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Abstract
We analyze the infinite repetition with imperfect feedback of a simultaneous or

sequential game, assuming that players are strategically sophisticated—but pos-

sibly impatient—expected-utility maximizers. Sophisticated strategic reasoning

in the repeated game is combined with belief updating to provide a foundation

for a refinement of self-confirming equilibrium. In particular, we model strategic

sophistication as rationality and common strong belief in rationality. Then, we

combine belief updating and sophisticated reasoning to provide sufficient condi-

tions for a kind of learning—that is, the ability, in the limit, to exactly forecast the

sequence of future observations—thus showing that impatient agents end up play-

ing a sequence of self-confirming equilibria in strongly rationalizable conjectures of

the one-period game. Irrespective of whether individuals value the future, if they

are able to learn then they will play in the limit a self-confirming equilibrium in

strongly rationalizable conjectures of the continuation (infinitely repeated) game.

∗We thank Edoardo Bonaglia, Nicodemo De Vito, Ryota Iijima, Paolo Leonetti, Shuige Liu,
Anna Merotto, and Ferdinand Pieroth for useful comments.



1. Introduction

In this paper we analyze the limits of learning dynamics in the infinite repetition

with imperfect monitoring of a one-period game played by strategically sophisti-

cated agents. The one-period game may be sequential or with simultaneous moves.

Focusing on the case of impatient agents who maximize their subjective expected

one-period payoff, we relate such limits to solutions of the one-period game, that

is, self-confirming equilibrium and rationalizability.

In a self-confirming equilibrium (SCE), players best respond to confirmed

conjectures (first-order beliefs) about co-players’ behavior, where “confirmed” means

that each player, given her conjecture, correctly predicts what she observes about

the play. The SCE concept characterizes the rest-point limits of learning dynamics

in games played recurrently given the possibly imperfect feedback about play ob-

tained by each player at the end of each period (e.g., Fudenberg & Kreps 1995 and

Gilli 1999).1 Since the SCE concept is not meant to capture strategic reasoning, in

such rest points players’ conjectures may be incompatible with strategic reasoning

based on what is commonly known about the game. Indeed, in an environment

with possibly incomplete information and private values, the SCE set at any given

state of nature is independent of players’ interactive knowledge of the profile of

payoff functions. It is then natural to ask how one can characterize the limits of

learning dynamics when beliefs are shaped by sophisticated strategic reasoning,

which we take to mean some form of common belief in rationality.

The literature offers two kinds of answers that directly focus on refinements of

SCE, neglecting an explicit analysis of learning dynamics. The simplest one can be

found in the works that first put forward a version of the SCE concept (Battigalli

1987, and Battigalli & Guaitoli 1988): SCE should be refined by requiring that

players’ conjectures about co-players’ behavior assign probability 1 to co-players’

rationalizable strategies, a condition that follows from common belief in rational-

ity. Yet, such SCE in rationalizable conjectures allows for the possibility that

confirmation of conjectures is not commonly believed, which may be thought to

1Note that the SCE term was coined by Fudenberg & Levine (1993), but the concept was
also previously or simultaneously called “conjectural equilibrium” (Battigalli 1987, Battigalli &
Guaitoli 1988, Rubinstein & Wolinsky 1994) and “subjective equilibrium” (Kalai & Lehrer 1993,
1995). Here we stick to the more explicative SCE terminology (see the discussion in Battigalli
et al. 2015).
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jeopardize the stability of the equilibrium. Intuitively, if confirmed conjectures is a

pre-requisite to play again the same strategies, why should a sophisticated player

who is unsure whether her co-players’ conjectures are confirmed expect them to

behave in the future as in the current period? And if they don’t, why should

she? Motivated by such informal considerations, Rubinstein & Wolinsky (1994)

proposed an even more refined notion of SCE: while an SCE in rationalizable con-

jectures obtains if—on top of rationality—there is common belief in rationality and

conjectures are confirmed, in a rationalizable SCE2 players conjectures about

behavior are compatible with common belief of both rationality and confirmation

of conjectures. Rationalizable SCE is elegant and intuitive, but—unlike the mere

SCE concept, to the best of our knowledge—there is no formal result relating it

to learning in recurrent interactions. Instead, here we obtain a kind of learning

foundation for SCE in rationalizable conjectures.

To formally represent rationality and strategic sophistication, we adopt the

approach of epistemic game theory3 extended to infinitely repeated games as in

Battigalli & Tebaldi (2019). To ease notation, we assume complete information:

the rules of the game and players’ expected-utility preferences over streams of

stochastic outcomes are commonly known. Since the one-period game being re-

peated may have a sequential (multistage) structure, we need to distinguish be-

tween strategies of the one-period game and strategies of the repeated game; we

call the latter superstrategies. Players are endowed with conditional proba-

bility systems (CPSs), which specify subjective beliefs about the behavior and

beliefs of co-players in the infinitely repeated game conditional on every personal

history (roughly, information set) so as to satisfy the chain rule. We assume that

players are rational, that is, they carry out (super)strategies that maximize their

subjective expected utility conditional on every personal history, including those

that they did not expect to observe according to earlier conjectures specified by

their CPSs. Of course, assumptions about intertemporal preferences are crucial.

We mostly focus on the extreme case of impatient players who do not value future

payoffs, as in much of the literature on learning in games, but we also consider the

case of a positive discount factor. To model strategic sophistication, we assume

common strong belief in rationality (Battigalli & Siniscalchi 2002): each player

2the words of Rubinstein & Wolinsky, “rationalizable conjectural equilibrium.”
3See, e.g., the survey of Dekel & Siniscalchi (2015).
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strongly believes in the co-players’ rationality, i.e., she assigns probability 1 to

it conditional on every personal history that does not contradict it; furthermore,

she strongly believes that, on top of being rational, her co-players also strongly

believe in the rationality of others; analogous assumptions hold for higher and

higher levels of beliefs about beliefs. With this, in every period impatient agents

play (strongly) rationalizable strategies, and assign probability 1 to the (strongly)

rationalizable strategies of others even if they are surprised.4 The reason is that, on

a rationalizable path, unexpected observations cannot be due to deviations from

rationalizability; therefore, common strong belief in rationality implies that even

surprised players keep believing in rationalizability. To obtain convergence to SCE

play, we assume that the profile of superstrategies and CPSs satisfy an “obser-

vational grain of truth” condition (cf. Kalai & Lehrer 1993, 1995): after some

time T , each player assigns positive probability to what she is actually going to

observe in the continuation (infinitely repeated) game.5 This implies that, in the

long-run limit, players assign probability 1 to what they observe, i.e., their conjec-

tures are confirmed. Since impatient players maximize their one-period subjective

expected utility, there must be convergence to playing an SCE in rationalizable

conjectures in each period. However, the SCE played in the limit may change from

period to period, because convergence of conjectures about superstrategies in the

infinite repetition does not imply convergence of marginal one-period conjectures.

We also show a converse: for every sequence of one-period SCEs in rationalizable

conjectures there is a profile of superstrategies and CPSs satisfying the aforemen-

tioned conditions that yields such sequence in the limit. Finally, we extend our

results to allow for a positive discount factor: under rationality, common strong

belief in rationality and observational grain of truth, players’ behavior and conjec-

tures converge to an SCE in rationalizable conjectures of the repeated game, that

is, in the long-run limit players best respond to confirmed conjectures assigning

probability 1 to co-players’ rationalizable superstrategies of the continuation game.

4Strong rationalizability is akin to the notion of rationalizability for sequential games put
forward by Pearce (1984), often called “extensive-form rationalizability” (see Battigalli 2003).
Thus, it coincides with the usual rationalizability concept in games with simultaneous moves.
Since it is the only version of the rationalizability idea considered here, we sometimes simplify
our language and omit the adjective “strong.”

5Absent randomization, which we exclude because expected utility maximizers have no need
to randomize, our assumption is a generalization of the “grain of truth” condition of Kalai &
Lehrer (1993).
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1.1 Heuristic Example

To give guidance and provide intuition we informally analyze an example we will

repeatedly refer to in the rest of the paper.

Figure 1: Entry game

Consider the two-person, two-stage, one-period game depicted in Figure 1. In

the first stage, only player 1 (she, player label and payoffs in bold) is active and

can go Out or In, while player 2 (he, player label and payoffs in Italics) can only

“wait”. Action Out effectively terminates the game. But we find it convenient in

the analysis of the repetition of such one-period games to have a fixed number L of

stages, in this case L = 2. Thus, we have player 1 and 2 “wait” for one stage after

Out before they get their payoffs. A key ingredient of the analysis is what players

are able to observe, i.e., their feedback, at the end of each stage, including the last

one. End-game information is crucial to determine the information structure of

the repeated game and, relatedly, the set of SCEs. In this example, we assume that

players observe (i) first-stage actions, so that action In leads to a proper subgame,

and (ii) only their realized payoff at the end of the second stage. Of course, we

also assume that players remember what they did and their earlier information.

Thus, if player 2 chooses `eft after In, he observes that his payoff is 0, but cannot

ascertain whether 1 chose up or down. With this, the game has two SCE outcomes:

1. Player 1 goes Out.6

6Out is also the unique subgame perfect equilibrium outcome.
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(a) Indeed, she is afraid that 2 would chose right in the subgame. Her

conjecture is trivially confirmed, because she cannot observe how the

co-player would have reacted.7

(b) Player 2 ’s plan for the subgame is immaterial. He is initially certain

of Out; hence, his conjecture is confirmed. If he—counterfactually—

observed In, he would revise his conjecture about 1 and choose a best

reply.

2. Player 1 goes In and then up in the subgame, player 2 goes `eft in the

subgame.

(a) Indeed, player 1 is certain that 2 would go `eft in the subgame and her

conjecture is confirmed.

(b) Player 2 is certain of In and deems In.d more likely than In.u. He only

observes that his realized payoff is 0, as he—necessarily—expected, and

cannot identify 1’s subgame action; hence, his conjecture is confirmed.

Both one-period equilibrium outcomes can occur infinitely often in the limit

play of the repeated game if players are impatient, rational (i.e., they always best

respond to their beliefs), and their conjectures about the co-player’s superstrategy

converge, as must be the case if the observational-grain-of-truth condition holds.

However, only the first outcome is consistent with sophisticated strategic thinking

based on common knowledge of the game (complete information): Strategy In.d

of player 1 is strictly dominated by Out. If player 2 strongly believes in 1’s

rationality, upon observing action In—even if surprised—he would infer that 1 is

going up in the subgame; thus, he would react by going r ight. If player 1 is certain

that 2 is rational and strongly believes in her rationality, then she expects r in the

subgame and goes Out.

Since in this simple example there is only one strongly rationalizable outcome

of the one-period game, under impatience, strong rationalizablity in the repeted

game yields the infinite repetition of this outcome. In less simple examples with

7Given such conjecture, if she plans by folding back, she plans to minimize her loss in the
subgame by choosing up. But, whatever her continuation plan for the subgame, she believes she
is better off going Out at the root.
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multiple one-period strongly rationalizable outcomes, players may assign subjec-

tive probability 0 to some of them and be surprised by observations concerning

the previous periods. But strong rationalizability in the repeated game implies

that players, even if surprised, hold on to the belief that co-players are rational

and strategically sophisticated.8

The rest of the paper is organized as follows. Section 2 contains some math-

ematical preliminaries. Section 3 describes one-period multistage games with im-

perfectly observable actions and their infinite repetition. Section 4 analyzes ratio-

nality for the one-period game and its repetition, and characterizes the behavioral

and first-order belief implications of rationality and common strong belief in ratio-

nality. Section 5 analyzes convergence of conjectures. Section 6 contains the main

results of the paper. Section 7 discusses in detail the related literature and some

possible extensions of our work.

2. Preliminaries

We provide some mathematical and notational preliminaries.

2.1 Mathematical notation

We let [n] = {1, . . . , n} denote the set of the first n natural numbers. Given

a finite set X, we let X [n] denote the set of functions from [n] to X (i.e., the

sequences of length n of elements of X) XN denote the set of infinite sequences

of elements of X, X [0] = {∅} denote the singleton containing the empty sequence

∅, X<N0 = ∪n∈N0X
[n] denote the set of finite sequences of elements of X, and

X≤N0 = X<N0 ∪XN denote the set of finite and infinite sequences of elements of

X.9 We write x[n] = (xk)
n
k=1 ∈ X≤N0 for any n ∈ N ∪ {∞}.

We endow every finite set X with the discrete topology and any Cartesian

product of sets with the product topology, and we consider the corresponding Borel

8The following variation of the example has multiple rationalizable outcomes: Player 1 at the
root has also a third action zs that leads to a zero-sum subgame with zero-maxmin value. In
this variation, both actions Out and zs (followed by appropriate continuations in the subgame)
are strongly rationalizable.

9That is, we regard such sequences as functions with domain [n] or N and codomain X.
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σ-algebras. Given a sequence of finite sets (Xn)n∈N, the σ-algebra B(X) on their

product X =
∏

n∈NXn is the one generated by all the cylinders of the form {x1}×
. . .×{xn}×Xn+1× . . ., with n ∈ N. Given any topological space Y endowed with

its Borel σ-algebra B(Y ), we let ∆(Y ) denote the space of probability measures

defined on (Y,B(Y )), which we endow with the topology of weak convergence.

We let � denote the canonical “prefix-of” partial order over sequences.10 Given

a sequence x[n] ∈ X [n], we define its length as `(x[n]) = n.

2.2 Beliefs representation and properties

In this subsection we introduce conditional probability systems, used to represent

players’ beliefs in sequential games, and we give the definition of strong belief.

Definition 1. Let Y be a Polish space and C ⊆ B(Y ) be a countable collection of

clopen11 subsets of Y . A conditional probability system (CPS) on (Y, C) is

an array of probability measures µ = (µ(·|C))C∈C ∈ [∆(Y )]C such that:

(i) for all C ∈ C, µ(C|C) = 1;

(ii) for all E ∈ B(Y ) and C,D ∈ C such that E ⊆ D ⊆ C,

µ(E|C) = µ(E|D)µ(D|C).

We let ∆C(Y ) denote the set of all CPSs on (Y, C). CPSs will be used to repre-

sent the beliefs of a player, compactly modeling the way in which, upon observing

some personal history of actions and messages (from which a conditioning event

can be inferred), a player updates or revise her beliefs. In particular, (i) upon

observing the event corresponding to any personal history, a player is certain of

it; (ii) beliefs comply with the chain rule of conditional probabilities, hence, stan-

dard updating holds whenever an observed event was previously deemed possible:

µ(D|C) > 0 implies µ(E|D) = µ(E|C)/µ(D|C).

10That is, x[m] ≺ y[n] if m < n and y[n] = (x[m], ...); x[m] � y[n] if either x[m] ≺ y[n], or m = n
and x[m] = y[n].

11Simultaneously closed and open. See the discussion and motivation in Battigalli & Tebaldi
(2019).
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Definition 2. Fix an event E ∈ B(Y ) and a CPS µ ∈ ∆C(Y ). We say that µ

strongly believes E if, for every C ∈ C,

E ∩ C 6= ∅ ⇒ µ(E|C) = 1.

In words, µ strongly believes E if an agent with CPS µ is certain of E whenever

possible, i.e., upon observing any evidence that does not contradict E.

3. Games

We give a formal description of the one-period game and of its repetition.

3.1 One-period game

A finite multistage game with feedback is a game that may last for more than one

stage, where at each stage every player chooses an action and then observes a mes-

sage about the play. We represent the information accruing to agents as the play

unfolds with a formalism that is similar to the one used to represent information

(monitoring) in repeated games.12 Stages are indexed by natural numbers: stage

k starts after the end of stage k− 1 and ends with the realization of the profiles of

actions played and messages received by players. To ease notation, we adopt the

convention that the set of available actions (after some non-terminal play) of an

inactive player is the singleton {w}, where w is interpreted as the action “wait.”

A finite multistage game has necessarily a finite horizon, that is, a maximum num-

ber of stages L ∈ N after which the game ends. In order to simplify the formal

representation of the infinite repetition of the game, we adopt the convention that,

each time the one-period game is played, the play lasts L stages. If at some history

shorter than L the game ends, then players are assumed to play the action “wait”

for all the following stages, until stage L. The rules of interaction are represented

by the primitive elements

〈I, (Ai,Mi,Ai, fi)i∈I〉,

where:

12See Battigalli & Generoso (2021).
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• I is the finite set of players;

• Ai is the finite set of all actions player i may ever take at any point in the

game;

• Mi is the finite set of all messages player i may observe at any point in the

game, including the initial message m0
i , saying that the game is about to

start and informing i of her feasible actions;

• Ai = (Aki : Mi ⇒ Ai)
L
k=1 is a sequence of constraint correspondences, where

for every k and possible message mk−1
i , Aki

(
mk−1
i

)
specifies the set of i’s

feasible actions at stage k; thus, i is informed of her feasible actions, inde-

pendently of her mnemonic abilities;

• fi = (fki : A[k] → Mi)
L
k=0 is the incremental feedback structure, where for

every k and every conceivable sequence of action profiles a[k], fki
(
a[k]
)

is the

message that would be observed by player i at the end of stage k if the

sequence of actions a[k] were played.

The sequence of own actions (which are automatically observed as soon as they

are irreversibly chosen) and received messages up to the current stage, or personal

history, determines the information potentially available to a player. Since the

initial message m0
i is fixed, we ignore it in the following notation and it does not

affect the length of histories.

From these primitives we derive the sets of one-period histories and personal

histories, that is, the objective and the subjective trees generated by the one-period

game form:13

• H̄ is the set of histories, that is, partial, or complete plays made of feasible

sequences of action profiles including the empty sequence a[0] = ∅ (root).

• Z =
{
z ∈ H̄ : `(z) = L

}
is the set of terminal histories;

• H = H̄ \ Z is the set of non-terminal histories;

13See the complete formalism in Appendix 8.1.
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• H̄i is the set of personal histories is, that is, feasible sequences of own

actions and messages, and it is partitioned into Zi and Hi (terminal and

non-terminal personal histories).

Personal histories represent what a player is able to observe at each stage

given that a certain history has occurred. We informally assume that the rules of

interaction represented by the foregoing formal structure are common knowledge.

Whether at a certain stage the player is able to use the sequence of own actions

and messages she has observed as information depends on her memory. In this

framework, the assumption of perfect memory consists in saying that, at every

stage k, each player i remembers her personal history. Under perfect memory,

for each player, personal histories of actions and messages yield an information

partition that satisfies the standard perfect recall assumption (see Battigalli &

Generoso 2021). In particular, let

Pi : H̄i ⇒ H̄,

(ai,mi)
[k] 7→

{
h ∈ H̄ : a

[k]
i = proj

A≤N
i
h , f

[k]
i (h) = m

[k]
i

}
,

denote the correspondence from each personal history to the objective histories

consistent with it. As anticipated, Pi is necessarily partitional and satisfies perfect

recall.14 Then, let

h̄i : H̄ → H̄i,

a[k] 7→ P−1
i

(
a[k]
)

denote the map that associates each history (play) a[k] ∈ H̄ with the corresponding

personal history. Notice that h̄i := P−1
i is a well-defined function.

We now define strategies, that is, descriptions of information-dependent be-

havior. Since rational players behave as planned, we also interpret strategies as

plans, consistently with the meaning of the term in the natural language.15 A

strategy of player i is a function si = (si(hi))hi∈Hi
such that, for each hi ∈ Hi,

si(hi) ∈ A`(hi)+1
i (mi (hi)), where mi (hi) denotes the last message in personal his-

tory hi. The set of i’s strategies is denoted by Si, whereas S = ×i∈ISi and

14Note that Pi (hi) does not depend on the initial message m0
i , because it is fixed.

15We do not offer a theory of irrationality, or of how players think about the irrationality of
co-players. Furthermore, we assume it to be transparent that observed behavior is intentional.
Therefore, here we need not consider the relationship between plans and behavior of irrational
players (see Section 6 of Battigalli & De Vito 2021).
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S−i = ×j 6=iSj denote the sets of strategy profiles and co-players’ strategy profiles.

From these elements we can derive the path function ζ : S → Z mapping strategies

to terminal histories.16

It is also useful to define, for each player i ∈ I, the sets of profiles that induce,

and strategies that allow, some personal history hi ∈ H̄i:

• S(hi) = {s ∈ S : ∃x ∈ Pi(hi), x � ζ(s)}, the set of strategy profiles inducing hi;

• Si(hi) = {si ∈ Si : ∃s−i ∈ S−i,∃x ∈ Pi(hi), x � ζ(si, s−i)} = projSi
S(hi), the

set of strategies of i that allow hi;

• S−i(hi) = {s−i ∈ S−i : ∃si ∈ Si,∃x ∈ Pi(hi), x � ζ(si, s−i)} = projS−i
S(hi), the

set of co-players’ strategy profiles that allow hi.

Intuitively, S−i(hi) represents the information that hi reveals to i about the

co-players’ behavior, that is, the strategies that the co-players are carrying out.

One can verify that, for every hi ∈ Hi, S(hi) can be factorized as S(hi) = Si (hi)×
S−i (hi). Hence, for every i,

Ci = {S−i(hi) : hi ∈ Hi}

is the relevant collection of observable events about co-players’ behavior that will

be used to define the set of CPSs of i. A CPS of i for the one-period game is

an element of ∆Ci(S−i), that is, it is a system of conjectures that are connected,

whenever possible, by the chain rule.

Positing a set of outcomes (consequences) Y , an outcome function g : Z → Y

and von Neumann-Morgenstern utility functions (vi : Y → R)i∈I , we construct

payoff functions (ui = vi ◦ g : Z → R)i∈I on terminal histories. With this, we

can also conveniently define strategic-form utility functions Ui = ui ◦ ζ : S → R.

The continuation value of strategy si at personal history hi, given one-period CPS

γi ∈ ∆Ci(S−i), is

V γi

i,hi
(si) =

∑
s−i∈S−i(hi)

Ui((si|hi, s−i))γi(s−i|S−i(hi)),

16For every s ∈ S = ×i∈ISi, ζ(s) = (ak)Lk=1 ∈ Z, where a1 = (si(m
0
i ))i∈I and, for every ` ≥ 2,

a` = ((si(h̄i(a
[`−1])))i∈I).
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where si|hi is the modified strategy allowing hi and playing like si at each personal

history that does not strictly precede hi.

Then, a one-period multistage game Γ with feedback structure f = (fi)i∈I

is defined as

Γ = 〈I, (Ai,Mi,Ai, fi, ui)i∈I〉.

To conclude the subsection, we define the notion of observationally equivalent

strategy profiles of co-players, which plays a fundamental role in our analysis.

Definition 3. Fix i ∈ I and si ∈ Si. Two profiles of co-players’ strategies

s̄−i, s−i ∈ S−i are observationally equivalent, given si, if h̄i (ζ(si, s̄−i)) =

h̄i (ζ(si, s−i)).

In words, s−i is observationally equivalent to s̄−i given si if these two profiles,

when played along with si, induce the same sequence of messages observed by

player i, who thus is unable to distinguish between the two profiles.

We refer to the example of the Introduction to illustrate the formalism.

Example 1. Go back to the two-stage (L = 2) one-period game depicted in

Figure 1 of the Introduction. Note that, formally, players choose simultane-

ously in each sage, but inactive players can only choose the waiting action. The

first-stage feedback is perfect, that is, each function f 1
i is injective. With this,

A1
1 (m0

1) = {In,Out}, A1
2 (m0

2 ) = {w}, A2
i (mi (Out,w)) = {w} (i ∈ {1, 2}),

A2
1 (m1 (Out,w)) = {u, d}, and A2

2 (m2 (Out,w)) = {`, r}. The second-stage

feedback of each player i coincides with her payoff function, that is, f 2
i

(
a[2]
)

=

f 2
i

(
ā[2]
)

if and only if ui
(
a[2]
)

= ui
(
ā[2]
)
. Player 1 has 4 strategies, S1 =

{Out.u,Out.d, In.u, In.d}, two of which correspond to the reduced strategy Out.

Player 2 has 2 strategies, which can be identified with her actions in the subgame ,

S2 = {`, r}. N

3.2 Infinitely repeated game

The infinite repetition of the game is itself a multistage game, whose elements

are characterized by the primitives of the one-period game. For example, the

set of feasible actions for player i after personal history (ai,mi)
[k] ∈ (Ai ×Mi)

[k]

is Ak−τ(hi)+1
i (mk

i ), where τ(hi) := b`(hi)/Lc denotes number of periods that have
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elapsed in hi. For the sake of brevity, we abuse notation lettingAk+1
i (hi) denote the

set of feasible actions, given the last message in hi, a personal history of length k.

Similarly, the message observed by i after history a[k] is f
k−τ(a[k])
i

(
(aj)k

j=τ(a[k])+1

)
,

where again τ(a[k]) := bk/Lc. We let fki denote the feedback function mapping from

sequences of action profiles of length k to the corresponding message observed by

i. More generally, we use symbols in bold to denote mathematical objects related

to the repeated game, such as the various sets of histories analogous to the one-

period game ones. Terminal histories of the repeated game are infinite sequences

of feasible action profiles, that is, elements of ZN.

We similarly define the informational correspondences

Pi : H̄i ⇒ H̄

such that

Pi((ai,mi)
[k]) =

{
a[k] : a

[k]
i = proj

A≤N
i
a[k],

(
f `i
(
a[`]
))k
`=1

= m
[k]
i

}
.

The information content of infinite personal histories is similarly defined, replacing

[k] with N. The inverses h̄i := P−1
i (i ∈ I) are well-defined functions.

In this context, we still call “strategy” the description of the information-

dependent behavior of a player in a single period. We instead call “superstrategy”

the description of the information-dependent behavior of a player in the repeated

game; we let si ∈ Si = ×hi∈Hi
A`(hi)+1
i (hi) denote the superstrategies of player i.

As for the one-period game, one can define the path function over superstrate-

gies ζ : S → ZN, and the sets of (profiles of co-players’) superstrategies Si (hi),

S−i (hi) allowing any personal history hi ∈ Hi of the repeated game.

Under the assumption of perfect memory, the relevant collection of conditioning

events for the CPSs of player i is

Ci = {S−i(hi) : hi ∈ Hi} .

In particular, systems of conjectures of player i are represented by elements of

∆Ci(S−i).

Definition 4. Fix i ∈ I and si ∈ Si. Two profiles of superstrategies s̄−i ∈ S−i

and s−i ∈ S−i are observationally equivalent given si if h̄i (ζ(si, s̄−i)) =

13



h̄i (ζ(si, s−i)).

At the end of every period an outcome of the one-period game Γ is gener-

ated. We endow every player i with a discount factor δi ∈ [0, 1) representing his

intertemporal preferences over streams of outcomes.

When players are impatient, meaning that they have zero discount factor, no

payoff can be meaningfully attached to infinite terminal histories. To cope with

this issue and generalize the analysis over any possible δi ∈ [0, 1), we directly rely

on a form of sequential rationality based on continuation values, that is,

we require players to take, at every personal history, choices that maximize the

discounted expected utility computed at that point in time. If the discount factor

is strictly positive, this implies ex ante expected utility maximization.

For each infinite history z ∈ ZN, let zt (z) denote its t-th coordinate projection,

that is, the one-period terminal history played in period t. The continuation value

of superstrategy si ∈ Si at personal history hi, given µi ∈ ∆Ci(S−i), is

V µi

i,hi
(si) =

∞∑
t=τ(hi)+1

δ
t−τ(hi)−1
i ·

∫
S−i(hi)

ui(zt(ζ(si|hi, s−i)))µi(ds−i|S−i(hi)),

where si|hi is the modified superstrategy allowing hi and playing like si at each

personal history that does not strictly precede hi.

We provided all the elements to define and analyze the infinite repetition of

the multistage game Γ: letting δ = (δi)i∈I ,

Υ(Γ, δ) = 〈I, (Ai,Mi,Ai, ui, fi, δi)i∈I〉.

4. Rationality and strategic reasoning

We begin this section with our definition of rationality, based on the previously

introduced continuation values. We then connect rationality and one-period ra-

tionality, and we characterize and connect the behavioral and first-order belief

implications of (one-period) rationality and common strong belief in (one-period)

rationality, i.e., RCSBR (one-period RCSBR).
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4.1 Rational planning

Player i is rational if she plays a strategy that satisfies one-step optimality given

her CPS. This definition of rationality can be seen as a generalization of folding-

back optimality to the infinite-horizon case.

Definition 5. A superstrategy si is one-step optimal in the repeated game given

µi ∈ ∆Ci(S−i)—written si ∈ BRi (µ
i)—if, for all hi ∈ Hi,

si(hi) ∈ arg max
ai∈A

`(hi)+1
i (hi)

V µi

i,hi
(si|hi

ai),

where si|hi
ai is the superstrategy that allows hi, plays ai at hi and behaves like si

at any other personal history that does not precede hi. Similarly, a strategy si is

one-step optimal in the one-period game given a one-period CPS γi ∈ ∆Ci(S−i)—

written si ∈ BROi (γi)—if, for all hi ∈ Hi,

si(hi) ∈ arg max
ai∈A

`(hi)+1
i (hi)

V γi

i,hi
(si|hiai).

We point out that we operate under the one-shot deviation principle: since dis-

counting implies continuity at infinity, one-step optimality is equivalent to sequen-

tial optimality, that is, maximization with respect to continuation (super)strategies

conditional on every personal history.17

We are interested in studying the implications for the one-period game of as-

sumptions on the infinite interaction for impatient players. Therefore, we need

to identify one-period objects induced by the infinite repetition. First notice that

from superstrategy si, for every period t and every history z[t−1] that describes the

play up to, but excluding, period t, one can derive the strategy induced by si

at z[t−1]: it starts by playing like si at h̄i(z
[t−1]), and for every one-period personal

history hi it plays the action prescribed by si at the concatenation (h̄i(z
[t−1]), hi).

Similarly, a CPS over the infinite repetition specifies, given h̄i(z
[t−1]), a sys-

tem of conjectures for every personal history of the one-period game following

17Furthermore, sequential optimality (hence, one-step optimality) is realization equivalent to
the requirement that the continuations of of the given strategy maximize expected utility starting
from histories consistent with it. Rationalizability for sequential games is often equivalently
defined by means of this weaker version of sequential optimality. See Appendix 8.4 for details.
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h̄i(z
[t−1]). These conjectures are probability measures over superstrategies, but in-

duce conjectures over co-players’ strategies for the relevant one-period game: the

probability assigned to a profile of strategies s−i is just the probability assigned to

the (closed) set of profiles of superstrategies inducing s−i. Remark 1 states that

this system of conjectures is indeed a CPS of the one-period game, which we thus

refer to as induced one-period CPS.

Remark 1. Fix µi ∈ ∆Ci(S−i), a period t ∈ N, and a path z[t−1] ∈ Z [t−1]. Then the

system of marginal probabilities induced by µi on the co-players’ strategies played

after h̄i(z
[t−1]) is a CPS of the one-period game.

If rational players only care about the present, then in every one-period game

they should act so as to maximize their current one-period expected utility. Sim-

ilarly, if they behave in such way then they can be seen as rational impatient

players. Proposition 1 formalizes this fact.

Proposition 1. When player i is impatient, a superstrategy s̄i is one-step optimal

given µi ∈ ∆Ci(S−i) if and only if, for every period t and path z[t−1], the strategy

induced in the corresponding one-period game is one-step optimal given the induced

one-period CPS.

Remark 2. For every player and every CPS (one-period CPS), there always exists

a one-step optimal superstrategy (strategy).18

4.2 Strategic thinking and strong rationalizability

Battigalli & Tebaldi (2019) extend the analysis of rationality and common strong

belief in rationality of Battigalli & Siniscalchi (2002) to a class of infinite se-

quential games, which includes the infinite repetition of finite one-period games

(simultaneous or sequential). To provide perspective for our results, it is useful

to relate to their work. Events about behavior and interactive strategic thinking

can be defined within the canonical type structure
(
βi : Ti → ∆Ci (S−i ×T−i)

)
i∈I

based on the given multistage game—in our case, the infinitely repeated game:

Ti is the space of epistemic types (ways of thinking) of player i, that is, infinite

hierarchies of conditional probability systems based on the countable collection

18See Appendix 8.4.
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{S−i (hi)×T−i}hi∈Hi
of conditioning events corresponding to personal histories;

βi (ti) = (βi,hi
(ti))hi∈Hi

(with βi,hi
(ti) ∈ ∆ (S−i (hi)×T−i) for each hi ∈ Hi)

is the CPS over superstrategies and types of the co-players associated with type

(infinite hierarchy) ti, and belief map βi is a homeomorphism.19 With this,

• an event about player i is a measurable subset of Si ×Ti;

• Ri is event “i is rational,” that is, the set of i-states (si, ti) such that si is

one-step (hence, sequentially) optimal given the first-order CPS in hierarchy

ti, which is obtained from the marginal on S−i of each conditional conjecture

βi,hi
(ti);

• SBi (E−i) is the event that i strongly believes E−i, that is, CPS βi (ti)

assigns probability 1 to E−i whenever E−i ∩ (S−i (hi)×T−i) 6= ∅;

• Rm+1
i = Rm

i ∩ SBi

(
Rm−1
−i
)
, with R1

i = Ri; for example, R2
i is the event that

i is rational and strongly believes in the co-players’ rationality;

• rationality and common strong belief in rationality (RCSBR) is event

×i∈IR∞i = ×i∈I ∩∞m=1 R
m
i ;

• finally note that ∩∞m=1SBi

(
Rm−1
−i
)

= SBi

(
R∞−i
)
; thus, (si, ti) ∈ R∞i satisfies

the best rationalization principle: for every i ∈ I and m ∈ N∪{∞},
βi,hi

(ti) assigns probability 1 to Rm
−i whenever Rm

−i ∩ (S−i (hi)×T−i) 6= ∅,
in particular, βi,hi

(ti)
(
R∞−i
)

= 1 whenever R∞−i ∩ (S−i (hi)×T−i) 6= ∅.

Of course, a similar analysis applies to all finite games (see Battigalli & Sinis-

calchi 2002), including the one-period games considered here. We are interested in

the implications of RCSBR for strategic behavior and conjectures about co-players’

behavior (first-order beliefs). Building on Battigalli & Tebaldi (2019) and adapting

their results, one can show that such implications are characterized by the strong

rationalizability solution concept defined below.

Definition 6. For every player i ∈ I, let

Σ1
i = {(si, µi) ∈ Si ×∆Ci(S−i) : si ∈ BRi(µ

i)},
19What really matters is that the type structure à la Battigalli & Siniscalchi features continuous

and onto belief maps.
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Σ1
i = {(si, γi) ∈ Si ×∆Ci(S−i) : si ∈ BROi(γi)},

and recursively define, for each k ∈ N,

Σk+1
i = {(si, µi) ∈ Si ×∆Ci(S−i) : si ∈ BRi(µ

i), ∀m ≤ k,∀hi ∈ Hi,

projS−i
Σm
−i ∩ S−i(hi) 6= ∅ ⇒ µi(projS−i

Σm
−i|S−i(hi)) = 1},

and

Σk+1
i = {(si, γi) ∈ Si ×∆Ci(S−i) : si ∈ BROi(γi),∀m ≤ k,∀hi ∈ Hi,

projS−i
Σm
−i ∩ S−i(hi) 6= ∅ ⇒ γi(projS−i

Σm
−i|S−i(hi)) = 1},

where Σm
−i =

∏
j 6=i Σ

m
j and Σm

−i =
∏

j 6=i Σ
m
j . Then let

Σ∞i = ∩k∈NΣk
i and Σ∞i = ∩k∈NΣk

i .

Any profile (si, µ
i)i∈I ∈

∏
i∈I Σ∞i (one-period profile (si, µ

i)i∈I ∈
∏

i∈I Σ∞i ) is called

strongly rationalizable; for each player i ∈ I, superstrategy si (strategy si) is

strongly rationalizable if si ∈ projSi
Σ∞i (si ∈ projSi

Σ∞i ), and CPS µi (one-period

CPS γi) is strongly rationalizable if µi ∈ proj∆Ci (S−i)
Σ∞i (γi ∈ proj∆Ci (S−i)

Σ∞i ).

Example 2. Consider again the one-period game depicted in Figure 1 of the

Introduction. Formally, one-period strong rationalizability works as follows:

Σ1
1 = {Out.u} ×

{
γ1 : γ1 (r| {`, r}) ≥ 1

2

}
∪ {In.u} ×

{
γ1 : γ1 (`| {`, r}) ≥ 1

2

}
,

Σ1
2 = {`} ×

{
γ2 : γ2 (In.d| {In.u, In.d}) ≥ 1

2

}
∪ {r} ×

{
γ2 : γ2 (In.u| {In.u, In.d}) ≥ 1

2

}
,

Σ2
1 = Σ1

1,

Σ2
2 = {r} ×

{
γ2 : γ2 (In.u| {In.u, In.d}) = 1

}
,

Σ3
1 = {Out.u} ×

{
γ1 : γ1 (r| {`, r}) = 1

}
,

Σ3
2 = Σ2

2 ,
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and, for all k > 3,

Σk
1 = Σ3

1,

Σk
2 = {r} ×

{
γ2 : γ2 (Out.u|S1) = 1, γ2 (In.u| {In.u, In.d}) = 1

}
,

The last equality rests on the best rationalization principle: even if, by strate-

gic reasoning, player 2 is initially certain of Out, if upon observing In (a non-

rationalizable choice of player 1), he would still believe that player 1 is—at least—

rational, and that she is going up in the subgame. N

We can use the aforementioned characterization result to study the implica-

tions of RCSBR in the case of impatient players. The intuition is that the behavior

of sophisticated impatient players is consistent with one-period strong rationaliz-

ability at every history (by Proposition 1 and an inductive argument); thus, each

player at the beginning of the game expects with probability 1 such co-players’ be-

havior. As long as players carry out strongly rationalizable strategies—by the best

rationalization principle embedded in RCSBR—common strong belief in rational-

ity implies that players keep assigning probability 1 to the co-players’ strongly

rationalizable strategies, even if they observe personal histories to which their ear-

lier conjectures assigned probability 0. The same argument applies to the second

period and all subsequent periods. The following result formalizes this intuition.

Since we are ultimately interested in players’ behavior and their beliefs about

co-players’ behavior, in our formal analysis we only consider “first-order states”

(si, µ
i)i∈I ∈

∏
i∈I Si×∆Ci(S−i), the induced path of play ζ(s), and players’ beliefs

held upon observing personal histories that realize as path ζ(s) unfolds. In par-

ticular, we say that players satisfy strong rationalizability when we consider

a strongly rationalizable state (si, µ
i)i∈I ∈

∏
i∈I Σ∞i .

Theorem 1. Let players be impatient and satisfy strong rationalizability. Then,

in every period, on the actual path of play, players carry out one-period strongly

rationalizable strategies and hold strongly rationalizable one-period CPSs.

Of course, one-period strong rationalizability is not implied after deviations

from strong rationalizability (hence, off path), such deviations are rationalized

ascribing to co-players lower levels of sophisticated reasoning.
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5. Learning

Let us fix a profile ((si, µ
i))i∈I ∈

∏
i∈I Si × ∆Ci(S−i), which we interpret as the

true state, that is, the profile of superstrategies actually played and CPSs actu-

ally held by players.20 Players’ superstrategies yield a path of play ζ(s) in the

repeated game and corresponding personal histories observed by each player. In

particular, we focus on the sequence of personal histories observed at the begin-

ning of each period (or end of the previous period) and the corresponding sequence

of conjectures about co-players’ superstrategies and one-period strategies implied

by each player’s CPS at the given state. For every t ∈ N, we let hti denote the

personal history of i at the beginning of period t induced by the true state, that

is, hti ≺ h̄i(ζ(s)) with `(hti) = L(t − 1). We refer to the belief of player i upon

observing hti as his conjecture at time t. For pedagogical purposes, we first con-

sider convergence of conjectures in finite time and then the more general case of

asymptotic convergence.

Definition 7. The conjectures of player i have converged from time T if, for

every t ≥ T ,

µi(·|S−i(hti)) = µi(·|S−i(hTi )).

Let t̂ > t. For every E−i ⊆ S−i(h
t̂
i), the chain rule implies

µi(E−i|S−i(hti)) = µi(E−i|S−i(ht̂i)) · µi(S−i(ht̂i)|S−i(hti)).

Hence, convergence requires that µi(S−i(h
t̂
i)|S−i(hti)) = 1. Since this must hold

for all t̂, t ≥ T , we obtain the following characterization.

Remark 3. Player i’s conjectures have converged from time T if and only if the

conjecture conditional on the observed personal history at every t ≥ T , µi(·|S−i(hti)),

assigns probability 1 to the set S−i
(
h̄i(ζ(si, s−i))

)
of co-players’ superstrategies that

are observationally equivalent, given i’s own superstrategy, to the true ones.

Hence, convergence of conjectures is equivalent to a form of learning, that

is, eventually acquiring the ability to perfectly forecast the future messages one

will observe. Intuitively, a player that is certain, and correct, about the message

20From an epistemic perspective, we are considering the behavior and first-order beliefs at
some state of the world (si, ti)i∈I in the canonical type structure.
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she will observe in every period, has no reason to change her conjectures about

others’ behavior. We express convergence of conjectures after a finite number of

periods with the phrase “learning in finite time”, whereas asymptotic convergence

(formally defined below) is expressed as “asymptotic learning”, which is weaker

than the former. Note that we do not mean that players “learn the truth”, we only

mean that they stop changing (from some T or in the limit) their beliefs about

co-players’ behavior.

Since conjectures are updated according to the chain rule, a sufficient condi-

tion for asymptotic learning is the well-known requirement that conjectures assign

positive probability to the relevant part of the “true state of the world”, at least

from some time onward (at some finite history on path). In our setting, this rele-

vant part is the set of co-players’ superstrategies observationally equivalent to the

true ones—given the player’s feedback and her own superstrategy. We call this

property “observational grain of truth”. Our results are similar to the ones of

Kalai & Lehrer (1993), extending them to the case of imperfect monitoring and

multistage one-period games.21 In the “medium run”, for every ε > 0, there exists

a time starting from which conjectures are “ε-close” to the objective distribution

of observations. In our case, “ε-closeness” means that the conjecture assigns prob-

ability at least 1− ε to the set of superstrategies observationally equivalent to the

true ones.

Definition 8. We say that observational grain of truth holds for player i if

there exists a time T ∈ N such that22

µi(S−i(h̄i(ζ(si, s−i)))|S−i(hTi )) > 0.

Proposition 2. If observational grain of truth holds for player i, then, for every

ε > 0, there exists a time T such that, for all t ≥ T

µi(S−i(h̄i(ζ(si, s−i)))|S−i(hti)) ≥ 1− ε.
21Yet, we simplify the analysis of learning by focusing on pure (super)strategies.
22While in our definitions we refer to conjectures held at the beginning of periods, both Defini-

tion 7 and Definition 8 can be given equivalently in terms of personal histories of general length
k.
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Therefore,

limt→∞µ
i(S−i(h̄i(ζ(si, s−i)))|S−i(hti)) = 1.

Of course, learning in finite times implies observational grain of truth. More

generally, we obtain the following corollary.

Corollary 1. Asymptotic learning (limt→∞µ
i(S−i(h̄i(ζ(si, s−i)))|S−i(hti)) = 1)

and observational grain of truth are equivalent.

6. Strong rationalizability, learning, and equi-

librium

In this section we provide the main results of the paper. We begin by formally

defining SCE and SCE in strongly rationalizable conjectures. In Section 6.1 we dis-

cuss the implications of learning in finite time. Section 6.2 illustrates the concepts

with some examples. Section 6.3 analyzes asymptotic learning.

Definition 9. State ((si, µ
i))i∈I is a self-confirming equilibrium (SCE) if,

for every i:

(i) (confirmation of conjectures) µi
(
S−i(h̄i(ζ(s)))|S−i

)
= 1;

(ii) (rationality) si ∈ BRi(µ
i).

The state ((si, µ
i))i∈I is an SCE in strongly rationalizable conjectures

if it is an SCE of the infinitely repeated game Υ(Γ, δ) such that, for every i ∈ I,

(si, µ
i) ∈ Σ∞i .

The one-period counterparts are analogously defined. If condition (i) of Defini-

tion 9 is replaced by “(i’) there exists T ∈ N such that µi
(
S−i(h̄i(ζ(s)))|S−i(hTi )

)
=

1”, we call the state an eventual SCE (in strongly rationalizable conjectures).

6.1 Implications of learning in finite time and RCSBR

Here we study the implications on play and beliefs when conjectures have converged

in a finite number of periods, that is, under learning in finite time. Theorem 2

below states the implications of strong rationalizability for impatient players whose

conjectures converge in a finite number of periods.
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Theorem 2. Let players be impatient. Assume strong rationalizability is satis-

fied and there is a time T > 0 starting from which all players’ conjectures have

converged. Then the state induces, starting from T , a sequence of one-period self-

confirming equilibria in strongly rationalizable conjectures.

We use the first part of this subsection to prove the theorem through a series

of other results, that we find interesting on their own.

We first take a further step in connecting confirmation of conjectures (about

the repeated play) and one-period conjectures

Remark 4. For every player i ∈ I, for every ε ≥ 0 and T ∈ N such that, for all

t ≥ T ,

µi(S−i(h̄i(ζ(si, s−i)))|S−i(hti)) ≥ 1− ε,

all one-period CPSs (µit)t≥T , induced by µi at every period t ≥ T starting at per-

sonal history hti, satisfy

µit(S−i
(
h̄i(ζ(st))

)
|S−i) ≥ 1− ε.

Remark 4 tells us that ε-confirmed beliefs about the infinite interaction induce

one-period ε-confirmed beliefs. This is also true for ε = 0, which is what we use

in the current theorem. However, we state a more general result because it will be

useful later. The next result follows from this observation and Theorem 1.

Corollary 2. If players are impatient, every SCE (in strongly rationalizable con-

jectures) of the infinite repetition induces a sequence of one-period SCEs (in strongly

rationalizable conjectures).

Hence, it is possible to translate results on SCE in results on sequences of

one-period SCEs. Definition 9 and Theorem 1 also yield the following fact.

Remark 5. If strong rationalizability is satisfied and conjectures converge in finite

time, then the true state of the game must feature an eventual SCE in strongly

rationalizable conjectures.

Corollary 2 and Remark 5 are all we need to prove Theorem 2. If players are

impatient, their conjectures converge from time T , and strong rationalizability is
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satisfied, then the true state of the game must induce, from time T onward, a

sequence of one-period SCEs in strongly rationalizable conjectures.

In the rest of this subsection we show a kind of converse result: every sequence

of one-period SCEs in strongly rationalizable conjectures can be induced under

the assumptions stated in Theorem 2.

Theorem 3. Let players be impatient. Every sequence of one-period SCEs in

strongly rationalizable conjectures starting from some time T can be induced by a

strongly rationalizable state that features learning in finite time.

The key ingredient to obtain this result is some kind of converse of Theorem 1:

when (one-period) strong rationalizability is satisfied and players are impatient,

we can find a state consistent with their play in which strong rationalizability for

the infinite repetition is satisfied.

Proposition 3. Let players be impatient. If an infinite (i.e., terminal) history of

the repeated game consists of a sequence of one-period terminal histories consis-

tent with one-period strong rationalizability, then there exists a profile of strongly

rationalizable superstrategies that induce it.

Since a sequence of (one-period) strongly rationalizable strategies induces a

sequence of one-period terminal histories consistent with one-period strong ratio-

nalizability, Proposition 3 allows us to conclude that such sequence of strategies

can be induced on path by a profile of strongly rationalizable superstrategies.

Then one can find strongly rationalizable CPSs that justify these superstrategies

as sequential best replies and are consistent with the sequence of strongly ratio-

nalizable one-period CPSs, which is turn are part of the sequence of one-period

equilibria posited in Theorem 3. Confirmation of conjectures for such one-period

CPSs implies confirmation for the CPSs on the infinite repetition.

A result similar to Theorem 3 also holds when players have positive discount

factors.

6.2 Examples

We illustrate some of the concepts and results presented so far with examples.
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Example 3. Let us go back to the entry-game example of Figure 1. As explained

above, the strongly rationalizable strategies are: s1 =Out.u and s2 =r. Hence, the

only outcome of SCE in rationalizable conjectures is Out. Strategy pair (In.u, `) is

part of an SCE (supported by a non-rationalizable conjecture of player 2 ): player

1 holds a correct conjecture, player 2 assigns probability 1 to In (observed), and

at least 1/2 to In.d. This SCE can occur in the limit if we remove common strong

belief in rationality, and maintain rationality and observational grain of truth. N

The following example illustrates the difference between rationalizable self-

confirming equilibrium and SCE in rationalizable conjectures. Intuitively, the

former concept follows from rationality, confirmation of conjectures, and common

belief in both.23

Example 4. Consider a discrete location game with two players and simulta-

neous moves. Each player can choose among the same 4 locations, {1, 2, 3, 4}.
Players only observe their realized payoffs, which are negatively proportional to

the distance between their location choice and the co-player’s location: ui(ai, aj) =

−|ai− a−i|. With this, all actions are rationalizable. The case in which one player

chooses location 2 and the other chooses location 3 is part of an SCE in rationaliz-

able conjectures: It can be justified by conjectures assigning (sufficiently close to)

uniform probability to the other being in a location at distance 1. These conjec-

tures assign probability (close to) 1/2 to 1—for the player in location 2—and to

4—for the player in location 3. Locations 1 and 4 are inconsistent with rationality

and confirmation of conjectures upon observing distance 1. Therefore, this is not

a rationalizable self-confirming equilibrium: belief in rationality and confirmation

of conjectures is violated. N

The last example of this section illustrates the difference between convergence

of beliefs over superstrategies and convergence of marginal one-period beliefs over

strategies.

Example 5 (Battle of the Sexes). Let the one-period game be the Battle of the

Sexes (BoS):

23We consider a simple discretized version of Example (a) in Rubinstein & Wolinsky (1994),
who first put forward the rationalizable SCE concept for games with simultaneous moves.
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1 \ 2 B S

B 2, 1 0, 0

S 0, 0 1, 2

Suppose there are observable actions, or—equivalently—that fi = ui for each

i ∈ {1, 2}. Thus, SCE, SCE in rationalizable conjectures and (pure) Nash equi-

librium coincide. There exist strongly rationalizable superstrategies s1 and s2

inducing the alternated path ζ (s1, s2) = ((B,B), (S, S), (B,B), (S, S), . . .) justi-

fied by CPSs that strongly believe in the superstrategy of the co-player. Such

CPSs are confirmed, which means that we have convergence of conjectures from

period T = 1. Thus, the above path is consistent with learning and strong ratio-

nalizability. Next, consider a different situation. Suppose that player 1 believes

that player 2 wants to “cooperate” and play the alternated sequence of equilibria.

In particular, 1 is sure that 2 will start playing B. Upon observing S, she would

be sure that 2 decided to start with S, but would now play B. Upon observing S

again, 1 would think that 2 was hoping that 1 would have come along, but now

has understood 1’s intention and would play B. Upon observing S for the fourth

time, she would make the same identical reasoning. If 1 goes on with this kind

of thinking, then her CPS is such that, at any time along a sequence of (B, S)’s,

1’s one-period conjecture assigns probability 1 to 2 playing B. One can check

that this is consistent with the definition of CPS. As a result, 1’s one-period con-

jectures repeat steadily and unchanged in every period. However, they are not

confirmed. Observe that, if 2 follows an analogous reasoning, with S in place of B,

then the actual play is exactly an infinite sequence of (B, S)’s, motivated by con-

jectures over superstrategies that have not converged, but one-period conjectures

that have converged. N

6.3 Medium-run and long-run implications of asymp-

totic learning and RCSBR

We now offer some results on the medium and long-run implications of asymptotic

learning, or equivalently, observational grain of truth (Corollary 1) at a strongly

rationalizable state. As shown in Section 5, under observational grain of truth

conjectures (and CPSs) become ε-confirmed in finite time, that is, in the medium

26



run. By strong rationalizability, impatient players carry out (on path) one-period

sequential best reply to strongly rationalizable one-period CPSs. We can show

that, after a sufficiently long time, by finiteness of the one-period game, these

strategies are also sequential best replies to rationalizable “fully confirmed modi-

fications” of these CPSs. Thus, the play is eventually consistent with one-period

SCEs in strongly rationalizable conjectures. A similar result holds with positive

discount factors.

Definition 10. Fix a profile ((si, µ
i))i∈I ∈

∏
i∈I Si × ∆Ci(S−i) that satisfies ob-

servational grain of truth. For each i ∈ I, let ĥi ≺ h̄i (ζ (s)) be the first on-path

personal history such that such that µi
(
S−i

(
h̄i (ζ (s))

)
|ĥi
)
> 0; the fully con-

firmed modification of µi is the CPS µ̂i such that

(i) for every hi ∈ Hi with ĥi � hi ≺ h̄i (ζ (s)) and every (measurable) E−i ⊆
S−i,

µ̂i (E−i|S−i (hi)) =
µi
(
E−i ∩ S−i

(
h̄i (ζ (s))

)
|S−i (hi)

)
µi
(
S−i

(
h̄i (ζ (s))

)
|S−i (hi)

) ;

(ii) for every other hi ∈ Hi, µ̂
i
(
S−i

(
h̄i (ζ (s))

)
|S−i (hi)

)
= µi

(
S−i

(
h̄i (ζ (s))

)
|S−i (hi)

)
.

In words, µ̂i is an on-path rescaling of µi that assigns probability 1 to S−i
(
h̄i (ζ (si, s−i))

)
(the set of co-players’ superstrategies observationally equivalent to the true ones,

given i’s superstrategy si) when µi assigns strictly positive probability to S−i
(
h̄i (ζ (si, s−i))

)
,

preserving probability ratios within S−i
(
h̄i (ζ (si, s−i))

)
. One can show that µ̂i is

indeed a CPS. In particular, the chain rule is trivially satisfied as 0 = 0 when we

relate an “on-path conjecture”µ̂i (·|S−i (hi)), that is, with ĥi � hi ≺ h̄i (ζ (s)), to

an “off-path conjecture”µ̂i (·|S−i (h′i)) with hi ≺ h′i ⊀ h̄i (ζ (s)). As we look at the

one-period CPSs µit induced on path by µi, we obtain from µ̂i corresponding fully

confirmend modifications µ̂it. When the on path conjectures become “ε-confirmed”,

i.e., µi
(
S−i

(
h̄i (ζ (s))

)
|S−i (hti)

)
≥ 1−ε, the induced fully confirmed modifications

are close to these on-path conjectures.

Definition 11. A one-period ε-self-confirming equilibrium in strongly ra-

tionalizable conjectures is a profile ((si, γ
i))i∈I ∈

∏
i∈I Si×∆Ci(S−i) such that,

for every i ∈ I,

(i) γi(S−i(h̄i(ζ(s)))|S−i) ≥ 1− ε;
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(ii) (si, γ
i) ∈ Σ∞i .

With this, we can state our main result.

Theorem 4. Let players be impatient. If observational grain of truth and strong

rationalizability hold for every player, then for every ε > 0 there exists a time T

starting from which the state induces a sequence of one-period ε-self-confirming

equilibria in strongly rationalizable conjectures. Furthermore, there exists some

T̂ starting from which, in each period, the induced profile of strategies is part of

a one-period self-confirming equilibrium in strongly rationalizable conjectures, in

which each player i’s CPS is the fully confirmed modification of i’s one-period CPS

µit.

The intuition is quite simple: after a sufficiently long time, players’ one-period

conjectures are almost confirmed. Since the one-period game is finite and strate-

gies are sequential best-replies to one-period almost confirmed CPSs, they are also

sequential best-replies to their fully-confirmed modifications. Since the on-path

one-period CPSs are strongly rationalizable, it turns out that also their fully con-

firmed modifications are strongly rationalizable. The result follows.

We now provide a result with a similar flavor for players with positive discount

factor. Once again, conjectures (about the infinite repetition) become ε-confirmed

in finite time. As an ancillary result, by continuity at infinity, the (continuation)

superstrategies are close to exact sequential best replies to the fully confirmed

modifications. However, without full convergence—that only needs to happen

asymptotically—(continuation) superstrategies need not be exact sequential best

replies to the fully confirmed modifications.

We relegate to Appendix 8.3 the additional formalism of this subsection. In

short, at every history h one can define the concepts of continuation superstrate-

gies (s
�h̄i(h)
i ∈ S

�h̄i(h)
i ), conditioning events (C

�h̄i(h)
i ), CPSs (∆C

�h̄i(h)
i (S−i)), and

continuation values for every player i starting from personal history h̄i(h), and

define SCE of the continuation game with root h.

Definition 12. Fix a personal history hi. We say that a continuation superstrategy

s�hi
i is a sequential ε-best reply to a (continuation) CPS νi, where ε > 0, if, for

all s̄�hi
i and gi � hi,

V νi

i,gi
(s�hi
i ) ≥ V νi

i,gi
(s̄�hi
i )− ε.

28



Definition 13. State (si, µ
i)i∈I is an eventual ε-self-confirming equilibrium

in strongly rationalizable conjectures if there exists a time T such that, for

every i ∈ I,

(i) for every personal history hi with hTi � hi ≺ h̄i(ζ(s)),

µi(S−i(h̄i(ζ(s)))|S−i(hi)) ≥ 1− ε;

(ii) (si, µ
i) ∈ Σ∞i .

Theorem 5. If strong rationalizability and observational grain of truth are satis-

fied, then for every ε > 0 the state is an eventual ε-self-confirming equilibrium in

strongly rationalizable conjectures. Furthermore, for all ε′ > 0 and i ∈ I, there ex-

ists hi such that s�hi
i is a sequential ε′-best reply to the fully confirmed modification

of µi.

7. Literature review and discussion

In this paper we analyze the the medium and long-run behavior of strategically

sophisticated rational players in infinitely repeated games with imperfect feedback.

We model sophisticated strategic thinking by assuming common strong belief in

rationality and prove that, under an “observational grain of truth” assumption,

players’ behavior and conjectures, i.e., first-order beliefs, converge to an SCE with

strongly rationalizable conjectures of the repeated game. If players are impatient,

in the long run they play SCEs with strongly rationalizable conjectures of the one-

period game, but the one-period equilibrium may change over time. We also show

that our assumptions are tight. We are now in a position to discuss the related

literature in detail. While doing this, we consider the limitations and possible

extensions of our work.

Drawing on Battigalli (1987), Battigalli & Guaitoli (1988) use the notion

of SCE in (strongly) rationalizable conjectures to analyze economic policy in a

macroeconomic game with incomplete information. This equilibrium concept is

adapted and used by Schipper (2021) to analyze discovery and equilibrium in

games with unawareness (lack of conception of some features of the game). Here

29



we provide both an epistemic and a learning foundation to the equilibrium con-

cept. Although we assume complete information, we can easily extend our results

to environments with incomplete information about payoff functions, as in the epis-

temic analysis of Battigalli & Siniscalchi (2002) and Battigalli & Tebaldi (2019).

We conjecture that our approach can be extended to analyze processes of learning

and discovery as (impatient) agents repeatedly play a game with unawareness, but

this is well beyond the scope of this paper.24

Fudenberg & Levine (1993) coined the term “self-confirming equilibrium.” They

put forward a notion of randomized SCE motivated by a population-game scenario

whereby agents are drawn from large populations and randomly matched in every

period to play a sequential game, so that randomized strategies of the one-period

game are interpreted as stable statistical distributions of pure strategies within

populations. In this case, conjecture-confirmation means that each agent assigns

probability 1 to the set of co-players’ randomized strategies inducing the actual fre-

quency distribution of observations given her (pure) strategy. The large-population

scenario also justifies one-period expected payoff maximization despite a positive

discount factor, as agents understand that they cannot affect the behavior of future

co-players, who are almost certainly different from their current co-players, and—

in the long run—they also have no incentive to experiment. We do not consider a

population-game scenario for two reasons. First, many recurrent interactions fea-

ture a fixed set of players. Second, the analysis would be technically more difficult.

We relate to one-period game equilibria by assuming impatient players, while with

patient players we obtain convergence to repeated-game SCE (cf. Kalai & Lehrer

1993, 1995). We conjecture that we could cover the case of large but finite popu-

lations allowing for chance moves and analyzing the population game as a grand

game with (finitely) many agents partitioned according to their role. Another dif-

ference with Fudenberg & Levine (1993) is that, unlike us, they assume perfect

feedback about chosen actions (terminal history/node) at the end of the one-period

game. When the latter is a sequential game, co-players’ one-period strategies are

nonetheless imperfectly observable, which is what makes their SCE concept differ-

ent from Nash equilibrium. Note, however, that under perfect feedback pure SCEs

in two-person games are realization-equivalent to Nash equilibria.25 Fudenberg &

24See the discussion in Schipper (2021), pages 3-4.
25The latter may be partially randomized off path. Cf. Battigalli (1987) and Fudenberg &
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Kamada (2015, 2018) remove the perfect feedback assumption, positing a terminal

information partition for each player.26

We explained in the Introduction the main conceptual difference between SCE

with rationalizable conjectures and the rationalizable SCE concept of Rubinstein

& Wolinsky (1994): unlike the former, the latter postulates common certainty of

the confirmation of conjectures. This is argued informally in their paper, and it is

formally proved in the epistemic analysis of Esponda (2013), who focuses on games

with incomplete information. Another important difference between our work and

these papers on rationalizable SCE is that they consider simultaneous-move games.

While the SCE concept, which does not presume strategic sophistication, can be

meaningfully applied to the strategic form of a sequential game,27 notions of SCE

with strategically sophisticated players must be adapted to take sequential moves

into account, because their application to the strategic form of a sequential game

with feedback would allow for non-credible threats.28 Dekel et al. (1999) analyze

a version of rationalizable SCE for sequential games with perfect feedback. As

mentioned above, Fudenberg & Kamada (2015, 2018) allow for imperfect feed-

back. These papers on rationalizable SCE in sequential games feature a weak

notion of strategic sophistication, as they assume that there is common certainty

of rationality and conjecture confirmation at the beginning of the game, but not

if players are surprised by moves that are compatible with such assumptions. We

instead assume common strong belief in rationality. Yet, we do not assume com-

mon strong belief in confirmation and we do not allow for randomization; thus,

the two concepts are not nested.29

The learning aspect of our paper is related to Kalai & Lehrer (1993) who ana-

lyze repeated games with perfect monitoring where each player knows her payoff

function, and Kalai & Lehrer (1995) on repeated games with imperfect monitoring

Levine (1993).
26For this reason, they call the equilibrium “partition confirmed.” Instead, we keep the same

terminology independently of the information/feedback structure.
27Provided that also feedback, besides the payoff functions, is accurately represented in strate-

gic form. See the discussion in Battigalli et al. (2019), who point out that this claim is not true
when players are ambiguity averse.

28Rubinstein & Wolinsky (1994) write that their analysis concerns “normal-form games.” They
do not clarify whether they mean that the analysis can be meaningfully applied to the nor-
mal/strategic form of the given game with feedback. But it is obvious that this is not the case.

29Except, of course, within the class of simultaneous-move games, where rationalizable SCE
refines SCE in rationalizable conjectures. See Example 4.
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and imperfect knowledge of one’s own payoff function. As in their work, we obtain

convergence of conjectures about superstrategies from a kind of “grain of truth”

condition. As in Kalai & Lehrer (1995), our condition concerns the personal ob-

servations made by each player, rather than the path of play. Furthermore, since

we model beliefs as conditional probability systems, we can state this condition as

something that holds eventually, that is, we allow for finitely many surprises. The

most important difference between our work and these papers is that they do not

assume sophisticated strategic thinking, which is the reason why only knowledge

of one’s own payoff function matters, rather than interactive knowledge about the

game.

Finally, we do not model the information structure of the one-period game and

of the repeated game by means of information partitions. We represent the flow of

information accruing to players between stages and periods by means of feedback

functions and thereby comply with the following “separation principle” of Batti-

galli & Generoso (2021): the description of the rules of the game is independent

of players’ personal features, such as their mnemonic abilities.30 Besides this con-

ceptual advantage, our representation allows to seamlessly blend information flows

within each one-period game with repeated-game monitoring. To simplify the ex-

position, we assume a multistage structure (cf. Myerson 1986), but our analysis

and results can be extended to more general sequential games represented as in

Battigalli & Generoso (2021).

30As explained in Section 3, we informally assume that players have perfect memory. This
assumption about players’ mnemonic abilities is expressed formally in Battigalli & Generoso
(2021).
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8. Appendix

8.1 Additional formalism and remarks on game struc-

ture

We provide the formalism for all game objects defined implicitly, or somewhat

informally, in the main text, and we provide related remarks to be used in the

proofs of our results.31 Let us define the different sets of histories for the one-

period game:

• H̄ is the set of histories, that is, the feasible sequences of action profiles

including the empty sequence a[0] = ∅ (root).

H̄ = {∅} ∪

{
(ak)`k=1 : ` ≤ L,∀k ∈ [`] , ak ∈

∏
i∈I

Aki (fk−1
i (a[k−1]))

}
;

• Z =
{
z ∈ H̄ : `(z) = L

}
is the set of terminal histories;

• H = H̄ \ Z is the set of non-terminal histories;

• The set of personal histories is

H̄i ={(ai,mi)
[k] ∈ (Ai ×Mi)

[k] : k ≤ L,∃a[k]
−i ∈ H̄a

[k]
i
, f

[k]
i (a

[k]
i , a

[k]
−i) = m

[k]
i }

∪ {
(
f 0
i (∅)

)
},

and it is partitioned into Zi and Hi (terminal and non-terminal personal

histories).32

Remark 6. If we endow H̄ with the natural partial order on sequences �, we

obtain the objective game with root ∅, (H̄,�). Endowing H̄i with the partial order

hi � gi ⇔ a
[`(hi)]
i (hi) � a

[`(gi)]
i (gi) ∧ m

[`(hi)]
i (hi) � m

[`(gi)]
i (gi),

where hi, gi ∈ H̄i and `(hi) ≤ `(gi), we obtain player i’s subjective game with root

∅, (H̄i,�).

31The proofs of these quite intuitive remarks are available upon request.
32H̄

a
[k]
i

is the section of H̄ at a
[k]
i .
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Recalling that ζ : S → Z is the function associating each strategy profile with

the induced terminal history, define the sets of strategies and strategy profiles

consistent with “objective” histories h ∈ H̄ as follows:

• S(h) = {s ∈ S : h � ζ(s)};

• Si(h) = {si ∈ Si : ∃s−i ∈ S−i, h � ζ(s−i, si)} = projSi
S(h);

• S−i(h) = {s−i ∈ S−i : ∃si ∈ Si, h � ζ(s−i, si)} = projS−i
S(h).

We can define analogous sets for personal histories hi as follows (cf. Section

3):

• S(hi) = {s ∈ S : hi � h̄i(ζ(s))};

• Si(hi) = {si ∈ Si : ∃s−i ∈ S−i, hi � h̄i(ζ(si, s−i))} = projSi
S(hi);

• S−i(hi) = {s−i ∈ S−i : ∃si ∈ Si, hi � h̄i(ζ(si, s−i))} = projS−i
S(hi).

Remark 7. For all hi ∈ Hi and i ∈ I, S(hi) = Si(hi)×S−i(hi). For all gi, hi ∈ H̄i,

gi � hi ⇒ S(hi) ⊆ S(gi) ⇔ Si(hi) ⊆ Si(gi) ∧ S−i(hi) ⊆ S−i(gi).

By inspection of the definition observe that, for every hi ∈ H̄i, S(hi) =

∪h∈Pi(hi)S(h). Thus, by the above remark, S−i(hi) = ∪h∈Pi(hi)S−i(h).

Define the objects for the infinite repetition in an analogous way as just done

for the one-period game. Then the following remarks also hold.

Remark 8. (H,�) is an objective tree, (Hi,�) is a subjective tree, where � is

the “prefix of” relation, inherited, respectively, from AN and (Ai ×Mi)
N.

Remark 9. S(hi) = Si(hi)× S−i(hi). Moreover, for every gi,hi ∈ H̄i,

gi � hi ⇒ S(hi) ⊆ S(gi)⇔ Si(hi) ⊆ Si(gi) ∧ S−i(hi) ⊆ S−i(gi).

Remark 10. Z = ZN, Zi = ZNi , H = ∪n≥0

(
Z [n] ×H

)
and Hi = ∪n≥0

(
Z

[n]
i ×Hi

)
.

The last two equalities follow from the observation that a finite history of the

repeated game is the concatenation between a (possibly empty) finite sequence of

terminal histories of the one-period game with a (possibly empty) non-terminal

history of the one-period game, and similarly for personal histories.

34



8.2 Proofs

We first state two preliminary and quite standard continuity results.33

Lemma 1. The infinite repetition Υ(Γ, δ) of the multistage game Γ with discount

factors δ = (δi)i∈I satisfies continuity at infinity for continuation values, i.e.,

∀i ∈ I,∀hi ∈ Hi, limt→∞[sup{|V µi

i,hi
(si)− V µi

i,hi
(s̄i)| : µi ∈ ∆Ci(S−i), si, s̄i ∈ Si,

∀gi ∈ Hi, `(gi) < t, si(gi) = s̄i(gi)}] = 0.

Lemma 2. For all i ∈ I and hi ∈ Hi, Vi,hi
: Si × ∆Ci(S−i) → R is jointly

continuous.

Of course, an analogous result holds for the one-period game.

8.2.1 Proofs for Section 4

Proof of Remark 1: Let

µit(·|S−i(projHi
hi)) := marg∏

hi∈{h̄i(z
[t−1])}×Hi

A`(hi)+1
−i (hi)

µi(·|S−i(hi))

for every hi ∈
{
h̄i(z

[t−1])
}
×Hi. Then,

{
h̄i(z

[t−1])
}
×Hi

∼= Hi. We want to show

that the map hi 7→ µit(·|S−i(hi)) satisfies the chain rule. Note that

µit (S−i(hi)|S−i(hi)) = µi
(
S−i

(
(h̄i(z

[t−1]), hi)
)
|S−i

(
(h̄i(z

[t−1]), hi)
))

= 1

for every hi ∈ Hi. For any E−i ⊆ S−i, let

S
E−i

−i
(
h̄i(z

[t−1])
)

=
{

s−i ∈ S−i
(
h̄i(z

[t−1])
)

: s−i|{h̄i(z[t−1])}×Hi
∈ E−i

}
.

denote the set of co-players’ superstrategy profiles inducing one-period strategy

profiles in E−i in the t-th period after any history that i cannot distinguish from

z[t−1]. With this, for all E−i and gi, hi ∈ Hi such that hi � gi,

µit (E−i ∩ S−i(gi)|S−i(hi)) =

33The proofs are available upon request.

35



µi
(
S
E−i

−i
(
h̄i(z

[t−1])
)
∩ S−i

(
(h̄i(z

[t−1]), gi)
)
|S−i

(
(h̄i(z

[t−1]), hi)
))

=

µi
(
S
E−i

−i
(
h̄i(z

[t−1])
)
|S−i

(
(h̄i(z

[t−1]), gi)
))
·

µi
(
S−i

(
(h̄i(z

[t−1]), gi)
)
|S−i

(
(h̄i(z

[t−1]), hi)
))

=

= µit (E−i|S−i(gi))µit (S−i(gi)|S−i(hi)) .

�

Proof of Proposition 1: Take a time t and an objective history z[t−1]. Take any

personal history gi =
(
h̄i(z

[t−1]), gi
)
∈
{
h̄i(z

[t−1])
}
×Hi, i.e., any personal history

obtained by concatenating the (t − 1)-period personal history induced by z[t−1]

with one-period personal history gi. We look at the restriction of superstrategies

to particular subsets of Hi, using the standard notation for the restriction of

functions: si|Fi, for any Fi ⊆ Hi. We write si|hi to denote the superstrategy

allowing hi and playing like si at each personal history that does not strictly

precede hi. For fixed si, s−i, and z[t−1], let si,t(si) denote the (one-period) strategy

played by si in period t following history z[t−1], and similarly define s−i,t(s−i) the

profile of strategies played by s−i. Observe that, for every si ∈ Si, since players

are impatient, we have

V µi

i,gi
(si) =

∫
S−i(gi)

ui (zt (ζ(si|gi, s−i)))µi(ds−i|S−i(gi)) =

∫
S−i(gi)

ui (ζ (si,t(si|gi), s−i,t(s−i)))µi(ds−i|S−i(gi)),

where, again, zt(z) denotes the one-period terminal history played by z in period

t, that is, the t-th coordinate of the sequence z ∈ Z = ZN. Moreover, notice that

si,t(si|gi) = s−i,t(si)|gi.

Let

S
s−i

−i (gi) = {s−i ∈ S−i(gi) : s−i,t(s−i) = s−i} .

Since players are impatient, their continuation value at the beginning of period t

is fully determined by the expected payoff from the subsequent one-period game.
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Recall from the proof of Remark 1 the definition of the induced one-period CPS

µit. Then one can see that

V µi

i,gi
(si) =

∑
s−i∈S−i(gi)

ui (ζ (si,t(si)|gi, s−i))µit(s−i|gi)

= V
µit(·|gi)
i,gi

(si,t(si)|gi) .

Since all z[t−1] ∈ Z [t−1] and gi ∈ Hi yield the repeated-game personal history

gi = (h̄i(z
[t−1]), gi), and for every gi ∈ Hi there are gi ∈ Hi and z[t−1] ∈ Z [t−1] such

that gi = (h̄i(z
[t−1]), gi), we conclude that, for all gi ∈ Hi and ai ∈ A`(gi)+1

i (gi) =

A`(gi)+1
i (gi),

V
µit(·|gi)
i,gi

(s̄ti) = V µi

i,gi
(s̄i) ≥ V µi

i,gi
(s̄i|gi

ai) = V
µit(·|gi)
i,gi

(s̄ti|giai),

and that, for all gi ∈ Hi and ai ∈ A`(gi)+1
i (gi) = A`(gi)+1

i (gi),

V µi

i,gi
(s̄i) = V

µit(·|gi)
i,gi

(s̄ti) ≥ V
µit(·|gi)
i,gi

(s̄ti|giai) = V µi

i,gi
(s̄i|gi

ai).

�

Proof of Theorem 1: Fix ((si, µ
i))i∈I ∈

∏
i∈I Σ∞i . We want to show that, for all

t ∈ N, in the one-period game starting after z[t−1] = (z1 (ζ(s)) , ..., zt−1 (ζ(s))), the

induced strategy si,t(si) and the induced one-period CPS µit are strongly rational-

izable, i.e., (si,t(si), µ
i
t) ∈ Σ∞i .

We are going to prove by induction the following claim.

Claim 1. For all k ∈ N, if ((si, µ
i))i∈I ∈

∏
i∈I Σk

i then, for all t ∈ N, in the

one-period game starting at z[t−1],

S−i(hi) ∩ projS−i
Σm
−i 6= ∅ ⇒ µit(projS−i

Σm
−i|S−i(hi)) = 1,

for all m < k and hi ∈ Hi.

The claim implies that, for every k, µit ∈ proj∆Ci (S−i)
Σk
i . Since si,t(si) ∈

BROi(µit) (by Proposition 1), we have (si,t(si), µ
i
t) ∈ Σk

i . To prove the claim,

we prove that, for all k ∈ N, i ∈ I, t ∈ N, hi ∈ Hi, and s′−i ∈ S−i(hi)∩projS−i
Σk−1
−i
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(provided this last intersection is not empty), there exists s′−i ∈ projS−i
Σk−1
−i ∩

S−i(h̄i(z
[t−1])) such that s−i,t(s

′
−i) = s′−i.

Proof: Basis step: We start with k = 2. By Proposition 1, for all i ∈ I and

t ∈ N, if (si, µ
i) ∈ Σ1

i then si,t(si) ∈ BROi(µit), which implies that si,t(si) ∈ Σ1
i .

Now suppose that ((si, µ
i))i∈I ∈

∏
i∈I Σ2

i . Take all hi ∈ Hi such that S−i(hi) ∩
projS−i

Σ1
−i 6= ∅. We want to show that, for any profile of strategies s′−i = (s′j)j 6=i ∈

S−i(hi) ∩ projSi
Σ1
−i, there exists a profile of superstrategies s′−i ∈ projS−i

Σ−i such

that s−i,t(s
′
−i) = s′−i. To see this, consider the case t = 1. For each j 6= i,

there is some γj ∈ ∆Cj(S−j) such that s′j ∈ BROj(γj). Then, we can find some

νi ∈ ∆Ci(S−i) such that, for all hi ∈ Hi and E−i ⊆ S−i,

νi(S
E−i

−i |S−i(hi)) = γi(E−i|S−i(hi)),

where S
E−i

−i := {s−i ∈ S−i : s−i,t(s−i) ∈ E−i}. Indeed, consider νj ∈ ∆Cj(S−j)

such that, for all hj ∈ Hj and s−j ∈ suppγj(·|S−j(hj)) \ ∪gj≺hjsuppµj(·|gj),

νj(sN−j|S−j(hj)) = γj(s−j|S−j(hj)),

where sN−j is the superstrategy playing like s−j in every period. Indeed, the above

condition is consistent with νj being a CPS. By Proposition 1, there exists s′j ∈
BRj(ν

j) such that s1
j(s
′
j) = sj, and hence s′−i ∈ projS−i

Σ1
−i ∩ S−i(hi).

Suppose now that t ≥ 2. There exists s′−i ∈ S−i(h̄i(z
[t−1])) such that s′−i ∈

projS−i
Σ1
−i. For every hi ∈ Hi for which it is possible, take some s′−i ∈ S−i(hi) ∩

projS−i
Σ1
−i 6= ∅. We want to show that there exists s′−i ∈ S−i(hi) ∩ projS−i

Σ1
−i,

where hj = (h̄j(z
[t−1]), hj). For every j 6= i, take any γj ∈ ∆Cj(S−j) such that

s′j ∈ BROj(γj). Then, let νj ∈ ∆Cj(S−j) be such that:

(i) s′j ∈ BRj(ν
j);

(ii) for all hj ∈ Hj and s̄−j ∈ suppγj(·|S−j(hj)) \ ∪gj≺hjsuppγj(·|gj),

νj
(
S
s̄N−j

−j
(
(h̄j(z

[t−1]), hj)
)
|S−j

(
(h̄j(z

[t−1]), hj)
))

= γj(s̄−j|S−j(hj)),

where S
s̄N−j

−j
(
(h̄j(z

[t−1]), hj)
)

is the set of j’s co-players’ superstrategies that
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allow (h̄j(z
[t−1]), hj) and play like s̄−j in the rest of the period and in every

subsequent period on and off path;

(iii) s′−i ∈ S−i(h̄i(z
[t−1])).

Conditions (i) and (iii) are compatible. Condition (ii), as before, does not

contradict the fact that νj is a CPS, nor can it prevent the superstrategy from

satisfying one-step optimality in the previous periods, as that only depends on

the past induced one-period CPSs, not modified by this requirement. Indeed,

the second condition only affects conjectures about continuation strategies from

h̄j(z
[t−1]) onward. Thus, it allows sj,t(s

′
j) = s′j. Consequently, there exists s′−i ∈

S−i((h̄i(z
[t−1]), hi)) ∩ projS−i

Σ1
−i. Hence, for all i ∈ I, t ∈ N, and hi ∈ Hi

S−i(hi) ∩ projS−i
Σ1
−i 6= ∅ ⇒ S−i((h̄i(z

[t−1]), hi)) ∩ projS−i
Σ1
−i 6= ∅ ⇒

⇒ µi(projS−i
Σ1
−i|S−i((h̄i(z[t−1]), hi))) = 1⇒ µit(projS−i

Σ1
−i|S−i(hi)) = 1

where the last implication follows from the fact that, for all j ∈ I and t ∈ N,

s′j ∈ projSj
Σ1
j ⇒ sj,t(s

′
j) ∈ projSj

Σ1
j .

Hence, µit ∈ Σ2
i . Then again,

si ∈ BRi(µ
i)⇒ si,t(si) ∈ BROi(µit)

for every i ∈ I, which implies that ((si,t(si), µ
i
t))i∈I ∈ Σ2.

Inductive step: Suppose that, for some k ∈ N, for all m ≥ k and t ∈ N, if

((si, µ
i))i∈I ∈

∏
i∈I Σm

i , then ((si,t(si), µ
i
t))i∈I ∈

∏
i∈I Σm. Suppose also that there

exists s′−i ∈ projS−i
Σ`
−i ∩ S−i(h̄i(z

t−1)) such that s−i,t(s
′
−i) = s′−i, for all ` < k,

hi ∈ Hi such that S−i(hi) ∩ projS−i
Σ`
−i 6= ∅, and s′−i ∈ S−i(hi) ∩ projS−i

Σ`
−i.

First, we want to show that, given any suitable hi, for every s′−i ∈ S−i(hi) ∩
projS−i

Σk
−i there exists s′−i ∈ S−i(h̄i(z

[t−1]))∩projS−i
Σk
−i such that s−i,t(s

′
−i) = s′−i.

Condition S−i(h̄i(z
[t−1])) ∩ projS−i

Σk
−i 6= ∅ holds because the LHS contains s−i.

Conditions s′−i ∈ S−i(h̄i(z
[t−1])) and s−i,t(s

′
−i) = s−i do not contrast one another.

Most importantly, neither are s′−i ∈ projS−i
Σk
−i and s−i,t(s

′
−i) = s−i. Indeed,
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there exist s′i such that s′ = (s′i, s
′
−i) ∈ projS

∏
i∈I Σk

i ∩ S(h̄i(z
[t−1])), which im-

plies that s−i,t(s
′
−i) ∈ projS−i

Σk
−i. In particular, we want to build s′−i such that

s−i,t(s
′
−i) = s′−i.

Take any j 6= i. Let γj ∈ ∆Cj(S−j) be a one-period CPS justifying s′j =

projSj
s′−i, that is, γj strongly believes projS−j

Σk−1
−j and s′j ∈ BROj(γj). Hence,

by the inductive hypothesis, for all hj such that S−j(hj) ∩ projS−j
Σk−1
−j , and

s′−j ∈ suppγj(·|S−j(hj)), there exists s′′−j ∈ projS−j
Σk−1
−j ∩S−j(h̄j(z

[t−1])) such that

st−j(s
′′
−j) = s′−j. By defining νj ∈ ∆Cj(S−j) as a CPS that strongly believes s′′−j,

and such that νjt = γj, it immediately follows that there exists s′j ∈ BRj(ν
j) such

that s′j ∈ projSj
Σk
j ∩ Sj(h̄j(z

[t−1])) and sj,t(s
′
j) = s′j. Letting s′j ∈ Sj(h̄j(z

[t−1])) is

possible because h̄j(z
[t−1]) is consistent with strong belief of level k in rationality,

and thus any superstrategy that is a sequential best reply to a CPS assigning prob-

ability one to h̄j(z
[t−1]) can allow it without loss of generality, and independently

of the subsequent choices (since the player is impatient and the personal history

is terminal for period t− 1).

This holds for every j 6= i. Observe that for every h ∈ H it holds that

S−i(h̄i(h)) ⊇ S−i(h) =
∏
j 6=i

Sj(h̄j(h)).

Hence, we have shown the existence of s′−i ∈ S−i(h̄i(z
[t−1]))∩projS−i

Σk
−i such that

s−i,t(s
′
−i) = s′−i, and thus S−i

(
(h̄i(z

[t−1]), hi)
)
∩projS−i

Σk
−i 6= ∅. Assume now that

((si, µ
i))i∈I ∈ Σk+1. Then, for all i ∈ I, t ∈ N, m 6= k, and hi ∈ Hi,

S−i(hi) ∩ projSi
Σm
−i 6= ∅ ⇒ S−i((h̄i(z

[t−1]), hi)) ∩ projS−i
Σm
−i 6= ∅ ⇒

⇒ µi(projS−i
Σm
−i|S−i(h̄i(z[t−1]), hi)) = 1⇒ µit(projS−i

Σm
−i|S−i(hi)) = 1,

where the last implication follows from the inductive hypothesis. Hence, µit ∈
proj∆Ci (S−i)

Σk+1
i . Then again,

si ∈ BRi(margS−i
µi)⇒ si,t(si) ∈ BROi(µit)

for every i ∈ I, that is, ((si,t(si), µ
i
t))i∈I ∈ Σk+1.
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If ((si, µ
i))i∈I ∈ Σ∞, then, for all t ∈ N, i ∈ I, hi ∈ Hi, and k ∈ N,

S−i(hi)∩projS−i
Σ∞−i 6= ∅ ⇒ µit(projS−i

Σk
−i|S−i(hi)) = 1⇒ µit(projS−i

Σ∞−i|S−i(hi)) = 1.

Hence, ((si,t(si), µ
i
t))i∈I ∈

∏
i∈I Σ∞. �

8.2.2 Proofs for Section 5

Proof of Remark 3: Observe that µi(·|S−i(hti)) = µi(·|S−i(hki )) if and only if,

for all k ≥ t ≥ T ,

µi(S−i(h
k
i )|S−i(hti)) = 1.

This requires that, for every t ≥ T ,

µi(S−i(h
t
i)|S−i(hTi )) = 1,

which happens if and only if

µi(∩t≥TS−i(h
t
i)|S−i(hTi )) = 1,

i.e.,

µi(S−i(h̄i(ζ(si, s−i)))|S−i(hTi )) = 1.

If this holds for T , it must also hold for every t ≥ T . In words, if the conjectures

of player i over co-players superstrategies has converged starting from T , then at

every t ≥ T player i believes with certainty in co-players’ superstrategy profiles

that are observationally equivalent, given i’s own superstrategy, to the true ones.

Of course, also the reverse implications hold. �

Proof of Proposition 2: Observe that the sequence (S−i(h
t
i))t∈N is decreasing,

and such that S−i(h
t
i) ↓ S−i(h̄i(ζ(s))) = ∩t∈NS−i(h

t
i). Hence, by continuity of

measures, for every k ∈ N,

limt→∞µ
i(S−i(h

t
i)|S−i(hki )) = µi(S−i(h̄i(ζ(si, s−i)))|S−i(hki )).

If there exists some T ∈ N such that µi(S−i(h̄i(ζ(si, s−i)))|S−i(hTi )) > 0, then, for

41



all ` ≥ t ≥ T ,

µi(S−i(h̄i(ζ(si, s−i)))|S−i(hti)) > 0 ∧ µi(S−i(h
`
i)|S−i(hti)) > 0,

by the chain rule. Hence, for all ` ≥ t ≥ T , again applying the chain rule, it holds

that

µi(S−i(h̄i(ζ(si, s−i)))|S−i(h`i)) =
µi(S−i(h̄i(ζ(si, s−i)))|S−i(hti))

µi(S−i(h`i)|S−i(hti))
.

Taking the limit as `→∞, we obtain

lim`→∞µ
i(S−i(h̄i(ζ(si, s−i)))|S−i(h`i)) =

µi(S−i(h̄i(ζ(si, s−i)))|S−i(hti))
µi(S−i(h̄i(ζ(si, s−i)))|S−i(hti))

= 1,

proving the first claim. The second claim follows immediately from the definition

of limit. �

8.2.3 Proofs for Section 6

Proof of Remark 4: For every t ∈ N,

µit(S−i
(
h̄i(ζ(st))

)
|S−i) = µi(S−i

((
hti, h̄i(ζ(st))

))
|S−i(hti)) ≥

≥ µi(S−i
(
h̄i(ζ(s))

)
|S−i(hti)),

where the first inequality is by definition of probability measure and the second

by the fact that
(
hti, h̄i(ζ(st))

)
� h̄i(ζ(s)). Hence, for all t ∈ N and ε ≥ 0,

µi(S−i
(
h̄i(ζ(s))

)
|S−i(hti)) ≥ 1− ε⇒ µit(S−i

(
h̄i(ζ(st))

)
|S−i) ≥ 1− ε.

�

Proof of Remark 5: We have seen in Section 5 that conjectures converging in

finite time is equivalent to the existence of a time T starting from which

∀i, µi(S−i(h̄i(ζ(s)))|S−i(hTi )) = 1,

and thus condition (i’) of Definition 9 is satisfied. Then strong rationalizability
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takes care of the rest. �

Proof of Proposition 3: We have shown in the proof of Theorem 1 that,

when players are impatient, for all k ∈ N, t ∈ N, i ∈ I, z[t] ∈ Z [t] such that

S(z[t]) ∩ projSΣk 6= ∅, and s′i ∈ projSi
Σk, there exists s′i ∈ projSi

Σk
i ∩ Si(z

[t]) such

that si,t(s
′
i) = s′i.

Since S(h) =
∏

i∈I Si(h) for every h ∈ H̄, it follows that, for all t ∈ N, h ∈ Z [t]

such that S(h) ∩ projSΣ∞ 6= ∅, z ∈ Z with projSΣ∞ ∩ S(z) 6= ∅, and k ∈ N,

there exists sk ∈ projSΣk ∩ S((h, z)), i.e., projSΣk ∩ S((h, z)) 6= ∅. Since projSΣk

and S((h, z)) are closed, projSΣk ∩ S((h, z)) is closed, and thus compact. By fi-

nite intersection property of compact sets, and because for every m < k we know

that projSΣm ∩ projSΣk = projSΣk, it holds that ∩k∈N
(
S((h, z)) ∩ projSΣk

)
=

S((h, z)) ∩ projSΣ∞ 6= ∅. In other words, there exists s′ ∈ S(h) ∩ projSΣ∞ such

that ζ(st(s′)) = z.

By the above, for every z ∈ Z consistent with one-period strong rationalizabil-

ity, there exists s′ ∈ projSΣ∞ such that z1(ζ(s′)) = z. Now proceed by induction:

as inductive hypothesis, suppose that, for a fixed t ∈ N, for every h ∈ Z [t] with

zk(h) consistent with one-period strong rationalizability for every k ≤ t, there

exists s′ ∈ projSΣ∞ such that s′ ∈ S(h). Then, for every z ∈ Z consistent with

one-period strong rationalizability there exists s′′ ∈ S((h, z)) ∩ projSΣ∞.

Hence, if z ∈ Z∞ is such that, for every t ∈ N, zt(z) is consistent with one-

period strong rationalizability, then, for every t, S((z1(z), . . . , zt(z)))∩projSΣ∞ 6=
∅. As above, S(z[t](z)) ∩ projSΣ∞ is compact. Moreover, S((z1(z), . . . , zt(z))) ∩
S(z[`](z)) = S((z1(z), . . . , zt(z))) whenever ` ≤ t. Thus, by the finite intersec-

tion property of compact sets, ∩t∈N (S((z1(z), . . . , zt(z))) ∩ projSΣ∞) = S(z) ∩
projSΣ∞ 6= ∅. �

Proof of Theorem 3: Let z ∈ Z∞ be the terminal history induced by the

sequence of one-period SCEs in strongly rationalizable conjectures (((sti, γ
i
t))i∈I)t∈N.

For every i ∈ I, take νi ∈ ∆Ci(S−i) so that, for all t ∈ N, hi ∈ Hi, and s−i ∈ S−i,

νi
(
S
s−i

−i (h̄i((z1(z), . . . , zt−1(z)))) ∩ projS−i
Σ`
−i|S−i((h̄i((z1(z), . . . , zt−1(z))), hi))

)
= γit(s−i|S−i(hi)),
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where once again

S
s−i

−i (h̄i((z1(z), . . . , zt−1(z))) = {s−i ∈ S−i(h̄i((z1(z), . . . , zt−1(z))) : s−i,t(s) = s−i}.

Since γit strongly believes (projS−i
Σk)∞k=1, then, by definition and by Proposi-

tion 3, there exists νi
(
·|S−i((h̄i((z1(z), . . . , zt−1(z))), hi))

)
that strongly believes

(projS−i
Σk)∞k=1. Observe that, by definition, νi assigns initial probability 1 to the

collection of sets (S−i(h̄i(z1(z), . . . , zt−1(z))))t∈N, and thus is confirmed on path.

Furthermore, let νi strongly believe in (projS−i
Σk
−i)
∞
k=0 (which consists in imposing

constraints on νi at personal histories outside ∪t∈N
(
{h̄i(z1(z), . . . , zt−1(z))} ×Hi

)
).

Then, there exists s′i ∈ Si such that si ∈ BRi(ν
i), and si,t(s

′
i) = sti. Therefore,

((s′i, ν
i))i∈I ∈ Σ∞ is such that ζ(s′) = z, and νi has converged for every player. �

Proof of Theorem 4:

Claim 2. There exists ε̄ > 0 such that, for all i ∈ I, γi ∈ ∆Ci(S−i), si ∈ BROi(γi),

and zi ∈ Zi, if

γi(S−i(zi)|S−i) ≥ 1− ε̄

then si ∈ BROi(νi), where νi is the fully confirmed modification on γi.

Proof: Let s′i ∈ BROi(νi). Let

m := min{ui(z)− ui(z′) > 0 : i ∈ I, z, z′ ∈ Z},

where m > 0 by finiteness of Z. Let

M := max{ui(z)− ui(z′) > 0 : i ∈ I, z, z′ ∈ Z},

where M <∞, again, by finiteness of Z. Notice that there must exist hi ∈ Hi such

that V νi

i,hi
(s′i)−V νi

i,hi
(si) > 0 (and thus in particular ≥ m), otherwise si ∈ BROi(νi)

and we are done. Notice that

V γi

i,hi
(si)− V γi

i,hi
(s′i) ≤ γi(S−i(zi)|S−i) · (−m) +

(
1− γi(S−i(zi)|S−i)

)
·M.

Then ε̄ = m
m+M

does the job. �

When a one-period ε-SCE in strongly rationalizable conjectures is played with
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ε ≤ ε̄ above, then for all i si ∈ BROi(νi), where νi is a confirmed conjectured

(given s−i). Since (si, γ
i) ∈ Σ∞i and suppνi ⊆ suppγi, then (si, ν

i) ∈ Σ∞i . This

concludes the proof. �

Proof of Theorem 5: The first part needs no further proof. The auxiliary result

follows from the following claim.

Claim 3. Fix i ∈ I, µi ∈ ∆Ci(S−i), si ∈ BRi(µ
i), and zi ∈ Zi. If for every ε̄ > 0

there exists hε̄i ≺ zi such that

µi(S−i(zi)|S−i(hε̄i )) ≥ 1− ε̄,

then, for every ε′ > 0, there exists hεi and νi ∈ ∆C
hε
i

i (S−i) such that

νi(S−i(zi)|S−i(hi)) = 1 ∀hεi � hi � zi,

and proj
S
�hε

i
i

si ∈ BRε′

i (νi).

Proof: Fix i ∈ I. Let zi ∈ Zi and γi ∈ ∆Ci(S−i). Assume that, for some ε > 0

and for every hi � zi, there exists εhi such that

γi (S−i(zi)|S−i(hi)) = 1− εhi ≥ 1− ε.

Define νiε ∈ [∆(S−i)]
Ci in the following way:

∀ hi � zi, ∀E−i ⊆ S−i νiε (E−i|S−i(hi)) =
γi (E−i ∩ S−i(zi)|S−i(hi))

1− εhi

∀ hi � zi, ∀E−i ⊆ S−i, νiε (E−i|S−i(hi)) = γi (E−i|S−i(hi)) .

It can be checked that νiε is a CPS, i.e., νiε ∈ ∆Ci(S−i). Moreover, for all hi ∈ Hi,

νiε,hi := νiε(·|S−i(hi)) is absolutely continuous with respect to γihi := µi(·|S−i(hi)).
The Radon-Nikodym derivative is

dνiε,hi
dγihi

=
1

1− εhi
1S−i(zi)

45



whenever hi � zi, and simply 1 otherwise. Take any measurable function u, then∫
S−i

udνiε,hi =

∫
S−i

u
dνiε,hi
dγihi

dγihi

becomes, when hi � zi,∫
S−i(zi)

udγihi = (1− εhi)
∫
S−i

udνiε,hi .

Hence, for all hi and s̄i ∈ Si,

Eγihi [Ui(s̄i, ·)|hi] =
∑

s−i∈S−i(hi)

Ui(s̄i|hi, s−i) · γihi(s−i)

= (1−εhi)
∑

s−i∈S−i(zi)

Ui(s̄i|hi, s−i)·νiε,hi(s−i)+
∑

s−i∈S−i(hi)\S−i(zi)

Ui(s̄i|hi, s−i)·γihi(s−i)

= (1− εhi)Eνiε,hi [Ui(s̄i, ·)|hi] +
∑

s−i∈S−i(hi)\S−i(zi)

Ui(s̄i|hi, s−i) · γihi(s−i).

Let

ni = mins∈SUi(s), Ni = maxs∈SUi(s), κi = minw,v∈Ui(S),w 6=v|w − v|.

Suppose by contradiction that, for every ε′ > 0 and some h′i � zi, there exists ŝi

such that Eνi
ε′,h′

i

[Ui,ŝi ] > Eνi
ε′,h′

i

[Ui,si ]. Then

0 ≥ Eγi
h′
i

[Ui,ŝi ]− Eγi
h′
i

[Ui,si ] = (1− εhi)
[
Eνi

ε,h′
i

[Ui,ŝi ]− Eνi
ε′,h′

i

[Ui,si ]

]
+

+
∑

s−i∈S−i(h′i)\S−i(zi)

[Ui(ŝi|h′i, s−i)− Ui(si|h′i, s−i)] · γih′i(s−i)

≥ (1− εhi)κi − εhi(Mi − ni).

Thus the inequality is satisfied only if

ε′ ≥ εhi ≥
κi

κi +Mi −Ni

∈ (0, 1).

46



Then, there exists ε̄ < κi
κi+Mi−Ni

such that a contradiction obtains. Since, for every

s̄i ∈ Si,
Eνiε,hi [Ui,si ] = Eγihi [Ui,si ] ≥ Eγihi [Ui,s̄i ] = Eνiε,hi [Ui,s̄i ]

when hi � zi, then the statement is satisfied. �

8.3 Formalism of Section 6.3

We define formally i’s “continuation objects” for the infinite repetition, given a

certain personal history hi. Let

C�hi
i = {S−i(gi) ⊆ S−i : gi � hi}

be the set of conditional events that are induced by the sub-tree of H̄i with root

hi, and let ∆C
�hi
i (S−i) denote the corresponding set of CPSs. After hi, “optimality

from there on” depends only on these CPSs. In other words, optimality starting at

hi should be intended as optimality in the “subjective continuation game with root

hi”. Given a continuation superstrategy s�hi
i ∈ S�hi

i := ×gi�hi
A`(gi)+1(gi) and a

CPS νi ∈ ∆C
�hi
i (S−i), the continuation value for the continuation game is clear:

for every gi � hi, for all si ∈ Si and µi ∈ ∆Ci(S−i) such that proj
S
�hi
i

si = s�hi
i

and proj
[∆(S−i)]

C
hi
i
µi = νi,

V νi

i,gi
(s�hi
i ) =

∞∑
t=τ(gi)+1

δ
t−τ(gi)−1
i

∫
S−i(gi)

ui(zt(ζ(s�hi
i |gi, s−i)))νi(ds−i|S−i(gi)) =

=
∞∑

t=τ(gi)+1

δ
t−τ(gi)−1
i

∫
S−i(gi)

ui(zt(ζ(si|gi, s−i)))µi(ds−i|S−i(gi)) = V µi

i,gi
(si),

where ζ(s�hi
i |gi, s−i) is the terminal history induced by playing continuation su-

perstrategy s�hi
i after gi and superstrategies s−i. Let µi�hi

denote the projection

of CPS µi over the set of CPSs ∆C
�hi
i (S−i). Then, si is optimal starting at hi, with

respect to µi, if s�hi
i is one-step optimal given µi�hi

, that is, for every gi � hi,

s�hi
i (gi) ∈ arg max

ai∈A
`(gi)+1
i

V
µi�hi
i,gi

(s�hi
i |gi

ai),
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where V
µi�hi
i,gi

(s�hi
i |gi

ai) denotes, in the usual way, the continuation value at gi of

playing continuation like superstrategy s�hi
i after gi and ai. With an abuse of

notation, we denote such optimality property as

s�hi
i ∈ BRi(µ

i
�hi

).

Remark 11. If a superstrategy is one-step optimal given a CPS, then the contin-

uation superstrategy is optimal starting at any personal history given the induced

continuation CPS.

Formally, Remark 11 says that, given si, s�hi
i , µi, and µi�hi

as above, for every

hi,

si ∈ BRi(µ
i) ⇒ s�hi

i ∈ BRi(µ
i
�hi

).

8.4 Optimality and existence

In this section we define sequential optimality and weak sequential optimality and

compare them with one-step optimality. The use of continuation values allows us

to extend optimality conditions “computed under this ex-ante perspective” to the

case of impatient intertemporal preferences in a multi-period game. Subsequently,

we present a version of the One-Shot Deviation Principle, which states the equiv-

alence between one-step optimality and sequential optimality. Known arguments

can be adapted to prove the existence of sequentially optimal and weakly sequen-

tially optimal superstrategies (and strategies), and to prove that a superstrategy

(strategy) is weakly sequentially optimal if and only if there exists a behaviorally

equivalent sequentially optimal superstrategy (strategy). This implies that our

definition of strong rationalizability is behaviorally equivalent to the one based on

weak sequential optimality used by Pearce (1984) and many following papers for

finite games, and by Battigalli & Tebaldi (2019) for infinite-horizon games (see

also the discussion in Battigalli & De Vito 2021).

Definition 14. A superstrategy s∗i is sequentially optimal given µi ∈ ∆Ci(S−i) if,

for every hi ∈ Hi,

s∗i ∈ arg max
si∈Si

V µi

i,hi
(si).

Similarly, a strategy s∗i is sequentially optimal given a one-period CPS γi ∈ ∆Ci(S−i)
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if, for every hi ∈ Hi,

s∗i ∈ arg max
si∈Si(hi)

V γi

i,hi
(si).

Observe that, for all i ∈ I, hi ∈ Hi, and µi ∈ ∆Ci(S−i), by compactness of Si

and continuity of V µi

i,hi
(·), V µi

i,hi
(·) admits a maximizer. Of course, the same holds

with respect to the one-period continuation values. For any si ∈ Si, let

Hi(si) =
{
hi ∈ Hi : ∃s−i ∈ S−i,hi ≺ h̄i (ζ (si, s−i))

}
denote the set of personal histories allowed by si, that is, those that can occur if si

is played. The set Hi (si) of histories of the one-period game allowed by strategy

si is similarly defined.

Definition 15. A superstrategy s∗i is weakly sequentially optimal given µi ∈ ∆Ci(S−i)

if, for every hi ∈ Hi(s
∗
i ),

s∗i ∈ arg max
si∈Si

V µi

i,hi
(si).

Similarly, a strategy s∗i is weakly sequentially optimal given a one-period CPS γi ∈
∆Ci(S−i) if, for every hi ∈ Hi(s

∗
i ),

s∗i ∈ arg max
si∈Si

V γi

i,hi
(si).

The following two propositions establish that our definition of rationality is

equivalent to sequential optimality, and it is hence behaviorally equivalent to the

rationality definition of Battigalli & Tebaldi (2019), provided that players are not

impatient.

Proposition 4 (One-Shot Deviation Principle). Fix a player i, a superstrategy si

and a CPS µi over co-players’ superstrategy profiles. Then, si is one-step optimal

given µi if and only if si is sequentially optimal given µi.

Proposition 5. Fix a player i and a CPS µi over co-players’ superstrategy pro-

files. Then, there always exists at least one sequentially optimal superstrategy and

one weakly sequentially optimal superstrategy. Furthermore, every superstrategy be-

haviorally equivalent to a sequentially optimal superstrategy is weakly sequentially

optimal. The same results hold for the one-period game.
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Corollary 3. Fix i ∈ I, superstrategy si, and CPS µi over superstrategies. Then

si is weakly sequentially optimal given µi if and only if there exists a behaviorally

equivalent strategy s̄i which is one-step optimal given µi.

In conclusion, our representation of rationality is equivalent to sequential op-

timality, and behaviorally equivalent to weak sequential optimality. The latter—

whenever players are not impatient—coincides with the representation of rational-

ity in Battigalli & Tebaldi (2019).
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