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Abstract

Are the players “commonly meta-certain” of an interactive belief model it-
self? The paper formalizes what it means by: “a player is (meta-)certain of
her own belief-generating map” or “the players are (meta-)certain of the pro-
file of belief-generating maps (i.e., the model).” The paper shows: a player is
(meta-)certain of her own belief-generating map if and only if her beliefs are in-
trospective. The players are commonly (meta-)certain of the model if and only
if, for any event which some player i believes at some state, it is common belief
at the state that player i believes the event. This paper then asks whether the
“common meta-certainty” assumption is needed for epistemic characterizations
of game-theoretic solution concepts. The paper shows: common belief in ratio-
nality leads to actions that survive iterated elimination of strictly dominated
actions, as long as each player is logical and (meta-)certain only of her own
strategy and belief-generating map.
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The common knowledge assumption underlies all of game theory and much of
economic theory. Whatever be the model under discussion, whatever complete or
incomplete information, consistent or inconsistent, repeated or one-shot, cooperative
or non-cooperative, the model itself must be assumed common knowledge; otherwise
the model is insufficiently specified, and the analysis incoherent.

—Aumann (1987b)

1 Introduction

In an economic or game-theoretic model in which the players make their interactive
reasoning about their strategies or rationality, the analysts implicitly (“from outside of
the model”) assume that the players understand the model itself in a meta-sense. The
above quotation from Aumann (1987b) suggests that the analysts should assume “the
model is commonly known by the players” since otherwise “the model is insufficiently
specified, and the analysis incoherent.”

This paper has two objectives. The first is to explicitly formalize the “com-
mon knowledge” assumption of a model within the model itself. An interactive be-
lief/knowledge model formally represents players’ beliefs/knowledge about its ingre-
dients, that is, events. The model itself does not tell whether the players (commonly)
believe/know the model itself, although the analysts assume that the players (com-
monly) believe/know the model in a meta-sense. I refer to the knowledge/belief of
the model as the “meta-knowledge/meta-belief” of the model.

The second objective is to examine the role that “meta-knowledge” of a model
plays in game-theoretic analyses such as epistemic characterizations of solution con-
cepts, robustness of solution concepts, or robustness of behaviors with respect to
players’ beliefs/knowledge. For a given epistemic characterization of a game-theoretic
solution concept such as iterated elimination of strictly dominated actions, do the
outside analysts need to formally assume that the players “meta-know” an epistemic
model of a game (that describes their interactive beliefs about their strategies and
rationality)?

Are the players (commonly) meta-certain of a model itself?1 This first ques-
tion has been puzzling theorists since the pioneering work of Aumann (1976, 1987a,b,
1999) on interactive knowledge models.2 The main result regarding the first objective

1Since different epistemic models may feature different notions of qualitative or probabilistic
beliefs or knowledge, I use the word the “(meta-)certainty” of a model to refer generically to the
meta-knowledge or meta-belief of the model. In a probabilistic-belief model, by (meta-)certainty, it
means that the players meta-believe the model with probability one. In a model of qualitative belief
or knowledge whose degree of beliefs are stronger than probability-one belief, by (meta-)certainty, it
means that the players meta-believe the model in the absolute sense or they meta-know the model.

2For this question, see also Bacharach (1985, 1990), Binmore and Brandenburger (1990), Bran-
denburger and Dekel (1989, 1993), Brandenburger, Dekel, and Geanakoplos (1992), Brandenburger
and Keisler (2006), Dekel and Gul (1997), Fagin et al. (1999), Gilboa (1988), Myerson (1991), Pires
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(Theorems 1A and 1B in the contexts of qualitative and probabilistic beliefs, respec-
tively) in Section 4 characterizes the “implicit common meta-certainty” assumption
as follows. According to the formal test to be discussed, the players are commonly
(meta-)certain of a model if and only if, for any event which some player i believes
at some state, it is common belief that player i believes the event at that state.

Moving on to the second question, Section 5 examines the role that the “common
meta-certainty” assumption plays in epistemic characterizations of solution concepts
of games. Especially, Section 5.1 studies the epistemic characterization of iterated
elimination of strictly dominated actions (IESDA) in a strategic game. Informally,
it states: if the players are “logical,” if they are commonly meta-certain of a game,
and if they commonly believe their rationality, then the resulting actions survive
IESDA. Formally, it states: if the players commonly believe their rationality and if
their common belief in their rationality is correct, then the resulting actions survive
IESDA.3 The main result regarding the second objective (Theorem 2) connects these
two statements. If the players’ beliefs are monotone (they believe any logical impli-
cation of what they believe), consistent (i.e., they do not simultaneously believe an
event and its negation), and finitely conjunctive (if they believe E and F then they
believe its conjunction E ∩ F ), and if each player is certain of her own strategy and
the part of her own belief-generating process in the model (even if each player may
not necessarily be certain of how the opponents’ beliefs are generated in the model),
then each player correctly believes her own rationality, and hence they have correct
common belief in their rationality. Thus, if the players are “logical” and each of
them is meta-certain of the part of the model that governs her own beliefs, then com-
mon belief in rationality leads to actions that survive IESDA. Section 5 also briefly
studies epistemic characterizations of Nash equilibria and the role of meta-certainty
assumption in communication protocols leading to agreement (e.g., Geanakoplos and
Polemarchakis, 1982; Hart and Tauman, 2004; Sebenius and Geanakoplos, 1983).
These results demonstrate the sense of robustness in which various epistemic char-
acterizations of solution concepts of games hold even if players are not necessarily
meta-certain of other players’ belief-generating process in a belief model.

Now, I formally introduce a (belief) model described in Section 2. The model
consists of the following three ingredients. The first is a measurable space of states
of the world (Ω,D). Each state ω ∈ Ω is a list of possible specifications of what the
world is like, and the collection D of events (i.e., subsets of Ω) are the objects of the
players’ beliefs. The second is the players’ belief operators (Bi)i∈I . Player i’s belief
operator Bi associates, with each event E, the event that player i believes E. Iterative
application of belief operators unpacks higher-order interactive beliefs. To focus on

(2021), Roy and Pacuit (2013), Samuelson (2004), Tan and Werlang (1988), Vassilakis and Zamir
(1993), Werlang (1987), Tan and Werlang (1992), and Wilson (1987).

3The formal statement is taken from Fukuda (2020, Theorem 3), which holds irrespective of
properties of beliefs. For seminal papers on implications of common belief in rationality, see, for
example, Brandenburger and Dekel (1987), Stalnaker (1994), and Tan and Werlang (1988).
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the (meta-)certainty of a model and to separate it from reasoning ability, this paper
often assumes that the players’ belief operators are monotone: if player i believes E
at a state and if E implies (i.e., is included in) F , then she believes F at that state.
That is, each player believes any logical implication of her own beliefs. Throughout
the Introduction, I assume that the players’ belief operators are monotone. The third
is a common belief operator C, which associates, with each event E, the event that
E is common belief among the players. Under certain assumptions on the players’
beliefs, an event E is common belief if and only if everybody believes E, everybody
believes that everybody believes E, and so on ad infinitum.

This framework nests various models of qualitative and probabilistic beliefs and
knowledge. Broadly, the framework nests the following two standard models of belief
or knowledge (or combinations thereof). First, the framework nests a possibility
correspondence model of qualitative belief or knowledge when each player’s belief or
knowledge is induced by a possibility correspondence.4 The possibility correspondence
associates, with each state, the set of states that she considers possible. The player
believes an event E at a state whenever the possibility set at ω implies (i.e., is included
in) the event E. Second, the framework nests a Harsanyi (1967-1968) type space when
each player’s probabilistic beliefs are induced by her type mapping. The type mapping
τi associates, with each state ω, her probability measure τi(ω) on the underlying
states at that state. The type mapping τi of player i induces her p-belief operator Bp

τi

(Monderer and Samet, 1989): it associates, with each event E, the event that (i.e., the
set of states at which) player i believes E with probability at least p (i.e., p-believes
E). Certain properties of p-belief operators (Bp

τi
)p∈[0,1] reproduce the underlying type

mapping τi (Samet, 2000).
With the framework in mind, I formalize the (meta-)certainty of a model in two

steps. In the first step, Section 3.1 expands the objects of the players’ beliefs from
events to functions defined on the underlying states. Examples of such functions are
random variables, strategies, and type mappings. Any such function x has to be
defined on the state space Ω, but the co-domain X can be any set such as the set
R of real numbers (a random variable), a set Ai of player i’s actions (her strategy),
and the set ∆(Ω) of probability measures on (Ω,D) (a type mapping). I call the
function x : Ω → X a signal if its co-domain X has “observational” contents X
(where “observation” is broadly construed as being an object of reasoning): it is a
collection of subsets of X such that each F ∈ X is deemed an event x−1(F ). Thus,
a signal (mapping) is a function x : (Ω,D) → (X,X ) such that each observational
content F ∈ X is considered to be an event x−1(F ) ∈ D. Player i is certain of the
value of the signal x at a state ω if, for any observational content F that holds at
ω (i.e., ω ∈ x−1(F )), player i believes the event x−1(F ) at ω (i.e., ω ∈ Bi(x

−1(F ))).
Player i is certain of x if she is certain of the value of x at every state. For example,
let x : Ω → X be the strategy of player i and let every singleton action a ∈ X be

4See, for instance, Aumann (1976, 1999), Brandenburger, Dekel, and Geanakoplos (1992), Dekel
and Gul (1997), Geanakoplos (2021), and Morris (1996).
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observable to her; then, player i is certain of her own strategy if, wherever she takes
an action a = x(ω) at a state ω, she believes at ω that she takes action a. Thus, when
my definition is applied to a player’s strategy, it nests the previous formalization such
as Aumann (1987a), Brandenburger, Dekel, and Geanakoplos (1992), Geanakoplos
(2021), and McKelvey and Page (1986). Having defined individual players’ (meta-
)certainty, the players are commonly certain of the value of the signal x at a state
ω if, for any observational content F that holds at ω, the event x−1(F ) is common
belief at ω (i.e., ω ∈ C(x−1(F ))). The players are commonly certain of the signal x if
they are commonly certain of its value at every state.

In the second step, Section 3.2 formulates a players’ “belief-generating map” as a
signal that associates, with each state, her beliefs at that state. By the second step, I
can apply the formalization of certainty and common certainty in the first step to the
ingredients of a given model (i.e., players’ belief-generating maps). To that end, take
player i’s belief operator Bi from the model. I define a qualitative-type mapping tBi :
it associates, with each state, whether player i believes each event or not at that state
(formally, a binary set function from the collection of events to the binary values {0, 1}
where 1 indicates the belief of an event). The qualitative-type mapping is a binary
“type” mapping analogous to a (probabilistic-)type mapping τi that represents player
i’s probabilistic beliefs at each state in the context of probabilistic beliefs. That is, the
type mapping τi assigns, to each state ω, her probabilistic beliefs τi(ω) : D → [0, 1]
at ω. In a similar manner, the qualitative-type mapping tBi associates, with each
state ω, her qualitative belief tBi(ω) : D → {0, 1} (where tBi(ω)(E) = 1 if and
only if ω ∈ Bi(E)) on (Ω,D) at ω. The qualitative-type mapping tBi is player
i’s belief-generating mapping. Since the belief operator Bi and the qualitative-type
mapping tBi are equivalent means of representing player i’s beliefs, a model means the
profile of qualitative-type mappings. Thus, the formal test for whether the players
are commonly certain of a given belief model is whether the players are certain of the
profile of their qualitative-type mappings.

Before asking when a player is certain of all the players’ qualitative-type map-
pings (i.e., the model), Section 3.3 characterizes when a player is certain of her own
qualitative-type mapping in terms of her introspective properties of beliefs. Roughly,
Proposition 1A shows that a player is certain of her own qualitative-type mapping
if and only if her belief is introspective. Proposition 1B also shows that a player is
certain of her own (probabilistic-)type mapping if and only if her probabilistic belief
is introspective. These results distinguish the fact that player i is certain of her own
qualitative-type mapping and the fact that player i is (or the players are commonly)
certain of the profile of the qualitative-type mappings.

Section 3.4 provides an alternative characterization of the fact that player i is
certain of a signal x : (Ω,D) → (X,X ) in terms of her reasoning of the signal. If
she is certain of the signal x, then she would be able to rank the underlying states
based on the collection of observational contents that hold at each state. Call a
state ω at least as informative as a state ω′ according to the signal x if, for any
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observational content F that holds at ω′ under x, it holds at ω under x. Section 3.4
then characterizes properties of beliefs and the certainty of a mapping in terms of
the notion of informativeness. In the literature on type spaces such as Mertens and
Zamir (1985), a player is “certain” of her own type if, at each state ω, she believes,
with probability one, the set of states indistinguishable from (i.e., equally informative
to) ω. I show that such “Harsanyi” property holds if and only if the player is (meta-
)certain of her own type mapping in the strongest sense. Hence, my characterization
also formally captures the original idea behind Harsanyi (1967-1968) that each player
“is certain of” her own type mapping.

To the best of my knowledge, this is the first paper which systematically for-
malizes the statement that the players are (commonly) (meta-)certain of any given
belief model within the model itself. The contribution of the paper also lies in pre-
senting a formalization of the (meta-)certainty of a belief model within the model
itself. The main result on this question, nevertheless, is related to Gilboa (1988).
He constructs a particular syntactic model in which the statement that the model is
common knowledge is incorporated within itself.5 He formulates the sense in which
the model is commonly known from Positive Introspection of common knowledge: if
a statement is common knowledge then it is commonly known that the statement is
common knowledge. In Theorems 1A and 1B, in contrast, the players are commonly
certain of a given model if and only if, at each state and for any event which some
player believes at that state, it is common belief that the player believes the event at
that state. Thus, in this paper, the key criteria is the positive introspective property
of common belief with respect to each player’s beliefs. Whenever some individual
player believes some event, it is common belief that she believes it. Bacharach (1985,
1990), in the context of partitional possibility correspondence models, formalizes the
event that a player has an information partition by regarding it as a function.

One informal solution to the question of the meta-certainty of a model has been
the use of a “universal” belief model in which each state encodes what the play-
ers believe at that state and in which the differences in the players’ beliefs are all
described within the underlying states themselves (see, for example, Brandenburger
and Dekel, 1993, Heifetz and Samet, 1998, and Mertens and Zamir, 1985). Sub-
sequently, the various strands of robustness literature relax the implicit “common
meta-certainty” assumption of an environment among players by studying how equi-
librium or non-equilibrium solutions (or allocations) would depend on specifications
of players’ interactive beliefs on a “universal” belief model.6 This paper provides any
belief model with a test under which the model is meta-certain by the players.

The paper is organized as follows. Section 2 defines the basic framework of the
paper, i.e., a belief model. Section 3 characterizes the sense in which each player is

5This contrasts to the formalization of (meta-)certainty for any belief model in this paper.
6For robust mechanism design, see, for instance, Bergemann and Morris (2005), Heifetz and

Neeman (2006), and Neeman (2004). For the robustness of solution concepts, see, for example,
Weinstein and Yildiz (2007) in the context of rationalizability.
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certain of how her belief is generated in a model. Section 4 examines the sense in
which the players are commonly certain of a model itself (i.e., how the players’ beliefs
are generated in the model). Section 5 studies the role of the common certainty
assumption of a model in game-theoretic analyses. Section 6 provides concluding
remarks. The proofs are relegated to Appendix A.

2 Framework

Throughout the paper, let I denote a non-empty finite set of players. The framework
represents players’ interactive beliefs by belief operators on a state space so that it can
capture various forms of qualitative and probabilistic beliefs and knowledge. Section
2.1 defines a belief model. Section 2.2 defines properties of beliefs.

2.1 A Belief Model

A belief model (of I) is a tuple
−→
Ω := 〈(Ω,D), (Bi)i∈I , C〉, where: (i) (Ω,D) is a non-

empty measurable space of states of the world (call Ω the state space); (ii) Bi : D → D
is player i’s belief operator ; and (iii) C : D → D is a common belief operator to be
defined in Expression (1) below.

While Ω constitutes a non-empty set of states of the world, each element E of
D is an event about which the players reason. The assumption that (Ω,D) forms a
measurable space accommodates players’ qualitative and probabilistic beliefs in the
same framework. Conceptually, the assumption means that: (i) if E is an object of
beliefs, then so is its complement Ec (denote it also by ¬E); that (ii) if (En)n∈N are
objects of beliefs, then so are its union

⋃
n∈NEn and its intersection

⋂
n∈NEn; and

that (iii) any form of tautology Ω (e.g., E ∪ Ec) is an object of beliefs.
For each event E, the set Bi(E) denotes the event that (i.e., the set of states

at which) player i believes E. Thus, player i ∈ I believes an event E ∈ D at a
state ω ∈ Ω if ω ∈ Bi(E). I often assume that each player’s belief operator satisfies
Monotonicity : E ⊆ F implies Bi(E) ⊆ Bi(F ). It means that if player i believes some
event then she believes any of its logical consequences.

Since I do not impose any assumption on the players’ belief operators, I introduce
the common belief operator C : D → D following Fukuda (2020). Call an event E
a common basis if E ⊆ BI(F ) :=

⋂
i∈I Bi(F ) for any F ∈ D with E ⊆ F . That

is, everybody believes any implication of E whenever E is true. Denote by JBI the
collection of common bases. Note that when the players’ belief operators are assumed
to satisfy Monotonicity, an event E is a common basis if and only if (hereafter, iff)
it is publicly evident: E ⊆ BI(E) (see, e.g., Milgrom, 1981 for public evidence). An
event E is common belief at a state ω if there is a common basis that is true at ω and
that implies the mutual belief in E: that is, ω ∈ F ⊆ BI(E) for some F ∈ JBI . Now,
C is assumed to satisfy the property that the set of states at which E is common
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belief is an event for each E ∈ D:

C(E) := {ω ∈ Ω | there is F ∈ JBI with ω ∈ F ⊆ BI(E)}. (1)

This definition reduces to that of Monderer and Samet (1989) when the players’ belief
operators satisfy Monotonicity. Since D is closed under countable intersection, if E
is common belief, then everybody believes E, everybody believes that everybody
believes E, and so forth ad infinitum: C(E) ⊆

⋂
n∈NB

n
I (E). The converse (set

inclusion) holds, for example, when the mutual belief operator BI satisfies, in addition
to Monotonicity, Countable Conjunction:

⋂
n∈NBI(En) ⊆ BI(

⋂
n∈NEn), meaning

that everybody believes the countable conjunction of events whenever everybody
believes each of them.7 Hence, if, for example, the mutual belief operator satisfies
Monotonicity and Countable Conjunction, then C is always a well-defined operator
without assuming it.

While a possibility correspondence model often allows any subset of Ω to be an
event, I represent the players’ beliefs on a measurable space (Ω,D) instead of the
power set algebra (Ω,P(Ω)) so that I can analyze players’ qualitative and probabilistic
beliefs (such as the possibility correspondence and type space models) under the same
framework. I will analyze the players’ (countably-additive) probabilistic beliefs on a
measurable space (Ω,D) by p-belief operators (Monderer and Samet, 1989).8 For each
p ∈ [0, 1], player i’s p-belief operator Bp

i : D → D associates, with each event E, the
event that player i believes E with probability at least p (she p-believes E). I will
also introduce the common p-belief operator Cp. Samet (2000) specifies conditions
on p-belief operators under which a player’s beliefs are equivalently represented by
a type mapping τi : Ω → ∆(Ω) that associates, with each state of the world, the
player’s probabilistic beliefs at that state, where ∆(Ω) denotes the set of countably-
additive probability measures on (Ω,D). This framework also enables one to analyze
both qualitative and probabilistic beliefs at the same time (e.g., Fukuda, 2024a):
for example, in an extensive-form game with perfect information, each player has
knowledge about players’ past moves while she has beliefs about the future moves of
the opponents.

2.2 Properties of Beliefs

Next, I introduce additional eight properties of beliefs. Various possibility correspon-
dence models of qualitative beliefs and knowledge are represented as belief models
that satisfy certain properties specified below. Fix a player i. I first introduce the
following five logical properties of beliefs.

1. Necessitation: Bi(Ω) = Ω.

7Also, BI satisfies Countable Conjunction if every player’s belief operator Bi satisfies it.
8While one can analyze finitely-additive or non-additive beliefs, for ease of exposition I focus on

countably-additive probabilistic beliefs when it comes to quantitative beliefs.
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2. Countable Conjunction:
⋂
n∈NBi(En) ⊆ Bi(

⋂
n∈NEn) (for any events (En)n∈N).

3. Finite Conjunction: Bi(E) ∩Bi(F ) ⊆ Bi(E ∩ F ).

4. The Kripke property : Bi(E) = {ω ∈ Ω | bBi(ω) ⊆ E}, where bBi(ω) :=
⋂
{E ∈

D | ω ∈ Bi(E)} is the set of states player i considers possible at ω.

5. Consistency : Bi(E) ⊆ (¬Bi)(E
c).

First, Necessitation means that the player believes a tautology such as E ∪ Ec at
any state. Second, as discussed, Countable Conjunction means that if the player
believes each of a countable collection of events, then she believes its conjunction. In
the probabilistic environment, if the player believes En with probability one for each
n ∈ N, then she believes the intersection

⋂
n∈NEn with probability one. Third, Finite

Conjunction is weaker than Countable Conjunction: if the player believes E and F
then she believes its conjunction E ∩ F . Fourth, to discuss the Kripke property, the
player considers ω′ possible at ω if, for any event E which she believes at ω, E is true
at ω′. The Kripke property provides the condition under which i’s belief is induced by
her possibility correspondence bBi : Ω→ P(Ω): she believes E at ω iff her possibility
set bBi(ω) at ω implies (i.e., is included in) E.9 The Kripke property implies the
previous three properties as well as Monotonicity. Fifth, Consistency means that the
player cannot simultaneously believe an event E and its negation Ec.

Next, I move on to truth and introspective properties.

6. Truth Axiom: Bi(E) ⊆ E (for all E ∈ D).

7. Positive Introspection: Bi(·) ⊆ BiBi(·) (i.e., Bi(E) ⊆ BiBi(E) for all E ∈ D).

8. Negative Introspection: (¬Bi)(·) ⊆ Bi(¬Bi)(·).

Sixth, Truth Axiom says that the player can only “know” what is true. Truth Axiom
turns belief into knowledge in that knowledge has to be true while belief can be false.
Truth Axiom implies Consistency. While knowledge satisfies Truth Axiom, qualitative
and probabilistic beliefs are often assumed to satisfy Consistency. Seventh, Positive
Introspection states that if the player believes some event then she believes that she
believes it. Eighth, Negative Introspection states that if the player does not believe
some event then she believes that she does not believe it. Truth Axiom and Negative
Introspection yield Positive Introspection (e.g., Aumann, 1999).

Three remarks are in order. First, the introspective properties will play important
roles in whether a player is (meta-)certain of a belief model. They provide the senses
in which the player believes her own belief-generating process.

9In fact, Bi satisfies the Kripke property iff Bi is induced by some possibility correspondence
bi : Ω → P(Ω): Bi(E) = Bbi(E) := {ω ∈ Ω | bi(ω) ⊆ E} (Fukuda, 2019). Under the Kripke
property, Bi = BbBi

and bi = bBbi
, i.e., the belief operator Bi and the possibility correspondence

are equivalent representations of beliefs.
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To see these points formally, an event E is a basis to i if E ⊆ Bi(F ) whenever
E ⊆ F . That is, player i believes any implication of E whenever E is true. Especially,
an event E is self-evident to i when E ⊆ Bi(E). That is, i believes E whenever E
is true. If Bi satisfies Monotonicity, then E is self-evident to i iff it is a basis to i.
Positive Introspection means that i’s belief in E is self-evident to i, and Negative
Introspection means that i’s lack of belief in E is self-evident to i. Denote by JBi the
collection of bases to i.

Second, the last four properties can be restated in terms of bBi under the Kripke
property: Bi satisfies Consistency iff bBi is serial (i.e., bBi(·) 6= ∅); Bi satisfies Truth
Axiom iff bBi is reflexive (i.e., ω ∈ bBi(ω) for all ω ∈ Ω); Bi satisfies Positive Intro-
spection iff bBi is transitive (i.e., ω′ ∈ bBi(ω) implies bBi(ω

′) ⊆ bBi(ω)); and Bi satisfies
Negative Introspection iff bBi is Euclidean (i.e., ω′ ∈ bBi(ω) implies bBi(ω) ⊆ bBi(ω

′)).
Third, various models of probabilistic and qualitative beliefs and knowledge take

different sets of axioms. The framework accommodates possibility correspondence
models of qualitative beliefs and knowledge when Bi satisfies the Kripke property. A
partitional model of knowledge corresponds to the case when Bi satisfies Truth Axiom,
Positive Introspection, and Negative Introspection.10 A reflexive and transitive (non-
partitional) possibility correspondence model is characterized by Truth Axiom and
Positive Introspection.11 When it comes to fully-introspective qualitative beliefs (e.g.,
Bonanno and Tsakas, 2018), bBi is serial, transitive, and Euclidean iff Bi satisfies
Consistency, Positive Introspection, and Negative Introspection.

The probability 1-belief operator B1
i (that maps each event E to the event that

player i believes E with probability one) satisfies Necessitation, Countable Conjunc-
tion (thus Finite Conjunction), and Consistency. The next section shows that B1

i

satisfies Positive Introspection and Negative Introspection if the player is certain of
her type mapping. With the framework defined in this section, for a model of (quali-
tative or probabilistic) belief or knowledge, I will study the formal sense in which the
players are certain of the model.

3 When Is a Player Certain of Her Belief-Generating

Mapping?

The previous section has defined a belief model, in which the objects of beliefs are
events. Here, Section 3.1 first extends an object of beliefs in a model from an event
to a function (“signal”) defined on the state space. That is, the subsection formu-

10In fact, Truth Axiom, Negative Introspection, and the Kripke property yield all the other prop-
erties defined in this section.

11The literature on non-partitional possibility correspondence models studies information process-
ing errors that lead to the failure of Negative Introspection. See, for example, Bacharach (1985),
Binmore and Brandenburger (1990), Dekel and Gul (1997), Geanakoplos (2021), Lipman (1995),
Pires (2021), Samet (1990), and Shin (1993).
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lates the statement that a player is certain of a function defined on the state space.
Next, Section 3.2 represents a player’s “belief-generating mapping” as a signal which
associates, with each state, whether she believes each event or not. Then, Section
3.3 asks the sense in which she is certain of her own belief-generating mapping in
terms of the introspective properties. Finally, Section 3.4 relates the introspective
properties to a notion of “informativeness” derived from a signal. Section 4, based
on this formalization, provides a test by which the outside analysts can determine
whether the players are (commonly) certain of a belief model.

3.1 Functions as Objects of Players’ Beliefs

I start with defining a notion of a signal mapping. A signal mapping is a function
from an underlying state space Ω into a space of “observation” X endowed with
“observational” contents X ⊆ P(X). By observation, it means that each F ∈ X
is deemed an object of reasoning. That is, we call a mapping x : Ω → X a signal
mapping if each “observational” content F ∈ X can be regarded as an event x−1(F ) ∈
D through inverting the mapping.

Formally, for a non-empty set X and a non-empty subset X of P(X), call x :
(Ω,D) → (X,X ) a signal (mapping) if x−1(X ) ⊆ D. Mathematically, x : (Ω,D) →
(X,X ) is a signal if x : (Ω,D) → (X, σ(X )) is measurable, where σ(X ) is the σ-
algebra generated from X . Examples include strategies, action/decision functions,
random variables, state-contingent contracts, conditional expectations, and so on.

The main purpose of this subsection is to define the statement that a player is
certain of a signal. A player i is certain of the value of a signal x : (Ω,D)→ (X,X )
at ω, if she believes any implication of any observational content F at ω whenever it
is true: if F ∈ X satisfies x(ω) ∈ F (i.e., an observational content F is true at ω)
and if E ∈ D satisfies x−1(F ) ⊆ E (i.e., the observational content implies E), then
ω ∈ Bi(E) (i.e., player i believes E). She is certain of the signal x : (Ω,D)→ (X,X )
if she is certain of its value at every ω.

Likewise, the players are commonly certain of the value of the signal x : (Ω,D)→
(X,X ) at ω, if the players commonly believe any implication of any observational
content F at ω whenever it is true: if F ∈ X satisfies x(ω) ∈ F and if E ∈ D
satisfies x−1(F ) ⊆ E, then ω ∈ C(E). The players are commonly certain of the
signal x : (Ω,D) → (X,X ) if they are certain of its value at every ω. Note that the
word “certainty” is not necessarily related to probability-one belief. This terminology
is used generically to refer to various probabilistic or non-probabilistic belief and
knowledge (recall footnote 1). Formally:

Definition 1. Let
−→
Ω be a belief model, and let x : (Ω,D) → (X,X ) be a signal

mapping.

1. (a) Player i is certain of the value of the signal x : (Ω,D) → (X,X ) at ω if
the following holds: if there exist F ∈ X with x(ω) ∈ F and E ∈ D with
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x−1(F ) ⊆ E, then ω ∈ Bi(E).

(b) Player i is certain of the signal x : (Ω,D)→ (X,X ) if she is certain of the
value of the signal x at any state.

2. (a) The players are commonly certain of the value of the signal x : (Ω,D) →
(X,X ) at ω if the following holds: if there exist F ∈ X with x(ω) ∈ F and
E ∈ D with x−1(F ) ⊆ E, then ω ∈ C(E).

(b) The players are commonly certain of the signal x : (Ω,D) → (X,X ) if
they are commonly certain of the value of the signal x at every state.

For ease of terminology, player i is certain of (the value of) the signal x : Ω→ X
(at ω) with respect to X if she is certain of (the value of) the signal x : (Ω,D) →
(X,X ) (at ω). Likewise, the players are commonly certain of (the value of) the signal
x : Ω → X (at ω) with respect to X if they are commonly certain of (the value of)
the signal x : (Ω,D)→ (X,X ) (at ω).

Also, with some abuse of terminology, I often omit the mention to the “value” of
a signal at a state when it is clear from the context. That is, I often state that player
i is certain of a signal x : (Ω,D) → (X,X ) at ω instead of stating that player i is
certain of the value of the signal x : (Ω,D)→ (X,X ) at ω. The same applies to the
common certainty.

In Definition 1, whether player i is certain of a signal x : (Ω,D)→ (X,X ) depends
on X . The larger X is (in the sense of set inclusion), the harder it is to satisfy the
definition.

When the players’ beliefs are monotone, Definition 1 reduces to a simple form.
Player i is certain of a signal mapping x : (Ω,D) → (X,X ) at ω iff she believes any
observational content x−1(F ) at ω whenever the observational content F is true at ω.
Likewise, the players are commonly certain of x at ω iff they commonly believe any
observational content x−1(F ) at ω whenever F is true at ω. Formally:

Remark 1. Let
−→
Ω be a belief model in which the players’ belief operators satisfy

Monotonicity, and let x : (Ω,D)→ (X,X ) be a signal mapping.

1. Player i is certain of the value of the signal x : (Ω,D) → (X,X ) at ω iff
ω ∈ Bi(x

−1(F )) for any F ∈ X with x(ω) ∈ F .

2. The players are commonly certain of the value of the signal x : (Ω,D)→ (X,X )
at ω iff ω ∈ C(x−1(F )) for any F ∈ X with x(ω) ∈ F .

With this in mind, we consider an example in which the players’ beliefs are mono-
tone. Suppose that x : Ω→ X is a decision function of a player which associates, with
each state, the action taken at that state. Suppose that the set of actionsX is endowed
with the collection of singleton actions X = {{a} | a ∈ X}. Each action a corresponds
to an observational content to the player, and x is a signal mapping if the set of states
at which the player takes action a is an event, x−1({a}) = {ω ∈ Ω | x(ω) = a} ∈ D,
for each a ∈ X. More specifically, I consider the following setup:

12



Example 1. Let Ω = {ω1, ω2, ω3} and X = {a, b}. For each i ∈ I = {1, 2}, let Bi be
given by (i) Bi(E) = E \{ω3} for each E 6= Ω; and (ii) Bi(Ω) = Ω. Suppose player 1’s
decision function x1 : (Ω,P(Ω))→ (X, {{a}, {b}}) is given by (x1(ω))ω∈Ω = (a, a, a).
Since B1(Ω) = Ω and B1(∅) = ∅, whenever player 1 takes a certain action, she
believes that she takes that action. Thus, player 1 is certain of x1. In contrast,
suppose that player 2’s decision function x2 : (Ω,P(Ω))→ (X, {{a}, {b}}) is given by
(x2(ω))ω∈Ω = (a, b, a). At ω3 at which she takes action a, she does not believe that
she takes action a, because B2({ω1, ω3}) = {ω1}. Thus, player 2 is not certain of the
value of x2 at ω3. Since Bi(·) ∈ JBI , it follows that C = Bi. Thus, while the players
are commonly certain of x1, they are not commonly certain of x2.

Next, I consider the information structure of Rubinstein (1989)’s well-known e-
mail game. The example below shows that the idea that one player is certain of which
game is played is fit into the framework of this paper.

Example 2. There are two players I = {1, 2}. With probability p ∈ (0, 1), they face
a game Gb. With probability 1 − p, they face a game Ga. Initially, only player 1
is informed of which the true game is. The players are restricted to communicating
through the following e-mail protocol. If the true game is Gb then player 1’s computer
automatically sends a message to player 2’s computer. If the game is Ga then no
message is sent. If a computer receives a message then it automatically sends a
confirmation message, including a confirmation of a confirmation, and so on. There
is a fixed probability ε > 0 that any given message is lost. If a message does not
arrive then the communication ends.

Let the state space be Ω = {0, 1, 2, . . . }, and let D = P(Ω). If the state is n > 0,
then n messages have been sent and n− 1 of them received.

For player 1, let her belief operator B1 be induced by the possibility correspon-
dence b1 which is given by

b1(ω) =


{0} if ω = 0

{2n− 1, 2n} if ω = 2n− 1 for some n ∈ N
{2n− 1, 2n} if ω = 2n for some n ∈ N

.

For player 2, let her belief operator B2 be induced by the possibility correspondence
b2 which is given by

b2(ω) =


{0, 1} if ω = 0

{2n− 2, 2n− 1} if ω = 2n− 1 for some n ∈ N
{2n, 2n+ 1} if ω = 2n for some n ∈ N

.

Define a signal mapping G : (Ω,D) → ({Ga, Gb}, {{Ga}, {Gb}}) that determines
which game the true game is:

G(ω) =

{
Ga if ω = 0

Gb if ω 6= 0
.
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Thus, G−1({Ga}) = {0} and G−1({Gb}) = Ω \ {0}.
Now, I show that player 1 is certain of G : (Ω,D) → ({Ga, Gb}, {{Ga}, {Gb}}).

For any E with {0} ⊆ E, 0 ∈ B1({0}) ⊆ B1(E). For any E with Ω \ {0} ⊆ E and
for any ω ∈ E, ω ∈ B1(Ω \ {0}) ⊆ B1(E). In contrast, I show that player 2 is not
certain of G : (Ω,D) → ({Ga, Gb}, {{Ga}, {Gb}}) (at ω = 0). Take E = {0}. Then,
0 6∈ ∅ = B2(E). Consequently, the players are not commonly certain of G : (Ω,D)→
({Ga, Gb}, {{Ga}, {Gb}}) (at ω = 0).

For the rest of this subsection, six remarks on Definition 1 are in order. First,
Remark 2 below restates the fact that a player is certain of a signal in terms of bases
(recall Section 2.2 for the definition of bases).

Remark 2. Let x : (Ω,D)→ (X,X ) be a signal.

1. Player i is certain of the signal x iff x−1(X ) ⊆ JBi .

2. The players are commonly certain of the signal x iff x−1(X ) ⊆ JBI .

3. The players are commonly certain of the signal x iff every player i is certain of
the signal x.

Part (1) states that player i is certain of a signal x : (Ω,D) → (X,X ) iff any
observational content F ∈ X (i.e., any event x−1(F ) ∈ D) is a basis to i. Part (2)
states that the players are commonly certain of the signal x : (Ω,D) → (X,X ) iff
any observational content F ∈ X is a common basis. Consequently, Part (3) says
that the players are commonly certain of a signal at every state iff every player is
certain of it at every state. Hence, for the outside analysts to assert that the players
are commonly certain of some signal, it suffices to show that each player is certain of
it.12 Remark 2 follows from straightforwardly from Definition 1 and the definitions
of bases and common bases.

Second, Remark 3 below shows that, when x : (Ω,D) → (X,X ) is a player’s
strategy, Definition 1 formalizes the statement that the player is certain of the strategy
in the literature on characterizations of solution concepts of games in state space
models such as Brandenburger, Dekel, and Geanakoplos (1992) and Geanakoplos
(2021). To see this, assume that X contains a singleton {x(ω)} to reason about the
action taken at ω for all ω ∈ Ω. That is, the set of states [x(ω)] := x−1({x(ω)}) =
{ω′ ∈ Ω | x(ω′) = x(ω)} at which player i takes the same action as she does at ω is
an event. Also, assume that Bi satisfies Monotonicity. Then, player i is certain of
her action x(ω) (i.e., the value of the signal x) at ω iff ω ∈ Bi([x(ω)]), that is, player
i believes that her action is x(ω) at ω. More generally:

12In contrast, Appendix A.2 shows that it is not necessarily the case that each player is certain of
a signal at a state ω iff the players are commonly certain of the signal at ω. In light of Example 2, at
state n > 0, the players are mutually certain of the value of G : (Ω,D)→ ({Ga, Gb}, {{Ga}, {Gb}}),
they are mutually certain that they are mutually certain of the value of G, and so on n − 1 times
but not n times.
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Remark 3. Let X be a set of actions available to player i, and let x : Ω → X be a
strategy of player i with respect to X = {{x(ω)} | ω ∈ Ω}: the set of actions that
could have been taken at each state. Then, Definition 1 states that player i is certain
of her strategy x iff [x(ω)] is a basis to i at every ω ∈ Ω.

The proof of Remark 3 is similar to that of Remark 2 (1), and thus it is omitted.
Definition 1 also subsumes the formulation of the certainty of the strategy by

Aumann (1987a) in the (countable) partitional state space model of knowledge. Let
{bBi(ω)}ω∈Ω be a countable partition on Ω. In Aumann (1987a), the player “knows”
her own strategy x iff the strategy x is measurable with respect to the partition
(which turns out to be equivalent to bBi(·) ⊆ [x(·)]). Since the partition is countable,
the σ-algebra generated by the partition turns out to be equal to the collection of
bases: JBi = σ({bBi(ω) ∈ D | ω ∈ Ω}). Hence, player i is certain of her strategy
x : (Ω,D)→ (X,X ) iff x : (Ω,JBi)→ (X, σ(X )) is measurable.

Third, Remark 4 below states that if player i is certain of a signal x : Ω → X
with respect to the collection of singletons {{a} | a ∈ X}, then she is certain of x, in
the strongest sense, with respect to P(X).

Remark 4. Player i is certain of a signal x : (Ω,D) → (X,P(X)) iff she is certain
of x : Ω → X with respect to the collection of values of x: {{x(ω)} | ω ∈ Ω}. Thus,
player i is certain of her strategy x : (Ω,D) → (X,P(X)) in the strongest sense iff
she is certain of her strategy with respect to the actions {{x(ω)} | ω ∈ Ω} that she
could have taken.

To see this, it can be shown that player i is certain of x : (Ω,D)→ (X,X ) iff she
is certain of x : Ω → X with respect to the collection of unions of X : {F ∈ P(X) |
F =

⋃
λ∈Λ Fλ for some {Fλ}λ∈Λ ⊆ X}. Remark 4 follows from this observation.

Fourth, Remark 5 provides conditions on beliefs under which a player is certain
of a signal x : (Ω,D)→ (X,X ) iff she is certain of x : (Ω,D)→ (X, σ(X )) when x is
her own “belief-generating map” in Section 3.3.

Remark 5. Under the following conditions on player i’s belief operator Bi, the col-
lection of i’s beliefs Bi := {Bi(E) ∈ D | E ∈ D} forms a sub-σ-algebra of D.

1. Bi satisfies Monotonicity, Consistency, Countable Conjunction, Positive Intro-
spection, and Negative Introspection.

2. Bi satisfies Monotonicity, Truth Axiom and Negative Introspection.

For Part (2), one can show that Bi coincides with the collection of bases JBi ,
which forms a sub-σ-algebra of D. In fact, it can be seen that the conditions in (2)
imply those in (1). Fully-introspective qualitative or probability-one beliefs satisfy
the conditions in Part (1), and fully-introspective knowledge satisfies the conditions
in Part (2).
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Fifth, Remark 6 below shows that Bi satisfies Necessitation iff player i is certain
of any constant signal. Likewise, the common belief operator C satisfies Necessitation
(equivalently, every Bi satisfies Necessitation) iff the players are commonly certain of
any constant signal.

Remark 6. 1. Player i’s belief operator Bi satisfies Necessitation iff she is certain
of any constant signal.

2. The common belief operator C satisfies Necessitation iff the players are com-
monly certain of any constant signal iff she is certain of any constant signal.

The proof of Remark 6 is in Appendix A.1.1.
In light of the certainty of a signal, Necessitation allows the players to be certain

of any constant “random variable” that does not depend on the realization of a
state. For example, consider whether player i is certain that an event Bj(E) is
equal to an event F in a belief model. The outside analysts determine whether
player i believes that player j believes an event E at a state ω by examining whether
ω ∈ BiBj(E) since player j’s belief Bj(E) itself is an event. The (implicit) assumption
in any (semantic) belief model is that E = F implies Bi(E) = Bi(F ). Thus, if two
events are extensionally the same (e.g., E is the set of 1 and −1, and F is the
set of real solutions of x2 = 1) then each player’s belief in the two events are the
same.13 To assess player i’s belief about player j’s belief about E, how can the
outside analysts justify the fact that player i is able to equate Bj(E) with another
event (say, F )? Since either Bj(E) = F or Bj(E) 6= F , player i is certain that
Bj(E) is an event F if player i is certain of the indicator function IBj↔F , where
(Bj(E) ↔ F ) := ((¬Bj)(E) ∪ F ) ∩ ((¬F ) ∪ Bj(E)). If player i’s belief operator Bi

satisfies Necessitation, then player i is certain of a constant function IBj↔F . Thus,
under Necessitation, player i is certain that Bj(E) = F if it is indeed the case. This
argument justifies that, under Necessitation, the outside analysts can say that the
players are certain of equating two extensionally equivalent events (say, Bj(E) and
F ) if they are indeed extensionally equivalent.

Necessitation also follows if player i is certain of a signal x : (Ω,D) → (X,X )
where X =

⋃
F∈X F . Thus, for example, if player i is certain of her strategy x :

(Ω,D)→ (X, {{a} | a ∈ X}), then Bi satisfies Necessitation.
Sixth, Remark 7 below shows that player i is certain of a profile of signals (e.g., a

strategy profile) iff she is certain of each of them.

Remark 7. Let A be a non-empty set, and let xα : (Ω,D) → (Xα,Xα) be a signal
for each α ∈ A. Let X :=

∏
α∈AXα, and let πα : X → Xα be the projection. By

13Although such identification of events are implicitly assumed for any (semantic) belief model, one
can construct a canonical (“universal”) semantic model from a syntactic language which maximally
distinguishes the denotations of events. In the canonical model, such identification of events can be
minimized in a way such that two events are equated only when they are explicitly assumed to be
equivalent by the outside analysts (see Fukuda (2024b) for a formal assertion).
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definition, every xα : (Ω,D) → (Xα,Xα) is a signal iff x : (Ω,D) → (X,X ) is a
signal, where X :=

⋃
α∈A{(πα)−1(Fα) ∈ P(X) | Fα ∈ Xα}. Then, player i is certain

of x : (Ω,D)→ (X,X ) iff she is certain of every xα : (Ω,D)→ (Xα,Xα).

The proof of Remark 7 is in Appendix A.1.1. Under either condition in Remark 5,
player i is certain of x : (Ω,D)→ (X, σ(X )) iff she is certain of every xα : (Ω,D)→
(Xα,Xα). Observe that σ(X ) is the product σ-algebra if each Xα is a σ-algebra.

Remarks 2 and 7 imply that the players are commonly certain of a profile of signals
iff every player is certain of every signal.

3.2 A Qualitative-Type Mapping that Represents a Player’s
Beliefs

In order to formulate a test under which the outside analysts can examine whether the
players are commonly certain of a belief model, I define the “belief-generating map,”
which I call the qualitative-type mapping, of a player. Given the belief operator of
the player, the qualitative-type mapping associates, with each state, a set function
that maps each event to a binary value indicating whether the player believes the
event in an analogous manner to the type mapping in the type-space literature.14

To that end, recall the notion of probabilistic types. A (probabilistic-)type is
a σ-additive probability measure ν ∈ ∆(Ω). A (probabilistic-)type mapping is a
measurable mapping τi : (Ω,D)→ (∆(Ω),D∆), where D∆ is the σ-algebra generated
by βpE := {ν ∈ ∆(Ω) | ν(E) ≥ p} for all (E, p) ∈ D× [0, 1] (Heifetz and Samet, 1998).
It associates, with each state ω, the player’s probabilistic beliefs τi(ω) ∈ ∆(Ω) at that
state. Given the type mapping τi, define player i’s p-belief operator Bp

τi
: D → D as

Bp
τi

(E) := τ−1
i (βpE). Thus, ω ∈ Bp

τi
(E) iff τi(ω)(E) ≥ p. As in Samet (2000), the type

mapping τi and the collection of p-belief operators (Bp
τi

)p∈[0,1] are equivalent, that is,
a type space of the form 〈(Ω,D), (τi)i∈I〉 is equivalent to 〈(Ω,D), (Bp

τi
)(i,p)∈I×[0,1]〉.

With this in mind, let M(Ω) be the set of binary set functions µ : D → {0, 1}
(i.e., M(Ω) ⊆ {0, 1}D) that satisfy a given set of logical properties of beliefs defined
in Section 2.2 (these properties will be shortly expressed in terms of µ). Call each
µ ∈M(Ω) a qualitative-type. Interpret µ(E) = 1 as the belief in an event E ∈ D. Once
M(Ω) ⊆ {0, 1}D is defined as the set of qualitative-types that satisfy the given set of
logical properties of beliefs, I represent player i’s beliefs by a qualitative-type mapping
ti : Ω → M(Ω) satisfying a certain measurability condition specified below. It is a
measurable mapping which associates, with each state ω ∈ Ω, player i’s qualitative-
type ti(ω) ∈M(Ω) at ω. Thus, player i believes an event E at ω if ti(ω)(E) = 1.

Now, I define the logical properties of µ in an analogous way to the corresponding
logical properties of belief operators. Fix µ ∈ {0, 1}D.

0. Monotonicity : E ⊆ F implies µ(E) ≤ µ(F ).

14Fukuda (2017, Section 6) constructs a universal knowledge space when each player’s knowledge
is represented by her qualitative-type mapping.
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1. Necessitation: µ(Ω) = 1.

2. Countable Conjunction: minn∈N µ(En) ≤ µ(
⋂
n∈NEn).

3. Finite Conjunction: min(µ(E), µ(F )) ≤ µ(E ∩ F ).

4. The Kripke property : µ(E) = 1 iff
⋂
{F ∈ D | µ(F ) = 1} ⊆ E.

5. Consistency : µ(E) ≤ 1− µ(Ec).

The interpretations of the above properties are similar to those in Section 2.2. For
Countable Conjunction, if En is believed (i.e., µ(En) = 1) for every n ∈ N, then⋂
n∈NEn is believed (i.e., µ(

⋂
n∈NEn) = 1). The Kripke property characterizes the

condition under which player i’s beliefs are induced by a possibility correspondence
when every qualitative-type ti(ω) satisfies it. Whether all of these properties are
assumed or not depend on the model that the outside analysts study. For example,
if the outside analysts examine a partitional possibility correspondence, then since
the corresponding belief operator satisfies all the logical properties, M(Ω) is the set
of qualitative-types that satisfy all the logical properties. In contrast, if the outside
analysts study a belief model in which only Monotonicity is assumed, then M(Ω) is
the set of qualitative-types that satisfy Monotonicity.

I formally define the measurability condition of a qualitative-type mapping. A
qualitative-type mapping is a measurable mapping ti : (Ω,D) → (M(Ω),DM) which
satisfies given (logical and) introspective properties of beliefs, where DM is the σ-
algebra generated by the sets of the form βE := {µ ∈ M(Ω) | µ(E) = 1} for all
E ∈ D. The set βE is the set of types under which E is believed. Thus, βE is
an informational content indicating that event E is believed. Note that ti : Ω →
M(Ω), by construction, satisfies given logical properties because any element in M(Ω)
satisfies them. For example, if every µ ∈ M(Ω) satisfies the Kripke property, then
every ti(ω) satisfies it. Denote bti(ω) :=

⋂
{E ∈ D | ti(ω)(E) = 1} for each ω ∈ Ω.

The measurablity condition of ti requires each t−1
i (βE) = {ω ∈ Ω | ti(ω)(E) =

1} to be the event that player i believes E. Next, I define Truth Axiom and the
introspective properties of ti.

6. Truth Axiom: ti(ω)(E) = 1 implies ω ∈ E.

7. Positive Introspection: ti(ω)(E) = 1 implies ti(ω)({ω′ ∈ Ω | ti(ω′)(E) = 1}) = 1
(i.e., ti(ω)(t−1

i (βE)) = 1).

8. Negative Introspection: ti(ω)(E) = 0 implies ti(ω)({ω′ ∈ Ω | ti(ω′)(E) = 0}) =
1 (i.e., ti(ω)(¬t−1

i (βE)) = 1).

So far, a qualitative-type mapping ti : (Ω,D) → (M(Ω),DM) is introduced. Fi-
nally, I demonstrate that a belief operator and a qualitative-type mapping are equiv-
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alent. A given belief operator Bi induces the qualitative-type mapping tBi by

tBi(ω)(E) :=

{
1 if ω ∈ Bi(E)

0 otherwise
.

Conversely, a given qualitative-type mapping ti induces the belief operator Bti defined
as Bti(E) := t−1

i (βE). It can be seen that BtBi
= Bi and ti = tBti .

3.3 Certainty of Own Type Mapping

I apply the certainty of a signal to a qualitative- and probabilistic-type mappings.
The main results of this subsection are Propositions 1A and 1B. Roughly, they state
that a player is certain of her own qualitative- and probabilistic-type mappings iff her
qualitative and probabilistic beliefs are introspective, respectively. Hereafter, “A”
and “B” in Proposition, Theorem, and Remark refer to the case with qualitative and
probabilistic beliefs, respectively.

3.3.1 Certainty of Own Qualitative-Type Mapping

I start with the certainty of a qualitative-type mapping.

Proposition 1A. Let
−→
Ω be a belief model in which Bi satisfies Monotonicity, and

let tBi : Ω→M(Ω) be player i’s qualitative-type mapping.

1. (a) Player i is certain of tBi with respect to {βE | E ∈ D} iff Bi satisfies
Positive Introspection: Bi(·) ⊆ BiBi(·).

(b) Player i is certain of tBi with respect to {¬βE | E ∈ D} iff Bi satisfies
Negative Introspection: (¬Bi)(·) ⊆ Bi(¬Bi)(·).

(c) If player i is certain of tBi : (Ω,D) → (M(Ω),DM), then Bi satisfies
Positive Introspection and Negative Introspection.

2. (a) Let Bi satisfy Truth Axiom. Player i is certain of tBi : (Ω,D)→ (M(Ω),DM)
iff Bi satisfies (Positive Introspection and) Negative Introspection.

(b) Let Bi satisfy Consistency and Countable Conjunction. Player i is certain
of tBi : (Ω,D) → (M(Ω),DM) iff Bi satisfies Positive Introspection and
Negative Introspection.

While Part (1) characterizes the certainty of the qualitative-type mapping tBi
with respect to the possession or lack of beliefs, Part (2) examines the sense in which
player i is certain of her qualitative-type mapping tBi : (Ω,D) → (M(Ω),DM) in a
model of knowledge (i.e., Part (2a)) and belief (i.e., Part (2b)).

Part (1a) states that player i is certain of her qualitative-type mapping tBi with
respect to the possession of beliefs iff her belief operator Bi satisfies Positive Intro-
spection. Parts (1a) and (1b) jointly state that Bi satisfies Positive Introspection and
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Negative Introspection iff player i is certain of her qualitative-type mapping tBi with
respect to {βE | E ∈ D} ∪ {¬βE | E ∈ D}.

Without Monotonicity, Part (1) is stated as follows: (i) player i is certain of tBi
with respect to {βE | E ∈ D} iff player i believes any logical implication of her own
beliefs: for any E,F ∈ D, Bi(E) ⊆ F implies Bi(E) ⊆ Bi(F ); and (ii) player i is
certain of tBi with respect to {¬βE | E ∈ D} iff she believes any logical implication
of her own dis-beliefs: for any E,F ∈ D, (¬Bi)(E) ⊆ F implies (¬Bi)(E) ⊆ Bi(F ).

I discuss three additional implications of Proposition 1A. First, the proposition
sheds light on the literature of non-partitional knowledge models in which Negative
Introspection fails. The question is, when a player commits an information-processing
error leading to the failure of Negative Introspection, is she certain of her own pos-
sibility correspondence?15 The dichotomous answer leads to the following issue. If
the player is certain of her own possibility correspondence, then she is “certain” that
she commits the information-processing error and yet she fails to overcome the lack
of Negative Introspection. If she is not certain of her own possibility correspondence,
where do her beliefs come from?

Part (1) provides the following eclectic answer: player i is not fully certain of
her qualitative-type mapping. That is, without imposing Negative Introspection,
player i is not certain of her own qualitative-type mapping with respect to DM (or
{βE | E ∈ D}∪{¬βE | E ∈ D}). Rather, she takes her own information at face value
in the sense that she is only certain of her qualitative-type mapping with respect to
her own beliefs {βE | E ∈ D}. Proposition 1A formalizes the very sense in which
“she takes her own information at face value.”

In contrast, Proposition 1A (2a) shows that, in a partitional possibility corre-
spondence model of knowledge, the axioms of Truth Axiom, (Positive Introspection)
and Negative Introspection characterize the sense in which a player is fully certain of
her possibility correspondence. While the proposition does not necessarily require Bi

to satisfy the Kripke property, consider a model of knowledge in which Bi satisfies
Truth Axiom and the Kripke property, i.e., Bi is induced by the reflexive possibility
correspondence bBi . Then, player i is certain of her “knowledge-generating” mapping
iff Bi satisfies (Positive Introspection and) Negative Introspection.

Likewise, Proposition 1A (2b) demonstrates that, in a serial possibility correspon-
dence model, the axioms of Consistency, Positive Introspection and Negative Intro-
spection characterize the sense in which a player is fully certain of her possibility
correspondence (note that the Kripke property implies Countable Conjunction).

Second, Proposition 1A also sheds light on the identification of events discussed
in Section 3.1. The belief operator Bi of player i associates, with each event E, the
event Bi(E) that she believes E. Since the players’ beliefs themselves are events,
player i can reason about player j’s belief in E: BiBj(E). However, the question is
how does player i evaluate another player j’s belief in E? The implicit assumption is

15See, for instance, Brandenburger, Dekel, and Geanakoplos (1992), Dekel and Gul (1997), and
Geanakoplos (2021)
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again that “the belief model is commonly certain among the players.”
In Proposition 1A, Positive Introspection and Negative Introspection pertain to

every event E including E = Bj(F ) for some F ∈ D. This means that if player i is
certain of her qualitative-type mapping tBi with respect to {βE | E ∈ D} then she is
also certain of such qualitative-type mapping as tBiBj with respect to {βE | E ∈ D},
where tBiBj is the qualitative-type mapping associated with the operator BiBj (i.e.,
tBiBj(ω)(E) = 1 iff ω ∈ BiBj(E)). That is, if player i is certain of her own belief-
generating mapping, then she is also certain of the mapping that generates i’s belief
about j’s belief about events. Although it is implicitly assumed in the belief model
that player i figures out what Bj is,16 the fact that each i is certain of tBiBj could
possibly be a justification for why the outside analysts can assume that “i is certain
of j’s belief operator in i’s mind.” Section 4 studies the question whether the outside
analysts can assume that each player i is certain of each other’s qualitative-type
mapping tBj .

17

Third, I can extend Proposition 1A to the case where a player has qualitative
belief and knowledge. Consider a belief model 〈(Ω,D), (Ki)i∈I〉 where Ki : D → D is
player i’s monotone knowledge operator (for simplicity, I omit the common-knowledge
operator). Now, for each player i, let Bi : D → D be her monotone qualitative-
belief operator. Let tBi be player i’s qualitative-type mapping that represents Bi,
and ask whether player i is certain of her qualitative-type mapping tBi : (Ω,D) →
(M(Ω),DM). Proposition 1A (2a) implies that player i is certain of tBi : (Ω,D) →
(M(Ω),DM) iff Ki satisfies Positive Certainty (with respect to Bi): Bi(·) ⊆ KiBi(·)
and Negative Certainty (with respect to Bi): (¬Bi)(·) ⊆ Ki(¬Bi)(·). Whenever player
i believes an event, she knows that she believes it. Whenever player i does not believe
an event, she knows that she does not believe it. In fact, these two properties are
often assumed in a model of belief and knowledge, and Proposition 1A (2a) justifies
the assumptions in terms of the certainty of one’s knowledge about her own beliefs.

3.3.2 Certainty of Own Probabilistic-Type Mapping

Next, I study when a player is certain of her own (probabilistic-)type mapping. Thus,
I add to a belief model (in which (Bi)i∈I is a primitive) each player i’s (probabilistic-
)type mapping τi, which induces her p-belief operator Bp

τi
. Especially, the case with

Bi = B1
τi

studies whether player i is certain of her type mapping within the type space
〈(Ω,D), (τi)i∈I〉 itself. In the case in which Bi is either a knowledge or qualitative
belief operator, the outside analysts consider players’ knowledge or qualitative beliefs
about their probabilistic beliefs.

16Recalling footnote 13, this pertains to the assumption in any (semantic) belief model that if
E = F then Bi(E) = Bi(F ).

17Note that here I ask whether each player i can be certain of how she herself can evaluate an
opponent’s belief-generating process through studying whether player i is certain of the mapping
tBiBj

that generates the beliefs of player i about player j’s beliefs.
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As in the previous discussion, a belief operator Bi satisfies Positive Certainty
(with respect to Bp

τi
) if Bp

τi
(·) ⊆ BiB

p
τi

(·). Likewise, Bi satisfies Negative Certainty
(with respect to Bp

τi
) if (¬Bp

τi
)(·) ⊆ Bi(¬Bp

τi
)(·). With these in mind:

Proposition 1B. Let
−→
Ω be a belief model in which Bi satisfies Monotonicity, and

let τi : Ω→ ∆(Ω) be player i’s type mapping.

1. (a) Player i is certain of her type mapping τi with respect to {βpE | (p, E) ∈
[0, 1]×D} iff Bi satisfies Positive Certainty: Bp

τi
(·) ⊆ BiB

p
τi

(·).

(b) Player i is certain of her type mapping τi with respect to {¬βpE | (p, E) ∈
[0, 1]×D} iff Bi satisfies Negative Certainty: (¬Bp

τi
)(·) ⊆ Bi(¬Bp

τi
)(·).

(c) If player i is certain of τi : (Ω,D)→ (∆(Ω),D∆), then Bi satisfies Positive
Certainty and Negative Certainty.

2. (a) Let Bi satisfy Truth Axiom and Negative Introspection. Player i is cer-
tain of τi : (Ω,D) → (∆(Ω),D∆) iff Bi satisfies Positive Certainty iff Bi

satisfies Negative Certainty.

(b) Let Bi satisfy Consistency, Countable Conjunction, Positive Introspection,
and Negative Introspection. Player i is certain of τi : (Ω,D)→ (∆(Ω),D∆)
iff Bi satisfies Positive Certainty and Negative Certainty.

(c) Let Bi satisfy Entailment: Bi(·) ⊆ B1
τi

. Player i is certain of τi : (Ω,D)→
(∆(Ω),D∆) iff Bi satisfies Positive Certainty and Negative Certainty.

Part (1) characterizes the statement that player i is certain of her type mapping
τi with respect to the possession of p-beliefs {βpE | (E, p) ∈ D × [0, 1]} or the lack of
p-beliefs {¬βpE | (E, p) ∈ D × [0, 1]}. It also states that if player i is certain of the
type mapping τi : (Ω,D)→ (∆(Ω),D∆), then the belief operator Bi satisfies Positive
Certainty and Negative Certainty: Bp

τi
(·) ⊆ BiB

p
τi

(·) and (¬Bp
τi

)(·) ⊆ Bi(¬Bp
τi

)(·).
Without Monotonicity, (i) player i is certain of her type mapping τi with respect to
{βpE | (p, E) ∈ [0, 1] × D} iff Bp

τi
(E) ⊆ F implies Bp

τi
(E) ⊆ Bi(F ); and (ii) player

i is certain of her type mapping τi with respect to {¬βpE | (p, E) ∈ [0, 1] × D} iff
(¬Bp

τi
)(E) ⊆ F implies (¬Bp

τi
)(E) ⊆ Bi(F ).

Part (2a) corresponds to the case when Bi is a fully-introspective knowledge opera-
tor in addition to her type mapping τi : (Ω,D)→ (∆(Ω),D∆). Part (2b) corresponds
to the case in which Bi is a fully-introspective qualitative belief operator in addi-
tion to her type mapping τi : (Ω,D) → (∆(Ω),D∆). When probabilistic beliefs and
knowledge (or qualitative belief) are present, the introspective properties of Positive
Certainty Bp

τi
(·) ⊆ BiB

p
τi

(·) and Negative Certainty (¬Bp
τi

)(·) ⊆ Bi(¬Bp
τi

)(·) are the
standard assumptions (e.g., Aumann, 1999). Whenever player i believes an event E
with probability at least p, she knows that she believes E with probability at least
p. Whenever player i does not believe an event E with probability at least p, she
knows that she does not believe E with probability at least p. In this environment,
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Parts (2a) and (2b) formalize the sense in which player i is certain of her probabilistic
beliefs (her type mapping).

Part (2c) sheds light on the certainty of a type mapping in the type space (i.e.,
purely probabilistic model) in the case in which Bi is taken as the probability 1-belief
operator B1

τi
. The introspective properties of probabilistic beliefs are now formu-

lated in terms of probability-one belief about own beliefs: Bp
τi

(·) ⊆ B1
τi
Bp
τi

(·) and
(¬Bp

τi
)(·) ⊆ B1

τi
(¬Bp

τi
)(·). That is, if player i p-believes an event E, then she believes

with probability one that she p-believes E; and if player i does not p-believe an event
E, then she believes with probability one that she does not p-believe E. These two
introspective properties are essential in the syntactic formulation of type spaces such
as Heifetz and Mongin (2001) and Meier (2012). Part (2c) justifies the statement
that player i is certain of her own type mapping in a type space.

Part (2c) also justifies the structural assumption in a product type space. In the
product type space, an underlying state space Ω is the product space of an underlying
set of nature states S (e.g., the set of action profiles of a given strategic game) and
the players’ type sets (Tj)j∈I . The structural assumption refers to the assumption
that player i’s type is a probability measure on the product of the nature states S
and the types of the opponents (Tj)j∈I\{i}. Appendix A.3 formally shows that, under
such specification, player i is certain of her type mapping.

I remark on two additional implications of Proposition 1B. First, Proposition 1B
and Remark 6 allow one to formalize the sense in which each player is certain of
her “prior.” Consider a model 〈(Ω,D), (τi)i∈I , (µi)i∈I〉 with the following properties:
(Ω,D) is a measurable space, τi : (Ω,D) → (∆(Ω),D∆) is player i’s (probabilistic-
)type mapping, and µi ∈ ∆(Ω) is a prior satisfying

µi(E) =

∫
Ω

τi(ω)(E)µi(dω) for all E ∈ D. (2)

That is, the prior belief µi(E) is equal to the expectation of the posterior beliefs
ti(·)(E) with respect to the prior µi (e.g., Mertens and Zamir, 1985). The model
admits a common prior if µi = µj for all i, j ∈ I. If each µi would be identified as a
constant mapping µi : (Ω,D)→ (∆(Ω),D∆), then

µ−1
i (βpE) =

{
∅ if µi(E) < p

Ω if µi(E) ≥ p
.

Since B1
τi

satisfies Necessitation, each player i is certain of every player j’s prior. In
fact, the players are commonly certain of the priors.

Second, if the players are certain of their own type mappings, then the common
p-belief operator reduces to the iteration of mutual p-beliefs.

Remark 8. Let (Ω,D) be a measurable space, and let τi : (Ω,D) → (∆(Ω),D∆) be
player i’s type mapping for each i ∈ I. Let B1

τi
be player i’s probability-one belief
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operator. If each player i is certain of her type mapping τi : (Ω,D) → (∆(Ω),D∆)
(according to her probability-one belief), then the common p-belief operator reduces
to the iteration of mutual p-beliefs and is well-defined: Cp(·) =

⋂
n∈N(Bp

I )
n(·) ∈ D.

3.4 Informativeness, Possibility, and Certainty

If a player is certain of a signal x : (Ω,D)→ (X,X ), then, for each state ω, she would
be able to conceive the collection of observational contents F ∈ X which hold at ω.
Comparing such collections among all states, she would be able to rank the states
according to “informativeness.” As the player is certain of the signal, the information
derived from the signal must have already been incorporated in her beliefs.

Section 3.4.1 defines the informativeness of a signal (Definition 2), and applies the
informativeness criteria to qualitative- and probabilistic-type mappings to character-
ize the sense in which a player is certain of her type mapping in terms of informa-
tiveness (Propositions 2A and 2B).

Section 3.4.2 studies the assumption in a Harsanyi (1967-1968) type space in
terms of the informativeness (Proposition 3A and 3B): at each state, a player assigns
probability-one to the set of states equally informative to the state.

3.4.1 Informativeness, Possibility, and Certainty

I start with defining the informativeness of a signal:

Definition 2. For states ω and ω′ in Ω, ω is at least as informative as ω′ according
to a signal x : (Ω,D)→ (X,X ) if

{F ∈ X | ω′ ∈ x−1(F )} ⊆ {F ∈ X | ω ∈ x−1(F )}. (3)

States ω and ω′ are equally informative according to x : (Ω,D)→ (X,X ) if

{F ∈ X | ω′ ∈ x−1(F )} = {F ∈ X | ω ∈ x−1(F )}. (4)

The ideas behind Definition 2 are (i) that the informational content of a signal
mapping x : (Ω,D) → (X,X ) at ω is expressed as the collection of observational
contents {F ∈ X | x(ω) ∈ F} true at ω and (ii) that informational contents are ranked
by the implication in the form of set inclusion.18 While the notion of informativeness
(i.e., the relation induced by Expression (3)) is reflexive and transitive, the notion of
equal informativeness (i.e., the relation induced by Expression (4)) is an equivalence
relation.

The following remark characterizes the certainty of a signal x : (Ω,D) → (X,X )
from informativeness. Namely, player i is certain of the signal x iff the notion of

18The notion of informativeness is closely related to that of information studied by Bonanno
(2002). Ghirardato (2001), Lipman (1995), and Mukerji (1997) also study information processing in
which informational contents are ranked by the implication in the form of set inclusion.
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possibility derived from her beliefs is incorporated in the notion of informativeness
derived from the signal in the following sense: whenever player i considers state ω′

possible at state ω (i.e., ω′ ∈ bBi(ω)), state ω′ is at least as informative as state ω
according to x : (Ω,D)→ (X,X ).

Remark 9. Assume the Kripke property for Bi. Player i is certain of a signal
x : (Ω,D)→ (X,X ) iff possibility implies informativeness (i.e., if ω′ ∈ bBi(ω) then ω′

is at least as informative as ω according to x : (Ω,D)→ (X,X )).

The proof of Remark 9 is in Appendix A.1.1. Three additional remarks are in
order. First, when X is not necessarily closed under complementation, Definition 2
does not take into account the collection of observational contents {F ∈ X | x(ω) 6∈
F} that do not hold at ω. In contrast, when X is closed under complementation, it
can be seen that if ω is at least as informative as ω′ according to a signal x : (Ω,D)→
(X,X ), then ω and ω′ are equally informative.

Second, suppose that Bi satisfies Consistency, Positive Introspection, and Negative
Introspection. If ω is at least as informative as ω′ according to a signal x : (Ω,D)→
(X,X ), then ω and ω′ are equally informative.19

Third, under the assumption that x−1({x(ω)}) ∈ D for each ω ∈ Ω, the equiva-
lence relation of equal informativeness coincides with the one induced by the partition
{x−1({x(ω)}) | ω ∈ Ω}: ω and ω′ are equally informative iff x(ω) = x(ω′).

Next, I apply the notion of informativeness to i’s qualitative-type mapping ti :
Ω→M(Ω) with respect to {βE | E ∈ D}. That is, suppose that player i is reasoning
about the underlying states based on her possession of beliefs. For states ω and ω′

in Ω, ω is at least as informative as ω′ to i (precisely, according to ti : (Ω,D) →
(M(Ω), {βE | E ∈ D})) iff ti(ω

′)(·) ≤ ti(ω)(·) (i.e., ti(ω
′)(E) ≤ ti(ω)(E) for all E ∈

D). Likewise, states ω and ω′ are equally informative according to i iff ti(ω) = ti(ω
′).

Fix ω ∈ Ω, and let (↑ ti(ω)) := {ω′ ∈ Ω | ti(ω)(·) ≤ ti(ω
′)(·)} be the set of states

that are at least as informative to i as ω. Also, define (↓ ti(ω)) := {ω′ ∈ Ω | ti(ω′)(·) ≤
ti(ω)(·)} and [ti(ω)] := {ω′ ∈ Ω | ti(ω) = ti(ω

′)}. If ω′ ∈ [ti(ω)] then ω and ω′ are
indistinguishable to player i in that her qualitative-types (and thus the collections of
events that she believes) are exactly the same at these states. Put differently, the
equal informativeness is translated into the indistinguishability. Thus, the collection
{[ti(ω)] | ω ∈ Ω} forms a partition of Ω generated by the qualitative-type mapping
ti. Note that (↑ ti(ω)), (↓ ti(ω)), and [ti(ω)] may not necessarily be an event.

Now, I examine the sense in which a player is certain of her qualitative-type
mapping by studying how introspective properties imply the relations between infor-
mativeness and possibility.

19The proof goes as follows. Suppose to the contrary that there are ω, ω′ ∈ Ω such that {F ∈
X | ω′ ∈ Bi(x

−1(F ))} ( {F ∈ X | ω ∈ Bi(x
−1(F ))}. Then, there is F ∈ X with the following

properties: ω ∈ Bi(x
−1(F )) ⊆ BiBi(x

−1(F )) (by Positive Introspection) and ω′ ∈ (¬Bi)(x
−1(F )) ⊆

Bi(¬Bi)(x
−1(F )) (by Negative Introspection), a contradiction to Consistency.
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Proposition 2A. Let
−→
Ω be a belief model. Let tBi : (Ω,D)→ (M(Ω), {βE | E ∈ D})

be player i’s qualitative-type mapping.

1. (a) Bi satisfies Truth Axiom iff (↑ tBi(·)) ⊆ bBi(·).

(b) If Bi satisfies Positive Introspection, then bBi(·) ⊆ (↑ tBi(·)). If Bi satisfies
the Kripke property, the converse also holds.

(c) If Bi satisfies Negative Introspection, then bBi(·) ⊆ (↓ tBi(·)). If Bi satisfies
the Kripke property, the converse also holds.

2. (a) If Bi satisfies Truth Axiom and Positive Introspection, then (↑ tBi(·)) =
bBi(·). If tBi satisfies the Kripke property, the converse also holds.

(b) If Bi satisfies Truth Axiom, (Positive Introspection), and Negative Intro-
spection, then (↑ tBi(·)) = [tBi(·)] = bBi(·). If Bi satisfies the Kripke
property, the converse also holds.

Part (1a) states that, under Truth Axiom, informativeness implies possibility. In
Part (1b), since player i is certain of her qualitative-type mapping ti with respect to
{βE | E ∈ D}, the notion of possibility that comes from her beliefs is already encoded
in the notion of informativeness. That is, Part (1b) states that possibility implies
informativeness when player i is certain of her qualitative-type mapping ti : (Ω,D)→
(M(Ω), {βE | E ∈ D}). Hence, when player i’s qualitative-type mapping satisfies
Truth Axiom and Positive Introspection as in a reflexive-and-transitive possibility
correspondence model (see footnote 11), the notions of informativeness and possibility
coincide: bBi(·) = (↑ tBi(·)).

Part (1b) and (1c) jointly state that, under Positive Introspection and Negative
Introspection, if player i considers ω′ possible at ω then the states ω and ω′ are equally
informative.

In a model of knowledge in which player i’s qualitative-type mapping satisfies
Truth Axiom, (Positive Introspection,) and Negative Introspection, either notion
of informativeness or possibility induces the same partition {bBi(ω) | ω ∈ Ω} =
{[tBi(ω)] | ω ∈ Ω} of Ω with the following property: if ω′ ∈ [ti(ω)] = bti(ω), then, for
any event, she knows it at ω iff she knows it at ω′. In a model of qualitative belief
in which player i’s qualitative-type mapping satisfies Consistency, Positive Introspec-
tion, and Negative Introspection, ∅ 6= bBi(·) ⊆ [tBi(·)] = (↑ tBi(·)).

Next, I apply the notion of informativeness to player i’s probabilistic-type mapping
τi : Ω → ∆(Ω) with respect to {βpE | (E, p) ∈ D × [0, 1]}. That is, player i is
reasoning about the underlying states based on her possession of p-beliefs. Since the
notion of possibility comes from qualitative beliefs, I start with a model that has both
qualitative and probabilistic beliefs (the case in which player i has only probabilistic
beliefs will be discussed shortly).

A state ω is at least as informative as a state ω′ to i (precisely, according to
τi : (Ω,D) → (∆(Ω), {βpE | (E, p) ∈ D × [0, 1]})) iff τi(ω

′)(·) ≤ τi(ω)(·). However,
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since each τi(·) is (countably-)additive, it follows that ω is at least as informative as
ω′ to i iff ω and ω′ are equally informative: ω′ ∈ [τi(ω)] := {ω′′ ∈ Ω | τi(ω′′) = τi(ω)}.
If player i does not believe an event E with probability at least p at a state, then she
does believe Ec with probability at least 1− p. Since player i is able to reason about
the possession of beliefs for any event and any probability, she is also able to reason
about the lack of beliefs when her probabilistic beliefs are (countably-)additive.20

Proposition 2B. Let
−→
Ω be a belief model, and let τi : Ω → ∆(Ω) be player i’s type

mapping.

1. Either Positive Certainty Bp
τi

(·) ⊆ BiB
p
τi

(·) or Negative Certainty (¬Bp
τi

)(·) ⊆
Bi(¬Bp

τi
)(·) yields bBi(·) ⊆ [τi(·)]: possibility implies (equal) informativeness.

2. Under the Kripke property of Bi, conversely, bBi(·) ⊆ [τi(·)] implies Positive
Certainty Bp

τi
(·) ⊆ BiB

p
τi

(·) and Negative Certainty (¬Bp
τi

)(·) ⊆ Bi(¬Bp
τi

)(·).

3.4.2 Harsanyi Property

Next, I move on to studying the notion of informativeness in a type space. To
that end, player i’s type mapping τi : Ω → ∆(Ω) satisfies the Harsanyi property if
[τi(ω)] ⊆ E implies ω ∈ B1

τi
(E) for any (ω,E) ∈ Ω×D. That is, whenever an event

E is implied by the set of states [τi(ω)] indistinguishable from ω, player i believes E
with probability one at ω (e.g., Meier, 2008, 2012; Mertens and Zamir, 1985).

Under the regularity condition [τi(·)] ∈ D, since each τi(ω) satisfies Monotonicity,
the Harsanyi property is equivalent to τi(ω)([τi(ω)]) = 1 for each ω ∈ Ω. It states
that, at each state, player i assign probability one to the set of states indistinguishable
from that state. In fact, in the type space literature, the informal assumption that
each player is certain of her own type is formally represented as the condition on the
type mapping to put probability one on the set of types indistinguishable from its
own (Mertens and Zamir, 1985; Vassilakis and Zamir, 1993).

In a type space, I show that the Harsanyi property characterizes the idea that a
player is certain of her own type mapping with respect to the beliefs that she could
have been able to possess.

Proposition 3B. Let (Ω,D) be a measurable space, and let τi : Ω→ ∆(Ω) be player
i’s type mapping.

1. Suppose that [τi(·)] ∈ D. The type mapping τi satisfies the Harsanyi property
iff player i is certain of τi : Ω → ∆(Ω) with respect to her realized beliefs
{{τi(ω)} | ω ∈ Ω}.

2. Let D be generated from a countable algebra. The following are all equivalent.

20While one can obtain a nuanced understanding of the relation between the informativeness and
certainty of a type mapping τi when each τi(·) is a non-additive measure, I focus on studying the
sense in which player i is certain of her countably-additive type mapping τi. Recall footnote 8.
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(a) The type mapping τi satisfies the Harsanyi property.

(b) Player i is certain of τi : (Ω,D)→ (∆(Ω), {{τi(ω)} | ω ∈ Ω}).

(c) Player i is certain of τi : (Ω,D)→ (∆(Ω),D∆).

(d) Player i is certain of τi : (Ω,D)→ (∆(Ω), {βpE | (E, p) ∈ D × [0, 1]}).

(e) Player i is certain of τi : (Ω,D)→ (∆(Ω), {¬βpE | (E, p) ∈ D × [0, 1]}).

Part (2) states that, under the regularity condition [τi(·)] ∈ D, the Harsanyi
property is equivalent to Bp

τi
(·) ⊆ B1

τi
Bp
τi

(·) or (¬Bp
τi

)(·) ⊆ B1
τi

(¬Bp
τi

)(·).
Next, I define the analogue of the Harsanyi property for qualitative belief: player i

believes an event E at ω if E is implied by the set [tBi(ω)] of states indistinguishable
from ω. The proposition below shows that the analogue of the Harsanyi property
characterizes the certainty of the qualitative-type mapping in the strongest sense.

Proposition 3A. Let
−→
Ω be a belief model such that [tBi(·)] ∈ D.

1. The following are equivalent.

(a) Player i is certain of her qualitative-type mapping tBi : (Ω,D)→ (M(Ω), {{tBi(ω)} |
ω ∈ Ω}).

(b) For any (ω,E) ∈ Ω×D with [tBi(ω)] ⊆ E, ω ∈ Bi(E).

2. If Bi satisfies the Kripke property, Positive Introspection, and Negative Intro-
spection, then player i is certain of her qualitative-type mapping tBi : (Ω,D)→
(M(Ω), {{tBi(ω)} | ω ∈ Ω}).

3. Under either condition in Part (1), Truth Axiom yields the Kripke property.

Part (1) is similar to Proposition 3B: under the regularity condition, the Harsanyi
property states that a player is certain of her own type mapping in the strongest sense.
Part (2) states that, in a possibility correspondence model, if a player’s belief is fully
introspective then she is certain of her qualitative-type mapping (or her possibility
correspondence) in the strongest sense.

Finally, I remark that, under Entailment Bi(·) ⊆ B1
τi

(·) in a qualitative belief
model, the Kripke property implies the Harsanyi property. Suppose qualitative and
probabilistic beliefs satisfy Entailment. Suppose also that player i is certain of her
type mapping τi : (Ω,D) → (∆(Ω), {βpE | (E, p) ∈ D × [0, 1]}). Thus, bBi(·) ⊆ [τi(·)]
holds as in Proposition 2B. Then, the Kripke property yields the Harsanyi property:
if [τi(ω)] ⊆ E then it follows from bBi(ω) ⊆ E that ω ∈ Bi(E) ⊆ B1

τi
(E).
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4 When are the Players Commonly Certain of a

Belief Model?

With the analyses in Section 3 in mind, I formalize the sense in which the players
are commonly certain of a belief model itself: the players are commonly certain of
the profile of their (qualitative- or probabilistic-)type mappings. By Remark 7, it
is sufficient to ask when every player i is certain of each player j’s (qualitative- or
probabilistic-)type mapping.

I start with a qualitative belief model. Proposition 1A applies to the case in which
player i is certain of player j’s qualitative-type mapping. For example, if player i is
certain of player j’s qualitative-type mapping tBj : (Ω,D) → (M(Ω),DM), then
Bj(·) ⊆ BiBj(·) and (¬Bj)(·) ⊆ Bi(¬Bj)(·) hold. Thus, Proposition 1A implies:

Remark 10A. Let
−→
Ω be a belief model in which player i’s belief operator Bi satisfies

Monotonicity, and let tBj : Ω→M(Ω) be player j’s qualitative-type mapping.

1. (a) Player i is certain of tBj with respect to {βE | E ∈ D} iff Bj(·) ⊆ BiBj(·).
(b) Player i is certain of tBj with respect to {¬βE | E ∈ D} iff (¬Bj)(·) ⊆

Bi(¬Bj)(·).
(c) If player i is certain of tBj : (Ω,D) → (M(Ω),DM), then Bj(·) ⊆ BiBj(·)

and (¬Bj)(·) ⊆ Bi(¬Bj)(·).

2. (a) LetBi satisfy Truth Axiom. Player i is certain of tBj : (Ω,D)→ (M(Ω),DM)
iff (Bj(·) ⊆ BiBj(·) and) (¬Bj)(·) ⊆ Bi(¬Bj)(·).

(b) Let Bi satisfy Consistency and Countable Conjunction. Player i is cer-
tain of tBj : (Ω,D) → (M(Ω),DM) iff Bj(·) ⊆ BiBj(·) and (¬Bj)(·) ⊆
Bi(¬Bj)(·).

Roughly, Remark 10A states that player i is certain of player j’s qualitative-type
mapping tBj iff (i) whenever player j believes an event E at ω, player i believes that
player j believes E at ω; and (ii) whenever player j does not believe an event E at
ω, player i believes that player j does not believe E at ω.

Now, I move to one of the main questions of this paper: I ask when the players
are commonly certain of the qualitative-type mappings in a belief model.

Theorem 1A. Let
−→
Ω be a belief model in which every Bi satisfies Monotonicity, and

let tBi : Ω→M(Ω) be player i’s qualitative-type mapping for each i ∈ I.

1. Assume Truth Axiom for every Bi. The players are commonly certain of the
profile of qualitative-type mappings tBi : (Ω,D) → (M(Ω),DM) iff, for every
i, j ∈ I, Bi = Bj, (Positive Introspection Bi(·) ⊆ BiBi(·)), and Negative Intro-
spection (¬Bi)(·) ⊆ Bi(¬Bi)(·). In particular, Bi = C for each i ∈ I.
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2. Assume Consistency and Countable Conjunction for every Bi. The players are
commonly certain of the profile of qualitative-type mappings tBi : (Ω,D) →
(M(Ω),DM) iff Bi(·) ⊆ CBi(·) and (¬Bi)(·) ⊆ C(¬Bi)(·) for every i ∈ I. In
particular, C = BI .

While Part (1) studies a knowledge model, Part (2) does a belief model. I start
with discussing three implications of Part (2). In words, Part (2) states that the
players are commonly certain of their qualitative-type mappings iff (i) for any event
E which some player i believes at some state ω, it is commonly believed that player
i believes E at ω; and (ii) for any event E which some player i does not believe at
some state ω, it is commonly believed that player i does not believe E at ω.21

In Part (2), the mutual belief and common belief operators coincide if the players
are commonly certain of their qualitative-type mappings, under the mild conditions
of Consistency and Countable Conjunction.22 This is because, for any event E which
everybody believes at some state ω, it is commonly believed that everybody believes
E at ω: BI(·) ⊆ CBI(·). Intuitively, in a model of which the players are commonly
certain, if everybody believes an event E then it is common belief that everybody
believes E. Thus, if everybody believes E then everybody believes that everybody
believes E. Hence, the first-order mutual belief itself implies any higher-order mutual
beliefs, and thus the mutual and common beliefs coincide.

Part (1) provides a contrast between knowledge and belief. In a knowledge model
with Truth Axiom, for the players to be commonly certain of the model, it is necessary
that their knowledge coincides with each other. In contrast, in a belief model without
Truth Axiom, it may be the case that the players’ beliefs are different but they are
commonly certain of their qualitative-type mappings. The following simple example
illustrates this point.

Example 3. Let (Ω,D) = ({ω1, ω2, ω3},P(Ω)). Let B1 be induced by a possibility
correspondence b1 given as follows: b1(ω1) = {ω1} and b1(ω2) = b1(ω3) = {ω2}. Let
B2 be induced by a possibility correspondence b2 given as follows: b2(ω1) = {ω1}
and b2(ω2) = b2(ω3) = {ω2, ω3}. By inspection, each bi is serial, transitive, and
Euclidean. Thus, each Bi satisfies Consistency, Positive Introspection, and Negative
Introspection in addition to the Kripke property (which implies Monotonicity, Count-
able Conjunction, and Necessitation). Table 1 depicts B1, B2, and C = BI (note that
BI = Bn

I ).
By inspection, it can be seen from the table that Bi = CBi and (¬Bi) = C(¬Bi)

for each i ∈ I = {1, 2}. Thus, the players are commonly certain of the profile of
qualitative-type mappings (tBi)i∈I . However, B1 6= B2.

21In fact, since each Bi satisfies Consistency, it can be seen that C also satisfies Consistency.
Then, it can also be seen that Bi = CBi and (¬Bi) = C(¬Bi) for every i ∈ I.

22The converse does not hold, i.e., C = BI does not necessarily imply that the players are certain
of the profile of their qualitative-type mappings. As a simple example, let (Ω,D) = ({ω1, ω2},P(Ω)).
Let B1(E) = E and B2(E) = Ec for all E ∈ D. Then, BI(·) = C(·) = ∅, and the players are not
commonly certain of their qualitative-type mappings.
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E ∅ {ω1} {ω2} {ω3} {ω1, ω2} {ω1, ω3} {ω2, ω3} Ω
B1(E) ∅ {ω1} {ω2, ω3} ∅ Ω {ω1} {ω2, ω3} Ω
B2(E) ∅ {ω1} ∅ ∅ {ω1} {ω1} {ω2, ω3} Ω
BI(E) ∅ {ω1} ∅ ∅ {ω1} {ω1} {ω2, ω3} Ω
C(E) ∅ {ω1} ∅ ∅ {ω1} {ω1} {ω2, ω3} Ω

Table 1: Inidvidual and Common Beliefs: B1, B2, BI , and C (Example 3)

Moving on to probabilistic beliefs, Proposition 1B applies to the case in which
player i is certain of player j’s probabilistic-type mapping:

Remark 10B. Let
−→
Ω be a belief model in which player i’s belief operator Bi satisfies

Monotonicity, and let τj : Ω→ ∆(Ω) be player j’s type mapping.

1. (a) Player i is certain of τj with respect to {βpE | (E, p) ∈ D × [0, 1]} iff
Bp
τj

(·) ⊆ BiB
p
τj

(·).
(b) Player i is certain of τj with respect to {¬βpE | (E, p) ∈ D × [0, 1]} iff

(¬Bp
τj

)(·) ⊆ Bi(¬Bp
τj

)(·).
(c) If player i is certain of τj : (Ω,D) → (∆(Ω),D∆), then Bp

τj
(·) ⊆ BiB

p
τj

(·)
and (¬Bp

τj
)(·) ⊆ Bi(¬Bp

τj
)(·).

2. (a) Let Bi satisfy Truth Axiom and Negative Introspection. Player i is cer-
tain of τj : (Ω,D) → (∆(Ω),D∆) iff Bp

τj
(·) ⊆ BiB

p
τj

(·) iff (¬Bp
τj

)(·) ⊆
Bi(¬Bp

τj
)(·).

(b) Let Bi satisfy Consistency, Countable Conjunction, Positive Introspection,
and Negative Introspection. Player i is certain of τj : (Ω,D)→ (∆(Ω),D∆)
iff Bp

τj
(·) ⊆ BiB

p
τj

(·) and (¬Bp
τj

)(·) ⊆ Bi(¬Bp
τj

)(·).

As in Remark 10A, Remark 10B roughly states that player i is certain of player
j’s probabilistic-type mapping iff (i) whenever player j p-believes an event E at ω,
player i believes that player j p-believes the event E at ω; and (ii) whenever player j
does not p-believe an event E at ω, player i believes that player j does not p-believe
the event E at ω.

Now, I ask one of the main questions of this paper in the context of probabilistic-
type mappings: when are the players in a belief model commonly certain of their
probabilistic-type mappings?

Theorem 1B. Let
−→
Ω be a belief model, and let τi : Ω → ∆(Ω) be player i’s type

mapping for each i ∈ I. Assume Monotonicity, Consistency, and Countable Con-
junction for every Bi. The players are commonly certain of the profile of type map-
pings τi : (Ω,D) → (∆(Ω),D∆) iff Bp

τi
(·) ⊆ CBp

τi
(·) and (¬Bp

τi
)(·) ⊆ C(¬Bp

τi
)(·) for

every (i, p) ∈ I × [0, 1]. If Bi = B1
τi

is taken for every i ∈ I, then C1 = B1
I , where

B1
I (·) :=

⋂
i∈I B

1
τi

(·) is the mutual 1-belief operator.
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Roughly, Theorem 1B states: the players are commonly certain of their probabilistic-
type mappings iff (i) for any event E which some player i p-believes at some state ω,
it is commonly believed that player i p-believes E at ω; and (ii) for any event E which
some player i does not p-believe at some state ω, it is commonly believed that player
i does not p-believe E at ω. If each player’s belief operator Bi in the belief model is
taken as probability-one belief operator B1

τi
, then the probability-one common belief

operator reduces to the probability-one mutual belief operator.
To conclude this section, I provide two further remarks on Theorems 1A and

1B. First, Theorems 1A and 1B are impossibility results in the following sense. In
Theorem 1A, every player’s knowledge operator coincides. In Theorem 1B, the mutual
and common belief operators coincide. In this regard, at an informal level, Theorem
1A has some similarity with the following two results.

The first result is the impossibility of agreeing-to-disagree (Aumann, 1976): (un-
der a common prior) if two players have common knowledge of their posteriors then
the posteriors coincide. Here, if the players are commonly certain of their knowledge-
generating mappings, then their knowledge operators coincide. Note that the under-
lying forces behind the two results are different. For instance, Bayes updating and
a common prior, which play a crucial role in the agreement theorem, are not even
present in Theorem 1A.

The second result is the characterization of rational-expectations equilibria in an
interactive epistemic model. At a rational-expectations equilibrium, the informa-
tional contents of players’ strategies are revealed so that their strategies are common
knowledge, and if such information revelation is fine enough then the differences in
players’ knowledge may be muted (see, for instance, McKelvey and Page (1986) and
Minelli and Polemarchakis (2003) in the context of interactive knowledge models).23

My results are related to this strand of literature in that the meta-certainty of a model
may mute differences in players’ beliefs.

Second, I study an implication of Theorems 1A and 1B (the “common meta-
certainty” of a belief model) to the certainty of a signal. Suppose that the players
are commonly certain of a belief model. If player i is certain of a signal x : Ω → X,
then is player j also certain of the signal x? While the players’ beliefs may not be
homogeneous, the proposition below shows that this is the case.

Proposition 4. Let
−→
Ω be a belief model such that each Bi satisfies Monotonicity and

Consistency. Let x : (Ω,D)→ (X,X ) be a signal mapping such that, for any F ∈ X ,
there exists a sub-collection (Fλ)λ∈Λ of X with F c =

⋃
λ∈Λ Fλ.

A. i. If player i is certain of x : (Ω,D) → (X,X ) and if player j is certain of
player i’s qualitative-type mapping tBi : (Ω,D)→ (M(Ω),DM), then player j
is certain of x : (Ω,D)→ (X,X ).

23In fact, the framework of this paper allows one to formally define what means by the statement
that players commonly know their strategies.
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ii. Suppose that the players are commonly certain of the profile of their qualitative-
type mappings tBi : (Ω,D) → (M(Ω),DM). Then, player i is certain of
x : (Ω,D)→ (X,X ) iff player j is certain of x : (Ω,D)→ (X,X ).

B. i. Let τi : (Ω,D) → (∆(Ω),D∆) be player i’s (probabilistic-)type mapping, and
assume Entailment: Bi(·) ⊆ B1

τi
(·). If player i is certain of x : (Ω,D) →

(X,X ) and if player j is certain of player i’s type mapping τi : (Ω,D) →
(∆(Ω),D∆), then player j is certain of x : (Ω,D)→ (X,X ).

ii. Suppose that the players are commonly certain of the profile of their type
mappings τi : (Ω,D) → (∆(Ω),D∆). Suppose Entailment for every player i:
Bi(·) ⊆ B1

τi
(·) Then, player i is certain of x : (Ω,D)→ (X,X ) iff player j is

certain of x : (Ω,D)→ (X,X ).

While Part (A) asks the certainty of qualitative-type mappings, Part (B) does
that of probabilistic-type mappings. The meta-common-certainty assumption states
that if player i is certain of her own strategy and if player j is certain of player i’s type
mapping then player j is certain of player i’s strategy. In particular, if the players are
commonly certain of the profile of their type mappings and if each player is certain of
her own strategy, then it follows that the players are commonly certain of the strategy
profile. In the next section, I clarify the role of such meta-certainty assumptions on
game-theoretic solution concepts.

Third, one can also ask whether the players are commonly certain of the qualitative-
type mapping tC that represents common belief. Since the common belief operator
C satisfies Positive Introspection, the players are commonly certain of tC : (Ω,D)→
(M(Ω), {βE | E ∈ D}), which is equivalent to C(·) ⊆ BiC(·). Now:

Remark 11. Let
−→
Ω be a belief model, and let tC : (Ω,D) → (M(Ω),DM) be the

qualitative-type mapping that represents the common belief operator C. Suppose
that each belief operator Bi satisfies Monotonicity, Consistency, and Countable Con-
junction. The following are equivalent.

1. The players are commonly certain of tC : (Ω,D)→ (M(Ω),DM).

2. C satisfies Negative Introspection: (¬C)(·) ⊆ C(¬C)(·).

3. (¬C)(·) ⊆ Bi(¬C)(·) for each i ∈ I.

Since each Bi satisfies Consistency and Countable Conjunction, so does the com-
mon belief operator C. Then, the players are commonly certain of tC : (Ω,D) →
(M(Ω),DM) iff C(·) ⊆ BiC(·) (which always holds) and (¬C)(·) ⊆ Bi(¬C)(·) for
every i ∈ I. It can be seen that the latter condition is equivalent to Negative Intro-
spection of C, establishing the remark.

33



5 What Role Does the “Meta-Certainty” of a Model

Play in Game-theoretic Analyses?

Section 4 has examined when the players are commonly certain of a belief model.
Moving on to the second objective of the paper, I examine the role that the “meta-
certainty” assumption plays in game-theoretic analyses of solution concepts.

5.1 Iterated Elimination of Strictly Dominated Actions

This section considers the solution concept of iterated elimination of strictly domi-
nated actions (IESDA) in a strategic game, one of the most important solution con-
cepts in game theory. Informally, an epistemic characterization of IESDA states that,
in a strategic game, if the (i) “logical” players are (ii) “commonly (meta-)certain of
the game” and if they (iii) commonly believe their rationality, then their resulting ac-
tions survive IESDA. Formally, in the context of the framework of this paper, Fukuda
(2020) shows that if the players commonly believe each player’s rationality and if each
of them correctly believes their own rationality, then their resulting actions survive
IESDA, without assuming any property on individual players’ beliefs.

This paper connects these two statements as follows: first, suppose that the play-
ers are logical in that their beliefs satisfy Monotonicity, Consistency, and Finite Con-
junction. Second, suppose that each of them is certain of their own qualitative-type
mapping and strategy. Third, suppose that the players commonly believe their ratio-
nality. Then, their resulting actions survive IESDA. In what follows, I show that the
certainty (of her own strategy and type mapping) allows her to correctly believe her
own rationality.

5.1.1 A Strategic Game, a Model of a Game, and Rationality

A (strategic) game is a tuple Γ = 〈(Ai)i∈I , (<i)i∈I〉: Ai is a non-empty finite set
of player i’s actions, and <i is i’s (complete and transitive) preference relation on
A :=×i∈I Ai.

24 Denote by∼i and�i the indifference and strict relations, respectively.
A (belief) model of the game Γ is a tuple 〈(Ω,D), (Bi)i∈I , C, (σi)i∈I〉 (abusing the

notation, denote it by
−→
Ω ) with the following two properties. First, 〈(Ω,D), (Bi)i∈I , C〉

is a belief model. Second, σi : Ω→ Ai is a strategy of player i satisfying the measur-
ability condition that σ−1

i ({ai}) ∈ D for all ai ∈ Ai. Denote [σi(ω)] := σ−1
i ({σi(ω)})

for each ω ∈ Ω.
Denote by [a′i <i ai] := {ω′ ∈ Ω | (a′i, σ−i(ω

′)) <i (ai, σ−i(ω
′))} ∈ D for any

ai, a
′
i ∈ Ai. In words, [a′i <i ai] is the event that player i prefers taking action a′i

to ai given the opponents’ strategies σ−i. The set [a′i <i ai] is an event because

24The assumption on the cardinality of each action set Ai is to simplify the analysis. See Fukuda
(2024b) for an epistemic characterization of IESDA when there is no cardinality restriction.
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[a′i <i ai] = σ−1
−i ({a−i ∈ A−i | (a′i, a−i) <i (ai, a−i)}) ∈ D. Define [a′i �i ai] and

[a′i ∼i ai] analogously.
Denote by RATi the event that player i is rational (see, e.g., Bonanno, 2008, 2015;

Chen, Long, and Luo, 2007):

RATi :={ω ∈ Ω | ω ∈ Bi([a
′
i �i σi(ω)]) for no a′i ∈ Ai}

=
⋂
ai∈Ai

(σ−1
i ({ai}))c ∪

⋂
a′i∈Ai

(¬Bi)([a
′
i �i ai])

 ∈ D.
Let RATI :=

⋂
i∈I RATi. Player i is rational at ω ∈ Ω if there is no action a′i ∈ Ai

such that player i believes that playing a′i is strictly better than playing σi(ω) given
the opponents’ strategies σ−i. In other words, player i is rational at ω if, for any
action a′i, she always considers it possible that playing σi(ω) is at least as good as
playing a′i given the opponents’ strategies σ−i: ω ∈ (¬Bi)(¬[σi(ω) <i a

′
i]) for any

a′i ∈ Ai.
Now, the epistemic characterization of IESDA is stated as follows. Suppose that

each player i correctly believes her own rationality: Bi(RATi) ⊆ RATi for every i ∈ I.
If every player’s rationality is common belief at ω, i.e., ω ∈

⋂
i∈I C(RATi), then the

resulting actions (σi(ω))i∈I ∈ A survive IESDA.25

Finally, in this section, player i is certain of her own strategy σi if she is certain
of σi : (Ω,D) → (Ai, {{ai} | ai ∈ Ai}). Especially, [σi(·)] ⊆ Bi([σi(·)]). Note that,
under Monotonicity and Consistency, if player i is certain of her own strategy then
Bi([σi(·)]) = [σi(·)], [σi(·)]c = Bi([σi(·)]c), and Bi(Ω) = Ω.26

5.1.2 A Counterexample without Certainty of Strategies

The standard assumptions on qualitative belief (i.e., Consistency, Positive Introspec-
tion, Negative Introspection, and the Kripke property) guarantee that Bi(RATi) =
RATi (e.g., Bonanno, 2008, 2015).27 In such case, if players commonly believe their
rationality at a state, their actions at that state survive IESDA.

Here, I provide a counterexample in which if players are not necessarily logical and
are not necessarily certain of their qualitative-type mappings and strategies, then the
prediction under common belief in rationality may not necessarily capture IESDA.

25The “converse” also holds. For any action profile hat survives IESDA, there exist a belief model
and a state such that each player correctly believes her own rationality, the players commonly believe
each player’s rationality, and they take the given actions at the state.

26Under Consistency and Monotonicity of Bi, it can be shown that the certainty of own strategy
implies that if player i is rational at ω, then she never takes a strictly dominated action at ω (if she
takes a strictly dominated action, then her belief violates Necessitation Bi(Ω) = Ω).

27It can be seen that Consistency, Positive Introspection, and the Kripke property in addition to
the certainty of i’s own strategy yield Bi(RATi) ⊆ RATi. Likewise, Negative Introspection and the
Kripke property in addition to the certainty of i’s own strategy yield RATi ⊆ Bi(RATi).
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a b c
a 0, 0 0, 1 0, 0
b 1, 0 1, 1 1, 2
c 0, 0 2, 1 2, 2

Table 2: A Strategic Game (Example 4)

Example 4. Consider a two-player strategic game represented by Table 2. The set
of players is I = {1, 2}. Let Ω = {ω1, ω2, ω3, ω4} and D = P(Ω). Suppose that each
Bi is defined as follows:

Bi(E) =



{ω1} if E = {ω1}
{ω2} if E = {ω2, ω3, ω4}
{ω1, ω2, ω3} if E ∈ {{ω3, ω4}, {ω1, ω2, ω3}}
Ω if E = Ω

∅ otherwise

.

Each player’s belief operator Bi does not satisfy Monotonicity (e.g., Bi({ω1, ω2}) 6⊆
Bi({ω1})). Since Bi also violates Positive Introspection (e.g., Bi({ω2, ω3, ω4}) 6⊆
BiBi({ω2, ω3, ω4})), player i is not certain of her own qualitative-type mapping.

Since JBI = {∅, {ω1, ω2, ω3},Ω}, it follows from Expression (1) that the common
belief operator C satisfies:

C(E) =


{ω1, ω2, ω3} if E ∈ {{ω3, ω4}, {ω1, ω2, ω3}}
Ω if E = Ω

∅ otherwise

.

Suppose that each player’s strategy is given by (σi(ω))ω∈Ω = (a, b, b, c). Each
player is not certain of her own strategy σi. For example, at state ω4 at which player
i takes c, she does not believe that she takes c.

One can show RATi = {ω3, ω4}.28 Thus, each player i does not have correct
belief in her rationality: Bi(RATi) 6⊆ RATi. In fact, since C({ω3, ω4}) = {ω1, ω2, ω3},
at ω3 ∈

(⋂
i∈I RATi

)
∩
(⋂

i∈I C(RATi)
)

at which every player is rational and it is
common belief that each player is rational, the players’ actions are (b, b), which is not
consistent with the unique prediction under IESDA, which is (c, c).

28Roughly, the proof goes as follows. At ω1, player i believes that playing b is better than playing
σi(ω1) = a. At ω2 and only at ω2, player i believes that playing c is better than playing σi(ω2) = b
given σ−i. At ω3, player i does not believe that playing a′i is better than playing σi(ω3) = b given
σ−i. At ω4, player i does not believe that playing a′i is better than playing σi(ω4) = c given σ−i,
because only at ω1, player i believes that playing b is better than playing c given σ−i.
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The rest of this section studies a sufficient condition in terms of a player’s reasoning
about her own beliefs under which the player correctly believes her own rationality.
In particular, when each player is logical and correctly believes her own rationality,
then common belief in rationality captures the predictions under IESDA.

5.1.3 The Role of Meta-certainty in Correctly Believing One’s Own Ra-
tionality

I ask under what conditions player i correctly believes her own rationality: Bi(RATi) ⊆
RATi. Here, I provide a compatibility condition on belief with informativeness, under
which a player correctly believes her own rationality.

Definition 3. Player i’s belief (operator Bi) is compatible with informativeness (de-
rived from the qualitative-type mapping tBi) if (↑ tBi(ω)) ∩ E 6= ∅ for any E ∈ D
with ω ∈ Bi(E).

In words, player i’s beliefs are compatible with informativeness if, for any event
E which player i believes at some ω, there exists a state ω′ in E which is at least as
informative as ω. If player i’s belief operator Bi satisfies the Kripke property, Consis-
tency, and Positive Introspection, then Bi is compatible with informativeness.29 The
compatibility with informativeness does not necessarily imply the Kripke property
(and vice versa).30 Thus, the compatibility with informativeness allows for the failure
of Monotonicity. If player i’s belief operator Bi is compatible with informativeness,
then it satisfies Bi(∅) = ∅. Thus, under Finite Conjunction, if Bi is compatible with
informativeness, then it satisfies Consistency.

One can also apply the compatibility with informativeness to the context of prob-
abilistic beliefs. Namely, player i’s 1-belief operator B1

τi
is compatible with infor-

mativeness derived from the type mapping τi. Proposition 5 (B) below implies that
player i’s belief operator B1

τi
is compatible with informativeness under the Harsanyi

property.
The following proposition states that the compatibility of beliefs with informa-

tiveness is implied by the certainty of a type mapping.

Proposition 5. Let
−→
Ω be a belief model.

A. Assume: (i) (↑ tBi(·)) ∈ D; (ii) Bi satisfies Monotonicity, Consistency, and
Finite Conjunction; and that (iii) player i is certain of tBi : Ω → M(Ω) with
respect to {{µ ∈ M(Ω) | µ(·) ≥ tBi(ω)(·)} | ω ∈ Ω}. Then, Bi is compatible with
informativeness.

29The proof goes as follows. For any E ∈ D with ω ∈ Bi(E), ∅ 6= E ∩ bBi(ω) ⊆ E ∩ (↑ tBi(ω)).
30Let (Ω,D) = ({ω1, ω2},P(Ω)). Define Bi as Bi(E) = E if E 6= Ω; and Bi(Ω) = ∅. While Bi is

compatible with informativeness, it does not satisfy the Kripke property. Define Bj as Bj(E) = E
if E ∈ {∅,Ω}; and Bj(E) = Ec if E ∈ {{ω1}, {ω2}}. While Bj satisfies the Kripke property, it is
not compatible with informativeness.

37



B. Let τi : (Ω,D)→ (∆(Ω),D∆) be player i’s probabilistic-type mapping in the belief

model
−→
Ω . Assume (i) the Harsanyi property; and (ii) Entailment: Bi(·) ⊆ B1

τi
(·).

Then, Bi is compatible with informativeness.

Part (A) states that, under the regularity condition (i), if player i is logical (in that
her belief operator satisfies Monotonicity, Consistency, and Finite Conjunction) and
if she is certain of her qualitative-type mapping, then her beliefs are compatible with
informativeness. Theorem 2 below establishes that if player i’s beliefs are compatible
with informativeness then she correctly believes her rationality, which is a part of the
preconditions of the epistemic characterization of IESDA.

Part (B) states that the Harsanyi property implies the compatibility with infor-
mativeness. Recall Proposition 2B: under the regularity condition [τi(·)] ∈ D, the
Harsanyi property holds iff player i is certain of her probabilistic-type mapping.

Now, I present the main result of this subsection. The theorem says that a player
correctly believes her own rationality if: (i) she is certain of her own strategy; (ii)
her belief is compatible with the informativeness; and if (iii) her belief is (finitely)
conjunctive so that she can simultaneously reason about her own strategy and her
own rationality.

Theorem 2. Suppose that player i is certain of her own strategy. Also, let Bi be com-
patible with informativeness and satisfy Finite Conjunction. Then, player i correctly
believes her own rationality: Bi(RATi) ⊆ RATi.

Proposition 5 and Theorem 2 imply that player i correctly believes her own ra-
tionality if she is logical and if she is certain of her own type mapping and strategy.
Theorem 2 states that, for the role of the meta-certainty assumption of a belief model
on IESDA, it is not necessary that each player is certain of the profile of type map-
pings but it is sufficient that each player is certain of her own type mapping. In fact,
one can incorporate the assumptions that each player is certain of her own qualitative
type-mapping and strategy into the condition that she is certain of the part of the
model of a game 〈(Ω,D), (tBi , σi)〉 that dictates her beliefs and strategy.

In Theorem 2, as shown in Example 5 below, the assumptions of the compatibility
with informativeness and Finite Conjunction cannot be dropped.

Example 5. Consider the two-player coordination game represented by the left
panel of Table 3. Let (Ω,D) = ({ω1, ω2, ω3},P(Ω)). Let (σ1(ω))ω∈Ω = (a, a, b)
and (σ2(ω))ω∈Ω = (a, a, c). Suppose that B1 and B2 are given by the right panel
of Table 3. It can be seen that B1 violates Finite Conjunction (as B1({ω1, ω2}) ∩
B1({ω2, ω3}) 6⊆ B1({ω2})), and that B2 is not consistent with informativeness (e.g.,
while ω1 ∈ B2({ω2, ω3}), (↑ tB2)(ω1) ∩ {ω2, ω3} = ∅).

It can be seen that RATi = {ω1, ω2}. For instance, at ω3, player i believes that
playing a is better than playing σi(ω3) given σ−i. Then, Bi(RATi) 6⊆ RATi for each
i ∈ {1, 2}.
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a b c
a 1, 1 0, 0 0, 0
b 0, 0 1, 1 0, 0
c 0, 0 0, 0 1, 1

E B1(E) B2(E)

∅ ∅ ∅
{ω1} ∅ ∅
{ω2} ∅ ∅
{ω3} ∅ ∅
{ω1, ω2} {ω2, ω3} {ω3}
{ω1, ω3} {ω1} {ω2}
{ω2, ω3} {ω2} {ω1}

Ω Ω Ω

Table 3: A Counterexample for Theorem 2. The left panel depicts the coordination
game while the right panel depicts the players’ beliefs on (Ω,D).

5.2 Discussions on Other Solution Concepts

This subsection briefly discusses other solution concepts. First, similar analyses and
conclusion to Section 5.1 would be obtained for other “rationalizability” solution
concepts such as Börgers (1993) (see also Bonanno and Tsakas, 2018; Hillas and
Samet, 2020).

Second, another important solution concept is Nash equilibria. One of the well-
known epistemic characterizations of a pure-strategy Nash equilibrium is that if, at
a state ω, if every player is certain of the strategy profile σ (in the formal sense of
this paper) and if every player is rational (i.e., ω ∈ RATI), then the resulting actions
σ(ω) taken at that state constitute a pure-strategy Nash equilibrium.31 The common
certainty of the model would not be needed.

Third, I consider mixed-strategy Nash equilibria. A (strategic) game is a tuple
Γ = 〈(Ai)i∈I , (ui)i∈I〉, where each Ai is a non-empty finite set of player i’s actions,
and ui : A → R is player i’s von-Neumann Morgenstern utility function. I simply
focus on players’ probabilistic beliefs. Thus, a (belief) model of the game Γ is a
tuple 〈(Ω,D), (τi)i∈I , C

1, (σi)i∈I〉: each τi : (Ω,D) → (∆(Ω),D∆) is player i’s type
mapping, C1 is the common 1-belief operator, and σi : (Ω,D)→ (Ai,P(Ai)) is player
i’s strategy. In this context, player i is rational at ω if∫

ui(σ(ω̃))τi(ω)(dω̃) ≥
∫
ui(ai, σ−i(ω̃))τi(ω)(dω̃) for all ai ∈ Ai.

I start with the two-players case: I = {1, 2}. One of the well-known epistemic
characterizations of mixed-strategy Nash equilibria is stated as follows (e.g., Aumann
and Brandenburger, 1995; Stalnaker, 1994): if each player i is certain of the other’s
beliefs about i’s strategy choice at ω (i.e., player i is certain of the conjecture τj(ω) ◦
σ−1
i ∈ ∆(Ai) where j is the opponent) and if each player i 1-believes that the other is

31See Aumann and Brandenburger (1995) and Stalnaker (1994) for pioneering papers in epistemic
characterizations of Nash equilibria.

39



L R
U 1, 1, 1 0, 0, 0
D 0, 0, 0 0, 0, 0

A

L R
U 0, 0, 0 0, 0, 0
D 0, 0, 0 1, 1, 1

B

Table 4: Three-players Coordination Game (Example 6)

rational at ω, then the resulting pair of conjectures (τ2(ω)◦σ−1
1 , τ1(ω)◦σ−1

2 ) constitutes
a mixed-strategy Nash equilibrium. In this statement, the common certainty of the
model is not required.32 In this epistemic characterization, each player i is certain
not of the other’s type mapping τj but of the conjecture (j’s beliefs about i’s actions).

Next, consider the case in which I = {1, 2, . . . , n}. Suppose that each player’s type
mapping τi is induced from a common prior µ (recall Expression (2) with respect
to µi = µ). For ease of exposition, restrict attention to the case in which Ω is
finite and the common prior puts positive probability to every state. If the players
mutually 1-believe that they are rational at ω and if they are commonly certain of their
conjectures at ω, then, for each player j, all the conjectures of players i ∈ I\{j} induce
the same conjecture φj ∈ ∆(Aj), and (φj)j∈I is a mixed-strategy Nash equilibrium.

Now, I provide a simple example which illustrates that the common certainty of
the model is not required for the above epistemic characterizations of mixed-strategy
Nash equilibria.

Example 6. Consider the following three-players coordination game depicted by
Table 4. Player 1 chooses a row, player 2 does a column, and player 3 does a matrix.

Let (Ω,D) = ({ω1, ω2, . . . , ω8},P(Ω)). Assume that there is a uniform common
prior µ = (1

8
, 1

8
, . . . , 1

8
). For player 1, let

τ1(ω) =

{
(1

4
, 1

4
, 1

4
, 1

4
, 0, 0, 0, 0) if ω ∈ {ω1, ω2, ω3, ω4}

(0, 0, 0, 0, 1
4
, 1

4
, 1

4
, 1

4
) if ω ∈ {ω5, ω6, ω7, ω8}

.

For player 2, let

τ2(ω) =

{
(1

4
, 1

4
, 0, 0, 1

4
, 1

4
, 0, 0) if ω ∈ {ω1, ω2, ω5, ω6}

(0, 0, 1
4
, 1

4
, 0, 0, 1

4
, 1

4
) if ω ∈ {ω3, ω4, ω7, ω8}

.

For player 3, let

τ3(ω) =

{
(1

4
, 0, 1

4
, 0, 1

4
, 0, 1

4
0) if ω ∈ {ω1, ω3, ω5, ω7}

(0, 1
4
, 0, 1

4
, 0, 1

4
, 0, 1

4
) if ω ∈ {ω2, ω4, ω6, ω8}

.

32I will provide an example in the context of |I| ≥ 3, which requires a tighter condition on the
players’ beliefs.
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Thus, the players are not commonly certain of the model (i.e., the profile of type
mappings). Let

σ1 = (U,U, U, U,D,D,D,D),

σ2 = (L,L,R,R, L, L,R,R), and

σ3 = (A,B,A,B,A,B,A,B).

Now, it can be seen that the conditions for the above epistemic characterization are
met, and their conjectures satisfy the following, which constitute a mixed-strategy
Nash equilibrium in which every player is mixing with probability 1

2
:

φ1 = τj(ω) ◦ σ−1
1 =

(
1

2
,
1

2

)
on (U,D) for each j 6= 1,

φ2 = τj(ω) ◦ σ−1
2 =

(
1

2
,
1

2

)
on (L,R) for each j 6= 2, and

φ3 = τj(ω) ◦ σ−1
3 =

(
1

2
,
1

2

)
on (A,B) for each j 6= 3.

5.3 Communication Leading to Agreement or No Trade

In epistemic game theory, there is a strand of literature studying whether com-
munication between players lead to eliminating differences in private information.
The pioneering papers are Geanakoplos and Polemarchakis (1982) and Sebenius and
Geanakoplos (1983).

Geanakoplos and Polemarchakis (1982) show that “if two agents have the same
priors and if they know the type of information the other is capable of having obtained
(they know each other’s “information partitions”), then simply the terse announce-
ment of probability assessments back and forth will leads to a common judgment.”

Sebenius and Geanakoplos (1983) demonstrate that “if the two parties share priors
and their information partitions are common knowledge, simple discussion of the ac-
ceptability of any proposed bet [reveals] enough about the parties’ private information
to render the bet unacceptable.”

To illustrate that the common certainty assumption would not be needed to derive
these results, this subsection studies Hart and Tauman (2004)’s ingenious example
through the lens of this paper. Hart and Tauman (2004) recast one of the examples
of Geanakoplos and Polemarchakis (1982) to illustrate that sudden changes in market
behavior can come from traders’ endogenous information processing.

Example 7. Suppose that there are two traders A (Alice) and B (Bob). Day after
day, Alice is selling and Bob buying, until when Bob switches from buying to selling.

Let Ω = {1, 2, . . . , 9} and D = P(Ω), and let µ be the uniform common prior.
Each state denotes an economic outcome.
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At date 1, Alice’s belief (indeed, knowledge) operator B1
A is induced by the pos-

sibility correspondence b1
A given by b1

A(1) = b1
A(2) = b1

A(3) = {1, 2, 3}, b1
A(4) =

b1
A(5) = b1

A(6) = {4, 5, 6}, and b1
A(7) = b1

A(8) = b1
A(9) = {7, 8, 9}. With some abuse

of notation, I denote b1
A by the partition b1

A = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}. Bob’s
belief (indeed, knowledge) operator B1

B is induced by the possibility correspondence
b1
B = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9}}.

I denote by bti each trader i’s possibility correspondence at time t. At time t, then,
for each trader i ∈ I = {A,B}, i’s type mapping τ ti is given by

τ ti (ω)(E) = µ(E | bti(ω)) for each (ω,E) ∈ Ω×D.

Thus, at each date t, each trader is certain of her/his type mapping τ ti .
Assume that the true state is ω∗ = 1. Let E∗ = {1, 5, 9}, which is interpreted as

the event of a “bad” outcome. At each date t, each trader i is assumed to behave
according to the following rule:

xti(ω) =

{
Sell, if the trader’s belief in E∗ at ω is 0.3 or more

Buy, if the trader’s belief in E∗ at ω is less than 0.3
.

The behavior rule of trader i at date t depends on i’s possibility correspondence at
that date.

At the beginning of date 1, Alice’s trading rule x1
A is

x1
A(ω) = Sell for all ω ∈ Ω.

This is because τ 1
A(·)(E∗) = 1

3
> 0.3. In contrast, Bob’s trading rule x1

B is

x1
B(ω) =

{
Sell if ω = 9

Buy if ω 6= 9
.

This is because τ 1
B(9)(E∗) = 1 > 0.3 and τ 1

B(ω)(E∗) = 1
4
< 0.3 if ω 6= 9. While Alice’s

action at ω∗ is Sell, Bob’s Buy.
At the end of date t, each trader i updates the possibility correspondence bt+1

i so
that, at the beginning of date t+ 1, trader i is certain of i’s type mapping τ t+1

i : Ω→
∆(Ω) with respect to {[τ ti (ω)]}ω∈Ω ∪ {[xtj(ω)]}ω∈Ω, where j denotes the opponent. In
words, at the beginning of date t + 1, each trader i updates her/his knowledge and
probabilistic belief in ways such that trader i has observed the trading rule of the
opponent at the previous date and that trader i is certain of her/his type mapping.

Thus, at the beginning of date 2, Alice’s possibility correspondence is given by the
coarsest partition that is finer than b1

A and {[x1
B(ω)]}ω∈Ω: b2

A = {{1, 2, 3}, {4, 5, 6}, {7, 8}, {9}}.
Bob’s possibility correspondence is given by b2

B = b1
B, because no new information is

revealed from Alice’s trading rule at date 1, i.e., [x1
A(·)] = Ω.
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At date 2, accordingly, while x2
B = x1

B,

x2
A(ω) =

{
Sell if ω 6∈ {7, 8}
Buy if ω ∈ {7, 8}

.

While Alice’s action at ω∗ is Sell, Bob’s Buy.
At date 3, while Alice’s possibility correspondence is given by b3

A = b2
A, Bob’s pos-

sibility correspondence is given by: b3
B = {{1, 2, 3, 4}, {5, 6}, {7, 8}, {9}}. Accordingly,

while x3
A = x2

A,

x3
B(ω) =

{
Sell if ω ∈ {5, 6, 9}
Buy if ω 6∈ {5, 6, 9}

.

While Alice’s action at ω∗ is Sell, Bob’s Buy.
At date 4, while Bob’s possibility correspondence is given by b4

B = b3
B, Alice’s

possibility correspondence is given by: b4
A = {{1, 2, 3}, {4}, {5, 6}, {7, 8}, {9}}. Ac-

cordingly, while x4
B = x3

B,

x4
A(ω) =

{
Sell if ω 6∈ {4, 7, 8}
Buy if ω ∈ {4, 7, 8}

.

While Alice’s action at ω∗ is Sell, Bob’s Buy.
At date 5, while Alice’s possibility correspondence is given by b5

A = b4
A, Bob’s

possibility correspondence is given by: b5
A = {{1, 2, 3}, {4}, {5, 6}, {7, 8}, {9}}. Ac-

cordingly, while x5
A = x4

A,

x5
B(ω) =

{
Sell if ω 6∈ {4, 7, 8}
Buy if ω ∈ {4, 7, 8}

.

Now, Alice and Bob both sell at ω∗.

On the one hand, in the literature, the common knowledge of a model (i.e., the
players’ partitions) are informally assumed. On the other hand, in Example 7, ac-
cording to the definition of this paper, Alice and Bob are not commonly certain of
the model (i.e., the profile of their type mappings). While each trader is certain of
her/his own type mapping, she/he is not certain of the opponent’s type mapping. In
fact, if both traders are commonly certain of their type mappings, then each trader
would be able to utilize the opponent’s information. This would lead to belief up-
dating unless otherwise each trader is at least as informed as the other. Thus, if
the traders are commonly certain of their type mappings, then their possibility cor-
respondences would be given by b1

A = b2
B = {{1, 2, 3}, {4}, {5, 6}, {7, 8}, {9}} at the

outset. This suggests that, in the sense of Definition 1, what is really needed is not
the common certainty of the model (where the model is construed as the profile of
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the type mappings) but the common certainty of the behavior rules.33 The analysis
of this subsection shows that the common certainty of the behavior rules can indeed
be formalized.

6 Conclusion

This paper asked two questions. First, what does it mean by the statement that the
players in a belief model are commonly (meta-)certain of the model itself? Second,
what role does such meta-certainty assumption play in epistemic characterizations
of game-theoretic solution concepts? The paper started with expanding the objects
of the players’ beliefs from events to signals (functions) defined on the underlying
states. A player is certain of the value of a signal x at a state if, the player believes,
at the state, any observational content that holds at the state. If she is certain
of the value of the signal x at every state, then she is certain of the signal. The
common certainty of the signal was analogously defined: the players are commonly
certain of the value of the signal x if the players commonly believe, at the state,
any observational content that holds at the state. The players are commonly certain
of the signal x if they are commonly certain of its value at every state. Then, the
players’ belief-generating maps (i.e., type mappings) and strategies became objects
of their beliefs. A player is certain of her own type mapping iff her belief satisfies the
positive and negative introspective properties. For probabilistic beliefs, the Harsanyi
property is the strongest form of the certainty of own type mapping.

The main result regarding the first question is: the players are commonly certain
of the profile of the players’ type mappings (i.e., the belief model) iff, for any event E
which some player i believes at some state, it is common belief that player i believes
E at that state. I summarize two implications. First, the common belief operator
collapses into the mutual belief operator when the players are commonly certain of the
model. This is because, whenever everybody believes an event, everybody believes
that everybody believes the event. Second, if the players are commonly certain of
their type mappings and if each player is certain of her own strategy, then the players
are commonly certain of their strategies. The negative results have some similarity
with Aumann (1976)’s impossibility to agree-to-disagree result and with information
revelation at a rational-expectations equilibrium.

Using the formalization of certainty of signals, the second objective was to eluci-
date the role of the common meta-certainty assumption on epistemic characterizations
of game-theoretic solution concepts. The paper studied the solution concept of iter-
ated elimination of strictly dominated actions (IESDA). Informally, if the players are
“logical,” if they are (meta-)certain of a game, and if they commonly believe their

33In the example (i.e., Hart and Tauman, 2004), each player’s behavior rule associates, with
underlying states, the Sell/Buy actions. In Sebenius and Geanakoplos (1983), it associates, with un-
derlying states, the Yes/No announcements. In Geanakoplos and Polemarchakis (1982), it associates,
with underlying states, values of posterior beliefs.

44



rationality, then their resulting actions survive IESDA. Formally, the paper showed:
if the players’ beliefs satisfy Monotonicity, Consistency, and Finite Conjunction, if
each player is certain of her qualitative-type mapping (or if each player’s beliefs are
compatible with informativeness), and if the players commonly believe their rational-
ity, then their resulting actions survive IESDA. Together with other applications, the
paper demonstrated the positive result that the common meta-certainty assumption
may not be needed.

Regarding the first question of the paper, as this paper is the first paper that
systematically studies the meta-certainty of a belief model, there may be other for-
mulations of the meta-certainty of a belief model that can also be used in game-
theoretic analyses. Such formalizations would be interesting future research avenues.
Regarding the second question of the paper, applications to other solution concepts in
economic models such as rational expectation equilibria would be interesting avenues
for future research.
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A Appendix

A.1 Proofs

A.1.1 Section 3

Proof of Remark 5. Since the conditions in Part (2) imply those in Part (1), it suffices
to show Part (1). First, it follows from Consistency, Finite Conjunction, and Mono-
tonicity that ∅ = Bi(E) ∩ Bi(E

c) = Bi(E ∩ Ec) = Bi(∅) ∈ Bi. Second, Bi is closed
under countable intersection because Countable Conjunction and Monotonicity imply⋂
n∈NBi(En) = Bi(

⋂
n∈NEn) ∈ Bi. Third, I show that Bi is closed under complemen-

tation by proving (¬Bi)(·) = Bi(¬Bi)(·). Negative Introspection, Consistency, and
Positive Introspection imply (¬Bi)(·) ⊆ Bi(¬Bi)(·) ⊆ (¬Bi)Bi(·) ⊆ (¬Bi)(·).

Proof of Remark 6. I prove only Part (1), as the proof for Part (2) is similar. Suppose
Bi(Ω) = Ω. Take any constant signal x : (Ω,D) → (X,X ). Fix ω ∈ Ω. For any
F ∈ X with x(ω) ∈ F , x−1(F ) = Ω. Thus, x−1(F ) ⊆ Ω = Bi(E) for any E ∈ D
with Ω ⊆ E (i.e., E = Ω). Conversely, take ω ∈ Ω, and consider the constant
signal x : (Ω,D) → ({ω}, {{ω}}). Since player i is certain of it, Ω = x−1({ω}) ⊆
Bi(x

−1({ω})) = Bi(Ω).

Proof of Remark 7. Assume that player i is certain of every xα : (Ω,D)→ (Xα,Xα).
Observe that for any π−1

α (Fα) with Fα ∈ Xα, x−1(π−1
α (Fα)) = x−1

α (Fα) ∈ D. Thus, if
ω ∈ x−1(π−1

α (Fα)) ⊆ E, then ω ∈ Bi(E).
Conversely, suppose that player i is certain of x : (Ω,D) → (X,X ). Since xα =

πα ◦ x, for any Fα ∈ Xα, x−1
α (Fα) = (πα ◦ x)−1(Fα) = x−1(π−1

α (Fα)) ∈ D. If ω ∈
x−1
α (Fα) ⊆ E, then ω ∈ Bi(E).
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Proof of Proposition 1A. 1. For (1a), i is certain of tBi with respect to {βE | E ∈
D} iff t−1

Bi
(βE) = Bi(E) is a basis to i: if Bi(E) ⊆ F then Bi(E) ⊆ Bi(F ) (note

that BtBi
= Bi). When Bi satisfies Monotonicity, the latter condition reduces

to Bi(E) ⊆ BiBi(E).

Likewise, for (1b), i is certain of tBi with respect to {¬βE | E ∈ D} iff
¬t−1

Bi
(βE) = (¬Bi)(E) is a basis to i: (¬Bi)(E) ⊆ F implies (¬Bi)(E) ⊆ Bi(F ).

When Bi satisfies Monotonicity, the latter condition reduces to (¬Bi)(E) ⊆
Bi(¬Bi)(E). Then, (1c) follows from the previous two parts.

2. I prove only (2b), as the proof for (2a) is similar. Also, it suffices to show
the “if” part, as the “only if” part follows from the previous assertion. It
follows from the discussions on Remark 5 that, under the assumptions on Bi,
Bi = {Bi(E) ∈ D | E ∈ D} is a sub-σ-algebra of D. Since Bi satisfies Positive
Introspection, Bi ⊆ JBi . Since t−1

i (βE) = Bi(E) ∈ Bi and since Bi is a σ-
algebra, t−1

i (DM) = σ({t−1
i (βE) ∈ D | E ∈ D}) ⊆ σ(Bi) = Bi ⊆ JBi .

Proof of Proposition 1B. 1. For (1a), player i is certain of τi with respect to {βpE |
(E, p) ∈ D × [0, 1]} iff, for any F ∈ D with Bp

τi
(E) ⊆ F , Bp

τi
(E) ⊆ Bi(F ), as

Bp
τi

(E) = τ−1
i (βpE). When Bi satisfies Monotonicity, the latter condition reduces

to Bp
τi

(E) ⊆ BiB
p
τi

(E).

For (1b), player i is certain of τi with respect to {¬βpE | (E, p) ∈ D×[0, 1]} iff, for
any F ∈ D with (¬Bp

τi
)(E) ⊆ F , (¬Bp

τi
)(E) ⊆ Bi(F ), as (¬Bp

τi
)(E) = τ−1

i (¬βpE).
When Bi satisfies Monotonicity, the latter condition reduces to (¬Bp

τi
)(E) ⊆

Bi(¬Bp
τi

)(E). Then, (1c) follows from the previous two parts.

2. (a) If player i is certain of τi : (Ω,D)→ (∆(Ω),D∆) then Bi satisfies Positive
Certainty. Conversely, let Bi satisfy Positive Certainty. By (1a), τ−1

i ({βpE |
(E, p) ∈ D × [0, 1]}) ⊆ JBi . Since Bi satisfies Truth Axiom and Negative
Introspection, JBi is a sub-σ-algebra of D. Thus, τ−1

i (D∆) ⊆ JBi . Hence,
player i is certain of τi : (Ω,D)→ (∆(Ω),D∆).

Next, I show that, since Bi satisfies Truth Axiom and Negative Intro-
spection, Positive Certainty is equivalent to Negative Certainty. Assume
Positive Certainty. Then, (¬Bp

τi
) = (¬Bi)B

p
τi

= Bi(¬Bi)B
p
τi

= Bi(¬Bp
τi

).
The first and third equalities follow from Positive Certainty and Truth
Axiom, and the second from Negative Introspection and Truth Axiom.

Conversely, assume Negative Certainty. Then, Bp
τi

= (¬Bi)(¬Bp
τi

) =
Bi(¬Bi)(¬Bp

τi
) = BiB

p
τi

. The first and third equalities follow from Negative
Certainty and Truth Axiom, and the second from Negative Introspection
and Truth Axiom.

(b) It is sufficient to prove the “if” part. First, it follows from the assumptions
and the discussions on Remark 5 that, under the assumptions on Bi, Bi =

49



{Bi(E) ∈ D | E ∈ D} is a sub-σ-algebra of D.

Second, since Bi satisfies Monotonicity and Positive Introspection, Bi ⊆
JBi . Third, I show that Positive Certainty, Negative Certainty, and Con-
sistency of Bi imply Bp

τi
(E) = BiB

p
τi

(E). The “⊆” part is Positive Cer-
tainty. Conversely, it follows from Negative Certainty and Consistency that
(¬Bp

τi
)(E) ⊆ Bi(¬Bp

τi
)(E) ⊆ (¬Bi)B

p
τi

(E). Then, BiB
p
τi

(E) ⊆ Bp
τi

(E).

Fourth, since τ−1
i (βpE) = Bp

τi
(E) = BiB

p
τi

(E) ∈ Bi and since Bi is a σ-
algebra, τ−1

i (D∆) = σ({τ−1
i (βpE) ∈ D | (E, p) ∈ D × [0, 1]}) ⊆ σ(Bi) =

Bi ⊆ JBi .
(c) It suffices to prove the “if” part. First, I show below that B1

τi
:= {B1

τi
(E) ∈

D | E ∈ D} is a sub-σ-algebra of D. Second, since Bi satisfies Monotonic-
ity and Positive Certainty, B1

τi
⊆ JBi . Third, I show below that Posi-

tive Certainty, Negative Certainty, and Consistency of B1
τi

(i.e., B1
τi

(E) ⊆
(¬B1

τi
)(Ec)) imply Bp

τi
(E) = B1

τi
Bp
τi

(E). Fourth, since τ−1
i (βpE) = Bp

τi
(E) =

B1
τi
Bp
τi

(E) ∈ B1
τi

and since B1
τi

is a σ-algebra, τ−1
i (D∆) = σ({τ−1

i (βpE) ∈ D |
(E, p) ∈ D × [0, 1]}) ⊆ σ(B1

τi
) = B1

τi
⊆ JBi .

Hence, I show the first statement that B1
τi

is a sub-σ-algebra of D. First,
since τi(·)(∅) = 0, ∅ = B1

τi
(∅) ∈ B1

τi
. Second, since B1

τi
satisfies Monotonic-

ity and Countable Conjunction, B1
τi

is closed under countable intersection.
Third, as in the proof of Remark 5, to prove that B1

τi
is closed under com-

plementation, it is sufficient to show (¬B1
τi

)(·) = B1
τi

(¬B1
τi

)(·). However,
this property follows from B1

τi
(E) ⊆ (¬B1

τi
)(Ec), B1

τi
(·) ⊆ B1

τi
B1
τi

(·), and
(¬B1

τi
)(·) ⊆ B1

τi
(¬B1

τi
)(·). Indeed, (¬B1

τi
)(·) ⊆ B1

τi
(¬B1

τi
)(·) ⊆ (¬B1

τi
)B1

τi
(·) ⊆

(¬B1
τi

)(·).
Next, I show the third statement Bp

τi
(E) = B1

τi
Bp
τi

(E). It follows from Posi-
tive Certainty and Entailment that Bp

τi
(E) ⊆ BiB

p
τi

(E) ⊆ B1
τi
Bp
τi

(E). Con-
versely, it follows from Negative Certainty and Entailment that (¬Bp

τi
)(E) ⊆

Bi(¬Bp
τi

)(E) ⊆ B1
τi

(¬Bp
τi

)(E). Then, it follows from Consistency of B1
τi

that B1
τi
Bp
τi

(E) ⊆ (¬B1
τi

)(¬Bp
τi

)(E) ⊆ Bp
τi

(E).

Proof of Remark 8. First, since each player i is certain of her type mapping τi :
(Ω,D) → (∆(Ω),D∆) within a model 〈(Ω,D), (B1

τi
)i∈I〉, it follows from Proposition

1B that Negative Certainty (¬Bp
τi

)(·) ⊆ B1
τi

(¬Bp
τi

)(·) holds. Second, I show below that
Bp
τi
Bp
τi

(·) ⊆ Bp
τi

(·). Third, I show that the mutual p-beliefs also satisfies Bp
IB

p
I (·) ⊆

Bp
I (·), where Bp

I (·) :=
⋂
i∈I B

p
τi

(·) as in Section 2.1. It means that the chain of mutual
p-beliefs is decreasing. Fourth, since mutual p-beliefs are preserved for a decreasing
sequence of events (i.e., if En ↓ E then Bp

I (En) ↓ Bp
I (E)), the common p-belief

operator Cp : D → D defined according to Expression (1) reduces to the iteration of
mutual p-beliefs (see Monderer and Samet, 1989).

Thus, it suffices to prove the second and third statements. I show the second
statement. If p = 0 then Bp

τi
Bp
τi

(·) = Ω = Bp
τi

(·). Thus, let p > 0. Let ω ∈ Bp
τi
Bp
τi

(E).
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Suppose to the contrary that ω ∈ (¬Bp
τi

)(E). Then, ω ∈ (¬Bp
τi

)(E) ⊆ B1
τi

(¬Bp
τi

)(E).
Then, τi(ω)((¬Bp

τi
)(E)) = 1 and τi(ω)(Bp

τi
(E)) ≥ p > 0, and thus 1 = τi(ω)(Bp

τi
(E)∪

(¬Bp
τi

)(E)) = 1 + p > 1, a contradiction.
Turning to the third statement, Monotonicity of Bp

τi
implies that Bp

τi
Bp
I (·) ⊆

Bp
τi
Bp
τi

(·) ⊆ Bp
τi

(·). Taking the intersection over all i ∈ I, Bp
IB

p
I (·) ⊆ Bp

I (·).

Proof of Remark 9. For the “only if” part, suppose that player i is certain of x :
(Ω,D)→ (X,X ). Take ω′ ∈ bBi(ω). For any F ∈ X with ω ∈ x−1(F ), it follows from
the supposition that ω ∈ Bi(x

−1(F )). By the definition of bBi , I have ω′ ∈ bBi(ω) ⊆
x−1(F ). For the “if” part, assume the Kripke property. Suppose that possibility
implies informativeness. Take any ω ∈ Ω and F ∈ X with ω ∈ x−1(F ). To show
ω ∈ Bi(x

−1(F )), it is enough to show bBi(ω) ⊆ x−1(F ). Now, if ω′ ∈ bBi(ω), then it
follows from the supposition that ω′ ∈ x−1(F ).

Proof of Proposition 2A. Observe that if ω′ is at least as informative to i as ω ac-
cording to tBi (i.e., ω′ ∈ (↑ tBi(ω))), then

bBi(ω
′) =

⋂
{E ∈ D | tBi(ω′)(E) = 1} ⊆

⋂
{E ∈ D | tBi(ω)(E) = 1} = bBi(ω).

Moreover, if tBi satisfies the Kripke property, then the converse also holds: bBi(ω
′) ⊆

bBi(ω) implies ω′ ∈ (↑ tBi(ω)). This is because, if tBi(ω)(E) = 1 then bBi(ω
′) ⊆

bBi(ω) ⊆ E and thus tBi(ω
′)(E) = 1.

1. (a) Since Truth Axiom yields ω′ ∈ bBi(ω
′) for all ω′ ∈ Ω, it follows that

ω′ ∈ bBi(ω
′) ⊆ bBi(ω) for all ω′ ∈ (↑ tBi(ω)). Conversely, Truth Axiom

follows from ω ∈ (↑ tBi(ω)) ⊆ bBi(ω) for all ω ∈ Ω.

(b) Suppose ω′ ∈ bBi(ω). For any F ∈ D with tBi(ω)(F ) = 1, it follows
from Positive Introspection that tBi(ω)(t−1

Bi
(βF )) = 1. By the supposition,

ω′ ∈ bBi(ω) ⊆ t−1
Bi

(βF ), and hence tBi(ω
′)(F ) = 1. Thus, ω′ ∈ (↑ tBi(ω)).

Conversely, let Bi satisfy the Kripke property, and assume bBi(·) ⊆ (↑
tBi(·)). Suppose ω ∈ Bi(E). In order to show ω ∈ BiBi(E), it is enough
to prove ω′ ∈ Bi(E) for all ω′ ∈ bBi(ω). Take any ω′ ∈ bBi(ω). Since
ω′ ∈ (↑ tBi(ω)) and ω ∈ Bi(E), it follows that ω′ ∈ Bi(E).

(c) The proof is analogous to Part (1b). Suppose ω′ ∈ bBi(ω). Suppose to
the contrary that ω′ 6∈ (↓ tBi(ω)), i.e., tBi(ω)(F ) = 0 < 1 = tBi(ω

′)(F ) for
some F ∈ D. By Negative Introspection, tBi(ω)(¬t−1

Bi
(βF )) = 1, and thus

ω′ ∈ bBi(ω) ⊆ ¬t−1
Bi

(βF ), and hence tBi(ω
′)(F ) = 0, a contradiction.

Conversely, let Bi satisfy the Kripke property, and suppose bBi(·) ⊆ (↓
tBi(·)). If ω 6∈ Bi(E), then bBi(ω) ∩ Ec 6= ∅. In order to establish ω ∈
Bi(¬Bi)(E), it is enough to show that bBi(ω

′)∩Ec 6= ∅ for all ω′ ∈ bBi(ω).
Take any ω′ ∈ bBi(ω). Since ω′ ∈ (↓ tBi(ω)) and since tBi(ω)(E) = 0, it
follows tBi(ω

′)(E) = 0, i.e., bBi(ω
′) ∩ Ec 6= ∅.
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2. The assertion follows from Part (1).

Proof of Proposition 2B. 1. It can be seen that

[τi(ω)] =
⋂

(E,p)∈D×[0,1]:ω∈Bpτi (E)

Bp
τi

(E) =
⋂

(E,p)∈D×[0,1]:ω∈(¬Bpτi )(E)

(¬Bp
τi

)(E). (A.1)

Now, Bp
τi

(·) ⊆ BiB
p
τi

(·) implies bBi(ω) ⊆ Bp
τi

(E) for any (E, p) ∈ D × [0, 1] with
ω ∈ Bp

τi
(E). Likewise, (¬Bp

τi
)(·) ⊆ Bi(¬Bp

τi
)(·) implies bBi(ω) ⊆ (¬Bp

τi
)(E) for

any (E, p) ∈ D × [0, 1] with ω ∈ (¬Bp
τi

)(E). In either case, bBi(ω) ⊆ [τi(ω)].

2. Take (E, p) ∈ D × [0, 1]. Since bBi(ω) ⊆ [τi(ω)] ⊆ Bp
τi

(E) for any ω ∈ Bp
τi

(E),
it follows from the Kripke property that Bp

τi
(E) ⊆ BiB

p
τi

(E). Likewise, since
bBi(ω) ⊆ [τi(ω)] ⊆ (¬Bp

τi
)(E) for any ω ∈ (¬Bp

τi
)(E), it follows from the Kripke

property that (¬Bp
τi

)(E) ⊆ Bi(¬Bp
τi

)(E).

Proof of Proposition 3B. 1. Let τi satisfy the Harsanyi property. For any ω ∈ Ω
and τ−1

i ({τi(ω)}) = [τi(ω)] ⊆ E, if ω′ ∈ τ−1
i ({τi(ω)}) = [τi(ω)] then τi(ω

′)(E) =
τi(ω)(E) = 1, i.e., ω′ ∈ B1

τi
(E). Thus, player i is certain of τi : (Ω,D) →

(∆(Ω), {{τi(ω)} | ω ∈ Ω}). Conversely, for any E ∈ D with τ−1
i ({τi(ω)}) =

[τi(ω)] ⊆ E, ω ∈ B1
τi

(E), i.e., τi(ω)(E) = 1.

2. Let D be generated by a countable algebra A. Let [0, 1]Q := [0, 1]∩Q. Similarly
to Expression (A.1), one can show:

[τi(ω)] =
⋂

(E,p)∈A×[0,1]Q:ω∈Bpτi (E)

Bp
τi

(E) =
⋂

(E,p)∈A×[0,1]Q:ω∈(¬Bpτi )(E)

(¬Bp
τi

)(E) ∈ D.

Then, it follows from Part (1) that (2a) and (2b) are equivalent. Part (2b)
implies (2c), and (2c) implies (2d) and (2e).

Now, I show that (2d) implies (2a). Assume (2d). Fix ω ∈ Ω. For any (E, p) ∈
A × [0, 1]Q with ω ∈ Bp

τi
(E), I have Bp

τi
(E) ⊆ B1

τi
Bp
τi

(E). Since A × [0, 1]Q is
countable, take the intersection over all (E, p) ∈ A× [0, 1]Q with ω ∈ Bp

τi
(E) to

obtain:

[τi(ω)] =
⋂

(E,p)

Bp
τi

(E) ⊆
⋂

(E,p)

B1
τi
Bp
τi

(E) ⊆ B1
τi

⋂
(E,p)

Bp
τi

(E)

 = B1
τi

([τi(ω)]).

Thus, (2a) holds.

Likewise, I show that (2e) implies (2a). Assume (2e). Fix ω ∈ Ω. For any
(E, p) ∈ A × [0, 1]Q with ω ∈ (¬Bp

τi
)(E), I have (¬Bp

τi
)(E) ⊆ B1

τi
(¬Bp

τi
)(E).
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Since A× [0, 1]Q is countable, take the intersection over all (E, p) ∈ A× [0, 1]Q
with ω ∈ (¬Bp

τi
)(E) to obtain:

[τi(ω)] =
⋂

(E,p)

(¬Bp
τi

)(E) ⊆
⋂

(E,p)

B1
τi

(¬Bp
τi

)(E) ⊆ B1
τi

⋂
(E,p)

(¬Bp
τi

)(E)

 = B1
τi

([τi(ω)]).

Hence, (2a) holds.

Proof of Proposition 3A. 1. Suppose (1a). If [tBi(ω)] ⊆ E, then ω ∈ [tBi(ω)] im-
plies ω ∈ Bi(E). Conversely, suppose (1b). If ω′ ∈ [tBi(ω)] = t−1

Bi
({tBi(ω)}) ⊆

E, then tBi(ω)(E) = tBi(ω
′)(E) = 1, and thus ω ∈ Bi(E).

2. Suppose ω′ ∈ [tBi(ω)] ⊆ E. Since Bi satisfies Positive Introspection and Nega-
tive Introspection, Proposition 2A implies that bBi(ω

′) ⊆ [tBi(ω
′)] = [tBi(ω)] ⊆

E. By the Kripke property, ω′ ∈ Bi(E).

3. Without loss, assume (1b). If bBi(ω) ⊆ E, then it follows from Truth Axiom of
Bi and Proposition 2A that [tBi(ω)] ⊆ bBi(ω) ⊆ E. Then, ω ∈ Bi(E).

A.1.2 Section 4

Proof of Theorem 1A. 1. Suppose that the players are commonly certain of the
profile of qualitative-type mappings. Since player i is certain of her own qualitative-
type mapping, it follows from Proposition 1A that Positive Introspection and
Negative Introspection hold: Bi(·) ⊆ BiBi(·) and (¬Bi)(·) ⊆ Bi(¬Bi)(·). Next,
since player i is certain of player j’s qualitative-type mapping, it follows from
Remark 10A that Bj(·) ⊆ BiBj(·). Since Bj satisfies Truth Axiom and since
Bi satisfies Monotonicity, BiBj(·) ⊆ Bi(·). Thus, Bj(·) ⊆ Bi(·). Since i and j
are arbitrary, Bi = Bj. Conversely, invoking Remark 10A, it follows from the
suppositions that each player i is certain of every player j’s qualitative-type
mapping tBj : (Ω,D)→ (M(Ω),DM).

Lastly, since Bi = BI for all i ∈ I and since Bi satisfies Positive Introspection,
it follows Bi = C for each i ∈ I.

2. Suppose that the players are commonly certain of the profile of qualitative-type
mappings. Since player j is certain of player i’s qualitative-type mapping, it
follows from Remark 10A that Bi(·) ⊆ BjBi(·) and (¬Bi)(·) ⊆ Bj(¬Bi)(·).
Since j is arbitrary, Bi(·) ⊆ BIBi(·) and (¬Bi)(·) ⊆ BI(¬Bi)(·). Then, Bi(·) ⊆
CBi(·) and (¬Bi)(·) ⊆ C(¬Bi)(·). Conversely, it follows from the supposition
that Bi(·) ⊆ CBi(·) ⊆ BjBi(·) and (¬Bi)(·) ⊆ C(¬Bi)(·) ⊆ Bj(¬Bi)(·). Thus,
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invoking Remark 10A, player j is certain of player i’s qualitative-type mapping
tBi : (Ω,D)→ (M(Ω),DM).

Lastly, since each Bi satisfies Countable Conjunction, C also satisfies it. Since
BI(·) ⊆ Bi(·) ⊆ CBi(·) for each i ∈ I, BI(·) ⊆

⋂
i∈I CBi(·) ⊆ CBI(·), where the

last set inclusion follows from Countable Conjunction of C. Then, each BI(·)
itself is a publicly-evident event implying the mutual belief, and thus C = BI .

Proof of Theorem 1B. Suppose that the players are commonly certain of the profile
of type mappings. Since player j is certain of player i’s type mapping, it follows
from Remark 10B that Bp

τi
(·) ⊆ BjB

p
τi

(·) and (¬Bp
τi

)(·) ⊆ Bj(¬Bp
τi

)(·). Since j is
arbitrary, Bp

τi
(·) ⊆ BIB

p
τi

(·) and (¬Bp
τi

)(·) ⊆ BI(¬Bp
τi

)(·). Then, Bp
τi

(·) ⊆ CBp
τi

(·)
and (¬Bp

τi
)(·) ⊆ C(¬Bp

τi
)(·). Conversely, it follows from the supposition that Bp

τi
(·) ⊆

CBp
τi

(·) ⊆ BjB
p
τi

(·) and (¬Bp
τi

)(·) ⊆ C(¬Bp
τi

)(·) ⊆ Bj(¬Bp
τi

)(·). Thus, player j is
certain of player i’s type mapping.

Lastly, C1 satisfies Countable Conjunction because each B1
τi

satisfies it. Since
B1
I (·) ⊆ B1

τi
(·) ⊆ C1B1

τi
(·) for each i ∈ I, BI(·) ⊆

⋂
i∈I C

1Bτi(·) ⊆ C1B1
I (·), where

the last set inclusion follows because C1 satisfies Countable Conjunction. Then,
each B1

I (·) itself is a publicly-1-evident event implying the mutual 1-belief, and thus
C1 = B1

I .

Proof of Proposition 4. A. It suffices to prove (Ai). Take F ∈ X . By assumption,
x−1(F ) ⊆ Bi(x

−1(F )). It suffices to show x−1(F ) ⊆ Bj(x
−1(F )).

It follows from Remark 10A and Consistency of Bj that Bi = BjBi. In fact,
Bi(·) ⊆ BjBi(·) and (¬Bi)(·) ⊆ Bj(¬Bi)(·) follow from Remark 10A. Then, since
Bj satisfies Consistency, BjBi(·) ⊆ (¬Bj)(¬Bi)(·) ⊆ Bi(·).
Take (Fλ)λ∈Λ from X with F c =

⋃
λ∈Λ Fλ. It can be seen that ¬x−1(F ) =⋃

λ∈Λ x
−1(Fλ). Then,

¬x−1(F ) =
⋃
λ∈Λ

x−1(Fλ) ⊆
⋃
λ∈Λ

Bi(x
−1(Fλ)) ⊆ Bi(x

−1(F c)) ⊆ (¬Bi)(x
−1(F )),

implying x−1(F ) = Bi(x
−1(F )). It follows from Remark 10A that

x−1(F ) = Bi(x
−1(F )) = BjBi(x

−1(F )) = Bj(x
−1(F )).

B. It suffices to prove (Bi). Take F ∈ X . By assumption, x−1(F ) ⊆ Bi(x
−1(F )). It

suffices to show x−1(F ) ⊆ Bj(x
−1(F )). It follows from Theorem 1B and Consis-

tency of Bj that Bp
τi

= BjB
p
τi

. Take (Fλ)λ∈Λ from X with F c =
⋃
λ∈Λ Fλ. It can

be seen that ¬x−1(F ) =
⋃
λ∈Λ x

−1(Fλ). Then,

¬x−1(F ) =
⋃
λ∈Λ

x−1(Fλ) ⊆
⋃
λ∈Λ

Bi(x
−1(Fλ)) ⊆

⋃
λ∈Λ

B1
τi

(x−1(Fλ))

⊆ B1
τi

(x−1(F c)) ⊆ (¬B1
τi

)(x−1(F )),
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implying x−1(F ) = B1
τi

(x−1(F )). Now, it follows from Theorem 1B that

x−1(F ) = B1
τi

(x−1(F )) = BjB
1
τi

(x−1(F )) = Bj(x
−1(F )).

A.1.3 Section 5

Proof of Proposition 5. A. By (i) and (iii) and by observing (↑ tBi(ω)) = t−1
Bi

({µ ∈
M(Ω) | µ(·) ≥ tBi(ω)(·)}), ω ∈ (↑ tBi(ω)) ⊆ Bi(↑ tBi(ω)). If (ω,E) ∈ Ω × D
satisfies ω ∈ Bi(E), then it follows from Finite Conjunction that ω ∈ Bi(E ∩ (↑
tBi(ω))). By Consistency and Monotonicity, Bi(∅) = ∅, because Bi(∅) = Bi(E ∩
Ec) ⊆ Bi(E) ∩Bi(E

c) = ∅. Then, it must be the case that E ∩ (↑ tBi(ω)) 6= ∅.

B. Take E ∈ D with ω ∈ Bi(E). By Entailment, ω ∈ B1
τi

(E). If E ∩ [τi(ω)] = ∅
(observe (↑ τi(ω)) = [τi(ω)]), then [τi(ω)] ⊆ Ec. By the Harsanyi property, ω ∈
B1
τi

(Ec). However, this is a contradiction to Consistency. Thus, E ∩ [τi(ω)] 6= ∅.

Proof of Theorem 2. Let ω ∈ Bi(RATi). Since player i is certain of her strategy, it fol-
lows from ω ∈ [σi(ω)] that ω ∈ Bi([σi(ω)]). Then, it follows from Finite Conjunction
that ω ∈ Bi(RATi∩ [σi(ω)]). Next, since Bi is compatible with informativeness, there
is ω′ ∈ Ω such that ω′ ∈ (↑ tBi(ω))∩RATi∩[σi(ω)]. Now, suppose to the contrary that
ω 6∈ RATi. Then, there is a′i ∈ Ai such that ω ∈ Bi([a

′
i �i σi(ω)]) = Bi([a

′
i �i σi(ω′)]),

which implies ω′ ∈ Bi([a
′
i �i σi(ω′)]), i.e., ω′ 6∈ RATi. This is a contradiction. Thus,

ω ∈ RATi.

A.2 Difference between Mutual and Common Certainty at a
State

Remark 2 in Section 3.1 states that if every player is certain of the value of a signal
x : (Ω,D) → (X,X ) at every state then the players are commonly certain of the
value of x at every state. This appendix shows through an example that the mutual
and common certainty may differ if the players are certain of the value of the signal
only at some state. This appendix also briefly discusses the higher-order certainty of
a signal at a state.

Let Ω = {ω1, ω2, . . . , ωm} with m ≥ 3, and let D = P(Ω). Introduce the natural
order on Ω based on the indices: ωk ≤ ω` iff k ≤ `. Define each player’s belief operator
Bi as follows:

Bi(E) :=


∅ if E = ∅
{ω1} if |E| = 1

E \ {maxE} if |E| ≥ 2

.
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E ∅ {ω1} {ω2} {ω3} {ω1, ω2} {ω1, ω3} {ω2, ω3} Ω
Bi(E) ∅ {ω1} {ω1} {ω1} {ω1} {ω1} {ω2} {ω1, ω2}
C(E) ∅ {ω1} {ω1} {ω1} {ω1} {ω1} ∅ {ω1}

Table 5: Inidvidual and Common Beliefs Bi and C

Then, the common belief operator C is written as:

C(E) =

{
∅ if E = ∅ or (|E| ≥ 2 and ω1 6∈ E)

{ω1} if |E| = 1 or (|E| ≥ 2 and ω1 ∈ E)
.

For example, if m = 3 then the individual and common belief operators are depicted
in Table 5.

Let (X,X ) = ({x1, x2},P(X)), and define x : (Ω,D)→ (X,X ) as follows:

x(ω) =

{
x1 if ω = ω1

x2 if ω 6= ω1

.

I show (i) that each player i is certain of x : (Ω,D)→ (X,X ) at ω2 and (ii) that
the players are not commonly certain of x : (Ω,D) → (X,X ) at ω2. Observe F ∈
{{x2}, X} satisfies ω2 ∈ x−1(F ). Indeed, x−1({x2}) = {ω2, . . . , ωm} and x−1(X) = Ω.
Then,

Bk
I (x−1({x2})) =

{
{ω2, . . . , ωm−k} if k ≤ m− 2

∅ if k > m− 2
and C(x−1({x2})) = ∅.

Also,

Bk
I (x−1(X)) =

{
{ω1, . . . , ωm−k} if k ≤ m− 2

{ω1} if k ≥ m− 1
and C(x−1(X)) = {ω1}.

In fact, one can define higher-order certainty as follows. Player i is certain that
player j is certain of the value of a signal x : (Ω,D) → (X,X ) at a state ω ∈ Ω if,
for any F ∈ X with ω ∈ x−1(F ) and for any E ∈ D with x−1(F ) ⊆ E, ω ∈ BiBj(E).

The players are mutually certain of the value of x : (Ω,D) → (X,X ) at ω if, for
any F ∈ X with ω ∈ x−1(F ) and for any E ∈ D with x−1(F ) ⊆ E, ω ∈ BI(E). One
can analogously define higher-order mutual certainty of the value of the signal x.

If the mutual belief operator BI satisfies Countable Conjunction in addition to
Monotonicity, then the players are commonly certain of the value of x : (Ω,D) →
(X,X ) at ω iff they are mutually certain of the value of x : (Ω,D)→ (X,X ) at ω, they
are mutually certain that they are mutually certain of the value of x : (Ω,D)→ (X,X )
at ω, and so forth ad infinitum.
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A.3 Product Type Spaces

In the product type-space literature, a state space is given as a product type space.
Formally, fix a measurable space (S,S) of nature states. A product type space is a
tuple 〈(Ti, Ti)i∈I , (mi)i∈I〉 such that each (Ti, Ti) is a measurable space of player i’s
types and that each mi : (Ti, Ti)→ (∆(T−i), (T−i)∆) is a measurable mapping, where
T−i = S×

∏
j∈I\{i} Tj, T−i is the product σ-algebra on T−i, and (T−i)∆ is the σ-algebra

generated by {µ ∈ ∆(T−i) | µ(E) ≥ p} for some (E, p) ∈ T−i × [0, 1].
I show that a product type space 〈(Ti, Ti)i∈I , (mi)i∈I〉 is identified as a belief model

〈(Ω,D), (τi)i∈I〉 with certain properties. Let the state space Ω be the product space
Ω := S ×

∏
i∈I Ti. Let D be the product σ-algebra on Ω. Define each player i’s

type mapping τi : Ω → ∆(Ω) as follows: for each state (s, (ωi)i∈I) ∈ Ω, let τi(ω) be
the product measure τi(ω) = mi(ωi)× δωi induced by the type mi(ωi) and the Dirac
measure δωi . Observe that mi : (Ti, Ti) → (∆(T−i), T−i) and δi : (Ti, Ti) 3 ωi 7→
δ(ωi) = δωi ∈ (∆(Ti), (Ti)∆) are measurable, and hence mi × δi : (Ti, Ti) 3 ωi 7→
(mi × δi)(ωi) = mi(ωi) × δωi ∈ (∆(Ω),D∆) is measurable. Then, τi : (Ω,D) 3 ω 7→
τi(ω) = (mi × δi)(ωi) ∈ (∆(Ω),D∆) is measurable.

Conversely, consider a belief model 〈(Ω,D), (τi)i∈I〉 with the following properties:
the state space (Ω,D) is the product measurable space of (S,S) and ((Ti, Ti))i∈I ; and
each τi : (Ω,D)→ (∆(Ω),D∆) satisfies

1. τi(s, (ωj)j∈I) = τi(s̃, (ωi, ω̃−i)) for all s, s̃, ωi, ω−i, ω̃−i; and

2. τi(ω) ◦ π−1
i = δωi , where πi : Ω→ Ti is the projection.

The first property states that τi depends only on ωi. The second property states that
the marginal of the player i’s type on the player’s own type set is the Dirac measure.
Then, define mi : Ti → ∆(T−i) as mi(ωi) := τi(ω) ◦ π−1

−i , where π−i : Ω → T−i is the
projection. It can be seen that mi : (Ti, Ti)→ (∆(T−i), (T−i)∆) is measurable.

Now, I formally show that a player is certain of her type mapping mi in a product
type space 〈(Ti, Ti)i∈I , (mi)i∈I〉 in the sense that she is certain of her type mapping
τi : (Ω,D)→ (∆(Ω),D∆) in the corresponding belief model 〈(Ω,D), (τi)i∈I〉.

The proof goes as follows. Given a product type space 〈(Ti, Ti)i∈I , (mi)i∈I〉, take
the corresponding belief model 〈(Ω,D), (τi)i∈I〉. Since τi(ω)(E) ≥ p implies τi(ω)({ω′ ∈
Ω | τi(ω′)(E) ≥ p}) = 1 and since τi(ω)(E) < p implies τi(ω)({ω′ ∈ Ω | τi(ω′)(E) <
p}) = 1, it follows that Bp

τi
(·) ⊆ B1

τi
Bp
τi

(·) and (¬Bp
τi

)(·) ⊆ B1
τi

(¬Bp
τi

)(·). Hence,
Proposition 1B (2c) implies that player i is certain of her own type mapping τi :
(Ω,D)→ (∆(Ω),D∆).
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