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Abstract

People are influenced by their peers when making decisions. In this paper, we study the linear-

in-means model which is the standard empirical model of peer effects. As data on the underlying

social network is often difficult to come by, we focus on data that only captures an agent’s choices.

Under exogenous agent participation variation, we study two questions. We first develop a revealed

preference style test for the linear-in-means model. We then study the identification properties of

the linear-in-means model. With sufficient participation variation, we show how an analyst is able

to recover the underlying network structure and social influence parameters from choice data. Our

identification result holds when we allow the social network to vary across contexts. To recover

predictive power, we consider a refinement which allows us to extrapolate the underlying network

structure across groups and provide a test of this version of the model.

Keywords: Revealed Preference, Social Interactions, Linear-in-Means, Peer Effects

1 Introduction

People rarely make decisions in isolation and are often influenced by their neighbors and peers. This

influence can take the form of a social norm, a common convention, or conformism. The amount of

influence a person faces may be heterogeneous across their peers with friends and family exerting

higher influence than distant connections. A common model of conformism based influence is the
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linear-in-means model. The linear-in-means model supposes that a person’s realized choice is a convex

combination of their ideal point and a weighted average of every other person’s choice. We study the

linear-in-means model and answer two questions. First, we characterize datasets that are consistent

with the linear-in-means model when the set of people making decisions varies. Second, using this

data, we provide sufficient conditions under which we can recover both an agent’s ideal point and the

underlying social network, including the intensity of each connection.

Social influence has been studied in an array of contexts including test scores (Sacerdote, 2001),

worker productivity (Mas and Moretti, 2009), alcohol use (Kremer and Levy, 2008), risky behavior

(Card and Giuliano, 2013), and tax compliance (Fortin et al., 2007). Testing models of peer effects

is difficult as many people choose peers who are similar to them in observable characteristics. As

such, many studies which aim to test models of peer effects, including the linear-in-means model,

do so through natural/quasi/pure experimental methods (Sacerdote, 2014; Basse et al., 2024).1 Our

approach differs from these tests. We consider data that captures an agent’s choice frequencies in the

context of different groups.2 In the spirit of Afriat (1967), our test characterizes datasets of the prior

form which are consistent with the linear-in-means model via an easily solvable linear program. We

interpret this linear program as a no money-pump condition on an outside observer who is making

bets on the choices of an agent. Unlike standard no money-pump conditions, which are typically given

by two conditions, feasibility of a bet and (expected) profitability of the bet, our condition has a third

part which imposes incentive compatibility of a bet. Here incentive compatibility captures the idea

that if the outside observer is betting on one decision maker across each group, there is no group

where they would prefer to bet on a different decision maker.

In addition to the problem of testing, since the work of Manski (1993), it has been known that

identifying social influence parameters is difficult. At the core of the reflection problem of Manski

(1993) is the difficulty of recovering and differentiating the impact of exogenous group effects and

endogenous peer effects. As De Paula et al. (2024) notes, another aspect that leads to difficulty in

identifying peer effect parameters is (a lack of) knowledge of the underlying social network. Much

of the work on identifying parameters in the linear-in-means model assumes (partial) observability of

the underlying network structure (Bramoullé et al., 2009; Blume et al., 2015). De Paula et al. (2024)

provides sufficient conditions under which the underlying network structure can be recovered without

data on the network itself. Our identification results complement this work. Unlike De Paula et al.

1Experimental methods are also often used when quantifying the impact of peer effects. See Agranov et al. (2021) as an

example.
2Our main focus in this paper is on group variation. However, our main results can be applied in a setting where there is

no group variation but there is variation of some observable variable that causes unobservable variation in the underlying

network structure of a fixed group. In this sense, we can apply both our testing and identification results when analysts

observe an instrumental variable for the underlying network structure.
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(2024) which requires characteristic variation, our results require no characteristic variation but rely

on group variation. Further, our focus is on the case when an agent’s outcome variable is a distribution

over some finite set X. This can be thought of as the average consumption bundle of an agent or an

agent’s distribution of time usage. With sufficient group variation and putting no restrictions on the

network structure across different groups, we provide sufficient conditions which allow us to recover

the (weighted) network structure in each of these groups. A key insight of our analysis is that a

necessary condition for recovery of the underlying network structure is that the number of agents in

each of our groups, given by |N |, must be no more than |X|, the dimension of our outcome variable.

Thus far we have made no assumptions on the underlying social network structure across groups.

While this is a strong point of our testing and identification results, this poses a problem for the pre-

dictive power of our model. As such, we consider a refinement of the linear-in-means model which

assumes a common social network structure across groups. That is to say, the absolute importance of

one person to another is fixed across groups. The strength of connection from one person to another

only varies across groups due to renormalization. Under this assumption, we provide sufficient condi-

tions which allow us to predict choices in any possible group. To test the validity of this assumption,

we develop an extension of our testing procedure for the general case. This version of the linear-in-

means model is characterized by a type of no incentive compatible money pump condition. This time

incentive compatibility corresponds to the idea that if the outside observer is betting on one decision

maker across each group, there is no other agent that the outside observer would rather bet on across

all of the same groups.

Finally, we consider a version of the linear-in-means model more in line with the original reflection

problem posed by Manski (1993). In this version of the model, each person influences each other

person uniformly. This corresponds to the unweighted average choice of the group being a common

social norm within the group. In this case, we provide a test in terms of a finite set of linear inequalities.

In the context of linear social influence models, such as the linear-in-means model, the influence

one person exerts on another is proportional to the difference of their choices. As such, we call the

difference between agent i’s choice and agent j’s choice the peer effect of agent j on agent i. This

version of the model is characterized by three restrictions on the peer effects between agents. Our

first axiom asks that the peer effect of agent j on agent i is group invariant. Our second axiom is a

condition about the symmetry of agent i’s peer effect across groups. The last axiom asks that the total

peer effect on agent i in group N is bounded above by agent i’s choice in group N .

The rest of this paper is organized as follows. In Section 2 we formally introduce the linear-in-

means model and our notation. In Section 3 we introduce and discuss our testing and identification

results for the three different specifications of the linear-in-means model. Finally, we conclude and

discuss the related literature in Section 4.
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2 Model and Preliminaries

Our interest is in studying the linear-in-means model of social interaction. We build on the base model

in two meaningful ways. First, instead of restricting an agent’s choice to be from an interval, we allow

agents to choose a distribution over a finite set of goods. Second, we consider stochastic choice data

that arises when the set of agents present varies.

2.1 Preliminaries and Notation

Denote by A the grand set of agents. Assume that |A| ≥ 2. A typical group of agents will be denoted N ,

where ∅ ̸= N ⊆ A. We let N ⊆ 2A be any set of groups. For any agent i ∈ A, let Ni = {N ∈ N : i ∈ N}
denote the set of groups to which i belongs. Note that we sometimes abuse notation and use N \ i

to denote the group of agents formed by removing agent i from group N . Let X be some finite set

of alternatives. Enumerate these alternatives from 1 to |X|. We use (0, . . . , 0, 1, 0, . . . , 0), where 1 is in

the nth dimension, to denote the nth alternative and use x, y ∈ X to denote arbitrary alternatives.

The data in our model consist of a probability distribution over X, for each N ∈ N and each i ∈ N .

Formally, for i ∈ N ∈ N , this is denoted pNi ∈ ∆(X). We use pNi (x) to denote the choice probability

of good x by agent i in group N and pN to denote the matrix where each row corresponds to pNi for a

different i ∈ N .

2.2 The Model

In the linear-in-means model, agents take actions to maximize their utility. Each agent’s utility depends

on some agent-specific parameter and the actions of each other agent. We use vi ∈ ∆(X) to denote

agent i’s ideal point. This corresponds to the action agent i would take in isolation. We introduced pNi

as our data, but it also corresponds to the action taken by agent i in group N . The amount that agent

j’s action impacts agent i’s action may differ from the amount that agent k’s action impacts agent i’s

action. In fact, the impact of agent j’s action on agent i may depend on the context or the group of

agents currently present. We use πN
i (j) ≥ 0 to denote the impact of agent j’s action on agent i in the

context of group N . Similarly, we use πN
i (i) > 0 to denote the impact of agent i’s ideal point on agent

i in group N . We assume that
∑

j∈N πN
i (j) = 1. These impact or influence weights enter into agent i’s

action in a linear manner.

pNi = πN
i (i)vi +

∑
j∈N\i

πN
i (j)pNj (1)

4



Equation 1 tells us that agent i’s action in group N is given as a convex combination of their ideal

point and a weighted average of the other agents’ actions. In the standard setup of the linear-in-

means model, when |X| = 2, which we call the one dimension case, pNi is often interpreted as an

effort level.3 Alternatively, instead of just splitting their time between leisure and labor (i.e. effort

level), an agent can potentially split their time between leisure, labor, and volunteering. Our higher

dimensional model allows us to capture this finer granularity in each agent’s decision.4 More in line

with classic stochastic choice, we can interpret each alternative x ∈ X as some good, in which case

pNi corresponds to the average good or bundle consumed by the agent in the context of group N . In

this case, an agent can be thought of as having a preference over their choice frequencies rather than

repeatedly maximizing (potentially different) static utility functions. This corresponds to an agent who

is deliberately stochastic (Cerreia-Vioglio et al., 2019) or faces a perturbed utility function (Fudenberg

et al., 2015) subject to social influence. Specifically, the choices described in Equation 1 arise from the

group N playing a perfect information game where each agent’s utility is given by the following.

u(pNi , pN−i) = −πN
i (i)

∑
x∈X

(pNi (x)− vi(x))
2 −

∑
j∈N\i

πN
i (j)

∑
x∈X

(pNi (x)− pNj (x))2 (2)

This is in line with the observation made in Blume et al. (2015), Boucher and Fortin (2016), Kline

and Tamer (2020), and Ushchev and Zenou (2020) that the one dimensional linear-in-means model

arises from agents maximizing quadratic loss functions. Since we are working in a multidimensional

setup, we make assumptions on our quadratic loss function which have no content in the one dimen-

sional case. Notably, in the one dimensional case, the amount of weight agent i gives to agent j does

not depend on the good that agent i is considering. However, in our setup, since we are considering

multiple dimensions, the importance of agent j to agent i could in theory depend on the dimension or

good in consideration. The linear-in-means model imposes that these influence parameters πN
i (j) are

constant across each dimension. We also note that Golub and Morris (2020) offers an interpretation

of the linear-in-means model as arising from an incomplete information game where, in Equation 1,

vi corresponds to agent i’s expectation of some underlying random variable and pNi (j) corresponds to

agent i’s expectation of agent j’s action.

We now discuss how group variation may be modeled through different assumptions on πN
i . Intu-

itively, πN is a matrix that captures weighted directed influence. By assuming that
∑

j∈N πN
i (j) = 1,

we are assuming that πN is a stochastic matrix. When we observe group variation, each group N is

3As we will see later, the reflection problem of Manski (1993) is partially a result of the one dimension case being the

standard case. We are able to provide conditions for identifications that generically do not hold in the one dimension case

but generally hold in higher dimensions.
4In the same line of thought, we could partition leisure time and labor time into specific actions. In this case we would

once again be able to capture this higher level of granularity.
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subject to their own πN . We consider three cases in which πN and πM are related between groups N

and M .

1. The General Model: πN
i (j) is not assumed to satisfy any hypotheses across N except πN

i (i) > 0.5

2. The Luce Model: For each i, j ∈ A, there is wi(j) such that for all i ∈ A, wi(i) > 0, and∑
j∈Awi(j) = 1 such that πN

i (j) = wi(j)∑
k∈N wi(k)

.

3. The Uniform Model: For each i, j ∈ N , πN
i (j) = 1

|N | (i.e. an unweighted average).

We interpret these three models in reverse order. In the case of the uniform linear-in-means model

(ULM), an agent can be thought of as caring about each agent (including themselves) in group N

equally. In this case, a sufficient statistic for agent i’s action is their ideal point vi and the unweighted

average of each other agent’s action. As |N | grows large, each agent only cares about matching their

action to the average action in the rest of group N . This can be thought of as analogous to a Keynesian

beauty contest (Keynes, 1937). In the case of the Luce linear-in-means model (LLM), each agent i

can be thought of as having, for each agent j, an invariant importance weight wi(j). The relative

importance of agent j to agent i in population N is simply the renormalization of each of these

importance weights so that they sum to one. Finally, in the general linear-in-means model (GLM), the

relative importance of each agent j to agent i is allowed to be fully context/group dependent. The

interpretation here is that an agent j could act as a complement or substitute for agent k in the context

of a group.6

Our goal in the next section is to study data that arises from these three cases of the linear-in-means

model. Our focus is on testing these models and identification of vi and πN . With this in mind, we

introduce our definition of consistency.

Definition 1. We say that a dataset {pN}N∈N is consistent with GLM/LLM/ULM if there exists vi ∈
∆(X) for each i ∈ A and πN satisfying the conditions of GLM/LLM/ULM such that Equation 1 holds for

each N ∈ N and i ∈ N .

These three models are nested: ULM ⊂ LLM ⊂ GLM.
5In Appendix C we consider the case when πN

i (i) is only assumed to satisfy non-negativity and extend all of our results

to this case.
6Consider a setting where agent j has some noisy information about an underlying state. Agent i finds it important to

match their action with agent j in order to coordinate with the underlying state. Now suppose that agent k is added to the

group. Agent k has perfect information about the underlying state. In this case, the relative importance of agent j to agent i

would go to zero when agent k is introduced as the action of agent k is a better signal for the underlying state.
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3 Results

In this section, we study behavioral implications of the general, the Luce, and the uniform linear-in-

mean models. We begin with the general case and provide two characterizations of datasets consistent

with the general case as well as partial and point identification results for vi and πN . Our first char-

acterization is via the non-empty intersection of a collection of convex sets. Our partial identification

of vi builds on this result. Our second characterization provides an existential linear program which

fails to hold if and only if the dataset is consistent with the general linear-in-means model. We then

proceed to the Luce and uniform linear-in-mean models and provide refinements of these results.

3.1 The General Model

We now begin our analysis of the general linear-in-means model. Recall that in GLM, for each group of

agents N , each agent’s choice pNi is written as a convex combination of vi and pNj across all j ∈ N \ i.
Further, there are no restrictions across groups about the weights assigned to each agent other than

each agent i puts some weight on vi. This means that testing GLM amounts to finding if there is some

vi which can induce, for all N ∈ Ni, pNi as a convex combination of vi and pNj across all j ∈ N \ i. This

observation tells us two things. First, testing GLM can be done agent by agent. That is to say, whether

or not agent i has a feasible rationalizing vi can be tested independently of agent j. Second, a key part

of testing GLM is finding the set of feasible vi for agent i given pN for each N ∈ Ni.

With this in mind, suppose we observe data pN and we see that agent i’s choices, pNi , lie on the

interior of the convex hull of the other agents’ choices, which we write int∆(pN−i). In this case, no

matter what vi ∈ ∆(X) we consider, pNi can be written as a convex combination of the other agents’

choices. Thus we can simply ask that agent i puts a vanishingly small amount of weight on vi in their

convex combination and rationalize this vi. Now suppose we observe data such that pNi does not lie in

int∆(pN−i). In this case, a vi is feasible if and only if pNi can be written as a convex combination of vi
and some convex combination of pnj for j ∈ N \ i. Thus the set of points on the “opposite side” of pni
from ∆(pN−i) correspond to the set of feasible vi. Formally, this is given by the following equation.

co−1(∆(pN ), pNi ) = {v ∈ ∆(X)|v =
∑
j∈N

γjp
N
j , γj ≤ 0 ∀j ∈ N \ i,

∑
j∈N

γj = 1} (3)

Figure 1 visualizes the set of feasible vi for agent 1 when there are three goods and three agents. These

two observations tell us that the testable content of GLM amounts to checking, for each i, if there is

some feasible vi in each co−1(∆(pN ), pNi ).

Our prior observations tell us that testing GLM amounts to checking if, for each i, a collection of

convex sets has a point of mutual intersection. Keeping in line with Samet (1998) and Morris (1994),
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Figure 1: The figure considers three agents choosing when three alternatives are available. In the general linear-

in-means model, pN1 is an arbitrary convex combination of v1, pN2 , and pN3 . The shaded region corresponds to

the set of feasible v1 which induces pN1 given pN2 and pN3 . This corresponds to co−1(∆(pN ), pN1 ) from Equation

3.

we can transform this condition into a no money-pump condition. With this in mind, we consider a

setting where an outside observer is able to make bets on an agent and their choices in each group N .

Definition 2. A set of vectors {bN}N∈Ni with bN ∈ RX for each N ∈ Ni is called a bet on agent i.

We restrict attention to bets which we call feasible. Effectively, feasibility is a statement about

initial investment and says that, once we aggregate across each group N in Ni, placing a bet on agent

i choosing alternative x should be ex-ante costly.

Definition 3. A bet on agent i is strictly feasible if
∑

N∈Ni
bN ≪ 0.7

However, for an outside observer to make a bet, it should be ex-post profitable to them. We ask that

this individual rationality condition holds for each group N ∈ Ni.

Definition 4. A bet on agent i is individually rational if bN · pNi > 0 for each N ∈ Ni.

We impose one last condition on these bets. Notably, we have defined these bets as bets on a specific

agent i. As such, we restrict to bets which are incentive compatible. That is to say, the outside observer

cannot gain by placing the bet on agent j instead of agent i at any N ∈ Ni.

7When working with vectors, we use b ≪ c to denote that the vector b is strictly less than c in each of its dimensions. We

use b < c to denote that vector b is weakly less than c in each of its dimensions and strictly less in at least one dimension.

We use b ≤ c to denote that vector b is weakly less than c in each of its dimensions.
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Definition 5. A bet on agent i is incentive compatible if bN · (pNi − pNj ) ≥ 0 for each N ∈ Ni and each

j ∈ N \ i.

Finally, we say that there is no incentive compatible money-pump if there is no bet that satisfies

these three conditions. This effectively asks that there is no way for an outside observer to guarantee

that they make an expected profit using an incentive compatible bet.

Definition 6. We say that a dataset {pN}N∈N satisfies no incentive compatible money pump if for

each i ∈ A there are no strictly feasible, individually rational, and incentive compatible bets on agent i.

We are now ready to state our characterization of GLM.

Theorem 1. For a dataset {pN}N∈N , the following are equivalent.

1. {pN}N∈N is consistent with the general linear-in-means model.

2. For every i ∈ A, the collection of sets {co−1(∆(pN ), pNi )}N∈Ni has a point of mutual intersection.

3. {pN}N∈N satisfies no incentive compatible money pump.

We leave all proofs to the appendix. The equivalence between (1) and (2) follows from our discus-

sion at the start of Section 3.1. If co−1(∆(pN ), pNi ) corresponds to the set of feasible vi for agent i in

group N , then there needs to be some vi common to this set across all groups. The equivalence be-

tween (1) and (3) is partially a result of (2). As mentioned previously, since testing for GLM amounts

to testing for a point of mutual intersection, we can transform this via linear programming duality to

get our no money pump condition. However, we note that our no money pump condition does not

follow immediately from (2) and an application of the result of Samet (1998) and Billot et al. (2000)

as, in our proof, we work with polyhedral sets rather than compact sets. This variation allows us to

recover the exact form of our no money pump condition. In Appendix D we discuss the relation and

application of Samet (1998) to our Theorem 1. In this case, we get a type of no trade condition which

characterizes GLM.

Before moving on, we note that condition (2) from Theorem 1 reduces to an easily checkable

condition in the one dimensional case. In the one dimensional case, we consider two goods x and y.

The choice probability of x is a sufficient statistic for the choice probability of y. In the one dimension

case, we use pNi to denote the scalar which corresponds to the probability that agent i chooses x in

group N . Now let N−
i ⊆ Ni denote the set of groups N satisfying pNi ≤ pNj for each j ∈ N \i. Similarly,

let N+
i ⊆ Ni denote the set of groups N satisfying pNi ≥ pNj for each j ∈ N \ i.

Corollary 1. In the one dimension case, a dataset {pN}N∈N is consistent with the general linear-in-means

model if and only if, for all i ∈ A, the following conditions hold.
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1. minN∈N−
i
pNi ≥ maxN+

i
pNi when both N−

i and N+
i are non-empty,

2. {pNi }N∈N+
i ∩N+

i
contains at most one value (which we denote p=i ),

3. minN∈N−
i
pNi = p=i = maxN+

i
pNi when N−

i ∩N+
i is non-empty.

3.1.1 Identification

We now turn our attention to the identification properties of GLM. Going back to Manski (1993), it is

known that recovering influence parameters is generally a hard problem. Here we provide tight partial

identification bounds for each vi and give conditions under which these vi are point identified. When

vi is point identified, we are further able to give conditions under which each πN
i (j) is point identified.

These correspond to the endogenous influence parameters in the context of Manski (1993).

Definition 7. For parameter vi, we say that A is the tight identified set if v ∈ A if and only if there

exists πN
i for each N ∈ Ni such that pNi = πN

i (i)v +
∑

j∈N\i π
N
i (j)pNj .

Our first goal is to characterize the tight identified set of vi. Recall our discussion of co−1(∆(pN ), pNi )

prior to Theorem 1. co−1(∆(pN ), pNi ) corresponds to the set of feasible vi given observed choices

pN . Theorem 1 tells us that our dataset is consistent with GLM if and only if, for each i ∈ A,

{co−1(∆(pN ), pNi )}N∈Ni have a point of mutual intersection. This amounts to testing if there is some

ideal point vi which is feasible in each group N ∈ Ni. It follows from similar logic that any point in

the mutual intersection of {co−1(∆(pN ), pNi )}N∈Ni is a feasible value for vi.

Proposition 1. In GLM, the tight identified set for vi is given by
⋂

N∈Ni
co−1(∆(pN ), pNi ).

Proposition 1 formally states the observation from the prior paragraph. As mentioned earlier, part

of our aim is to give conditions under which vi is point identified. Here, point identified means that

the tight identified set is a singleton. Our next result gives a sufficient condition for point identification

of vi. Let N ext
i ⊆ Ni denote the set of groups N with pNi ̸∈ ∆(pN−i).

Corollary 2. Let Nj = {i, j} and Nk = {i, k}. Suppose that {pN}N∈N is consistent with GLM, Nj , Nk ∈
N ext

i , and that the vectors (pNj

i −p
Nj

j ) and (pNk
i −pNk

k ) are linearly independent. Then vi is point identified.

Figure 2 offers a visualization of Corollary 2. While we do not formally show it here, Corollary

2 naturally extends. Consider co−1(∆(pN ), pNi ) for a group of agents N . Note that, in the case of

N ∈ N ext
i , if we drop the non-negativity restriction on v in our definition of co−1(∆(pN ), pNi ), then

co−1(∆(pN ), pNi ) defines a polyhedral cone. The extremal rays of this cone take the form pNi − pNj

plus some location translation. In out setting, linear independence of the extremal rays of two of
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Figure 2: The figure considers choice by agents 1, 2, and 3. We observe choice in two groups; N2 = {1, 2} and

N3 = {1, 3}. Consider the two rays, one for each group. These rays intersect, so, by Theorem 1, this dataset is

consistent with GLM. The linear independence of (pN2
1 − pN2

2 ) and (pN3
1 − pN3

3 ) gives us that these rays intersect

at a single point. This single point corresponds to the uniquely feasible v1.

these n dimensional cones will make the intersection of these two sets (n − 1) dimensions. Thus,

when we observe n groups of n agents, with each group being contained in N ext
i , and the set

of extremal rays of co−1(∆(pN ), pNi ) across all n groups of n agents being linearly independent,⋂
N∈N ext

i
{co−1(∆(pN ), pNi )} is a (n − n) = 0 dimensional set. By Theorem 1 this set is non-empty

and thus we get point identification. We now observe that identification of vi is a key step in identify-

ing the influence parameter πN
i .

Proposition 2. Suppose that vi is point identified. Then πN
i is point identified if the set of vectors including

vi and {pNj }j∈N\i is linearly independent.

The identification of πN
i is pinned to the identification of vi. Fixing {pNj }j∈N\i and maintaining

linear independence, each potential value of vi induces a different value for πN
i . Proposition 2 is infor-

mative about the reflection problem of Manski (1993) in our context. Our condition for identification

is the linear independence of vi and {pNj }. In the one dimension case, both vi and pNj are scalars and

thus cannot be linearly independent. We can still recover πN
i (j) when N = {i, j} and vi is point iden-

tified. However, vi is point identified only if minN∈N−
i
pNi = maxN+

i
pNi when both the min and max

exist or when N=
i is non-empty. This tells us that, generically, we are unable to recover πN

i in the one

dimension case. When we return to the higher dimension case, Proposition 2 gives restrictions on the

size of a group N for when we can identify πN
i . Since Proposition 2 asks for the linear independence

of |N | vectors, we can only get linear independence if we are working in R|N | or higher dimensions.

In terms of group size and X, this means we can potentially have linear independence if and only if
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|N | ≤ |X|. Returning to the reflection problem, Proposition 2 and our prior discussion tell us that, in

our setting, the identification of social influence parameters is simply a problem of dimension.

3.2 Luce Linear-in-Means

As we just saw, there are conditions in GLM under which we are able to recover both an agent’s

ideal point vi and their social interaction parameters πN
i for groups that we observe. However, these

identified parameters have little predictive power for groups we do not observe in GLM. Since GLM

allows arbitrary variation in πN
i across groups, the most we can predict for agent i’s choice in an

unobserved group N is that it lies within the convex hull of {vj}j∈N . Our goal in this section is to

consider the Luce linear-in-means model which allows us to connect our social interaction parameters

across groups. LLM allows analysts to predict choices in unobserved groups subject to the conditions

for identification from Section 3.1.1 holding.

Recall that LLM supposes that each agent i has a weighting function, wi(j), which corresponds to

the absolute importance of agent j to agent i. In a group N , the relative importance of agent j to agent

i is given by the renormalization of this weighting function, πN
i (j) = wi(j)∑

k∈N wi(k)
. The interpretation

here is that there are no second order interaction effects between agents j and k which impact their

relative importance to agent i. We first discuss the identification and predictive properties of LLM. We

focus on the case when vi is known. For a specific group N , if the conditions of Proposition 2 hold,

we can pin down πN
i . This allows us to pin down the relative weights of each agent j ∈ N \ i. That

is to say wi(j)
wi(k)

=
πN
i (j)

πN
i (k)

. This is the exact condition for identification that is used in the Luce model

of Luce (1959). This means that if N = A, we can predict choice (for agent i) on every possible

group of agents. However, we may not always observe choice on N = A or if we do the conditions of

Proposition 2 may not be satisfied at N . To regain full predictive power in LLM, we need the conditions

of Proposition 2 to hold for a collection of groups {N}Ll such that every two agents k and j can be

compared through a string of groups.

Definition 8. Suppose vi is point identified. Agents j and k are comparable by agent i if there exist two

observed groups N1, N2 ∈ N such that the following hold.

• i ∈ N1 ∩N2,

• j ∈ N1 and k ∈ N2,

• For each l ∈ {1, 2}, vi and {pNl
m }m∈Nl\i are linearly independent.

Proposition 3. Suppose that vi is point identified. wi(j) is point identified for all j ∈ A if every pair of

agents j ̸= k are comparable by agent i.
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Proposition 3 is an immediate result of our Proposition 2, Corollary 4 of Alós-Ferrer and Mihm

(2024), and the fact that i is in both N1 and N2. Further, Proposition 3 gives conditions under which

we can predict the choice of agent i in any group N , conditional on knowing vj for each j ∈ N . While

we focus on LLM to recover predictive power in the linear-in-means model, one could instead consider

any known mapping from πN
i to πM

i for two different groups N and M to recover predictive power.

We focus on LLM for two reasons. First, LLM is an intuitive criterion that captures the case of no higher

order interactions. Second, as we will now discuss, we can test LLM using a natural extension of our

no incentive compatible money pump condition.

Recall our story about an outside observer making bets on an agent and their choices. In the case

of GLM, we asked that these bets were strictly feasible, individually rational for each group containing

i, and incentive compatible for each group containing i. When moving from GLM to LLM, we are

moving to a model where the social influence parameters πN
i and πM

i are actually connected across

groups. Our condition for testing LLM extends the no incentive compatible money pump condition

taking this across group connection into account. Specifically, we weaken incentive compatibility so

that the outside observer cannot gain by placing a bet on j instead of i across every N ∈ Ni ∩Nj .

Definition 9. A bet on agent i is weakly incentive compatible if, for each j ̸= i,
∑

N∈Ni∩Nj
bN · (pNi −

pNj ) ≥ 0.

Definition 10. We say that a dataset {pN}N∈N satisfies no weakly incentive compatible money pump

if for each i ∈ A there are no strictly feasible, individually rational, and weakly incentive compatible bets

on agent i.

Theorem 2. For a dataset {pN}N∈N , the following are equivalent.

1. {pN}N∈N is consistent with the Luce linear-in-means model.

2. {pN}N∈N satisfies no weakly incentive compatible money pump.

Observe that if our dataset satisfies no weakly incentive compatible money pump, then it satisfies

no incentive compatible money pump. It then follows from Theorem 1 that the collection of sets

{co−1(∆(pN ), pNi )}N∈Ni have a point of mutual intersection. In the case of GLM, this is the set of

feasible vi. The strengthening of incentive compatibility to weak incentive compatibility is exactly

what guarantees us that the social influence parameters πN
i follow a Luce rule across groups.

Figure 3 compares GLM and LLM in terms of their prediction power on the Marschak-Machina

triangle in a domain of three alternatives, X = {x, y, z} and three agents {1, 2, 3}. This is the simplest

environment in which we can illustrate the differences between these models. In the figure, stochastic

choices for three binary groups ({1, 2}, {1, 3} and {2, 3}) are fixed and denoted by different colored
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dots on the edges of the dotted triangle. The blue dots indicate agent 3’s choices, p{1,3}3 and p
{2,3}
3 .

We then illustrate the predictions for p
{1,2,3}
3 for GLM and LLM. The blue-shaded triangle identifies

all possibilities for p
{1,2,3}
3 for GLM given these binary group choices. This figure illustrates both the

predictive and explanatory power of GLM: If p
{1,2,3}
3 lies outside this triangle, the data cannot be

explained by GLM.

LLM restricts choices for p{1,2,3}3 even further. Indeed, LLM predicts that there is only a single pos-

sibility for p{1,2,3}3 indicated by a blue dot inside GLM’s prediction. If p{1,2,3}3 is not equal to this point,

then the data cannot be explained by the Luce linear-in-means model. Note that the prediction of LLM

belongs to the shaded triangle indicating that LLM is a special case of GLM.

Figure 3: This figure illustrates predictions of GLM and LLM for three alternatives, X = {x, y, z}
and three agents: blue, green, and orange. The blue-shaded triangle identifies all possibilities for the

choice probability of the blue agent consistent with GLM in the entire group, given three binary group

choices for each agent depicted on three edges of the shaded region. Note that LLM predicts uniquely

the choice probability of the blue agent.

3.3 Uniform Model

In the prior sections, we considered the linear-in-means model allowing for heterogeneous social

interaction terms. The interpretation of the heterogeneity is that the importance of agent j and agent

k may differ to agent i. In this section, we consider the hypothesis that agent i belonging to a group

impacts their behavior but no one agent in that group is any more important than the other. We

model this hypothesis through the uniform linear-in-means model. This is a special case of LLM when

wi(j) = wi(k) for each j, k ∈ A. In this section, we maintain the assumption that each observed group

has the same size, for all N,M ∈ N , |N | = |M |. This is done so we can focus on the empirical content

14



of variation of group make-up rather than group size. We relax this assumption in Appendix E where

we give all the axioms and results from this section allowing for group size variation.

In the context of a linear influence model, such as ours, pNi −pNj corresponds to a (rescaling) of the

influence agent j has on agent i’s choice. As such, we call pNi − pNj the peer effect of agent j on agent

i in group N . All of our axioms for ULM are stated in terms of peer effects. Before stating our axioms,

we need one definition.

Definition 11. A cycle is a sequence of tuples {(ik, jk, Nk)}Kk=1 such that ik, jk ∈ Nk, jk = ik+1, and

jK = i1.

A cycle captures cycles of influence. Agent i1 influences agent j1 in group N1 and then agent

j1 = i2 influences agent j2 in group N2. This is repeated until we return to agent i1. Our first axiom

puts restrictions on the sum of peer effects across cycles.

Axiom 1 (Cyclically constant). A dataset {pN}N∈N is cyclically constant if for every cycle

{(ik, jk, Nk)}Kk=1 we have that
K∑
k=1

(pNk
ik

− pNk
jk

) = 0. (4)

To best understand cyclic constancy, we first introduce a second axiom implied by cyclic constancy.

Axiom 2 (Constant Peer Effects). A dataset {pN}N∈N satisfies constant marginal effects if for each N

and M with i, j ∈ N ∩M we have that [pNi − pNj ] = [pMi − pMj ].

Observe that constant peer effects is implied by cyclic constancy when we consider cycles of length

two. Constant peer effects tells us that the peer effect of agent j on agent i is group invariant. Returning

to cyclic constancy, it says that the peer effect of agent i on agent j plus the peer effect of agent j on

agent k should be equal to the peer effect of agent i on agent k (and so on for longer cycles). Further,

there is no way to break this equality by going to different groups during a cycle. As such, cyclic

constancy tells us that agent i to agent j peer effects are group invariant and that a long chain of

peer effects corresponding to the indirect peer effect of agent i on agent j equals the direct peer effect

of agent i on agent j. Our next axiom puts restrictions on the peer effect of agent i across different

groups.

Axiom 3 (Symmetric Peer Effects). For i ∈ N ∩M ,

pNi −
∑

j∈N\M

[pNj − pNi ] = pMi −
∑

k∈M\N

[pMj − pMi ]. (5)
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Symmetric peer effects tell us that, once we take agent i’s actual choice into account, the total peer

effect of agent i on agents in group N which are not in M is equal to the total peer effect of agent i

on agents in group M which are not in group N . The combination of cyclic constancy and symmetric

peer effects tells us that the total peer effect of agent i is the same in groups N and M , once we take

into account their actual choice in each group. Our last axiom restricts the total amount of peer effect

that agent i has in a group.

Axiom 4 (Bounded Total Peer Effects). For i ∈ N ,

pNi ≥
∑

j∈N\i

[pNj − pNi ]. (6)

Bounded total peer effects tell us that the total amount of peer effect agent i has in group N can be

no more than their actual choice pNi . With this in mind, we are now ready to give our characterization

of ULM. Recall that this result assumes that |N | = |M | and that this assumption is relaxed in the

appendix.

Theorem 3. For a dataset {pN}N∈N , the following are equivalent.

1. {pN}N∈N is consistent with the uniform linear-in-means model.

2. {pN}N∈N satisfies cyclic constancy, symmetric peer effects, and bounded total peer effects.

We first note that, in Theorem 3, we can replace cyclic constancy with constant peer effects and

the equivalence holds. Our focus on cyclic constancy is due to the following discussion. Consider the

following the equation.

pNi =
1

|N |
v̂i +

∑
j∈N\i

1

|N |
pNj +ON (7)

In Equation 7, v̂i is not restricted to have non-negative elements (but still satisfies
∑

x∈X vi(x) = 1)

and we ask
∑

x∈X ON (x) = 0. Choice induced by Equation 7 differs from ULM in two important ways.

First, an agent’s ideal point v̂i no longer needs to lie within the simplex. Second, every agent i in group

N is subject to some group specific shock to tastes given by ON . Under one additional assumption on

N , we show in Appendix E that choice according to Equation 7 is characterized by cyclic constancy.

The addition of symmetric peer effects is exactly what rules out group specific shocks, reducing ON to

be the zero vector across all N ∈ N . Finally, bounded total peer effects is what induces each agent’s

ideal point to be within the simplex.
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We conclude our analysis with the observation that ULM is trivially point identified. Since each

agent’s social interaction parameters are pinned down to be 1
|N | , the only parameter left to identify is

each agent’s ideal point. This can be easily recovered from the following equation.

vi = |N |pNi −
∑

j∈N\i

pNj (8)

Equation 8 also offers an alternative characterization of ULM. A dataset is consistent with ULM if

and only if the value of the right hand side of Equation 8 is group invariant and lies in the simplex.

4 Discussion

In this paper we study the testing and identification properties of the linear-in-means model when

an analyst observes group variation. We first study the linear-in-means model in its most general

setup, allowing for arbitrary variation of social influence parameters across groups. In this setting, we

show that the linear-in-means model can be tested by checking if a group of convex sets has a point

of mutual intersection. We also provide a linear programming formulation of this test. Further, we

are able to provide a series of linear independence based conditions under which an agent’s social

influence parameters are point identified, thus identifying the underlying network structure of the

group. As part of our analysis, we show that the reflection problem of Manski (1993) is a generic

problem when each agent’s decision space is one dimension but stops being generic when we move to

higher dimensions. We then consider the Luce linear-in-means model as a way to recover the predictive

power not present in the general linear-in-means model. Finally, we study the uniform linear-in-means

model and provide normative axioms which characterize group effects when an agent cares about each

agent’s choices equally.

Remark 1 (Network Variation). Throughout the course of this paper our focus has been on group vari-

ation. We could instead consider network variation. That is to say, fix a group N and consider two

realizations of some observable variable or regime, R and R′. Suppose that an agent’s social influence pa-

rameters are given by πi when R is observed and π′
i when R′ is observed. Neither πi nor π′

i are observable

to the analyst. If no restrictions are placed on πi or π′
i, testing for the linear-in-means model with network

variation can be done using our Theorem 1. Further, all of the identification results of Section 3.1.1 also

extend to this arbitrary network variation setup.

Remark 2 (Characteristic Variation and Exogenous Effects). In our setup, we do not assume observation

of any characteristics other than agent identity. Part of the reflection problem of Manski (1993) is disen-

tangling exogenous and endogenous group effects. If we add characteristic variation, we can distinguish
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between exogenous and endogenous effects in a two step procedure. In the first step, we proceed with the

identification arguments from Section 3.1.1. Upon doing so, we have recovered vi for each agent. In the

second step, we treat vi as the outcome variable and proceed with standard analysis of the relationship

between vi and observed characteristics. Notably, our first stage captures the endogenous effects of the

reflection problem and the second stage captures the exogenous effects.

Remark 3 (Product-Attribute Variation). Another variation that could be introduced in our framework

is product attribute variations. Suppose that there is a set of K observable attributes, with ax denoting

the vector of attributes for product x. ax includes not only things that affect product quality, but also

things like price, advertising, etc. We assume that the ideal point of each agent is a linear function of

observable product attributes. This is captured by an agent-specific real vector βi such that ui(x) = βiax

for each i and x. This means that we assume that attributes affect utility in the same way for all products.

Then the ideal point is calculated as vi(x) =
ui(x)∑

y∈X ui(y)
. Identification of βi then proceeds with a two-step

procedure. As above, we first recover vi for each agent. In the second step, we treat vi as the outcome

variable and proceed with standard analysis of the relationship between vi and observed attributes.

4.1 Related Literature

Our paper is related to several strands of literature. We begin by discussing the strand which studies

the linear-in-means model of social interactions. Predating the modern literature on the linear-in-

means model, Keynes (1937) considers a model of financial markets via a story of beauty contests. In

this setting an agent wishes to take the action that coincides with the average action of the rest of the

population. In our setup, this corresponds to πN
i (i) = 0 and πN

i (j) = 1
|N |−1 . More recently, Ushchev

and Zenou (2020) studies the microfoundations and comparative statics of the linear-in-means model

allowing for arbitrary network structure. As mentioned earlier, Ushchev and Zenou (2020) along with

Blume et al. (2015), Boucher and Fortin (2016), and Kline and Tamer (2020) show that the linear-

in-means choice rule can be achieved as the best response to a quadratic loss utility functions in a

perfect information game where each agent knows each vi and πN
i . Golub and Morris (2020) consider

an extension of this setup where agents have incomplete information and relate the linear-in-means

model to higher-order expectations as well as conventions in networks. We build on this literature by

studying the empirical content of the linear-in-means model.

More closely related to our paper is the strand of literature which focuses studying the identifica-

tion properties of the linear-in-means model as well as other related models of peer effects. A seminal

contribution in this literature is Manski (1993) and his discussion of the reflection problem. Impor-

tant to our analysis is the following takeaway from the reflection problem of Manski (1993). It is in

general difficult to identify the social influence of a group on an agent due to the endogenous nature
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of outcomes. In our setting, this corresponds to identifying both the underlying network structure

and the corresponding weights on directed edges in this network. Much of the literature following

Manski (1993) aims to identify social interaction parameters when the underlying network structure

is (partially) known. This literature is extensive, so we list the following, all of which provide various

conditions in order to recover identification of social interaction parameters in linear-in-means style

models; Graham (2008), Bramoullé et al. (2009), De Giorgi et al. (2010), Blume et al. (2011), Blume

et al. (2015), De Paula (2017). More recently, Boucher et al. (2024) extends the linear-in-means to

a CES in means model of social influence and provides identifications in their setting. Perhaps most

closely related to our analysis within this literature is the work of De Paula et al. (2024). In their

analysis they consider both the identification of social interaction parameters as well as the identifica-

tion of the underlying network structure. A common tool for identification in each of the previously

mentioned studies is the use of characteristic variation in order to recover identification. Our anal-

ysis differs from this literature in that we use group variation rather than characteristic variation to

recover identification. A second difference in our analysis is that our outcome vector pNi has across

dimension restrictions. While a standard assumption in stochastic choice and discrete choice analysis,

the assumption that pNi lies in a multi dimensional simplex seems underutilized in the literature on

identification of the linear-in-means model.

Our paper also contributes to the choice theoretic strand of literature studying social interactions.

To our knowledge, this literature begins with Cuhadaroglu (2017) who studies a two period model

with social influence taking effect in the second period. Borah et al. (2018) also considers a two period

model of social influence. In the first period, social influence is used to form an agent’s consideration

set and the second period is used for choice. Kashaev et al. (2023) consider a model of social influence

where the choices of an agent’s peers directly form their consideration set. One of the main goals of

this work is the actual identification of underlying social parameters, which they are able to achieve

through dynamic choice variation. Bhushan et al. (2023) considers a model of choice where agents

influence each other through their beliefs. An agent’s beliefs are determined through a process similar

to ULM. Choices then correspond to subjective expected utility given these beliefs. Most closely related

to our work in this literature is the work of Chambers et al. (2023) who consider a version of the linear-

in-means model. They focus on a setting with menu variation (i.e. variation of X) with a fixed group

and network structure. This differs from our analysis in that our focus is on group variation and we

can accommodate network variation.

More generally, our paper is related to the literature studying the empirical content of strategic

settings. Part of this literature focuses on testing the empirical content of specific solution concepts.

Sprumont (2000) studies the testable content of Nash equilibrium. The work of Haile et al. (2008)

finds that quantal response equilibrium has no empirical content. Similarly, Bossert and Sprumont

19



(2013) and Rehbeck (2014) find that backwards induction has no empirical content when we only

observe the induced choice function. Another portion of this literature focuses on characterizing the

empirical content of specific (types of) games. To begin, Lee (2012) characterizes the testable content

of zero-sum games. Carvajal et al. (2013) provides a revealed preference style characterization of

the Cournot model of competition. Finally, Lazzati et al. (2023) characterizes the empirical content of

Nash equilibrium in monotone games. As mentioned earlier, the linear-in-means model can be thought

of as arising from Nash equilibrium play where each agent’s utility is given by Equation 2. As such, we

characterize Nash equilibrium play in the corresponding game when we observe player variation.

Finally, our paper is also related to the literature in stochastic choice studying agents who have pref-

erences for non-deterministic bundles. The idea of deliberately stochastic preferences goes back to at

least Machina (1985). Recently, Cerreia-Vioglio et al. (2019) axiomatizes data that arises from agents

choosing with deterministic preferences over lotteries. Similarly, Fudenberg et al. (2015) characterizes

stochastic choice data that arises from agents who have cardinal preferences over each alternative but

face a perturbation to their utility function within the simplex. Allen and Rehbeck (2019) studies the

identification properties of a similar class of perturbed utility functions. There has been little work

on these types of perturbed utility functions with social influence components. Hashidate and Yoshi-

hara (2023) considers a perturbed utility function where the perturbation corresponds to a norm. To

reiterate one final time, the choices in the linear-in-means model corresponds to a perturbed utility

model where an agent’s base utility corresponds to a quadratic loss function with reference to their

ideal point. The perturbation then corresponds to a sum of quadratic loss functions with each one

referencing another agent’s choice.
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APPENDIX

A Preliminary Results

We begin with a preliminary lemma that formalizes our discussion at the start of Section 3.1.

Lemma A.1. pNi = γivi+
∑

j∈N\i γjp
N
J for vi ∈ ∆(X) with γj ≥ 0, γi > 0, and

∑
j∈N γj = 1 if and only

if vi ∈ co−1(∆(pN ), pNi ).

Proof. Suppose that pi = γivi +
∑

j∈N\i γjp
N
J for vi ∈ ∆(X) with γj ≥ 0 and

∑
j∈N γj = 1. Since

0 < γi ≤ 1, we can recover that vi = 1
γi
pNi +

∑
j∈N\i

−γj
γi

pNj . Since γj ≥ 0 and
∑

j∈N γj = 1, −γj
γi

≤ 0

and 1
γi

+
∑

j∈N\i
−γj
γi

= 1 and so vi ∈ co−1(∆(pN ), pNi ).

Now suppose that vi ∈ co−1(∆(pN ), pNi ). This tells us that vi =
∑

j∈N γjp
N
j with γj ≤ 0 ∀j ∈ N \ i

and
∑

j∈N γj = 1. It follows that γi ≥ 1. By basic algebra, we can solve for pi and get pi = 1
γi
vi +∑

j∈N\i
−γj
γi

pNj . Since γj ≥ 0 for j ∈ N \ i and
∑

j∈N γj = 1, −γj
γi

≥ 0 and 1
γi

+
∑

j∈N\i
−γj
γi

= 1 and so

pi = πivi +
∑

j∈N\i πjp
N
J for vi ∈ ∆(X) with πj ≥ 0, πi > 0, and

∑
j∈N πj = 1.

Define X1 = {x ∈ Rn :
∑

i xi = 1}. So X1 is not the simplex but rather the hyperplane containing

the simplex. The following very simple result is closely related to classical results, for example Girsanov

(1972), Lemma 3.11, or characterizations of Pareto optimality, relating to Negishi weights e.g. Smale

(1974); Wan (1975) but is written to be close in form to Billot et al. (2000); Samet (1998). The main

difference from the preceding pair of papers is that no compactness assumptions are claimed, but

rather polyhedrality of the sets is required.

Theorem 4. Let A1, . . . , Ak each be nonempty subsets of X1, and suppose additionally that each Ai is a

polyhedron. Suppose that
⋂k

i=1Ai = ∅. Then the following are equivalent:

1.
⋂k

i=1Ai = ∅.

2. For each i = 1, . . . , k, there are pi ∈ Rn for which
∑k

i=1 pi = 0 and such that pi · xi > 0 for all

xi ∈ Ai.

Proof. We show that 1 implies 2. Observe that X1 is itself defined by a finite set of linear inequalities.

We now consider Y = {(x, . . . , x) : x ∈ X1} ⊆ Rnk and
∏k

i=1Ai. These sets are both clearly polyhedra.

Further, by hypothesis, Y ∩
∏k

i=1Ai = ∅. By Corollary 19.3.3 and Theorem 11.1 of Rockafellar (1970),

there exists (p1, . . . , pk) ∈ Rnk and c ∈ R for which for all x ∈ X1,
∑

i pi ·x < c and for all (x1, . . . , xk) ∈∏
iAi,

∑
i pi · xi > c. In particular we may choose c so that inf(x1,...,xk)∈

∏
i Ai

∑
i pi · xi > c.
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Define p∗i = pi − (c/k)1 and observe that, because all Ai are subsets of X1, the c in the inequalities

gets replaced with 0 when replacing pi with p∗i . Specifically, this also tells us that (by considering

indicator functions of the form 1j for j ∈ {1, . . . , n}), we have
∑

i p
∗
i ≪ 0. Further, it tells us that for

each x, y ∈ X,
∑

i p
∗
i (x)(k+1)−

∑
i p

∗
i (y)k < 0, as (k+1)1x−k1y ∈ X1. Thus

∑
i
(k+1)p∗i (x)−kp∗i (y)

2k+1 < 0,

and by taking limits,
∑

i p
∗
i (x) ≤

∑
i p

∗
i (y). Since x and y are arbitrary, this implies that

∑
i p

∗
i (x) =∑

i p
∗
i (y) for all x, y ∈ X.

Now, define for each i = 1, . . . k, ci = infxi∈Ai p
∗
i · xi. Then we have

∑
i ci > 0. Fix ϵ > 0 so that∑

i(ci − ϵ) > 0. For each i then let q∗i = p∗i − (ci − ϵ)1 and observe that for all xi ∈ Ai, q∗i · xi =

p∗i · xi − (ci − ϵ) · xi ≥ ϵ > 0 as xi ∈ X1. Further,
∑

i q
∗
i ≪ 0 remains valid as

∑
i(ci − ϵ) > 0. Further, it

remains true that
∑

i q
∗
i (x) =

∑
i q

∗
i (y) for all x, y ∈ X as we have simply subtracted a constant from

each q∗i .

We show that 2 implies 1. Suppose by means of contradiction that there is x∗ ∈
⋂k

i=1Ai. Then

pi ·x∗ > 0 for all i and in particular then (
∑k

i=1 pi)·x∗ > 0. But this is a contradiction as (
∑k

i=1 pi)·x∗ =
0 · x∗ = 0.

B Omitted Proofs

B.1 Proof of Theorem 1

Our proof of the equivalence between conditions (1) and (2) utilizes Lemma A.1 and follows quickly

from it. Our proof of the equivalence between (1) and (3) utilizes Theorem 4. For the separation, let

us consider the sets ∆(X) and, for each N , ĉo−1(∆(pN ), pNi ) where

ĉo−1(∆(pN ), pNi ) = {v|v =
∑
j∈N

γjp
N
j , γj ≤ 0 ∀j ∈ N \ i,

∑
j∈N

γj = 1}. (9)

Note that this differs from Equation 3 as v is not required to be in the simplex. Owing to Rockafellar

(1970) Theorem 19.3, each ĉo−1(∆(pN ), pNi ) is polyhedral.

Proof. We begin with the equivalence between (1) and (2). Suppose that {pi} is data consistent

with GLM. Then, for each i ∈ A, there exist vi and πN
i for each N ∈ Ni such that Equation 1

holds for each (i,N), Since vi is fixed across each N ∈ N , by Lemma A.1, the collection of sets

{co−1(∆(pN ), pNi )}N∈Ni must have a point of common intersection.

Now suppose that, for each i ∈ A, the collection of sets {co−1(∆(pN ), pNi )}N∈Ni has a point of

common intersection. By Lemma A.1, the v in the intersection of {co−1(∆(pN ), pNi )}N∈Ni works as
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a feasible vi for each N ∈ Ni. Specifically, for each N ∈ Ni, there are γj ≥ 0, with γi > 0 and∑
j∈N γj = 1, such that pNi = γiv +

∑
j∈N\i γjp

N
j . Take these γj as πN

i (j). These v and πi correspond

to a GLM representation of the dataset.

Now we prove the equivalence between (1) and (3). By definition of no incentive compatible money

pump is equivalent to the lack of existence of a bet satisfying strict feasibility, individual rationality, and

incentive compatibility. This is then equivalent to the following. For every i ∈ A, there does not exist a

collection of vectors {αN}N∈Ni with αN ∈ RX and
∑

N∈Ni
αN ≪ 0 such that for all N ∈ Ni, αN ·pNi >

0 and for each j ̸= i and N for which j ∈ N , αN · (pNi − pNj ) ≥ 0. If there are αN as in the statement

of the theorem, then the model is not valid. Suppose, by means of contradiction that there are such

αN but the model is valid. Because πN
i (i) > 0, we know that vi =

pNi
πN
i (i)

−
∑

j ̸=i
πN
i (j)

πN
i (i)

pNj . In particular,

since
∑

x vi(x) = 1, we must have 1
πN
i (i)

−
∑

j ̸=i
πN
i (j)

πN
i (i)

= 1. Let λi =
1

πN
i (i)

and λj =
πN
i (j)

πN
i (i)

, then we have

λi−
∑

j ̸=i λj = 1, where each λk ≥ 0. Then λip
N
i −

∑
j ̸=i λjp

N
j = (λi−

∑
j ̸=i λj)p

N
i +

∑
j ̸=i λj(p

N
i −pNj ).

Consequently αN · vi = (λi −
∑

j ̸=i λj)α
N · pNi +

∑
j ̸=i λjα

N · (pNi − pNj ) > 0. So for each N , we have

αN · vi > 0. Consequently (
∑

N αN ) · vi > 0, but
∑

N αN ≪ 0, a contradiction.

On the other hand, suppose the model is violated. Recall ĉo−1(∆(pN ), pNi ). Observe that this set

would not change were we to weaken the inequality on αi to αi > 0. ĉo−1(∆(pN ), pNi ) reflects the

set of possible vi which are compatible with the observed choice pNi . That is, if there were some vi

common to all ĉo−1(∆(pN ), pNi ), we could define πN
i (i) = 1

αi
and πN

i (j) = −αj

αi
. Now, by Theorem 19.3

of Rockafellar (1970), each ĉo−1(∆(pN ), pNi ) is polyhedral (owing to the fact that the set of αj : j ∈ N

satisfying the linear inequalities is a polyhedron). Since the model is violated, there is no vi common

to all ĉo−1(∆(pN ), pNi ). Consequently ∆(X) ∩
⋂

N :i∈N ĉo−1(∆(pN ), pNi ) = ∅. By Theorem 4, there are

weights αN and q for which q +
∑

N αN = 0, where q · x > 0 for all x ∈ ∆(X), which means q ≫ 0,

and where αN · pNi > 0 (by taking a weight of one on pNi ) and αN · ((k + 1)pNi − kpNj ) > 0 for

all j, which implies by taking limits with respect to k and normalizing, αN · (pNi − pNj ) ≥ 0. Finally,∑
N αN = −q ≪ 0.

B.2 Proof of Corollary 1

Proof. By Theorem 1 condition (2), we know that a dataset is consistent with GLM if and only if, for

each i, {co−1(∆(pN ), pNi )}N∈Ni have a point of common intersection. As mentioned in Section 3.1, if

pNi lies on the interior of ∆(pN−i), then N offers no testable content for agent i. Specifically, if pNi lies

on the interior of ∆(pN−i) then pNi can be written as a convex combination of pN−i and v ∈ ∆(X) for

any choice of v with a vanishingly small weight put on v. As such, we can restrict our attention to
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co−1(∆(pN ), pNi ) for groups N where pNi ̸∈ ∆(pN−i). These groups are exactly N+
i ∪ N−

i . We have a

series of observations for three cases.

1. Suppose N ∈ N+
i \ N−

i

In this case pNi ≥ pNj for all j ∈ N \ i with a strict inequality for at least one j. Fix this j. In this

case, set πN
i (k) = 0 for each k ∈ N \ {i, j}. It then follows that every v satisfying v ≥ pNi can

be rationalized by pNi = πN
i (i)v + πN

i (j)pNj for some choice of convex weights, but any v < pNi

cannot.

2. Suppose N ∈ N−
i \ N+

i

In this case pNi ≤ pNj for all j ∈ N \ i with a strict inequality for at least one j. Fix this j. In this

case, set πN
i (k) = 0 for each k ∈ N \ {i, j}. It then follows that every v satisfying v ≤ pNi can

be rationalized by pNi = πN
i (i)v + πN

i (j)pNj for some choice of convex weights but any v > pNi

cannot.

3. Suppose N ∈ N+
i ∩N−

i

In this case pNi = pNj for each j ∈ N . In this case, any convex combination of v with pNj for

j ∈ N \ i which puts positive weight on v would be different from pNj if and only pNi ̸= pNj . Thus,

in this case we have that vi = pNj = pNi .

We now consider two cases.

1. Suppose that N+
i ∩N−

i = ∅.

In this case [0,minN∈N−
i
pNi ] =

⋂
N∈N−

i
{co−1(∆(pN ), pNi )}N∈N−

i
and [maxN∈N+

i ,1 p
N
i , 1] =⋂

N∈N+
i
{co−1(∆(pN ), pNi )}N∈N+

i
. These two sets have a point of intersection if and only if

maxN∈N+
i
pNi ≤ minN∈N−

i
pNi . The other two conditions are vacuous in this case.

2. Suppose that N+
i ∩N−

i ̸= ∅.

By observation 3 above, for each N∗ ∈ N+
i ∩ N−

i , co−1(∆(pN
∗
), pN

∗
i ) is exactly pN

∗
i and so

it must be the case that vi = pN
∗

i = p=i if the dataset is consistent. It then follows that

this value vi must be unique among consistent data. By the arguments from case 1, we need

it to be that maxN∈N+
i ∩N−

i
pNi ≤ minN∈N+

i ∩N−
i
pNi . Further, it must also be the case that

maxN∈N+
i ∩N−

i
pNi ≤ p=i ≤ minN∈N+

i ∩N−
i
pNi . However, N∗ ∈ N+

i ∩ N−
i , so maxN∈N+

i ∩N−
i
pNi ≥

p=i ≥ minN∈N+
i ∩N−

i
pNi . It then follows that the three conditions hold if and only if we the dataset

is consistent with GLM.
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B.3 Proof of Proposition 1

Proof. This follows immediately from Lemma A.1 and Theorem 1.

B.4 Proof of Corollary 2

Proof. By consistency with the linear-in-means model, co−1(∆(pNj ), p
Nj

i ) and co−1(∆(pNk), pNk
i ) inter-

sect. By Nj and Nk being binary, co−1(∆(pNj ), p
Nj

i ) and co−1(∆(pNk), pNk
i ) are one dimensional rays,

and so they intersect once or infinitely often. By linear independence of (pNj

i − p
Nj

j ) and (pNk
i − pNk

k )

and by the definition of co−1(∆(pNj ), p
Nj

i ) and co−1(∆(pNk), pNk
i ) , these two sets intersect at a single

point. By Proposition 1, this single point of intersection is exactly our identified set for vi.

B.5 Proof of Proposition 2

Proof. As vi and {pNk }k∈N\i are linearly independent, any point in their convex hull can be written as a

convex combination of these points with unique weights on each point. In the linear-in-means model,

we have pNi = πN
i (i)vi +

∑
j ̸=i π

N
i (j)pNj , and so pNi is in the convex hull of these points and thus each

πN
i (j) is uniquely pinned down.

B.6 Proof of Theorem 2

Proof. To begin observe that no weakly incentive compatible money pump is satisfied if and only if

there does not exist a collection of vectors {αN}N∈Ni with αN ∈ RX and
∑

N∈Ni
αN ≪ 0 such that for

all N ∈ Ni, αN · pNi > 0 and for each j ̸= i,
∑

N∈Ni:j∈N αN · (pNi − pNj ) ≥ 0. Now suppose that LLM is

satisfied, and by means of contradiction, that there exist αN as in the prior sentence. Drop dependence

of wi on i to simplify notation. We use the notation w(N) =
∑

j∈N w(j).
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Observe that

∑
N∈Ni

w(N)αN · pNi =
∑
N∈Ni

w(i)αN · vi +
∑

j∈N\i

w(j)αN · pNj


=w(i)

 ∑
N∈Ni

αN

 · vi +
∑
j∈A\i

w(j)
∑

N∈Ni:j∈N
αN · pNj

<
∑
j∈A\i

w(j)
∑

N∈Ni:j∈N
αN · pNj

≤
∑
j∈A\i

w(j)
∑

N∈Ni:j∈N
αN · pNi

=
∑
N∈Ni

∑
j∈N\i

w(j)αN · pNi .

Here, the strict inequality follows as vi ∈ ∆(X), w(i) > 0, and
∑

N∈Ni
αN ≪ 0. The weak inequality

follows as
∑

N∈Ni:j∈N αN (pNi − pNj ) ≥ 0 and w(j) ≥ 0. The equalities are by definition and algebraic

manipulation. Now, subtracting the right hand side of the string of inequalities from the left hand side,

we obtain: ∑
N∈Ni

w(i)αN · pNi < 0.

This contradicts the facts that w(i) > 0 and for each N ∈ Ni, αN · pNi > 0.

For the other direction, we want to find, for each i, numbers fi(x) ∈ R, and for each j ̸= i, wi(j) ∈ R
and finally for each N for which i ∈ N , λi(N) such that the following equations are satisfied:

1. fi(x) ≥ 0 for all x

2. 0 <
∑

x fi(x)

3. wi(j) ≥ 0 for all j ̸= i

4. fi(x) + λi(N)pNi (x) +
∑

j∈N\iwi(j)p
N
j (x) = 0 for all x and all N for which i ∈ N

If we find such numbers, define the Luce weights for agent i as w(i) =
∑

x fi(x) > 0, w(j) =

wi(j) ≥ 0 and define vi(x) =
fi(x)∑
x fi(x)

. Observe then that by equation 4:

w(i)vi(x) + λi(N)pNi (x) +
∑

j∈N\iw(j)p
N
j (x) = 0, so that

−λi(N)pNi (x) = w(i)vi(x) +
∑

j∈N\i

w(j)pNj (x).
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Since we know
∑

x vi(x) = 1 (by definition),
∑

x p
N
i (x) = 1 and

∑
x p

N
j (x) = 1 (by assumption),

it follows automatically that −λi(N) = w(N) and we have shown that this is a linear formulation of

Luce.

The dual of this system, a Theorem of the Alternative, for example Motzkin’s Theorem, (Mangasar-

ian, 1994) p. 28 implies the existence of βN ∈ RX for each N ∈ Ni for which

1. For all N ∈ N for which i ∈ N , βN · pNi = 0.

2. For all j ∈ A \ i,
∑

N∈Ni:j∈N βN · pNj ≤ 0.

3.
∑

N∈Ni
βN ≪ 0.

Now, owing to finiteness of X, we know that there exists some b < 0 such that for each x ∈ X,∑
N∈Ni

βN (x) < b. Define αN = βN − b
|Ni|1. Observe that αN ·pNi = βN ·pNi − b

|Ni| =
−b
|Ni| > 0. Observe

that
∑

N∈Ni:j∈N αN ·pNj ≤ −b|{N∈Ni:j∈N}|
|Ni| =

∑
N∈Ni:j∈N αN ·pNi , so that

∑
N∈Ni:j∈N αN ·(pNi −pNj ) ≥ 0.

Finally,
∑

N∈Ni
αN = (

∑
N∈Ni

βN )− b1 ≪ 0.

C GLM Results when πN
i (i) ≥ 0

In this section we consider an extension of GLM where we now allow πN
i (i) ≥ 0 (allowing for equality).

We call this version of the model GLM∗. Our goal is to discuss and prove how our main results on GLM

extend to GLM∗. Recall that for an agent i, N ext
i corresponds to the set of groups N containing i with

pNi ̸∈ ∆(pN−i). Observe that in GLM∗, whenever pNi lies in ∆(pN−i), p
N
i is consistent with GLM∗ as it can

be written as a convex combination of pN−i. This motivates the following.

Definition 12. A set of vectors {bN}N∈N ext
i

with bN ∈ RX for each N ∈ Ni is called a ext bet on agent

i.

Definition 13. A bet on agent i is ext strictly feasible if
∑

N∈N ext
i

bN ≪ 0.

Definition 14. A bet on agent i is ext individually rational if bN · pNi > 0 for each N ∈ N ext
i .

Definition 15. A bet on agent i is ext incentive compatible if bN · (pNi − pNj ) ≥ 0 for each N ∈ N ext
i

and each j ∈ N \ i.

Definition 16. We say that a dataset {pN}N∈N satisfies no ext incentive compatible money pump if

for each i ∈ A there are no ext strictly feasible, ext individually rational, and ext incentive compatible ext

bets on agent i.
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Theorem 5. For a dataset {pN}N∈N , the following are equivalent.

1. {pN}N∈N is consistent with GLM∗.

2. For every i ∈ A, the collection of sets {co−1(∆(pN ), pNi )}N∈N ext
i

has a point of mutual intersection.

3. {pN}N∈N satisfies no ext incentive compatible money pump.

Before proving Theorem 5, we first prove a preliminary lemma.

Lemma C.1. Suppose pNi ̸∈ ∆(pN−i). Then pNi = γivi +
∑

j∈N\i γjp
N
J for vi ∈ ∆(X) with γj ≥ 0 and∑

j∈N γj = 1 if and only if vi ∈ co−1(∆(pN ), pNi ).

Proof. Suppose that pi = γivi +
∑

j∈N\i γjp
N
J for vi ∈ ∆(X) with γj ≥ 0 and

∑
j∈N γj = 1. Since

pNi ̸∈ ∆(pN−i), it must be the case that γi > 0 and so 0 < γi ≤ 1. By doing basic algebra we can recover

that vi = 1
γi
pNi +

∑
j∈N\i

−γj
γi

pNj . Since γj ≥ 0 and
∑

j∈N γj = 1, −γj
γi

≤ 0 and 1
γi
+
∑

j∈N\i
−γj
γi

= 1 and

so vi ∈ co−1(∆(pN ), pNi ).

Now suppose that vi ∈ co−1(∆(pN ), pNi ). This tells us that vi =
∑

j∈N γjp
N
j with γj ≤ 0 ∀j ∈ N \ i

and
∑

j∈N γj = 1. It follows that γi ≥ 1. By basic algebra, we can solve for pi and get pi = 1
γi
vi +∑

j∈N\i
−γj
γi

pNj . Since γj ≥ 0 for j ∈ N \ i and
∑

j∈N γj = 1, −γj
γi

≥ 0 and 1
γi

+
∑

j∈N\i
−γj
γi

= 1 and so

pi = πivi +
∑

j∈N\i πjp
N
J for vi ∈ ∆(X) with πj ≥ 0 and

∑
j∈N πj = 1.

We now proceed to prove Theorem 5.

Proof. The equivalence between (1) and (2) follows from Lemma C.1 and our discussion at the start of

this section. To see the equivalence between (1) and (3), observe that, in the proof of Theorem 1, the

arguments from the proof of (1) =⇒ (3) go through replacing Ni with N ext
I and observing that once

πN
i ̸∈ ∆(pN−i) any coefficient preceding πN

i will be non-zero (see the first two sentences of the proof of

Lemma C.1). To show (3) implies (1), observe that the arguments from (3) =⇒ (1) from the proof of

Theorem 1 hold when we try and prove the separation of ∆(X) and {co−1(∆(pN ), pNi )}N∈N ext
i

.

Now let N−∗
i ⊆ Ni denote the set of groups N satisfying pNi < pNj for each j ∈ N \ i. Similarly, let

N+∗
i ⊆ Ni denote the set of groups N satisfying pNi > pNj for each j ∈ N \ i.

Corollary 3. In the one dimension case, a dataset {pN}N∈N is consistent with GLM∗ if and only if, for all

i ∈ A, minN∈N−∗
i

pNi ≥ maxN+∗
i

pNi when both N−∗
i and N+∗

i are non-empty.
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Proof. Observe that N−∗
i ∪ N+∗

i = N ext
i in the one dimension case. Further, by the arguments in the

proof of Corollary 1, co−1(∆(pN ), pNi ) = [0, pNi ] when N ∈ N−∗
i and co−1(∆(pN ), pNi ) = [pNi , 1] when

N ∈ N+∗
i . It then follows from Theorem 5 that our corollary holds.

Proposition 4. In GLM∗, the tight identified set for vi is given by
⋂

N∈N ext
i

co−1(∆(pN ), pNi ).

Proof. This is an immediate consequence of Lemma C.1 and Theorem 5.

All of the other identification results for GLM carry through to GLM∗ as written.

D Relation Between Theorem 1 and Samet (1998)

In this appendix, we discuss the relation between Samet (1998) and our characterizations of GLM

and GLM∗. The main theorem of Samet (1998) provides a linear program that characterizes when a

collection of compact convex sets fail to have a point of mutual intersection. In light of Theorems 1

and 5, the result of Samet (1998) can be used as an alternative characterization for GLM and GLM∗.

Theorem 6. The following are equivalent.

1. {pN}N∈N is consistent with the general linear-in-means model.

2. For every i ∈ A there does not exist a collection of vectors {αN}N∈Ni with αN ∈ RX and∑
N∈Ni

αN = 0 such that, for all N ∈ Ni, αN · v > 0 for each v ∈ co−1(∆(pN ), pNi ).

Theorem 6 immediately follows from condition (2) of Theorem 1, the main result of Samet (1998),

and the observation that each co−1(∆(pN ), pNi ) is compact and convex. Part of the original motivation

for Samet (1998) was the no interim trade result of Morris (1994). In the setting of Samet (1998) and

Morris (1994), {αN}N∈Ni corresponds to a trading scheme, the equality condition corresponds to a

feasibility condition, and the inequality condition corresponds to an individual rationality condition.

We now interpret Theorem 6 in the context of a no trade story. Suppose we have a collection of

outside observers. We have one observer for each group N in Ni and we index each observer by

their corresponding group N . These observers are risk neutral but ambiguity averse (in the max-

min sense of Gilboa and Schmeidler (1989)) and consider state contingent trades. In this setting, a

state corresponds to an alternative x and the frequency of state x corresponds to the frequency with

which agent i would choose x in isolation, vi(x). In this sense, {αN}N∈Ni corresponds to a trade

scheme in the language of Morris (1994) where αN (x) corresponds to the payout to observer N
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when agent i chooses x in isolation. Each observer knows that agent i’s choices follow from Equation

1. The information available to observer N is pN , the set of choices made in group N . From this,

observer N is able to form a set of beliefs about the choices of agent i. This set of beliefs corresponds

to co−1(∆(pN ), pNi ). The condition
∑

N∈Ni
αN = 0 corresponds to a trading scheme being balanced

and αN · v > 0 for each v ∈ co−1(∆(pN ), pNi ) corresponds to the trading scheme being profitable in

expectation for every belief in observer N ’s set of beliefs. With this interpretation, Theorem 6 says that

there is no trade between these outside observers if and only if the dataset is consistent with GLM. In

other words, there is no trade if and only if each agent’s ideal point vi is common across their groups.

Before moving on, we also note that condition (2) from Theorem 6 can be simplified somewhat.

Since co−1(∆(pN ), pNi ) is a convex set and αN · v > 0 is a linear constraint, instead of checking

αN · v > 0 for each v ∈ co−1(∆(pN ), pNi ), we can simply check αN · v > 0 for the extreme points

of co−1(∆(pN ), pNi ). Since co−1(∆(pN ), pNi ) is polyhedral, this is a finite process. Finally, we state the

analogue of Theorem 6 for GLM∗.

Theorem 7. The following are equivalent.

1. {pN}N∈N is consistent with GLM∗.

2. For every i ∈ A there does not exist a collection of vectors {αN}N∈N ext
i

with αN ∈ RX and∑
N∈N ext

i
αN = 0 such that, for all N ∈ N ext

i , αN · v > 0 for each v ∈ co−1(∆(pN ), pNi ).

Theorem 7 immediately follows from condition (2) of Theorem 5, the main result of Samet (1998),

and the observation that each co−1(∆(pN ), pNi ) is compact and convex.

E Proofs and Extension of Results from Section 3.3

In this section, we consider the ULM model of Section 3.3 and allow for variation in group size. With

this in mind, we now introduce the extensions of the axioms from 3.3 allowing for group size variation.

Axiom 5 (Cyclically constant∗). A dataset {pN}N∈N is cyclically constant if for every cycle

{(ik, jk, Nk)}mk=1 we have that
∑m

k=1(1 + |Nk|)(pNk
ik

− pNk
jk

) = 0.

Axiom 6 (Constant Peer Effects∗). A dataset {pN}N∈N satisfies constant peer effects if for each N and

M with i, j ∈ N ∩M we have that (1 + |N |)[pNi − pNj ] = (1 + |M |)[pMi − pMj ].

Axiom 7 (Symmetric Peer Effects∗). For i ∈ N ∩M ,

pNi −
∑

j∈N\M

[pNj − pNi ] = pMi −
∑

k∈M\N

[pMj − pMi ]− |N | − |M |
1 + |N |

∑
l∈N∩M

[pMl − pMi ]. (10)
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Observe that in the prior three axioms, each axiom reduces to the axioms from the main text when

each group has the same size.

Theorem 8. For a dataset {pN}N∈N , the following are equivalent.

1. {pN}N∈N is consistent with the uniform linear-in-means model.

2. {pN}N∈N satisfies cyclic constancy∗, symmetric peer effects∗, and bounded total peer effects.

Proof. We begin by proving necessity of the three axioms. We begin with cyclic constancy. By the

definition of ULM we have the following for i, j ∈ N .

pNi − pNj =
1

|N |
vi +

∑
k ̸=i

1

|N |
pNk − 1

|N |
vj −

∑
k ̸=j

1

|N |
pNk

=
1

|N |
vi −

1

|N |
vj +

1

|N |
(pNj − pNi )

=
1

1 + |N |
(vi − vj)

(11)

The equivalence between the second and third line follows from the properties of geometric series.

Now consider any cycle {(ik, jk, Nk)}mk=1.

m∑
k=1

(1 + |Nk|)(pNk
ik

− pNk
jk

) =

m∑
k=1

(1 + |Nk|)(
1

1 + |Nk|
(vik − vjk))

=

m∑
k=1

(vik − vjk)

= 0

(12)

The first line follows from substitution. The second line follows from canceling like terms. The third

line follows from the fact that for cycles jk = ik+1, and jm = i1. To see that bounded total peer effects

is necessary, observe the following.

pNi =
1

|N |
vi +

1

|N |
∑

j∈N\i

pNj

vi = |N |pNi −
∑

j∈N\i

pNj

= pNi −
∑

j∈N\i

[pNj − pNi ]

(13)

The first equality holds by definition of our model. The second and third equalities hold by rearrange-

ment. Since we require our bliss point vi to be in the simplex, bounded total peer effect then holds by
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the last line. We now prove necessity of symmetric peer effects. By Equation 13 we have the following.

pNi −
∑

j∈N\i

[pNj − pNi ] = pMi −
∑

k∈M\i

[pMk − pMi ]

pNi −
∑

j∈N\M

[pNj − pNi ] +
∑

l∈(N∩M)\i

1 + |M |
1 + |N |

[pMl − pMi ]

= pMi −
∑

k∈M\N

[pMk − pMi ]−
∑

l∈(N∩M)\i

[pMl − pMi ]

pNi −
∑

j∈N\M

[pNj − pNi ] = pMi −
∑

k∈M\N

[pMj − pMi ]− |N | − |M |
1 + |N |

∑
l∈N∩M

[pMl − pMi ]

(14)

The first equality comes from Equation 13. The second equality comes from cyclic constancy (which

we have proved holds).8 The third equality follows from gathering like terms. Thus all three of our

axioms are necessary.

We now proceed to show sufficiency of our three axioms. To do so we need to construct a vi ∈ ∆(X)

for each i such that these vi are consistent with the data we observe. To begin, for each i, choose some

N such that i ∈ N . Define v̂i as follows.

v̂i = pNi −
∑

j∈N\i

(pNj − pNi )

By bounded total peer effect, v̂i is non-negative. Since pNi and pNj are probabilities,
∑

x∈X v̂i(x) = 1

and thus vi lies in the simplex. We now verify if our construction induces our observed data. Con-

sider an arbitrary M such that i ∈ M . We start with p̂Mi as the choice probabilities implied by our

8Note that here we only need to use binary cycles (i.e. [i, j]− > [j, i]).
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construction.

p̂Mi =
1

|M |
v̂i +

1

|M |
∑

j∈M\i

pMj

=
1

|M |
(pNi −

∑
j∈N\i

[pNj − pNi ] +
∑

j∈M\i

pMj )

p̂Mi − pMi =
1

|M |
(pNi −

∑
j∈N\i

[pNj − pNi ]− (pMi −
∑

j∈M\i

[pMj − pMi ]))

=
1

|M |
(pNi −

∑
j∈N\M

[pNj − pNi ]+

∑
l∈(N∩M)\i

1 + |M |
1 + |N |

[pMl − pMi ]− (pMi −
∑

j∈M\i

[pMj − pMi ]))

=
1

|M |
(pNi −

∑
j∈N\M

[pNj − pNi ]− (pMi −
∑

j∈M\N

[pMj − pMi ])

− |N | − |M |
1 + |N |

∑
l∈N∩M

[pMl − pMi ])

= 0

(15)

The first equality follows from the definition of our model. The second equality follows from our

definition of v̂i. The third equality follows by subtracting pMi from both sides. The fourth equality

follows from cyclic constancy.9 The fifth equality follows from collecting like terms. The sixth equality

follows from symmetric peer effects. We have constructed v̂i which is in the simplex and induces

our observed data. Thus cyclic constancy, symmetric peer effects, and bounded total peer effects are

sufficient.

Proposition 5. Cyclic constancy∗ holds iff for each i ∈ A, there is vi for which
∑

x vi(x) = 1 and

for each N ∈ N , ON ∈ RX such that
∑

xO
N (x) = 0 such that for all N and i ∈ N , pNi (x) =

1
|N |vi(x) +

1
|N |

∑
j∈N\i p

N
j (x) +ON (x).

Remark 4. In Proposition 5, we have not specified conditions on vi and ON ensuring that pNi is actually

a probability measure.

Proof. Fix any i∗ ∈ A and define vi∗ arbitrarily so that
∑

x vi∗ = 1; we do not require that vi∗ ≥
0. Define vj = 3(p

{i∗,j}
j − p

{i∗,j}
i∗ ). Cyclic constancy implies that for any N ∈ N and {i, j} ⊆ N ,

(1+|N |)(pNi −pNj ) = vi−vj . That is, (1+|N |)(pNi −pNj ) = 3(p
{i,i∗}
i −p

{i,i∗}
i∗ )−3(p

{j,i∗}
j −p

{j,i∗}
i∗ ) = vi−vj .

Define the uniform Luce rule according to Luce weights vi (this may not necessarily have probabilities

as frequencies here). Call this rule UN
i , so that for each N ∈ N and each i ∈ N , UN

i = 1
|N |vi +

9Again, here we only use binary cycles.
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∑
j∈N\i U

N
j . By definition, for all N and all i, j ∈ N with i ̸= j, we have: (pNi − pNj ) = (UN

i − UN
j )

(this equality obviously holds when i = j). Consequently for all such i,N :, pNi = UN
i + (pNj − UN

j ).

By taking averages pNi = UN
i + 1

|N |
∑

j∈N (pNj − UN
j ). Now let ON

= 1
|N |

∑
j∈N (pNj − UN

j ). Observe

that
∑

xO
N
(x) = 0. Therefore, for all N ∈ N and all i ∈ N , pNi = UN

i + O
N . Finally, using the

representation of UN
i , we obtain pNi = 1

|N |vi +
1

|N |
∑

j∈N\i U
N
j + O

N , and using the fact that UN
j =

pNj −O
N , we get

pNi =
1

|N |
vi +

1

|N |
∑

j∈N\i

(pNj −O
N
) +O

N

or pNi = 1
|N |vi +

1
|N |

∑
j∈N\i p

N
j + 1

|N |O
N . Setting ON = 1

|N |O
N establishes the result.

Conversely if we start with vi for each i ∈ A for which
∑

x vi(x) = 1 (not necessarily a probability),

and for each N ∈ N , a vector ON for which
∑

xO
N (x) = 0, then if pNi = UN

i + ON is a probability

measure for all N ∈ N and i ∈ N , then simple algebra establishes that for any N ∈ N and i, j ∈ N ,

(1 + |N |)(pNi − pNj ) = vi − vj . As a telescoping series, a sum across a cycle results in 0.
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