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Abstract

In sequential games, the set of paths consistent with rationality and forward-

induction reasoning may change non-monotonically when adding transparent

restrictions on players’beliefs. Yet, we prove that– in an incomplete-information

environment– predictions become sharper when the restrictions only concern

initial beliefs about types. Thus, strong rationalizability for games with pay-

off uncertainty characterizes the path-predictions of forward-induction reason-

ing across all possible restrictions on players’hierarchies of exogenous beliefs.

With this, we can solve an open problem: the implementation of social choice

functions through sequential mechanisms under forward-induction reasoning–

which considerably expands the realm of implementable functions compared

with simultaneous mechanisms (Müller, J. Econ. Theory 2016)– is indeed ro-

bust in the sense of Bergemann and Morris (Theor. Econ. 2009).
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1 Introduction

We study the implications of belief restrictions for a version of rationalizability in

incomplete-information sequential games, which captures forward-induction reason-

ing. Belief restrictions may be motivated by contextual details of an economic ap-

plication, such as an objective distribution of the players’payoff types. We prove a

monotonicity result for restrictions that concern only exogenous (initial) beliefs, and

we apply the result to solve an open problem on robust implementation of social-

choice functions through sequential mechanisms.1

The building blocks of our analysis– strong rationalizability and belief restrictions–

relate to the notion of strong belief. Strong belief in an event E means that E is

assigned probability 1 conditional on any observation that does not contradict E.

Strong rationalizability is characterized, in epistemic terms, by the assumptions of

rationality and common strong belief in rationality (Battigalli and Siniscalchi 2002).

In particular, each player is initially certain of the rationality of the co-players, i.e.,

that they are subjective expected payoffmaximizers. Furthermore, if an observed but

unexpected move is consistent with the assumption that the co-players are rational,

then such a move is interpreted as intentional and belief in rationality is maintained,

leading to inferences about co-players’private information and future moves. This

rationalization of past moves is called “forward induction.”2

We study belief restrictions that are transparent in that there is common belief
throughout the game that the restrictions hold. The prior literature has shown that

the strategy profiles and paths consistent with strong rationalizability and transpar-

ent belief restrictions can change non-monotonically with respect to the restrictions.

Notably, stronger restrictions do not necessarily imply sharper predictions (see, e.g.,

Battigalli and Friedenberg 2012).

1The application builds on the work of Bergemann and Morris (2009) and Müller (2016). For an
overview of robust implementation, see Bergemann and Morris (2012) and the references therein.

2In contrast with backward induction, which interprets past unexpected moves as trembles and
assumes strategic rationality only for future moves. Forward-induction ideas are also used in the
equilibrium-refinements literature; see, e.g., the survey by Kohlberg (1990). Battigalli and Siniscalchi
(2002, 2003), and Battigalli and Catonini (2024) explore relationships between the epistemic-game-
theory approach underlying rationalizability ideas and forward-induction refinements of equilibrium.

2



We prove, however, that stronger restrictions do imply sharper path-predictions

when the restrictions concern only exogenous beliefs, i.e., initial beliefs about types.

This monotonicity theorem implies that strong rationalizability in the “belief-free”

setting without restrictions on beliefs characterizes the path-predictions of forward-

induction reasoning across all possible restrictions on exogenous beliefs. We apply

this result to the theory of robust full implementation.

The power of sequential mechanisms to implement social choice functions (SCFs)

was first explored for complete-information environments, that is, under the as-

sumption that agents’preferences, or payoff-types– even if they are unknown to the

planner– are common knowledge among the agents.3 In particular, drawing on work

by Abreu & Matsushima (1992), Glazer & Perry (1996) proved that a large class

of SCFs can be virtually implemented4 by means of perfect-information sequential

mechanisms, if players reason by backward induction and play the unique subgame

perfect equilibrium. If the domain of preference profiles is finite, this is equivalent

to strongly rationalizable virtual implementation, because backward- and forward-

induction reasoning yield the same path of play in generic finite games with complete

and perfect information (Battigalli 1997, Battigalli & Siniscalchi 2002).

In environments with incomplete information, agents’behavior depends on their

beliefs about each other’s types. Just like in complete-information environments the

planner is not assumed to know agents’commonly known payoff-types, in environ-

ments with incomplete information the planner may not know what hierarchies of

exogenous beliefs the agents can hold and conceive. Formally, the planner may be

uncertain about the relevant exogenous type structure, e.g., whether agents’beliefs

are derived from a common prior on the domain of preference profiles and, if so, what

that prior is (see Harsanyi 1967-68 and Mertens & Zamir 1985). In compliance with

the Wilson’s (1987) doctrine, Bergemann & Morris (2009) analyze robust imple-
mentation, that is, the possibility to implement an SCF independently of the exoge-
nous type structure. They show that robust (virtual) full implementation of SCFs by

means of static (i.e., simultaneous-move) mechanisms– which amounts to rationaliz-

able implementation– is severely limited when agents’valuations of outcomes exhibit

3See Moore & Repullo (1988), Chapter 10 of Osborne & Rubinstein (1994) and the references
therein.

4Virtual implementation of an SCF means that, for each type profile, the outcome predicted by
the solution concept can be made arbitrarily close to the outcome prescribed by the SCF. See the
cited references.
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a mild degree of interdependence. Müller (2016) instead proves that using sequential

mechanisms and assuming that agents reason by forward induction– as captured by

strong rationalizability– yields a significant expansion of the implementable SCFs.

Yet, it was not known whether implementation in strongly rationalizable strategies is

robust to considering contextual restrictions on agents’exogenous interactive beliefs

about each other’s types.

Our game-theoretic result allows us to solve this open problem. Strongly ra-

tionalizable strategies may change non-monotonically when adding restrictions on

exogenous beliefs, but only the induced paths of play matter for the implementation

of SCFs. Since we prove that the set of possible paths under stronger restrictions

on exogenous beliefs is included in the one obtained with weaker or no restrictions,

it follows that strongly rationalizable implementation is robust in the aforementioned

sense.

The rest of the paper is organized as follows. Section 2 provides a heuristic analy-

sis and additional background. Section 3 contains the game-theoretic preliminaries.

Section 4 states and explains the main theorem. Section 5 applies this theorem to the

analysis of Bayesian games. Section 6 applies our game-theoretic results to the ro-

bust implementation problem. Section 7 discusses extensions. The Appendix collects

proofs of claims and lemmas that are omitted from the main body of the paper.

2 Heuristic analysis and detailed background

In this section, we first illustrate intuitions and diffi culties behind our main monotonic-

ity result by means of an example (2.1). Next, we set the stage for the robust-

implementation application of our result: first, we introduce robust implementation

via static mechanisms and its connection with rationalizability (2.2); second, we dis-

cuss implementation via sequential mechanisms and illustrate by example the use of

forward-induction reasoning to expand the set of implementable SCFs (2.3).

2.1 Strong rationalizability, heuristic analysis of an example

Strong rationalizability is the iterated elimination, for each payoff-type of each
player, of the strategies that are not sequential best replies to belief systems which

assign probability 1, as long as possible, to the co-players’strategies that survive the
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previous elimination steps.5 Considering transparent belief restrictions, we obtain

an “umbrella solution concept”called strong directed rationalizability, which works
in the same way, except that the set of possible belief systems for each type is also

restricted exogenously and not just through strategic reasoning. Thus, the elimination

procedure is parameterized by a profile ∆ = (∆i) of players’restricted sets of beliefs.

For any fixed ∆, we obtain a specific solution called “strong ∆-rationalizability.”
The kind of belief restrictions we analyze in this paper only pertain to the initial

beliefs about the payoff-types of the co-players.

In the following example, we illustrate the two elimination procedures and the

main hurdle towards proving our general monotonicity result. Since we have not yet

introduced all the required formal concepts, the analysis is necessarily heuristic and

based on intuition.

Example 1 Consider a signaling game between players 1 (sender) and 2 (receiver)

where the set of possible payoff-types θ1 of the sender is Θ1 = {x, y, z}, the set of
messages/signals is M = S1 = {`, r}, and the sets of feasible reactions of the receiver
are A2(`) = {a, b} after message ` and A2(r) = {c, d, e} after message r. Thus, the
set of receiver’s strategies is S2 = A2(`)×A2(r), whereas the sender’s strategies and

signals coincide. The payoffs are as follows:

Payoffs of 1 and 2:

after ` a b

θ1 = x 3 1 1 0

θ1 = y 1 0 1 1

θ1 = z 3 1 1 0

after r c d e

θ1 = x 0 0 0 0 0 1

θ1 = y 0 0 0 1 3 0

θ1 = z 0 1 2 0 2 0

We start with Strong Rationalizability (i.e., no restrictions on exogenous beliefs).

1. The first step of elimination follows from mere rationality. We can only eliminate

message r for type x, as it is dominated by message `. Thus, we write S1
1 (x) = {`}

for the set of messages/signals consistent with rationality for type x.

[Since no strategy of player 2 is eliminated in the first step, it follows that in even

(odd) steps only eliminations for player 2 (player 1 ) are possible.]

5In complete-information environments, strong rationalizability used to be called “extensive-form
rationalizability” (Pearce 1984, Battigalli, 1997). There exist several versions of strong rationaliz-
ability, but Battigalli et al. (2023) prove that they are equivalent.
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2. The optimal behavior of the receiver depends on his belief system

µ2 = (µ2(·|∅), µ2(·|`), µ2(·|r)),

where µ2(·|∅) is the initial belief about the sender’s type-message pair, and for each

m ∈ {`, r}, if µ2(Θ × {m} |∅) > 0, then belief µ2(·|m) after observing message m is

derived from the initial belief by conditioning (in other words, µ2 satisfies the chain

rule). At the second step of the elimination procedure, the initial belief is assumed

to assign probability 1 to the type-message pairs that survived the first step:

µ2

(
∪θ1∈Θ1 {θ1} × S1

1 (θ1) |∅
)

= 1.

The same applies to each belief µ2(·|m) provided that m ∈ S1
1 (θ1) for some θ1 ∈ Θ1.

Thus, here we have µ2((x, r) |r) = 0. In words, by strong belief in the sender’s

rationality, after observing message r the receiver concludes that the sender is not

of type x– this is an instance of forward-induction reasoning. Given this, action e is

never a best reply. Hence,

S2
2 = {a.c, b.c, a.d, b.d} ,

where, for example, a.c denotes the strategy choosing a after ` and c after r.

3. For type y, action r is not a best reply to any belief over S2
2 . Thus, S

3
1 (y) = {`}.

4. Every belief system of the receiver must now assign probability 1 to type z after

message r. Thus, S4
2 = {a.c, b.c}.

5. Type z now expects to obtain 0 from r and at least 1 from `. Thus, S5
1 (z) = {`}.

No remaining strategy of the receiver can be eliminated. So, we obtain:

∀θ1 ∈ Θ1, S∞1 (θ1) = {`} , S∞2 = {a.c, b.c} .

It follows that the strongly rationalizable paths are (`, a) and (`, b) for every state

(sender’s type).

Now consider the following restrictions on the exogenous beliefs of the receiver:6

6Since there is only one type of receiver, we do not consider restrictions on the sender’s beliefs.
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Let ∆2 collect the belief systems µ2 that initially assign probability 1 to type z, i.e.,

µ2({z} × S1|∅) = 1.

Strong ∆-Rationalizability is given by the following steps:

∆,1. As above, message r is eliminated for type x, so we write S∆,1
1 (x) = S1

1 (x) =

{`}. But now, some strategies of the receiver are also eliminated. By the chain rule,
every belief system µ2 ∈ ∆2 assigns probability 1 to z given `, if µ2({(z, `)} |∅) > 0,

and/or given r, if µ2({(z, r)} |∅) > 0. Thus, the receiver best replies with a after `

and/or with c after r: S∆,1
2 = {a.c, b.c, a.d, a.e}.

∆,2. As in strong rationalizability, action e is never a best reply given r; hence,
strategy a.e of the receiver is eliminated: S∆,2

2 = {a.c, b.c, a.d}. Moreover, for type z,
r is dominated by ` w.r.t. strategies in S∆,1

2 ; so, S∆,2
1 (z) = {`}.

∆,3. For type y, r is dominated by ` over S∆,2
2 ; thus, S∆,3

1 (y) = {`}. Moreover, every
belief system of the receiver must now assign probability 1 to type y given message

r; thus, S∆,3
2 = {a.d} .

We pinned down one strategy for each type of each player:

∀θ1 ∈ Θ1, S
∆,∞
1 (θ1) = {`} , S∆,∞

2 = {a.d} .

The strongly ∆-rationalizable path is (`, a) for every payoff-state. Consistently with

our main result (Theorem 1), it is one of the two strongly rationalizable paths. Note,

however, that the strongly ∆-rationalizable reaction of the receiver to r is d, whereas

the strongly rationalizable one was c. This is related to a different order of elimination

of type-message pairs of the sender: With the belief-restriction, (z, r) is eliminated

before (y, r), inducing the receiver to be certain of y and choose d after r; without

restriction, we have the opposite order of eliminations and d after r is ruled out. N

In the example, as we will prove in full generality, strong directed rationalizabil-

ity with restrictions on initial beliefs about types refines strong rationalizability in

terms of paths, for each possible payoff-state (profile of types). However, the strongly

∆-rationalizable strategy of the receiver is not strongly rationalizable, because the

implications about off-path behavior change non-monotonically after introducing the

belief restrictions.

The reason is that strong belief is not monotone in the following sense: strong
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belief in a proposition (e.g., the sender is rational and her beliefs satisfy a given

restriction) does not imply strong belief in a logically weaker proposition (e.g., the

sender is just rational). Thus, strong directed rationalizability does not refine strong

rationalizability in terms of strategies. For this reason, our path-monotonicity result

cannot be proven with a straightforward induction argument.

2.2 Robust implementation, static mechanisms

To set the stage, we explain the conceptual connection between robust implementation

and rationalizability, focusing first on static mechanisms. Consider an economic
environment E with asymmetric information. There are a set I of agents and a
set Y of economic outcomes (possibly, lotteries). The (expected) value to player i of

outcome y is vi (θ, y), where θ = (θi)i∈I ∈ Θ = ×i∈IΘi is a payoff-state (also called

“state of nature”) and θi is i’s private information about θ, or i’s “payoff-type.”
Agents hold hierarchical beliefs about each other’s payoff-types, which can be

represented by means of a type structure T à la Harsanyi (1967-68). In words,

T captures what belief hierarchies are commonly believed possible, given some ex-

ogenous contextual restrictions on beliefs. Without contextual restrictions, T is the
universal type structure containing all the collectively coherent belief hierarchies (e.g.,

Mertens & Zamir 1985).

A planner (she) wants to implement a social choice function (SCF) f , associating

each payoff-state θ with a desirable outcome y = f (θ) ∈ Y .7 With this purpose,

she commits to make the agents interact according to a mechanismM, that is, some

commonly known set of rules that yield a set Z of possible paths of play and an

outcome function g : Z → Y . In static mechanisms, Z = A is just the set of possible

action/message profiles; in the subclass of direct mechanisms, Z is isomorphic to Θ,

because messages report agents’types. Triple Γb = (M, E , T ) describes a situation of

strategic interaction called “Bayesian game.”In the traditional full implementation
problem, it is assumed that the planner knows both E and T . The adopted solution
concept (e.g., Bayesian equilibrium, or rationalizability) yields, for each state θ ∈ Θ, a

set ZΓb (θ) of possible paths of play. A mechanismM fully implements SCF f if, for
every θ, f (θ) is the only possible outcome, that is, g

(
ZΓb (θ)

)
= {f (θ)}.8 However,

7We limit our attention to social choice functions. Similar considerations apply to social choice
correspondences associating a set of outcomes F (θ) ⊆ Y to each payoff-state θ.

8Partial implementation relies on equilibrium analysis and requires instead that g (z (·)) = f (·)
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the planner often ignores the contextual features represented by type structure T .
If she deems all type structures possible, in compliance with Wilson’s doctrine, a

natural notion of robust full implementation requires that the same mechanism
M fully implements SCF f for all Bayesian games Γb based on (M, E), that is, across

all type structures T (see Wilson 1987 and Bergemann & Morris 2009, 2012). Since
this paper is only concerned with different forms of full implementation, from now on

we will omit the adjective “full.”

Robust implementation is conceptually related to rationalizability, that is, the
solution concept characterizing the behavioral implications of Rationality and Com-

mon Belief in Rationality (RCBR).9 On the one hand, not relying on the assumption

that players’endogenous beliefs about each other’s behavior serendipitously coordi-

nate on a Bayesian equilibrium is in itself a form of robustness in the spirit of Wilson’s

doctrine. On the other hand, it has been observed that the state-dependent outcomes

consistent with Bayesian equilibrium across all type structures are precisely those al-

lowed by a version of rationalizability for games with payoff uncertainty– aka “belief-

free rationalizability”– that applies to structure (M, E), i.e., to a description of the

game that does not specify interactive beliefs about payoff-types.10 In particular,

restricting attention to static (e.g., direct) mechanisms, robust Bayesian-equilibrium

implementation is equivalent to implementation w.r.t. rationalizability for games

with payoff uncertainty. Analogously, robust implementation w.r.t. rationalizability

for Bayesian games is equivalent to implementation w.r.t. rationalizability for games

with payoff uncertainty.11 The intuition for this result is relatively straightforward:

(probability-1) belief is a monotone operator, that is, believing a weak proposition
(large event) is easier than believing a logically stronger proposition (smaller event

included in the former one). It follows by an induction argument that common belief

in rationality and in contextual restrictions on exogenous interactive beliefs (which

for at least one equilibrium selection z (·) from equilibrium correspondence ZΓb (·).
9See, e.g., Battigalli & Siniscalchi (2002), Battigalli (2003), and the relevant references therein.

Note that here “rationality”means only expected utility maximization given whatever subjective
beliefs a player holds about exogenous uncertainty and co-players’behavior. Every other restriction
on behavior is the result of additional assumptions on interactive beliefs.
10In “all type structures”we include those that violate the common prior assumption, although

a version of this equivalence result holds if attention is restricted to type structures with a common
marginal prior on payoff types. See Battigalli & Siniscalchi (2003) and Bergemann & Morris (2017).
11Ollár & Penta (2017, 2023) study rationalizable implementation subject to some natural belief

restrictions. This can be interpreted as a form of partial robustness. See Artemov et al. (2013) and
Propositions 4.2-4.3 in Battigalli & Siniscalchi (2003).
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yields rationalizability in Bayesian games) implies mere common belief in rationality.

Since “no restriction” is a particular kind of contextual restriction, the robustness

result follows (cf. Ziegler 2022). With this, we refer to robust implementation with

static mechanisms also as “implementation under RCBR.”

Finally, we are going to consider a weaker form of “virtual implementation,”or

v-implementation, that only requires to approximate the desired outcome f (θ)

with an arbitrary degree of precision (see Abreu & Matsushima 1992 and Bergemann

& Morris 2009). Clearly, robust v-implementation is easier to achieve than robust

implementation. But Bergemann & Morris (2009) show that– within the domain

of static mechanisms– even this form of implementation under RCBR is hard when

valuations depend on the types of others, as illustrated by the following example.

Example 2 A single good must be allocated to one of many agents through a static
mechanism with monetary transfers. Each agent/player i values the good

vi (θi, θ−i) = θi + γ
∑
j 6=i

θj (γ ≥ 0) ,

where θi is private information of i and belongs to a finite set of payoff-types Θi

that satisfies {0, 1} ⊆ Θi ⊆ [0, 1]. As i’s valuation also depends on θ−i, players have

interdependent valuations for the good. The degree of interdependence is increasing

in γ. It turns out that, for γ > 1
|I|−1

, only constant social choice functions can be

v-implemented under RCBR with static mechanisms. N

2.3 Robust implementation, sequential mechanisms

Allowing for sequential mechanisms may expand the set of robustly implementable

SCFs, but there are different versions of rationalizability for sequential games, char-

acterizing the behavioral implications of different specifications of “common belief in

rationality.”12 The weakest one, aka “weak rationalizability”or “initial rationalizabil-

ity,”relies on the assumption of Rationality and Common Initial Belief in Rationality

(RCIBR, see Battigalli 2003). Therefore, we refer to (robust v-) implementation w.r.t.

this version of rationalizability as “implementation under RCIBR.”

12Where “rationality” is now meant in the sequential sense of subjective expected utility maxi-
mization conditional on observations about previous moves.
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Since initial (probability-1) belief is monotone, the aforementioned results for sta-

tic mechanisms extend to sequential mechanisms, a (weak) version of perfect Bayesian

equilibrium, and implementation under RCIBR. However, since weak rationalizability

typically allows for a large set of outcomes, it is unlikely that relevant SCFs can be

implemented under RCIBR. For instance, in Example 2, even allowing for sequential

mechanisms, only constant SCFs can be implemented under RCIBR if γ > 1
|I|−1

.13

As mentioned in the Introduction and intuitively explained in 2.1, a stronger

and more interesting notion of rationalizability for sequential games captures a form

of forward-induction (FI) reasoning, as it characterizes the behavioral implications

of Rationality and Common Strong Belief in Rationality (RCSBR). The simplest

version of rationalizability capturing RCSBR in incomplete-information environments

is strong rationalizability for games with payoff uncertainty, a kind of “belief-
free strong rationalizability” (Battigalli & Siniscalchi 2002). Therefore, we refer to

implementation w.r.t. strong rationalizability as “implementation under RCSBR.”

Clearly, strong rationalizability refines weak/initial rationalizability. Thus, allow-

ing for sequential mechanisms, v-implementation under RCSBR might significantly

expand the set of v-implementable SCFs. Indeed, considering a discretized environ-

ment, Müller (2016) shows precisely this. We illustrate this for a simple specification

of the economic environment of Example 2.

Figure 1

Example 3 Let I = {Ann,Bob,Cora}, Θi = {0, 1} for each i ∈ I, γ = 2/3 and

consider a planner who wants

- to assign the good with equal probability to one of the players i with θi = 1 (high

13See Müller (2016) and (2020).
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type), if any, and to keep the good otherwise (qi (θ) = |{j : θj = 1}|−1 if θi = 1,

qi (θ) = 0 if θi = 0);

- to extract most (90%) of the expected value from each high type; thus, low types

should pay nothing, a high type of i should pay −ti = 0.9 if there are no other

high types, 0.75 if there is one more high type, and 0.7 if all types are high.

As explained above, this non-constant SCF cannot be robustly implemented by static

mechanisms. Consider now the following sequential mechanism.

- Game tree: Ann, Bob, and Cora (in this order) sequentially send a message/report

in {0, 1} with perfect information about previous moves, with the partial exception
of Bob, who can send a message in

{
0, 1, 1̂

}
if Ann reports 1. See Figure 1.

- Outcome function: after a sequence of three reports in {0, 1}, the outcome func-
tion mimics the SCF (assuming truthful reporting); for a sequence where Bob sends

message 1̂, let

(q; t) = (0.98, 0.02, 0;−1.4,−0.015, 0) if (1, 1̂, 0),

(q; t) = (0.49, 0.02, 0.49;−0.7,−0.03,−0.7) if (1, 1̂, 1).

With this, low types prefer to report 0, unless they believe that both co-players are

high types but (will) report 0, whereas high types prefer to report 1 if they believe

that there are at least as many co-players’high types as co-players’high reports.

Moreover, after Ann reports 1, the high type of Bob prefers message 1̂ over 0 if he

believes that then Cora will report truthfully, regardless of whether Ann is truly of

type 1 or not. This is because, after message 1̂, he can obtain the good with small

positive probability, but at a “discounted price.”

Here we provide a brief, intuitive illustration of the steps of strong rationalizability;

the full procedure with complete arguments can be found in the Supplemental Ap-

pendix. Let A0, A1, B0,... denote players with their type (Ann of type 0, etc.). Step
1: C0 reports 0 at each node (sequence of messages) except (0, 0) (the payments are

just too high for the low type, even if the co-players are believed to be of high type).

Analogously, B0 eliminates report 1 at node (1). By contrast, C1 reports 1 at (0, 0).

Step 2 only involves B1 and relies on the additional message 1̂. Since – according

to the first step – A0 may report 1, then B1 does not necessarily prefer to report

1 over 0, as the transfer would exceed the expected value in case Ann’s type is 0

and Cora reports truthfully. However, no matter his beliefs, B1 does prefer to send
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message 1̂ instead of 0, because the discounts and C0’s truthful reporting makes it

worth pursuing the good even if Ann’s type is 0. Moreover, given that C0 will not

report 1, B1 prefers to report 1 over 0 if Ann reports 0. So, no matter Ann’s report,

we can rule out report 0 for B1. Step 3: Because of this, A0 reports 0. Moreover,

by forward induction, C0 reports 0 also at (0, 0), realizing that Bob’s type must be

low. Step 4 is triggered by the forward-induction consideration that Ann’s type must
be high if she reported 1. With this, B1 and C1 report 1 afterward. Step 5: B0
reports 0 at (1) as C1 would not report 0 after

(
1, 1̂
)
. Thus, message 1̂ ends up off

path. Further steps: Next, A1 rules out report 0. This triggers the last two steps

of forward induction, which induce B0 and C1 to report truthfully if Ann reports 0.

The conclusion of strong rationalizability is that every type of every player reports

truthfully, and thus the social choice function is implemented. But to get there, we

had to depart from a mere sequential-revelation mechanism and introduce a third

message for Bob.14 This message is eventually discarded, and hence, as in Example

1, we have an off-path information set for the last mover. N

But is v-implementation under RCSBR robust? In other words, suppose agents’

interactive exogenous beliefs about each other’s payoff-types satisfy some contextual

restrictions represented by a type structure T . Then, their behavior should satisfy
strong rationalizability for the Bayesian game Γb = (M, E , T ). Robustness would

require that the given SCF f is v-implementable w.r.t. strong rationalizability in

Bayesian games across all type structures T . Unfortunately, we cannot replicate the
aforementioned inductive argument based on the monotonicity of probability-1 (ini-

tial) belief, because strong belief is not monotone: As illustrated by Example 1, while

at the beginning of the game it is easier to believe a weak proposition such as “my

co-players are rational”than a stronger one such as “my co-players are rational and

their exogenous beliefs satisfy the contextual restrictions,” there typically are more

observations consistent with the weaker proposition, and therefore more instances

in which strong belief requires assigning probability 1 to this proposition, making

it more diffi cult to strongly believe it. When contextual considerations (e.g., social

norms) also shape endogenous beliefs about behavior, unlike Example 1, it is easy to

show that the set of induced paths of play is non-monotone w.r.t. such contextual

restrictions (see Battigalli & Friedenberg 2012).

14In more complex economic environments, one also needs to give up on perfect information. See
the canonical mechanisms of Müller (2016).
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By contrast, we prove that the set of state-dependent strongly rationalizable paths

of play is (nonempty and) monotone w.r.t. restrictions on exogenous beliefs. With

this, we can also prove that v-implementation under RCSBR is robust: Fix an SCF

f : Θ→ Y . Let Γ = (M, E) denote the game with payoffuncertainty (or “belief-free”

game) induced by mechanismM with outcome function g : Z → Y in environment E ,
and let θ 7→ ZΓ (θ) denote the strongly rationalizable-paths correspondence. Suppose

that, for all states θ, g
(
ZΓ (θ)

)
≈ {f (θ)} to an arbitrary degree of precision. Now

suppose that the relevant hierarchies of initial beliefs on the payoff-relevant uncer-

tainty are represented by a particular type structure T . It is without loss of generality
to write types as ti = (θi, ei) where coordinate ei affects hierarchical exogenous beliefs,

but does not affect payoffs, whereas θi can affect both payoffs and beliefs. Appending

T to (M, E) gives a sequential Bayesian game Γb = (M, E , T ). In our analysis, we

make the transition from game with payoff uncertainty Γ to Bayesian game Γb in

two steps. First, we “duplicate”types by replacing each set Θi of payoff-types with

a set Ti = Θi × Ei, and we note that the solution concept is invariant to such dupli-
cations: a pair (θi, si) is strongly rationalizable if and only if ((θi, ei) , si) is strongly

rationalizable in the “belief-free”game with duplicated types for each ei ∈ Ei. Next
we obtain a type structure T by adding belief maps (βi : Ti → ∆ (T−i))i∈I to such

game with duplicated types, which corresponds to specific restrictions on exogenous

beliefs in this game: for each type ti = (θi, ei), the set of possible exogenous beliefs is

the singleton {βi (ti)}. With this, our theorem implies that, for all Bayesian games

Γb obtained by appending a type structure to Γ, ∅ 6= ZΓb (θ, e) ⊆ ZΓ (θ), where

ZΓb (θ, e) is the set of strongly rationalizable paths at state (θ, e) in Γb. Therefore,

g
(
ZΓb (θ, e)

)
≈ {f (θ)} for all such games Γb and states (θ, e) to an arbitrary degree

of precision.15

3 Preliminaries16

In this section we formally introduce the basic incomplete-information framework

(3.1), systems of beliefs and sequential best replies (3.2), and the adopted solution

concept, strong directed rationalizability (3.3).

15In the Supplemental Appendix we illustrate this result in the context of Example 3.
16The formalism is based on Battigalli et al. (2025), Chapters 9 and 15.
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3.1 Multistage games with payoff uncertainty

We consider finite multistage games with payoff uncertainty and observed actions.

The latter assumption simplifies our notation, but our analysis can be seamlessly

extended to games with imperfectly observed actions.17

There is a set of players I and each i ∈ I has a set of potentially available actions
Ai. Let A = ×i∈IAi denote the set of action profiles and A<N0 the set of finite

sequences of such profiles (including the empty sequence ∅). A subset of A<N0 is a
tree with root ∅ (the empty sequence) if it is closed under the “prefix-of”precedence
relation� (note that∅ is a prefix of every sequence). The rules of the game yield a tree
H̄ ⊆ A<N0 of possible sequences, called histories, and a feasibility correspondence
h 7→ A (h) =

{
a ∈ A : (h, a) ∈ H̄

}
such that (1)A (h) = ×i∈IAi (h) and (2)A (h) = ∅

implies Ai (h) = ∅ for every i ∈ I. The set of terminal histories– or possible paths of
play– is Z =

{
z ∈ H̄ : A (h) = ∅

}
, and the set of nonterminal histories is H = H̄\Z.

Nonterminal histories are publicly observed as soon as they realize.

Each player i knows the true value of a payoff-relevant parameter θi, called the

payoff-type of i, whereas the set Θi of possible values of θi is common knowledge.

The parameterized payoff function of player i is ui : Θ×Z → R, where Θ = ×i∈IΘi is

the set of all possible type profiles, or payoff-states. Payoff uncertainty is represented

by the dependence of ui on θ. When convenient, we write ui,θ : Z → R for the

section of ui at payoff-state θ.18 Thus, a multistage game with payoff uncertainty and

observed actions is given by Γ =
〈
I, H̄, (Θi, ui)i∈I

〉
, where all the featured sets are

finite. If |Ai (h)| > 1, then player i is active at nonterminal history h. If |Ai (h)| = 1,

player i is inactive and the unique element of Ai (h) can be thought of as a waiting

action. If there is only one active player for each h ∈ H, then Γ features perfect

(albeit incomplete) information, i.e., there are no simultaneous moves and (by the

observed-actions assumption) past moves are perfectly observed. In the analysis of

examples, we omit to mention the waiting actions of inactive players.

We interpret each function ui as the composition of a parameterized utility func-
tion vi : Θ×Y → R (Y is the relevant space of outcomes) and an outcome function
g : Z → Y specified by the rules of the game: ui (θ, z) = vi (θ, g (z)).

17See Section 7, where we also consider extensions to infinite games.
18Since the profile of payoff-types θ = (θi)i∈I determines each payoff function ui,θ : Z → R, we

are implicitly assuming that there is distributed knowledge of the payoff-state. This assumption is
made only to simplify the notation.
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From these primitives, we can derive a set of strategies Si = ×h∈HAi (h) for each

player i. Let S = ×i∈ISi and S−i = ×j 6=iSj. Note, we take an interim perspective:

the game starts with some exogenously given payoff-state θ (e.g., representing players’

traits), imperfectly and asymmetrically known by the players. Thus, strategies only

describe how behavior depends on previous moves. Let ζ : S → Z denote the path
function that associates each strategy profile s = (si)i∈I ∈ S with the induced path
z = ζ (s). With this, we define the (parameterized) strategic-form payoff function of

player i as
Ui : Θ× S −→ R

(θ, s) 7→ ui (θ, ζ (s))

Finally, for each h ∈ H̄,

S(h) = Si(h)× S−i(h) = {(si, s−i) ∈ S : h � ζ(s)}

denotes the set of all strategy profiles inducing h.

The primitive and derived elements are respectively summarized by the following

table:

Symbol Terminology

i ∈ I players

ai ∈ Ai, a ∈ A = ×i∈IAi actions of i, action profiles

h ∈ H̄ ⊆ A<N0 histories (H̄ is a tree)

Ai (h) (A (h) = ×i∈IAi (h)) feasible actions (action profiles) given h

z ∈ Z terminal histories, or paths of play

H = H̄\Z nonterminal histories

θi ∈ Θi payoff-types of i

θ ∈ Θ = ×i∈IΘi payoff-states

ui : Θ× Z → R (parameterized) payoff function of i

si ∈ Si = ×h∈HAi (h) strategies of i

s ∈ S = ×i∈ISi = Si × S−i strategy profiles

s ∈ S (h) = Si (h)× S−i (h) strategy profiles inducing h

ζ : S → Z path function

Ui : Θ× S → R (param.) strategic-form payoff function of i
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3.2 Beliefs and best replies

We model the beliefs of each player i as the play unfolds by means of conditional
probability systems (CPSs): observed history h reveals that the set of possible
type-strategy profiles of the co-players is Θ−i × S−i (h); thus, we consider arrays

of conditional beliefs µi = (µi (·|Θ−i × S−i (h)))h∈H over such profiles. The set of

CPSs of player i, denoted ∆H (Θ−i × S−i), is the subset of arrays of beliefs µi ∈
(∆ (Θ−i × S−i))H such that, for every h ∈ H, µi (Θ−i × S−i(h)|Θ−i × S−i(h)) = 1

and the chain rule holds, that is, for all h, h′ ∈ H and E ⊆ Θ−i × S−i(h′),

S−i(h
′) ⊆ S−i(h)⇒ µi (E|Θ−i × S−i (h)) = µi (E|Θ−i × S−i(h′))µi (Θ−i × S−i(h′)|Θ−i × S−i (h)) .

Note that h � h′ implies S−i(h′) ⊆ S−i(h), but the converse is not true because

histories also represent behavior of player i. From now on, we use the simplified

notation µi = (µi (·|h))h∈H
We will consider type-dependent restrictions on players’exogenous beliefs

(i.e., initial beliefs about the types of others), represented by subsets of probability

measures: for all i ∈ I and θi ∈ Θi, ∆̂i,θi ⊆ ∆ (Θ−i). With this, we introduce profiles

∆ = (∆i,θi)i∈I,θi∈Θi
of type-dependent subsets of CPSs such that, for all i ∈ I and

θi ∈ Θi,

∆i,θi =
{
µi ∈ ∆H (Θ−i × S−i) : margΘ−iµi (·|∅) ∈ ∆̂i,θi

}
.

We represent the behavior of a rational player i of type θi by means of a (weak) se-
quential best-reply correspondence µi 7→ ri,θi (µi) defined as follows. Let Hi (si) =

{h ∈ H : si ∈ Si (h)} denote the set of nonterminal histories that can occur if si is
played. With this,

ri,θi (µi) =

{
s̄i ∈ Si : ∀h ∈ Hi (s̄i) , s̄i ∈ arg max

si∈Si(h)
Eµi(·|h) (Ui(θi, si, ·))

}
.

By standard dynamic programming arguments, ri,θi (µi) 6= ∅ for all payoff-types θi
and CPSs µi (see the analysis and discussion in Battigalli et al. 2023).

Fix a CPS µi and a type θi. For each strategy s̄i and history h ∈ Hi(s̄i), we say

that s̄i is a continuation best reply to µi(·|h) ∈ ∆ (Θ−i × S−i (h)) for θi if, for

every si ∈ Si(h),

Eµi(·|h) (Ui(θi, s̄i, ·)) ≥ Eµi(·|h) (Ui(θi, si, ·)) .
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Thus, s̄i is a (weak) sequential best reply to µi for θi if s̄i is a continuation best reply

to µi(·|h) for θi at every h ∈ Hi(s̄i).

3.3 Strong (directed) rationalizability

As informally explained in the Introduction, our forward-induction analysis hinges on

the notion of “strong belief.”For each event E−i ⊆ Θ−i × S−i (e.g., that co-players’
behavior is consistent with rationality), we say that a CPS µi strongly believes E−i
if µi assigns probability 1 to E−i as long as E−i is not contradicted by observation:

∀h ∈ H, E−i ∩ (Θ−i × S−i (h)) 6= ∅ ⇒ µi (E−i|h) = 1.

We assume that players are rational and that the restrictions on exogenous beliefs

are transparent, that is, the belief restrictions hold and there is common belief of
this fact conditional on every nonterminal history. Moreover, we assume that players

strongly believe that:

• the co-players are rational and the restrictions are transparent;

• the co-players are rational, the restrictions are transparent, and the co-players
strongly believe that everyone else is rational and that the restrictions are trans-

parent;

• and so on.

In brief, we assume rationality, transparency of the belief restrictions, and common

strong belief thereof.

The previous hypotheses can be made formal in the language of epistemic game

theory. As shown by Battigalli & Prestipino (2013), the behavioral implications of

these epistemic hypotheses are characterized by Strong Directed Rationalizabil-
ity (Battigalli 2003, Battigalli & Siniscalchi 2003).19

Fix a profile ∆ = (∆i,θi)i∈I,θi∈Θi
of subsets of CPSs (see 3.2). Also, for each player

i ∈ I and event E−i ⊆ Θ−i × S−i, let ∆H
sb (E−i) denote the set of CPSs µi that

19These articles use the term “(strong) ∆-rationalizability.”Recall that we use “(strong) directed
rationalizability”to refer to the correspondence that associates each profile of belief restrictions ∆
with the corresponding strongly rationalizable behavior, so that ∆ “directs”the resulting behavior.

18



strongly believe E−i, and let R
∆,0
i = Θi × Si. Then, for each n > 0, define the set

of strongly ∆-n-rationalizable type-strategy pairs of i as

R∆,n
i =

{
(θi, si) : ∃µi ∈ ∩n−1

m=0∆H
sb(R∆,m

−i ) ∩∆i,θi , si ∈ ri,θi(µi)
}
.

With this, the set of strongly ∆-n-rationalizable strategies for θi is the section at θi
of R∆,n

i

S∆,n
i (θi) =

{
si ∈ Si : (θi, si) ∈ R∆,n

i

}
,

and the set of strongly ∆-n-rationalizable strategy profiles at state θ is

S∆,n (θ) = ×i∈IS∆,n
i (θi) .

Finally, let

R∆,∞
i = ∩n>0R

∆,n
i , R∆,∞ = ×i∈IR∆,∞

i

denote the set of strongly ∆-rationalizable type-strategy pairs of i and profiles of such

pairs, and let

S∆,∞
i (θi) =

{
si ∈ Si : (θi, si) ∈ R∆,∞

i

}
, S∆,∞ (θ) = ×i∈IS∆,∞

i (θi) .

Recalling that the sequential best-reply correspondence is non-empty valued and not-

ing that mere restrictions on exogenous beliefs cannot contradict the restrictions on

beliefs about type-dependent behavior implied by strategic reasoning, one can prove

by induction the following result:

Lemma 1 (cf. Battigalli 2003) Since ∆ represents restrictions on exogenous beliefs,

for each θ ∈ Θ, the set of strongly ∆-rationalizable strategy profiles is non-empty:

S∆,∞ (θ) 6= ∅.

When there are no actual belief restrictions, i.e., when each ∆i,θi is the set

∆H (Θ−i × S−i) of all CPSs of i, Strong ∆-Rationalizability boils down to Strong
Rationalizability (Pearce 1984, Battigalli 1997), which characterizes the behavioral
implications of Rationality and Common Strong Belief in Rationality (Battigalli &

Siniscalchi, 2002). We omit the superscript ∆ to denote Strong Rationalizability: R∞i
(Rn

i ) is the set of strongly (n-)rationalizable pairs of i, S
∞
i (θi) (Sni (θi)) is the set of

strongly (n-)rationalizable strategies of θi, and S∞ (θ) (Sn (θ)) is the set of profiles of

strongly (n-) rationalizable strategies at payoff-state θ.
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A path (terminal history) z ∈ Z is strongly ∆-rationalizable if there exists some

strongly ∆-rationalizable profile (θ, s) such that ζ (s) = z. Let Z
(
R∆,∞) denote the

set of strongly ∆-rationalizable paths. The set of strongly ∆-rationalizable

paths at payoff-state θ is ζ
(
S∆,∞ (θ)

)
.

The signaling game informally analyzed in Section 2.1 illustrates the formalism

and concepts introduced in this section.

Example 4 Consider again the signaling game of Example 1. Game Γ is a two-stage

game with perfect information, with

Θ1 = {x, y, z} , Θ2 =
{
θ̄2

}
(a singleton),

H = {∅, (`) , (r)} , Z = {(`, a) , (`, b) , (r, c) , (r, d) , (r, e)} , H̄ = H ∪ Z,
A1 (∅) = {`, r} , A2 (`) = {a, b} , A2 (r) = {c, d, e} ,

and the type-dependent payoff functions ui : Θ × Z → R described by the following
tables:

u1 (·, `, ·) , u2 (·, `, ·) a b

θ1 = x 3 1 1 0

θ1 = y 1 0 1 1

θ1 = z 3 1 1 0

u1 (·, r, ·) , u2 (·, r, ·) c d e

θ1 = x 0 0 0 0 0 1

θ1 = y 0 0 0 1 3 0

θ1 = z 0 1 2 0 2 0

Since player 2 is uninformed and inactive in the first stage, Θ2×S2 is isomorphic to S2

and∆H (Θ2 × S2) is isomorphic to∆ (S2) (by the chain rule and S2 (`) = S2 (r) = S2).

We intuitively explained in Example 1 how strong directed rationalizability works in

this game. Thus, we only list below the formal result for each step using the notation

introduced above. Without belief restrictions, we have:

R1
1 = {(x, `) , (y, `) , (y, r) , (z, `) , (z, r)} (thus, S1

1 (x) = {`} ), R1
2 = S2;

R2
1 = R1

1, R
2
2 = {a, b} × {c, d} ;

R3
1 = {(x, `) , (y, `) , (z, `) , (z, r)} , (thus, S3

1 (y) = {`} ), R3
2 = R2

2;

R4
1 = R3

1, R
4
2 = {a.c, b.c} ;

R5
1 = Θ1 × {`} (thus, S5

1 (θ1) = {`} for all θ1), R5
2 = R4

2;

R∞1 = Θ1 × {`} , R∞2 = {a.c, b.c} ; ζ
(
S∆,∞ (θ)

)
= {`} × {a, b} for all θ.
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Since Θ2 is a singleton, we can only have restrictions on the exogenous beliefs of

player 2. Formalizing Example 1, let

∆2 =
{
µ2 ∈ ∆H (Θ1 × S1) : µ2 ({z} × S1|∅) = 1

}
denote the set of CPSs that intially assign probability 1 to type θ1 = z. With this,

strong ∆-rationalizability yields:

R∆,1
1 = {(x, `) , (y, `) , (y, r) , (z, `) , (z, r)} , R∆,1

2 = {a.c, b.c, a.d, a.e} ;
R∆,2

1 = {(x, `) , (y, `) , (y, r) , (z, `)} , R∆,2
2 = {a.c, b.c, a.d} ;

R∆,3
1 = Θ1 × {`} , R∆,3

2 = {a.d} ;
R∆,∞

1 = Θ1 × {`} , R∆,∞
2 = {a.d} , ζ

(
S∆,∞ (θ)

)
= {(`, a)} for all θ ∈ Θ.

Thus, Z
(
R∆,∞) ⊂ Z (R∞); but R∆,∞

2 * R∞2 , actually R
∆,∞
2 ∩R∞2 = ∅. N

4 Main theorem

We show that, when we consider only restrictions on exogenous beliefs, the set of

strongly ∆-rationalizable paths is monotone in ∆, despite the non-monotonicity of

strong belief.

Because it suffi ces for our application to implementation theory, here we just

focus on the comparison between some profile ∆ of subsets of CPSs that only restrict

exogenous beliefs, and the case of no restrictions (∆i,θi = ∆H (Θ−i × S−i) for all i
and θi, that is, strong rationalizability). Thus, we prove that for any fixed profile

of restrictions on exogenous beliefs ∆ the set of strongly ∆-rationalizable paths is

contained in the set of strongly rationalizable paths. It will be clear that the proof

can be easily adapted to obtain the more general path-monotonicity claim.20

Theorem 1 Fix a profile ∆ = (∆i,θi)i,∈I,θi∈Θi
of restrictions on exogenous beliefs.

Then, for all steps n ≥ 0 and states θ ∈ Θ, ∅ 6= ζ
(
S∆,n (θ)

)
⊆ ζ (Sn (θ)), that is, for

each (θ, s) ∈ R∆,∞ 6= ∅, there exists s′ ∈ S such that (θ, s′) ∈ R∞ and ζ(s) = ζ(s′).

20Moreover, the proof shows (see footnote 23) the path-equivalence of strong ∆-rationalizability
and an elimination procedure that coincides with strong rationalizability until convergence, and
then introduces the ∆-restrictions and continues until convergence (cf. Catonini 2019). We thank
an anonymous referee for this observation.
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The assumption that the belief restrictions only apply to exogenous beliefs is

tight. In the literature, there are many examples of strong directed rationalizability

with restrictions on initial beliefs about co-players’behavior yielding non-strongly-

rationalizable outcomes (see, e.g., Battigalli & Friedenberg 2012 and Catonini 2019).

In the supplemental appendix, we provide an analogous example with restrictions on

non-initial (hence, conditional) beliefs about co-players’types.

Given that, as we saw in Examples 1 and 4, the two elimination procedures may

induce completely disjoint off-path behaviors, proving path-monotonicity is hard. Our

proof is based on a kind of double-induction argument.21

4.1 Proof of theorem 1

Non-emptiness follows from Lemma 1. Here we only focus on path-inclusion. Since

comparing directly strong rationalizability and strong ∆-rationalizability is diffi cult,

we construct a sequence of elimination procedures that gradually transform strong ∆-

rationalizability into strong rationalizability, and we prove step-by-step path-inclusion

between each pair of consecutive, “similar”procedures.

Let K be the number of steps that it takes for strong rationalizability to converge:

RK−1 ⊂ RK = R∞ (⊂ denotes strict inclusion). Note that K is well defined because

the game is finite. For each k = 0, ..., K, we introduce Procedure k, which performs

the first k steps of elimination without belief restrictions and the following steps with

the belief restrictions. Thus, Procedure 0 coincides with strong ∆-rationalizability,

while the first K steps of Procedure K coincide with strong rationalizability. Hence,

the path-inclusions between Procedure 0 and Procedure 1, Procedure 1 and Procedure

2, and so on up to Procedure K, prove the theorem.

Now we define formally such elimination procedures, denoted by ((Xn
k)∞n=0)

K

k=0
. If

everything is strongly rationalizable, there is nothing to prove; thus, suppose that

strong rationalizability deletes some pair (θi, si) for at least one player i, so that

K > 0.
21The techniques we use have common elements with the techniques used by Perea (2018, 2024)

and Catonini (2020) in complete-information games to prove, respectively, an order-independence
result for strong rationalizability and an outcome-monotonicity result for directed rationalizability
with respect to initial belief restrictions about the path of play. In particular, like Perea (2018),
we decompose the problem of comparing two very different elimination procedures into a chain of
pairwise comparisons between more similar procedures, and the proof of a key claim (Claim 4 in the
proof of Theorem 1) draws on Catonini (2020).
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As anticipated, for k = 0, we have strong ∆-rationalizability:

(Xn
0 )∞n=0 =

(
R∆,n

)∞
n=0

.

For each k = 1, ..., K, define ((Xn
k,i)i∈I)

∞
n=0 as follows. Let X0

k = Θ× S.
For all n ∈ {1, ..., k} and i ∈ I,

Xn
k,i =

{
(θi, si) ∈ Θi × Si : ∃µi ∈ ∩n−1

m=0∆H
sb(Xm

k,−i), si ∈ ri,θi(µi)
}
. (1)

Thus, for k > 0, steps n = 1, ..., k of Procedure k coincide with strong rationalizability:

Xn
k = Rn for n ≤ k.

For all n > k and i ∈ I, let

Xn
k,i =

{
(θi, si) ∈ Θi × Si : ∃µi ∈ ∩n−1

m=0∆H
sb(Xm

k,−i) ∩∆i,θi , si ∈ ri,θi(µi)
}
. (2)

Thus, Procedure k deviates from strong rationalizability from step n = k+1 onwards,

because it starts imposing the ∆-restrictions on justifying beliefs only from step k+1.

It follows that, as anticipated, (Xn
K)∞n=0 is an elimination procedure which co-

incides with strong rationalizability (Rn)∞n=0 for the first K steps, so obtaining the

strongly rationalizable profiles, but then proceeds to (possibly) delete more profiles

by adding the ∆-restrictions. More generally, no procedure needs to converge by step

K (although some may converge at an earlier step), but– for our purpose– we can

focus on the first K steps of all procedures.

We are going to prove that, for each step of elimination n, the set of θ-dependent

paths that are consistent with step n weakly expands as k increases, which implies the

thesis. To do so, we proceed in this order: first we fix k ∈ {1, ..., K} and consider
Procedure k− 1 and Procedure k; then, we prove the path-inclusion between the two

procedures at every step of elimination n by induction on n.

First we provide an intuition of how we exploit the similarity between the two

consecutive procedures and how the assumption of exogenous restrictions makes their

comparison possible. From this intuition, we will derive the two-fold inductive hy-

pothesis for the formal proof. To simplify notation, we drop the indexes k − 1 and k

of the two procedures and we call them “P”and “Q”: ((Pn
i )i∈I)

∞
n=0 = ((Xn

k−1,i)i∈I)
∞
n=0

and ((Qn
i )i∈I)

∞
n=0 = ((Xn

k,i)i∈I)
∞
n=0. We are also going to apply the notation “·|Ĥ”

to (profiles of) strategies or type-strategy pairs in order to restrict the domain of
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strategies to a subset of histories Ĥ. Furthermore, for any subset X ⊆ Θ× S, we let

H (X) = {h ∈ H : ∃ (θ, s) ∈ X, h ≺ ζ (s)}

denote the set of nonterminal histories that realize for some (θ, s) ∈ X. With this,

for any X−i ⊆ Θ−i × S−i, to ease notation we also let

H (X−i) = H (Θi × Si × X−i)

denote the set of nonterminal histories that realize for some (θ−i, s−i) ∈ X−i and

(θi, si) ∈ Θi × Si.
P and Q coincide with Strong Rationalizability for steps n ∈ {1, ..., k − 1} and

depart at step n = k. From now on, let n = k+ 1; this will bring us to formulate the

induction hypothesis of the formal proof with the appropriate indexes.

At step n− 1 = k, P adopts the belief restrictions and Q does not, so:

Pn−1 ⊆ Qn−1. (3)

At step n = k + 1 both P and Q adopt the restrictions, but P imposes strong

belief in smaller strategy sets and therefore, along the paths consistent with these sets,

it remains more restrictive:

Pn|H(Pn−1) ⊆ Qn|H(Pn−1). (4)

At step n+ 1 = k + 2, the comparison becomes more complex.

First: Is this step of procedure P still more restrictive than Q regarding beliefs

at histories in H(Pn−1) about the co-players’types and moves at those histories, as

expression (4) seems to suggest?

The answer is yes, but only thanks to the assumption that restrictions only con-

cern exogenous beliefs. Restrictions on the beliefs about the endogenous/strategic

uncertainty could allow player i to believe in some (θ−i, s−i) ∈ Pn
−i, but not in any

counterpart
(
θ−i, s

′
−i
)
∈ Qn

−i with s−i|H(Pn−1) = s′−i|H(Pn−1). The role of restrict-

ing only the initial beliefs is more subtle. Strong belief in Pn
−i and in Qn

−i may

induce, by forward-induction reasoning, different beliefs about θ−i at some history

h′ ∈
(
H(Pn

−i) ∩H(Qn
−i)
)
\H(Pn−1). If there were restrictions on such beliefs at h′, it
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could well be that some of the beliefs derived from Qn
−i would be incompatible with

the restrictions. Via the chain rule, this could also rule out some beliefs at some

h ∈ H(Pn−1) such that h ≺ h′.

But this is not the end of the story. Strong belief in Qn
−i may be more restrictive,

or “differently restrictive,” compared with strong belief in Pn
−i regarding behavior

outside of H(Pn−1). This is because the inclusion of equation (4) is restricted to

H(Pn−1). Thus, strong belief in Qn
−i may rule out some belief about the reactions of

the co-players to a deviation of i from H(Pn−1) which is instead allowed by strong

belief in Pn
−i. Example 4 may help to understand this point.

22 Belief in R4
2 = {a.c, b.c}

imposes belief in reaction c after a deviation from the unique on-path signal induced

by R∆,3
1 = Θ1 × {`}. By contrast, belief in R∆,4

2 = {a.d} imposes belief in reaction
d. With this, it is conceivable that there might be a deviation from one of the paths

consistent with Pn+1 that player i expects to lead out of H(Pn−1) and always be

strictly profitable under strong belief in Qn
−i. This is why it is hard to prove that

Pn+1|H(Pn) ⊆ Qn+1|H(Pn). (5)

What guarantees that such a deviation does not exist? We are going to argue that

H(Pn−1) ⊇ H(Qn), so that no strategy in Qn+1
i ⊆ Qn

i (i.e., no strategy that player i

could ever find profitable at step n+1 of procedure Q) leads out of H(Pn−1) (actually,

of H(Pn) ⊆ H(Pn−1)) if the co-players follow strategies in Qn
−i, as strongly believed

by i at step n+ 1.

Here is where the similarity between the two procedures comes into play: H(Pn−1) ⊇
H(Qn) is a reverse inclusion compared to the path-inclusion we want to prove, but

with procedure Q one step ahead of procedure P . Thus, to see why the inclusion

holds, we must flip the roles of the two procedures and start from the trivial obser-

vation that, since Qn−1 ⊆ Qn−2 and Q and P coincide up to step n− 2,

Qn−1 ⊆ Pn−2.

Next, we consider step n ofQ and step n−1 of P . Both steps use the belief restrictions,

as Q introduces the restrictions only one step later than P . Thanks to this similarity,

22The example compares directly strong ∆-rationalizability and strong rationalizability, which
cannot formally take the role of procedures P and Q, but it still displays the possible relationship
between P and Q that we are illustrating.

25



we can argue as above (cf. equation (4)) to obtain

Qn|H(Qn−1) ⊆ Pn−1|H(Qn−1). (6)

Thus, since H(Qn−1) ⊇ H(Qn), we have H(Pn−1) ⊇ H(Qn), as we wanted to show.

Proving (6) was easy because we could rely on the inclusion Qn−1 ⊆ Pn−2, which

is stated for complete strategies. But to continue and prove

Pn+2|H(Pn+1) ⊆ Qn+2|H(Pn+1),

we need H(Pn) ⊇ H(Qn+1), that is, we need

Qn+1|H(Qn) ⊆ Pn|H(Qn), (7)

and to prove this we run into the same complications we had for (5). However,

recall that we were able to prove (5) after showing that H(Pn−1) ⊇ H(Qn); we can

prove (7) in the same way, with the roles of the two procedures flipped, because

H(Qn−1) ⊇ H(Pn−1) by (3).

At this point, considering any n ≥ k, it should be clear that if we take induction

hypotheses of the kind

Pn|H(Pn−1) ⊆ Qn|H(Pn−1), (8)

Qn|H(Qn−1) ⊆ Pn−1|H(Qn−1), (9)

then we can use them to prove the next iteration of (9), namely

Qn+1|H(Qn) ⊆ Pn|H(Qn), (10)

and we can use (8) and (10) to prove the next iteration of (8).

Now we formulate this two-fold induction hypothesis for the formal proof. For

every n ≥ k,

IH1(n) for every i ∈ I and (θi, si) ∈ Xn
k−1,i, there is ŝ

(θi,si)
i ∈ Si such that (θi, ŝ

(θi,si)
i ) ∈

Xn
k,i and ŝ

(θi,si)
i (h) = si(h) for all h ∈ H(Xn−1

k−1) (thus, step n of Procedure k − 1

path-refines step n of Procedure k);

IH2(n) for every i ∈ I and (θi, si) ∈ Xn
k,i, there is s̃

(θi,si)
i ∈ Si such that (θi, s̃

(θi,si)
i ) ∈
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Xn−1
k−1,i and s̃

(θi,si)
i (h) = si(h) for all h ∈ H(Xn−1

k ) (thus, step n of Procedure k

path-refines step n− 1 of Procedure k − 1).

For n = K, IH1 implies that, for each (θ, s) ∈ XK
k−1, there exists s

′ ∈ S such that
(θ, s′) ∈ XK

k and ζ(s) = ζ(s′). Since k is arbitrary in {1, ..., K}, this implies that
for each (θ, s) ∈ XK

0 ⊇ R∆,∞, there exists s′ ∈ S such that (θ, s′) ∈ XK
K = R∞ and

ζ(s) = ζ(s′), that is, strong ∆-rationalizability path-refines strong rationalizability.23

The rest of this section is devoted to proving IH1 and IH2 by way of induction,

following the strategy we outlined above. The formal proofs of Claims 1-4 stated

below are deferred to the Appendix.

Basis steps
IH2(n = k) comes from the observation that, by inspection of (1), Xk

k ⊆ Xk−1
k =

Rk−1 = Xk−1
k−1; IH1(n = k) comes from (for all i ∈ I)

Xk
k−1,i =

{
(θi, si) ∈ Θi × Si : ∃µi ∈ ∩k−1

m=0∆H
sb(Xm

k−1,−i) ∩∆i,θi , si ∈ ri,θi(µi)
}

⊆
{

(θi, si) ∈ Θi × Si : ∃µi ∈ ∩k−1
m=0∆H

sb(Xm
k,−i), si ∈ ri,θi(µi)

}
= Xk

k,i,

where the first equality holds by (2), the last equality holds by (1), and the inclusion

follows from the fact that only the first set features the belief restrictions and that,

by (1), Xm
k−1,−i = Rm

−i = Xm
k,−i for all m = 0, ..., k − 1.

Inductive steps
The proofs of the two inductive steps, IH1(n)-IH2(n)⇒IH1(n + 1) and IH1(n)-

IH2(n)⇒IH2(n+1), are essentially identical, because both procedures
(
Xn
k−1

)∞
n=0

and

(Xn
k)∞n=0 are defined by (2) at each step n > k. We start from the proof of IH1(n)-

IH2(n)⇒IH2(n+1). We relegate the proof of IH1(n)-IH2(n)⇒IH1(n+1), which uses

the previously obtained IH2(n+ 1), to the supplemental appendix.

Inductive step, part IH2
Suppose IH1(n)-IH2(n) hold. We must show that IH2(n + 1) holds. Fix i ∈

I and (θi, si) ∈ Xn+1
k,i . We are going to show the existence of a CPS µ̃

(θi,si)
i ∈

∩n−1
m=0∆H

sb(Xm
k−1,−i) ∩ ∆i,θi and of a strategy s̃

(θi,si)
i ∈ ri,θi(µ̃

(θi,si)
i ) ⊆ Xn

k−1,i such that

23Fixing K ′ ≥ K such that XK′

0 = XK′+1
0 and XK′

K = XK′+1
K , the same argument based on IH1

yields the path-inclusion between procedure 0 (strong ∆-rationalizability) and procedure K, which
first performs all the steps of strong rationalizability, and then introduces the ∆-restrictions. The
analogous argument that starts from XK′+K

K and uses IH2 yields the opposite path-inclusion. So,
the two procedures are actually path-equivalent.
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s̃
(θi,si)
i (h) = si(h) for all h ∈ H(Xn

k). To ease notation, in what follows we do not make

explicit the dependence of either the CPS or the strategy on the fixed pair (θi, si), so

we write s̃i = s̃
(θi,si)
i and µ̃i = µ̃

(θi,si)
i . Since the choice of i ∈ I and (θi, si) ∈ Xn+1

k,i is

arbitrary, this will prove IH2(n+ 1).

The construction of µ̃i and s̃i will be based on four claims for which we provide

formal proofs in the Appendix; here, before each claim, we only provide the main

ingredients of its proof.

By definition of Xn+1
k,i (see eq. (2)), there is some µi ∈ ∩nm=0∆H

sb(Xm
k,−i)∩∆i,θi such

that si ∈ ri,θi(µi).
Using IH2(n), we can construct a CPS µ̃i for step n of Procedure k−1 that mimics

µi along the paths that are consistent with step n of Procedure k. Consistently with

notation used for sets of nonterminal histories and in Example 4, for any X ⊆ Θ×S,
we let

Z (X) = {z ∈ Z : ∃ (θ, s) ∈ X, ζ (s) = z}

denote the set of possible paths given X.

Claim 1 There exists µ̃i ∈ ∩n−1
m=0∆H

sb(Xm
k−1,−i)∩∆i,θi such that, for every h ∈ H (Xn

k)∩
Hi(si),

∀(θ−i, z) ∈ Θ−i ×Z(Xn
k), µ̃i({θ−i} × S−i(z)|h) = µi({θ−i} × S−i(z)|h). (11)

Furthermore, IH2(n) implies that the histories along those paths, H (Xn
k), are also

consistent with step n− 1 of Procedure k − 1.

Claim 2 H(Xn
k) ⊆ H(Xn−1

k−1).

In what follows, we will also use the following implication of standard dynamic

programming arguments.24

Claim 3 Fix a subset of histories H̃ such that, for every h ∈ H̃, si is a continuation
best reply to µ̃i(·|h) for θi. There exists s̃i ∈ ri,θi(µ̃i) such that s̃i(h) = si(h) for every

h ∈ H̃.

Claim 2 allows to apply IH1(n) and say that every sequential best reply s̃i to µ̃i,

which survives step n of procedure k − 1, has a counterpart s̃′i that survives step

24We provide such arguments in the Appendix: see Lemma 3.
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n of procedure k and mimics s̃i at each h ∈ H (Xn
k) ∩ Hi(s̃

′
i) = H (Xn

k) ∩ Hi(s̃i).

Now note that, by equation (11) and the fact that µi strongly believes Xn
k,−i, every

strategy s′i that does not leave the paths induced by profiles in Xn
k yields the same

expected payoff under µ̃i(·|h) and µi(·|h) for every h ∈ H (Xn
k) ∩ Hi(s

′
i). Obviously,

si, s̃
′
i ∈ projSiX

n
k,i do not leave those paths, and since s̃i mimics s̃

′
i as described above,

s̃i does not leave those paths either. But then, for each h ∈ H (Xn
k)∩Hi(si)∩Hi(s̃i),

the fact that si and s̃i are continuation best replies to (respectively) µi and µ̃i at h

implies that they are also continuation best replies (respectively) to µ̃i and µi at h.

To extend this claim to every h ∈ H (Xn
k) ∩ Hi(si), we need to make sure that h is

also reached by some sequential best reply s̃i to µ̃i; for this, we just need an inductive

application of Claim 3, from the initial history and moving downwards.

Claim 4 For each h ∈ H (Xn
k) ∩ Hi(si), strategy si is a continuation best reply to

µ̃i(·|h) for θi.

By Claim 3 with H̃ = H(Xn
k)∩Hi(si) and Claim 4, there exists s̃i ∈ ri,θi(µ̃i) such

that s̃i(h) = si(h) for all h ∈ H(Xn
k). (For each h ∈ H(Xn

k)\Hi(si), since h 6∈ Hi(s̃i),

we can always set s̃i(h) = si(h) because we use the weak notion of sequential best

reply which only refers to histories consistent with the candidate strategy.) From

equation (2) it follows that {θi} × ri,θi(µ̃i) ⊆ Xn
k−1,i. Thus, s̃i ∈ Xn

k−1,i.

5 Bayesian games

In the game with payoff uncertainty Γ, players’types θ parameterize the payoff func-

tions to express incomplete and asymmetric information about them. Yet, the previ-

ous analysis does not prevent the parameters from containing payoff-irrelevant compo-

nents; that is, the analysis remains valid if, for some player i and some types θ′i 6= θ′′i ,

we have uj (θ′i, θ−i, z) = uj (θ′′i , θ−i, z) for all j ∈ I, θ−i ∈ Θ−i, and z ∈ Z. However,
we want to introduce such payoff-irrelevant components explicitly, in the following

way. An elaboration25 of Γ =
〈
I, (Θi, Ai,Ai(·), ui)i∈I

〉
is a structure

Γe =
〈
I, (Ti, Ai,Ai(·), ue

i )i∈I
〉

25The term “elaboration”was introduced by Fudenberg et al. (1988) with a related, but different
meaning: They added payoff types to define incomplete-information perturbations, whereas we add
a payoff-irrelevant component to existing payoff types.
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such that, for every player i ∈ I, Ti = Θi × Ei, where Ei is a finite nonempty set,
ue
i : (×j∈ITj)× Z → R, and

ue
i

(
(θj, ej)j∈I , z

)
= ui

(
(θj)j∈I , z

)
for all (θj, ej)j∈I ∈ ×j∈ITj and z ∈ Z. In words, each type ti = (θi, ei) is made of the

payoff-relevant component θi and of a payoff-irrelevant component ei.

We are going to use the new types (Ti)i∈I as parts of a type structure à la Harsanyi

(1967-68). Hence, we assign to each type ti a probability measure βi(ti) over the co-

players’types T−i, so that ti is ultimately associated with a hierarchy of beliefs about

the payoff-relevant state θ: the first-order belief is the marginal of βi(ti) over Θ−i;

the second-order belief is the pushforward of βi(ti) through the maps

(θj, tj)j 6=i ∈ Θ−i × T−i 7→
(
θj,margΘ−jβj(tj)

)
j 6=i
∈ (Θj ×∆(Θ−j))j 6=i ;

and so forth. A Bayesian elaboration of Γ =
〈
I, (Θi, Ai,Ai(·), ui)i∈I

〉
is obtained

from adding the profile of belief maps (βi : Ti → ∆ (T−i))i∈I to an elaboration:

Γb =
〈
I,
(
Ti, Ai,Ai(·), ub

i , βi
)
i∈I

〉
,

where ub
i = ue

i for each i ∈ I. Note that an elaboration is essentially the same as the
original game with payoff uncertainty when each set Ei is a singleton {ēi}, so that
Θ and T are isomorphic (in an obvious sense). In this particular case, a Bayesian

elaboration is also called “simple Bayesian game”and it adds to Γ a particular kind

of profile of type-dependent restrictions on exogenous beliefs: recalling that we let

∆̂i,θi ⊆ ∆ (Θ−i) denote the restricted set of initial marginal beliefs of type θi of player

i about co-players’types, we have that ∆̂i,θi = {βi (θi, ēi)} is a singleton for all i and
θi.

We can define strong rationalizability for an elaboration Γe as we did for Γ,

with each set Θi replaced by Ti: for each i ∈ I, Re,0
i = Ti × Si, and for each n ∈ N

Re,n
i =

{
(ti, si) : ∃µi ∈ ∩n−1

m=0∆H
sb(Re,m

−i ), si ∈ re
i,ti

(µi)
}
, with

re
i,ti

(µi) =

{
s̄i : ∀h ∈ Hi (s̄i) , s̄i ∈ arg max

si∈Si(h)
Eµi(·|h) (ue

i (ti, ·, ζ (si, ·)))
}
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for every CPS µi ∈ ∆H (T−i × S−i). Of course, by taking the sections of these sets at
any given type, we obtain the strongly n-rationalizable strategies for that type:

Se,n
i (ti) = {si ∈ Si : (ti, si) ∈ Re,n

i } .

The following lemma formalizes the idea that the payoff-irrelevant component of types

does not affect strong rationalizability.

Lemma 2 Fix any elaboration Γe of Γ. For all i ∈ I, n ∈ N0, and (θi, ei) ∈ Ti,

Se,n
i (θi, ei) = Sni (θi).

Now require that the belief system (CPS) µi that justifies a pair (ti, si) be consis-

tent with βi (ti) at the outset. In this way, we define strong rationalizability for
a Bayesian elaboration Γb:26 for each i ∈ I, Rb,0

i = Ti × Si, and for each n ∈ N

Rb,n
i =

{
(ti, si) : ∃µi ∈ ∩n−1

m=0∆H
sb(Rb,m

−i ),margT−iµi (·|∅) = βi (ti) , si ∈ rb
i,ti

(µi)
}
,

where rb
i,ti

(µi) = re
i,ti

(µi) (defined above) for each µi ∈ ∆H (T−i × S−i), because ub
i =

ue
i . The set of strongly n-rationalizable strategies for type ti in Γb is the section

Sb,n
i (ti) =

{
si ∈ Si : (ti, si) ∈ Rb,n

i

}
.

Strong rationalizability for a Bayesian elaboration is tightly related to strong di-

rected rationalizability for the original game with payoffuncertainty. The equivalence

is obvious for a simple Bayesian game, where each Ti is isomorphic to Θi (thus set

Ti = Θi), and for each θi, βi(θi) can be taken as the unique initial belief allowed by

∆̂i,θi . Hence, a corollary of Theorem 1 is that for every θ ∈ Θ, the (nonempty) set

of strongly rationalizable paths of any (finite) simple Bayesian game based on a given

(finite) multistage game with payoff uncertainty is included in the set of strongly ratio-

nalizable paths of the latter. For a non-simple Bayesian elaboration Γb of Γ, one can

perform an analogous exercise after defining an ancillary game with payoffuncertainty

Γ̂ with type sets Θ̂i = Ti in place of Θi for all i ∈ I. With this, strong rationalizability
in Γb coincides with strong ∆-rationalizability in Γ̂ with ∆̂i,ti = {βi(ti)} for all i ∈ I
and ti ∈ Θ̂i; strong rationalizability in Γ coincides with strong rationalizability in Γ̂

26In static (one-stage) Bayesian games, this solution concept is equivalent to interim correlated
rationalizability (Dekel et al. 2007).
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because Γ̂ is an elaboration of Γ and thus Lemma 2 applies; the two things combined,

via Theorem 1, yield the following result (the proof is omitted).

Theorem 2 Fix any Bayesian elaboration Γb of Γ. Then, for every n > 0, for each

(θ, e) ∈ T , ∅ 6= ζ
(
Sb,n (θ, e)

)
⊆ ζ (Sn (θ)), that is, for each (θ, e, s) ∈ Rb,∞ 6= ∅, there

exists s′ ∈ S such that (θ, s′) ∈ R∞ and ζ(s) = ζ(s′).

6 Robust implementation

We consider a classical mechanism design setting, which we formalize as follows. Fix

an economic environment

E =
〈
I, Y, (Θi, vi)i∈I

〉
,

where Y– a subset of a Euclidean space– is an outcome space and each vi : Θ×Y → R
is a parameterized utility function. A special case of interest for the outcome space is

a space of lotteries: Y = ∆ (X), where X is a finite set of deterministic outcomes. In

this case, vi (θ, y) has to be interpreted as the vNM expected utility of lottery y given

payoff-state θ. The economic environment collects the outcomes that the designer can

assign to players and their preferences for such outcomes. Amultistage mechanism
(with observed actions) is a game form

M =
〈
I, H̄, g

〉
,

where g : Z → Y is an outcome function defined on the set of terminal histories

determined by the game tree H̄. Thus, the mechanism specifies the rules of the game

that determine the outcome. A pair (E ,M) yields a game with payoff uncertainty

Γ (E ,M) =
〈
I, H̄,

(
Θi, (ui,θ = vi,θ ◦ g)θ∈Θ

)
i∈I

〉
,

which contains both the rules of the game and the payoffs associated with the terminal

histories: ui,θ (z) = vi,θ (g (z)) for all θ ∈ Θ and z ∈ Z. Finally, we introduce a social
choice function f : Θ → Y , representing the outcome the designer would want to

realize as a function of players’types.

We are interested in the possibility of implementing, or at least virtually imple-
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menting, the social choice function; that is, we look for a mechanism where players

of any types θ will always reach a terminal history z so that g(z) = f(θ), or at least

g(z) ≈ f(θ) in a sense to be made precise. Of course, the θ-dependent predicted

path depends on the adopted solution concept. Following Müller (2016), we adopt

strong rationalizability and we focus on virtual implementation (v-implementation).

Everything in the analysis is also valid for “exact”implementation.

Definition 1 Social choice function f is v-implementable under strong rationalizability (in
environment E) if, for every ε > 0, there exists a multistage mechanismM such that,

in game with payoff uncertainty Γ (E ,M), for every θ ∈ Θ and s ∈ S∞ (θ) 6= ∅,
‖g (ζ (s))− f (θ)‖ < ε.27

Bergemann & Morris (2009) introduce the notion of robust implementation, which

requires the mechanism to implement the social choice function for any exogenous

restrictions on players’collectively coherent hierarchies of beliefs about types, such

as the existence of a common prior. As anticipated in the Introduction, in a static

setting, one can show that implementation under rationalizability for static games

with payoff uncertainty is robust, since– by monotonicity of probability-1 belief–

introducing a type structure that restricts players’belief hierarchies can only reduce

the set of their rationalizable strategies. As shown in Example 1, this is not true for

strong rationalizability in sequential games, due to the non-monotonicity of strong

belief. For this reason, it was an open question whether Müller’s (2016) notion of

implementation is robust in the sense of Bergemann & Morris (2009).

Definition 2 Social choice function f : Θ→ Y is robustly v-implementable un-
der strong rationalizability (in environment E) if, for every ε > 0, there exists a

multistage mechanism M such that, in every Bayesian elaboration Γb (E ,M) of the

game with payoff uncertainty Γ (E ,M), for all t = (θ, e) ∈ T and s ∈ Sb,∞ (t) 6= ∅,
‖g (ζ (s))− f (θ)‖ < ε.

In light of Theorem 2, we can give a positive answer to the open question.

Corollary 1 Fix a finite economic environment E and an SCF f : Θ→ Y . If f is v-

implementable under strong rationalizability, then f is also robustly v-implementable

under strong rationalizability.
27In the definition, we require that S∞ (θ) 6= ∅ so that the “for all ...” condition does not hold

vacuously. In fact, we know from Lemma 1 that S∞ (θ) 6= ∅ for all θ ∈ Θ.
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Proof. Suppose that f is v-implementable under strong rationalizability and let
M be a mechanism such that, in game with payoffuncertainty Γ (E ,M), for all θ ∈ Θ

and s ∈ S∞ (θ), ‖g (ζ (s))− f (θ)‖ < ε. Take any Bayesian elaboration Γb (E ,M) of

Γ (E ,M). By Theorem 2, for all (θ, e) ∈ Θ × E = T and s ∈ Sb,∞ (θ, e), ∅ 6=
ζ
(
Sb,∞ (θ, e)

)
⊆ ζ (S∞ (θ)). It follows that, for all t = (θ, e) ∈ T and s ∈ Sb,∞ (t) 6= ∅,

‖g (ζ (s))− f (θ)‖ < ε. �

7 Discussion and extensions

In this section we consider some limitations of our analysis and we discuss possible

extensions and related conceptual issues.

Imperfectly observed actions Our results extend to finite sequential games with

imperfectly observed actions, as long as perfect recall holds, letting nonterminal his-

tories h ∈ H be replaced with information sets hi ∈ Hi for each player i. Indeed,

perfect recall allows to preserve the key elements of our analysis: dynamic consistency

of subjective expected utility maximization, and the factorization of the sets of strat-

egy profiles consistent with any given information set hi as S (hi) = Si (hi)×S−i (hi).
However, from the perspective of mechanism design, perfect recall as defined in tra-

ditional game theory is a hybrid property of information partitions that should be

“unpacked,”separating the information reaching players as per the rules specified by

the mechanism from the mnemonic abilities of the agents playing the game, which are

personal traits just like their preferences. As shown in Battigalli & Generoso (2024),

such separation is both possible and conceptually useful: information partitions can

be derived from primitive elements describing the rules of the game on the one hand,

and mnemonic abilities on the other hand. Perfect recall of information partitions

obtains if either (1) the relevant agents have perfect memory, a personal feature, or

(2) the game rules are such that moving players are always reminded of the signals

that previously reached them and the actions they took. In both cases, information

sets hi correspond to personal histories of signals received and actions taken by i. By

(2), perfect recall can be “enforced”by the designer.

Infinite type sets and infinite horizon Although we consider finite multistage

games with incomplete information, the analysis of strong rationalizability in Batti-
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galli (2003) allows for a continuum of types and an infinite horizon, provided that

some regularity assumptions hold, e.g., that type sets are compact metric spaces,

feasible actions sets Ai (h) are finite for all h ∈ H and i ∈ I, and payoff functions are
continuous in the obvious product topology. However, the proof of Theorem 1 relies

on the fact that, in a finite game, the procedure of elimination of type-strategy pairs

(θi, si) ends after finitely many steps. Nonetheless, we conjecture that our results can

be extended to games with infinite type sets and infinite horizon that satisfy the afore-

mentioned regularity properties. Intuitively, for each step n, IH1 can be used to show

the path-inclusion between strong∆-n-rationalizability and strong n-rationalizability;

a limit argument can then be applied by compactness and continuity.

8 Appendix

This section contains ancillary results and the proofs omitted from the main body of

the paper (with the exception of the detailed proof of inductive step IH1 in the proof

of Theorem 1, which is contained in the Supplemental Appendix). We also include

here a table summarizing elements of the analysis introduced in Sections 3, 4, and 5.

Symbol Terminology

(µi (·|h))h∈H ∈ ∆H (Θ−i × S−i) conditional probability systems (CPSs)

∆̂i,θi ⊆ ∆ (Θ−i) restricted set of exogenous beliefs for i of type θi

∆i,θi ⊆ ∆H (Θ−i × S−i) restricted set of CPSs for i of type θi

∆ = (∆i,θi)i∈I,θ∈Θi
profile of (transparent) belief restrictions

Hi (si) = {h ∈ H : si ∈ Si (h)} set of nonterminal histories consistent with si

µi 7→ ri,θi (µi) (weak)sequential best-reply correspondence for θi

∆i,sb (E−i), E−i ⊆ Θ−i × S−i set of CPSs of i that strongly believe E−i

R∆,n
i ⊆ Θi × Si set of strongly ∆-n-rationalizable pairs of i

S∆,n
i (θi) =

{
si ∈ Si : (θi, si) ∈ R∆,i

i

}
set of strongly ∆-n-rationalizable strategies for θi

Z (X) = {z : ∃ (θ, s) ∈ X, z = ζ (s)} set of paths allowed by elements of X ⊆ Θ× S
H (X) = {h : ∃ (θ, s) ∈ X, h ≺ ζ (s)} set of nonterminal histories allowed by X ⊆ Θ× S
ti = (θi, ei) ∈ Ti = Θi × Ei types à la Harsanyi
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8.1 Dynamic programming and forward consistency

We use the following dynamic programming result. First recall from Section 3.2 that

a strategy s̄i is a continuation best reply (from h) to conditional belief µi(·|h) ∈
∆ (Θ−i × S−i (h)) for type θi if, for every si ∈ Si(h),

Eµi(·|h) (Ui(θi, s̄i, ·)) ≥ Eµi(·|h) (Ui(θi, si, ·)) .

Lemma 3 Fix a CPS µi, a type θi, and a strategy si. If, for every h ∈ Hi(si), there

exists a continuation best reply s′i ∈ Si(h) to µi(·|h) for θi such that s′i(h) = si(h),

then si is a sequential best reply to µi for θi, that is, si ∈ ri,θi (µi).

Proof. We prove this result by contraposition. Suppose that si /∈ ri,θi (µi).

We need to show that there is some h̄ ∈ Hi (si) such that, for every s′i ∈ Si
(
h̄
)
, if

s′i
(
h̄
)

= si
(
h̄
)
, then s′i is not a continuation best reply to µi(·|h̄) for θi. LetHD

i (si, µi)

denote the nonempty set of histories h ∈ Hi (si) such that si is not a continuation

best reply to µi (·|h). Since the game is finite, HD
i (si, µi) has at least one maximal

element h̄, that is, h̄ ∈ HD
i (si, µi) is not a strict prefix of any other h ∈ HD

i (si, µi).

Since h̄ ∈ HD
i (si, µi), there is some s̄i ∈ Si

(
h̄
)
such that

Eµi(·|h̄) (Ui(θi, s̄i, ·)) > Eµi(·|h̄) (Ui(θi, si, ·)) . (12)

Pick any s′i ∈ Si
(
h̄
)
such that s′i

(
h̄
)

= si
(
h̄
)
(this includes s′i = si). To take care of

the possibility that
(
h̄, (si

(
h̄
)
, a−i)

)
∈ Z for some a−i and to ease notation, for all z

such that µi
(
Θ−i × S−i (z) |h̄

)
> 0 and all (θ−i, s−i) ∈ Θ−i × S−i (z), write

µi (θ−i, s−i|z) =
µi
(
θ−i, s−i|h̄

)
µi
(
Θ−i × S−i (z) |h̄

) ,
Eµi(·|z) (Ui(θi, s

′
i, ·)) =

∑
θ−i∈Θ−i

µi ({θ−i} × S−i (z) |z)ui (θi, θ−i, z) .

With this, letting Ā−i =
{
a−i : µi

(
Θ−i × S−i

(
h̄, a−i

)
|h̄
)
> 0
}
, the following decom-

position holds:

Eµi(·|h̄) (Ui(θi, s
′
i, ·)) =

∑
a−i∈Ā−i

µi
(
Θ−i × S−i

(
h̄, a−i

)
|h̄
)
Eµi(·|(h̄,(si(h̄),a−i))) (Ui(θi, s

′
i, ·)) .
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By maximality of h̄ in HD
i (si, µi), si is a continuation best reply to each µi (·|h) with

h =
(
h̄, (si

(
h̄
)
, a−i)

)
∈ H. Since such h is the immediate follower of h̄ selected by

action profile (si
(
h̄
)
, a−i), it holds that si ∈ Si (h). Since s′i

(
h̄
)

= si
(
h̄
)
, s′i ∈ Si(h)

as well. Thus,

Eµi(·|(h̄,(si(h̄),a−i))) (Ui(θi, si, ·)) ≥ Eµi(·|(h̄,(si(h̄),a−i))) (Ui(θi, s
′
i, ·))

for all a−i ∈ Ā−i (the other action profiles in A−i
(
h̄
)
do not affect expected payoff

calculations). It follows that

Eµi(·|h̄) (Ui(θi, si, ·)) ≥ Eµi(·|h̄) (Ui(θi, s
′
i, ·)) . (13)

Equations (12) and (13) combined yield

Eµi(·|h̄) (Ui(θi, s̄i, ·)) > Eµi(·|h̄) (Ui(θi, s
′
i, ·)) ,

so s′i is not a continuation best reply to µi
(
·|h̄
)
. �

The omitted parts of the proof of Theorem 1 require to construct CPSs that

strongly believe some key events. It turns out that it is simpler to construct a

“forward-consistent belief system” (Battigalli, Catonini & Manili 2023) with such

features and then claim the existence of a CPS that preserves them. A forward-
consistent belief system is an array of beliefs µ̂i = (µ̂i(·|h))h∈H ∈ (∆ (Θ−i × S−i))H

such that, for every h ∈ H, µ̂i(Θ−i×S−i(h)|h) = 1 and the forward chain rule holds:

for all h, h′ ∈ H and E−i ⊆ Θ−i × S−i(h′),

h � h′ =⇒ µ̂i(E−i|h) = µ̂i(E−i|h′)µ̂i(Θ−i × S−i(h′)|h).

The forward chain rule is weaker than the chain rule, because, as noted in Section

3.2, S−i(h′) ⊆ S−i(h) does not imply h � h′. The definition of “strong belief” for a

forward-consistent belief system is the same as for a CPS: belief system µ̂i strongly
believes E−i if

∀h ∈ H, E−i ∩ (Θ−i × S−i (h)) 6= ∅ ⇒ µ̂i(E−i|h) = 1.
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For the transformation of forward-consistent belief systems into CPSs, we rely on

the following result.

Lemma 4 (Battigalli, Catonini & Manili, 2023) Fix a strategy si and a forward-
consistent belief system µ̂i that strongly believes E

1
−i, . . . , E

n−1
−i , where E

n−1
−i ⊆ . . . ⊆

E1
−i. Then, there is a CPS µ̃i that strongly believes E

1
−i, . . . , E

n−1
−i such that µ̃i(·|h) =

µ̂i(·|h) for all h ∈ Hi(si).

8.2 Omitted parts of the proof of Theorem 1

8.2.1 Proof of Claim 1

We construct an array of beliefs µ̂i = (µ̂i (·|h))h∈H such that, for each h ∈ H:

F0. µ̂i (Θ−i × S−i(h)|h) = 1;

F1. for all h′ such that h ≺ h′,

∀E ⊆ Θ−i × S−i(h′), µ̂i (E|h′) µ̂i (Θ−i × S−i(h′)|h) = µ̂i (E|h) ; (14)

F2. for all m = 0, ..., n− 1, if h ∈ H(Xm
k−1,−i), then µ̂i

(
Xm
k−1,−i|h

)
= 1;

F3. margΘ−iµ̂i (·|∅) = margΘ−iµi (·|∅);

F4. if h ∈ H (Xn
k) ∩Hi(si),

∀(θ−i, z) ∈ Θ−i ×Z(Xn
k), µ̂i({θ−i} × S−i(z)|h) = µi({θ−i} × S−i(z)|h). (15)

By F0 and F1, µ̂i is a forward-consistent belief system. By F2, it strongly believes

X1
k−1,−i, ...,X

n−1
k−1,−i. Hence, by Lemma 4, there exists a CPS µ̃i ∈ ∩n−1

m=0∆H
sb(Xm

k−1,−i)

such that µ̃i(·|h) = µ̂i(·|h) for all h ∈ Hi(si). By µ̃i(·|∅) = µ̂i(·|∅), F3, and µi ∈ ∆i,θi ,

we get µ̃i ∈ ∆i,θi . Finally, for every h ∈ H (Xn
k) ∩ Hi(si), µ̃i(·|h) = µ̂i(·|h) and F4

yield (11).

Now we start with the construction. By IH2(n), for every (θ−i, s−i) ∈ Xn
k,−i, there

exists a profile (s̃
(θj ,sj)
j )j 6=i ∈ S−i such that (θj, s̃

(θj ,sj)
j )j 6=i ∈ Xn−1

k−1,−i and, for each j 6= i,

s̃
(θj ,sj)
j (h) = sj(h) for all h ∈ H(Xn−1

k ). With this, define a map η̃ : Θ−i × S−i →
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Θ−i × S−i as follows:

∀ (θ−i, s−i) ∈ (Θ−i × S−i) , η̃ (θ−i, s−i) =

{
(θj, s̃

(θj ,sj)
j )j 6=i

(θ−i, s−i)

if (θ−i, s−i) ∈ Xn
k,−i

otherwise
.

For each h ∈ H (Xn
k), define µ̂i (·|h) as the η̃-pushforward (image measure) of µi (·|h).

For future reference, observe that

µ̂i
(
Xn−1
k−1,−i|h

)
= µi

(
η̃−1(Xn−1

k−1,−i)|h
)
≥ µi

(
Xn
k,−i|h

)
= 1, (16)

where the first equality holds by construction, the inequality holds by η̃(Xn
k,−i) ⊆

Xn−1
k−1,−i, and the last equality holds by strong belief in Xn

k,−i. Now define

H̃ =
{
h ∈ H\H (Xn

k) : ∃h̄ ∈ H (Xn
k) , h̄ ≺ h, µ̂i

(
Θ−i × S−i(h)|h̄

)
> 0
}
.

For each h ∈ H̃, let p∗(h) denote the longest h̄ ≺ h with h̄ ∈ H (Xn
k) such that

µ̂i
(
Θ−i × S−i(h)|h̄

)
> 0, and derive µ̂i (·|h) by conditioning µ̂i (·|p∗(h)). To conclude

the construction, fix µ̄i ∈ ∩n−1
m=0∆H

sb(Xm
k−1,−i), and for each h ∈ H\

(
H (Xn

k) ∪ H̃
)

=:

Ĥ, let µ̂i (·|h) = µ̄i (·|h).

First, we show that µ̂i satisfies F2. For each h ∈ H (Xn
k), equation (16) yields

µ̂i
(
Xn−1
k−1,−i|h

)
= 1. For each h ∈ H̃, equation (16) yields µ̂i

(
Xn−1
k−1,−i|p∗(h)

)
= 1,

from which µ̂i
(
Xn−1
k−1,−i|h

)
= 1 follows by construction. For each h ∈ Ĥ and m =

0, ..., n − 1, if h ∈ H(Xm
k−1,−i), µ̂i

(
Xm
k−1,−i|h

)
= 1 follows from µ̂i (·|h) = µ̄i (·|h) and

µ̄i ∈ ∆H
sb(Xm

k−1,−i).

Next, we show that, for every h ∈ H (Xn
k) and (θ−i, h

′) ∈ Θ−i× (H(Xn
k)∪Z(Xn

k)),

µ̂i({θ−i} × S−i(h′)|h) = µi({θ−i} × S−i(h′)|h), (17)

which yields: condition (15) when h′ ∈ Z(Xn
k), thus F4; F3 when h and h′ coincide

with the initial history; and, for future reference,

µ̂i(Θ−i × S−i(h′)|h) = µi(Θ−i × S−i(h′)|h). (18)

By construction, we have

µ̂i({θ−i} × S−i(h′)|h) = µi(η̃
−1({θ−i} × S−i(h′))|h).
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We need to show that

η̃−1 ({θ−i} × S−i(h′)) = {θ−i} × S−i(h′). (19)

Fix first s−i ∈ S−i such that (θ−i, s−i) ∈ η̃−1 ({θ−i} × S−i(h′)). Then, there exists
s′−i ∈ S−i(h′) such that η̃(θ−i, s−i) = (θ−i, s

′
−i). By definition of η̃, either s

′
−i = s−i,

or s−i(h̃) = s′−i(h̃) for each h̃ ∈ H(Xn−1
k ), so in particular for each h̃ ≺ h′, given that

h′ ∈ H(Xn
k) ∪ Z(Xn

k). Hence, s′−i ∈ S−i(h
′) implies s−i ∈ S−i(h

′), i.e., (θ−i, s−i) ∈
{θ−i} × S−i(h′). Now fix s−i ∈ S−i(h′). Let (θ−i, s

′
−i) = η̃(θ−i, s−i). By definition of

η̃, either s′−i = s−i, or s′−i(h̃) = s−i(h̃) for each h̃ ∈ H(Xn−1
k ), so in particular for each

h̃ ≺ h′, given that h′ ∈ H(Xn
k) ∪ Z(Xn

k). Hence, s−i ∈ S−i(h′) implies s′−i ∈ S−i(h′),
which means (θ−i, s−i) ∈ η̃−1 ({θ−i} × S−i(h′)).
Finally, we show that µ̂i satisfies F0 and F1. For each h ∈ H (Xn

k), since µi(Θ−i×
S−i(h)|h) = 1, equation (18) with h′ = h yields F0. For each h ∈ H̃, F0 follows by
conditioning. For each h ∈ Ĥ, F0 holds by µ̂i (·|h) = µ̄i (·|h).

For F1, equation (14) holds if µ̂i(Θ−i× S−i(h′)|h) = 0, because then µ̂i(E|h) = 0,

so suppose that µ̂i(Θ−i × S−i(h′)|h) > 0.

Case 1: h ∈ Ĥ. Then h′ ∈ Ĥ too. Hence, µ̂i (·|h) = µ̄i (·|h) and µ̂i (·|h′) = µ̄i (·|h′),
so µ̂i inherits (14) from µ̄i, which is a CPS.

Case 2: h ∈ H̃. Then µ̂i(·|h) is derived from µ̂i(·|p∗(h)) by conditioning. By

µ̂i(Θ−i × S−i(h′)|h) > 0, we have µ̂i(Θ−i × S−i(h′)|p∗(h)) > 0, hence h′ ∈ H̃ too and

p∗(h) = p∗(h′). Thus, µ̂i(·|h′) is derived from µ̂i(·|p∗(h)) too, and (14) follows.

Case 3: h ∈ H (Xn
k). If h′ ∈ H (Xn

k), let h̄ = h′, otherwise, by µ̂i(Θ−i×S−i(h′)|h) > 0,

h′ ∈ H̃, and in this case let h̄ = p∗(h′). Thus, h̄ ∈ H (Xn
k). For each E ⊆ Θ−i×S−i(h̄),

by construction of µ̂i and equation (18), we get

µ̂i(E|h̄)µ̂i(Θ−i × S−i(h̄)|h) = µi(η̃
−1 (E) |h̄)µi(Θ−i × S−i(h̄)|h).

Equation (19) implies that η̃−1 (E) ⊆ Θ−i × S−i(h̄), so, since µi is a CPS, we have

µi(η̃
−1 (E) |h̄)µi(Θ−i × S−i(h̄)|h) = µi(η̃

−1 (E) |h),

and µi(η̃
−1 (E) |h) = µ̂i(E|h) by construction of µ̂i. So,

µ̂i(E|h̄)µ̂i(Θ−i × S−i(h̄)|h) = µ̂i(E|h). (20)
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If h̄ = h′, we are done. Otherwise, for each E ′ ⊆ Θ−i × S−i(h′), we have

µ̂i(E
′|h′)µ̂i(Θ−i × S−i(h′)|h) =

µ̂i(E
′|p∗(h′))

µ̂i(Θ−i × S−i(h′)|p∗(h′))
µ̂i(Θ−i × S−i(h′)|h)

= µ̂i(E
′|p∗(h′))µ̂i(Θ−i × S−i(p∗(h′))|h)

= µ̂i(E
′|h),

where the first equality holds by definition of µ̂i(E
′|h′) and the second and third

equalities follow from equation (20) with h̄ = p∗(h′) and E = Θ−i × S−i(h′) for the
second equality, E = E ′ for the third. �

8.2.2 Proof of Claim 2

Fix ŝ ∈ projSXn
k . By IH2(n), there exists ŝ

′ ∈ projSXn−1
k−1 such that ŝ

′(h̃) = ŝ(h̃) for

every h̃ ∈ H(Xn−1
k ) ⊇ H(Xn

k). It follows that ζ(ŝ) = ζ(ŝ′) ∈ Z(Xn−1
k−1). �

8.2.3 Proof of Claim 3

Construct s̃i as follows. For each h ∈ H̃, let s̃i(h) = si(h). For each h ∈ H\H̃, let
s̃i(h) = s′i(h) for some continuation best reply s′i to µ̃i(·|h) for θi. It follows from

Lemma 3 that s̃i ∈ ri,θi(µ̃i). �

8.2.4 Proof of Claim 4

First note that H (Xn
k) ∩ Hi(si) is closed with respect to prefixes (predecessors): for

each h ∈ H (Xn
k) ∩Hi(si) each prefix h′ ≺ h belongs to H (Xn

k) ∩Hi(si). So, suppose

by way of induction that Claim 4 holds for every h′ ≺ h, which is vacuously true if

h = ∅. Then, setting H̃ = {h′ ∈ H : h′ ≺ h}, Claim 3 guarantees the existence of

some s̃i ∈ ri,θi(µ̃i) such that s̃i(h′) = si(h
′) for every h′ ≺ h, thus s̃i ∈ Si(h).

First, we need to show that ζ(s̃i, s̃−i) ∈ Z(Xn
k) for every (θ−i, s̃−i) ∈suppµ̃i(·|h).

So, fix (θ−i, s̃−i) ∈suppµ̃i(·|h). Note that {θi} × ri,θi(µ̃i) ⊆ Xn
k−1,i, and hence s̃i ∈

projSiX
n
k−1,i. So, by IH1(n) there exists s̃′i ∈ projSiX

n
k,i such that s̃

′
i(h) = s̃i(h)

for every h ∈ H(Xn−1
k−1).28 Fix

(
θ−i, s̃

′
−i
)
∈ η̃−1((θ−i, s̃−i)) ⊆ Xn

k,−i– it exists because

µ̃i(·|h) = µ̂i(·|h) and µ̂i(·|h) is the η̃-pushforward of µi (·|h) (see the proof of Claim 1).

By definition of η̃, ζ(s̃′i, s̃
′
−i) ∈ Z(Xn

k). For every h̃ ≺ ζ(s̃′i, s̃
′
−i), we have h̃ ∈ H(Xn

k) ⊆
28This is the only passage where we use IH1(n) at full power, namely, where it is important (to

then apply Claim 3) that IH1(n) involves all the histories in H(Xn−1
k−1) and not just those in H(Xn

k−1).
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H(Xn−1
k ), hence s̃−i(h̃) = s̃′−i(h̃) by definition of η̃. Claim 2 gives H(Xn

k) ⊆ H(Xn−1
k−1),

therefore s̃i(h̃) = s̃′i(h̃) as well. It follows that ζ(s̃i, s̃−i) = ζ(s̃′i, s̃
′
−i) ∈ Z(Xn

k).

For each (θ−i, z) ∈ Θ−i × Z(Xn
k), the probability of (θ−i, z) induced by s̃i and

µ̃i(·|h) (resp., µi(·|h)) is 0, if s̃i 6∈ Si(z), and it amounts to µ̃i({θ−i} × S−i(z)|h)

(resp., µi({θ−i} × S−i(z)|h)) otherwise. Then, by equation (11), s̃i induces the

same probability over each (θ−i, z) ∈ Θ−i × Z(Xn
k) under µ̃i(·|h) and under µi(·|h),

hence the same distribution over Θ−i × Z, because the probability induced by s̃i
and µ̃i(·|h) over Θ−i × (Z\Z(Xn

k)) is zero: as we have previously shown, for each

(θ−i, s̃−i) ∈suppµ̃i(·|h), ζ(s̃i, s̃−i) ∈ Z(Xn
k). The same conclusion can be reached

for si in the same way, after observing that for each (θ−i, s−i) ∈suppµi(·|h), since

(θi, si, θ−i, s−i) ∈ Xn
k , we have ζ(si, s−i) ∈ Z(Xn

k). So, call πs̃i and πsi the unique ex-

pected payoffs induced by, respectively, (θi, s̃i) and (θi, si) under both beliefs (µi(·|h)

and µ̃i(·|h)). Since s̃i and si are continuation best replies for θi to, respectively, µ̃i(·|h)

and µi(·|h), we have πs̃i ≥ πsi and πsi ≥ πs̃i. Hence, πsi = πs̃i . But then, also si is a

continuation best reply for θi to µ̃i(·|h). �

8.3 Proof of Lemma 2

The statement is trivially true for n = 0. Suppose by way of induction that it

is true for each m < n; fix i ∈ I and (θi, ei) ∈ Ti = Θi × Ei arbitrarily. Let

s̄i ∈ Sni (θi). Then there is a CPS µi ∈ ∩n−1
m=0∆H

sb(Rm
−i) such that s̄i ∈ ri,θi(µi). Define

µe
i ∈ (∆ (T−i × S−i))H as follows: for all h ∈ H, s−i ∈ S−i (h), (θ−i, e−i) ∈ T−i,

µe
i (θ−i, e−i, s−i|h) =

1

|E−i|
µi (θ−i, s−i|h) .

It can be checked that µe
i is a CPS, that is, µ

e
i ∈ ∆H (T−i × S−i). Furthermore, since

µi (·|h) =margΘ−i×S−i(h)µ
e
i (·|h) for each h ∈ H, and the ej-component of the type of

each player j ∈ I is payoff-irrelevant, s̄i ∈ ri,(θi,ei)(µe
i ). Finally, the aforementioned

marginalization relationship between µi and µ
e
i and the inductive hypothesis imply

that µe
i ∈ ∩n−1

m=0∆H
sb(Re,m

−i ). Therefore, s̄i ∈ Se,n
i (θi, ei). Conversely, suppose that

s̄i ∈ Se,n
i (θi, ei). Then there is a CPS µe

i ∈ ∩n−1
m=0∆H

sb(Re,m
−i ) such that s̄i ∈ ri,(θi,ei)(µe

i ).

Define µi ∈ (∆ (Θ−i × S−i))H as µi (·|h) =margΘ−i×S−i(h)µ
e
i (·|h) for each h ∈ H. It

can be checked that µi is a CPS, that is, µi ∈ ∆H (Θ−i × S−i). Similarly to the
previous argument, since the ej-component of the type of each player j ∈ I is payoff-
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irrelevant, s̄i ∈ ri,θi(µi). Furthermore, the marginalization relationship between µi
and µe

i and the inductive hypothesis imply that µi ∈ ∩n−1
m=0∆H

sb(Rm
−i). �
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The �rst section gives a complete proof of part IH1 of the inductive step in the

proof of Theorem 1. The second section contains an example where path monotonicity

fails due to a restriction on endogenous beliefs, i.e., beliefs about the co-player�s type

conditional on the observed action of the co-player. The third section provides a

detailed analysis of Example 3 on sequential implementation under forward-induction

reasoning.

1 Proof of part IH1 of the inductive step in the

proof of Theorem 1.

Suppose IH1(n)-IH2(n) hold. We proved that IH2(n + 1) holds as well. Thus, we

have IH1(n)-IH2(n+ 1). We must show that IH1(n+ 1) holds, that is, step n+ 1 of

Procedure k�1 path-re�nes step n+1 of Procedure k. Fix i 2 I and (�i; si) 2 Xn+1k�1;i.

Similarly to the proof of IH2(n + 1), we are going to show the existence of a CPS

�̂(�i;si) = �̂i 2 \nm=0�H
sb(X

m
k;�i) \�i;�i and of a strategy ŝ

(�i;si)
i = ŝi 2 ri;�i(�̂i) � Xn+1k;i

such that ŝi(h) = si(h) for all h 2 H(Xnk�1).
By de�nition of Xn+1k�1;i (cf. eq. (2) in the main text), there is some �i 2

\nm=0�H
sb(X

m
k�1;�i) \�i;�i such that si 2 ri;�i(�i).
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Claim 1-bis. There exists �̂i 2 \nm=0�H
sb(X

m
k;�i) \ �i;�i such that, for every h 2

H
�
Xnk�1

�
\Hi(si),

8(��i; z) 2 ��i �Z(Xnk�1); �̂i(f��ig � S�i(z)jh) = �i(f��ig � S�i(z)jh): (S.A)

Proof. We construct an array of beliefs e�i = (e�i (�jh))h2H as follows. By IH1(n),
for every (��i; s�i) 2 Xnk�1;�i, there exists a pro�le (es(�j ;sj)j )j 6=i 2 S�i such that

(�j; es(�j ;sj)j )j 6=i 2 Xnk;�i and, for each j 6= i, es(�j ;sj)j (h) = sj(h) for all h 2 H(Xn�1k�1).

With this, de�ne a map �̂ : ��i � S�i ! ��i � S�i as follows:

8 (��i; s�i) 2 (��i � S�i) ; �̂ (��i; s�i) =

(
(�j; es(�j ;sj)j )j 6=i

(��i; s�i)

if (��i; s�i) 2 Xnk�1;�i
otherwise

:

For each h 2 H
�
Xnk�1

�
, de�ne e�i (�jh) as the �̂-pushforward (image measure) of

�i (�jh). Now de�ne

eH =
�
h 2 HnH

�
Xnk�1

�
: 9�h 2 H

�
Xnk�1

�
; �h � h; e�i ���i � S�i(h)j�h� > 0	 :

For each h 2 eH, let p�(h) denote the longest �h � h with �h 2 H
�
Xnk�1

�
such thate�i ���i � S�i(h)j�h� > 0, and derive e�i (�jh) by conditioning e�i (�jp�(h)). To conclude

the construction, �x ��i 2 \nm=0�H
sb(X

m
k;�i), and for each h 2 Hn

�
H
�
Xnk�1

�
[ eH� =:

Ĥ, let e�i (�jh) = ��i (�jh). The proof that e�i is a forward-consistent belief system
with the desired properties, and that it can be transformed into the desired CPS �̂i
satisfying

8h 2 Hi(si); �̂i(�jh) = e�i(�jh); (1)

is the same as in the proof of Claim 1 in part IH2 of the inductive step, so we omit

it. �

Claim 2-bis: H(Xnk�1) � H(Xnk).

Proof. Fix ŝ 2 projSX
n
k�1. By IH1(n), there exists ŝ0 2 projSX

n
k such that

ŝ0(ĥ) = ŝ(ĥ) for every ĥ 2 H(Xn�1k�1) � H(Xnk�1). Thus, �(ŝ) = �(ŝ0) 2 Z(Xnk). �

Claim 3-bis: Fix a subset of histories Ĥ such that, for every h 2 Ĥ, si is a

continuation best reply to �̂i(�jh) for �i. There exists ŝi 2 ri;�i(�̂i) such that ŝi(h) =
si(h) for every h 2 Ĥ.
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Proof. Construct ŝi as follows. For each h 2 Ĥ, let ŝi(h) = si(h). For each

h 2 HnĤ, let ŝi(h) = s0i(h) for some continuation best reply s0i to �̂i(�jh) for �i. It
follows from Lemma 3 that ŝi 2 ri;�i(�̂i). �

Now �x �̂i as per Claim 1-bis. From the de�nition of Xn+1k;i (cf. eq. (2) in the

main text), it follows that f�ig � ri;�i(�̂i) � Xn+1k;i . To conclude the proof, we show

the existence of ŝi 2 ri;�i(�̂i) such that ŝi(h) = si(h) for all h 2 H(Xnk�1). By Claim
3-bis with Ĥ = H(Xnk�1) \ Hi(si), this is a consequence of the following result. (For

each h 2 H(Xnk�1)nHi(si), since h 62 Hi(ŝi), we can always set ŝi(h) = si(h) because

we use a notion of sequential best reply which only refers to the histories that are

consistent with the candidate strategy.)

Claim 4-bis: For each h 2 H
�
Xnk�1

�
\ Hi(si), strategy si is a continuation best

reply to �̂i(�jh) for �i.

Proof. First note that H
�
Xnk�1

�
\ Hi(si) is closed with respect to pre�xes (pre-

decessors): for each h 2 H
�
Xnk�1

�
\Hi(si) each pre�x h0 � h belongs to H

�
Xnk�1

�
\

Hi(si). So, suppose by way of induction that Claim 4-bis holds for every h0 � h �
this is vacuously true if h = ?. Then, setting Ĥ = fh0 2 H : h0 � hg, Claim 3-bis

guarantees the existence of some ŝi 2 ri;�i(�̂i) such that ŝi(h
0) = si(h

0) for every

h0 � h, thus ŝi 2 Si(h).
First, we need to show that �(ŝi; ŝ�i) 2 Z(Xnk�1) for every (��i; ŝ�i) 2supp�̂i(�jh).

So, �x (��i; ŝ�i) 2supp�̂i(�jh). Note that f�ig � ri;�i(�̂i) � Xn+1k;i , and hence ŝi 2
projSiX

n+1
k;i . So, by IH2(n+1), there exists ŝ

0
i 2 projSiXnk�1;i such that ŝ0i(h) = ŝi(h) for

every h 2 H(Xnk). Fix
�
��i; ŝ

0
�i
�
2 �̂�1((��i; ŝ�i)) � Xnk�1;�i� it exists by equation (1)

and construction of e�i(�jh). Obviously, �(ŝ0i; ŝ0�i) 2 Z(Xnk�1). For every ĥ � �(ŝ0i; ŝ0�i),
we have ĥ 2 H(Xnk�1) � H(Xn�1k�1), hence ŝ�i(ĥ) = ŝ0�i(ĥ) by construction of �̂.

Claim 2-bis gives H(Xnk�1) � H(Xnk), therefore ŝi(ĥ) = ŝ0i(ĥ) as well. It follows that
�(ŝi; ŝ�i) = �(ŝ

0
i; ŝ

0
�i) 2 Z(Xnk�1).

For each (��i; z) 2 ��i � Z(Xnk�1), the probability of (��i; z) induced by ŝi and
�̂i(�jh) (resp., �i(�jh)) is 0, if ŝi 62 Si(z), or �̂i(f��ig � S�i(z)jh) (resp., �i(f��ig �
S�i(z)jh)) otherwise. Then, by equation (S.A), ŝi induces the same probability over
each (��i; z) 2 ��i � Z(Xnk�1) under �̂i(�jh) and under �i(�jh), hence the same dis-
tribution over ��i�Z, because the probability induced by ŝi and �̂i(�jh) over ��i��
ZnZ(Xnk�1)

�
is zero: as we have previously shown, for each (��i; ŝ�i) 2supp�̂i(�jh),
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�(ŝi; ŝ�i) 2 Z(Xnk�1). The same conclusion can be reached for si in the same way,
after observing that for each (��i; s�i) 2supp�i(�jh), since (�i; si; ��i; s�i) 2 Xnk�1, we
have �(si; s�i) 2 Z(Xnk�1). So, call �ŝi and �si the unique expected payo¤s induced
by, respectively, (�i; ŝi) and (�i; si) under both beliefs (�i(�jh) and �̂i(�jh)). Since ŝi
and si are continuation best replies for �i to, respectively, �̂i(�jh) and �i(�jh), we have
�ŝi � �si and �si � �ŝi. Hence, �si = �ŝi. But then, also si is a continuation best

reply for �i to �̂i(�jh). �

2 No path-monotonicity under restrictions on en-

dogenous beliefs: an example

Consider a signaling game with �1 = f0; 1g, A1 = fIn;Outg, A2 = f`; c; rg and
payo¤s speci�ed by the following table:

Payo¤s of 1 and 2:

after In ` c r

�1 = 0 1 1 -1 0 0 -1

�1 = 1 0 0 -1 1 1 -1

after Out end

�1 = 0 0.5 *

�1 = 1 0.5 *

We �rst analyze the game with strong rationalizability (that is, without belief

restrictions), which can be computed by iterated conditional dominance (Shimoji &

Watson, 1998; see also Battigalli et al., 2025, Chapter 15). Note that in this game

there is a one-one correspondence between actions and strategies. For each step, only

one action/strategy for (only one type of) only one player is eliminated:

1. r is the only conditionally dominated action and it is eliminated.

2. Given this, type �1 = 1 expects to get at most 0 from In, which is eliminated

for this type.

3. Player 2 rationalizes In assuming that it was chosen by type �1 = 0 (forward

induction), therefore c is eliminated.

4. Finally, type �1 = 0 expects In to yield payo¤ 1; thus, Out is eliminated for

this type.

To conclude, Out is the only strongly rationalizable action/strategy for type �1 =

1, In is the only strongly rationalizable action/strategy for type �1 = 0, and ` is the

4



only strongly rationalizable action/strategy for player 2: R1 = f(0; In) ; (1; Out)g �
f`g. Thus, the type-dependent strongly rationalizable paths are

if �1 = 0 z = (In; `),

if �1 = 1 z = (Out).

Next we consider directed rationalizability assuming that (only) the following is

transparent: player 2 becomes certain of type �1 = 1 upon observing In, that is,

�2 =
�
�2 2 �H(�1 � S1) : �2((1; In) j(In)) = 1

	
(a restriction on the endogenous beliefs of player 2).

1. �. Both ` and r are eliminated in Step 1 of directed rationalizability because

of the assumed belief-restriction.

2. �. Given this, In is eliminated for both types of player 1. This makes it

impossible to rationalize In.

Hence, the only strongly �-rationalizable action/strategy of both types of player

1 is Out, and the only strongly �-rationalizable action/strategy of player 2 is c:

R�;1 = f(0; Out) ; (1; Out)g � fcg. It follows that the only strongly �-rationalizable
path is (Out).

3 Sequential implementation under forward-induction

reasoning: an example

For the reader�s convenience, we report here the planner problem of Example 3 in the

paper. A single good must be allocated to one of three agents: Ann, Bob and Cora.

Each agent i values the good

vi (�i; ��i) = �i +
2

3

X
j 6=i

�j;

5



where �i 2 �i = f0; 1g. The planner wants to implement a social choice function
(SCF) with random allocation and monetary transfers

f : � �! �(fA;B;C;Pg)� RfA;B;C;Pg,
� 7�! (q (�) ; t (�)),

where � = �i2fA;B;Cg�i, P is the planner, qj (�) is the probability of j 2 fA;B;C;Pg
getting (or keeping) the good, and

P
j2fA;B;C;Pg tj (�) = 0. Speci�cally, the planner

wants

� to assign the good with equal probability to one of the players i with �i = 1

(high type), if any, and to keep the good otherwise;

� to extract most (90%) of the expected value from each high type; thus, low

types should pay nothing, a high type of i should pay �ti = 0:9 if there are no
other high types, 0:75 if there is one more high type, and 0:7 if all types are

high.

Thus,

qi (�) =

(
1

jfj2fA;B;Cg:�j=1gj , if �i = 1,

0, if �i = 0,

ti (�) =

8>>>><>>>>:
�0:9, if �i = 1, jfj 2 fA;B;Cg : �j = 1gj = 1,
�0:75, if �i = 1, jfj 2 fA;B;Cg : �j = 1gj = 2,
�0:7, if �i = 1, jfj 2 fA;B;Cg : �j = 1gj = 3,
0, if �i = 0.

The adopted mechanism is a sequential game form with perfect information:

Game tree: Ann, Bob, and Cora (in this order) sequentially send a message/report
in f0; 1g with perfect information about previous moves, with the partial exception of
Bob, who can send a message in

�
0; 1; 1̂

	
if Ann reports 1 (we call �report�a message

6



in �i = f0; 1g). See Figure 1.

Figure 1

Outcome function: After a sequence of three reports in f0; 1g, the outcome
function mimics the SCF (assuming truthful reporting); for a sequence where Bob

sends message 1̂, let

(q�P (z) ; t�P (z)) =

(
(0:98; 0:02; 0;�1:4;�0:015; 0) if z = (1; 1̂; 0),

(0:49; 0:02; 0:49;�0:7;�0:03;�0:7) if z = (1; 1̂; 1).

With this, low types prefer to report 0, unless they believe that both co-players are

high types but (will) report 0, whereas high types prefer to report 1 if they believe

that there are at least as many co-players� high types as co-players�high reports.

Moreover, after Ann reports 1, the high type of Bob prefers message 1̂ over 0 if he

believes that then Cora will report truthfully, regardless of whether Ann is truly of

type 1 or not. This is because, after message 1̂, he can obtain the good with small

positive probability, but at a �discounted price.�

The SCF is implemented by this sequential mechanism under forward-induction

reasoning, because strong rationalizability in the resulting game with payo¤ uncer-

tainty implies that each agent reports truthfully on the path of play:1

1. C0 eliminates report 1 at all preterminal histories except (0; 0), because it entails

paying at least 0:7 for at most 0:5 probability of getting an object worth at most

4=3:

1When we eliminate a message at a history for a type of a player, we mean to eliminate all the
strategies of that type of the player which prescribe that message at that history. Note that every
elimination from step 2 onward crucially relies on a conclusion reached at the previous steps. The
elimination procedure is maximal, i.e., it coincides with strong rationalizability.

7



B0 eliminates report 1 at history (1), because it entails paying at least 0:75 for

at most 0:5 probability of getting an object worth at most 4=3.

C1 eliminates report 0 at history (0; 0), because report 1 entails getting the

object at price 0:9.

2. B1 eliminates report 0 at history (1), because report 1̂ entails either paying

0:015 for 0:02 probability of getting an object worth at least 1, or 0:03 for 0:02

probability of getting an object worth at least 5=3, given that C0 will not report

1.

B1 eliminates report 0 at history (0), because report 1 entails either getting the

object at price 0:9, or paying 0:75 for 0:5 probability of getting an object worth

at least 5=3, given that C0 will not report 1.

3. A0 eliminates report 1 because, given that B1 will not report 0, it entails paying

either at least 0:75 for an object worth at most 2=3 (in case Bob reports 0),

or at least 0:7 for at most 0:5 probability of getting an object worth at most

4=3 (in case Bob reports 1), or 0:7 (resp., 1:4) for 0:5 (resp., 1) probability of

getting an object worth at most 4=3 (in case Bob reports 1̂).

C0 eliminates report 1 at history (0; 0), because it entails paying 0:9 for an

object worth at most 2=3, given that, by forward induction, B�s type must be

low (�B = 0).

4. C1 eliminates report 0 at history (1; 1), because report 1 entails paying 0:7 for

1=3 probability of getting an object worth 7=3, given that, by forward induction,

A�s and B�s types must be high.2

C1 eliminates report 0 at histories (1; 0) and (1; 1̂), because report 1 entails

paying at most 0:75 for at least 0:49 probability of getting an object worth at

least 5=3, given that, by forward induction, A�s type must be high (�A = 1).

B1 eliminates report 1̂ at history (1), because it entails paying at least 0:015

for at most 0:02 probability of getting an object worth at most 7=3 (with an

expected payo¤ below 1=30), whereas report 1 entails either (i) paying 0:7 for

1=3 probability of getting an object worth 7=3 (expected payo¤ 0:0�7), given that

C0 won�t state 1 and that, by forward induction, A�s type must be high, or (ii)

2To see this about B, go back to the elimination for B0 in Step 1.

8



paying 0:75 for 0:5 probability of getting an object worth 5=3 (expected payo¤

0:08�3).

5. B0 eliminates report 1̂ at history (1), because it entails either paying 0:03 for

0:02 probability of getting an object worth at most 4=3, or paying 0:015 for

0:02 probability of getting an object worth at most 2=3, given that C1 will not

report 0.

6. A1 eliminates report 0, because report 1 entails positive expected payo¤, given

that we concluded that B and C will not lie.

7. B0 eliminates report 1 at history (0), because it entails paying at least 0:7 for

an object worth at most 1=3, given that, by forward induction, A�s type must

be low.

8. C1 eliminates report 0 at history (0; 1), because report 1 entails paying 0:75 for

0:5 probability of getting an object worth 5=3, given that, by forward induction,

B�s type must be high.

We now consider an instance of transparent restrictions on players�exogenous be-

liefs. We are going to show that, under each payo¤-state, the strong �-rationalizable

strategies induce the same truthful-reporting path as the only strongly rationalizable

strategy pro�le, so that the SCF is still implemented. This aligns with our theorems.

However, the strong �-rationalizable strategies of Cora will also allow for the possi-

bility that she reports 0 despite being of type 1 after Bob sends message 1̂. This was

ruled out by her strongly rationalizable strategy.

Transparent restrictions on exogenous beliefs:

� Ann initially believes that Bob�s type is high:

marg�B��C�A (f1g ��Cj?) = 1:

� Bob believes that Ann�s type is high and Cora�s type is low:

marg�A��C�B (f(1; 0)g j?) = 1:

9



In the following illustration of the steps of strong �-rationalizability, we omit the

explanations of the eliminations that coincide with the steps of strong rationalizability.

1. C0 eliminates report 1 at all preterminal histories except (0; 0).

B0 eliminates report 1 at history (1).

C1 eliminates report 0 at history (0; 0).

B1 must believe after at least one message that Ann is 1 (and Cora is 0), so he

will not want to choose 0 at both histories (recall the availability of message 1̂

at history (1)).

No eliminations are possible for Ann: A1 could believe that Cora�s type is 0

(low) but will report 1, and that so will Bob; analogously, A0 could believe that

Cora�s type is high but will report 0, and that so will Bob.

2. B1 eliminates report 0 at history (1).

B1 eliminates report 0 at history (0).

A1 eliminates report 0 because, by the assumed restrictions, she believes that

Bob�s type is high, and by the previous step, that C0 will not report 1.

No eliminations are possible for Cora: even if she believes that Bob reports

truthfully, she may believe that Ann lied.

3. A0 eliminates report 1.

C0 eliminates report 1 at history (0; 0).

B0 eliminates report 1 at history (0), given that, by forward induction, Ann

must be of low type.

Bob reports truthfully at history (1) because, by the assumed restrictions, he

initially believes that Ann�s type is high and Cora�s type is low; thus, at this

step and history, thinking that he observed a probability-1 report, he keeps the

same beliefs about types, and (by Step 1) he believes that C0 will not report 1.

No further eliminations are possible for Cora: for every history (mA;mB), she

may still believe that Ann�s type is low.

4. C1 eliminates report 0 at history (1; 1).
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C1 eliminates report 0 at history (1; 0), because report 1 entails paying 0:75 for

0:5 probability of getting an object worth 5=3, given that, by forward induction,

Ann�s type must be high (and Bob�s type must be low).

C1 eliminates report 0 at history (0; 1), because, by forward induction, Bob�s

type must be high.

C1 cannot eliminate report 0 at history (1; 1̂) because the history is not consis-

tent with Step 3, therefore Cora�s possible conditional beliefs are the same as

in Step 3.

To conclude, the only strongly �-rationalizable strategy of each type of Ann

and Bob and of type 0 of Cora coincides with the strongly rationalizable strategy:

truthful reporting at every history. For type 1 of Cora, instead, there are two strongly

�-rationalizable strategies: the one that prescribes report 1 at every history, and the

one that prescribes report 0 at history (1; 1̂) and 1 at every other history. Note that

the latter strategy is not strongly rationalizable. Therefore, the set of strongly �-

rationalizable strategies of Cora is not contained in the set of strongly rationalizable

ones. Nonetheless, every state-dependent strongly �-rationalizable strategy pro�le

induces truthful reporting, as the planner desires.
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