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Abstract

In a recent paper, Lin & Palfrey (2022, revised 2023) developed a
theory of cognitive hierarchies (CH) in sequential games and observed
that this solution concept in not reduced-normal-form invariant. In
this note I qualify this observation by showing that the CH model is
normal-form invariant, and that the differences arising from the ap-
plication of the CH model to the reduced normal form depend only
on how randomization by level-0 types is modeled. Indeed, while the
uniform behavior strategy in the extensive form yields the uniform
mixed strategy in the normal form, the latter does not correspond to
the uniform randomization in the reduced normal form, because differ-
ent reduced strategies may correspond to sets of equivalent strategies
with different cardinalities. I also note that results in the literature
on transformations of sequential games imply that the sequential CH
model of Lin & Palfrey is invariant to the interchanging of essentially
simultaneous moves, but it is not invariant to coalescing of moves (and,
of course, its inverse, sequential agents splitting). Finally, I note that
the independence of ex ante beliefs about the level-types of co-players

∗I thank Shuige Liu for her support and useful comments.
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is preserved by updated beliefs conditional on information sets in all
games with observable deviators.
KEYWORDS: Cognitive hierarchies, sequential games, extensive

form, normal form, structurally reduced normal form, coalescing of
moves, independence, observable deviators.

This note is prompted by the paper on “Cognitive Hierarchies in Exten-
sive Form Games”by Lin & Palfrey (2022).1 These authors observe that the
Cognitive Hierarchies (CH) model is not reduced normal-form invariant. I
qualify this observation by showing that the CH model is normal-form in-
variant, and that the differences arising from the application of the CH model
to the reduced normal form depend on how randomization by level-0 types
is modeled. Indeed, while the uniform behavior strategy in the extensive
form yields2 the uniform mixed strategy in the normal form, the latter does
not yield the uniform randomization in the (structurally) reduced normal
form, because different reduced strategies may correspond to sets of equiv-
alent strategies with different cardinalities.3 Specifically, let ri ⊆ Si denote
reduced strategies, that is, elements of the equivalence partition (quotient
space) of the set Si of pure strategies. Then it may well be the case that
|r′i| 6= |r′′i | for different reduced strategies r′i and r′′i . Uniform randomization
on Si does not correspond to uniform randomization over reduced strate-
gies, but rather to assigning probability |ri| / |Si| to each reduced strategy
ri. Thus, if the level-0 type of each player i plays each reduced strategy ri
with probability |ri| / |Si|, then applying the CH model to the (structurally)
reduced normal form of the given sequential game is equivalent to applying
the the CH model to the extensive-form representation of the game. Given
known results in the literature on transformations of games represented in
extensive form,4 my observations imply that the sequential CH model is
invariant to interchanging essentially simultaneous moves, but it is not in-
variant to coalescing of moves and– of course– its inverse, sequential agents
splitting.

1The 2023 revision of the paper by Lin & Palfrey takes this note into account. On
the cognitive hierarchies model in static games see Camerer et al. (2004) and the other
relevant references in Lin & Palfrey (2022).

2By means of Kuhn’s (1953) transformation of behavior into mixed strategies.
3Unless the game tree satisfies a “balancedness”condition. See Remark 5. I use the re-

alization equivalence relation on strategies, which is “structural”because it is independent
of payoffs.

4See Battigalli et al. (2020) and the relevant references therein.
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Representation of Sequential Games Within the class of sequential
games represented in extensive form,5 I mostly focus, for the sake of sim-
plicity, on finite games with perfect information and without chance moves.
Since the substantive content of Lin & Palfrey (2022) mostly concerns these
games, little is lost by restricting attention to them. Much of the notation
is the same as in the Lin & Palfrey (2022, for this class of games). Small
(Latin or Greek) letters will typically denote elements of sets represented
by the corresponding capital letters. Bold symbols will be used to denote
equivalence classes.
I adopt the definition and representation of perfect information games

of Chapter 6 of the textbook of Osborne & Rubinstein (1994). The basic
primitives of the game

Γ = 〈I, A,H, P, u〉
are as follows:

• A finite set of actions A.

• A finite set of histories H, that is, finite sequences of actions, includ-
ing the empty sequence ∅. Thus,

H ⊂ {∅} ∪
( ⋃
k∈N

Ak
)
;

furthermore, H is closed under the canonical prefix-of relation �,
which makes it a tree with root∅. With this, A(h) := {a ∈ A : (h, a) ∈ H}
is the set of feasible actions given h, and Z := {h ∈ H : A (h) = ∅} is
the set of terminal histories. To avoid trivialities I assume that there
are at least 2 feasible actions at each non terminal history: |A (h)| ≥ 2
for every h ∈ H\Z.

• The player set is I and the player function is P : H\Z → I. With
this, Hi := P−1 (i) is the set of non-terminal histories where player
i ∈ I is active.6

5I banned the terms “normal-form game”and “extensive-form game”from my vocab-
ulary, because the extensive and normal forms are kinds of representations of games, not
kinds of games. Game with simultaneous moves and games with sequential moves are
kinds of games.

6In Osborne & Rubinstein (1994) and Lin & Palfrey (2022) the player set is instead
denoted by N with the convention that N = {1, ..., n}. Since here such convention (a
strict order on the player set) does not play any useful role, I stick to the notation of my
(still incomplete) textbook Battigalli et al. (2022). With this, i is an element of I.
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• The description of the game is completed by the profile of payoff func-
tions u = (ui : Z → R)i∈I .

• The analysis also requires the exogenous specification of a probability
measure (distribution on level-types) pi = (pi`)`∈N0 ∈ ∆ (N0) for each
player i ∈ I.

From the aforementioned primitives we derive:

• The set of (pure) strategies Si := ×h∈HiA (h) of each player i, and
profiles thereof S := ×i∈ISi ∼= ×h∈H\ZA (h), S−i := ×j 6=iSj.

• The path/outcome functionO : S → Z, which specifies the terminal
history induced by each strategy profile.

• The profile of normal-form payoff functions (Ui = ui ◦O : S → R)i∈I .

• The set of (structurally, pure) reduced strategies (sometimes called
“plans of actions”)Ri := Si| ≈i , where≈i is the behavioral/realization7
equivalence relation

s′i ≈i s′′i ⇐⇒ (∀s−i ∈ S−i, O (s′i, s−i) = O (s′′i , s−i)) ,

and Ri is the partition (quotient) of Si induced by equivalence relation
≈i. I let R̄i (si) denote the set of strategies equivalent to si, that is, the
reduced strategy ri ∈ Ri such that si ∈ ri. I call the partitional map

R̄i : Si → Ri

si 7→ {s′i ∈ Si : s′i ≈i si}

“reduction map”; note that the right inverse R̄−1
i is the identity map

on partition Ri. Also let R := ×i∈IRi and R−i := ×j 6=iRj. Since O (·)
is constant on each product of cells r = ×i∈Iri, it makes sense to write
O : R→ Z, with O (r) = O (s) for all s ∈ r.

• The profile of (structurally) reduced normal-form payoff functions(
Ūi : R→ R

)
i∈I is such that Ūi

((
R̄j (sj)

)
j∈I

)
= Ui (s) for all s =

(sj)j∈I ∈ S (well posed by definition of R via realization equivalences).
7Cf. Rubinstein (1991), Ch. 6.4 in Osborne & Rubinstein (1994), Battigalli et al.

(2020), Chapter 9 in Battigalli et al. (2022), and Theorem 1 in Kuhn (1953). I call
such strategies “structurally reduced” because the reduction does not depend on payoff
fuctions.
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• The set of behavior strategies Σi := ×h∈Hi∆ (A (h)) of each player
i, with Σ := ×i∈IΣi, Σ−i = ×j 6=iΣj. The uniform behavior strategy
of player i is denoted σ0

i with

∀h ∈ Hi,∀a ∈ A (h) , σ0
ih (a) =

1

|A (h)| .

Randomizations, Uniform Randomization

Remark 1 For each player i ∈ I, the cardinality of i’s strategy set is |Si| =∏
h∈Hi |A (h)|; therefore, the uniform behavior strategy of i yields the uniform

mixed strategy under the Kuhn’s (1953) transformation that preserves the
probabilities of paths.

Proof. By Kuhn’s transformation, behavior strategy σi = (σih)h∈Hi ∈ Σi

yields the mixed strategy µσii ∈ ∆ (Si) such that

∀si ∈ Si, µσii (si) =
∏
h∈Hi

σih (sih) .

Hence, the mixed strategy µ0
i obtained from the uniform behavior strategy

σ0
i satisfies, for every si ∈ Si,

µ0
i (si) =

∏
h∈Hi

σ0
ih (sih) =

∏
h∈Hi

1

|A (h)|

=
1∏

h∈Hi |A (h)| =
1

|Si|
. �

For any i ∈ I and si ∈ Si, let

Hi (si) := {h ∈ Hi : ∃s−i ∈ S−i, h ≺ O (si, s−i)}

denote the set of histories where i moves that are allowed (not prevented) by
strategy si. The following is Theorem 1 in Kuhn (1953):8

Lemma 1 For any player i ∈ I, two strategies are realization equivalent if
and only if they allow for the same set of non-terminal histories where i moves
and prescribe the same actions at such histories, that is, for all s′i, s

′′
i ∈ Si,

s′i ≈i s′′i ⇐⇒ (Hi (s
′
i) = Hi (s

′′
i ) ∧ (∀h ∈ Hi (s

′
i) , s

′
ih = s′′ih)) .

8Adapted to perfect information games.
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Definition 1 Game Γ has the one-move property if no player moves more
than once in any path of play, that is, for all z ∈ Z and i ∈ I, |{h ≺ z : P (h) = i}| ≤
1.

Remark 2 Game Γ has the one-move property if and only if reduced and non
reduced strategies coincide (that is, if and only if Ri is the finest partition of
Si for each i ∈ I).
Proof If Γ has the one-move property, then Hi (si) = Hi for every

si ∈ Si. Therefore, two strategies of i are not equivalent if and only if they
prescribe different actions for at least one h ∈ Hi, that is, if and only if they
are different. Thus, Ri contains only singletons.
Now suppose that Γ does not have the one-move property. Then there

are a player i ∈ I and a pair of histories h, h̄ ∈ Hi such that h ≺ h̄. Let
ā ∈ A(h) denote the action such that (h, ā) � h̄ and fix a◦ ∈ A (h) \ {ā}
(a◦ exists because |A (h)| ≥ 2 by assumption). Pick two distinct actions
a′, a′′ ∈ A

(
h̄
)
and consider two strategies s′i, s

′′
i with the following properties:

(1) they select the actions of i specified by history h for all strict prefixes
of h where i moves (if any), so that h ∈ Hi (s

′
i) ∩ Hi (s

′′
i ), (2) they both

select a◦ at h so that h̄ /∈ (Hi (s
′
i) ∪Hi (s

′′
i )), (3) s

′
ih̄

= a′, s′′
ih̄

= a′′, and
(4) they select the same action at every other history h′ where i moves (if
any). Then, Hi (s

′
i) = Hi (s

′′
i ) and s

′
i and s

′′
i select the same actions at such

reachable histories; hence, they are equivalent by Lemma 1: R̄i (s
′
i) = R̄i (s

′′
i ).

Yet, s′i 6= s′′i because s
′
ih̄

= a′ 6= a′′ = s′′
ih̄
. Therefore, the equivalence class

R̄i (s
′
i) = R̄i (s

′′
i ) is not a singleton. �

Given any mixed strategy µi ∈ ∆ (Si), we obtain the corresponding image
(pushforward) reduced mixed strategy µ̄i = µi ◦ R̄−1

i ∈ ∆ (Ri) via the
reduction map R̄i : Si → Ri, that is, for all ri ∈ Ri,

µ̄i (ri) =
(
µi ◦ R̄−1

i

)
(ri) =

∑
si∈ri

µi (si) .

To ease notation, for any mixed strategy profile µ = (µi)i∈I , I write

µ ◦ R̄−1 : ∆ (S) → ∆ (R),
r 7→

∏
i∈I
∑

si∈ri µi (si)

for the image (pushforward) product measure induced by the collective re-
duction map

R̄ : S → R
(si)i∈I 7→

(
R̄i (si)

)
i∈I .
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Remark 3 For the purposes of expected-payoff calculations, the only mea-
sures that matter are the probability measures on reduced strategies induced
by each mixed strategy, that is, for every µ =

(
µj
)
j∈I ∈ ×j∈I∆ (Sj) and i ∈ I,

Eµ (Ui) =
∑
s∈S

ui (O (s))
∏
j∈I

µj (sj) =
∑
r∈R

ui (O (r))
∑

s∈R̄−1(r)

∏
j∈I

µj (sj) = Eµ◦R̄−1
(
Ūi
)
.

Remark 4 For each player i ∈ I, the mixed reduced strategy induced both
by the uniform behavior strategy σ0

i and by the uniform (non-reduced) mixed
strategy µ0

i is µ
0
i ◦ R̄−1

i with
(
µ0
i ◦ R̄−1

i

)
(ri) = |ri| / |Si|; µ0

i ◦ R̄−1
i is uniform

in every one-move game, but there are games where µ0
i ◦ R̄−1

i is not uniform.

The last claim of the remark is illustrated by Centipede-like games (those
where, for each h of height 2 or more, A (h) contains a terminating action T
and a continuation (pass) action P . See Figure A, where |H1| = |H2| = n ≥ 2:
the set of strategies has cardinality |Si| = 2|Hi|; the set of reduced strategies
has cardinality |Ri| = |Hi|+1 (player i can either take at the kth opportunity,
with k ∈ {1, ..., |Hi|}, or always pass), the cardinality of reduced strategy
Ti,k ⊆ Si (taking at the kth opportunity) is twice the cardinality of reduced
strategy Ti,k+1: |Ti,k| = 2 |Ti,k+1|.9

1 P−→ 2 P−→ 1 P−→ ... 2 P−→
(

1+2nc
2nc

)
T ↓ T ↓ T ↓ T ↓(

1
0

) (
c

1+c

) (
1+2c

2c

) (
(2n−1)c

1+(2n−1)c

)
Figure A

Remark 5 The following “balancedness” property is a necessary and suffi -
cient condition for the uniformity of µ0

i ◦ R̄−1
i : for each h ∈ Hi and each

pair of actions a′, a′′ ∈ A (h), the sets of continuation strategies of i in the
subgames with roots (h, a′) and (h, a′′) have the same cardinalities, that is,∏

h̄∈Hi∩{h′:(h,a′)�h′}

∣∣A (h̄)∣∣ =
∏

ĥ∈Hi∩{h′′:(h,a′′)�h′′}

∣∣∣A(ĥ)∣∣∣ ,
where the product is 1 by convention if the intersection is empty.10

9Cf. Figure 6 in Lin & Palfrey (2022) (Figure 5 Lin & Palfrey 2023).
10The interpretation of this convention is that, if there are no further moves of i, his

only continuation strategy is to “wait.”
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The game tree of Figure B illustrates. The balancedness property is not
satisfied: let h = ∅ (empty sequence), in the subgame with root (h, a′) = (a′)
player 1 has (by convention) one continuation strategy, in the subgame with
root (h, a′′) = (a′′) she has two continuation strategies.

1
a′ ↙ ↘ a′′

2 2
↙ ↘ ↙ ↘

1
↙ ↘

Figure B

Given that each level-type k of player j uses behavior strategy σjk and
under uncertainty about the level-type k of player j, the conditional pre-
dictive probabilities11 of j’s actions assigned by player i of level ` + 1 are
obtained from the behavior strategy mixture (Selten, 1975) σ̃`j with ex ante
subjective weights p`jk (p

`
j· is the normalized truncation of pj with support

{0, ..., `}). First, for each h̄ ∈ Hj and level k, obtain the updated probability
of k conditional on h̄ by Bayes rule, just looking at player j:

ν`j
(
k|h̄
)

=
p`jk
∏

h∈Hi∩{h′:h′≺h̄} σjk,h
(
α
(
h, h̄
))

∑`
k′=0 pjk′

∏
h∈Hi∩{h′:h′≺h̄} σjk′,h

(
α
(
h, h̄
)) ,

where α
(
h, h̄
)
is the action ā such that (h, ā) � h̄. Next, for each a ∈ A

(
h̄
)
,

let

σ̃`jh̄ (a) =
∑̀
k=0

ν`j
(
k|h̄
)
σjk,h̄ (a) .

The profile of behavior strategy mixtures describing the predictive probabil-
ities assigned by player i of level ` + 1 to the co-players’actions is denoted
σ̃`−i =

(
σ̃`j

)
j 6=i
.

Starting from the product measure p`−i = ×j 6=ip`j, the updated beliefs of
player i of level-type ` + 1 on the levels/types of the co-players conditional

11In compliance with the language of Bayesian statistics, a predictive probability is
the probability of an observable event, possibly conditional on another observable event:
unlike levels/types, histories and actions are observable.
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on h̄ is the product measure ×j 6=iν`j
(
·|h̄
)
(see, e.g., Lin & Palfrey 2022, and

the more general argument provided below about games with observable
deviators).

Best replies Using Kuhn’s transformations and the assumption that every
pure strategy profile of the co-players has strictly positive probability due to
the presence of a positive fraction of level-0 types for each co-player (role) j 6=
i, we can equivalently express i’s conjectures about co-players as products of
(1) totally mixed strategies µj ∈ ∆◦ (Sj), (2) totally mixed reduced strategies
µ̄j ∈ ∆◦ (Ri), or (3) totally randomized (predictive) behavior strategies σ̂j ∈
×h∈Hj∆◦ (A (h)).
For all h ∈ Hi and σi ∈ ×h′∈Hi∆ (A (h′)), let σ�hi ∈ ×h′∈Hi∩{h̄:h̄�h}∆ (A (h′))

denote the restriction of σi to the subgame with root h; symbol s
�h
i ∈

×h′∈Hi∩{h̄:h̄�h}A (h′) has the analogous meaning for pure strategies. With
this,

supp
(
σ�hi

)
:=
{
s�hi : ∀h′ ∈ Hi ∩

{
h̄ : h̄ � h

}
, σ�hih′

(
s�hih′
)
> 0
}

denotes the support of σ�hi , that is, the support of the h-subgame mixed
strategy obtained from σ�hi by means of Kuhn’s transformation:

s�hi ∈ supp
(
σ�hi

)
⇐⇒

∏
h′∈Hi∩{h̄:h̄�h}

σih′ (sih′) > 0.

We define randomized best replies by assuming, in the spirit of the Cogni-
tive Hierarchies literature, that ties at the top are broken by randomizing
uniformly on top actions.

Definition 2 The sequential best reply of i to (predictive) conjecture σ̂−i ∈
×j 6=i

(
×h∈Hj∆ (A (h))

)
is the (possibly degenerate) behavior strategy σi =

BRi (σ̂−i) that maximizes expected payoff given σ̂−i in every subgame and
such that each local randomization is uniform on its support, that is, for
every h ∈ Hi,

supp
(
σ�hi

)
= arg max

s�hi

∑
z�h

P
(
z|h; s�hi , σ̂−i

)
ui (z) ,

∀a ∈ supp (σih) , σih (a) =
1

|supp (σih)|
.
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Remark 6 By the One-Deviation Principle, σi is the sequential best reply of
i to conjecture σ̂−i– that is, σi = BRi (σ̂−i)– if and only if, for every h ∈ Hi,

supp (σih) = arg max
a∈A(h)

∑
z�(h,a)

P (z| (h, a) ;σi, σ̂−i)ui (z) ,

∀a ∈ supp (σih) , σih (a) =
1

|supp (σih)|
,

where P (z| (h, a) ;σi, σ̂−i) is the probability of z conditional on (h, a) when
behavior complies with σi and σ̂−i in the subgame with root (h, a).

LetHi (µi) :=
⋃

si∈supp(µi)

Hi (si) denote the the set of non terminal histories

allowed (not precluded) by mixed strategy µi. For any behavior strategy σi
that is realization equivalent to µi, write Hi (σi) = Hi (µi).

Definition 3 The weakly sequential best reply of i to σ̂−i ∈ ×j 6=i
(
×h∈Hj∆ (A (h))

)
is the (possibly degenerate) behavior strategy σ̄i = BRi (σ̂−i) such that, for
every h ∈ Hi (σi),

supp
(
σ̄�hi

)
= arg max

s�hi

∑
z�h

P
(
z|h; s�hi , σ̂−i

)
ui (z) ,

∀a ∈ supp (σ̄ih) , σ̄ih (a) =
1

|supp (σ̄ih)|
,

and furthermore

∀h ∈ Hi\Hi (σ̄i) ,∀a ∈ A (h) , σ̄ih (a) =
1

|A (h)| .

Note that the specification of σ̄i outside Hi (σ̄i) is immaterial, but the
uniform distribution is in the spirit of the CH model.

Remark 7 Weak sequential best replies are invariant to realization equiva-
lences: for all players i ∈ I, conjectures σ̂−i, and strategies si ∈supp

(
BRi (σ̂−i)

)
,

R̄i (si) ⊆supp
(
BRi (σ̂−i)

)
.

Remark 8 Sequential best replies and weakly sequential best replies coincide
and yield the same expected payoffs on realizable histories: for all i ∈ I and
σ̂−i ∈ ×j 6=i

(
×h∈Hj∆ (A (h))

)
,

Hi (BRi (σ̂−i)) = Hi

(
BRi (σ̂−i)

)
,

10



∀h ∈ Hi (BRi (σ̂−i)) , BRih (σ̂−i) = BRih (σ̂−i) ,

and∑
z�h

P
(
z|h; BR�hi (σ̂−i) , σ̂−i

)
ui (z) =

∑
z�h

P
(
z|h; BR

�h
(σ̂−i) , σ̂−i

)
ui (z) .

Best-Reply Equivalence Between Normal- and Extensive-FormRep-
resentations

Definition 4 The ex ante best reply of i to µ−i ∈ ∆ (S−i) is the (possibly
degenerate) mixed strategy µ∗i such that

supp (µ∗i ) = arg max
si∈Si

∑
s−i∈S−i

Ui (si, s−i)µ−i (s−i) ,

∀si ∈ supp (µ∗i ) , µi (si) =
1

|supp (µ∗i )|
.

In what follows, for every behavioral strategy profile σ−i ∈ Σ−i of the co-
players, let µσ−i−i ∈ ∆ (S−i) denote any realization equivalent profile of mixed
strategies, such as the one obtained by means of Kuhn’s transformation, i.e.,
the product measure µσ−i−i ∈ ∆ (S−i) such that

∀s−i ∈ S−i, µσ−i−i (s−i) =
∏
j 6=i

∏
h∈Hj

σjh (sjh) .

Lemma 2 For all strictly positive conjectures, ex ante best replies coincide
with weakly sequential best replies: specifically, for all i ∈ I and σ̂−i ∈ Σ−i ∩
RH−i++ , the ex ante best reply to µ

σ̂−i
−i is the Kuhn’s transformation of BRi (σ̂−i).

Proof It is well known that if every strategy profile of the co-players
is deemed possible ex ante, then ex ante expected payoff maximization is
equivalent to expected payoff maximization conditional on each history al-
lowed by the optimizing strategy. As for the probabilities assigned by the
mixed best reply, observe that– since all the actions in the support of the
sequential best reply BRi (σ̂−i) realization equivalent to weak sequential best
reply BRi (σ̂−i) yield the same, maximal conditional expected payoff and
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BRih (σ̂−i) = BRih (σ̂−i) for all h ∈ Hi (BRi (σ̂−i)) = Hi

(
BRi (σ̂−i)

)
– then a

kind of exchangeability property holds:

supp (µ∗i ) =
(
×h∈Hi(BRi(σ̂−i))supp (BRih (σ̂−i))

)
×
(
×h′∈Hi\Hi(BRi(σ̂−i))A (h′)

)
= supp

(
BRi (σ̂−i)

)
,

where µ∗i is the ex ante best reply. Therefore, for every si ∈supp(µ∗i ),

µ∗i (si) =
1

|supp (µ∗i )|

=
1∏

h∈Hi(BRi(σ̂−i))
|supp (BRih (σ̂−i))| ·

∏
h′∈Hi\Hi(BRi(σ̂−i))

|A (h′)|

=
1∏

h∈Hi

∣∣supp (BRi (σ̂−i)
)∣∣

=
∏
h∈Hi

1∣∣supp (BRih (σ̂−i)
)∣∣ =

∏
h∈Hi

BRih (σ̂−i) (sih) . ♥

�

Recall that p`j denotes the `-truncation of pj, that is, for every level-type

k ∈ {0, ..., `}, p`jk = pjk

(∑`
κ=0 pjκ

)−1

and p`jm = 0 for ` < m. With this, p`j
is the initial belief of player i of level-type `+1 about the level-type of player
j. Recall that σ̃`−i is the profile of behavior strategy mixtures representing
the predictive probabilities assigned by player i of level-type ` + 1 to the
co-players’actions. Similarly, in a game with simultaneous moves (such as
the normal form of the given sequential game), we let µkj denote the mixed
strategy of level-type k of player j, so that the conjecture of player i of
level-type `+ 1 about the co-players’strategies is µ̃`−i = ×j 6=i

(∑`
k=0 p

`
jkµ

k
j

)
.

Proposition 1 Consider the cognitive-hierarchies models applied to the normal-
form and extensive-form representations of a finite game (with perfect infor-
mation). For every player i ∈ I and every level ` ≥ 0, the level-(`+ 1)

mixed best reply µ`+1
i to conjecture µ̃`−i = ×j 6=i

(∑`
k=0 p

`
jkµ

k
j

)
in the nor-

mal form is the Kuhn’s transformation of the weakly sequential best reply
σ̄`+1
i = BRi

(
σ̃`−i

)
to behavior strategy mixture σ̃`−i in the extensive form,

which is realization equivalent to the sequential best reply σ`+1
i = BRi

(
σ̃`−i

)
.
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Sketch of proof The proof is by induction on `. The basis step ` = 0
follows from Remark 1 and Lemma 2, because µ̃0

−i = ×j 6=iµ0
j , where µ

0
j is the

uniform (hence, strictly positive) probability measure induced by the uniform
behavior strategy σ0

j . For ` > 0, suppose by way of induction that the result
holds for each k ∈ {0, ..., `} and fix any i ∈ I. One can show that the strictly
positive conjecture σ̃`−i is realization equivalent to µ̃

`
−i. Thus, Lemma 2 yields

the result. ♥

Corollary 1 Consider the modified cognitive-hierarchies model applied to
the (structurally) reduced strategic form where the level-0 type of each player
i strictly randomize with the (possibly non-uniform) reduced mixed strategy
µ̄0
i = µ0

i ◦R̄−1
i ∈ ∆ (Ri) obtained from the uniform mixed strategy µ0

i ∈ ∆ (Si).
For every player i ∈ I and every level ` ≥ 0, if the reduced mixed strategy
of level ` + 1 of i is pure (degenerate, µ̄`+1

i = δr`+1i
), then the corresponding

pure reduced strategy r`+1
i satisfies r`+1

i =supp
(
µ`+1
i

)
, where µ`+1

i ∈ ∆ (Si) is
the mixed strategy of level `+ 1 of i in the normal form.

Games with Imperfect Information The foregoing analysis extends
seamlessly to games with observable actions, where players may choose
simultaneously at some stage and previous moves are perfectly observed (see
Battigalli et al. 2023). As for games with imperfectly observable actions,
the main complication is due to the presence of information sets. The main
change in this case is that the conditional belief about co-players level-types
at an information set in games with more than two players need not be a
product measure (see Example 3 in Figure 3 of Lin & Palfrey 2022). It is,
however, a product measure in all games with observable deviators,12 that
is, games where, for every player i and information set hi ∈ Hi, the set

S (hi) := {s ∈ S : ∃h ∈ hi, h ≺ O (s)}

of pure strategy profiles inducing a path through hi is a Cartesian product
of its projections, S (hi) = ×j∈ISj (hi), where

Sj (hi) := projSjS (hi) := {sj ∈ Sj : ∃s−j ∈ S−j, (sj, s−j) ∈ S (hi)} .
12On observable deviators see Fudenberg & Levine (1993) and Battigalli (1996, 1997).

The notation used here for information sets is the same as Battigalli et al. (2020) and
it hints at the fact that, under the assumption that players have perfect memory (an
assumption about their cognitive traits), information sets correspond to personal histories
of own actions and messages (signals) received concerning previous play (see Battigalli &
Generoso 2021).
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Remark 9 Suppose that the information structure satisfies the observable
deviators property, that is, S (hi) = ×j∈ISj (hi) for all players i ∈ I and
information sets hi ∈ Hi. Then players’ updated beliefs about co-players’
level-types conditional of their information sets are product measures.

Sketch of proof Following the hint in footnote 8 of Battigalli (1996),
model i’s uncertainty about co-players j 6= i as distributional strategies δj ∈
∆ (Θj × Sj), where Θj

∼= N0 is the set of level-types of player j. (Of course,
the ex ante belief on ×j 6=iΘj of level-type k + 1 of player i is the product of
the normalized truncations on {0, ..., k}.) The initial belief about co-players
is the product measure δ−i = ×j 6=iδj. Observable deviators implies that the
updated probability of profile (θ−i, s−i) = (θj, sj)j 6=i conditional on hi ∈ Hi

is

δ−i (θ−i, s−i|Θ−i × S−i (hi)) =
δ−i (θ−i, s−i)

δ−i (Θ−i × S−i (hi))

=
δ−i (θ−i, s−i)

δ−i (×j 6=iΘj × Sj (hi))

=

∏
j 6=i δj (θj, sj)∏

j 6=i δj (Θj × Sj (hi))

=
∏
j 6=i

δj (θj, sj)

δj (Θj × Sj (hi))

=
∏
j 6=i

δj (θj, sj|Θj × Sj (hi)) ,

where the denominators are strictly positive because there is a strictly pos-
itive fraction of level-0 types, who play every action with strictly positive
probability. The conditional probability of each profiles of co-players level-
types θ−i = (θj)j 6=i is the (product) marginal of δ−i (·|Θ−i × S−i (hi)):

νi (θ−i|hi) =
∏
j 6=i

δj ({θj} × Sj (hi) |Θj × Sj (hi)) . ♥

The main results stated for perfect information games also hold for all
sequential games (assuming perfect recall): essentially, in Remark 1 one has
to replace, for each player i ∈ I histories h ∈ Hi with information sets
hi ∈ Hi (corresponding to personal histories of i, see Battigalli & Generoso
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2021), the cardinality of the strategy set Si is |Si| = ×hi∈Hi
|A (hi)| and the

counting argument implies that the uniform behavior strategy σ0
i yields the

uniform mixed strategy µ0
i by means of Kuhn’s transformation. Results on

sequential, weakly sequential and ex ante best replies extend seamlessly to all
sequential games as long as players have perfect recall (which makes condi-
tional expected utility maximization dynamically consistent). The extension
of Proposition 1 to sequential games with imperfect information follows.
With this, known results on transformations of extensive form structures

yield the following:

Remark 10 The cognitive hierarchies model is invariant to interchanging of
essentially simultaneous moves, but it is not invariant to coalescing sequential
moves by the same player and its inverse, sequential agents splitting.

To see why this is true, consider that Battigalli et al. (2020) prove that
two extensive form structures have the “same”map O : S → Z from struc-
turally reduced strategy profiles to induced terminal histories (up to isomor-
phisms) if and only if they one can transform one into the other by means of a
sequence of interchanging and coalescing/splitting transformations. One can
also show that two extensive form structures have the same map O : S → Z
(up to isomorphisms) if and only if one can transform one into the other by
means of a sequence in interchanging transformations (see Bonanno 1992).
On the one hand, the latter results and the extension of Proposition 1 to
imperfect information games implies that the cognitive hierarchies model
is invariant to interchanging essentially simultaneous moves. On the other
hand, the result by Battigalli et al. (2020) and Remarks 2 and 5 imply that
the cognitive hierarchies model is not invariant to sequential agent splitting,
that can make a one-move (or balanced) game not one-move (or unbalanced).
The following common-interests game illustrates.

1 C−→ 2 c−→ 2 a−→
(

7
7

)
D ↓ d ↓ b ↓(

2
2

) (
0
0

) (
0
0

)
Figure C’

In the game depicted in Figure C’, the best reply by player 1 to the
uniform behavior strategy of player 2 is D, because C yields 7

4
< 2 in expec-

tation, because the sequence of actions (c, a) by player 2, that yields 7 utils
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has probability 1
4
.

1 C−→ 2 ca−→
(

7
7

)
D ↓ d ↓ ↘ cb(

2
2

) (
0
0

) (
0
0

)
Figure C”

By coalescing the sequential moves of player 2, we obtain the game in
Figure C”, which has the same reduced normal form as the game in Figure
C’. Now uniform randomization assigns probability 1

3
to the action/strategy

ca of player 2 that yields 7 utils and the best reply of player 1 is C, which
yields 7

4
> 2 in expectation.

Discussion The cognitive hierarchies model is mostly used to organize data
of experimental games. Sequential games are often played in experiments
with the strategy method by making subjects irreversibly choose among re-
duced strategies. Thus, the question is whether subjects who are presented
with a sequential game and then have to choose between reduced strategies
are better modeled by assuming that they think of uniform randomization
as equalizing the probabilities of possible actions at any given node of the
sequential game, or equalizing the probabilities of reduced strategies. Palfrey
& Lin (2023) report interesting evidence supporting the latter hypothesis.
Be as it may, we have to recognize that the normal form N (Γ) of a se-

quential game Γ and the reduced normal formRN (Γ)– interpreted as games
where player irreversibly and covertly choose strategies (reduced strategies) in
advance– are different from each other (except when Γ is a one-move game),
and that they very different from the sequential game Γ. Whether players
should behave “in the same way” in Γ, N (Γ), and RN (Γ)– or whether
behavior should be invariant to some specific transformations of the game–
cannot but depend on the adopted theory of strategic interaction and the
corresponding solution concept. It is well known that some solution con-
cepts like Nash equilibrium and iterated admissibility are essentially reduced-
normal-form invariant,13 while others like trembling hand perfect equilibrium,
sequential equilibrium, initial rationalizability and strong rationalizability

13It is less well known that also selfconfirming equilibrium is essentially reduced-normal
form invariant. See Battigalli et al (2019).
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are not reduced normal form invariant.14 Similarly, some solution concepts
are invariant to transformations like interchanging essentially simultaneous
moves and coalescing/sequential agents splitting: these transformations do
not change the structurally reduced normal form (see Battigalli et al.2020);
thus, all the reduced-normal-form invariant solution concepts are necessarily
invariant to these transformations, but there other solution concepts, like
initial and strong rationalizability, are invariant as well. We proved that
the cognitive hierarchies model with uniform randomization is normal-form
invariant, although it is not reduced-normal-form invariant. Therefore, the
model is invariant to interchanging essentially simultaneous moves, but not
invariant to coalescing/sequential agent splitting. Are these lacks of invari-
ances mere “representation effects”? My position is that, even if different
games can be obtained from each other by some transformations preserving
some basic structures, they remain different and should not be presumed to
be played in the same way unless one explicitly spells out and adopts a theory
entailing this. Some solution concepts have clear and explicit foundations in
theories of strategic reasoning, or learning, or adaptive play. If we like those
theories, we must accept the equivalences and differences they entail.
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