Equation (1)

Prices on the price grid are symmetric around ν and the distance between two consecutive prices

is τ , hence the first price levels are:

p+1 = ν +
1

2
τ

p−1 = ν − 1

2
τ

(19)

p+1 and p−1 are the initial term of an arithmetic progression with the common difference of two

successive members set at τ :

p+k = p1 + (k − 1)τ = ν + (k − 1

2
)τ

p−k = p−1 − (k − 1)τ = ν − (k − 1

2
)τ

(20)

B.2 Properties and definitions of the T-period Model

To determine the set of feasible prices associated with the set of feasible τ , we first equate p−k

and p+k to the upper and lower bound of the investors’ valuation support, respectively:

pτ
max

−k = (1− b) ν

pτ
max

+k = (1 + b) ν

(21)

∀ τ ∈ (0, τmax). To determine the number of feasible prices +nf (−nf ) on the sell (buy) side

of the price grid we equate the largest (smallest) valuation a trader may have, β ν (β ν), to the

highest (lowest) price level, p+n (p−n). Using (1):

(1 + b)ν = ν +

(
n− 1

2

)
τ

(1− b)ν = ν −
(
n− 1

2

)
τ

(22)
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and solving (22) for n, we obtain +nf (−nf ):

+ nf = +floor

(
bν

τ
+ 0.5

)
− nf = −floor

(
bν

τ
+ 0.5

) (23)

Lemma 1 summarizes the properties of the price grid:

Lemma 1.

1. For any given bv symmetric around v, there exists a set of feasible tick sizes, τ ∈ (0 , τmax),

and an associated set of feasible prices pfk ∈ (βν, βν).

2. For any symmetric state of the book, investors with βti > 1 are buyers and investors with

βti < 1 are sellers. For βti = 1, the investors are indifferent between buying and selling.34

3. For the last player of an T-period game, the submission probability of a market order is:

Pr
(
msk,tT |ΛtT−1

, τ
)

=
1

Γ

(pk
ν
− (1− b)

)
Pr
(
mbk,tT |ΛtT−1

, τ
)

=
1

Γ

(
(1 + b)− pk

ν

) (24)

and does not depend on the state of the other side of the book.

The proof of Lemma 1 is in Appendix B.2.1.

B.2.1 Proof of Lemma 1

1.1 A feasible price is a limit price associated with a positive probability of execution. In order

to guarantee that the SP chooses an OTS that is associated with positive probability of

execution, we need to define a set of feasible tick sizes which includes tick sizes associated

with at least one feasible price on each side of the market. Given a price p+k such that

p+k ≥ βν, the gains from trade associated with a buy order (limit or market) is determined

by equation (4) for any βti and are non positive with probability 1:

βtiν − p+k ≤ 0 ∀ p+k ≥ βν (25)
34As βti has a continuous distribution, the probability of βti = 1 is zero
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Hence ∀p+k > βν an investor never selects a buy order at p+k and therefore any p+k > βν

is not a feasible price. For p+k = βν, the only βti extracted - with probability 0 - that

makes equation (25) non negative is βti = β. For βti = β the investor’s payoff would be

equal to zero, and assuming an investor with zero payoff chooses not to trade (nt), even

p+k = βν is not a feasible price. Symmetrically, any p+k ≤ βν is not a feasible price. It

follows that any tick size such that τ ≥ τmax is not feasible as it only defines non feasible

prices: using (1) and (3), for τ = τmax we obtain:

p+1 = ν + (1− 1

2
)τmax

= ν + (1− 1

2
)2bν

= ν + bν = ν(1 + b) = βν

(26)

As p+1 is not feasible, p∼k > p+1 are also not feasible.

1.2 · If the state of the book is symmetric and the arriving investor has βti > 1, he will

neither market sell, nor limit sell:

1. Market order: If βti > 1, a market buy at p−k (p+k) dominates a market sell at

p+k (p−k):

(βtiv − p−k) > (p+k − βtiv)

(βtiv − p+k) > (p−k − βtiv)

(27)

By symmetry, both terms in equation (27) are satisfied if βti >
p+k+p−k

2v
, and using

equation (1) this condition is satisfied for βti > 1.

2. Limit Order: For a symmetric state of the book, the execution probability of a

limit buy order at p+k (p−k) is equal to the execution probability of a limit sell
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at p−k (p+k):35

Pr(Ψlbk,ti
|Λti−1

, τ) = Pr(Ψls−k,ti
|Λti−1

, τ) > 0 (28)

Hence the payoff of a limit buy order at p+k (p−k) dominates the payoff of a limit

sell order at p−k (p+k):

(βtiv − p−k)Pr(Ψlb−k,ti
|Λti−1

, τ) > (p+k − βtiv)Pr(Ψlsk,ti
|Λti−1

, τ) (29)

· By the previous point, necessary conditions for no-trading (ntti) to be a dominated

strategy are:

(βtiν − p−k)Pr(Ψlb−k,ti
|Λti−1

, τ) > 0

βti > 1

(30)

where Pr(Ψlb−k,ti
|Λti−1

, τ) is the execution probability of a limit buy order posted at

p−k, given the ti−1 state of the book, Λti−1
, and on τ . Conditions (30) are satisfied if

βtiν > p−k, which is always true as p−k < ν and βti > 1.

Same line on reasoning applies for βti < 1

1.3 In the last period of a generic T-period game, the possible states of the book are:

1. Only one limit order on one side of the book.

2. Two or more limit orders on one side of the book.

3. Two or more limit orders on both sides of the book.

4. No limit order on any side of the book (empty book).

In our model with unitary trade, the first two states of the book are equivalent for the

investor arriving at the T th-period, as he can just focus on the best possible price. Hence,
35Take for example the 2-period model, the execution probability of a limit buy posted at price p−k is given

by (
p−k
ν −(1−b)

Γ ) and the execution probability of a limit sell posted at p+k is (
1+b−

p+k
ν

Γ ). The two probabilities

are both equal to (
b− (2k−1)

2ν τ

Γ ).
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in both states of the book the submission probability of a market sell order is:

Pr
(
msk,tT |ΛtT−1

, τ
)

= Pr(pk > βtT ν) =
1

Γ

(pk
ν
− (1− b)

)
(31)

The 3rd state of the book implies that the best limit sell price is necessarily higher than

the best limit buy price (otherwise the two would match). If pk is the price associated with

the best limit buy order, it will be lower than the price associated with any best limit sell

order, e.g. pk+n. The probability of submitting a market sell order at pk can be obtained

if the following conditions hold:

Pr
(
msk,tT |ΛtT−1

, τ
)

= Pr(pk − βtT ν > 0, pk − βtT ν > βtT ν − pk+n) (32)

which guarantee that a market sell order dominates both no-trading (nt), and a market

buy order (mb). It is possible to write equation (32) as:

Pr (pk − βtT ν > 0, pk − βtT ν > βtT ν − (pk + nτ))

Pr (pk − βtT ν > 0, 2pk + nτ > 2βtT ν)

Pr (pk > βtT ν, pk > −
nτ

2
+ βtT ν)

(33)

Considering the last equation in (33) as the joint probability of pk > βtT ν and pk >

−nτ
2

+ βtT ν, and using the definition of the conditional probability, we obtain:

Pr (pk > −nτ
2

+ βtT ν|pk > βtT ν) Pr(pk > βtT ν) = Pr (pk > βtT ν, pk > −nτ
2

+ βtT ν).

If pk > βtT ν =⇒ pk > −nτ
2

+ βtT ν =⇒ Pr (pk > −nτ
2

+ βtT ν | pk > βtT ν) = 1 =⇒

Pr (pk > βtT ν) = Pr(pk > βtT ν, pk > −
nτ

2
+ βtT ν) (34)

Note that equation (34) defines the same probability of market sell order as equation (31).

Hence, the probability that a market sell order is profitable (i.e., the probability of market

sell is positive) is independent of the probability that the same market sell order dominates
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a market buy order. This means that the opportunity to market buy offered by the state of

the book on the other side of the market does not affect the equilibrium order submission

probability of a market sell order.

Finally, if no limit orders are standing in the book (state of the book 4), the T th player

cannot submit any market order and therefore the probability of submission is zero.

Symmetric results apply for the submission probability of a market buy order.

C Appendix: Two Period Model

C.1 Proof of Proposition 1

Given Lemma (1), we present our results for an investor arriving at t1 with βt1 > 1. Results for

a seller hold by symmetry.

Equation (6) shows the order submission probability of a market sell order at t2. We now show

the optimal order submission probability of a limit buy order at t1. We start showing that for

any given τ ∈ (0 , τmax) a limit buy order posted at p+k is a dominated strategy.

Limit buy at p+k is a dominated strategy

Necessary and sufficient condition for a limit buy at p+k to be dominated is that there exists

at least one limit buy posted at pk̃ that dominates it. Consider p−1, by (7) a limit buy at p+k is

dominated if:

(βt1ν − p+k)(
b

Γ
+

2k − 1

2vΓ
τ) < (βt1ν − p−1)(

b

Γ
− τ

2vΓ
)

(βt1ν − p−1 − kτ)(
b

Γ
− τ

2vΓ
+
kτ

νΓ
) < (βt1ν − p−1)(

b

Γ
− τ

2vΓ
)

βt1kτ

Γ
+
kτ 2

2νΓ
− kτ

Γ
− kτb

Γ
+
kτ 2

2νΓ
− (kτ)2

νΓ
< 0

(βt1 − (1 + b)) +
τ

ν
(1− k) < 0

(35)

This is always true as βt1 ≤ (1 + b) and +k ≥ 1. Hence given Lemma (1) the optimal order

submission strategy for a buyer is a limit order at p−k.

Optimal set of p−k and optimal lb−k,ti submission probability
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We now derive both the optimal order submission probabilities associated with p−k, and the

optimal set of p−k prices. Considering both p−k−j such that p−k−j < p−k , and p−k+j such that

p−k+j > p−k with j ∈ N+, and given Lemma (1) and conditions (7), a limit buy at p−k, lb−k,t1 ,

is optimal if:

(βt1ν − p−k)Pr(Ψlb−k,t1
|Λt0 , τ) > (βt1ν − p−k−j) (Pr(Ψlb−k,t1

|Λt0 , τ)− jτ

Γv
)

(βt1ν − p−k)Pr(Ψlb−k,t1
|Λt0 , τ) > (βt1ν − p−k+j) (Pr(Ψlb−k,t1

|Λt0 , τ) +
jτ

Γv
)

(36)

Equations (36) can be rearranged as:

ΓPr(Ψlb−k,t1
|Λt0 , τ) +

p−k
ν
− jτ

ν
< βt1 < ΓPr(Ψlb−k,t1

|Λt0 , τ) +
p−k
ν

+
jτ

ν
(37)

Now if j = 1: Equations (36) can be rearranged as:

ΓPr(Ψlb−k,t1
|Λt0 , τ) +

p−k
ν
− τ

ν
< βt1 < ΓPr(Ψlb−k,t1

|Λt0 , τ) +
p−k
ν

+
τ

ν
(38)

if (38) holds for j = 1, it also holds for any j > 1.

To determine the set of p−k prices that satisfy (38), we first determine the prices associated

with the boundary βt1 values for a buyer. According to Lemma (1) a buyer arriving at t1 has

1 < βt1 < (1 + b), hence we set the boundaries of the βt1 range for a generic lb−k,t1 in (38) equal

to 1 + b and 1 respectively:

ΓPr(Ψlb−k,t1
|Λt0 , τ) + p−k

ν
+ τ

ν
= 1 + b (39)

ΓPr(Ψlb−k,t1
|Λt0 , τ) + p−k

ν
− τ

ν
= 1 (40)

• Consider first the βt1 upper bound. Rearranging equation (39) and using equation (31):

p−k = v − 1

2
τ (41)

73



Using (1):

v − 1

2
τ = v − kτ + 0.5τ

=⇒ k = 1

(42)

Hence the upper bound of p−k is p−1.

• Consider now the βt1 lower bound. Rearranging (40) and using equation (31):

p−k = ν + τ − Γν(
p−k
ν
− (1− b)

Γ
)

p−k = ν(1− 0.5b) + 0.5τ

(43)

Using (1):

ν(1− 0.5b) + 0.5τ = ν − kτ + 0.5τ

=⇒ k =
bν

2τ

(44)

If bν
2τ
∈ N+, then the lower bound of p−k is p− bν

2τ
(Figure 1.C).

The optimal set of prices for lb−k,t1 is:

pk ∈
[
p− bν

2τ
p−1

]
(45)

and the associated optimal submission probability is:

Pr

(
ΓPr(Ψlb−k,t1

|Λt0 , τ) +
p−k
ν
− τ

ν
< βt1 < ΓPr(Ψlb−k,t1

|Λt0 , τ) +
p−k
ν

+
τ

ν

)
=

∫ ΓPr(Ψlb−k,t1
|Λt0 ,τ)+

p−k
ν

+ τ
ν

ΓPr(Ψlb−k,t1
|Λt0 ,τ)+

p−k
ν
− τ
ν

1

Γ
dβ =

2τ

Γν

(46)

Substituting Γ = 2b into (46):

Pr (lb−k,t1 |Λt0 , τ) =
τ

bν
(47)

Intuitively, as βt1 is uniformly distributed with semi-support equal to b, the probability that
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investors use a generic pk in (45) is equal to the ratio between the relative distance between two

consecutive prices, p−k and p−k+1 - the relative tick size τ
ν
- and the semi-support b.

Figure 1.C: Feasible and Optimal Prices ( bν
2τ ∈ N

+)
In the first line of Figure 1.C we report the feasible prices associated with a generic bν and a feasible τ . We highlight
in green the optimal set of prices for the 1st player, and in red sub-optimal set of prices. The distance between
two consecutive prices is τ and ν is the fundamental asset value. In the second line, we report the β.,.t1 thresholds
for both a buyer βlb−k,lb−k−1

t1 (between 1 and β) and a seller βlsk,lsk+1

t1 (between β and 1). The distance between
two consecutive β.,.t1 thresholds is equal to 2τ

ν ; β−β = 2b, and therefore Pr (lbk,t1 |Λt0 , τ) = Pr (lsk,t1 |Λt0 , τ) = τ
bν .

p−nf

p− bν
2τ

p−1

ν
p+1 p+ bν

2τ

p+nf
τ
2

τ
2 ττ

β 1 β

β
ls bν

2τ
,ls bν

2τ −1

t1
βls2,ls1t1 β

lb−1,lb−2

t1 β
lb− bν

2τ +1
,lb− bν

2τ
t1

2τ
ν

2τ
ν

2τ
ν

2τ
ν

Pr (lbk,t1|Λt0 , τ) = Pr (lsk,t1|Λt0 , τ) = τ
bν

For completeness, we now also consider the case with bν
2τ
/∈ N+, although in Appendixes C.2.1

and C.2.3 we show that this case is irrelevant for the SP maximization problem. When bν
2τ
/∈ N+,

the lower bound of pk is p−(floor( bv
2τ

)+1). To determine this lower bound pk, we first show that the

lower bound of the optimal βt1 region where the buyer optimally chooses p−floor( bv
2τ

) is strictly

greater than 1:

1 ≤
p−floor( bv

2τ
)

v
+ b− 1 +

p−floor( bv
2τ

)

v
− τ

v
bv

2τ
> floor(

bv

2τ
)

(48)

This means that there exists a βt1 region (1,
p−floor( bv2τ )

v
+ b − 1 +

p−floor( bv2τ )

v
− τ

v
), such that the

investor will choose p−(floor( bv
2τ

)+j). As k ∈ N+, this region may include at the most another pk.

Therefore the lowest pk when bν
2τ
/∈ N+ is p−(floor( bv

2τ
)+1).

The submission probabilities for ∀pk ∈
[
p−floor( bv

2τ
), p−1

]
are given by (46) (and hence (47)).

For pk = p−(floor( bv
2τ

)+1), (46) becomes:

∫ p
−floor( bv2τ )

v
+b−1+

p
−floor( bv2τ )

v
− τ
v

1

1

Γ
dx = 0.5− τ

bν
× floor( bv

2τ
) (49)
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The submission probability of a limit buy order at p−(floor( bv
2τ

)+1) in (49) is the difference between

the submission probability of a limit buy order that by Lemma (1) is equal to 0.5, and the

cumulative probability of investors choosing a limit buy at any pk excluding p−(floor( bv
2τ

)+1) is

p−k ∈
[
p−floor( bv

2τ
), p−1

]
which is τ

bν
× floor( bv

2τ
).

We can therefore conclude that the optimal order submission probabilities when bν
2τ

/∈ N+

(Case 2) are:

Pr (lb−k,t1|Λt0 , τ) =


τ

bν
∀pk ∈

[
p−floor( bv

2τ
), p−1

]
0.5− τ

bν
× floor( bv

2τ
) if pk = p−(floor( bv

2τ
)+1)

(50)

C.2 Welfare Analysis

Equation (11) can we rewritten as :

wt1 (lbt1|τ) =
m∑
k=1

Pr(Ψlb−k,t1
|Λt0 , τ)× gain−k,t1 (51)

where gain−k,t1 = 1
Γ

∫
βt1∈B(τ)

(βt1v − p−k) dβt1 .

To show how a change in the tick size affects the welfare of the first player, we express the

two components in (51), Pr(Ψlb−k,t1
|Λt0 , τ) and gaint1−k, as a function of a generic tick τ̂ = τ + ε,

with τ̂ > τ :36

Pr(Ψlb−k,t1
|Λt0 , τ̂) = Pr(Ψlb−k,t1

|Λt0 , τ)− (k − 1
2
) ε

Γv
(52)

gainτ̂−k, t1 = gain−k, t1 + ε
Γv

(2bv + (1− 2k) [ε+ 2τ ]) (53)

Defining j(k) = ε
Γv

(2bv + (1− 2k) [ε+ 2τ ]) in the second term of (53) and substituting (52) and

(53) into (51), we obtain the welfare of the t1 buyer as a function of τ̂ :

ωt1(lbt1 |τ̂) =
n∑
k=1

[
Pr(Ψlb−k,t1

|Λt0 , τ)− (k − 1

2
)
ε

Γv

]
× [gain−k,t1 + j(k)] (54)

36By Proposition (1) it follows that for τ̂ > τ there are n ≤ m prices played with positive probability by the
trader arriving at t1.
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Taking the difference between (54) and (51) , we obtain:

∆ωt1(lbt1 |τ̂ , τ) = +
n∑
k=1

Pr(Ψlb−k,t1
|Λt0 , τ̂)j(k)−

n∑
k=1

(k − 1

2
)
ε

Γv
× gain−k,t1

−
m∑

k=n+1

Pr(Ψlb−k,t1
|Λt0 , τ)× gain−k,t1

(55)

To derive equation (52) we first need to derive p−k with k ∈
[
1, f loor( bν

2τ
) + 1

]
for a generic

tick τ̂ such that τ̂ = τ + ε

pτ̂−k = v − (k − 1

2
)τ̂

= v − (k − 1

2
)(τ + ε)

= p−k − (k − 1

2
)ε

(56)

Using (6), we now derive equation (52):

Pr(Ψlb−k,t1
|Λt0 , τ̂) = Pr

(
pτ̂−k − βt2v > 0

)
=

1

Γ

[
pτ̂−k
v
− (1− b)

]
=

1

Γ

[
pτ−k
v
− (k − 1

2
)
ε

v
− (1− b)

]
= Pr(Ψlb−k,t1

|Λt0 , τ)− (k − 1

2
)
ε

vΓ

(57)

To derive (53), we write the gain−k,t1 as a function of τ̂ , for a generic p−k ∈
[
−(floor( bν

2τ̂
+ 1), −1

]
;

and using condition (38) in Proposition (1) we obtain the optimal βt1 region for a generic p−k

βt1 ∈ B(τ̂) =
{
β
lb−(k+1),lb−k
t1 , β

lb−k,lb−(k−1)

t1

}
:

gainτ̂−k, t1 =

[∫
βt1∈B(τ̂)

βt1v − pτ̂−k
Γ

dβt1

]
=

v

2Γ

[
(β

lb−k,lb−(k−1)

t1 )2 − (β
lb−(k+1),lb−k
t1 )2

]
−
pτ̂−k
Γ

[
β
lb−k,lb−(k−1)

t1 − βlb−(k+1),lb−k
t1

] (58)

where the βt1 thresholds corresponding to the extremes of integration are:

β
lb−(k+1),lb−k
t1 := (βt1v − pτ̂−k)Pr(Ψlb−k,t1

|Λt0 , τ̂) = (βt1v − pτ̂−(k+1))Pr(Ψlb−(k+1),t1
|Λt0 , τ̂)

β
lb−k,lb−(k−1)

t1 := (βt1v − pτ̂−k)Pr(Ψlb−k,t1
|Λt0 , τ̂) = (βt1v − pτ̂−(k−1))Pr(Ψlb−(k−1),t1

|Λt0 , τ̂)

(59)
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To obtain the βt1 thresholds we express prices and execution probabilities in (59) as function of

p−k:

pτ̂−(k+1) = p−k − τ − (k + 1− 1

2
)ε

Pr(Ψlb−(k+1),t1
|Λt0 , τ̂) = Pr(Ψlb−k,t1

|Λt0 , τ)− (k + 1− 1

2
)
ε

Γv
− τ

Γv

pτ̂−(k−1) = p−k + τ − (k − 1− 1

2
)ε

Pr(Ψlb−(k−1),t1
|Λt0 , τ̂) = Pr(Ψlb−k,t1

|Λt0 , τ)− (k − 1− 1

2
)
ε

Γv
+

τ

Γv

(60)

Substituting (52), (56) and (60) into (59) we obtain the βt1 threshold that we substitute into

(58) to derive (53).

C.2.1 Proof of Corollary 1.1

In the first part of the proof, we show that the SP can restrict its maximization problem to the

set of tick sizes associated with bν
2τ
∈ N+ which correspond to the first part of Proposition (1).

This is because in this section we prove that for any tick size such that bν
2τ
/∈ N+, there exists at

least one tick size such that bν
2τ
∈ N+ with an associated greater welfare.

Without loss of generality, following Proposition (1) we consider a tick size τ such that

bν
2τ
∈ N+ that defines m prices with equal positive submission probabilities at t1. We then

consider the next τ̂ > τ that defines m− 1 prices with equal positive submission probabilities at

t1 (Figure 2.C). As shown in the proof of Proposition (1), any tick size τ̄ = τ+ε with ε ∈ (0, τ̂−τ)

in between τ and τ̂ , (τ̄ | τ < τ̄ < τ̂), associated with bν
2τ̄
/∈ N+, will define m prices with positive

(not equal) submission probabilities. We now show that for the 1st trader the welfare associated

with any τ̄ is smaller than the welfare associated with τ and therefore the SP can restrict its

maximization problem to the set of tick sizes associated with bν
2τ
∈ N+.

Figure 2.C: τ domain

0 τ τ̂ τmax

bν
2τ = m bν

2τ̂ = m− 1

τ̄ = τ + ε

ε ∈ (0, τ̂ − τ)
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The incremental difference of welfare between ωt1(lbt1 |τ) and ωt1(lbt1 |τ̄) is :

∆ωt1(lbt1 |τ̄ , τ) = ωt1(lbt1 |τ̄)− ωt1(lbt1 |τ)

=
[
Pr(Ψlb−m,t1

|Λt0 , τ̄)× gainτ̄−m,t1 − Pr(Ψlb−m,t1
|Λt0 , τ)× gain−m,t1

]
+

+
m−1∑
k=1

Pr(Ψlb−k,t1
|Λt0 , τ̄) j(k)−

m−1∑
k=1

(k − 1

2
)
ε

Γv
× gain−k,t1

(61)

Considering the lower and upper optimal bounds of gainτ̄−m,t1 used in equation (49) we obtain:

gainτ̄−m,t1 =

∫ 2
pτ̄m−1
ν

+b−1− τ
v

1

βt1ν − pτ̄−m
Γ

dβt1 (62)

Using the definition of derivative, we know that ωt1(lbt1 |τ)′ in the neighborhood of ε ∈ (0, τ̂−τ)

is equal to

ωt1(lbt1 |τ)′ = lim
ε→0

∆ωt1(lbt1 |τ̄ , τ)

ε
= −O(c) (63)

where c is a constant, hence the welfare ωt1(lbt1 |τ) is decreasing in τ in the interval ε ∈ (0, τ̂−τ).

Therefore, the subset of ticks that the SP must consider to determine the optimal welfare for

the 1st investor is defined by τ ∈ (0, τmax) such that bν
2τ
∈ N+.

To show that ∆ωt1(lbt1 |τ̂ , τ) < 0 in equation(55), we choose τ and τ̂ such that according

to Proposition (1) the buyer at t1 chooses m = bν
2τ

and n = bν
2τ̂

optimal p−k prices respectively.

Given that τ̂ = τ + ε, setting ε = bv
m

=⇒ m = 3n. Hence we re-write (55) as:

∆ωt1(lbt1 |τ̂ , τ) = −
3n∑

k=n+1

Pr(Ψlb−k,t1
|Λt0 , τ) gain−k,t1 +

n∑
k=1

Pr(Ψlb−k,t1
|Λt0 , τ̂) j(k)

−
n∑
k=1

(k − 1

2
)
2τ

Γv
× gain−k,t1

(64)
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We consider the first line in (64).

−
3n∑

k=n+1

Pr(Ψlb−k,t1
|Λt0 , τ) gain−k,t1 +

n∑
k=1

Pr(Ψlb−k,t1
|Λt0 , τ̂) j(k)

=
bv

6
− bv

18
− bv

6
+
bv

18
− τ

12
−

n∑
k=1

(
k − 1

2

)
τ̂

Γv
j(k)

= − τ

12
−

n∑
k=1

(
k − 1

2

)
τ̂

Γv
j(k)

(65)

where the first term in equation (65) can be written as:

−
3n∑

k=n+1

Pr(Ψlb−k,t1
|Λt0 , τ)gain−k,t1 ≈ −

3n∑
k=n+1

τ

[
0.5−

(
k − 1

2

)
τ

Γv

]
= −bv

6
+

(
8n2τ 2

2Γv

)
= −bv

6
+
bv

18

(66)

and using (6), the second term in equation (65) can be written as:

n∑
k=1

Pr(Ψlb−k,t1
|Λt0 , τ̂) j(k) =

n∑
k=1

[
0.5−

(
k − 1

2

)
τ̂

Γv

]
j(k)

= 0.5
n∑
k=1

j(k)−
n∑
k=1

(
k − 1

2

)
τ̂

Γv
j(k)

(67)

Using our previous definition of j(k) we can write:

j(k) =
ε

Γv
(2bv + (1− 2k) [ε+ 2τ ])

=
2τ

Γv
(2bν + (1− 2k)2

bν

m
)

=
2τ

Γv
(4bν − 4bν

k

m
)

(68)

Given that Pr(Ψlb−k,t1
|Λt0 , τ) > 0, and that j(k) > 0 ∀k ∈ [1, n] given that Pr(Ψlb−k,t1

|Λt0 , τ) >

0, and that j(k) > 0 ∀k ∈ [1, n]: we can conclude that the difference between the two terms in

the first line of (64) is negative.

Considering that the term in the second line of (64) is negative as gain−k,t1 > 0 and k > 1
2
,

we can also conclude that ∆ωt1(lbt1 |τ̂ , τ) < 0
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C.2.2 Example Corollary 1

Consider first the payoff of an investor arriving at time t1 characterized by a random personal

evaluation, βt1 ν > ν. Combining equations (4) and (6), the first player payoff from a limit buy

order is equal to:

(βt1ν − p)
[
p

Γν
− 1− b

Γ

]
(69)

Given (69), the investor is willing to post his limit buy order at the price, p, that maximizes his

payoff. By taking the first and second order conditions of equation (69), we obtain the quoting

price associated with the highest payoff for the 1st player:

p? =
ν

2
(βt1 + 1− b) (70)

Intuitively, the smaller the tick size, the greater the probability that the 1st player will be able

to quote a pk closer to p?. Now, given (70), there exists at least one investor - i.e., the one with

the largest gains from trade βt1 = 1 + b - whose optimal price is p? = ν. However, p? = ν only

if τ = 0, meaning that at least for one investor decreasing the tick sizes strictly increases his

welfare. As for the remaining players there is no welfare loss, we can conclude that a decreasing

τ is Pareto efficient for the 1st player.

C.2.3 Proof of Corollary 2

Equation (13) can be rewritten as:

ωt2 (mst2|τ) =
m∑
k=1

Pr (lb−k,t1 |Λt0 , τ) gain−k,t2 (71)

where gain−k,t2 =
∫ p−k

v

(1−b)
p−k−βt2v

Γ
dβt2 . As for the t1 investor, we express gain−k,t2 as a function of

τ̂ :

gainτ̂−k,t2 = gain−k,t2 + (k − 1

2
)
ε

vΓ

[
(1− b)v − 1

2
(p−k + pτ̂−k)

]
(72)

The term (k − 1
2
) ε
vΓ

[
(1− b)v − 1

2
(p−k + pτ̂−k)

]
= h(k) is negative by construction being the

product of a positive term, (k − 1
2
) ε
vΓ
, and a negative term,

[
(1− b)v − 1

2
(p−k + pτ̂−k)

]
. This
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last term is the difference between the valuation lower bound and the average of two p−k prices

obtained as a function of τ and τ̂ respectively. By definition, these two prices are feasible and

therefore they are greater than (1− b)ν. By substituting (72) into (71), we can therefore write

(71) as a function of τ̂ :

ωt2(mst2|τ̂) =
n∑
k=1

Pr (lb−k,t1 |Λt0 , τ̂)
[
gain−k,t2 + h(k)

]
(73)

The difference between (73) and (71) is the difference between the t2 investor’s welfare computed

as a function of τ and of τ̂ :

∆ωt2(mst2 |τ̂ , τ)

=
n∑
k=1

Pr (lb−k,t1|Λt0 , τ̂)
[
gain−k,t2 + h(k)

]
−

m∑
k=1

Pr (lb−k,t1|Λt0 , τ) gain−k,t2

(74)

Given the gain expression for a generic k ∈
[
1, f loor( bν

2τ̂
) + 1

]
as a function of τ̂ = τ + ε

gainτ̂−k,t2 =
1

Γ

∫ pτ̂−k
v

1−b
(pτ̂−k − βt2v)dβt2 (75)

if we substitute (56) in (75):

gainτ̂−k,t2 =
1

Γ

∫ p−k−(k− 1
2 )ε

v

1−b
(p−k − (k − 1

2
)ε− βt2v)dβt2 , (76)

it is possible to write the above integral as:

gainτ̂−k,t2, =
1

Γ

∫ p−k−(k− 1
2 )ε

v

1−b
(p−k − βt2v)dβt2 −

1

Γ

∫ p−k−(k− 1
2 )ε

v

1−b
(k − 1

2
)ε dβt2 (77)
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Using the integral property
∫ b−c
a

=
∫ b
a
−
∫ b
b−c, we can re-write (77) as:

gainτ̂−k,t2 =
1

Γ

∫ p−k
v

1−b
(p−k − βt2v)dβt2 −

1

Γ

∫ p−k
v

p−k−(k− 1
2 )ε

v

(p−k − βt2v)dβt2 −
1

Γ

∫ p−k−(k− 1
2 )ε

v

1−b
(k − 1

2
)ε dβt2

= gain−k,t2 + (k − 1

2
)
ε

Γv

[
(1− b)ν − 1

2

(
p−k + pτ̂−k

)]
(78)

In the same spirit of the proof of Corollary 1.1, we now show that the SP can also restrict its

maximization problem for the investor arriving at t2 to the tick sizes such that bν
2τ
∈ N+. Hence,

as we did in the proof of Corollary 1.1, we consider τ and τ̂ that define respectively m and m−1

prices with positive submission probabilities at t1 (Figure 2.C). Following the case bν
2τ̄

/∈ N+ in

the proof of Proposition (1), each τ̄ = τ+ε with ε ∈ (0, τ̂−τ) also defines m prices with positive

probabilities. As before we show that the incremental difference of the second player’s welfare

between ωt2(mst2 |τ̄) and ωt2(mst2 |τ) is :

∆ωt2(mst2 |τ̄ , τ) = ωt2(mst2 |τ̄)− ωt2(mst2 |τ)

=

[(
0.5− (m− 1)× τ + ε

bν

)
× gainτ̄−m,t2 −

τ

bν
× gain−m,t2

]
+

m−1∑
k=1

τ + ε

bν
h(k) +

m−1∑
k=1

ε

bv
× gain−k,t2

(79)

As in the proof of Corollary 1.1, ωt2(mst2 |τ)′ in the neighborhood of ε ∈ (0, τ̂ − τ) is equal to

ωt2(mst2 |τ)′ = lim
ε→0

∆ωt2(mst2 |τ̄ , τ)

ε
= −O(c) (80)

where c is a constant, hence the welfare ωt2(mst2 |τ) is decreasing in τ in the interval ε ∈ (0, τ̂−τ).

Therefore, the subset of ticks that the SP must consider to determine the optimal welfare for

the second investor is defined by τ ∈ (0, τmax) such that bν
2τ
∈ N+.

To show that ∆ωt2(mst2 |τ̂ , τ) < 0 in (74), as before we choose τ and τ̂ such that according

to Proposition (1) the buyer at t1 chooses m = bν
2τ

and n = bν
2τ̂

optimal p−k prices respectively.

Given that τ̂ = τ + ε, setting ε = bv
m

=⇒ m = 3n. If we consider in Proposition (1), bν
2τ
∈ N+,
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the limit buy submission probabilities are constant and equal to:

Pr (lb−k,t1|Λt0 , τ) =
τ

bv

Pr (lb−k,t1|Λt0 , τ̂) =
τ̂

bv
=

3τ

bv

(81)

Substituting (81) into (74):

∆ωt2(mst2 |τ̂ , τ) =
n∑
k=1

3τ

bv
[gain−k,t2 + h(k)]−

3n∑
k=1

τ

bv
gain−k,t2

=
n∑
k=1

gain−k,t2
2τ

bv
−

3n∑
k=n+1

gain−k,t2
τ

bv
+

n∑
k=1

h(k)
3τ

bv

(82)

The gain expression for the investor at t2 can be written:

gain−k,t2 =

(
bv − 2k−1

2
τ
)2

2Γv

=
(bv)2

2Γv
+ (

2k − 1

2
)2 τ

2

2Γv
− bv2k − 1

2Γv
τ

(83)

Hence we can now decompose each term of the right-hand side of equation (82)

n∑
k=1

gain−k,t22τ =
(bv)2

Γv
τn− 1

2
(τn)2 +

(τn)3

3Γv
− τ 3n

12Γv

−
3n∑

k=n+1

gain−k,t2τ = −(bv)2

Γv
τn+ 2(τn)2 − 13(τn)3

3Γv
+

τ 3n

12Γv

+
n∑
k=1

h(k)3τ = −3(τn)2

2
+

4(τn)3

vΓ
− τ 3n

Γv

(84)

Substituting (84) into (82), we obtain:

∆ωt2(mst2 |τ̂ , τ) = −τ
3n

Γv
< 0 (85)
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C.2.4 Proof of Proposition 2

Thanks to Corollary (1), given τ̂ = τ + ε with ε > 0, ∀ τ̂ ∈ (0, τmax) we know that:

ωt1(lbk,t1|τ) > ωt1(lbk,t1|τ̂) ∧ ωt2(msk,t2|τ) > ωt2(msk,t2|τ̂) (86)

hence both functions in (8) are weakly decreasing in (0, τmax). We can therefore conclude that

the argmax of (8) is 0.

D Appendix: Three Period Model

D.1 Model Solution

We solve the 3-period trading game by backward induction.

D.1.1 Period t3

As for the 2-period trading game, the optimal order submission probabilities of investors arriving

at t3 are defined by Lemma (1.3).

D.1.2 Period t2

We now derive the optimal order submission strategies at t2. At t1 the book opens empty. In

addition, by Lemma (1) we know that at t1 the incoming investor posts either a limit buy (if his

βt1 > 1) or a limit sell (if his βt1 < 1) at pk. Therefore, given that at t2 the book symmetrically

opens either with a limit buy or with a limit sell, without loss of generality we can consider a

buyer arriving at t1 so that the book opens with a limit buy at t2. Hence, the incoming 2nd player

can either hit the previously posted limit buy by market selling at pk, or limit sell at pj > pk, or

he can limit buy still at pj > pk, or decide not to trade (nt).

For a generic limit buy posted by the first player at pk, the probability that the 2nd player
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selects a market sell is given by:

Pr (msk,t2|Λt1 , τ) =

Pr
(
pk − βt2ν > 0,

pk − βt2ν > (pj − βt2ν)Pr (mbj,t3|Λt2 , τ) ,

pk − βt2ν > (βt2ν − pj)Pr (msj,t3|Λt2 , τ)
)

(87)

Equation (87) guarantees that market selling is more profitable than any other possible action

the 2nd player can take: nt, limit sell or limit buy at pj > pk. If the 1st player submits a limit

buy at the most aggressive price level p+nf , he locks the book in such a way that the 2nd player

cannot supply liquidity but only market sell at p+nf . In this special case, equation (87) reduces

to:

Pr
(
ms+nf ,t2|Λt1 , τ

)
= Pr

(
p+nf − βt2ν > 0

)
(88)

The probability that the 2nd player selects a limit sell order at a price pj > pk is:

Pr (lsj,t2|Λt1 , τ) =

Pr
(
(pj − βt2ν)Pr (mbj,t3|Λt2 , τ) > 0,

(pj − βt2ν)Pr (mbj,t3|Λt2 , τ) > pk − βt2ν,

(pj − βt2ν)Pr (mbj,t3|Λt2 , τ) > (pj̃ − βt2ν)Pr
(
mbj̃,t3 |Λt2 , τ

)
,

(pj − βt2ν)Pr (mbj,t3|Λt2 , τ) > (βt2ν − pj)Pr (msj,t3|Λt2 , τ)
)

(89)

where pj̃ > pk is a generic price different from pj and still greater than pk. In the special case in

which the 1st player submits a limit buy at the most aggressive price level p+nf , the probability

of a limit sell is zero.

The probability that the 2nd player selects a limit buy order at pj > pk thus undercutting
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the limit buy order posted at t1 is:

Pr (lbj,t2|Λt1 , τ) =

Pr
(
(βt2ν − pj)Pr (msj,t3|Λt2 , τ) > 0,

(βt2ν − pj)Pr (msj,t3|Λt2 , τ) > pk − βt2ν,

(βt2ν − pj)Pr (msj,t3|Λt2 , τ) > (pj − βt2ν)Pr (mbj,t3|Λt2 , τ) ,

(βt2ν − pj)Pr (msj,t3|Λt2 , τ) > (βt2ν − pj̃)Pr
(
msj̃,t3 |Λt2 , τ

) )
(90)

In the special case in which the 1st player locks the market and submits a limit buy at the most

aggressive price level p+nf , the probability of a limit buy at t2 is zero. Finally, if the 1st player

submits a limit buy at pk < p+nf , the probability that the 2nd player chooses nt is zero:

Pr (ntk,t2|Λt1 , τ) =

Pr
(
0 > pk − βt2ν,

0 > (pj − βt2ν)Pr (mbj,t3|Λt2 , τ) ,

0 > (βt2ν − pj)Pr (msj,t3|Λt2 , τ)
)

(91)

Given that both Pr (mbj,t3|Λt2 , τ) and Pr (msj,t3|Λt2 , τ) are positive, the second and third con-

dition in (91) reduces to:

pj > βt2v > pj (92)

which is impossible and therefore nt is a dominated strategy. If instead the 1st player submits a

limit buy at p+nf , the probability that the 2nd player chooses +nt is given by:

Pr
(
nt+nf ,t2|Λt1 , τ

)
= Pr

(
p+nf < βt2ν

)
(93)

D.1.3 Period t1

Without loss of generality, using Lemma (1), if the 1st player at t1 is a buyer (βt1 > 1), he can

either limit buy at pk < p+nf , or limit buy at the most aggressive price p+nf . The submission
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probability of a limit buy at price pk is:

Pr (lbk,t1|Λt0 , τ) =

Pr
(
(βt1ν − pk)

[
Pr (msk,t2|Λt1 , τ) +

∑
j>k

Pr (lsj,t2|Λt1 , τ)Pr (msk,t3|Λt2 , τ)

]
> 0,

(βt1ν − pk)

[
Pr (msk,t2|Λt1 , τ) +

∑
j>k

Pr (lsj,t2|Λt1 , τ)Pr (msk,t3|Λt2 , τ)

]
>

(βt1ν − pk̃)

Pr (msk̃,t2|Λt1 , τ
)

+
∑
j>k̃

Pr (lsj,t2|Λt1 , τ)Pr
(
msk̃,t3|Λt2 , τ

) ,
(βt1ν − pk)

[
Pr (msk,t2|Λt1 , τ) +

∑
j>k

Pr (lsj,t2|Λt1 , τ)Pr (msk,t3|Λt2 , τ)

]
>

(βt1ν − p+nf )
[
Pr
(
ms+nf ,t2|Λt1 , τ

)
+ Pr

(
nt+nf ,t2|Λt1 , τ

)
Pr
(
ms+nf ,t3|Λt2 , τ

) ])

(94)

where pk̃ < p+nf different from pk, and all the expressions within square brackets are the proba-

bility of execution of a limit buy respectively at pk, pk̃ and p+nf ( second, forth and sixth line of

(186)). In the extreme case of a limit buy at p+nf , the probability of submission is:

Pr (lbk,t1|Λt0 , τ) =

Pr
(
(βt1ν − p+nf )

[
Pr
(
ms+nf ,t2 |Λt1 , τ

)
+ Pr

(
nt+nf ,t2 |Λt1 , τ

)
Pr
(
ms+nf ,t3|Λt2 , τ

) ]
> 0,

(βt1ν − p+nf )
[
Pr
(
ms+nf ,t2|Λt1 , τ

)
+ Pr

(
nt+nf ,t2|Λt1 , τ

)
Pr
(
ms+nf ,t3|Λt2 , τ

) ]
>

(βt1ν − pk)
[
Pr (msk,t2|Λt1 , τ) +

∑
j>k

Pr (lsj,t2|Λt1 , τ)Pr (msk,t3|Λt2 , τ)
])

(95)
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D.2 Welfare Equations

In this Appendix, we report the welfare of the three players in the 3-period model. The welfare

of the 1st player is given by:

ωt1(lbt1 |τ) =

+nf−1∑
k=−nf

[Pr (msk,t2|Λt1 , τ) + Pr (lsk+1,t2|Λt1 , τ)Pr (msk,t3|Λt2 , τ)]
1

Γ

∫
βt1∈B(τ)

(βt1v − pk) dβt1 +

[
Pr
(
ms+nf ,t2|Λt1 , τ

)
+ Pr

(
nt+nf ,t2|Λt1 , τ

)
Pr
(
ms+nf ,t3|Λt2 , τ

)] 1

Γ

∫
βt1∈B(τ)

(βt1v − p+nf ) dβt1+

1G

{+nf−1∑
k=−nf

∑
j>k+1

Pr (lsj,t2 |Λt1 , τ)Pr (msk,t3|Λt2 , τ)
1

Γ

∫
βt1∈B(τ)

(βt1v − pk) dβt1
}

(96)

where the second line of equation (96) indicates the welfare from the possible realizations paths

of a limit buy order at pk < p+nf , while the third line measures the welfare of a limit buy order

at pk = p+nf when the 1st player locks the market thus acting as a monopolist liquidity supplier.

The fourth line of equations (96) indicates the welfare of the 1st player when the 2nd player

submits a limit order to sell at prices pj > pk+1. By setting 1G = 0, we obtain the welfare for

the 1st player in a game (Section 3.1) in which the 2nd player can submit limit orders only at

adjacent price, pj = pk+1.

As explained in Appendix D.1, the submission strategies of the 2nd player depend on the sub-

mission strategies of the 1st one. If the 1st player posts a limit buy order at a price pk < p+nf ,

the 2nd player can both take and supply liquidity. If instead the 1st player posts a limit order at

the highest possible price, p+nf , the market is locked and the 2nd player can only take liquidity.

If the 1st player posts a limit buy order at a price pk < p+nf , the welfare of the 2nd player is
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given by:

ωt2(mst2 ∨ lst2 ∨ lbt2 |τ) =

+nf−1∑
k=−nf

(
Pr (lbk,t1|Λt0 , τ)

1

Γ

∫
βt2∈B(τ)

(pk − βt2ν) dβt2+

Pr (lbk,t1|Λt0 , τ)Pr (mbk+1,t3|Λt2 , τ)
1

Γ

∫
βt2∈B(τ)

(pk+1 − βt2v) dβt2+

Pr (lbk,t1|Λt0 , τ)Pr (msk+1,t3|Λt2 , τ)
1

Γ

∫
βt2∈B(τ)

(βt2v − pk+1) dβt2+

1G

{ ∑
j>k+1

Pr (lbk,t1|Λt0 , τ)Pr (mbj,t3|Λt2 , τ)
1

Γ

∫
βt2∈B(τ)

(pj − βt2v) dβt2+

∑
j>k+1

Pr (lbk,t1|Λt0 , τ)Pr (msj,t3|Λt2 , τ)
1

Γ

∫
βt2∈B(τ)

(βt2v − pj) dβt2
})

(97)

The second line in equation (97) indicates the expected welfare of the 2nd player in case of a

market sell order; the third line indicates the welfare from a limit sell order at pk+1, and the

fourth line indicates the welfare from a limit buy order pk+1.

If the 1st player locks the market by posting a limit buy order at pk = p+nf , the 2nd player can

only take liquidity and his welfare function is the same as the 2nd player in the 2-period model:

ωt2(mst2 |τ) = Pr
(
lb+nf ,t1|Λt0 , τ

) 1

Γ

∫ p
+nf

v

(1−b)
(p+nf − βt2v) dβt2 (98)

The welfare of the 3rd player depends on the order submission strategies of both the 1st and 2nd
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player. If pk 6= p+nf , the welfare is:

ωt3(mst3 ∨mbt3 |τ) =

+nf−1∑
k=−nf

(
Pr (lbk,t1|Λt0 , τ)Pr (lsk+1,t2 |Λt1 , τ)

1

Γ

(∫ pk
v

(1−b)
(pk − βt3v) dβt3 +

∫ (1+b)

pk+1
v

(βt3v − pk+1) dβt3
)
+

Pr (lbk,t1 |Λt0 , τ)Pr (lbk+1,t2|Λt1 , τ)
1

Γ

∫ pk+1
v

(1−b)
(pk+1 − βt3v) dβt3+

1G

{ ∑
j>k+1

Pr (lbk,t1 |Λt0 , τ)Pr (lsj,t2|Λt1 , τ)
1

Γ

(∫ pk
v

(1−b)
(pk − βt3v) dβt3 +

∫ (1+b)

pj
v

(βt3v − pj) dβt3
)
+

Pr (lbk,t1 |Λt0 , τ)Pr (lbj,t2|Λt1 , τ)
1

Γ

∫ pj
v

(1−b)
(pj − βt3v) dβt3

})
(99)

If instead pk = p+nf , the welfare of the 3rd player is:

ωt3(mst3 |τ) = Pr
(
lb+nf ,t1|Λt0 , τ

)
Pr
(
nt+nf ,t2|Λt1 , τ

) 1

Γ

∫ p
+nf

v

(1−b)
(p+nf − βt3v) dβt3 (100)

It is important to note that in equilibrium the 1st player locks the market with a very small

probability. The events of locked markets are very rare as they happen only when the tick size

is so large that the price grid is composed of two prices only. As proved in Appendix D.4, when

the tick size increases so that - given the support - the price grid includes only two price levels,

the probability that the 2nd player undercuts the 1st player limit order is very small but still

positive, until when the tick size becomes so large that the probability of undercutting tends to

zero. In the rare event that the probability of undercutting is very small but still positive, the

1st player has an incentive to lock the market to prevent the 2nd player from undercutting his

limit order, which would crowd him out of the market. This explains why in equilibrium the

probability that the market is locked by the 1st player is positive but negligible, and therefore

the relevant case is when the 1st player posts a limit buy order at a price which is smaller than

the highest possible price, pk < p+nf .

We are now in the position to define the total welfare of market participants, Ω(τ), as the sum

of the welfare of the three investors arriving respectively at time t1, t2 and t3 of the 3-period
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trading game. The SP will choose the tick size that maximizes Ω(τ):

max
τ∈(0,τmax)

Ω(τ) =

ωt1(lbt1 | τ) + ωt2(mst2 ∨ lst2 ∨ lbt2 | τ) + ωt2(mst2 | τ) + ωt3(mst3 ∨ mbt3 | τ) + ωt3(mst3 | τ)

(101)

Given the optimization problems solved by traders and the SP, we can define the equilibrium

of our trading game:

Definition 3. A sub-game Perfect Nash Equilibrium of the trading game is the set of limit order

submission probabilities and their respective execution probabilities (defined in Appendix D.1)

that solve the optimization problem of investors at t1, t2, and t3, and that are consistent with the

tick size, τ ? ∈ (0, τmax), set by the SP to maximize total welfare Ω(τ).

D.3 Undercutting decreases in τ

In this appendix,we show, trough an example, that given a limit buy order posted at pk by the

1st player, the probability that the 2nd player will undercut at pk+j increases as the tick size

decreases. More specifically Table 1.D Panel A reports the equilibrium submission strategies

of a 3-period model with b = 0.06, ν = 10 and τ = 0.45, Panel B the equilibrium submission

strategies of a 3-period model with b = 0.06, ν = 10 and τ = 0.15 and finally Panel B the

equilibrium submission strategies of a 3-period model with b = 0.06, ν = 10 and τ = 0.05. If we

focus either on pk = 9.925 or pk = 9.775, (prices shaded in grey in Table 1.D), we can observe

that the probability of undercutting is a negative function of τ .
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Table 1.D: Comparative Analysis of the 1st and 2nd player’s equilibrium submission prob-
abilities
Panel A, B and C summarize the submission strategies of the first two players in a 3-period game for different val-
ues of τ . The first column reports prices associated with the 1st player equilibrium order submission probabilities,
Pr (lbk,t1 |Λt0 , τ) reported in column 2. The columns 3−6 of Panel A, B and C report respectively the probability
at t2 of market selling (Pr (msk,t2 |Λt1 , τ)), of limit selling (Pr (lb≤k,t2 |Λt1 , τ)), of no trade (Pr (ntk,t2 |Λt1 , τ)) and
of undercutting ( Pr (lb>k,t2 |Λt1 , τ) ). Our standard parameterization applies (ν = 10 and b = 0.06). Highlighted
in grey are the prices which are common to the three panels and the associated probabilities of undercutting.

Panel A: 3-period game with τ = 0.45

pk Pr (lbk,t1|Λt0 , τ) Pr (msk,t2|Λt1 , τ) Pr (ls>k,t2|Λt1 , τ) Pr (ntk,t2|Λt1 , τ) Pr (lb>k,t2 |Λt1 , τ)

10.225 0.114 0.688 0.000 0.312 0.000
9.775 0.386 0.142 0.546 0.000 0.312

Panel B: 3-period game with τ = 0.15

pk Pr (lbk,t1|Λt0 , τ) Pr (msk,t2|Λt1 , τ) Pr (ls>k,t2|Λt1 , τ) Pr (ntk,t2|Λt1 , τ) Pr (lb>k,t2 |Λt1 , τ)

10.075 0.097 0.505 0.209 0.000 0.286
9.925 0.310 0.324 0.301 0.000 0.375
9.775 0.094 0.118 0.432 0.000 0.450

Panel C: 3-period game with τ = 0.05

pk Pr (lbk,t1|Λt0 , τ) Pr (msk,t2|Λt1 , τ) Pr (ls>k,t2|Λt1 , τ) Pr (ntk,t2|Λt1 , τ) Pr (lb>k,t2 |Λt1 , τ)

10.025 0.083 0.443 0.182 0.000 0.375
9.975 0.104 0.384 0.214 0.000 0.402
9.925 0.105 0.323 0.250 0.000 0.426
9.875 0.105 0.259 0.293 0.000 0.448
9.825 0.101 0.190 0.343 0.000 0.467
9.775 0.001 0.118 0.400 0.000 0.482
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D.4 Proof of Proposition (3)

At t3, the order submission probabilities are defined by Lemma (1.3)

• Pr (msk,t3|Λt2 , τ) = 1
Γ

(
pk
v
− (1− b)

)
• Pr (mbk,t3|Λt2 , τ) = 1

Γ

(
(1 + b)− pk

v

)
Notice that the alternatives options available for the 2nd player are: a market sell at pk, a limit

buy or a limit sell both at pk+1. At t2, for a generic limit buy posted by the 1st player at pk, the

probability that the 2nd player selects a market sell is given by:

Pr (msk,t2|Λt1 , τ) =

Pr
(
pk − βt2ν > 0,

pk − βt2ν > (pk+1 − βt2ν)Pr (mbk+1,t3 |Λt2 , τ) ,

pk − βt2ν > (βt2ν − pk+1)Pr (msk+1,t3|Λt2 , τ)
)

(102)

Equation (102) can be simplified in the following way:

Pr (msk,t2|Λt1 , τ) = max

[
0, P r

(
(1− b) < βt2 <

pk
ν
− τ

ν

Pr (mbk+1,t3|Λt2 , τ)

1− Pr (mbk+1,t3 |Λt2 , τ)

)]
= max

[
0,

1

Γ

(
pk
ν
− τ

ν

Pr (mbk+1,t3|Λt2 , τ)

1− Pr (mbk+1,t3|Λt2 , τ)
− (1− b)

)] (103)

The probability that the 2nd player selects a limit sell order at a price pk+1 is:

Pr (lsk+1,t2|Λt1 , τ) =

Pr
(
(pk+1 − βt2ν)Pr (mbk+1,t3 |Λt2 , τ) > 0,

(pk+1 − βt2ν)Pr (mbk+1,t3 |Λt2 , τ) > pk − βt2ν,

(pk+1 − βt2ν)Pr (mbk+1,t3 |Λt2 , τ) > (βt2ν − pk+1)Pr (msk+1,t3 |Λt2 , τ)
)

(104)
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Equation (104) can be simplified in the following way:

Pr (lsk+1,t2|Λt1 , τ) =


Pr
(
pk
ν
− τ

ν

Pr(mbk+1,t3
|Λt2 ,τ)

1−Pr(mbk+1,t3
|Λt2 ,τ)

< βt2 <
pk
ν

+ τ
ν

)
ifPr (msk,t2|Λt1 , τ) > 0

Pr
(
(1− b) < βt2 <

pk
ν

+ τ
ν

)
otherwise

(105)

The probability that the 2nd player selects a limit buy order at pk+1 > pk thus undercutting the

limit buy order posted at t1 is:

Pr (lbk+1,t2 |Λt1 , τ) =

Pr
(
(βt2ν − pk+1)Pr (msk+1,t3 |Λt2 , τ) > 0,

(βt2ν − pk+1)Pr (msk+1,t3|Λt2 , τ) > pk − βt2ν,

(βt2ν − pk+1)Pr (msk+1,t3|Λt2 , τ) > (pk+1 − βt2ν)Pr (mbk+1,t3 |Λt2 , τ)
)

(106)

Equation (106) can be simplified in the following way:

Pr (lbk+1,t2|Λt1 , τ) = Pr
(pk
ν

+
τ

ν
< βt2 < (1 + b)

)
=

1

Γ

(
(1 + b)− pk + τ

ν

) (107)

Without loss of generality, using Lemma (1), if the 1st player at t1 is a buyer (βt1 > 1), he

posts a limit buy. The submission probability of a limit buy at price pk is:

Pr (lbk,t1|Λt0 , τ) =

Pr
(
(βt1ν − pk) [Pr (msk,t2|Λt1 , τ) + Pr (lsk+1,t2|Λt1 , τ)Pr (msk,t3|Λt2 , τ)] > 0,

(βt1ν − pk) [Pr (msk,t2|Λt1 , τ) + Pr (lsk+1,t2|Λt1 , τ)Pr (msk,t3|Λt2 , τ)] >

(βt1ν − pk̃)
[
Pr
(
msk̃,t2 |Λt1 , τ

)
+ Pr

(
ls ˜k+1,t2

|Λt1 , τ
)
Pr
(
msk̃,t3|Λt2 , τ

)]
,

(βt1ν − pk) [Pr (msk,t2|Λt1 , τ) + Pr (lsk,t2 |Λt1 , τ)Pr (msk,t3|Λt2 , τ)] >

(βt1ν − pnf )
[
Pr
(
msnf ,t2|Λt1 , τ

)
+ Pr

(
ntnf ,t2|Λt1 , τ

)
Pr
(
msnf ,t3 |Λt2 , τ

) ])

(108)

The submission probabilities when the market is locked by the 1st player (he submits a limit
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order at pnf ) are:

Pr
(
lb+nf ,t1|Λt0 , τ

)
=

Pr
(
(βt1ν − pnf )

[
Pr
(
msnf ,t2|Λt1 , τ

)
+ Pr

(
ntnf ,t2|Λt1 , τ

)
Pr
(
msnf ,t3|Λt2 , τ

) ]
> 0,

(βt1ν − pnf )
[
Pr
(
msnf ,t2|Λt1 , τ

)
+ Pr

(
ntnf ,t2|Λt1 , τ

)
Pr
(
msnf ,t3 |Λt2 , τ

) ]
>

(βt1ν − pk)
[
Pr (msk,t2|Λt1 , τ) + Pr (lsk+1,t2|Λt1 , τ)Pr (msk,t3|Λt2 , τ)

])
(109)

In this specific case, the probability of a market sell at t2 hitting a limit buy posted at pnf is

Pr
(
msnf ,t2|Λt1 , τ

)
= Pr

(
msnf ,t3 |Λt2 , τ

)
, and the probability of no-trading is Pr

(
ntnf ,t2|Λt1 , τ

)
=

1− Pr
(
msnf ,t2|Λt1 , τ

)
.

We now show that when there exist at least two price levels on each side of the book (nf ≥ 2),

the 1st player never locks the market, Pr
(
lb+nf ,t1 |Λt0 , τ

)
= 0, Whereas, when nf = 1, the 1st

player has an incentive to lock the market, Pr
(
lb+nf ,t1|Λt0 , τ

)
≥ 0.

We show that for any τ ∈
{

(0, τmax) |nf ≥ 2
}
, at t1 there exists at least one limit buy order,

e.g., at p+1, that dominates a limit buy at p+nf . To derive the payoff of a limit buy at p+1

we need to compute the execution probability and therefore we have to consider all the trading

options the 2nd player has at t2: a market sell, a limit sell and a limit buy. However, if the

2nd player submits a limit buy order - thus undercutting the 1st player’s limit buy order - the

probability of execution of this limit buy order is zero. The payoff of the 1st player submitting

a limit buy at p+1 is:

Ot1(lb+1,t1|λt0 , τ) = (βt1ν − p+1)× [Pr (ms+1,t2|Λt1 , τ) + Pr (ls+2,t2|Λt1 , τ)Pr (ms+1,t3 |Λt2 , τ)]

(110)

with the submission probabilities defined in equations (102) and (104). The payoff of the 1st

player posting a limit buy at p+nf is:

Ot1(lb+nf ,t1 |λt0 , τ) = (βt1ν − p+nf )×
[
Pr
(
msnf ,t2|Λt1 , τ

)
+ Pr

(
ntnf ,t2|Λt1 , τ

)
× Pr

(
msnf ,t3|Λt2 , τ

)]
(111)
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nf ≥ 2 only if, by equation (23), 2bν ≥ 3τ . We can show that under this condition the payoff of

the 1st player submitting a limit buy at p+1 (equation (110)) is strictly greater than the payoff

from posting a limit buy at pnf : Ot1(lb+1,t1|λt0 , τ) > Ot1(lb+nf ,t1|λt0 , τ)

Therefore, the 1st player never posts a limit buy at p+nf , which is a dominated strategy.

In the remaining part of the proof, we consider a generic τ such that τ ∈
[
(0, τmax) |nf = 1

]
.

Given only two prices, p−1 and p+1, if the trader arriving at t1 chooses to submit a limit buy

at p−1, the submission probabilities of the 2nd player defined in (103), (105) and (107) can be

equivalently written as :

• Probability of a market sell: Pr (ms−1,t2 |Λt1 , τ) = max
[
0, 1

Γ

(
b− t

2v
− t

v
× 0.5− τ

4bv

0.5+ τ
4bv

)]
• Probability of a limit sell at p+1:

– Pr (ls+1,t2|Λt1 , τ) = 1
Γ

[
τ
ν

+ τ
ν

0.5− τ
4bv

0.5+ τ
4bv

]
if Pr (ms−1,t2|Λt1 , τ) > 0

– Pr (ls+1,t2|Λt1 , τ) = 1
Γ

[
b+ τ

2ν

]
otherwise

• Probability of a limit buy at p+1: Pr (lb+1,t2|Λt1 , τ) = 1
Γ

[
b− τ

2ν

]
It is worth noticing that for Γν

τ
→ 1, both Pr (ms−1,t2|Λt1 , τ) and Pr (lb+1,t2|Λt1 , τ) → 0, while

Pr (ls+1,t2 |Λt1 , τ)→ 1.

If the investor arriving at t1 limit buys at p+1, the submission probabilities of the 2nd player

are the following:

• Probability of a market sell: Pr (ms+1,t2|Λt1 , τ) = Pr (p+1 − βν > 0)

• Probability of nt: Pr (nt+1,t2|Λt1 , τ) = 1− Pr (ms+1,t2|Λt1 , τ)

Having defined the payoff from both a limit buy at p−1 and a limit buy at p+1 , we can determine

the associated probability of submission by equating the payoff from the two strategies:

(βt1ν − p−1)× [Pr (ms−1,t2|Λt1 , τ) + Pr (ls+1,t2|Λt1 , τ)× Pr (ms−1,t3 |Λt2 , τ)] =

(βt1ν − p+1)× [Pr (ms+1,t2|Λt1 , τ) + Pr (nt+1,t2|Λt1 , τ)× Pr (ms+1,t3|Λt2 , τ)]

(112)
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Solving (112) by βt1 we show that in the τ region ensuring nf = 1 which is defined by

τ ∈ [(0, τmax) |2bν < 3τ ], equation (112) admits an internal solution β?t1 and the 1st player order

submission probabilities are:

• Pr (lb−1,t1|Λt0 , τ) = 1
Γ

[
β?t1 − 1

]
• Pr (lb+1,t1|Λt0 , τ) = 1

Γ

[
1 + b− β?t1

]
If Γν

τ
→ 1, then β?t1 → (1 + b) and therefore Pr (lb−1,t1|Λt0 , τ) → 0.5 , which is the order

submission probability of the 1st player in the 2-period trading game. Hence, for very coarse

price grids, the 1st player in a 3-period game has a submission schedule which is almost identical

to the one of the 2-period game.

D.5 Proof of Proposition (4)

We show how the equilibrium order submission probabilities and the associated welfare of the

strategic game described in Appendix (D.4) change for τ → 0+. As τ decreases, the number of

feasible prices within the investor’s support, 2bν, increases. Approaching a continuum of prices,

we indicate a generic feasible price as p. The order submission probabilities associated with the

trading strategies of the 3rd player are:

• Pr (mst3|Λt2) = 1
Γ

(
p
v
− (1− b)

)
• Pr (mbt3|Λt2) = 1

Γ

(
(1 + b)− p

v

)
The order submission probabilities for the 2nd player can be obtained by considering equations

(103)-(105) -(107) for τ → 0+:

limτ→0+Pr (msk,t2|Λt1) = Pr
(

1− b < βt2 <
p

ν

)
=

(
p

Γν
− 1− b

Γ

)
(113)

limτ→0+Pr (lsk+1,t2|Λt1) = 0 (114)

limτ→0+Pr (lbk,t2|Λt1) ≈ Pr
(p
ν
< βt2 < (1 + b)

)
=

(
1 + b

Γ
− p

Γν

)
(115)
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Considering the case of τ → 0+, if the 2nd player undercuts the 1st player to the next adjacent

price, he undercuts at a price pt2 = p + o(ε) by an almost negligible quantity to gain price

priority, hence pt2 ∼ p. When τ approaches 0, Pr (mst2 |Λt1) (equation (103)) is always greater

than 0 for any p considered because p
v
> (1 − b) by p being feasible. Hence, the 2nd player will

submit a market sell in probability. In addition, equation (105) shows that as τ approaches 0,

in equilibrium the 2nd player will not submit a limit order to sell: if he is a seller, the price

improvement offered by a limit sell will be too small and he will rather market sell; if instead

he is a buyer, he has the chance to outbid the 1st player by an infinitesimal amount and he will

therefore undercut the existing limit buy order.

This result is consistent with the intuition provided in Section (3). The 1st player will

therefore maximize his utility anticipating that the 2nd player will either match or undercut his

order. Hence from (113) the generic payoff from a limit buy order submitted by the 1st player is:

(βt1ν − p)
[
p

Γν
− 1− b

Γ

]
(116)

From first order conditions - taking the first and second order derivative w.r.t. p of (116), for any

β1 ∈ (1, 1 + b) - the 1st player will submit a limit buy order with probability 1 at the following

price:

p? =
ν

2
(βt1 + 1− b) (117)

We can now compute the ex ante welfare of the players. Substituting (117) in (116) and inte-

grating over βt1 , we obtain the 1st player’s welfare as:

ωt1(lbt1) =

∫ 1+b

1

(
βt1ν −

ν

2
(βt1 + 1− b)

) 1

Γ

[ ν
2

(βt1 + 1− b)
Γν

− 1− b
Γ

]
dβt1 =

7

48
bν (118)

Using the Law of Total Expectation ("Tower Property"), we can write the 2nd player’s welfare
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from a market sell as:

ωt2(mst2) =

∫ 1+b

1−b
E[ωt2(mst2)|βt1 ]

1

Γ
dβt1

=

∫ 1

1−b
E[ωt2(mst2)|βt1 ]

1

Γ
dβ1 +

∫ 1+b

1

E[ωt2(mst2)|βt1 ]
1

Γ
dβt1

=

∫ 1

1−b

(∫ p
ν

1−b
(p− βt2ν)

1

Γ
Pr (lbp,t1|Λt0) dβt2|βt1

)
1

Γ
dβt1+

∫ 1+b

1

(∫ p
ν

1−b
(p− βt2ν)

1

Γ
Pr (lbp,t1|Λt0) dβt2|βt1

)
1

Γ
dβt1

(119)

Note that the optimal β.,.t2 threshold are obtained by considering the equilibrium submission

strategies defined in equation (113). By Lemma (1), the 1st player does not submit a limit buy

order when βt1 < 1 and submits with probability 1 a limit buy order at p when βt1 > 1. Hence

the welfare associated to a market sell at t2 is

ωt2(mst2) =

∫ 1+b

1

(∫ p
ν

1−b
(p− βt2ν)

1

Γ
Pr (lbp,t1|Λt0) dβt2|βt1

)
1

Γ
dβt1

=

∫ 1+b

1

(∫ 1
2(βt1+1−b)

1−b

(ν
2

(βt1 + 1− b)− βt2ν
) 1

Γ
dβt2 |βt1

)
1

Γ
dβt1

=

∫ 1+b

1

(ν
2

(βt1 + 1− b) + (−1 + b)ν)2

4bν

1

Γ
dβt1 =

7

96
bν

(120)

With a similar argument, the welfare associated to a limit buy at t2 is

ωt2(lbt2) =

∫ 1+b

1

E[ωt2(lbt2)|βt1 ]
1

Γ
dβt1

=

∫ 1+b

1

(∫ 1+b

p
ν

(βt2ν − p)Pr (lbp,t1|Λt0)Pr (msp,t3|Λt2)
1

Γ
dβt2|βt1

)
1

Γ
dβt1

=

∫ 1+b

1

(∫ 1+b

1
2(βt1+1−b)

(
βt2ν −

ν

2
(βt1 + 1− b)

) 1

Γ

(
1

2
(βt1 + 1− b)− (1− b)

)
1

Γ
dβt2|dβt1

)
1

Γ
dβt1

=

∫ 1+b

1

(ν
2
(1 + βt1 − b) + (−1 + b)ν)(ν

2
(1 + βt1 − b)− (1 + b)v)2

(8b2ν2)(2b)
dβt1 =

109

1536
bν

(121)

The 3rd player has an opportunity to buy if and only if the 2nd player undercuts the limit
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buy posted at t1. Hence the welfare of the 3rd player is:

ωt3(mst3) =

∫ 1+b

1

E[ωt3(mst3)|βt1 ]
1

Γ
dβt1

=

∫ 1+b

1−b

(∫ p
v

1−b
(p− βt3ν)Pr (lbp,t1|Λt0)Pr (lbp,t2 |Λt1)

1

Γ
dβt3|βt1

)
1

Γ
dβt1

=

∫ 1

1−b

(∫ p
v

1−b
(p− βt3ν)Pr (lbp,t1 |Λt0)Pr (lbp,t2|Λt1)

1

Γ
dβt3 |βt1

)
1

Γ
dβt1+

∫ 1+b

1

(∫ p
v

1−b
(p− βt3ν)Pr (lbp,t1|Λt1)Pr (lbp,t2|Λt2)

1

Γ
dβt3|βt1

)
1

Γ
dβt1

(122)

By Lemma (1), the 1st player does not submit a limit buy order when βt1 < 1 and hence the

welfare of a market sell at t3 is given by:

ωt3(mst3) =

∫ 1+b

1

(∫ p
v

1−b
(p− βt3ν)Pr (lbp,t1|Λt1)Pr (lbp,t2|Λt2)

1

Γ
dβt3|βt1

)
1

Γ
dβt1

=

∫ 1+b

1

(∫ (β1+1−b)
2

1−b

(
v(βt1 + 1− b)

2
− βt3ν

)
1

Γ

(
1 + b− (βt1 + 1− b)

2

)
1

Γ
dβt3|βt1

)
1

Γ
dβt1 =

67

1536
bν

(123)

When τ approaches 0 (τ → 0+), the total welfare of market participants is:

Ω(τ → 0+) =
bν

3
(124)

In order to show that τ → 0+ is not the argmax of equation (101), we need to find a τ > 0 with

an associated total welfare which is greater than bν
3
. For a generic combination of (b, ν), consider

τ = bν
2
. The price grid and the associated submissions probabilities are:

Table 2.D: 3-period Game: Order Submission Probabilities
This table reports the order submission probabilities of the 3-period model for a generic combination of (b, ν), τ =
bν
2 and pk = {p−2, p−1, p+1, p+2}. Note that the equilibrium order submission strategies are those associated
with pk = {p−1, p+1}

pk Pr (msk,t3|Λt2 , τ) Pr (mbk,t3|Λt2 , τ) Pr (msk,t2|Λt1 , τ) Pr (lsk+1,t2 |Λt1 , τ) Pr (lbk+1,t2|Λt1 , τ) Pr (ntk,t2|Λt1 , τ) Pr (lbk,t1|Λt0 , τ)

p+2 0.875 0.125 0.875 0 0 0.125 0
p+1 0.625 0.375 0.589286 0.285714 0.125 0 0.136364
p−1 0.375 0.625 0.225 0.4 0.375 0 0.363636
p−2 0.125 0.875 0 0.375 0.625 0 0
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The welfare of the 1st player is given by:

ωt1(lbt1 |τ) =
+nf∑

k=−nf
[Pr (msk,t2|Λt1 , τ) + Pr (lsk+1,t2 |Λt1 , τ)Pr (msk,t3|Λt2 , τ)]×

∫
βt1∈B(τ)

(βt1v − pk)
Γ

dβt1

ωt1(lbt1 |τ) = 0.375

∫ 1+0.7272b

1

βt1ν − p−1

Γ
dβt1 + 0.767857

∫ 1+b

1+0.7272b

βt1ν − p+1

Γ
dβt1 = 0.14793 bν

(125)

The welfare of the 2nd player is given by:

ωt2(mst2 ∨ lst2 ∨ lbt2 |τ) =
+nf∑

k=−nf
Pr (lbk,t1|Λt0 , τ)×

∫
βt2∈B(τ)

(pk − βt2v)

Γ
dβt2+

Pr (lbk,t1|Λt0 , τ)× Pr (mbk+1,t3 |Λt2 , τ)

∫
βt2∈B(τ)

(pk+1 − βt2v)

Γ
dβt2+

Pr (lbk,t1 |Λt0 , τ)× Pr (msk+1,t3 |Λt2 , τ)

∫
βt2∈B(τ)

(βt2v − pk+1)

Γ
dβt2

ωt2(mst2 ∨ lst2 ∨ lbt2 |τ) =

0.363636

[∫ 1−0.55b

1−b

p−1 − βt2ν
Γ

dβt2 + 0.375

∫ p1
ν

1−0.55b

p1 − βt2ν
Γ

dβt2 + 0.625

∫ 1+b

p1
ν

βt2ν − p1

Γ
dβt2

]
+

0.136364

[∫ 1+0.17857b

1−b

p1 − βt2ν
Γ

dβt2 + 0.125

∫ p2
ν

1+0.17857b

p2 − βt2ν
Γ

dβt2 + 0.875

∫ 1+b

p2
ν

βt2ν − p2

Γ
dβt2

]
=

0.136364× 0.413225 bν + 0.363636× 0.266016 bν = 0.153082 bν

(126)
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The welfare of the 3rd player is given by:

ωt3(mst3 ∨mbt3 |τ) =

+nf∑
k=−nf

Pr (lbk,t1|Λt0 , τ)Pr (lsk+1,t2|Λt1 , τ)×

(∫ pk
ν

1−b

pk − βt3ν
Γ

dβt3 +

∫ 1+b

pk+1
ν

βt3ν − pk+1

Γ
dβt3

)
+

Pr (lbk,t1|Λt0 , τ)Pr (lbk+1,t2|Λt1 , τ)

∫ pk+1
ν

1−b

pk+1 − βt3ν
Γ

dβt3

ωt3(mst3 ∨mbt3 |τ) =

0.1454544

(∫ p−1
ν

1−b

p−1 − βt3ν
Γ

dβt3 +

∫ 1+b

p1
ν

βt3ν − p1

Γ
dβt3

)
+ 0.1363635

∫ p1
ν

1−b

p1 − βt3ν
Γ

dβt3

0.038961

(∫ p1
ν

1−b

p1 − βt3ν
Γ

dβt3 +

∫ 1+b

p2
ν

βt3ν − p2

Γ
dβt3

)
+ 0.017045

∫ p2
ν

1−b

p2 − βt3ν
Γ

dβt3 =

0.0409091 bν + 0.053267 bν + 0.0158279 bν + 0.0130501 bν = 0.123054 bν

(127)

Hence the total welfare for a generic game defined by τ = bν
2
is 0.424067 bν > bν

3
. We therefore

conclude that τ → 0+ is not the argmax of equation (101). �

D.6 Discretization Grid

In this Appendix, we characterize the discretization grid used in the main body of the text. As

explained in Section 3.2, we consider the tick sizes that form books including from 2 to 30 feasible

prices. From equation (23), we know that if bν
τ
∈ N+, there are N+ prices on each side of the

book. Therefore for any duplet (b, ν) studied, we define the τ discretization grid, DGτ (bν), as

the collection of τ :

DGτ (bν) =

{
τn =

bν

n
| n ∈ (1, 15)

}
(128)

Each τ ∈ DGτ (bν) defines a price grid with a different number of feasible prices. To improve

the accuracy of the grid and study the welfare of market participants in games with tick sizes

such that bν
τ

/∈ N+, we augment DGτ (bν) with tick sizes that lie between two consecutive

ticks (τn, τn−1) that according to (128) define bν
τn
∈ N+. We consider three different weighted

averages: 0.5(τn + τn−1), 0.75τn + 0.25τn−1, and 0.25τn + 0.75τn−1. To study the behavior of the
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trading games for τ → τmax, we further augment DGτ (bν) with three tick sizes: 0.5(τ1 + τmax),

0.75τ1 + 0.25τmax, and 0.25τ1 + 0.75τmax. Overall, the cardinality of DGτ (bν) is 60, and we

denote each tick size that belongs to the search grid as τDG ∈ DGτ (bν).

For each τDG we analytically derive the equilibrium order submission probabilities of market

participants and the associated total welfare for the T-period game. We then select the tick size

associated with the highest total welfare: τ ?DG. To further check the robustness of our result, we

run the Simulated Annealing (SA) algorithm and use τ ?DG as the initial condition. The tick size

that according to the SA algorithm maximizes total welfare of market participants is the OTS:

τ ?SA = OTS.

D.7 Market Quality Metrics

In this appendix we define our market quality metrics. The expected volume in our 3-period

model is:

vol(τ) =

+p
nf t1∑

k=−p
nf

Pr (lbk,t1|Λt0 , τ)
(
Pr (msk,t2|Λt1 , τ) +

∑
l>k

Pr (lsk+l,t2 |Λt1 , τ) [(Pr (msk,t3|Λt2 , τ) + Pr (mbk+l,t3|Λt2 , τ)] +

∑
l>k

Pr (lbk+l,t2 |Λt1 , τ)Pr (msk+l,t3|Λt2 , τ) +

Pr (ntk|Λt1 , τ)Pr (msk,t3|Λt2 , τ)
)

(129)

Equation (129) shows that volume in our model endogenously derives from the execution of

limit orders. A limit buy order submitted at t1 with probability Pr (lbk,t1 |Λt0 , τ), can be executed

either at t2 by an investor posting a market sell order with probability Pr (msk,t2|Λt1 , τ), or - if the

investor arriving at t2 opts for a limit sell order with probability
∑

l>k Pr (lsk+l,t2|Λt1 , τ) - it can be

executed at t3 with probability (Pr (msk,t3|Λt2 , τ). If instead the 2nd player opts not to trade with

probability Pr (ntk|Λt1 , τ), the limit buy order posted at t1 can be executed at t3 with probability

Pr (msk,t3|Λt2 , τ). Volume may also be the result of the execution of orders submitted by the

2nd player. If the 2nd player posts a limit sell order with probability
∑

l>k Pr (lsk+l,t2|Λt1 , τ),
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this order will be executed at t3 with probability Pr (mbk+l,t3|Λt2 , τ); if instead he undercuts the

1st player by posting a more aggressive limit buy order with probability
∑

l>k Pr (lbk+l,t2|Λt1 , τ),

this limit order will be executed at t3 with probability Pr (msk+l,t3|Λt2 , τ).

We compute our metric of expected quoted spread across all the periods in which investors

may supply liquidity, excluding the last period of the trading game. The quoted spread in each

period of the game is equal to:

spread(t1, τ) =

+p
nf∑

k=−p
nf

Pr (lbk,t1|Λt0 , τ) (ν(1 + b)− pk)

spread(t2, τ) =

+p
nf∑

k=−p
nf

Pr (lbk,t1|Λt0 , τ)
(

Pr (msk,t2|Λt1 , τ) (ν(1 + b)− ν(1− b)) + Pr (ntk,t2 |Λt1 , τ) (ν(1 + b)− pk)+∑
l>k

Pr (lsk+l,t2 |Λt1 , τ) (pk+l − pk) + Pr (lbk+l,t2|Λt1 , τ) (ν(1 + b)− pk+l)
)

(130)

To quantify quoted spread, we here assume that if one side of the market is empty, the spread is

the distance between the posted price and the evaluation bound on the other side of the market.

The expected spread is the average of the two periods expected quoted spreads in (130):

spread(τ) =
1

2
(spread(t1, τ) + spread(t2, τ)) (131)

We compute our metric of expected total depth across all the periods in which investors may

supply liquidity, excluding the last period of the trading game. The expected total depth is equal

to the expected number of shares associated with all the equilibrium feasible price levels:

depth(τ) = 1×
+p

nf∑
k=−p

nf

Pr (lbk,t1 |Λt0 , τ) + 2×
+p

nf∑
k=−p

nf

Pr (lbk,t1|Λt0 , τ)
∑
l>k

Pr (lsk+l,t2|Λt1 , τ) +

2×
+p

nf∑
k=−p

nf

Pr (lbk,t1|Λt0 , τ)
∑
l>k

Pr (lbk+l,t2|Λt1 , τ) + 1×
+p

nf∑
k=−p

nf

Pr (lbk,t1|Λt0 , τ)Pr (ntk|Λt1 , τ)

(132)
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For example, the first line of equation (132) refers to the number of shares associated with a limit

buy order posted at pk with probability Pr (lbk,t1|Λt0 , τ), followed by a limit sell order posted at

pk+l with probability Pr (lsk+l,t2|Λt1 , τ).

E Appendix: Four Period Model

E.1 Proof of Proposition (5)

At t4, the order submission probabilities are defined by Lemma 1.3:

• Pr (msk,t4|Λt3 , τ) = 1
Γ

(
pk
v
− (1− b)

)
• Pr (mbk,t4|Λt3 , τ) = 1

Γ

(
(1 + b)− pk

v

)
At t3, there are three possible states of the book:

• The book is empty (Λt2 = {lbk,t1 ,msk,t2}), hence the 3rd player submits a limit buy order

following Proposition (1).

• The book has a limit buy and a limit sell ( Λt2 = {lbk,t1 , lsk+1,t2}), hence the 3rd player is

a liquidity taker only and his order submission probabilities are defined by Lemma 1.3.

• The book has limit buy orders only (Λt2 = {lbk,t1 , lbk+1,t2} or Λt2 = {lbk,t1 , lbk,t2}), and

the order submission probabilities of the 3rd player are the same as the order submission

probabilities of the 2nd player in the 3-period model (Proposition (3)).

At t2, the alternative options available for the 2nd player are: market sell hitting the limit

buy order posted by the 1st player at pk, limit sell or limit buy at pk+1, and finally limit buy at

pk, thus queuing behind the 1st player’s limit buy order.
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The probability of a market sell at t2 is:

Pr (msk,t2|Λt1 , τ) =

Pr
(
pk − βt2ν > 0,

pk − βt2ν > (pk+1 − βt2ν) [Pr (mbk+1,t3|Λt2 , τ) + (1− Pr (mbk+1,t3|Λt2 , τ))× Pr (mbk+1,t4 |Λt3 , τ)] ,

pk − βt2ν > (βt2ν − pk)Pr (msk,t3 |Λt2 , τ)× Pr (msk,t4|Λt3 , τ) ,

pk − βt2ν >

(βt2ν − pk+1) [Pr (msk+1,t3 |Λt2 , τ) + (Pr (ntk+1,t3|Λt2 , τ) + Pr (lsk+2,t3|Λt2 , τ))× Pr (msk+1,t4|Λt3 , τ)]
)

(133)

To simplify the notation, we define:

• f = Pr (mbk+1,t3 |Λt2 , τ) + (1− Pr (mbk+1,t3|Λt2 , τ))× Pr (mbk+1,t4|Λt3 , τ)

• l = Pr (msk,t3|Λt2 , τ)× Pr (msk,t4|Λt3 , τ)

• g = [Pr (msk+1,t3|Λt2 , τ) + (Pr (ntk+1,t3 |Λt2 , τ) + Pr (lsk+2,t3|Λt2 , τ))× Pr (msk+1,t4|Λt3 , τ)]

Equation (133) can be simplified as follows:

Pr (msk,t2|Λt1 , τ) = max

[
0, P r

(
(1− b) < βt2 <

pk
ν
− τ

ν

f

1− f

)]
(134)

The probability of a limit sell at t2 is:

Pr (lsk+1,t2|Λt1 , τ) =

Pr
(
(pk+1 − βt2ν) [Pr (mbk+1,t4 |Λt3 , τ) + (1− Pr (mbk+1,t4|Λt3 , τ))× Pr (mbk+1,t4|Λt3 , τ)] > 0,

(pk+1 − βt2ν) [Pr (mbk+1,t4 |Λt3 , τ) + (1− Pr (mbk+1,t4|Λt3 , τ))× Pr (mbk+1,t4|Λt3 , τ)] > pk − βt2ν

(pk+1 − βt2ν) [Pr (mbk+1,t4 |Λt3 , τ) + (1− Pr (mbk+1,t4|Λt3 , τ))× Pr (mbk+1,t4|Λt3 , τ)] >

(βt2ν − pk)Pr (msk,t3|Λt2 , τ)× Pr (msk,t4|Λt3 , τ) ,

(pk+1 − βt2ν) [Pr (mbk+1,t4 |Λt3 , τ) + (1− Pr (mbk+1,t4|Λt3 , τ))× Pr (mbk+1,t4|Λt3 , τ)] >

(βt2ν − pk+1) [Pr (msk+1,t3|Λt2 , τ) + (Pr (ntk+1,t3|Λt2 , τ) + Pr (lsk+2,t3|Λt2 , τ))× Pr (msk+1,t4|Λt3 , τ)]
)

(135)
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Equation (135) can be simplified as follows:

Pr (lsk+1,t2|Λt1 , τ) =

 Pr
(
pk
ν
− τ

ν
f

1−f < βt2 <
pk
ν

+ τ
ν

f
f+l

)
if Pr (msk,t2|Λt1 , τ) > 0

Pr
(
(1− b) < βt2 <

pk
ν

+ τ
ν

f
f+l

)
otherwise

(136)

The probability that the 2nd player submits a limit buy at pk is:

Pr (lbk,t2|Λt1 , τ) =

Pr
(
(βt2ν − pk)Pr (msk,t3|Λt2 , τ)× Pr (msk,t4|Λt3 , τ) > 0,

(βt2ν − pk)Pr (msk,t3|Λt2 , τ)× Pr (msk,t4|Λt3 , τ) > pk − βt2ν,

(βt2ν − pk)Pr (msk,t3|Λt2 , τ)× Pr (msk,t4|Λt3 , τ) >

(pk+1 − βt2ν) [Pr (mbk+1,t4 |Λt3 , τ) + (1− Pr (mbk+1,t4|Λt3 , τ))× Pr (mbk+1,t4|Λt3 , τ)] ,

(βt2ν − pk)Pr (msk,t3|Λt2 , τ)× Pr (msk,t4|Λt3 , τ) >

(βt2ν − pk+1) [Pr (msk+1,t3|Λt2 , τ) + (Pr (ntk+1,t3|Λt2 , τ) + Pr (lsk+2,t3|Λt2 , τ))× Pr (msk+1,t4|Λt3 , τ)]
)

(137)

Equation (137) can be simplified in the following way:

Pr (lbk,t2 |Λt1 , τ) =

 Pr
(
pk
ν

+ τ
ν

f
f+l

< βt2 <
pk
ν
− τ

ν
g
g−l

)
if pk

ν
+ τ

ν
g
g−l < 1 + b

Pr
(
pk
ν

+ τ
ν

f
f+l

< βt2 < 1 + b
)

otherwise
(138)

Therefore the probability that the 2nd player posts a limit buy at pk+1, thus undercutting, is

given by:

Pr (lbk+1,t2|Λt1 , τ) =

 Pr
(
pk
ν
− τ

ν
g
g−l < βt2 < 1 + b

)
if pk

ν
+ τ

ν
g
g−l < 1 + b

0 otherwise
(139)

Without loss of generality and using Lemma (1.2), if the 1st player at t1 is a buyer (βt1 > 1), he
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posts a limit buy. The execution probability of a limit buy at price pk < pnf is:

Pr (Ψk,t1|Λt0 , τ) = Pr (msk,t2 |Λt1 , τ) +

Pr (lsk+1,t2|Λt1 , τ) [Pr (msk,t3|Λt2 , τ) + (1− Pr (msk,t3|Λt2 , τ))Pr (msk,t4|Λt3 , τ)] +

Pr (lbk,t2|Λt1 , τ) [Pr (msk,t3 |Λt2 , τ) + Pr (lsk+1,t3|Λt2 , τ)Pr (msk,t4|Λt3 , τ)] +

Pr (lbk+1,t2|Λt1 , τ)Pr (msk+1,t3|Λt2 , τ)Pr (msk,t4|Λt3 , τ)

(140)

and the execution probability of a limit buy at pnf is:

Pr
(
Ψnf ,t1|Λt0 , τ

)
= Pr

(
msnf ,t2|Λt1 , τ

)
+

Pr
(
lbnf ,t2|Λt1 , τ

) [
Pr
(
msnf ,t3 |Λt2 , τ

)
+ Pr

(
ntnf ,t3|Λt2 , τ

)
Pr
(
msnf ,t4|Λt3 , τ

)] (141)

Using equations (140) and (141), the equilibrium submission strategies of the 1st player at price

pk < pnf is:

Pr (lbk,t1|Λt0 , τ) =

Pr
(
(βt1ν − pk)Pr (Ψk,t1|Λt0 , τ) > 0,

(βt1ν − pk)Pr (Ψk,t1|Λt0 , τ) > (βt1ν − pk̃)Pr
(
Ψk̃,t1
|Λt0 , τ

)
,

(βt1ν − pk)Pr (Ψk,t1|Λt0 , τ) > (βt1ν − pnf )Pr
(
Ψnf ,t1|Λt0 , τ

) )
(142)

In equilibrium, the 1st player submits a limit order at pnf with probability:

Pr
(
lbnf ,t1|Λt0 , τ

)
=

Pr
(
(βt1ν − pnf )Pr

(
Ψnf ,t1|Λt0 , τ

)
> 0,

(βt1ν − pnf )Pr
(
Ψnf ,t1|Λt0 , τ

)
> (βt1ν − pk)Pr (Ψk,t1|Λt0 , τ)

) (143)

We show that for any τ ∈
{

(0, τmax) |nf ≥ 2
}
, at t1 there exists at least one limit buy order,

e.g., at p+1, that dominates a limit buy at p+nf . As nf ≥ 2, only if by equation (23) 2bν ≥ 3τ

the payoff of the 1st player submitting a limit buy at p+1 (equation (142)) is strictly greater than

the payoff from posting a limit buy at pnf (equation (143)). Therefore, the 1st player never posts
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a limit buy at p+nf , which is a dominated strategy.

In the remaining part of the proof, we consider a generic τ such that τ ∈ (0, τmax) |nf = 1

and we show if there is only price level on each side of the book, the 1st will lock the market with

a positive probability. If the investor arriving at t1 limit buys at p+1, the submission probabilities

of the 2nd player are the following:

• Pr (ms+1,t2|Λt1 , τ) = Pr (p+1 − βν > 0)

• Pr (nt+1,t2 |Λt1 , τ) = 1− Pr (ms+1,t2|Λt1 , τ)

Having defined the payoff from both a limit buy at p−1 and a limit buy at p+1, we can determine

the associated probability of submission by equating the payoff from the two strategies:

(βt1ν − p−1)× Pr (Ψ−1,t1|Λt0 , τ) = (βt1ν − p+1)× Pr (Ψ+1,t1|Λt0 , τ) (144)

Solving (144) by βt1 we show that in the τ region ensuring nf = 1 which is defined by

τ ∈ (0, τmax) |2bν < 3τ , equation (144) admits an internal solution β?t1 and the 1st player order

submission probabilities are:

• Pr (lb−1,t1|Λt0 , τ) = 1
Γ

[
β?t1 − 1

]
• Pr (lb+1,t1|Λt0 , τ) = 1

Γ

[
1 + b− β?t1

]

E.2 Proof of Proposition (6)

As for the proof of Proposition 4 (Appendix D.5), we now show how the equilibrium order

submission probabilities and the associated welfare of the strategic game described in Appendix

(E.1) change for τ → 0+. As τ decreases, the number of feasible prices within the investor’s

support, 2bν, increases. Approaching a continuum of prices, we indicate a generic feasible price

as p. The order submission probabilities associated with the trading strategies of the 4rd player

are:

• Pr (mst4|Λt3) = 1
Γ

(
p
v
− (1− b)

)
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• Pr (mbt4|Λt3) = 1
Γ

(
(1 + b)− p

v

)
The order submission probabilities for the 3rd depend on the state of the book:

• If the book is empty (Λt2 = {lbk,t1 ,msk,t2}), the 3rd player submits a limit buy order at

p?t3 = ν
2

(βt3 + 1− b) (equation (69))

• If the book opens with both a limit buy and a limit sell order (Λt2 = {lbk,t1 , lsk+1,t2}), the

3rd player submits market orders with the following probabilities:

– Pr (mst3|Λt2) = 1
Γ

(
p
v
− (1− b)

)
– Pr (mbt3|Λt2) = 1

Γ

(
(1 + b)− p

v

)
.

• If the book opens with limit buy orders only (Λt2 = {lbk,t1 , lbk+1,t2} or Λt2 = {lbk,t1 , lbk,t2}),

the 3rd player submits orders according to Appendix (D.5) equations (113) - (114) - (115).

The order submission probabilities of the 2nd player for τ → 0+ can be obtained by considering

equations (134) - (136) - (138) - (139):

limτ→0+Pr (msk,t2|Λt1) = Pr
(

1− b < βt2 <
p

ν

)
=

(
p

Γν
− 1− b

Γ

)
(145)

limτ→0+Pr (lsk+1,t2|Λt1) = 0 (146)

limτ→0+Pr (lbk,t2|Λt1) = 0 (147)

limτ→0+Pr (lbk+1,t2 |Λt1) ≈ Pr
(p
ν
< βt2 < (1 + b)

)
(148)

Considering the case of τ → 0+, if the 2nd player undercuts the 1st player to the next adjacent

price, he undercuts at a price pt2 = p + o(ε) by an almost negligible quantity to gain price

priority, hence pt2 ∼ p. As in the 3-period game, when τ approaches 0, in equilibrium the 2nd

player mainly focuses on aggressive strategies: he either market sells or undercuts the existing

limit buy order; he neither limit sells nor queues behind the standing limit order.
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For τ → 0+, the probability of execution of a limit buy posted at p at t1 is:

Pr (Ψt1|Λt0) =
(
Pr (msk,t2|Λt1 , ) + Pr (lbk+1,t2|Λt1)× Pr (msk,t3|Λt2)× Pr (msk,t4|Λt3)

)
=

1

Γ

(p
v
− (1− b)

)
+

(
1

Γ

(p
v
− (1− b)

))2

−
(

1

Γ

(p
v
− (1− b)

))3

(149)

The generic payoff of the 1st player for a limit order buy is:

(βt1ν − p)Pr (Ψt1|Λt0) (150)

Substituting (149) in (150) and taking the first order conditions w.r.t. p, for any βt1 ∈ (1, 1 + b),

the 1st player submits a limit buy order with probability 1 at the following price:

p?t1 ≈
ν

4
(βt1 + 3− b) (151)

We can now compute the ex ante welfare of the players. Substituting (151) in (150), we obtain

the 1st player’s welfare as:

ωt1(lbt1) =

∫ 1+b

1

(
βt1ν − p?t1

)
× Pr (Ψt1|Λt0)

1

Γ
dβt1 =

10771

61440
bν (152)

The 2nd player’s welfare in case of market sell is:

ωt2(mst2) =

∫ 1+b

1

∫ p?t1
ν

1−b

(
p?t1 − βt2ν

) 1

Γ
Pr
(
lbp?t1 ,t1|Λt0

)
dβt2|βt1

 1

Γ
dβt1

=

∫ 1+b

1

∫ p?t1
ν

1−b

(
p?t1 − βt2ν

) 1

Γ
dβt2|βt1

 1

Γ
dβt1 =

37

384
bν

(153)

112



The 2nd player’s welfare in case of undercutting the limit buy posted by the 1st player is:

ωt2(lbt2) =

∫ 1+b

1

(∫ 1+b

p?t1
ν

(βt2ν − p?t1)Pr
(
lbp?t1 ,t1|Λt0

)
Pr
(
msp?t1 ,t3|Λt2

) 1

Γ
dβt2|βt1

)
1

Γ
dβt1

=

∫ 1+b

1

(∫ 1+b

p?t1
ν

(βt2ν − p?t1)
1

Γ

(
p?t1
v
− (1− b)

)
1

Γ
dβt2|βt1

)
1

Γ
dβt1 =

845

12288
bν

(154)

The welfare of the 3rd player at t3 depends on his strategic action given the state of the book. If

at t3 the book opens empty - which happens with probability:

∫ 1+b

1

Pr (lbp,t1|Λt0)Pr (msp,t2|Λt2)
1

Γ
dβt1 =

∫ 1+b

1

1

Γ

(
p?t1
v
− (1− b)

)
1

Γ
dβt1 =

7

32
, (155)

following Lemma (1), the 3rd player submits a limit buy order and the associated welfare is given

by:

ωt3(lbt3) =
7

32

∫ 1+b

1

(
βt3ν − p?t3

)
× Pr

(
msp?t3 ,t4|Λt3

) 1

Γ
dβt3 =

7

32

7bν

48
=

49

1536
bν (156)

If instead the book at t3 opens with two limit buy orders as the 2nd player undercuts the 1st

player’s limit buy order, the 3rd player either market sells or further undercuts the standing limit

order.

The welfare associated with a market sell order is:

ωt3(mst3) =

∫ 1+b

1

∫ p?t1
ν

1−b

(
p?t1 − βt3ν

) 1

Γ
Pr
(
lbp?t1 ,t1|Λt0

)
Pr
(
lbp?t1 ,t2|Λt1

)
dβt3|βt1

 1

Γ
dβt1

=

∫ 1+b

1

∫ p?t1
ν

1−b

(
p?t1 − βt3ν

)(1 + b

Γ
−
p?t1
Γν

)
1

Γ
dβt3 |βt1

 1

Γ
dβt1 =

659

12288
bν

(157)

Whereas the welfare associated to a limit buy order that undercuts the existing limit buy orders
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is:

ωt3(lbt3) =

∫ 1+b

1

∫ p?t1
ν

1−b

(
βt3ν − p?t1

) 1

Γ
Pr
(
lbp?t1 ,t1|Λt0

)
Pr
(
lbp?t1 ,t2 |Λt1

)
Pr
(
msp?t1 ,t4|Λt3

)
dβt3|βt1

 1

Γ
dβt1

=

∫ 1+b

1

∫ p?t1
ν

1−b

(
βt3ν − p?t1

)(1 + b

Γ
−
p?t1
Γν

)(
p?t1
Γν
− 1− b

Γ

)
1

Γ
dβt3|βt1

 1

Γ
dβt1 =

1589

40960
bν

(158)

The welfare of the 4th player is given by market selling either at p?t1 or at p?t3 , conditional to

the status of the book. In case the book opens empty at t3 the 3rd player submits lb(p?t3) with

probability 1 and the welfare of the 4th player is:

ωt4(mst4) =
7

32

∫ 1+b

1

∫ p?t3
ν

1−b

(
p?t3 − βt4ν

) 1

Γ
Pr
(
lbp?t3 ,t3|Λt2

)
dβt4 |βt3

 1

Γ
dβt3

=
7

32

∫ 1+b

1

∫ p?t3
ν

1−b

(
p?t1 − βt4ν

) 1

Γ
dβt4|βt3

 1

Γ
dβt3 =

7

32

7

96
bν =

49

3072
bν

(159)

If instead the book at t3 opens with two limit buy order as the 2nd player undercuts the 1st

player’s limit buy orders, the 4th player can always market sell at p?t1 . The welfare of the 4th

player is:

ωt4(mst4) =

∫ 1+b

1

∫ p?t1
ν

1−b

(
p?t1 − βt4ν

) 1

Γ
Pr
(
lbp?t1 ,t1|Λt0

)
Pr
(
lbp?t1 ,t2|Λt1

)
dβt4|βt1

 1

Γ
dβt1

=

∫ 1+b

1

∫ p?t1
ν

1−b

(
p?t1 − βt4ν

)(1 + b

Γ
−
p?t1
Γν

)
1

Γ
dβt4 |βt1

 1

Γ
dβt1 =

659

12288
bν

(160)

The total welfare with a τ → 0+ is hence given by:

Ω(τ → 0+) =
65659

122880
bν ≈ 0.534 bν (161)

In order to show that τ → 0+ is not the OTS, , we need to find a τ > 0 with an associated

welfare greater than 65659
122880

bν. For a generic combination of (b, ν), consider τ = bν
2
. The price
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grid and the associated submissions probabilities are:

Table 1.E: 4-period Game: Order Submission Probabilities
This table reports the order submission probabilities of the 4-period model for a generic combination of (b, ν), τ =
bν
2 and pk = {p−2, p−1, p+1, p+2}. Note that the equilibrium order submission strategies are those associated
with pk = {p−1, p+1}

Order Submission Probabilities p+1 p−1

Pr(lbk,t1|Λt0 , τ) 0.1185 0.3815

Pr(msk,t2|Λt1 , τ) 0.5485 0
Pr(lsk+1,t2|Λt1 , τ) 0.1737 0.5946
Pr(lbk,t2|Λt1 , τ) 0.2778 0.0613
Pr(lbk+1,t2 |Λt1 , τ) 0 0.3441

Pr(msk,t3|Λt2 = {lb, lb} , τ) 0.5893 0.225
Pr(lsk+1,t3|Λt2 = {lb, lb} , τ) 0.2857 0.4
Pr(lbk+1,t3 |Λt2 = {lb, lb} , τ) 0.125 0.375

Pr(lbk,t3|Λt2 = {lb,ms} , τ) 0 0.5

Pr(msk,t3|Λt2 = {lb, ls} , τ) 0.625 0.375
Pr(mbk+1,t3|Λt2 = {lb, ls} , τ) 0.125 0.375

Pr(msk,t4|Λt3 , τ) 0.625 0.375
Pr(mbk+1,t4|Λt3 , τ) 0.125 0.375

The 1st player submits limit buy orders at p−1 and p+1 and his expected welfare is:

ωt1(lbt1 |τ) =

+1∑
k=−1

(
Pr (msk,t2|Λt1 , τ) +

Pr (lsk+1,t2|Λt1 , τ) [Pr (msk,t3|Λt2 , τ) + (1− Pr (msk,t3|Λt2 , τ))Pr (msk,t4|Λt3 , τ)] +

Pr (lbk,t2|Λt1 , τ) [Pr (msk,t3|Λt2 , τ) + Pr (lsk+1,t3 |Λt2 , τ)Pr (msk,t4 |Λt3 , τ)] +

Pr (lbk+1,t2|Λt1 , τ)Pr (msk+1,t3|Λt2 , τ)Pr (msk,t4|Λt3 , τ)
) ∫

βt1∈B(τ)

βt1ν − pk
Γ

dβt1 = 0.1793 bν

(162)
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The welfare of the 2nd player is :

ωt2(mst2 ∨ lst2 ∨ lbt2|τ) =

+1∑
k=−1

Pr (lbk,t1|Λt0 , τ)

∫
βt2∈B(τ)

pk − βt2ν
Γ

dβt2+

1∑
k=−1

Pr (lbk,t1|Λt0 , τ)
[
Pr (mbk+1,t3|Λt2 , τ) +

(
1− Pr (mbk+1,t3 |Λt2 , τ)

)
Pr (mbk+1,t4|Λt3 , τ)

]
∫
βt2∈B(τ)

pk+1 − βt2ν
Γ

dβt2+

+1∑
k=−1

Pr (lbk,t1 |Λt0 , τ)Pr (msk,t3 |Λt2 , τ)Pr (msk,t4|Λt3 , τ)

∫
βt2∈B(τ)

βt2ν − pk
Γ

dβt2+

1∑
k=−1

Pr (lbk,t1 |Λt0 , τ) [Pr (msk+1,t3|Λt2 , τ) + Pr (lsk+2,t3|Λt2 , τ)Pr (msk+1,t4|Λt3 , τ)]∫
βt2∈B(τ)

βt2ν − pk+1

Γ
dβt2 = 0.1861bν

(163)

The welfare of the 3rd and 4th player are conditional on the different path the trading game

assumes. The welfare of the 3rd player in case the 2nd player immediately market sells the order

posted at t1 is:

ωt3(lbt3 |τ) =
+1∑

k=−1

Pr (lbk,t1|Λt0 , τ)Pr (msk,t2|Λt1 , τ)Pr (ms−1,t4|Λt3 , τ)

∫
βt3∈B(τ)

βt3ν − p−1

Γ
dβt3

(164)

The welfare of the 3rd player in case the 2nd player posts a limit sell at the adjacent price level

is:

ωt3(mbt3 ∨mst3 |τ) =
1∑

k=−1

Pr (lbk,t1|Λt0 , τ)Pr (lsk+1,t2|Λt1 , τ)

( ∫ pk
v

(1−b)

pk − βt3v
Γ

dβt3 +

∫ (1+b)

pk+1
v

βt3v − pk+1

Γ
dβt3

) (165)

Whereas the welfare of the 3rd player in case the 2nd player opts for either queuing or undercutting
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is:

ωt3(mst3 ∨ lst3 ∨ lbt3|τ) =
+1∑

k=−1

Pr (lbk,t1 |Λt0 , τ)Pr (lbk,t2|Λt1 , τ)

( ∫
βt3∈B(τ)

pk − βt3ν
Γ

dβt3 + Pr (mbk+1,t4 |Λt3 , τ)

∫
βt3∈B(τ)

pk+1 − βt3ν
Γ

dβt3+

Pr (msk+1,t4|Λt3 , τ)

∫
βt3∈B(τ)

βt3ν − pk+1

Γ
dβt3

)
+

1∑
k=−1

Pr (lbk,t1|Λt0 , τ)Pr (lbk+1,t2|Λt1 , τ)

( ∫
βt3∈B(τ)

pk+1 − βt3ν
Γ

dβt3 + Pr (mbk+2,t4|Λt3 , τ)

∫
βt3∈B(τ)

pk+2 − βt3ν
Γ

dβt3+

Pr (msk+2,t4|Λt3 , τ)

∫
β3∈B(τ)

βt3ν − pk+2

Γ
dβt3

)

(166)

Therefore, the overall welfare of the 3rd player is: ωt3(·) = 0.1554bν

The welfare of the 4th player in case the book opens empty at t3 and hence the 3rd player posts

a limit buy order (by Proposition (1)) is:

ωt4(mbt4) =
+1∑

k=−1

Pr (lbk,t1|Λt0 , τ)Pr (msk,t2 |Λt1 , τ)Pr (lb−1,t3|Λt2 , τ)

∫ p−1
ν

(1−b)

p−1 − βt4ν
Γ

dβt4

(167)

The welfare of the 4th player in case the 2nd player posts a limit sell at the adjacent price level

is:

ωt4(mst4 ∨mbt4) =
+1∑

k=−1

Pr (lbk,t1|Λt0 , τ)Pr (lsk+1,t2|Λt1 , τ)
(
Pr (mbk+1,t3|Λt2 , τ)

∫ pk
v

(1−b)

pk − βt4ν
Γ

dβt4+

Pr (msk,t3|Λt2 , τ)

∫ (1+b)

pk+1
ν

βt4ν − pk+1

Γ
dβt4 + Pr (ntk,t3|Λt2 , τ)

( ∫ pk
ν

(1−b)

pk − βt4ν
Γ

dβt4 +

∫ (1+b)

pk+1
ν

βt4ν − pk+1

Γ
dβt4

))
(168)

Finally, the welfare of the 4th player when the 2nd player opts for either queuing or undercutting
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is:

ωt4(mst4 ∨mbt4) = (
+1∑

k=−1

Pr (lbk,t1|Λt0 , τ)Pr (lbk,t2 |Λt1 , τ)
(
Pr (msk,t3|Λt2 , τ)

∫ pk
ν

(1−b)

pk − βt4ν
Γ

dβt4+

Pr (lsk+1,t3|Λt2 , τ)
( ∫ pk

ν

(1−b)

pk − βt4ν
Γ

dβt4 +

∫ (1+b)

pk+1
ν

βt4v − pk+1

Γ
dβt4

)
+ Pr (lbk+1,t3|Λt2 , τ)

∫ pk+1
ν

(1−b)

pk+1 − βt4ν
Γ

dβt4
)
+

+1∑
k=−1

Pr (lbk,t1|Λt0 , τ)Pr (lbk+1,t2 |Λt1 , τ)
(
Pr (msk+1,t3 |Λt2 , τ)

∫ pk
ν

(1−b)

pk − βt4ν
Γ

dβt4+

Pr (lsk+2,t3|Λt2 , τ)
( ∫ pk+1

ν

(1−b)

p
k+1−βt4ν

Γ
dβt4 +

∫ (1+b)

pk+2
ν

βt4v − pk+2

Γ
dβt4

)
+ Pr (lbk+2,t3|Λt2 , τ)

∫ pk+2
ν

(1−b)

pk+2 − βt4ν
Γ

dβt4
)

(169)

The overall welfare of the 4th player is: ωt4(·) = 0.0670bν and the total welfare associated

with a game with τ = bν
2
is

Ω(
bν

2
) = 0.5878bν (170)

We can therefore conclude that τ → 0+ is not the OTS is a 4-period model. �
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E.3 Model Solution of the Four Period Model

We solve the 4-period trading game by backward induction.

E.3.1 Period t4

As for the previous trading games, the optimal order submission probabilities of investors arriving

at t4 are defined by Lemma (1) (point 3).

E.3.2 Period t3

We now derive the optimal order submission strategies at t3. At t3, there are four possible state

of the book:

• The book is empty (Λt2 = {lbk,t1 ,msk,t2}), hence the 3rd player will submit a limit buy

order following Proposition (1).

• The book has a limit buy and a limit sell ( Λt2 = {lbk,t1 , lsk+1,t2}), hence the 3rd player

is a liquidity taker only and his order submission probabilities are defined by Lemma (1)

(point 3).

• The book has a limit buy and a limit sell ( Λt2 = {lbk,t1 , lsk+d,t2}), with d ≥ 2, hence the

3rd player can either opt for market orders ( sell at pk and buy at pk+d ) or opt for limit

orders inside the best bid ask spread. The probability of market sell at pk is:

Pr (msk,t3|Λt2 , τ) =

Pr
(
pk − βt3ν > 0,

pk − βt3ν > (pl − βt3ν)Pr (mbl,t4|Λt3 , τ) ,

pk − βt3ν > (βt3ν − pl)Pr (msl,t4 |Λt3 , τ) ,

pk − βt3ν > βt3ν − pk+d

)
(171)

The conditions imposed in equation (171) ensure that a market sell at pk is more profitable

than no trade (nt), a limit sell and a limit buy at a generic price pl ∈ {pk, pk+d} and finally
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a market buy at pk+d. The submission probability of a limit sell at a generic pl ∈ {pk, pk+d}

is:

Pr (lsl,t3 |Λt2 , τ) =

Pr
(

(pl − βt3ν)Pr (mbl,t4 |Λt3 , τ) > 0,

(pl − βt3ν)Pr (mbl,t4 |Λt3 , τ) > pk − βt3ν,

(pl − βt3ν)Pr (mbl,t4 |Λt3 , τ) > (pl̃ − βt3ν)Pr
(
mbl̃,t4|Λt3 , τ

)
,

(pl − βt3ν)Pr (mbl,t4 |Λt3 , τ) > (βt3ν − pl)Pr (msl,t4|Λt3 , τ) ,

(pl − βt3ν)Pr (mbl,t4 |Λt3 , τ) > βt3ν − pk+d

)

(172)

where pl̃ is a generic price ∈ {pk, pk+d} different from pl. The submission probability of a

limit buy at a generic pl ∈ {pk, pk+d} is:

Pr (lbl,t3 |Λt2 , τ) =

Pr
(
(βt3ν − pl)Pr (msl,t4|Λt3 , τ) > 0,

(βt3ν − pl)Pr (msl,t4|Λt3 , τ) > pk − βt3ν,

(βt3ν − pl)Pr (msl,t4|Λt3 , τ) > (pl − βt3ν)Pr (mbl,t4|Λt3 , τ) ,

(βt3ν − pl)Pr (msl,t4|Λt3 , τ) > (βt3ν − pl̃)Pr
(
msl̃,t4|Λt3 , τ

)
,

(βt3ν − pl)Pr (msl,t4|Λt3 , τ) > βt3ν − pk+d

)

(173)

Finally the submission probability of a market buy at pk+d is:

Pr (mbk+d,t3|Λt2 , τ) =

Pr
(
βt3ν − pk+d > 0,

βt3ν − pk+d > pk − βt3ν,

βt3ν − pk+d > (pl − βt3ν)Pr (mbl,t4|Λt3 , τ) ,

βt3ν − pk+d > (βt3ν − pl)Pr (msl,t4 |Λt3 , τ)
)

(174)

• The book is composed by limit buy orders only (Λt2 = {lbk,t1 , lbk±d,t2} with d ∈
{
−nf , nf

}
),
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the 3rd player’s submission probability strategies are defined in Appendix D.1.2

E.3.3 Period t2

At t1 the book opens empty. In addition, by Lemma (1) we know that at t1 the incoming investor

posts either a limit buy (if his β > 1) or a limit sell (if his β < 1) at pk. Therefore, given that

at t2 the book symmetrically opens either with a limit buy or with a limit sell, without loss of

generality we can consider a buyer arriving at t1 so that the book opens with a limit buy at t2.

Hence, the incoming 2nd player can either hit the previously posted limit buy by market selling

at pk, or limit sell at pd > pk, or he can limit buy still at pu > pk, or queue behind the 1st player

posting a limit buy at pq ≤ pk or decide not to trade (nt).

For a generic limit buy posted by the first player at pk, the probability that the 2nd player

selects a market sell is given by:

Pr (msk,t2|Λt1 , τ) =

Pr
(
pk − βt2ν > 0,

pk − βt2ν > (pk+1 − βt2ν) [Pr (mbk+1,t3|Λt2 , τ) + (1− Pr (mbk+1,t3|Λt2 , τ))Pr (mbk+1,t4|Λt3 , τ)] ,

pk − βt2ν > (pl − βt2ν)(Pr (mbl,t3|Λt2 , τ) +

[
l−1∑

j=k+1

Pr (lbj,t3|Λt2 , τ) + Pr (msk,t3|Λt2 , τ)

]
Pr (mbl,t4 |Λt3 , τ)),

pk − βt2ν > (βt2ν − pq)Pr (msk,t3|Λt2 , τ) Pr (msq,t4|Λt3 , τ) ,

pk − βt2ν > (βt2ν − pu)(Pr (msu,t3|Λt2 , τ) + (
+nf∑
j=u+1

Pr (lsj,t3 |Λt2 , τ) + Pr (ntu,t3|Λt2 , τ))Pr (msu,t4|Λt3 , τ)
)

(175)

Equation (175) guarantees that market selling is more profitable than any other possible action

the 2nd player can take. If the first player submits a limit buy at the most aggressive price level

pnf , he locks the book in such a way that the 2nd player can either market sell or queue behind
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his order In this special case, equation (175) reduces to:

Pr
(
msnf ,t2|Λt1 , τ

)
= Pr

(
pnf − βt2ν > 0,

pnf − βt2ν > (βt2ν − pq)Pr (msk,t3 |Λt2 , τ) Pr (msq,t4 |Λt3 , τ)
) (176)

The probability that the 2nd player selects a limit sell order at a price pk+1 is:

Pr (lsk+1,t2|Λt1 , τ) =

Pr
(
(pk+1 − βt2ν)

[
Pr (mbk+1,t3 |Λt2 , τ) +

(
1− Pr (mbk+1,t3|Λt2 , τ)

)
Pr (mbk+1,t4|Λt3 , τ)

]
> 0,

(pk+1 − βt2ν)
[
Pr (mbk+1,t3 |Λt2 , τ) +

(
1− Pr (mbk+1,t3|Λt2 , τ)

)
Pr (mbk+1,t4|Λt3 , τ)

]
> (pk − βt2ν),

(pk+1 − βt2ν)
[
Pr (mbk+1,t3 |Λt2 , τ) +

(
1− Pr (mbk+1,t3|Λt2 , τ)

)
Pr (mbk+1,t4|Λt3 , τ)

]
>

(pl − βt2ν)

(
Pr (mbl,t3|Λt2 , τ) +

[
l−1∑

j=k+1

Pr (lbj,t3|Λt2 , τ) + Pr (msk,t3 |Λt2 , τ)

]
Pr (mbl,t4|Λt3 , τ)

)
,

(pk+1 − βt2ν)
[
Pr (mbk+1,t3|Λt2 , τ) +

(
1− Pr (mbk+1,t3|Λt2 , τ)

)
Pr (mbk+1,t4|Λt3 , τ)

]
>

(βt2ν − pq)Pr (msk,t3|Λt2 , τ) Pr (msq,t4|Λt3 , τ) ,

(pk+1 − βt2ν)
[
Pr (mbk+1,t3|Λt2 , τ) +

(
1− Pr (mbk+1,t3|Λt2 , τ)

)
Pr (mbk+1,t4 |Λt3 , τ)

]
>

(βt2ν − pu)(Pr (msu,t3|Λt2 , τ) + (
+nf∑
j=u+1

Pr (lsj,t3 |Λt2 , τ) + Pr (ntu,t3|Λt2 , τ))Pr (msu,t4|Λt3 , τ)
)
(177)
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The probability that the 2nd player selects a limit sell order at a price pl is:

Pr (lsl,t2|Λt1 , τ) =

Pr
(
(pl − βt2ν)

(
Pr (mbl,t3|Λt2 , τ) +

[
l−1∑

j=k+1

Pr (lbj,t3|Λt2 , τ) + Pr (msk,t3|Λt2 , τ)

]
Pr (mbl,t4|Λt3 , τ)

)
> 0,

(pl − βt2ν)

(
Pr (mbl,t3|Λt2 , τ) +

[
l−1∑

j=k+1

Pr (lbj,t3|Λt2 , τ) + Pr (msk,t3|Λt2 , τ)

]
Pr (mbl,t4 |Λt3 , τ)

)
>

(pk − βt2ν),

(pl − βt2ν)

(
Pr (mbl,t3|Λt2 , τ) +

[
l−1∑

j=k+1

Pr (lbj,t3|Λt2 , τ) + Pr (msk,t3|Λt2 , τ)

]
Pr (mbl,t4 |Λt3 , τ)

)
>

(pk+1 − βt2ν)
[
Pr (mbk+1,t3|Λt2 , τ) +

(
1− Pr (mbk+1,t3|Λt2 , τ)

)
Pr (mbk+1,t4 |Λt3 , τ)

]
,

(pl − βt2ν)

(
Pr (mbl,t3|Λt2 , τ) +

[
l−1∑

j=k+1

Pr (lbj,t3|Λt2 , τ) + Pr (msk,t3|Λt2 , τ)

]
Pr (mbl,t4 |Λt3 , τ)

)
>

(pl̃ − βt2ν)

Pr (mbl̃,t3|Λt2 , τ
)

+

 l̃−1∑
j=k+1

Pr (lbj,t3|Λt2 , τ) + Pr (msk,t3|Λt2 , τ)

Pr (mbl̃,t4|Λt3 , τ
) ,

(pl − βt2ν)

(
Pr (mbl,t3|Λt2 , τ) +

[
l−1∑

j=k+1

Pr (lbj,t3|Λt2 , τ) + Pr (msk,t3|Λt2 , τ)

]
Pr (mbl,t4|Λt3 , τ)

)
>

(βt2ν − pq)Pr (msk,t3|Λt2 , τ) Pr (msq,t4|Λt3 , τ) ,

(pl − βt2ν)

(
Pr (mbl,t3|Λt2 , τ) +

[
l−1∑

j=k+1

Pr (lbj,t3|Λt2 , τ) + Pr (msk,t3|Λt2 , τ)

]
Pr (mbl,t4 |Λt3 , τ)

)
>

(βt2ν − pu)(Pr (msu,t3|Λt2 , τ) + (
+nf∑
j=u+1

Pr (lsj,t3 |Λt2 , τ) + Pr (ntu,t3|Λt2 , τ))Pr (msu,t4|Λt3 , τ)
)
(178)

In the special case in which the 1st player submits a limit buy at the most aggressive price level

pnf , the probability of a limit sell is zero.

The probability that the 2nd player selects a limit buy order at pq ≤ pk thus queuing the limit
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buy order posted at t1 is:

Pr (lbq,t2|Λt1 , τ) =

Pr
(
(βt2ν − pq)Pr (msk,t3|Λt2 , τ) Pr (msq,t4|Λt3 , τ) > 0,

(βt2ν − pq)Pr (msk,t3|Λt2 , τ) Pr (msq,t4|Λt3 , τ) > (pk − βt2ν),

(βt2ν − pq)Pr (msk,t3|Λt2 , τ) Pr (msq,t4|Λt3 , τ) >

(pk+1 − βt2ν)
[
Pr (mbk+1,t3|Λt2 , τ) +

(
1− Pr (mbk+1,t3|Λt2 , τ)

)
Pr (mbk+1,t4 |Λt3 , τ)

]
,

(βt2ν − pq)Pr (msk,t3|Λt2 , τ) Pr (msq,t4|Λt3 , τ) >

(pl − βt2ν)

(
Pr (mbl,t3|Λt2 , τ) +

[
l−1∑

j=k+1

Pr (lbj,t3|Λt2 , τ) + Pr (msk,t3|Λt2 , τ)

]
Pr (mbl,t4 |Λt3 , τ)

)
,

(βt2ν − pq)Pr (msk,t3|Λt2 , τ) Pr (msq,t4|Λt3 , τ) >

(βt2ν − pq̃)Pr (msk,t3|Λt2 , τ) Pr (msq̃,t4|Λt3 , τ) ,

(βt2ν − pq)Pr (msk,t3|Λt2 , τ) Pr (msq,t4|Λt3 , τ) >

(βt2ν − pu)(Pr (msu,t3|Λt2 , τ) + (
+nf∑
j=u+1

Pr (lsj,t3|Λt2 , τ) + Pr (ntu,t3|Λt2 , τ))Pr (msu,t4|Λt3 , τ)
)
(179)

In the special case in which the 1st player submits a limit buy at the most aggressive price level

pnf , the probability of queuing is:

Pr (lbq,t2|Λt1 , τ) =

Pr
(
(βt2ν − pq)Pr (msk,t3|Λt2 , τ) Pr (msq,t4|Λt3 , τ) > 0,

(βt2ν − pq)Pr (msk,t3|Λt2 , τ) Pr (msq,t4|Λt3 , τ) > (pnf − βt2ν),

(βt2ν − pq)Pr (msk,t3|Λt2 , τ) Pr (msq,t4|Λt3 , τ) >

(βt2ν − pq̃)Pr (msk,t3|Λt2 , τ) Pr (msq̃,t4|Λt3 , τ)
)

(180)

The probability that the 2nd player selects a limit buy order at pu > pk thus undercutting the
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limit buy order posted at t1 is:

Pr (lbu,t2|Λt1 , τ) =

Pr
(
(βt2ν − pu)(Pr (msu,t3|Λt2 , τ) + (

+nf∑
j=u+1

Pr (lsj,t3|Λt2 , τ) + Pr (ntu,t3|Λt2 , τ))Pr (msu,t4|Λt3 , τ) > 0,

(βt2ν − pu)(Pr (msu,t3|Λt2 , τ) + (
+nf∑
j=u+1

Pr (lsj,t3|Λt2 , τ) + Pr (ntu,t3|Λt2 , τ))Pr (msu,t4|Λt3 , τ) > (pk − βt2ν),

(βt2ν − pu)(Pr (msu,t3|Λt2 , τ) + (
+nf∑
j=u+1

Pr (lsj,t3|Λt2 , τ) + Pr (ntu,t3|Λt2 , τ))Pr (msu,t4|Λt3 , τ) >

(pk+1 − βt2ν)
[
Pr (mbk+1,t3 |Λt2 , τ) +

(
1− Pr (mbk+1,t3|Λt2 , τ)

)
Pr (mbk+1,t4|Λt3 , τ)

]
,

(βt2ν − pu)(Pr (msu,t3|Λt2 , τ) + (
+nf∑
j=u+1

Pr (lsj,t3|Λt2 , τ) + Pr (ntu,t3|Λt2 , τ))Pr (msu,t4|Λt3 , τ) >

(pl − βt2ν)

(
Pr (mbl,t3|Λt2 , τ) +

[
l−1∑

j=k+1

Pr (lbj,t3|Λt2 , τ) + Pr (msk,t3 |Λt2 , τ)

]
Pr (mbl,t4|Λt3 , τ)

)
,

(βt2ν − pu)(Pr (msu,t3|Λt2 , τ) + (
+nf∑
j=u+1

Pr (lsj,t3|Λt2 , τ) + Pr (ntu,t3|Λt2 , τ))Pr (msu,t4|Λt3 , τ) >

(βt2ν − pq)Pr (msk,t3|Λt2 , τ) Pr (msq,t4|Λt3 , τ) ,

(βt2ν − pu)(Pr (msu,t3|Λt2 , τ) + (
+nf∑
j=u+1

Pr (lsj,t3|Λt2 , τ) + Pr (ntu,t3|Λt2 , τ))Pr (msu,t4|Λt3 , τ) >

(βt2ν − pũ)(Pr (msũ,t3|Λt2 , τ) + (
+nf∑
j=ũ+1

Pr (lsj,t3|Λt2 , τ) + Pr (ntũ,t3|Λt2 , τ))Pr (msũ,t4|Λt3 , τ)
)
(181)

In the special case in which the 1st player locks the market and submits a limit buy at the most

aggressive price level pnf , the probability of undercutting at t2 is zero. Finally, for any price

submitted by the 1st player, the probability that the 2nd player chooses nt is zero. Indeed even

by considering a set of actions always available to the 2nd player - both market sell and queuing
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at pk- no trade is a dominated strategy:

Pr (ntk,t2 |Λt1 , τ) =

Pr
(
0 > pk − βt2ν,

0 > (βt2ν − pk)(βν − pk)Pr (msk,t3|Λt2 , τ) Pr (msk,t4|Λt3 , τ)
) (182)

Given that Pr (msk,t3|Λt2 , τ) Pr (msk,t4|Λt3 , τ) is positive, the conditions in (182) reduce to:

pk > βt2v > pk (183)

which is impossible.

E.3.4 Period t1

Without loss of generality, using Lemma (1), if the 1st player at t1 is a buyer (βt1 > 1), he

can either limit buy at pk < pnf , or limit buy at the most aggressive price pnf . The execution

probability of a limit buy submitted at a generic price pk is:

Pr (Ψk,t1|Λt0 , τ) = Pr (msk,t2|Λt1 , τ) +

Pr (lsk+1,t2 |Λt1 , τ) [Pr (msk,t3|Λt2 , τ) + (1− Pr (msk,t3 |Λt2 , τ))Pr (msk,t4|Λt3 , τ)] +∑
d>k+1

Pr (lsd,t2|Λt1 , τ)

[
Pr (msk,t3|Λt2 , τ) +

(
Pr (mbd,t3 |Λt2 , τ) +

∑
k<l<d

Pr (lsl,t3|Λt2 , τ)

)
Pr (msk,t4|Λt3 , τ)

]
+

∑
q≤k

Pr (lbq,t2|Λt1 , τ)

[
Pr (msk,t3|Λt2 , τ) +

∑
d>k

Pr (lsd,t3|Λt2 , τ)Pr (msk,t4|Λt3 , τ)

]
+

Pr (lbk+1,t2 |Λt1 , τ)Pr (msk+1,t3|Λt2 , τ)Pr (msk,t4|Λt3 , τ) +∑
d>k

Pr (lbd,t2|Λt1 , τ)Pr (msd,t3|Λt2 , τ)Pr (msk,t4 |Λt3 , τ)

(184)
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The execution probability of a limit buy submitted at a generic price p+nf is:

Pr
(
Ψ+nf ,t1 |Λt0 , τ

)
= Pr

(
ms+nf ,t2|Λt1 , τ

)
+∑

q≤k

Pr (lbq,t2 |Λt1 , τ)
[
Pr (msk,t3|Λt2 , τ) + Pr

(
nt+nf ,t3 |Λt2 , τ

)
Pr
(
ms+nf ,t4|Λt3 , τ

)] (185)

Therefore using equations (184) and (185), the submission probability of a limit buy at price pk

is:

Pr (lbk,t1|Λt0 , τ) =

Pr
(
(βt1ν − pk)Pr (Ψk,t1|Λt0 , τ) > 0,

(βt1ν − pk) Pr (Ψk,t1|Λt0 , τ) > (βt1ν − pk̃)Pr
(
Ψk̃,t1
|Λt0 , τ

)
,

(βt1ν − pk)Pr (Ψk,t1|Λt0 , τ) > (βt1ν − p+nf )Pr
(
Ψ+nf ,t1|Λt0 , τ

) )
(186)

where pk̃ < p+nf different from pk. In the extreme case of a limit buy at p+nf , the probability of

submission is:

Pr
(
lb+nf ,t1 |Λt0 , τ

)
=

Pr
(
(βt1ν − p+nf )Pr

(
Ψ+nf ,t1|Λt0 , τ

)
> 0,

(βt1ν − p+nf )Pr
(
Ψ+nf ,t1|Λt0 , τ

)
> (βt1ν − pk) Pr (Ψk,t1|Λt0 , τ)

) (187)
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E.4 Welfare Equations

The welfare of the 1st player in the 4-period game is:

ωt1(lbt1 |τ) =

+nf∑
k=−nf

(
Pr (msk,t2 |Λt1 , τ) +

Pr (lsk+1,t2 |Λt1 , τ) [Pr (msk,t3 |Λt2 , τ) + (1− Pr (msk,t3 |Λt2 , τ))Pr (msk,t4 |Λt3 , τ)] +

Pr (lbk,t2 |Λt1 , τ) [Pr (msk,t3 |Λt2 , τ) + Pr (lsk+1,t3 |Λt2 , τ)Pr (msk,t4 |Λt3 , τ)] +

Pr (lbk+1,t2 |Λt1 , τ)Pr (msk+1,t3 |Λt2 , τ)Pr (msk,t4 |Λt3 , τ)
) ∫

βt1∈B(τ)

βt1ν − pk
Γ

dβt1+

1G

{( ∑
d>k+1

Pr (lsd,t2 |Λt1 , τ)

[
Pr (msk,t3 |Λt2 , τ) +

(
Pr (mbd,t3 |Λt2 , τ) +

∑
k<l<d

Pr (lsl,t3 |Λt2 , τ)

)
Pr (msk,t4 |Λt3 , τ)

]
+

∑
h<k

Pr (lbh,t2 |Λt1 , τ)

[
Pr (msk,t3 |Λt2 , τ) +

∑
d>k

Pr (lsd,t3 |Λt2 , τ)Pr (msk,t4 |Λt3 , τ)

]
+

Pr (lbk,t2 |Λt1 , τ)
∑
d>k+1

Pr (lsd,t3 |Λt2 , τ)Pr (msk,t4 |Λt3 , τ) +

∑
d>k+1

Pr (lbd,t2 |Λt1 , τ)Pr (msd,t3 |Λt2 , τ)Pr (msk,t4 |Λt3 , τ)

)∫
βt1∈B(τ)

βt1ν − pk
Γ

dβt1

}
(188)

The welfare of the 1st player is given by the product of the gain of a limit order multiplied by

its probability of execution, defined in equation (188). The welfare of the 2nd player is:

ωt2(mst2 ∨ lst2 ∨ lbt2 |τ) =

+nf∑
k=−nf

Pr (lbk,t1 |Λt0 , τ)

(∫
βt2∈B(τ)

pk − βt2ν
Γ

dβt2+

[
Pr (mbk+1,t3 |Λt2 , τ) +

(
1− Pr (mbk+1,t3 |Λt2 , τ)

)
Pr (mbk+1,t4 |Λt3 , τ)

] ∫
βt2∈B(τ)

p(k+1) − βt2ν
Γ

dβt2+

Pr (msk,t3 |Λt2 , τ) Pr (msk,t4 |Λt3 , τ)

∫
βt2∈B(τ)

βt2ν − pk
Γ

dβt2 +

[Pr (msk+1,t3 |Λt2 , τ) + Pr (lsk+2,t3 |Λt2 , τ)Pr (msk+1,t4 |Λt3 , τ)]

∫
βt2∈B(τ)

βt2ν − pk+1

Γ
dβt2+

1G

{ +nf∑
d=k+2

Pr (mbd,t3 |Λt2 , τ) +

k+d−1∑
j=k+1

Pr (lbj,t3 |Λt2 , τ) + Pr (msk,t3 |Λt2 , τ)

Pr (mbd,t4 |Λt3 , τ)

∫
βt2∈B(τ)

pd − βt2ν
Γ

dβt2+

k−1∑
d=−nf

Pr (msk,t3 |Λt2 , τ) Pr (msd,t4 |Λt3 , τ)

∫
βt2∈B(τ)

βt2ν − pd
Γ

dβt2+

+nf∑
d=k+2

Pr (msd,t3 |Λt2 , τ) +

+nf∑
j=d+1

Pr (lsj,t3 |Λt2 , τ)Pr (msd,t4 |Λt3 , τ)

∫
βt2∈B(τ)

βt2ν − pd
Γ

dβt2+

+nf∑
j=k+3

Pr (lsj,t3 |Λt2 , τ)Pr (msk+1,t4 |Λt3 , τ)

∫
βt2∈B(τ)

βt2ν − pk+1

Γ
dβt2

})
(189)
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The welfare of the 3rd player is defined by the trading strategy implemented by the 2nd player.

The welfare of the 3rd player in case the 2nd player immediately markets sell:

ωt3(mst3 |τ) =

+nf∑
k=−nf

Pr (lbk,t1 |Λt0 , τ)Pr (msk,t2 |Λt1 , τ)

+nf∑
k=−nf

Pr (msk,t4 |Λt3 , τ)

∫
βt3∈B(τ)

βt3ν − pk
Γ

dβt3

(190)

The welfare of the 3rd player in case the 2nd player posts a limit sell at pk+1:

ωt3(mst3 ∨mbt3 |τ) =

+nf−1∑
k=−nf

Pr (lbk,t1 |Λt0 , τ)Pr (lsk+1,t2 |Λt1 , τ)

(∫ pk
v

(1−b)

pk − βt3v
Γ

dβt3 +

∫ (1+b)

pk+1
v

βt3v − pk+1

Γ
dβt3

)
(191)

The welfare of the 3rd player in case the 2nd player posts a limit sell at pk+d with d ≥ 2:

ωt3(lbt1 |τ) =1G

{+nf−2∑
k=−nf

Pr (lbk,t1 |Λt0 , τ)

+nf∑
d=k+2

Pr (lsd,t2 |Λt1 , τ)

[∫
βt3∈B(τ)

pk − βt3ν
Γ

dβt3 +

d−1∑
j=k+1

Pr (mbj,t4 |Λt3 , τ)

∫
βt3∈B(τ)

pj − βt3ν
Γ

dβt3+

d−1∑
j=k+1

Pr (msj,t4 |Λt3 , τ)

∫
βt3∈B(τ)

βt3ν − pj
Γ

dβt3 +

∫
βt3∈B(τ)

βt3ν − pd
Γ

dβt3

]}
(192)

The welfare of the 3rd player in case the 2nd player posts a limit buy behind the 1st player:

ωt3(mst3 ∨ lst3 ∨ lbt3 |τ) =

+nf∑
k=−nf

Pr (lbk,t1 |Λt0 , τ)Pr (lbk,t2 |Λt1 , τ)

(∫
βt3∈B(τ)

pk − βt3ν
Γ

dβt3+

Pr (mbk+1,t4 |Λt3 , τ)

∫
βt3∈B(τ)

pk+1 − βt3ν
Γ

dβt3 + Pr (msk+1,t4 |Λt3 , τ)

∫
βt3∈B(τ)

βt3ν − pk+1

Γ
dβt3

)
+

1G

{ +nf∑
k=−nf

Pr (lbk,t1 |Λt0 , τ)

k−1∑
d=−nf

Pr (lbd,t2 |Λt1 , τ)

(∫
βt3∈B(τ)

pk − βt3ν
Γ

dβt3 +

+nf∑
j=k+1

Pr (mbj,t4 |Λt3 , τ)

∫
βt3∈B(τ)

pj − βt3ν
Γ

dβt3+

+nf∑
j=k+1

Pr (msj,t4 |Λt3 , τ)

∫
βt3∈B(τ)

βt3ν − pj
Γ

dβt3

)
+

+nf∑
k=−nf

Pr (lbk,t1 |Λt0 , τ)Pr (lbk,t2 |Λt1 , τ)

 +nf∑
j=k+2

Pr (mbj,t4 |Λt3 , τ)

∫
βt3∈B(τ)

pj − βt3ν
Γ

dβt3 +

+nf∑
j=k+2

Pr (msj,t4 |Λt3 , τ)

∫
βt3∈B(τ)

βt3ν − pj
Γ

dβt3

}
(193)
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The welfare of the 3rd player in case the 2nd player undercuts the limit buy posted by the 1st

player:

ωt3(mst3 ∨ lst3 ∨ lbt3 |τ) =

+nf−1∑
k=−nf

Pr (lbk,t1 |Λt0 , τ)Pr (lbk+1,t2 |Λt1 , τ)

(∫
βt3∈B(τ)

pk+1 − βt3ν
Γ

dβt3+

Pr (mbk+2,t4 |Λt3 , τ)

∫
βt3∈B(τ)

pk+2 − βt3ν
Γ

dβt3 + Pr (msk+2,t4 |Λt3 , τ)

∫
βt3∈B(τ)

βt3ν − pk+2

Γ
dβt3

)
+

1G

{+nf−1∑
k=−nf

Pr (lbk,t1 |Λt0 , τ)

nf∑
d=k+2

Pr (lbd,t2 |Λt1 , τ)

(∫
βt3∈B(τ)

pd − βt3ν
Γ

dβt3+

+nf∑
j=d+1

Pr (mbj,t4 |Λt3 , τ)

∫
βt3∈B(τ)

pj − βt3ν
Γ

dβt3 +

+nf∑
j=d+1

Pr (msj,t4 |Λt3 , τ)

∫
βt3∈B(τ)

βt3ν − pj
Γ

dβt3

)
+

+nf−1∑
k=−nf

Pr (lbk,t1 |Λt0 , τ)Pr (lbk+1,t2 |Λt1 , τ)

(
+nf∑
j=k+3

Pr (mbj,t4 |Λt3 , τ)

∫
βt3∈B(τ)

pj − βt3ν
Γ

dβt3 +

+nf∑
j=k+3

Pr (msj,t4 |Λt3 , τ)

∫
βt3∈B(τ)

βt3ν − pj
Γ

dβt3

)}

(194)

The overall welfare of the 3rd player is hence given by the sum of equations (189)- (191)-(192)-

(193)-(194).

The welfare of the 4th player closely follows. The welfare of the 4th player in case the 2nd player

immediately markets sell:

ωt4(mst1 |τ) =

+nf∑
k=−nf

Pr (lbk,t1 |Λt0 , τ)Pr (msk,t2 |Λt1 , τ)

+nf∑
k=−nf

Pr (lbk,t3 |Λt2 , τ)

∫ pk
v

(1−b)

pk − βt4v
Γ

dβt4 (195)

The welfare of the 4th player in case the 2nd player posts a limit sell at pk+1:

ωt4(mst4 ∨mbt4 |τ) =

+nf−1∑
k=−nf

Pr (lbk,t1 |Λt0 , τ)Pr (lsk+1,t2 |Λt1 , τ)

(
Pr (mbk+1,t3 |Λt2 , τ)

∫ pk
v

(1−b)

pk − βt4v
Γ

dβt4+

Pr (msk,t3 |Λt2 , τ)

∫ (1+b)

pk+1
v

βt4v − pk+1

Γ
dβt4 + Pr (ntk,t3 |Λt2 , τ)

(∫ pk
v

(1−b)

pk − βt4v
Γ

dβt4 +

∫ (1+b)

pk+1
v

βt4v − pk+1

Γ
dβt4

))
(196)
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The welfare of the 4th player in case the 2nd player posts a limit sell at pk+d with d ≥ 2:

1G

{+nf−2∑
k=−nf

Pr (lbk,t1 |Λt0 , τ)

+nf∑
d=k+2

Pr (lsd,t2 |Λt1 , τ)

[
Pr (msk,t3 |Λt2 , τ)

∫ (1+b)

pd
v

βt4v − pd
Γ

dβt4 +

d−1∑
j=k+1

Pr (lsj,t3 |Λt2 , τ)

(∫ pk
v

(1−b)

pk − βt4v
Γ

dβt4 +

∫ (1+b)

pj
v

βt4v − pj
Γ

dβt4

)
+

Pr (mbd,t3 |Λt2 , τ)

∫ pk
v

(1−b)

pk − βt4v
Γ

dβt4 +

d−1∑
j=k+1

Pr (lbj,t3 |Λt2 , τ)

(∫ pj
v

(1−b)

pj − βt4v
Γ

dβt4 +

∫ (1+b)

pd
v

βt4v − pd
Γ

dβt4

)]}
(197)

The welfare of the 4th player in case the 2nd player posts a limit buy behind the 1st player:

ωt4(mst4 ∨mbt4 |τ) =

+nf∑
k=−nf

Pr (lbk,t1 |Λt0 , τ)Pr (lbk,t2 |Λt1 , τ)

(
Pr (msk,t3 |Λt2 , τ)

∫ pk
v

(1−b)

pk − βt4v
Γ

dβt4+

Pr (lsk+1,t3 |Λt2 , τ)

(∫ pk
v

(1−b)

pk − βt4v
Γ

dβt4 +

∫ (1+b)

pk+1
v

βt4v − pk+1

Γ
dβt4

)
+ Pr (lbk+1,t3 |Λt2 , τ)

∫ pk+1
v

(1−b)

pk+1 − βt4v
Γ

dβt4

)
+

1G

{ +nf∑
k=−nf

Pr (lbk,t1 |Λt0 , τ)

k−1∑
d=−nf

Pr (lbd,t2 |Λt1 , τ)

(
Pr (msk,t3 |Λt2 , τ)

∫ pd
v

(1−b)

pd − βt4v
Γ

dβt4+

+nf∑
j=k+1

Pr (lsj,t3 |Λt2 , τ)

(∫ pk
v

(1−b)

pk − βt4v
Γ

dβt4 +

∫ (1+b)

pj
v

βt4v − pj
Γ

dβt4

)
+

+nf∑
j=k+1

Pr (lbj,t3 |Λt2 , τ)

∫ pj
v

(1−b)

pj − βt4v
Γ

dβt4

)
+

+nf∑
k=−nf

Pr (lbk,t1 |Λt0 , τ)Pr (lbk,t2 |Λt1 , τ)

(
+nf∑
j=k+2

Pr (lsj,t3 |Λt2 , τ)

(∫ pk
v

(1−b)

pk − βt4v
Γ

dβt4 +

∫ (1+b)

pj
v

βt4v − pj
Γ

dβt4

)
+

+nf∑
j=k+2

Pr (lbj,t3 |Λt2 , τ)

∫ pj
v

(1−b)

pj − βt4v
Γ

dβt4

)}
(198)
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The welfare of the 4th player in case the 2nd player undercuts the limit buy posted by the 1st

player:

ωt4(mst4 ∨mbt4 |τ) =

+nf∑
k=−nf

Pr (lbk,t1 |Λt0 , τ)Pr (lbk+1,t2 |Λt1 , τ)

(
Pr (msk+1,t3 |Λt2 , τ)

∫ pk
v

(1−b)

pk − βt4v
Γ

dβt4+

Pr (lsk+2,t3 |Λt2 , τ)

(∫ pk+1
v

(1−b)

pk+1 − βt4v
Γ

dβt4 +

∫ (1+b)

pk+2
v

βt4v − pk+2

Γ
dβt4

)
+ Pr (lbk+2,t3 |Λt2 , τ)

∫ pk+2
v

(1−b)

pk+2 − βt4v
Γ

dβt4

)
+

1G

{+nf−1∑
k=−nf

Pr (lbk,t1 |Λt0 , τ)

+nf∑
d=k+2

Pr (lbd,t2 |Λt1 , τ)

(
Pr (msd,t3 |Λt2 , τ)

∫ pk
v

(1−b)

pk − βt4v
Γ

dβt4+

+nf∑
j=d+1

Pr (lsj,t3 |Λt2 , τ)

(∫ pd
v

(1−b)

pd − βt4v
Γ

dβt4 +

∫ (1+b)

pj
v

βt4v − pj
Γ

dβt4

)
+

+nf∑
j=d+1

Pr (lbj,t3 |Λt2 , τ)

∫ pj
v

(1−b)

pj − βt4v
Γ

dβt4

)
+

+nf∑
k=−nf

Pr (lbk,t1 |Λt0 , τ)Pr (lbk+1,t2 |Λt1 , τ)

(
+nf∑
j=k+3

Pr (lsj,t3 |Λt2 , τ)

(∫ pk
v

(1−b)

pk − βt4v
Γ

dβt4 +

∫ (1+b)

pj
v

βt4v − pj
Γ

dβt4

)
+

+nf∑
j=k+3

Pr (lbj,t3 |Λt2 , τ)

∫ pj
v

(1−b)

pj − βt4v
Γ

dβt4

)}
(199)

The overall welfare of the 4rd player is hence given by the sum of equations (195)- (196)-(197)-

(198)-(199). We are now in the position to define the total welfare of market participants, Ω(τ),

as the sum of the welfare of the four investors arriving respectively at time t1, t2, t3 and t4 of

the 4-period trading game. The SP will choose the tick size that maximizes Ω(τ):

max
τ∈(0,τmax)

Ω(τ) =
4∑
i=i

ωti(· |τ) (200)

Given the optimization problems solved by traders and the SP, we can define the equilibrium

of our trading game:

Definition 4. A sub-game Perfect Nash Equilibrium of the trading game is the set of limit order

submission probabilities and their respective execution probabilities (defined in Appendix E.3) that

solve the optimization problem of investors at t1, t2, , t3 and t4 and that are consistent with the

tick size, τ ? ∈ (0, τmax), set by the SP to maximize total welfare Ω(τ).
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E.5 Comparative Analysis Submission Strategies in the 5-period Game

Table 3.E: Comparative Analysis of the Player’s Equilibrium Submission Probabilities
This table reports the equilibrium submission probabilities of the 5-period game solved for the OTS of both
the 4-period and 5-period trading game. Panel A and B summarize the submission probabilities of the first
two players. The first column reports the prices associated to the equilibrium order submission strategies of
the 1st player Pr (lbk,t1 |Λt0 , τ). The columns 3 − 6 of Panel A and B report the probabilities of market sell
at t2 ( Pr (msk,t2 |Λt1 , τ)), of limit sell (Pr (ls>k,t2 |Λt1 , τ)), of queuing (Pr (lb≤k,t2 |Λt1 , τ)) and of undercutting
(Pr (lb>k,t2 |Λt1 , τ)). Panel C and D report the equilibrium unconditional order submission probabilities of the
3rd and 4th players. We report in Panel C the unconditional probability of market sell at t3 (Pr (mst3)) (column
2), of limit sell (undercutting) (Pr (ls>k,t3)) (column 3), of limit sell (queuing) (column 4) (Pr (ls≤k,t3)), of no
trade (Pr (ntk,t3)), of limit buy (queuing) (Pr (lb≤k,t3)), of limit buy (undercutting) (Pr (lb>k,t3)) and of market
buy (Pr (mbk,t3)). We report in Panel D the analogous t4 unconditional order submission probabilities of the 4th

player. Results are reported for the baseline parameterization (b = 0.06 and ν = 10).

Panel A: 5-period game 1st and 2nd player conditional order submission strategies with OTS 4P (0.214)

Price Limit Buy t1 Market Sell t2 Limit Sell t2 Queuing t2 Undercutting t2
pk Pr (lbk,t1|Λt0 , τ) Pr (msk,t2|Λt1 , τ) Pr (ls>k,t2|Λt1 , τ) Pr (lb≤k,t2|Λt1 , τ) Pr (lb>k,t2 |Λt1 , τ)

10.107 0.283 0.503 0.107 0.293 0.097
9.893 0.208 0.000 0.627 0.000 0.373
9.679 0.009 0.000 0.510 0.000 0.490

Panel B: 5-period game 1st and 2nd player conditional order submission strategies with OTS 5P (0.160)

Price Limit Buy t1 Market Sell t2 Limit Sell t2 Queuing t2 Undercutting t2
pk Pr (lbk,t1|Λt0 , τ) Pr (msk,t2|Λt1 , τ) Pr (ls>k,t2|Λt1 , τ) Pr (lb≤k,t2|Λt1 , τ) Pr (lb>k,t2 |Λt1 , τ)

10.080 0.272 0.450 0.157 0.190 0.203
9.920 0.186 0.097 0.508 0.000 0.395
9.760 0.042 0.000 0.525 0.000 0.475

Panel C: 5-period game - 3rd player unconditional order submission strategies

Market Sell Undercutting Queuing No Trade Queuing Undercutting Market Buy
Pr (msk,t3) Pr (ls>k,t3) Pr (ls≤k,t3) Pr (ntk,t3) Pr (lb≤k,t3) Pr (lb>k,t3) Pr (mbk,t3)

OTS 4P (0.214) 0.142 0.054 0.024 0.000 0.047 0.106 0.056
OTS 5P (0.160) 0.149 0.056 0.010 0.000 0.052 0.120 0.042

Panel D: 5-period game - 4th player unconditional order submission strategies

Market Sell Undercutting Queuing No Trade Queuing Undercutting Market Buy
Pr (msk,t4) Pr (ls>k,t4) Pr (ls≤k,t4) Pr (ntk,t4) Pr (lb≤k,t4) Pr (lb>k,t4) Pr (mbk,t4)

OTS 4P (0.214) 0.150 0.099 0.000 0.018 0.000 0.095 0.048
OTS 5P (0.160) 0.162 0.097 0.000 0.013 0.000 0.108 0.047
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Table 1.F: Effects of MiFID II on each Book Level
This table reports the coefficients of a tick size increase (Iinc × AFTER) and decrease from the Difference in
Difference (DD) regression analysis around the introduction of the MiFID II regime using the following specifi-
cation:

MQi,t,l = α+ γi + δt + φ1τi,t + β1(Iinc ×AFTER) + β2(Idec ×AFTER) + φ2V olati,t + φ3EUV IXt + εi,t

where MQi,t,l is a market quality metric - Spread, %-Spread (bps) and Depth - for stock i, day t and level l of
the book with 1 ≤ l ≤ 10; τi,t is the daily tick size; AFTER is an indicator variable equal to 1 after January the
1st 2018 and 0 otherwise; Iinc is an indicator variable equal to 1 if the tick associated to stock i increased after
MiFID II and 0 otherwise; Idec is an indicator variable is equal to 1 if the tick associated to stock i decreased
after MiFID II and 0 otherwise; V olati,t is the daily volatility at the stock level, while EUV IXt is the STOXX
volatility index at daily level. We report t-stats in parentheses obtained from robust standard errors clustered by
stock. Results statically significant at 10% level at least are grey shaded.

Spread %-Spread(bps) Depth

L1
Iinc × AFTER

-0.049 -0.654 -0.004
(−0.220) (−0.500) (−0.249)

Idec × AFTER
-0.174 -1.130 -0.026

(−1.503) (−1.234) (−1.216)

L2
Iinc × AFTER

-0.252 -2.318 -0.012
(−0.903) (−1.272) (−0.398)

Idec × AFTER
-0.424 -3.173 -0.062

(−1.932) (−1.705) (−1.477)

L3
Iinc × AFTER

-0.480 -4.855 -0.020
(−1.157) (−1.770) (−0.582)

Idec × AFTER
-0.744 -5.651 -0.076

(−2.098) (−1.949) (−1.530)

L4
Iinc × AFTER

-0.709 -7.222 -0.022
(−1.250) (−2.054) (−0.698)

Idec × AFTER
-1.094 -8.274 -0.087

(−2.315) (−2.194) (−1.828)

L5
Iinc × AFTER

-0.812 -8.359 -0.010
(−1.135) (−1.948) (−0.433)

Idec × AFTER
-1.249 -9.988 -0.079

(−2.271) (−2.195) (−2.238)

L6
Iinc × AFTER

-1.074 -9.779 0.009
(−1.184) (−1.928) (0.575)

Idec × AFTER
-1.542 -12.314 -0.058

(−2.241) (−2.218) (−2.832)

L7
Iinc × AFTER

-1.368 -12.113 0.011
(−1.250) (−1.993) (1.039)

Idec × AFTER
-1.872 -14.140 -0.034

(−2.249) (−2.189) (−2.451)

L8
Iinc × AFTER

-1.665 -15.147 0.011
(−1.334) (−2.300) (1.233)

Idec × AFTER
-2.047 -15.800 -0.016

(−2.242) (−2.334) (−1.291)

L9
Iinc × AFTER

-1.737 -16.509 0.003
(−1.250) (−2.306) (0.330)

Idec × AFTER
-2.340 -17.698 -0.005

(−2.245) (−2.311) (−0.402)

L10
Iinc × AFTER

-1.936 -18.694 -0.005
(−1.242) (−2.290) (−0.764)

Idec × AFTER
-2.537 -19.088 -0.002

(−2.191) (−2.256) (−0.155)
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