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Abstract

In sequential games, the set of paths consistent with rationality and forward-

induction reasoning may change non-monotonically when adding transparent

restrictions on players’beliefs (Battigalli & Friedenberg, Theor. Econ. 2012).

Yet, we prove that– in an incomplete-information environment– predictions

become sharper when the restrictions only concern initial beliefs about types.

This implies that strong rationalizability for games with payoff uncertainty

characterizes the path-predictions of forward-induction reasoning across all pos-

sible restrictions on players’initial hierarchies of exogenous beliefs. The result

allows us to solve an open problem in implementation theory: the implementa-

tion of social choice functions through sequential mechanisms under forward-

induction reasoning– which considerably expands the realm of implementable

functions compared with simultaneous mechanisms (Mueller, J. Econ. Theory

2016)– is indeed robust in the sense of Bergemann and Morris (Theor. Econ.

2009).

Keywords: Incomplete information; Forward induction; Strong rational-
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1 Introduction

We prove a monotonicity result for a strong version of rationalizability in sequential

games with incomplete information that captures forward-induction reasoning. To

illustrate the importance of this result, we build on work by Bergemann & Morris

(2009) and Mueller (2016) to combine the forward-induction analysis of sequential

games with the theory of robust full implementation.1

Forward-induction reasoning disciplines players’belief revision in sequential
games when they observe unexpected moves by the co-players. The basic ingredi-

ent is strong belief in rationality: when an unexpected move is consistent with the

assumption that the co-player is rational (i.e., a subjective expected payoff maxi-

mizer) such assumption is maintained and shapes beliefs about the co-player’s pri-

vate information and/or future moves. Common strong belief in rationality adds on

this by further assuming that, when an unexpected move is consistent with the co-

player being rational and strongly believing in rationality, then also this higher-level

assumption is maintained and shapes beliefs accordingly; yet higher-level assump-

tions are then considered (Battigalli & Siniscalchi 2002). It is well known that the

strategy profiles and paths consistent with rationality and common strong belief in

rationality may change non-monotonically with respect to transparent restrictions on

players’ beliefs (e.g., Battigalli & Friedenberg 2012). This is due to the so-called

non-monotonicity of strong belief, which we will explain in detail below. Yet, we

prove that, in an incomplete-information environment, predictions become sharper

when the restrictions only concern exogenous beliefs, i.e., initial beliefs about types.
Specifically, our main theorem states that the path-predictions of strong directed
rationalizability– the solution concept characterizing the behavioral implications
of rationality and common strong belief in rationality in sequential games with pay-

off uncertainty– are monotone with respect to restrictions on exogenous beliefs, i.e.,

more restrictive assumptions about such beliefs yield (weakly) more restrictive paths-

of-play implications.2 This monotonicity theorem implies that strong rationaliz-
ability, the “belief-free” version of directed strong rationalizability,3 characterizes

1On robust implementation see the survey by Bergemann & Morris (2012) and the relevant
references therein.

2“Directed rationalizability” is the map from belief restrictions to the resulting rationaliz-
able strategies (Battigalli & Friedenberg 2012; Battigalli, Catonini & De Vito 2024, Ch.s 8, 15).
“Strong” refers to the reliance on the strong belief concept.

3In complete-information environments, this solution concept used to be called “extensive-form
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the path-predictions of forward-induction reasoning across all possible restrictions on

exogenous beliefs, a result that we apply to the theory of robust full implementation.

The power of sequential mechanisms to implement social choice functions (scf’s)

was first explored for complete-information environments, that is, under the as-

sumption that agents’preferences, or payoff-types– even if they are unknown to the

planner– are common knowledge among the agents.4 In particular, drawing on work

by Abreu & Matsushima (1992), Glazer & Perry (1996) proved that a very large

class of social choice functions can be virtually implemented5 by means of perfect-

information sequential mechanisms, if players reason by backward induction and play

the unique subgame perfect equilibrium. If the domain of preference profiles is finite,

this is equivalent to strongly rationalizable virtual implementation, because backward

and forward-induction reasoning yield the same path of play in generic finite games

with complete and perfect information (Battigalli 1997, Battigalli & Siniscalchi 2002).

In environments with incomplete information, agents’behavior in a game form

depends on their beliefs about each other’s types. Just like in complete-information

environments the planner is not assumed to know agents’commonly known payoff-

types, in environments with incomplete information the planner may not know what

hierarchies of exogenous beliefs the agents can hold and conceive. Formally, the

planner may be uncertain about the relevant exogenous type structure, e.g., whether

agents’beliefs are derived from a common prior on the domain of preference profiles

and what it is (see Harsanyi 1967-68 and Mertens & Zamir 1985). In compliance with

the Wilson’s doctrine,6 Bergemann & Morris (2009) analyze robust implementa-
tion, that is, the possibility to implement an scf independently of the exogenous type
structure. They show that robust (virtual) full implementation of scf’s by means

of static (i.e., simultaneous-moves) mechanisms– which amounts to rationalizable

implementation– is severely limited when agents’valuations of outcomes exhibit a

mild degree of interdependence. Mueller (2016) instead proves that using sequen-

rationalizability” (Pearce 1984, Battigalli, 1997). We avoid this terminology because there are
different ‘legitimate’ formalizations of the rationalizability idea in the extensive-form analysis of
sequential games. See, e.g., Battigalli & De Vito (2021) and the relevant references therein.

4See Moore & Repullo (1988), Ch. 10 of Osborne & Rubinstein (1994) and the references therein.
5Virtual implementation of an scf means that, for each type profile, the outcome predicted by

the solution concept can be made arbitrarily close to the outcome prescribed by the scf. See the
cited references.

6Quoting Wilson (1987): “I foresee progress of game theory as depending on successive reductions
in the base of common knowledge required to conduct useful analyses of practical problems. Only
by repeated weakening of common knowledge assumptions will the theory approximate reality.”
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tial mechanisms and assuming that agents reason by forward induction– as captured

by strong rationalizability– yields a very significant expansion of the implementable

scf’s. Yet, due to the aforementioned non-monotonicity of strong belief, it was not

known whether implementation in strongly rationalizable strategies is robust to con-

sidering contextual restrictions on agents’exogenous interactive beliefs about each

other’s types.

Our game-theoretic result allows to solve this open problem. Although strongly

rationalizable strategies may change non-monotonically when adding restrictions on

exogenous beliefs, only the induced paths of play matter for the implementation

of scf’s. Since we prove that the set of possible paths under stronger restrictions on

exogenous beliefs is weakly included in the one obtained with weaker or no restrictions,

it follows that strongly rationalizable implementation is robust in the aforementioned

sense.

The rest of paper is organized as follows. Section 2 provides a heuristic analy-

sis and additional background. Section 3 contains the game-theoretic preliminaries.

Section 4 states and explains the main theorem. Section 5 applies this result to the

analysis of Bayesian games. Section 6 applies our game-theoretic results to the ro-

bust implementation problem. Section 7 discusses extensions. The Appendix collects

proofs of key claims and lemmas that are omitted from the main body of the paper.

2 Heuristic analysis and detailed background

In this section, we first illustrate intuitions and diffi culties behind our main monotonic-

ity result by means of a heuristic analysis of an example (2.1). Next, we set the stage

for the robust-implementation implications of our result, explaining its connection to

rationalizability in static mechanisms (2.2) and sequential mechanisms (2.3).

2.1 Strong rationalizability, heuristic analysis of an example

Strong rationalizability is the iterated elimination, for each payoff-type of each player,

of the strategies that are not sequential best replies to belief systems which assign

probability 1, as long as possible, to the co-players’strategies that survive the previous

elimination steps.7 Strong directed rationalizability works in the same way, except
7There exist several versions of strong rationalizability, which differ by the adopted notion of

sequential optimality (e.g., weak vs. strong sequential optimality), by the kind of belief systems (e.g.,

4



that the set of possible belief systems for each type is restricted exogenously and not

just through iterated reasoning. The kind of belief restrictions we analyze in this

paper only pertain to the initial beliefs about the payoff-types of the co-players. The

elimination procedure is parameterized by the profile ∆ = (∆i) of restricted sets of

beliefs. For any fixed ∆, we obtain a solution called “strong ∆-rationalizability.”
In the following example, we illustrate the two elimination procedures, the belief

restrictions we use, and the main hurdle towards proving our general monotonicity

result. Since we have not yet introduced all the required formal concepts, the analysis

is necessarily heuristic and based on intuition.

Example 1 Consider a signaling game between players 1 (sender) and 2 (receiver)

where the set of possible payoff-types θ1 of the sender is Θ1 = {x, y, z}, the set of
messages/signals is M = S1 = {`, r}, and the sets of feasible reactions of the receiver
are A2(`) = {a, b} after message ` and A2(r) = {c, d, e} after message r. Thus,
the receiver’s strategies are S2 = A2(`) ×A2(r), whereas the sender’s strategies and

signals coincide.8 The payoffs are as follows:

Payoffs of 1 and 2:

after ` a b

θ1 = x 3 1 1 0

θ1 = y 1 0 1 1

θ1 = z 3 1 1 0

after r c d e

θ1 = x 0 0 0 0 0 1

θ1 = y 0 0 0 1 3 0

θ1 = z 0 1 2 0 2 0

We start with Strong Rationalizability (i.e., no restrictions on exogenous beliefs).

1. The first step of elimination follows from mere rationality. We can only eliminate

message r for type x, as it is dominated by message `. Thus, we write

S1
1 (x) = {`}

for the set of messages/signals consistent with rationality for type x. [Since no strategy

of player 2 is eliminated in the first step, it follows that in even (odd) steps only

regular vs. complete conditional probability systems), and by how beliefs/behaviors are restricted at
information sets that are inconsistent with the surviving strategies of some co-player. None of these
differences matters for our analysis. The same applies to strong directed rationalizability, given
the kind of belief restrictions we consider. See Battigalli, Catonini & Manili (2023) and references
therein.

8We take the interim perspective: players are “born with their types” and do not make type-
contingent plans.
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eliminations for player 2 (player 1 ) are possible.]

2. (Player 2) The optimal behavior of the receiver depends on his belief system
µ2 = (µ2(·|∅), µ2(·|`), µ2(·|r)), where µ2(·|∅) is the initial belief about the sender’s

type-message pair, and for each m = `, r, if µ2(Θ × {m} |∅) > 0, then the belief

µ2(·|m) after observing message m is derived from the initial belief by conditioning

(in other words, µ2 satisfies the chain rule).
9 At the second step of the elimination

procedure, the initial belief is assumed to assign probability 1 to the type-message

pairs that survived the first step:

µ2

(
∪θ1∈Θ1 {θ1} × S1

1 (θ1) |∅
)

= 1.

The same applies to the each belief µ2(·|m) provided that m ∈ S1
1 (θ1) for some

θ1 ∈ Θ1. Thus, here we have µ2((x, r) |r) = 0. In words, by strong belief in the

sender’s rationality, after observing message r the receiver concludes that the sender

is not of type x– this is an instance of forward-induction reasoning. Given this, action

e is never a best reply. Hence,

S2
2 = {a.c, b.c, a.d, b.d} ,

where, for example, a.c denotes the strategy choosing a after ` and c after r.

3. (Player 1 ) For type y, action r is not a best reply to any belief over S2
2 . Thus,

S3
1 (y) = {`}.
4. (Player 2) Every belief system of the receiver must now assign probability 1 to

type z after message r. Thus, S4
2 = {a.c, b.c}.

5. (Player 1 ) Given this, type z expects to obtain 0 from r and at least 1 from `.

Thus, S5
1 (z) = {`}.

No remaining strategy of the receiver can be eliminated. So, the result after arbitrarily

many steps is:

∀θ1 ∈ Θ1, S∞1 (θ1) = {`} ,
S∞2 = {a.c, b.c} .

It follows that the strongly rationalizable paths are (`, a) and (`, b) for every state

(sender’s type).

9We let ∅ denote the empty sequence of actions, i.e., the root of the leader-follower game tree.
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Now consider the following restrictions on the exogenous beliefs of the receiver:10

Let ∆2 collect the belief systems µ2 that initially assign probability 1 to type z, i.e.,

µ2({z} × S1|∅) = 1.

Strong ∆-Rationalizability is given by the following steps:

∆,1. As above, message r is eliminated for type x, so we write

S∆,1
1 (x) = S1

1 (x) = {`} .

But now, some strategies of the receiver are also eliminated. By the chain rule, every

belief system µ2 ∈ ∆2 assigns probability 1 to z given `, if µ2({z, `} |∅) > 0, and/or

given r, if µ2({z, r} |∅) > 0. Thus, the receiver best replies with a after ` and/or

with c after r: S∆,1
2 = {a.c, b.c, a.d, a.e}.

∆,2 . As in strong rationalizability, action e is never a best reply given r; hence,
strategy a.e of the receiver is eliminated:

S∆,2
2 = {a.c, b.c, a.d} .

Moreover, for type z, r is dominated by ` w.r.t. strategies in S∆,1
2 ; so, S∆,2

1 (z) = {`} .
∆,3 . For type y, r is dominated by ` over S∆,2

2 ; thus,

S∆,3
1 (y) = {`} .

Moreover, every belief system of the receiver must now assign probability 1 to type y

given message r. So,

S∆,3
2 = {a.d} .

We pinned down one strategy for each type of each player:

∀θ1 ∈ Θ1, S
∆,∞
1 (θ1) = {`} ,

S∆,∞
2 = {a.d} .

10Since there is only one type of receiver, we do not consider restrictions on the sender’s exogenous
beliefs. Formally, Θ2 =

{
θ̄2

}
, a singleton, and ∆1 =

{
µ1 : µ1

({
θ̄2

}
× S2

)
= 1
}
. With this, the pair

of restricted sets of beliefs ∆ = (∆1,∆2) is determined by ∆2.
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The strongly ∆-rationalizable path is (`, a) for every state. Consistently with our

main result (Theorem 1), this is one of the two strongly rationalizable paths. Note,

however, that the strongly ∆-rationalizable reaction of the receiver to r is d, whereas

the strongly rationalizable one was c. N

In the example, as we will prove in full generality, strong directed rationalizability

with restrictions on the initial beliefs about types refines strong rationalizability in

terms of paths, for each possible state (profile of types). However, the strongly ∆-

rationalizable strategy of the receiver is not strongly rationalizable. In particular,

the implications about off-path behavior change non-monotonically after introducing

the belief restrictions. Thus, strong directed rationalizability does not refine strong

rationalizability in terms of strategies. For this reason, our path-monotonicity result

cannot be proven with a straightforward induction argument.

2.2 Robust implementation, static mechanisms

To set the stage, we first explain the conceptual connection between robust im-

plementation and rationalizability, focusing first on static mechanisms. Consider

an economic environment E with asymmetric information. There is a set I of
agents and a set Y of economic outcomes (possibly, lotteries), a subset of some

Euclidean space. The (expected) value to player i of outcome y is vi (θ, y), where

θ = (θi)i∈I ∈ Θ = ×i∈IΘi is a state of nature and θi is i’s private information about

θ, or i’s “payoff type.”

Agents hold interactive hierarchical beliefs about each other’s payoff types, which

can be represented by means of a type structure T à la Harsanyi (1967-68). In

words, T captures what belief hierarchies are commonly believed possible, given some
exogenous contextual restrictions on beliefs. Without contextual restrictions, T is the
universal type structure containing all the collectively coherent belief hierarchies (e.g.,

Mertens & Zamir 1985, Brandenburger & Dekel 1993).

A planner (she) can commit to make the agents interact according to a mechanism

M, that is, some commonly known set of rules that yield a set Z of possible paths

of play coupled with an outcome function g : Z → Y . In static mechanisms, Z = A

is just the set of possible action profiles; in the subclass of direct mechanisms, Z

is isomorphic to Θ. The triple Γb = (M, E , T ) describes a situation of strategic
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interaction called “Bayesian game.”In the traditional full implementation problem,
it is assumed that the planner knows both E and T ; with this, she wants to implement
a map f (social choice function, scf) associating each state θ with a desirable outcome

y = f (θ) ∈ Y by letting agents strategically interact according to an “appropriate”

solution concept (e.g., Bayesian equilibrium, or rationalizability).11 The solution

concept yields, for each state θ ∈ Θ, a set ZΓb (θ) of possible paths of play. A

mechanismM fully implements scf f if, for each state of nature θ, the image set
of possible outcomes g

(
ZΓb (θ)

)
contains only the desired outcome y = f (θ), that is,

g
(
ZΓb (θ)

)
= {f (θ)} for all θ.12 However, the planner often ignores the contextual

features represented by type structure T . If she deems all type structures possible, in
compliance with Wilson’s doctrine, a natural notion of robust full implementation
requires that the same mechanismM fully implements scf f for all Bayesian games Γb

based on (M, E), that is, across all type structures T (seeWilson 1987 and Bergemann
& Morris 2009, 2012). Since this paper is only concerned with different forms of full

implementation, from now on we will omit the adjective “full.”

Robust implementation is conceptually related to rationalizability, that is, the
solution concept characterizing the behavioral implications of Rationality and Com-

mon Belief in Rationality (RCBR).13 On the one hand, not relying on the assumption

that players’endogenous beliefs about each other’s behavior serendipitously coordi-

nate on a Bayesian equilibrium is in itself a form of robustness in the spirit of Wilson’s

doctrine. On the other hand, it has been observed that the state-dependent outcomes

consistent with Bayesian equilibrium across all type structures are precisely those al-

lowed by a version of rationalizability for games with payoff uncertainty– aka “belief-

free rationalizability”– that applies to structure (M, E), i.e., to a description of the

game that does not specify interactive beliefs about payoff types.14 In particular,

11We limit our attention to social choice functions. Similar considerations apply to social choice
correspondences.
12Partial implementation relies on equilibrium analysis and requires instead that g (z (·)) = f (·)

for at least one equilibrium selection z (·) from equilibrium correspondence ZΓb (·).
13See, e.g., Battigalli & Siniscalchi (1999, 2002) and the relevant references therein. Note that here

“rationality”means only expected utility maximization given whatever subjective beliefs a player
holds about co-players’behavior and exogenous uncertainty. Every other restriction on behavior is
the result of additional assumptions on interactive beliefs.
14See Battigalli (2003), Battigalli & Siniscalchi (2003), and the relevant references therein. Tech-

nically, rationalizability for games with payoff uncertainty is slightly different from what Bergemann
& Morris (GEB, 2017) eventually called “belief-free rationalizability.” We use the term with its
original and most natural meaning.
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restricting attention to static (e.g., direct) mechanisms, robust Bayesian-equilibrium

implementation is equivalent to implementation w.r.t. rationalizability for games with

payoff uncertainty. Maintaining the viewpoint that rationalizable implementation is

in itself a form of robustness, it is also worth noting that robust implementation w.r.t.

rationalizability for Bayesian games is equivalent to implementation w.r.t. rational-

izability for games with payoff uncertainty. The intuition for this result is relatively

straightforward: (probability-1) belief is a monotone operator, that is, believing a
weak proposition (large event) is easier than believing a logically stronger proposition

(smaller event included in the former one). It follows by an induction argument that

common belief in rationality and in contextual restrictions on exogenous interactive

beliefs (which yields rationalizability in Bayesian games) implies mere common belief

in rationality. Since “no restriction”is a particular kind of contextual restriction (rep-

resented by the universal type structure), the robustness result follows. With this,

we refer to robust implementation with static mechanisms also as “implementation

under RCBR.”

Finally, we are going to consider a weaker form of “virtual implementation,”or

v-implementation, that only requires to approximate the desired outcome f (θ)

with an arbitrary degree of precision (see Abreu & Matsushima 1992 and Bergemann

& Morris 2009). Clearly, robust v-implementation is easier to achieve than robust

implementation. But Bergemann & Morris (2009) show that– within the domain

of static mechanisms– even this form of implementation under RCBR is hard when

valuations are highly, or even just mildly dependent on the types of others. Consider

the following example. A single good must be allocated to one of many agents through

a static mechanism with monetary transfers. Each agent/player i values the good

vi (θi, θ−i) = θi + γ
∑
j 6=i

θj (γ ≥ 0) ,

where θi is private information of i and belongs to a finite set of payoff types Θi

that satisfies {0, 1} ⊆ Θi ⊆ [0, 1]. As i’s valuation also depends on θ−i, players have

interdependent valuations for the good. The degree of interdependence is increasing

in γ. It turns out that, for γ > 1
|I|−1

, only constant social choice functions can be

v-implemented under RCBR with static mechanisms. This is problematic because, in

the extant literature, only the latter form of implementation is known to be robust.
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2.3 Robust implementation, sequential mechanisms

Using sequential mechanisms gives more flexibility and could significantly enlarge the

set of robustly implementable scf’s. Yet, the picture becomes more complex (and

interesting), because there are different versions of rationalizability for sequential

games characterizing the behavioral implications of different specifications of “com-

mon belief in rationality.”15 The weakest one, aka “weak rationalizability”or “initial

rationalizability,”relies on the assumption of Rationality and Common Initial Belief

in Rationality (RCIBR, see Battigalli 2003 and Battigalli & Siniscalchi 1999). There-

fore, we refer to (robust v-) implementation w.r.t. this version of rationalizability as

“implementation under RCIBR.”

Since initial (probability-1) belief is monotone, the aforementioned results for sta-

tic mechanisms extend to sequential mechanisms (a weak version of perfect Bayesian

equilibrium) and implementation under RCIBR. However, since weak rationalizabil-

ity typically allows for a large set of outcomes, it is unlikely that relevant scf’s can

be implemented under RCIBR. In particular, allowing for sequential mechanisms in

the previous example, one can show that, for γ > 1
|I|−1

, only constant scf’s can be

robustly implemented under RCIBR.16

As mentioned in the Introduction and intuitively explained in 2.1, a stronger

and more interesting notion of rationalizability for sequential games captures a form

of forward-induction (FI) reasoning, as it characterizes the behavioral implications

of Rationality and Common Strong Belief in Rationality (RCSBR). The simplest

version of rationalizability capturing RCSBR in incomplete-information environments

is strong rationalizability for games with payoff uncertainty, a kind of “belief-
free strong rationalizability” (Battigalli & Siniscalchi 2002). Therefore, we refer to

implementation w.r.t. strong rationalizability as “implementation under RCSBR.”

Clearly, strong rationalizability refines weak/initial rationalizability. Thus, allow-

ing for sequential mechanisms, v-implementation under RCSBR might significantly

expand the set of v-implementable scf’s. Indeed, considering a discretized environ-

ment, Mueller (2016) shows precisely this. For example, in the aforementioned im-

plementation problem effi cient allocations can be v-implemented under RCSBR for

almost all parameter values γ ≥ 0.

15Where “rationality” is now meant in the sequential sense of subjective expected utility maxi-
mization conditional on observations about previous moves.
16See Mueller (2016) and (2020).
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But is v-implementation under RCSBR robust? In other words, suppose agents’

interactive exogenous beliefs about each other’s payoff types satisfy some contextual

restrictions represented by a (non-universal) Harsanyi type structure T . Then, their
behavior should satisfy strong rationalizability for the Bayesian game Γb = (M, E , T ).

Robustness would require that the given scf f is v-implementable w.r.t. strong ra-

tionalizability in Bayesian games across all type structures T . Unfortunately, we
cannot replicate the aforementioned inductive argument based on the monotonicity

of probability-1 (initial) belief, because strong belief is not monotone: As illustrated

by Example 1, while at the beginning of the game it is easier to believe a weak

proposition such as “my co-players are rational”than a stronger one such as “my co-

players are rational and their exogenous beliefs satisfy the contextual restrictions,”

there typically are more observations consistent with the weaker proposition, and

therefore more instances in which strong belief requires to assign probability 1 to this

proposition, making it more diffi cult to strongly believe it. When contextual con-

siderations (e.g., social norms) also shape endogenous beliefs about behavior, unlike

Example 1, it is easy to show that the set of induced paths of play is non-monotone

w.r.t. such contextual restrictions (see Battigalli & Friedenberg 2012).

Due to the non-monotonicity of strong belief, the extant literature does not show

that v-implementation under RCSBR is robust to considering contextual restrictions

on agents’exogenous interactive beliefs. Yet, existing examples and results concerning

the (non)monotonicity of strongly rationalizable paths of play only refer to restrictions

on interactive beliefs about behavior, i.e., endogenous beliefs. Our main theorem

shows that this is not by chance, or lack of trying to find counterexamples: the set

of state-dependent strongly rationalizable paths of play is (always nonempty and)

monotone w.r.t. restrictions on exogenous beliefs. With this, we can also prove

that v-implementation under RCSBR is robust. Fix an scf f : Θ → Y . Let Γ =

(M, E) denote the game with payoff uncertainty (or “belief-free”game) induced by

mechanismM with outcome function g : Z → Y in environment E and let θ 7→ ZΓ (θ)

denote the strongly rationalizable-paths correspondence. Suppose that, for all states

θ, g
(
ZΓ (θ)

)
≈ {f (θ)} to an arbitrary degree of precision. Now suppose that the

relevant hierarchies of initial beliefs on the payoff-relevant uncertainty are adequately

represented by a particular type structure T à la Harsanyi. It is without loss of

generality to write the Harsanyi types as ti = (θi, ei) where coordinate ei affects

hierarchical exogenous beliefs, but does not affect payoffs. Appending T to (M, E)

12



gives a sequential Bayesian game Γb = (M, E , T ). In our analysis, we make the

transition from game with payoff uncertainty Γ to Bayesian game Γb in two steps.

First, we “duplicate”types by replacing each set Θi of payoff-types with a set Ti =

Θi×Ei, and we note that the solution concept is invariant to such duplications: a pair
(θi, si) is strongly rationalizable if and only if ((θi, ei) , si) is strongly rationalizable

in the “belief-free” game with duplicated types for each ei ∈ Ei. Next we obtain

a type structure T by adding belief maps (βi : Ti → ∆ (T−i))i∈I to such game with

duplicated types, which corresponds to specific restrictions on exogenous beliefs in

this game: for each type ti = (θi, ei), the set of possible exogenous beliefs is the

singleton {βi (ti)}. With this, our theorem implies that, for all Bayesian games Γb

obtained by appending a Harsanyi type structure to Γ, ∅ 6= ZΓb (θ, e) ⊆ ZΓ (θ), where

ZΓb (θ, e) is the set of strongly rationalizable paths at state (θ, e) in Γb. Therefore,

g
(
ZΓb (θ, e)

)
≈ {f (θ)} for all such games Γb and states (θ, e) to an arbitrary degree

of precision.

3 Preliminaries17

In this section we formally introduce the basic incomplete-information framework

(3.1), systems of beliefs and sequential best replies (3.2), and the adopted solution

concept, strong directed rationalizability (3.3).

3.1 Multistage games with payoff uncertainty

We consider the following finite multistage game with observed actions and payoff

uncertainty.18 There is a set of players I and each i ∈ I has a set of potentially

available actions Ai. Let A = ×i∈IAi denote the set of action profiles and A<N0 the
set of finite sequences of such profiles (including the empty sequence ∅). A subset of
A<N0 is a tree with root ∅ (the empty sequence) if it is closed under the “prefix-of”
precedence relation � (note that ∅ is a prefix of every sequence). The rules of the

game yield a tree H̄ ⊆ A<N0 of possible sequences, called histories, and a feasibility
correspondence h 7→ A (h) =

{
a ∈ A : (h, a) ∈ H̄

}
such that (1) A (h) = ×i∈IAi (h)

17The formalism is based on the (still incomplete) draft of textbook Game Theory: Analysis of
Strategic Thinking by Battigalli, Catonini, & De Vito. Chapter 15 of the book analyzes solution
concepts for multistage games with incomplete information.
18See the discussion in Section 7 for extensions to imperfectly observed actions and infinite games.
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and (2) A (h) = ∅ implies Ai (h) = ∅ for every i ∈ I. The set of terminal histories–
or possible paths of play– is Z =

{
z ∈ H̄ : A (h) = ∅

}
, and the set of nonterminal

histories is H = H̄\Z. Nonterminal histories are publicly observed as soon as they
realize.19

Each player i knows the true value of a payoff-relevant parameter θi, called the

payoff-type of i, whereas the set Θi of possible values of θi is common knowledge.

The parameterized payoff function of player i is ui : Θ× Z → R, where Θ = ×i∈IΘi

is the set of all possible type profiles, or states of nature. Payoff uncertainty is

represented by the dependence of ui on θ. When convenient, we write ui,θ : Z → R
for the section of ui at state θ.20 Thus, a multistage game with payoff uncertainty

and observed actions is given by

Γ =
〈
I, H̄, (Θi, ui)i∈I

〉
,

where all the featured sets are finite. If |Ai (h)| > 1, then player i is active at

nonterminal history h. If |Ai (h)| = 1, player i is inactive and the unique element

of Ai (h) can be thought of as a waiting action. If there is only one active player

for each h ∈ H, then Γ features perfect (albeit incomplete) information, i.e., there

are no simultaneous moves and (by the observed actions assumption) past moves

are perfectly observed. In the analysis of examples, we omit to mention the waiting

actions of inactive players.

We interpret each function ui as the composition of a parameterized utility func-
tion vi : Θ×Y → R (Y is the relevant space of outcomes) and an outcome function
g : Z → Y specified by the rules of the game: ui (θ, z) = vi (θ, g (z)).

From these primitives, we can derive a set of strategies Si = ×h∈HAi (h) for each

player i. Let S = ×i∈ISi and S−i = ×j 6=iSj. Note, we take an interim perspective: the
game starts with some exogenously given state of nature θ (e.g., representing players’

traits), imperfectly and asymmetrically known by the players. Thus, strategies only

describe how behavior depends on previous moves. Let ζ : S → Z denote the path
function that associates each strategy profile s = (si)i∈I ∈ S with the induced path
z = ζ (s).21 To ease notation, it is convenient to extend the path function to domain
19See the discussion of this assumption in Section 7.
20Since the profile of payoff-types θ determines each payoff function ui,θ : Z → R, we are implicitly

assuming that there is distributed knowledge of the payoff-relevant state of nature. This assumption
is made only to simplify the notation.
21Define recursively whether a history h is induced by a given strategy profile s: the empty
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Θ× S and codomain Θ× Z in the obvious way

(θ, s) 7→ ζ̄ (θ, s) = (θ, ζ (s))

and to define the (parameterized) strategic-form payoff function of player i as

Ui = ui ◦ ζ̄ : Θ× S → R.

Finally, for each h ∈ H̄,

S(h) = Si(h)× S−i(h) = {s ∈ S : h � ζ(s)}

denotes the set of all strategy profiles inducing h.22

The primitive and derived elements are summarized by the following table:

Symbol Terminology

i ∈ I players

ai ∈ Ai actions of i

a ∈ A = ×i∈IAi action profiles

h ∈ H̄ ⊆ A<N0 histories (H̄ is a tree)

Ai (h) (A (h) = ×i∈IAi (h)) feasible actions (action profiles) given h

z ∈ Z terminal histories, or paths of play

H = H̄\Z nonterminal histories

θi ∈ Θi payoff-types of i

θ ∈ Θ = ×i∈IΘi states of nature

ui : Θ× Z → R (parameterized) payoff function of i

si ∈ Si = ×h∈HAi (h) strategies of i

s ∈ S = ×i∈ISi strategy profiles

s ∈ S (h) strategy profiles inducing h

ζ : S → Z path function

ζ̄ : Θ× S → Θ× Z extended path function

Ui = ui ◦ ζ̄ : Θ× S → R (param.) strategic-form payoff function of i

history ∅ is trivially induced by every s ∈ S. A history (h, a) is induced by s if h is induced by s
and a = (si (h))i∈I . With this, for every s ∈ S, ζ (s) is the terminal history induced by s.
22Note that S (h) = ×j∈ISj (h) for every history h ∈ H̄.
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3.2 Beliefs and best replies

We model the beliefs of each player i as the play unfolds by means of conditional
probability systems (CPSs, Renyi, 1955): observed history h reveals that the set
of possible type-strategy profiles of the co-players is Θ−i × S−i (h); thus, we consider

arrays of conditional beliefs µi = (µi (·|Θ−i × S−i (h)))h∈H over such profiles, abbre-

viated in µi = (µi (·|h))h∈H . The set of CPSs of player i, denoted ∆H (Θ−i × S−i),
is the subset of arrays of beliefs µi ∈ (∆ (Θ−i × S−i))H such that, for every h ∈ H,
µi (Θ−i × S−i(h)|h) = 1 and the chain rule holds, that is, for all h, h′ ∈ H and

E ⊆ Θ−i × S−i(h′),

S−i(h
′) ⊆ S−i(h) =⇒ µi (E|h) = µi (E|h′)µi (Θ−i × S−i(h′)|h) .

Note that h � h′ implies S−i(h′) ⊆ S−i(h), but the converse is not true because

histories also represent behavior of player i.

We will consider type-dependent restrictions on players’exogenous beliefs
(i.e., initial beliefs about the types of others), represented by subsets of probability

measures: for all i ∈ I and θi ∈ Θi,

∆̄i,θi ⊆ ∆ (Θ−i) .

With this, we introduce profiles ∆ = (∆i,θi)i∈I,θi∈Θi
of type-dependent subsets of

CPSs such that, for all i ∈ I and θi ∈ Θi,23

∆i,θi =
{
µi ∈ ∆H (Θ−i × S−i) : margΘ−iµi (·|∅) ∈ ∆̄i,θi

}
.

We represent the behavior of a rational player i of type θi by means of a (weak) se-
quential best reply correspondence µi 7→ ri,θi (µi) defined as follows. Let Hi (si) =

{h ∈ H : si ∈ Si (h)} denote the set of non-terminal histories that can occur if si is
played. With this,

ri,θi (µi) =

{
s̄i : ∀h ∈ Hi (s̄i) , s̄i ∈ arg max

si∈Si(h)
Eµi(·|h) (Ui(θi, si, ·))

}
.

By standard dynamic programming arguments, ri,θi (µi) 6= ∅ for all payoff-types θi
23Such resrictions are called “regular”in Battigalli (2003).
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and CPSs µi.
24

Fix a CPS µi ∈ ∆H (Θ−i × S−i) and a type θi. For each strategy s̄i and history h ∈
Hi(s̄i), we say that s̄i is a continuation best reply to µi(·|h) ∈ ∆ (Θ−i × S−i (h))

for θi if, for every si ∈ Si(h),

Eµi(·|h) (Ui(θi, s̄i, ·)) ≥ Eµi(·|h) (Ui(θi, si, ·)) .

Thus, s̄i is a (weak) sequential best reply to µi for θi if s̄i is a continuation best reply

to µi(·|h) for θi at every h ∈ Hi(s̄i).

3.3 Strong (directed) rationalizability

As informally explained in the Introduction, our forward-induction analysis hinges on

the notion of “strong belief.”For each event E−i ⊆ Θ−i × S−i (e.g., that co-players’
behavior is consistent with rationality), we say that a CPS µi strongly believes E−i
(Battigalli & Siniscalchi 2002) if µi assigns probability 1 to E−i as long as E−i is not

contradicted by observation:

∀h ∈ H, E−i ∩ (Θ−i × S−i (h)) 6= ∅ ⇒ µi (E−i|h) = 1.

We assume that players are rational and that the restrictions on exogenous beliefs

are transparent, that is, the belief restrictions hold and there is common belief of
this fact conditional on every nonterminal history. Moreover, we assume that players

strongly believe that:

• the co-players are rational and the restrictions are transparent;

• the co-players are rational, the restrictions are transparent, and the co-players
strongly believe that everyone else is rational and that the restrictions are trans-

parent;

• and so on.

In brief, we assume rationality, transparency of the belief restrictions, and common

strong belief thereof.
24See Battigalli, Catonini & Manili (2023) and the relevant references therein, where this weak

notion of sequential best reply (which applies to reduced strategies as well as strategies) is extensively
discussed and motivated.
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The previous hypotheses can be made formal in the language of epistemic game

theory. As shown by Battigalli & Prestipino (2013), the behavioral implications of

these epistemic hypotheses are characterized by Strong Directed Rationalizabil-
ity (Battigalli 2003, Battigalli & Siniscalchi 2003).25

Fix a profile ∆ = (∆i,θi)i∈I,θi∈Θi
of subsets of CPSs (see 3.2). Also, for each player

i ∈ I and event E−i ⊆ Θ−i × S−i, let ∆H
sb (E−i) denote the set of CPSs µi that

strongly believe E−i, and let Σ∆,0
i = Θi × Si. Then, for each n > 0, define the set

of strongly ∆-n-rationalizable type-strategy pairs of i as

Σ∆,n
i =

{
(θi, si) : ∃µi ∈ ∩n−1

m=0∆H
sb(Σ∆,m

−i ) ∩∆i,θi , si ∈ ri,θi(µi)
}
.

With this, the set of strongly ∆-n-rationalizable strategies for θi is the section at θi
of Σ∆,n

i

S∆,n
i (θi) =

(
Σ∆,n
i

)
θi

=
{
si : (θi, si) ∈ Σ∆,n

i

}
,

and the set of strongly ∆-n-rationalizable strategy profiles at state θ is

S∆,n (θ) = ×i∈IS∆,n
i (θi) .

Finally, let

Σ∆,∞
i = ∩n>0Σ∆,n

i ,

Σ∆,∞ = ×i∈IΣ∆,∞
i

denote the set of strongly ∆-rationalizable type-strategy pairs of i and profiles of such

pairs, and let

S∆,∞
i (θi) =

(
Σ∆,∞
i

)
θi
,

S∆,∞ (θ) = ×i∈IS∆,∞
i (θi) .

Recalling that the sequential best reply correspondence is non-empty valued and

noting that mere restrictions on exogenous beliefs cannot contradict the restrictions

on beliefs about type-dependent behavior implied by strategic reasoning, one can

25These articles use the term “(strong) ∆-rationalizability.”Recall that we use “(strong) directed
rationalizability”to refer to the correspondence that associates each profile of belief restrictions ∆
with the corresponding strongly rationalizable behavior, so that ∆ “directs”the resulting behavior.
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prove by induction the following result:

Lemma 1 (cf. Battigalli 2003) Since ∆ represents restrictions on exogenous beliefs,

for each θ ∈ Θ, the set of strongly ∆-rationalizable strategy profiles is non-empty:

S∆,∞ (θ) 6= ∅.

When there are no actual belief restrictions, i.e., when each ∆i,θi is the set

∆H (Θ−i × S−i) of all CPSs of i, Strong ∆-Rationalizability boils down to Strong
Rationalizability (Pearce 1984, Battigalli 1997), which characterizes the behavioral
implications of Rationality and Common Strong Belief in Rationality (Battigalli &

Siniscalchi, 2002). We omit the superscript ∆ to denote Strong Rationalizability: Σ∞i

(Σn
i ) is the set of strongly (n-)rationalizable pairs of i, S

∞
i (θi) (Sni (θi)) is the set of

strongly (n-)rationalizable strategies of θi, and (S∞ (θ))θ∈Θ ((S
n (θ))θ∈Θ) is the set of

profiles of strongly (n-) rationalizable strategies at θ.

A path (terminal history) z ∈ Z is strongly ∆-rationalizable if there exists some

strongly ∆-rationalizable profile (θ, s) such that ζ (s) = z. Thus, the set of strongly
∆-rationalizable paths is Z

(
Σ∆,∞) = projZ ζ̄

(
Σ∆,∞) and the set of strongly ∆-

rationalizable paths at state of nature θ is the section ζ̄
(
Σ∆,∞)

θ
= ζ

(
S∆,∞ (θ)

)
.

The signaling game informally analyzed in Section 2.1 illustrates the formalism

and concepts introduced in this section.

Example 2 Consider again the signaling game of Example 1. Game Γ is a two-stage

game with perfect information, with

Θ1 = {x, y, z} , Θ2 =
{
θ̄2

}
, (a singleton),

H = {∅, (`) , (r)} , Z = {(`, a) , (`, b) , (r, c) , (r, d) , (r, e)} , H̄ = H ∪ Z,
A1 (∅) = {`, r} , A2 (`) = {a, b} , A2 (r) = {c, d, e} ,

and the type-dependent payofffunctions ui : Θ×Z → R are described by the following
tables:

u1 (·, `, ·) , u2 (·, `, ·) a b

θ1 = x 3 1 1 0

θ1 = y 1 0 1 1

θ1 = z 3 1 1 0

u1 (·, r, ·) , u2 (·, r, ·) c d e

θ1 = x 0 0 0 0 0 1

θ1 = y 0 0 0 1 3 0

θ1 = z 0 1 2 0 2 0
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Since player 2 is uninformed and inactive in the first stage, Σ2 is isomorphic to S2 and

∆H (Θ2 × S2) is isomorphic to ∆ (S2) (by the chain rule and S2 (`) = S2 (r) = S2).

We intuitively explained in Example 1 how strong directed rationalizability works in

this game. Thus, we only list below the formal result for each step using the notation

introduced above. Without belief restrictions, we have:

Σ1
1 = {(x, `) , (y, `) , (y, r) , (z, `) , (z, r)} (thus, S1

1 (x) = {`} ), Σ1
2 = S2;

Σ2
1 = Σ1

1, Σ2
2 = {a, b} × {c, d} ;

Σ3
1 = {(x, `) , (y, `) , (z, `) , (z, r)} , (thus, S3

1 (y) = {`} ), Σ3
2 = Σ2

2;

Σ4
1 = Σ3

1, Σ4
2 = {a.c, b.c} ;

Σ5
1 = Θ1 × {`} (thus, S5

1 (θ1) = {`} for all θ1), Σ5
2 = Σ4

2;

Σ∞1 = Θ1 × {`} , Σ∞2 = {a.c, b.c} ;

ζ̄ (Σ∞) = Θ× ({`} × {a, b}) , thus ζ
(
S∆,∞ (θ)

)
= {`} × {a, b} for all θ ∈ Θ.

Since Θ2 is a singleton, we can only have restrictions on the exogenous beliefs of

player 2. Formalizing Example 1, let

∆2 =
{
µ2 ∈ ∆H (Θ1 × S1) :

(
margΘ1

µ2 (·|∅)
)

(z) = 1
}

denote the set of CPSs that intially assign probability 1 to type θ1 = z. With this,

strong ∆-rationalizability yields:

Σ∆,1
1 = {(x, `) , (y, `) , (y, r) , (z, `) , (z, r)} , Σ∆,1

2 = {a.c, b.c, a.d, a.e} ;
Σ∆,2

1 = {(x, `) , (y, `) , (y, r) , (z, `)} , Σ∆,2
2 = {a.c, b.c, a.d} ;

Σ∆,3
1 = Θ1 × {`} , Σ∆,3

2 = {a.d} ;
Σ∆,∞

1 = Θ1 × {`} , Σ∆,∞
2 = {a.d} ;

ζ̄
(
Σ∆,∞) = Θ× {(`, a)} , thus ζ

(
S∆,∞ (θ)

)
= {(`, a)} for all θ ∈ Θ.

Thus Z
(
Σ∆,∞) ⊂ Z (Σ∞); but Σ∆,∞

2 * Σ∞2 , actually Σ∆,∞
2 ∩ Σ∞2 = ∅. N
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4 Main theorem

We show that, when we consider only restrictions on exogenous beliefs, the set of

strongly ∆-rationalizable paths is monotone in ∆, despite the non-monotonicity of

strong belief.

Because it suffi ces for our application to implementation theory, here we just

focus on the comparison between some profile ∆ of subsets of CPSs that only restrict

exogenous beliefs, and the case of no restrictions (∆i,θi = ∆H (Θ−i × S−i) for all i
and θi, that is, strong rationalizability). Thus, we prove that for any fixed profile

of restrictions on exogenous beliefs ∆ the set of strongly ∆-rationalizable paths is

contained in the set of strongly rationalizable paths. It will be clear that the proof

can be easily adapted to obtain the more general path-monotonicity claim.

Theorem 1 Fix a profile ∆ = (∆i,θi)i,∈I,θi∈Θi
of restrictions on exogenous beliefs.

Then, for all steps n > 0 and states θ ∈ Θ, ∅ 6= ζ
(
S∆,n (θ)

)
⊆ ζ (Sn (θ)), that is, for

each (θ, s) ∈ Σ∆,∞ 6= ∅, there exists s′ ∈ S such that (θ, s′) ∈ Σ∞ and ζ(s) = ζ(s′).

The assumption that the belief restrictions only apply to exogenous beliefs is tight.

In the literature, there are many examples of strong directed rationalizability with

restrictions on the initial beliefs about the co-player’s strategy yielding non-strongly-

rationalizable outcomes (see, e.g., Battigalli & Friedenberg 2012 and Catonini 2019).

In the supplemental appendix, we provide an analogous example of restrictions on

non-initial conditional beliefs about the co-player’s type.

Given that, as we saw in Examples 1 and 2, the two elimination procedures may

induce completely disjoint off-path behaviors, proving path-monotonicity is hard. Our

proof is based on a kind of double-induction argument.26

4.1 Proof of theorem 1

Non-emptiness follows from Lemma 1. Here we only focus on path-inclusion. Since

comparing directly strong rationalizability and strong ∆-rationalizability is diffi cult,
26The techniques we use have common elements with the techniques used by Perea (2018) and

Catonini (2020) in complete-information games to prove, respectively, an order-independence result
for strong rationalizability and an outcome-monotoncity result for directed rationalizability with
respect to initial belief restrictions about the path of play. In particular, like Perea (2018), we
decompose the problem of comparing two very different elimination procedures into a chain of
pairwise comparisons between more similar procedures, and the proof of a key claim (Claim 4 in the
proof of Theorem 1) draws on Catonini (2020).
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we construct a sequence of elimination procedures that gradually transform strong ∆-

rationalizability into strong rationalizability, and we prove step-by-step path-inclusion

between each pair of consecutive, “similar”procedures.

Let K be the number of steps that it takes for strong rationalizability to converge:

ΣK−1 ⊂ ΣK = Σ∞ (⊂ denotes strict inclusion). Note that K is well defined because

the game is finite. For each k = 0, ..., K, we introduce Procedure k, which performs

the first k steps of elimination without belief restrictions and the following steps with

the belief restrictions. Thus, Procedure 0 coincides with strong ∆-rationalizability,

while the first K steps of Procedure K coincide with strong rationalizability. Hence,

the path-inclusions between Procedure 0 and Procedure 1, Procedure 1 and Procedure

2, and so on up to Procedure K, prove the theorem.

Now we define formally such elimination procedures, denoted by ((Xn
k)∞n=0)

K

k=0
. If

everything is strongly rationalizable, there is nothing to prove; thus, suppose that

strong rationalizability deletes some pair (θi, si) for at least one player i, so that

K > 0.

As anticipated, for k = 0, we have strong ∆-rationalizability:

(Xn
0 )∞n=0 =

(
Σ∆,n

)∞
n=0

.

For each k = 1, ..., K, define ((Xn
k,i)i∈I)

∞
n=0 as follows. Let X0

k = Θ× S.
For all n ∈ {1, ..., k} and i ∈ I,

Xn
k,i =

{
(θi, si) ∈ Θi × Si : ∃µi ∈ ∩n−1

m=0∆H
sb(Xm

k,−i), si ∈ ri,θi(µi)
}
. (1)

Thus, for k > 0, steps n = 1, ..., k of Procedure k coincide with strong rationalizability:

Xn
k = Σn for n ≤ k.

For all n > k and i ∈ I, let

Xn
k,i =

{
(θi, si) ∈ Θi × Si : ∃µi ∈ ∩n−1

m=0∆H
sb(Xm

k,−i) ∩∆i,θi , si ∈ ri,θi(µi)
}
. (2)

Thus, Procedure k deviates from strong rationalizability from step n = k+1 onwards,

because it starts imposing the ∆-restrictions on justifying beliefs only from step k+1.

It follows that, as anticipated, (Xn
K)∞n=0 is an elimination procedure which co-

incides with strong rationalizability (Σn)∞n=0 for the first K steps, so obtaining the

strongly rationalizable profiles, but then proceeds to (possibly) delete more profiles
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by adding the ∆-restrictions. More generally, no procedure needs to converge by step

K (although some may converge at an earlier step), but– for our purpose– we can

focus on the first K steps of all procedures.

We are going to prove that, for each step of elimination n, the set of θ-dependent

paths that are consistent with step n weakly expands as k increases, which implies the

thesis. To do so, we proceed in this order: first we fix k ∈ {1, ..., K} and consider
Procedure k− 1 and Procedure k; then, we prove the path-inclusion between the two

procedures at every step of elimination n by induction on n.

First we provide an intuition of how we exploit the similarity between the two

consecutive procedures and how the assumption of exogenous restrictions makes their

comparison possible. From this intuition, we will derive the two-fold inductive hy-

pothesis for the formal proof. To simplify notation, we drop the indexes k − 1 and k

of the two procedures and we call them “P”and “Q”: ((Pn
i )i∈I)

∞
n=0 = ((Xn

k−1,i)i∈I)
∞
n=0

and ((Qn
i )i∈I)

∞
n=0 = ((Xn

k,i)i∈I)
∞
n=0. We are also going to apply the notation “·|Ĥ”

to (profiles of) strategies or type-strategy pairs in order to restrict the domain of

strategies to a subset of histories Ĥ. Furthermore, for any subset X ⊆ Θ× S, we let

H (X) = {h ∈ H : ∃ (θ, s) ∈ X, h ≺ ζ (s)}

denote the set of non-terminal histories that realize for some (θ, s) ∈ X. With this,

for any X−i ⊆ Θ−i × S−i, to ease notation we also let

H (X−i) = H (Θi × Si × X−i)

denote the set of non-terminal histories that realize for some (θ−i, s−i) ∈ X−i and

(θi, si) ∈ Θi × Si.
P and Q coincide with Strong Rationalizability for steps n ∈ {1, ..., k − 1} and

depart at step n = k. From now on, let n = k+ 1; this will bring us to formulate the

induction hypothesis of the formal proof with the appropriate indexes.

At step n− 1 = k, P adopts the belief restrictions and Q does not, so:

Pn−1 ⊆ Qn−1. (3)

At step n = k + 1 both P and Q adopt the restrictions, but P imposes strong

belief in smaller strategy sets and therefore, along the paths consistent with these sets,
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it remains more restrictive:

Pn|H(Pn−1) ⊆ Qn|H(Pn−1). (4)

At step n+ 1 = k + 2, the comparison becomes more complex.

First: Is this step of procedure P still more restrictive than Q regarding beliefs

at histories in H(Pn−1) about the co-players’types and moves at those histories, as

expression (4) seems to suggest?

The answer is yes, but only thanks to the assumption that restrictions only con-

cern exogenous beliefs. Restrictions on the beliefs about the endogenous/strategic

uncertainty could allow player i to believe in some (θ−i, s−i) ∈ Pn
−i, but not in any

counterpart
(
θ−i, s

′
−i
)
∈ Qn

−i with s−i|H(Pn−1) = s′−i|H(Pn−1). The role of restrict-

ing only the initial beliefs is more subtle. Strong belief in Pn
−i and in Qn

−i may

induce, by forward-induction reasoning, different beliefs about θ−i at some history

h′ ∈
(
H(Pn

−i) ∩H(Qn
−i)
)
\H(Pn−1). If there were restrictions on such beliefs at h′, it

could well be that some of the beliefs derived from Qn
−i would be incompatible with

the restrictions. Via the chain rule, this could also rule out some beliefs at some

h ∈ H(Pn−1) such that h ≺ h′.

But this is not the end of the story. Strong belief in Qn
−i may be more restrictive,

or “differently restrictive,” compared with strong belief in Pn
−i regarding behavior

outside of H(Pn−1). This is because the inclusion of equation (4) is restricted to

H(Pn−1). Thus, strong belief in Qn
−i may rule out some belief about the reactions of

the co-players to a deviation of i from H(Pn−1) which is instead allowed by strong

belief in Pn
−i. Example 2 may help to understand this point.

27 Belief in Σ4
2 = {a.c, b.c}

imposes belief in reaction c after a deviation from the unique on-path signal induced

by Σ∆,3
1 = Θ1 × {`}. By contrast, belief in Σ∆,4

2 = {a.d} imposes belief in reaction
d. With this, it is conceivable that there might be a deviation from one of the paths

consistent with Pn+1 that player i expects to lead out of H(Pn−1) and always be

strictly profitable under strong belief in Qn
−i. This is what makes it hard to prove

that

Pn+1|H(Pn) ⊆ Qn+1|H(Pn). (5)

27The example compares directly strong ∆-rationalizability and strong rationalizability, which
cannot formally take the role of procedures P and Q, but it still displays the possible relationship
between P and Q that we are illustrating.
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What guarantees that such a deviation does not exist? We are going to argue that

H(Pn−1) ⊇ H(Qn), so that no strategy in Qn+1
i ⊆ Qn

i (i.e., no strategy that player i

could ever find profitable at step n+1 of procedure Q) leads out of H(Pn−1) (actually,

of H(Pn) ⊆ H(Pn−1)) if the co-players follow strategies in Qn
−i, as strongly believed

by i at step n+ 1.

Here is where the similarity between the two procedures comes into play: H(Pn−1) ⊇
H(Qn) is a reverse inclusion compared to the path-inclusion we want to prove, but

with procedure Q one step ahead of procedure P . Thus, to see why the inclusion

holds, we must flip the roles of the two procedures and start from the trivial obser-

vation that, since Qn−1 ⊆ Qn−2 and Q and P coincide up to step n− 2,

Qn−1 ⊆ Pn−2.

Next, we consider step n ofQ and step n−1 of P . Both steps use the belief restrictions,

as Q introduces the restrictions only one step later than P . Thanks to this similarity,

we can argue as above (cf. equation (4)) to obtain

Qn|H(Qn−1) ⊆ Pn−1|H(Qn−1). (6)

Thus, since H(Qn−1) ⊇ H(Qn), we have H(Pn−1) ⊇ H(Qn), as we wanted to show.

Proving (6) was easy because we could rely on the inclusion Qn−1 ⊆ Pn−2, which

is stated for complete strategies. But to continue and prove

Pn+2|H(Pn+1) ⊆ Qn+2|H(Pn+1),

we need H(Pn) ⊇ H(Qn+1), that is, we need

Qn+1|H(Qn) ⊆ Pn|H(Qn), (7)

and to prove this we run into the same complications we had for (5). However,

recall that we were able to prove (5) after showing that H(Pn−1) ⊇ H(Qn); we can

prove (7) in the same way, with the roles of the two procedures flipped, because

H(Qn−1) ⊇ H(Pn−1) by (3).

At this point, considering any n ≥ k, it should be clear that if take induction
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hypotheses of the kind

Pn|H(Pn−1) ⊆ Qn|H(Pn−1), (8)

Qn|H(Qn−1) ⊆ Pn−1|H(Qn−1), (9)

then we can use them to prove the next iteration of (9), namely

Qn+1|H(Qn) ⊆ Pn|H(Qn), (10)

and we can use (8) and (10) to prove the next iteration of (8).

Now we formulate this two-fold induction hypothesis for the formal proof. For

every n ≥ k,

IH1(n) for every i ∈ I and (θi, si) ∈ Xn
k−1,i, there is ŝ

(θi,si)
i ∈ Si such that (θi, ŝ

(θi,si)
i ) ∈

Xn
k,i and ŝ

(θi,si)
i (h) = si(h) for all h ∈ H(Xn−1

k−1) (thus, step n of Procedure k − 1

path-refines step n of Procedure k);

IH2(n) for every i ∈ I and (θi, si) ∈ Xn
k,i, there is s̃

(θi,si)
i ∈ Si such that (θi, s̃

(θi,si)
i ) ∈

Xn−1
k−1,i and s̃

(θi,si)
i (h) = si(h) for all h ∈ H(Xn−1

k ) (thus, step n of Procedure k

path-refines step n− 1 of Procedure k − 1);

For n = K, IH1 implies that, for each (θ, s) ∈ XK
k−1, there exists s

′ ∈ S such that
(θ, s′) ∈ XK

k and ζ(s) = ζ(s′). Since k is arbitrary in {1, ..., K}, this implies that
for each (θ, s) ∈ XK

0 ⊇ Σ∆,∞, there exists s′ ∈ S such that (θ, s′) ∈ XK
K = Σ∞ and

ζ(s) = ζ(s′), that is, strong ∆-rationalizability path-refines strong rationalizability.

The rest of this section is dedicated to proving IH1 and IH2 by way of induction,

following the strategy we outlined above. The formal proofs of Claims 1-4 stated

below are deferred to the Appendix.

Basis steps
IH2(n = k) comes from the observation that, by inspection of (1), Xk

k ⊆ Xk−1
k =

Σk−1 = Xk−1
k−1; IH1(n = k) comes from (for all i ∈ I)

Xk
k−1,i =

{
(θi, si) ∈ Θi × Si : ∃µi ∈ ∩k−1

m=0∆H
sb(Xm

k−1,−i) ∩∆i,θi , si ∈ ri,θi(µi)
}

⊆
{

(θi, si) ∈ Θi × Si : ∃µi ∈ ∩k−1
m=0∆H

sb(Xm
k,−i), si ∈ ri,θi(µi)

}
= Xk

k,i,
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where the first equality holds by (2), the last equality holds by (1), and the inclusion

follows from the fact that only the first set features the belief restrictions and that,

by (1), Xm
k−1,−i = Σm

−i = Xm
k,−i for all m = 0, ..., k − 1.

Inductive steps
The proofs of the two inductive steps, IH1(n)-IH2(n)⇒IH1(n + 1) and IH1(n)-

IH2(n)⇒IH2(n+1), are essentially identical, because both procedures
(
Xn
k−1

)∞
n=0

and

(Xn
k)∞n=0 are defined by (2) at each step n > k. We start from the proof of IH1(n)-

IH2(n)⇒IH2(n+1). We relegate the proof of IH1(n)-IH2(n)⇒IH1(n+1), which uses

the previously obtained IH2(n+ 1), to the supplemental appendix.

Inductive step, part IH2
Suppose IH1(n)-IH2(n) hold. We must show that IH2(n + 1) holds. Fix i ∈

I and (θi, si) ∈ Xn+1
k,i . We are going to show the existence of a CPS µ̃

(θi,si)
i ∈

∩n−1
m=0∆H

sb(Xm
k−1,−i) ∩ ∆i,θi and of a strategy s̃

(θi,si)
i ∈ ri,θi(µ̃

(θi,si)
i ) ⊆ Xn

k−1,i such that

s̃
(θi,si)
i (h) = si(h) for all h ∈ H(Xn

k). To ease notation, in what follows we do not

make the dependence of both the CPS and the strategy on the fixed pair (θi, si), so

we write s̃i = s̃
(θi,si)
i and µ̃i = µ̃

(θi,si)
i . Since the choice of i ∈ I and (θi, si) ∈ Xn+1

k,i is

arbitrary, this will prove IH2(n+ 1).

The construction of µ̃i and s̃i will be based on four claims for which we provide

formal proofs in the Appendix; here, before each claim, we only provide the main

ingredients of its proof.

By definition of Xn+1
k,i (see eq. (2)), there is some µi ∈ ∩nm=0∆H

sb(Xm
k,−i)∩∆i,θi such

that si ∈ ri,θi(µi).
Using IH2(n), we can construct a CPS µ̃i for step n of Procedure k−1 that mimics

µi along the paths that are consistent with step n of Procedure k. Consistently with

notation used for sets of nonterminal histories and in Example 2, for any X ⊆ Θ×S,
we let

Z (X) = projZ ζ̄ (X) = {z ∈ Z : ∃ (θ, s) ∈ X, ζ (s) = z}

denote the set of possible paths given X.

Claim 1 There exists µ̃i ∈ ∩n−1
m=0∆H

sb(Xm
k−1,−i)∩∆i,θi such that, for every h ∈ H (Xn

k)∩
Hi(si),

∀(θ−i, z) ∈ Θ−i ×Z(Xn
k), µ̃i({θ−i} × S−i(z)|h) = µi({θ−i} × S−i(z)|h). (11)
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Furthermore, IH2(n) implies that the histories along those paths, H (Xn
k), are also

consistent with step n− 1 of Procedure k − 1.

Claim 2 H(Xn
k) ⊆ H(Xn−1

k−1).

In what follows, we will also use the following implication of standard dynamic

programming arguments.28

Claim 3 Fix a subset of histories H̃ such that, for every h ∈ H̃, si is a continuation
best reply to µ̃i(·|h) for θi. There exists s̃i ∈ ri,θi(µ̃i) such that s̃i(h) = si(h) for every

h ∈ H̃.

Claim 2 allows to apply IH1(n) and say that every sequential best reply s̃i to µ̃i,

which survives step n of procedure k − 1, has a counterpart s̃′i that survives step

n of procedure k and mimics s̃i at each h ∈ H (Xn
k) ∩ Hi(s̃

′
i) = H (Xn

k) ∩ Hi(s̃i).

Now note that, by equation (11) and the fact that µi strongly believes Xn
k,−i, every

strategy s′i that does not leave the paths induced by profiles in Xn
k yields the same

expected payoff under µ̃i(·|h) and µi(·|h) for every h ∈ H (Xn
k) ∩ Hi(s

′
i). Obviously,

si, s̃
′
i ∈ projSiX

n
k,i do not leave those paths, and since s̃i mimics s̃

′
i as described above,

s̃i does not leave those paths either. But then, for each h ∈ H (Xn
k)∩Hi(si)∩Hi(s̃i),

the fact that si and s̃i are continuation best replies to (respectively) µi and µ̃i at h

implies that they are also continuation best replies (respectively) to µ̃i and µi at h.

To extend this claim to every h ∈ H (Xn
k) ∩ Hi(si), we need to make sure that h is

also reached by some sequential best reply s̃i to µ̃i; for this, we just need an inductive

application of Claim 3, from the initial history and moving downwards.

Claim 4 For each h ∈ H (Xn
k) ∩ Hi(si), strategy si is a continuation best reply to

µ̃i(·|h) for θi.

By Claim 3 with H̃ = H(Xn
k)∩Hi(si) and Claim 4, there exists s̃i ∈ ri,θi(µ̃i) such

that s̃i(h) = si(h) for all h ∈ H(Xn
k). (For each h ∈ H(Xn

k)\Hi(si), since h 6∈ Hi(s̃i),

we can always set s̃i(h) = si(h) because we use the weak notion of sequential best

reply which only refers to histories consistent with the candidate strategy.) From

equation (2) it follows that {θi} × ri,θi(µ̃i) ⊆ Xn
k−1,i. Thus, s̃i ∈ Xn

k−1,i.

28We provide such arguments in the Appendix: see Lemma 3.
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5 Bayesian games

In the game with payoff uncertainty Γ, players’types θ parameterize the payoff func-

tions to express incomplete and asymmetric information about them. Yet, the previ-

ous analysis does not prevent the parameters from containing payoff-irrelevant compo-

nents; that is, the analysis remains valid if, for some player i and some types θ′i 6= θ′′i ,

we have uj (θ′i, θ−i, z) = uj (θ′′i , θ−i, z) for all j ∈ I, θ−i ∈ Θ−i, and z ∈ Z. However,
we want to introduce such payoff-irrelevant components explicitly, in the following

way. An elaboration29 of Γ =
〈
I, (Θi, Ai,Ai(·), ui)i∈I

〉
is a structure

Γe =
〈
I, (Ti, Ai,Ai(·), ue

i )i∈I
〉

such that, for every player i ∈ I, Ti = Θi × Ei, where Ei is a finite nonempty set,
ue
i : (×j∈ITj)× Z → R, and

ue
i

(
(θj, ej)j∈I , z

)
= ui

(
(θj)j∈I , z

)
for all (θj, ej)j∈I ∈ ×j∈ITj and z ∈ Z. In words, each type ti = (θi, ei) is made of the

payoff-relevant component θi and of a payoff-irrelevant component ei.

We are going to use the new types (Ti)i∈I as parts of a type structure à la Harsanyi

(1967-68). Hence, we assign to each type ti a probability measure βi(ti) over the co-

players’types T−i, so that ti is ultimately associated with a hierarchy of beliefs about

the payoff-relevant parameters θ: the first-order belief is the marginal of βi(ti) over

Θ−i; the second-order belief is the pushforward of βi(ti) through the maps

(θj, tj)j 6=i ∈ Θ−i × T−i 7→
(
θj,margΘ−jβj(tj)

)
j 6=i
∈ (Θj ×∆(Θ−j))j 6=i ;

and so forth. A Bayesian elaboration of Γ =
〈
I, (Θi, Ai,Ai(·), ui)i∈I

〉
is obtained

from adding the profile of belief maps (βi : Ti → ∆ (T−i))i∈I to an elaboration:

Γb =
〈
I,
(
Ti, Ai,Ai(·), ub

i , βi
)
i∈I

〉
,

where ub
i = ue

i for each i ∈ I. Note that an elaboration is essentially the same as the
29The term “elaboration”was introduced by Fudenberg et al. (1988) with a related, but different

meaning: They added payoff types to define incomplete-information perturbations, whereas we add
a payoff-irrelevant component to existing payoff types.
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original game with payoff uncertainty when each set Ei is a singleton {ēi}, so that
Θ and T are isomorphic (in an obvious sense). In this particular case, a Bayesian

elaboration is also called “simple Bayesian game”and it adds to Γ a particular kind

of profile of type-dependent restrictions on exogenous beliefs: recalling that we let

∆̄i,θi ⊆ ∆ (Θ−i) denote the restricted set of initial marginal beliefs of type θi of player

i about co-players’types, we have that ∆̄i,θi = {βi (θi, ēi)} is a singleton for all i and
θi.

We can define strong rationalizability for an elaboration Γe as we did for Γ,

with each set Θi replaced by Ti: for each i ∈ I, Σe,0
i = Ti × Si, and for each n ∈ N

Σe,n
i =

{
(ti, si) : ∃µi ∈ ∩n−1

m=0∆H
sb(Σe,m

−i ), si ∈ re
i,ti

(µi)
}
,

where,

re
i,ti

(µi) =

{
s̄i : ∀h ∈ Hi (s̄i) , s̄i ∈ arg max

si∈Si(h)
Eµi(·|h) (ue

i (ti, ·, ζ (si, ·)))
}

for every CPS µi ∈ ∆H (T−i × S−i). Of course, by taking the sections of these sets at
any given type, we obtain the strongly n-rationalizable strategies for that type:

Se,n
i (ti) = (Σe,n

i )ti = {si : (ti, si) ∈ Σe,n
i } .

The following lemma formalizes the idea that the payoff-irrelevant component of types

does not affect strong rationalizability.

Lemma 2 Fix any elaboration Γe of Γ. For all i ∈ I, n ∈ N0, and (θi, ei) ∈ Ti,

Se,n
i (θi, ei) = Sni (θi).

Now require that the belief system (CPS) µi that justifies a pair (ti, si) be consis-

tent with βi (ti) at the outset. In this way, we define strong rationalizability for
a Bayesian elaboration Γb: for each i ∈ I, Σb,0

i = Ti × Si, and for each n ∈ N

Σb,n
i =

{
(ti, si) : ∃µi ∈ ∩n−1

m=0∆H
sb(Σb,m

−i ),margT−iµi (·|∅) = βi (ti) , si ∈ rb
i,ti

(µi)
}
,

where rb
i,ti

(µi) = re
i,ti

(µi) (defined above) for each µi ∈ ∆H (T−i × S−i), because ub
i =
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ue
i . The set of strongly n-rationalizable strategies for type ti in Γb is the section

Sb,n
i (ti) =

(
Σb,n
i

)
ti

=
{
si : (ti, si) ∈ Σb,n

i

}
.

Strong rationalizability for a Bayesian elaboration is tightly related to strong di-

rected rationalizability for the original game with payoffuncertainty. The equivalence

is obvious for a simple Bayesian game, where each Ti is isomorphic to Θi (thus set

Ti = Θi), and for each θi, βi(θi) can be taken as the unique initial belief allowed by

∆̄i,θi . Hence, a corollary of Theorem 1 is that for every θ ∈ Θ, the (nonempty) set

of strongly rationalizable paths of any (finite) simple Bayesian game based on a given

(finite) multistage game with payoff uncertainty is included in the set of strongly ratio-

nalizable paths of the latter. For a non-simple Bayesian elaboration Γb of Γ, one can

perform an analogous exercise after defining an ancillary game with payoffuncertainty

Γ̂ with type sets Θ̂i = Ti in place of Θi for all i ∈ I. With this, strong rationalizability
in Γb coincides with strong ∆-rationalizability in Γ̂ with ∆̄i,ti = {βi(ti)} for all i ∈ I
and ti ∈ Θ̂i; strong rationalizability in Γ coincides with strong rationalizability in Γ̂

because Γ̂ is an elaboration of Γ and thus Lemma 2 applies; the two things combined,

via Theorem 1, yield the following result (the proof is omitted).

Theorem 2 Fix any Bayesian elaboration Γb of Γ. Then, for every n > 0, for each

(θ, e) ∈ T , ∅ 6= ζ
(
Sb,n (θ, e)

)
⊆ ζ (Sn (θ)), that is, for each (θ, e, s) ∈ Σb,∞ 6= ∅, there

exists s′ ∈ S such that (θ, s′) ∈ Σ∞ and ζ(s) = ζ(s′).

6 Robust implementation

We consider a classical mechanism design setting, which we formalize as follows. Fix

a finite economic environment

E =
〈
I, Y, (Θi, vi)i∈I

〉
,

where Y– a subset of a Euclidean space– is an outcome space and each vi : Θ×Y → R
is a parameterized utility function. A special case of interest for the outcome space

is a space of lotteries: Y = ∆ (X), where X is a finite set of deterministic outcomes.

In this case, vi (θ, y) has to be interpreted as the vNM expected utility of lottery y

given state of nature θ. The economic environment collects the outcomes that the
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designer can assign to players and their preferences for such outcomes. Amultistage
mechanism (with observed actions) is a game form

M =
〈
I, H̄, g

〉
,

where g : Z → Y is an outcome function defined on the set of terminal histories

determined by the game tree H̄. Thus, the mechanism specifies the rules of the game

that determine the outcome. A pair (E ,M) yields a game with payoff uncertainty

Γ (E ,M) =
〈
I, H̄,

(
Θi, (ui,θ = vi,θ ◦ g)θ∈Θ

)
i∈I

〉
,

which contains both the rules of the game and the payoffs associated with the terminal

histories: ui,θ (z) = vi,θ (g (z)) for all θ ∈ Θ and z ∈ Z. Finally, we introduce a social
choice function

f : Θ→ Y,

representing the outcome the designer would want to realize as a function of players’

types.

We are interested in the possibility of implementing, or at least virtually imple-

menting, the social choice function; that is, we look for a mechanism where players

of any types θ will always reach a terminal history z so that g(z) = f(θ), or at least

g(z) ≈ f(θ) in a sense to be made precise. Of course, the θ-dependent predicted

path depends on the adopted solution concept. Following Mueller (2016), we adopt

strong rationalizability and we focus on virtual implementation (v-implementation).

Everything in the analysis is also valid for “exact”implementation.

Definition 1 Social choice function f is v-implementable under strong rationalizability (in
environment E) if, for every ε > 0, there exists a multistage mechanismM such that,

in game with payoff uncertainty Γ (E ,M), for every θ ∈ Θ and s ∈ S∞ (θ) 6= ∅,
‖g (ζ (s))− f (θ)‖ < ε.30

Bergemann & Morris (2009) introduce the notion of robust implementation, which

requires the mechanism to implement the social choice function for any exogenous

restrictions on players’collectively coherent hierarchies of beliefs about types, such

30In the definition, we require that S∞ (θ) 6= ∅ to avoid that the “for all ...” condition hold
vacuously. In fact, we know from Lemma 1 that S∞ (θ) 6= ∅ for all θ ∈ Θ.
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as the existence of a common prior. As anticipated in the Introduction, in a static

setting, one can show that implementation under rationalizability for static games

with payoff uncertainty is robust, since– by monotonicity of probability-1 belief– the

introduction of a Harsanyi type structure that restricts players’belief hierarchies can

only reduce the set of their (interim correlated) rationalizable strategies.31 As shown

in Example 1, this is not true for strong rationalizability, due to the non-monotonicity

of strong belief. For this reason, it was an open question whether Mueller’s (2016)

notion of implementation is robust in the sense of Bergemann & Morris (2009).

Definition 2 Social choice function f : Θ→ Y is robustly v-implementable un-
der strong rationalizability (in environment E) if, for every ε > 0, there exists a

multistage mechanism M such that, in every Bayesian elaboration Γb (E ,M) of the

game with payoff uncertainty Γ (E ,M), for all t = (θ, e) ∈ T and s ∈ Sb,∞ (t) 6= ∅,
‖g (ζ (s))− f (θ)‖ < ε.

In light of Theorem 2, we can give a positive answer to the open question.

Corollary 1 Fix a finite economic environment E and a social choice function f :

Θ→ Y . If f is v-implementable under strong rationalizability, then f is also robustly

v-implementable under strong rationalizability.

Proof. Suppose that f is v-implementable under strong rationalizability and let
M be a mechanism such that, in game with payoffuncertainty Γ (E ,M), for all θ ∈ Θ

and s ∈ S∞ (θ), ‖g (ζ (s))− f (θ)‖ < ε. Take any Bayesian elaboration Γb (E ,M) of

Γ (E ,M). By Theorem 2, for all (θ, e) ∈ Θ × E = T and s ∈ Sb,∞ (θ, e), ∅ 6=
ζ
(
Sb,∞ (θ, e)

)
⊆ ζ (S∞ (θ)). It follows that, for all t = (θ, e) ∈ T and s ∈ Sb,∞ (t) 6= ∅,

‖g (ζ (s))− f (θ)‖ < ε. �

7 Discussion and extensions

In this section we consider some limitations of our analysis and we discuss possible

extensions and related conceptual issues.

31Interim correlated rationalizbaility is the appropriate notion of rationalizability for Bayesian
games. See Bergemann & Morris (2012) and the relevant references therein.
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7.1 Imperfectly observed actions

Our results extend to finite sequential games with imperfectly observed actions, as

long as perfect recall holds. Our arguments go through by replacing nonterminal

histories h ∈ H with information sets hi ∈ Hi for each player i. In particular, per-

fect recall allows to preserve the dynamic consistency of subjective expected utility

maximization and the factorization of the sets of strategy profiles consistent with

any given information set hi as S (hi) = Si (hi) × S−i (hi), which are key elements

of our analysis. However, from the perspective of mechanism design, perfect recall

as defined in traditional game theory32 is a hybrid property of information partitions

that should be “unpacked,” separating the information reaching players as per the

rules specified by the mechanism from the mnemonic abilities of the agents playing

the game, which are personal traits just like their preferences. As shown in Battigalli

& Generoso (2024), such separation is both possible and conceptually useful: infor-

mation partitions can be derived from primitive elements describing the rules of the

game on the one hand, and mnemonic abilities on the other hand. Perfect recall of

information partitions (with the implicit assumption that it is commonly known that

it holds) obtains if either (1) (it is commonly known that) the relevant agents have

perfect memory, a personal feature, or (2) the commonly known game rules are such

that moving players are always reminded of the pieces of information that previously

reached them and the actions they took. In both cases, information sets hi corre-

spond to personal histories of signals/messages received and actions taken by i. Even

assuming that other forms of cognitive rationality hold (e.g., logical and introspective

abilities), it is conceivable that agents may have memory lapses that interfere with

implementation goals. In this case, the designer can “enforce”perfect recall by (2).

7.2 Infinite type sets and infinite horizon

We consider finite multistage games with payoff uncertainty and– in our analysis

of implementation– finite Bayesian elaborations of such games. In particular, we

assume that the horizon and the sets of payoff types Θi and Harsanyi types Ti are

finite. Note that the analysis of strong rationalizability in Battigalli (2003) and its

epistemic foundation in Battigalli & Tebaldi (2019) allow for a continuum of types and

an infinite horizon, provided that some regularity assumptions hold, e.g., that type

32As well as the observed-actions assumption of this paper.
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sets are compact metric spaces, feasible actions sets Ai (h) are finite for all h ∈ H and

i ∈ I, and payoff functions are continuous in the obvious product topology. However,
the proof of Theorem 1 relies on the fact that, in a finite game with payoffuncertainty,

the procedure of elimination of type-strategy pairs (θi, si) ends after finitely many

steps. Even assuming a finite game with payoff uncertainty, its Bayesian elaborations

could be infinite, allowing for an infinite set of possible (hierarchies of) exogenous

beliefs. In this case, our proof of Theorem 2 (which yields the robust implementation

Corollary 1) does not apply, because it adapts the proof of Theorem 1. Nonetheless,

we conjecture that our results can be extended to games with infinite type sets and

infinite horizon according to the following sketch of proof.

Introduce a sequence of elimination procedures of type-strategy pairs (θi, si) where

each procedure k introduces the belief restrictions at step k+1. Thus, as in the proof

of Theorem 1, procedure 0 is strong∆-rationalizability, but the sequence of procedures

is now infinite and no procedure coincides with strong rationalizability. Despite this,

we conjecture that the inductive hypotheses can be formulated and proven as in the

proof of Theorem 1. If so, for each strong ∆-rationalizable pair (θi, si), “diagonalizing

over procedures,”IH1 guarantees the existence of an “equivalent”pair
(
θi, s

k
i

)
at each

step k of procedure k, which coincides with step k of strong rationalizability. Under

the stated assumptions, the strategy set Si = ×h∈HAi (h) is compact. Thus, the

sequence
(
θi, s

k
i

)
k>0

admits a converging subsequence; call its limit (θi, s
∗
i ). For each

k, Ski (θi) is compact and contains Sk+1
i (θi), S

k+2
i (θi), .... So, it contains sk+1

i , sk+2
i , ...

and s∗i . This means that (θi, s
∗
i ) survives all steps of strong rationalizability.

8 Appendix

This section contains ancillary results and the proofs omitted from the main body of

the paper (with the exception of the detailed proof of inductive step IH1 in the proof

of Theorem 1, which is contained in the Supplemental Appendix).

8.1 Dynamic programming and forward consistency

We use the following dynamic programming result. First recall from Section 3.2 that

a strategy s̄i is a continuation best reply (from h) to conditional belief µi(·|h) ∈
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∆ (Θ−i × S−i (h)) for type θi if, for every si ∈ Si(h),

Eµi(·|h) (Ui(θi, s̄i, ·)) ≥ Eµi(·|h) (Ui(θi, si, ·)) .

Lemma 3 Fix a CPS µi, a type θi, and a strategy si. If, for every h ∈ Hi(si), there

exists a continuation best reply s′i ∈ Si(h) to µi(·|h) for θi such that s′i(h) = si(h),

then si is a sequential best reply to µi for θi, that is, si ∈ ri,θi (µi).

Proof. We prove this result by contraposition. Suppose that si /∈ ri,θi (µi).

We need to show that there is some h̄ ∈ Hi (si) such that, for every s′i ∈ Si
(
h̄
)
, if

s′i
(
h̄
)

= si
(
h̄
)
, then s′i is not a continuation best reply to µi(·|h̄) for θi. LetHD

i (si, µi)

denote the nonempty set of histories h ∈ Hi (si) such that si is not a continuation

best reply to µi (·|h). Since the game is finite, HD
i (si, µi) has at least one maximal

element h̄, that is, h̄ ∈ HD
i (si, µi) is not a strict prefix of any other h ∈ HD

i (si, µi).

Since h̄ ∈ HD
i (si, µi), there is some s̄i ∈ Si

(
h̄
)
such that

Eµi(·|h̄) (Ui(θi, s̄i, ·)) > Eµi(·|h̄) (Ui(θi, si, ·)) . (12)

Pick any s′i ∈ Si
(
h̄
)
such that s′i

(
h̄
)

= si
(
h̄
)
(this includes s′i = si). To take care of

the possibility that
(
h̄, (si

(
h̄
)
, a−i)

)
∈ Z for some a−i and to ease notation, for all z

such that µi
(
Θ−i × S−i (z) |h̄

)
> 0 and all (θ−i, s−i) ∈ Θ−i × S−i (z), write

µi (θ−i, s−i|z) =
µi
(
θ−i, s−i|h̄

)
µi
(
Θ−i × S−i (z) |h̄

) ,
so that

Eµi(·|z) (Ui(θi, s
′
i, ·)) =

∑
θ−i∈Θ−i

µi ({θ−i} × S−i (z) |z)ui (θi, θ−i, z) .

With this, letting Ā−i =
{
a−i : µi

(
Θ−i × S−i

(
h̄, a−i

)
|h̄
)
> 0
}
, we can make the fol-

lowing decomposition:

Eµi(·|h̄) (Ui(θi, s
′
i, ·)) =

∑
a−i∈Ā−i

µi
(
Θ−i × S−i

(
h̄, a−i

)
|h̄
)
Eµi(·|(h̄,(si(h̄),a−i))) (Ui(θi, s

′
i, ·)) .

36



By choice of h̄, si is a continuation best reply to each µi (·|h) with h =
(
h̄, (si

(
h̄
)
, a−i)

)
∈

H, and by s′i
(
h̄
)

= si
(
h̄
)
, s′i ∈ Si(h) as well. Thus,

Eµi(·|(h̄,(si(h̄),a−i))) (Ui(θi, si, ·)) ≥ Eµi(·|(h̄,(si(h̄),a−i))) (Ui(θi, s
′
i, ·))

for all a−i ∈ Ā−i (the other action profiles in A−i
(
h̄
)
do not affect expected payoff

calculations). It follows that

Eµi(·|h̄) (Ui(θi, si, ·)) ≥ Eµi(·|h̄) (Ui(θi, s
′
i, ·)) . (13)

Equations (12) and (13) combined yield

Eµi(·|h̄) (Ui(θi, s̄i, ·)) > Eµi(·|h̄) (Ui(θi, s
′
i, ·)) ,

so s′i is not a continuation best reply to µi
(
·|h̄
)
. �

The omitted parts of the proof of Theorem 1 require to construct CPSs that

strongly believe some key events. It turns out that it is simpler to construct a

“forward-consistent belief system” (Battigalli, Catonini & Manili 2023) with such

features and then claim the existence of a CPS that preserves them. A forward-
consistent belief system is an array of beliefs µ̂i = (µ̂i(·|h))h∈H ∈ (∆ (Θ−i × S−i))H

such that, for every h ∈ H, µ̂i(Θ−i×S−i(h)|h) = 1 and the forward chain rule holds:

for all h, h′ ∈ H and E−i ⊆ Θ−i × S−i(h′),

h � h′ =⇒ µ̂i(E−i|h) = µ̂i(E−i|h′)µ̂i(Θ−i × S−i(h′)|h).

The forward chain rule is weaker than the chain rule, because, as noted in Section

3.2, S−i(h′) ⊆ S−i(h) does not imply h � h′. The definition of “strong belief” for a

forward-consistent belief system is the same as for a CPS: belief system µ̂i strongly
believes E−i if

∀h ∈ H, E−i ∩ (Θ−i × S−i (h)) 6= ∅ ⇒ µ̂i(E−i|h) = 1.

For the transformation of forward-consistent belief systems into CPSs, we rely on

the following result.
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Lemma 4 (Battigalli, Catonini & Manili, 2023) Fix a strategy si and a forward-
consistent belief system µ̂i that strongly believes E

1
−i, . . . , E

n−1
−i , where E

n−1
−i ⊆ . . . ⊆

E1
−i. Then, there is a CPS µ̃i that strongly believes E

1
−i, . . . , E

n−1
−i such that µ̃i(·|h) =

µ̂i(·|h) for all h ∈ Hi(si).

8.2 Omitted parts of the proof of Theorem 1

8.2.1 Proof of Claim 1

We construct an array of beliefs µ̂i = (µ̂i (·|h))h∈H such that, for each h ∈ H:

F0. µ̂i (Θ−i × S−i(h)|h) = 1;

F1. for all h′ such that h ≺ h′,

∀E ⊆ Θ−i × S−i(h′), µ̂i (E|h′) µ̂i (Θ−i × S−i(h′)|h) = µ̂i (E|h) ; (14)

F2. for all m = 0, ..., n− 1, if h ∈ H(Xm
k−1,−i), then µ̂i

(
Xm
k−1,−i|h

)
= 1;

F3. margΘ−iµ̂i (·|∅) = margΘ−iµi (·|∅);

F4. if h ∈ H (Xn
k) ∩Hi(si),

∀(θ−i, z) ∈ Θ−i ×Z(Xn
k), µ̂i({θ−i} × S−i(z)|h) = µi({θ−i} × S−i(z)|h). (15)

By F0 and F1, µ̂i is a forward-consistent belief system. By F2, it strongly believes

X1
k−1,−i, ...,X

n−1
k−1,−i. Hence, by Lemma 4, there exists a CPS µ̃i ∈ ∩n−1

m=0∆H
sb(Xm

k−1,−i)

such that µ̃i(·|h) = µ̂i(·|h) for all h ∈ Hi(si). By µ̃i(·|∅) = µ̂i(·|∅), F3, and µi ∈ ∆i,θi ,

we get µ̃i ∈ ∆i,θi . Finally, for every h ∈ H (Xn
k) ∩ Hi(si), µ̃i(·|h) = µ̂i(·|h) and F4

yield (11).

Now we start with the construction. By IH2(n), for every (θ−i, s−i) ∈ Xn
k,−i, there

exists a profile (s̃
(θj ,sj)
j )j 6=i ∈ S−i such that (θj, s̃

(θj ,sj)
j )j 6=i ∈ Xn−1

k−1,−i and, for each j 6= i,

s̃
(θj ,sj)
j (h) = sj(h) for all h ∈ H(Xn−1

k ). With this, define a map η̃ : Θ−i × S−i →
Θ−i × S−i as follows:

∀ (θ−i, s−i) ∈ (Θ−i × S−i) , η̃ (θ−i, s−i) =

{
(θj, s̃

(θj ,sj)
j )j 6=i

(θ−i, s−i)

if (θ−i, s−i) ∈ Xn
k,−i

otherwise
.
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For each h ∈ H (Xn
k), define µ̂i (·|h) as the η̃-pushforward (image measure) of µi (·|h).

For future reference, observe that

µ̂i
(
Xn−1
k−1,−i|h

)
= µi

(
η̃−1(Xn−1

k−1,−i)|h
)
≥ µi

(
Xn
k,−i|h

)
= 1, (16)

where the first equality holds by construction, the inequality holds by η̃(Xn
k,−i) ⊆

Xn−1
k−1,−i, and the last equality holds by strong belief in Xn

k,−i. Now define

H̃ =
{
h ∈ H\H (Xn

k) : ∃h̄ ∈ H (Xn
k) , h̄ ≺ h, µ̂i

(
Θ−i × S−i(h)|h̄

)
> 0
}
.

For each h ∈ H̃, let p∗(h) denote the longest h̄ ≺ h with h̄ ∈ H (Xn
k) such that

µ̂i
(
Θ−i × S−i(h)|h̄

)
> 0, and derive µ̂i (·|h) by conditioning µ̂i (·|p∗(h)). To conclude

the construction, fix µ̄i ∈ ∩n−1
m=0∆H

sb(Xm
k−1,−i), and for each h ∈ H\

(
H (Xn

k) ∪ H̃
)

=:

Ĥ, let µ̂i (·|h) = µ̄i (·|h).

First, we show that µ̂i satisfies F2. For each h ∈ H (Xn
k), equation (16) yields

µ̂i
(
Xn−1
k−1,−i|h

)
= 1. For each h ∈ H̃, equation (16) yields µ̂i

(
Xn−1
k−1,−i|p∗(h)

)
= 1,

from which µ̂i
(
Xn−1
k−1,−i|h

)
= 1 follows by construction. For each h ∈ Ĥ and m =

0, ..., n − 1, if h ∈ H(Xm
k−1,−i), µ̂i

(
Xm
k−1,−i|h

)
= 1 follows from µ̂i (·|h) = µ̄i (·|h) and

µ̄i ∈ ∆H
sb(Xm

k−1,−i).

Next, we show that, for every h ∈ H (Xn
k) and (θ−i, h

′) ∈ Θ−i× (H(Xn
k)∪Z(Xn

k)),

µ̂i({θ−i} × S−i(h′)|h) = µi({θ−i} × S−i(h′)|h), (17)

which yields: condition (15) when h′ ∈ Z(Xn
k), thus F4; F3 when h and h′ coincide

with the initial history; and, for future reference,

µ̂i(Θ−i × S−i(h′)|h) = µi(Θ−i × S−i(h′)|h). (18)

By construction, we have

µ̂i({θ−i} × S−i(h′)|h) = µi(η̃
−1({θ−i} × S−i(h′))|h).

We need to show that

η̃−1 ({θ−i} × S−i(h′)) = {θ−i} × S−i(h′). (19)
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Fix first s−i ∈ S−i such that (θ−i, s−i) ∈ η̃−1 ({θ−i} × S−i(h′)). Then, there exists
s′−i ∈ S−i(h′) such that η̃(θ−i, s−i) = (θ−i, s

′
−i). By definition of η̃, either s

′
−i = s−i,

or s−i(h̃) = s′−i(h̃) for each h̃ ∈ H(Xn−1
k ), so in particular for each h̃ ≺ h′, given that

h′ ∈ H(Xn
k) ∪ Z(Xn

k). Hence, s′−i ∈ S−i(h
′) implies s−i ∈ S−i(h

′), i.e., (θ−i, s−i) ∈
{θ−i} × S−i(h′). Now fix s−i ∈ S−i(h′). Let (θ−i, s

′
−i) = η̃(θ−i, s−i). By definition of

η̃, either s′−i = s−i, or s′−i(h̃) = s−i(h̃) for each h̃ ∈ H(Xn−1
k ), so in particular for each

h̃ ≺ h′, given that h′ ∈ H(Xn
k) ∪ Z(Xn

k). Hence, s−i ∈ S−i(h′) implies s′−i ∈ S−i(h′),
which means (θ−i, s−i) ∈ η̃−1 ({θ−i} × S−i(h′)).
Finally, we show that µ̂i satisfies F0 and F1. For each h ∈ H (Xn

k), since µi(Θ−i×
S−i(h)|h) = 1, equation (18) with h′ = h yields F0. For each h ∈ H̃, F0 follows by
conditioning. For each h ∈ Ĥ, F0 holds by µ̂i (·|h) = µ̄i (·|h).

For F1, equation (14) holds if µ̂i(Θ−i× S−i(h′)|h) = 0, because then µ̂i(E|h) = 0,

so suppose that µ̂i(Θ−i × S−i(h′)|h) > 0.

Case 1: h ∈ Ĥ. Then h′ ∈ Ĥ too. Hence, µ̂i (·|h) = µ̄i (·|h) and µ̂i (·|h′) = µ̄i (·|h′),
so µ̂i inherits (14) from µ̄i, which is a CPS.

Case 2: h ∈ H̃. Then µ̂i(·|h) is derived from µ̂i(·|p∗(h)) by conditioning. By

µ̂i(Θ−i × S−i(h′)|h) > 0, we have µ̂i(Θ−i × S−i(h′)|p∗(h)) > 0, hence h′ ∈ H̃ too and

p∗(h) = p∗(h′). Thus, µ̂i(·|h′) is derived from µ̂i(·|p∗(h)) too, and (14) follows.

Case 3: h ∈ H (Xn
k). If h′ ∈ H (Xn

k), let h̄ = h′, otherwise, by µ̂i(Θ−i×S−i(h′)|h) > 0,

h′ ∈ H̃, and in this case let h̄ = p∗(h′). Thus, h̄ ∈ H (Xn
k). For each E ⊆ Θ−i×S−i(h̄),

by construction of µ̂i and equation (18), we get

µ̂i(E|h̄)µ̂i(Θ−i × S−i(h̄)|h) = µi(η̃
−1 (E) |h̄)µi(Θ−i × S−i(h̄)|h).

Equation (19) implies that η̃−1 (E) ⊆ Θ−i × S−i(h̄), so, since µi is a CPS, we have

µi(η̃
−1 (E) |h̄)µi(Θ−i × S−i(h̄)|h) = µi(η̃

−1 (E) |h),

and µi(η̃
−1 (E) |h) = µ̂i(E|h) by construction of µ̂i. So,

µ̂i(E|h̄)µ̂i(Θ−i × S−i(h̄)|h) = µ̂i(E|h). (20)
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If h̄ = h′, we are done. Otherwise, for each E ′ ⊆ Θ−i × S−i(h′), we have

µ̂i(E
′|h′)µ̂i(Θ−i × S−i(h′)|h) =

µ̂i(E
′|p∗(h′))

µ̂i(Θ−i × S−i(h′)|p∗(h′))
µ̂i(Θ−i × S−i(h′)|h)

= µ̂i(E
′|p∗(h′))µ̂i(Θ−i × S−i(p∗(h′))|h)

= µ̂i(E
′|h),

where the first equality holds by definition of µ̂i(E
′|h′) and the second and third

equalities follow from equation (20) with h̄ = p∗(h′) and E = Θ−i × S−i(h′) for the
second equality, E = E ′ for the third. �

8.2.2 Proof of Claim 2

Fix ŝ ∈ projSXn
k . By IH2(n), there exists ŝ

′ ∈ projSXn−1
k−1 such that ŝ

′(h̃) = ŝ(h̃) for

every h̃ ∈ H(Xn−1
k ) ⊇ H(Xn

k). It follows that ζ(ŝ) = ζ(ŝ′) ∈ Z(Xn−1
k−1). �

8.2.3 Proof of Claim 3

Construct s̃i as follows. For each h ∈ H̃, let s̃i(h) = si(h). For each h ∈ H\H̃, let
s̃i(h) = s′i(h) for some continuation best reply s′i to µ̃i(·|h) for θi. It follows from

Lemma 3 that s̃i ∈ ri,θi(µ̃i). �

8.2.4 Proof of Claim 4

First note that H (Xn
k) ∩ Hi(si) is closed with respect to prefixes (predecessors): for

each h ∈ H (Xn
k) ∩Hi(si) each prefix h′ ≺ h belongs to H (Xn

k) ∩Hi(si). So, suppose

by way of induction that Claim 4 holds for every h′ ≺ h, which is vacuously true if

h = ∅. Then, setting H̃ = {h′ ∈ H : h′ ≺ h}, Claim 3 guarantees the existence of

some s̃i ∈ ri,θi(µ̃i) such that s̃i(h′) = si(h
′) for every h′ ≺ h, thus s̃i ∈ Si(h).

First, we need to show that ζ(s̃i, s̃−i) ∈ Z(Xn
k) for every (θ−i, s̃−i) ∈suppµ̃i(·|h).

So, fix (θ−i, s̃−i) ∈suppµ̃i(·|h). Note that {θi} × ri,θi(µ̃i) ⊆ Xn
k−1,i, and hence s̃i ∈

projSiX
n
k−1,i. So, by IH1(n) there exists s̃′i ∈ projSiX

n
k,i such that s̃

′
i(h) = s̃i(h)

for every h ∈ H(Xn−1
k−1).33 Fix

(
θ−i, s̃

′
−i
)
∈ η̃−1((θ−i, s̃−i)) ⊆ Xn

k,−i– it exists because

µ̃i(·|h) = µ̂i(·|h) and µ̂i(·|h) is the η̃-pushforward of µi (·|h) (see the proof of Claim 1).

By definition of η̃, ζ(s̃′i, s̃
′
−i) ∈ Z(Xn

k). For every h̃ ≺ ζ(s̃′i, s̃
′
−i), we have h̃ ∈ H(Xn

k) ⊆
33This is the only passage where we use IH1(n) at full power, namely, where it is important (to

then apply Claim 3) that IH1(n) involves all the histories in H(Xn−1
k−1) and not just those in H(Xn

k−1).
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H(Xn−1
k ), hence s̃−i(h̃) = s̃′−i(h̃) by definition of η̃. Claim 2 gives H(Xn

k) ⊆ H(Xn−1
k−1),

therefore s̃i(h̃) = s̃′i(h̃) as well. It follows that ζ(s̃i, s̃−i) = ζ(s̃′i, s̃
′
−i) ∈ Z(Xn

k).

For each (θ−i, z) ∈ Θ−i×Z(Xn
k), the probability of (θ−i, z) induced by s̃i and µ̃i(·|h)

(resp., µi(·|h)) is 0, if s̃i 6∈ Si(z), or µ̃i({θ−i}× S−i(z)|h) (resp., µi({θ−i}× S−i(z)|h))

otherwise. Then, by equation (11), s̃i induces the same probability over each (θ−i, z) ∈
Θ−i×Z(Xn

k) under µ̃i(·|h) and under µi(·|h), hence the same distribution overΘ−i×Z,
because the probability induced by s̃i and µ̃i(·|h) over Θ−i × (Z\Z(Xn

k)) is zero: as

we have previously shown, for each (θ−i, s̃−i) ∈suppµ̃i(·|h), ζ(s̃i, s̃−i) ∈ Z(Xn
k). The

same conclusion can be reached for si in the same way, after observing that for each

(θ−i, s−i) ∈suppµi(·|h), since (θi, si, θ−i, s−i) ∈ Xn
k , we have ζ(si, s−i) ∈ Z(Xn

k). So,

call πs̃i and πsi the unique expected payoffs induced by, respectively, (θi, s̃i) and

(θi, si) under both beliefs (µi(·|h) and µ̃i(·|h)). Since s̃i and si are continuation best

replies for θi to, respectively, µ̃i(·|h) and µi(·|h), we have πs̃i ≥ πsi and πsi ≥ πs̃i .

Hence, πsi = πs̃i . But then, also si is a continuation best reply for θi to µ̃i(·|h). �

8.3 Proof of Lemma 2

The statement is trivially true for n = 0. Suppose by way of induction that it

is true for each m < n; fix i ∈ I and (θi, ei) ∈ Ti = Θi × Ei arbitrarily. Let

s̄i ∈ Sni (θi). Then there is a CPS µi ∈ ∩n−1
m=0∆H

sb(Σm
−i) such that s̄i ∈ ri,θi(µi). Define

µe
i ∈ (∆ (T−i × S−i))H as follows: for all h ∈ H, s−i ∈ S−i (h), (θ−i, e−i) ∈ T−i,

µe
i (θ−i, e−i, s−i|h) =

1

|E−i|
µi (θ−i, s−i|h) .

It can be checked that µe
i is a CPS, that is, µ

e
i ∈ ∆H (T−i × S−i). Furthermore, since

µi (·|h) =margΘ−i×S−i(h)µ
e
i (·|h) for each h ∈ H, and the ej-component of the type of

each player j ∈ I is payoff-irrelevant, s̄i ∈ ri,(θi,ei)(µe
i ). Finally, the aforementioned

marginalization relationship between µi and µ
e
i and the inductive hypothesis imply

that µe
i ∈ ∩n−1

m=0∆H
sb(Σe,m

−i ). Therefore, s̄i ∈ Se,n
i (θi, ei). Conversely, suppose that

s̄i ∈ Se,n
i (θi, ei). Then there is a CPS µe

i ∈ ∩n−1
m=0∆H

sb(Σe,m
−i ) such that s̄i ∈ ri,(θi,ei)(µe

i ).

Define µi ∈ (∆ (Θ−i × S−i))H as µi (·|h) =margΘ−i×S−i(h)µ
e
i (·|h) for each h ∈ H. It

can be checked that µi is a CPS, that is, µi ∈ ∆H (Θ−i × S−i). Similarly to the
previous argument, since the ej-component of the type of each player j ∈ I is payoff-
irrelevant, s̄i ∈ ri,θi(µi). Furthermore, the marginalization relationship between µi
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and µe
i and the inductive hypothesis imply that µi ∈ ∩n−1

m=0∆H
sb(Σm

−i). �
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Supplemental Appendix of “Monotonicity and

Robust Implementation under Forward Induction

Reasoning.”

November 20, 2024

The first part gives a rigorous proof of part IH1 of the inductive step in the proof

of Theorem 1. The second part contains an example where path monotonicity fails

due to a kind of restriction on endogenous beliefs, i.e., beliefs about the co-player’s

type conditional on the observed action of the co-player.

0.1 Proof of part IH1 of the inductive step in the proof of

Theorem 1.

Suppose IH1(n)-IH2(n) hold. We proved that IH2(n + 1) holds as well. Thus, we

have IH1(n)-IH2(n+ 1). We must show that IH1(n+ 1) holds, that is, step n+ 1 of

Procedure k−1 path-refines step n+1 of Procedure k. Fix i ∈ I and (θi, si) ∈ Xn+1
k−1,i.

Similarly to the proof of IH2(n + 1), we are going to show the existence of a CPS

µ̂(θi,si) = µ̂i ∈ ∩nm=0∆H
sb(Xm

k,−i) ∩∆i,θi and of a strategy ŝ
(θi,si)
i = ŝi ∈ ri,θi(µ̂i) ⊆ Xn+1

k,i

such that ŝi(h) = si(h) for all h ∈ H(Xn
k−1).

By definition of Xn+1
k−1,i (cf. eq. (2) in the main text), there is some µi ∈

∩nm=0∆H
sb(Xm

k−1,−i) ∩∆i,θi such that si ∈ ri,θi(µi).

Claim 1-bis. There exists µ̂i ∈ ∩nm=0∆H
sb(Xm

k,−i) ∩ ∆i,θi such that, for every h ∈
H
(
Xn
k−1

)
∩Hi(si),

∀(θ−i, z) ∈ Θ−i ×Z(Xn
k−1), µ̂i({θ−i} × S−i(z)|h) = µi({θ−i} × S−i(z)|h). (S.A)

1



Proof. We construct an array of beliefs µ̃i = (µ̃i (·|h))h∈H as follows. By IH1(n),

for every (θ−i, s−i) ∈ Xn
k−1,−i, there exists a profile (s̃

(θj ,sj)
j )j 6=i ∈ S−i such that

(θj, s̃
(θj ,sj)
j )j 6=i ∈ Xn

k,−i and, for each j 6= i, s̃(θj ,sj)
j (h) = sj(h) for all h ∈ H(Xn−1

k−1).

With this, define a map η̂ : Θ−i × S−i → Θ−i × S−i as follows:

∀ (θ−i, s−i) ∈ (Θ−i × S−i) , η̂ (θ−i, s−i) =

{
(θj, s̃

(θj ,sj)
j )j 6=i

(θ−i, s−i)

if (θ−i, s−i) ∈ Xn
k−1,−i

otherwise
.

For each h ∈ H
(
Xn
k−1

)
, define µ̃i (·|h) as the η̂-pushforward (image measure) of

µi (·|h). Now define

H̃ =
{
h ∈ H\H

(
Xn
k−1

)
: ∃h̄ ∈ H

(
Xn
k−1

)
, h̄ ≺ h, µ̃i

(
Θ−i × S−i(h)|h̄

)
> 0
}
.

For each h ∈ H̃, let p∗(h) denote the longest h̄ ≺ h with h̄ ∈ H
(
Xn
k−1

)
such that

µ̃i
(
Θ−i × S−i(h)|h̄

)
> 0, and derive µ̃i (·|h) by conditioning µ̃i (·|p∗(h)). To conclude

the construction, fix µ̄i ∈ ∩nm=0∆H
sb(Xm

k,−i), and for each h ∈ H\
(
H
(
Xn
k−1

)
∪ H̃

)
=:

Ĥ, let µ̃i (·|h) = µ̄i (·|h). The proof that µ̃i is a forward-consistent belief system

with the desired properties, and that it can be transformed into the desired CPS µ̂i
satisfying

∀h ∈ Hi(si), µ̂i(·|h) = µ̃i(·|h), (1)

is the same as in the proof of Claim 1 in part IH2 of the inductive step, so we omit

it. �

Claim 2-bis: H(Xn
k−1) ⊆ H(Xn

k).

Proof. Fix ŝ ∈ projSXn
k−1. By IH1(n), there exists ŝ′ ∈ projSXn

k such that

ŝ′(ĥ) = ŝ(ĥ) for every ĥ ∈ H(Xn−1
k−1) ⊇ H(Xn

k−1). Thus, ζ(ŝ) = ζ(ŝ′) ∈ Z(Xn
k). �

Claim 3-bis: Fix a subset of histories Ĥ such that, for every h ∈ Ĥ, si is a

continuation best reply to µ̂i(·|h) for θi. There exists ŝi ∈ ri,θi(µ̂i) such that ŝi(h) =

si(h) for every h ∈ Ĥ.

Proof. Construct ŝi as follows. For each h ∈ Ĥ, let ŝi(h) = si(h). For each

h ∈ H\Ĥ, let ŝi(h) = s′i(h) for some continuation best reply s′i to µ̂i(·|h) for θi. It

follows from Lemma 3 that ŝi ∈ ri,θi(µ̂i). �
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Now fix µ̂i as per Claim 1-bis. From the definition of Xn+1
k,i (cf. eq. (2) in the

main text), it follows that {θi} × ri,θi(µ̂i) ⊆ Xn+1
k,i . To conclude the proof, we show

the existence of ŝi ∈ ri,θi(µ̂i) such that ŝi(h) = si(h) for all h ∈ H(Xn
k−1). By Claim

3-bis with Ĥ = H(Xn
k−1) ∩ Hi(si), this is a consequence of the following result. (For

each h ∈ H(Xn
k−1)\Hi(si), since h 6∈ Hi(ŝi), we can always set ŝi(h) = si(h) because

we use a notion of sequential best reply which only refers to the histories that are

consistent with the candidate strategy.)

Claim 4-bis: For each h ∈ H
(
Xn
k−1

)
∩ Hi(si), strategy si is a continuation best

reply to µ̂i(·|h) for θi.

Proof. First note that H
(
Xn
k−1

)
∩ Hi(si) is closed with respect to prefixes (pre-

decessors): for each h ∈ H
(
Xn
k−1

)
∩Hi(si) each prefix h′ ≺ h belongs to H

(
Xn
k−1

)
∩

Hi(si). So, suppose by way of induction that Claim 4-bis holds for every h′ ≺ h –

this is vacuously true if h = ∅. Then, setting Ĥ = {h′ ∈ H : h′ ≺ h}, Claim 3-bis

guarantees the existence of some ŝi ∈ ri,θi(µ̂i) such that ŝi(h
′) = si(h

′) for every

h′ ≺ h, thus ŝi ∈ Si(h).

First, we need to show that ζ(ŝi, ŝ−i) ∈ Z(Xn
k−1) for every (θ−i, ŝ−i) ∈suppµ̂i(·|h).

So, fix (θ−i, ŝ−i) ∈suppµ̂i(·|h). Note that {θi} × ri,θi(µ̂i) ⊆ Xn+1
k,i , and hence ŝi ∈

projSiX
n+1
k,i . So, by IH2(n+1), there exists ŝ′i ∈ projSiX

n
k−1,i such that ŝ

′
i(h) = ŝi(h) for

every h ∈ H(Xn
k). Fix

(
θ−i, ŝ

′
−i
)
∈ η̂−1((θ−i, ŝ−i)) ⊆ Xn

k−1,−i– it exists by equation (1)

and construction of µ̃i(·|h). Obviously, ζ(ŝ′i, ŝ
′
−i) ∈ Z(Xn

k−1). For every ĥ ≺ ζ(ŝ′i, ŝ
′
−i),

we have ĥ ∈ H(Xn
k−1) ⊆ H(Xn−1

k−1), hence ŝ−i(ĥ) = ŝ′−i(ĥ) by construction of η̂.

Claim 2-bis gives H(Xn
k−1) ⊆ H(Xn

k), therefore ŝi(ĥ) = ŝ′i(ĥ) as well. It follows that

ζ(ŝi, ŝ−i) = ζ(ŝ′i, ŝ
′
−i) ∈ Z(Xn

k−1).

For each (θ−i, z) ∈ Θ−i × Z(Xn
k−1), the probability of (θ−i, z) induced by ŝi and

µ̂i(·|h) (resp., µi(·|h)) is 0, if ŝi 6∈ Si(z), or µ̂i({θ−i} × S−i(z)|h) (resp., µi({θ−i} ×
S−i(z)|h)) otherwise. Then, by equation (S.A), ŝi induces the same probability over

each (θ−i, z) ∈ Θ−i × Z(Xn
k−1) under µ̂i(·|h) and under µi(·|h), hence the same dis-

tribution over Θ−i×Z, because the probability induced by ŝi and µ̂i(·|h) over Θ−i×(
Z\Z(Xn

k−1)
)
is zero: as we have previously shown, for each (θ−i, ŝ−i) ∈suppµ̂i(·|h),

ζ(ŝi, ŝ−i) ∈ Z(Xn
k−1). The same conclusion can be reached for si in the same way,

after observing that for each (θ−i, s−i) ∈suppµi(·|h), since (θi, si, θ−i, s−i) ∈ Xn
k−1, we

have ζ(si, s−i) ∈ Z(Xn
k−1). So, call πŝi and πsi the unique expected payoffs induced

by, respectively, (θi, ŝi) and (θi, si) under both beliefs (µi(·|h) and µ̂i(·|h)). Since ŝi

3



and si are continuation best replies for θi to, respectively, µ̂i(·|h) and µi(·|h), we have

πŝi ≥ πsi and πsi ≥ πŝi . Hence, πsi = πŝi . But then, also si is a continuation best

reply for θi to µ̂i(·|h). �

0.2 No path-monotonicity under restrictions on endogenous

beliefs: an example

Consider the signalling game with Θ1 = {0, 1}, A1 = {In,Out}, A2 = {`, c, r} and
payoffs specified by the following table:

Payoffs of 1 and 2:

after In ` c r

θ1 = 0 1 1 -1 0 0 -1

θ1 = 1 0 0 -1 1 1 -1

after Out end

θ1 = 0 0.5 *

θ1 = 1 0.5 *

We first analyze the game with strong rationalizability (that is, without belief

restrictions), which can be computed by iterated conditional dominance. Note that

in this game there is a one-one correspondence between actions and strategies. For

each step, only one action/strategy for (only one type of) only one player is eliminated:

1. r is the only conditionally dominated action and it is eliminated.

2. Given this, type θ1 = 1 expects to get at most 0 from In, which is eliminated

for this type.

3. Player 2 rationalizes In assuming that it was chosen by type θ1 = 0 (forward

induction), therefore c is eliminated.

4. Finally, type θ1 = 0 expects In to yield payoff 1; thus, Out is eliminated for

this type.

To conclude, Out is the only strongly rationalizable action/strategy for type θ1 =

1, In is the only strongly rationalizable action/strategy for type θ1 = 0, and ` is the

only strongly rationalizable action/strategy for player 2: Σ∞ = {(0, In) , (1, Out)} ×
{`}. Thus, the type-dependent strongly rationalizable paths are

if θ1 = 0 z = (In, `),

if θ1 = 1 z = (Out).
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Next we consider directed rationalizability assuming that (only) the following is

transparent: player 2 becomes certain of type θ1 = 1 upon observing In, that is,

∆2 =
{
µ2 ∈ ∆H(Θ1 × S1) : µ2((1, In) |(In)) = 1

}
(a restriction on the endogenous beliefs of player 2).

1. ∆. Both ` and r are eliminated in Step 1 of directed rationalizability because

of the assumed belief-restriction.

2. ∆. Given this, In is eliminated for both types of player 1. This makes it

impossible to rationalize In.

Hence, the only strongly ∆-rationalizable action/strategy of both types of player

1 is Out, and the only strongly ∆-rationalizable action/strategy of player 2 is c:

Σ∆,∞ = {(0, Out) , (1, Out)} × {c}. It follows that the only strongly ∆-rationalizable

path is (Out).
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