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Pierpaolo Battigallif Nicoldo Generosot

November 1, 2025

Abstract

We formalize a novel framework allowing for the observation of noisy signals about co-
players’ emotions, or states of mind. Insofar as the latter are belief-dependent, such feedback
allows players to draw inferences informing their strategic thinking. We analyze players’
strategic reasoning adapting the strong rationalizability solution concept, and we give its
epistemic justification in terms of players’ rationality and interactive beliefs. The “forward-
induction” reasoning entailed by such solution allows players to make inferences about their
co-players’ beliefs, private information, and future, or past and unobserved behavior based
on the behavioral and emotional feedback they obtain as the game unfolds. We illustrate
our framework with a signaling-like example, showing that the possibility of betraying lies,
e.g., by blushing, may incentivize truth-telling.

1 Introduction

Emotions shape social phenomena and they are often betrayed by some signals, as both common
sense and everyday experience suggest. For instance, blushing may reveal embarrassment, and
gaze contact may indicate that a person is captivated by a conversation. The relevance of
emotional signals is highlighted by a number of experimental studies: emotional leakage occurs
when people lie (Porter et al., 2012), nonverbal communication is key in courtship encounters
(Givens, 1978), individuals seem to recognize others’ predisposition to anger or trustworthiness
by observing facial cues (Van Leeuwen et al., 2018; Stirrat and Perrett, 2010), and gesture
effectively informs listeners of a speaker’s unspoken thoughts (Goldin-Meadow, 1999). Evidence
also suggests that states of mind and behavior may be influenced by signals about the emotions of

others: individuals tend to mimic others’ states of mind, therefore sparking a sort of “emotional
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contagion” (Hatfield et al., 2014; Vdsquez and Weretka, 2020). All in all, emotional expressions
of others provide useful tools that can be exploited to make social interactions more predictable
and manageable (see the survey by Van Kleef and Coté, 2022).

The effect of emotions on decision-making should be of primary interest for economists.
Elster (1996, 1998) convincingly argued that a careful study of emotions could help to get a
better grip on how decisions are formed, and in this regard psychological game theory — pioneered
by Geanakoplos et al. (1989) and substantially developed by Battigalli and Dufwenberg (2009)
and Battigalli et al. (2019a) — represents a rich framework to address the issue.! To the best of
our knowledge, the role of emotional signals has never been formally analyzed. Incorporating
such aspect in a formal analysis would yield a more accurate description of reality and new
insights when strategic reasoning is studied. Observing such signals allows to make inferences
about someone else’s state of mind and, insofar as emotions are triggered by beliefs,” emotional
signals may shed light also on the beliefs of others. Moreover, emotional signals may also depend
on actions taken (e.g., lying may cause discomfort and hence emotional leakage), or on personal
traits (e.g., a very emotional person may be more likely to betray her state of mind with, say,
facial expressions). Therefore, the signals we introduce may allow players to draw conclusions
not only on the beliefs of others, but also on their past behavior and traits. Such inferential
reasoning can thus fruitfully inform strategic thinking.

In Section 1.1, we sketch out some heuristic examples to clarify the phenomena we aim
to model. In Section 1.2, we present our contribution. In Section 1.3, we elaborate on our

methodological position, and we briefly discuss the related literature.

1.1 Heuristic examples

As hinted above, emotional signals can shed light on the emotions of others, on their personal
traits, on their future behavior, and on past actions. We sketch some examples where this occurs.
(Unless otherwise stated, game trees with payoff vectors at terminal nodes are interpreted as

game forms with monetary payoffs that do not necessarily represent players’ player’s utilities.)

Example 1 (Trust mini-game). The following game form with monetary payoffs is widely
used in the experimental literature, to assess whether guilt may shape the second mover’s (Bob’s)

behavior.

The main innovation introduced by the theoretical apparatus of PGT consists in letting players’ utilities
depend on (their own and their opponents’) beliefs. In this way, a wide array of belief-dependent sentiments and
emotions, ranging from reciprocity to self-esteem, can be modeled. See Battigalli and Dufwenberg (2022) for a
survey of recent developments in the literature.

2For instance, disappointment may be a consequence of unmet expectations about others’ behavior and guilt

may be generated by the failure to live up to (one’s own or others’) expectations.



Ann

Not trust
Bob

(1,1) Share Grab

(2,2) (0,3)

Behrens and Kret (2019) find that face-to-face contact may foster cooperation and pro-social
behavior. We can enrich the traditional representation of the Trust Mini-Game by allowing Bob
to receive a signal about Ann’s emotions before making his choice. A relevant emotional state
in this setting is Ann’s trustfulness — for instance, smiling may convey her desire to cooperate,
and Bob would make inferences about Ann’s emotions upon observing such signal. In this
environment, trustfulness could be thought of as the extent to which Ann expects Bob to share.
Upon seeing Ann smile, Bob may infer that she expects him to share, and this would provide

him with further incentives to avoid letting her down. A

Example 2 (Ultimatum Mini-Game). Consider the following game form.

Ann

Fair

(2,2) Reject Take
(0,0) (3,1)

If Bob gets angry after receiving a greedy offer, he may decide to forego $1 to punish Ann.
Rejections at the second stage can be accounted for by the model of frustration and anger of
Battigalli et al. (2019b). Van Leeuwen et al. (2018) suggest that individuals playing such game
in the lab can infer how much their opponents are prone to anger by observing facial cues. Such
cues cannot concern Bob’s frustration, because frustration arises only as a consequence of others’
choices. Nonetheless, facial cues may provide hints about a player’s personal trait, that is, how

prone one is to getting angry. A

Example 3 (Negotiation). Successful coordination and exchange of information are key in
negotiations. Verbal (e.g., statements) and nonverbal (e.g., gesture) emotional expressions allow
to infer the counterparts’ intentions (Druckman and Olekalns, 2008). Elfenbein et al. (2007) find
that individuals with a better emotion recognition accuracy attain better outcomes in negotiation
exercises. In a stylized situation, we could imagine two agents engaging in an alternating-offer
bargaining procedure. We could also assume that irritation may arise if one party receives
an offer that is far from her minimal acceptable outcome, or that impatience may emerge as
the negotiation lengthens. In the former case, emotional signal allow to better assess others’

reservation values, which may be thought of as a personal trait. In the latter, one party may



realize that the other could settle for less advantageous terms to end the costly delay, therefore

using emotional signals to make inferences about others’ future behavior. A

Example 4 (Police interrogation). Police manuals recommend to pay attention to stereotyp-
ical cues such as gaze aversion and fidgeting to detect lies when questioning suspects. Whether
this helps officers or not is unclear — in fact, evidence suggests that doing so may hamper lie
detection (DePaulo et al., 2003). Yet, the majority of policemen participating in the experiment
of Mann et al. (2004) declared that they look primarily at gaze aversion to detect lies in interro-
gations. Hence, they (perhaps mistakenly) use emotional cues to infer past unobserved actions
of others and to infer whether the suspects’ stories coincide with their actual past behavior.

A

1.2 Owur contribution

We develop a novel framework to model sequential psychological games where players receive
signals, here called “messages”, about their opponents’ states of mind, in the form, e.g., of facial
cues or involuntary behavior. In this regard, our contribution is twofold. First of all, an innova-
tion is represented by the proposed framework, and by the incorporation of emotional feedback
in game-theoretic analysis. More specifically, we allow such signals to be generated stochasti-
cally, and we take this generative process to be driven by the agents’ states of mind. Relatedly,
we also discuss how emotions are generated by players’ beliefs and behavior as the game unfolds,
and how signals about emotions allow to make inferences when reasoning strategically.

Second, we carry out an analysis of the key features that allow to derive behavioral predic-
tions. We first give a definition of players’ rationality as the conjunction of several requirements
concerning players’ cognitive sophistication and optimality of plans and behavior. We provide
an explicit formal analysis of players’ inferential reasoning and of players’ rationality, showing
that the set of states corresponding to the event “player ¢ is rational” is a measurable subset of
the set of states of the world. While measurability is essentially a mathematical property, it has
relevant conceptual meaning, because we interpret measurable sets of states of the world as the
events about which players can form their beliefs. Saying that rationality is an event implies
that a given player may wonder about her opponents’ rationality, incorporating such event into
her strategic reasoning.

Finally, we propose a rationalizability-like solution concept to predict behavior, and we
justify it in terms of underlying assumptions about players’ rationality and interactive beliefs
(Theorem 1). Such solution concept is particularly suited to our context, since it entails a form of
forward-induction reasoning. That is, players try to make sense of (i.e., they try to rationalize)
the information they receive as the game unfolds in a way that is consistent with their opponents
being rational and strategically sophisticated. This solution concept is particularly compelling
in our framework, because it captures the idea that players use emotional signals to infer their
opponents’ beliefs, private information, future behavior, and past unobserved actions. We apply
our solution procedure to a simple situation, showing how the possibility of betraying false
statements with emotional messages (e.g., by blushing) may represent a strong enough incentive

for the disclosure of private information.



1.3 The bigger picture: methodology and related literature

In this section, we discuss some of our modeling choices, relating them to the existing literature.
First, our work builds on the methodological paper of Battigalli et al. (2019a) in the way it
models psychological games and belief-dependent motivations. Differently from such paper,
states of the world include a description of how players would behave also at histories that do
not realize, rather than just a description of how the game unfolds. In this, our approach mirrors
that of Battigalli and De Vito (2021). Like them, we explicitly distinguish between players’ plans
and descriptions of behavior, requiring that they coincide for rational players, but may differ
otherwise. This means that we do not assume that players necessarily know how they would
behave at different contingencies: they can plan what to do, but they may fail to stick to their
own plans.

Our approach to modeling rationality presents some innovations as well. Rationality is
traditionally understood as the conjunction of several features, concerning both behavior and
cognition. Some of these assumptions are typically implied by the modeling tools employed. For
example, a “correct” updating policy is embedded in the definition of conditional probability
systems (cf. Axiom 3 in Battigalli and Siniscalchi, 1999 and the analysis in Battigalli et al.,
2023), which are conventionally used to model beliefs in sequential games, and transparency of
coherence between beliefs of different orders follows from the choice of positing a type structure
(cf. Battigalli and Siniscalchi, 1999 and Dekel and Siniscalchi, 2015). We instead construct a
rich state space, and take the desired rationality features to be properties holding only at some
states — this way, each requirement becomes an explicit assumption, represented by an event in
a state space. Like in Battigalli et al. (2020), we do not posit a type structure, and we take
instead an infinite hierarchical system of beliefs to be the epistemic/doxastic type of a player:
with this, a player’s way of thinking is described by a map that associates an infinite hierarchy
of beliefs to each history she may observe. In a state of the world, such descriptions of “ways of
thinking” will be coupled with descriptions of behavior and with personal traits. For rational
players, we impose some cognitive sophistication properties (i.e., that beliefs of different orders
be coherent, and that beliefs be updated consistently with evidence and according to the rules
of conditional probabilities), as well as the requirement that rational players plan optimally and
implement their plans. All in all, our notion of rationality shares similarities with the traditional
one, but it is more explicit and more structured.

With this approach, showing the measurability of the event “player ¢ is rational” is non-
trivial. Even if this comes at a cost, we believe that our language features enough flexibility to
model a wide variety of cognitive failures and behavioral inconsistencies. The richness of our
framework also allows to let players entertain the possibility that some of their opponents be

in some sense unsophisticated.? Such a level of expressiveness seems to be a prerequisite for

3In contrast to our approach, in a canonical type structure, types are collectively coherent hierarchies of condi-
tional beliefs (in the words of Dekel and Siniscalchi, 2015). This means that, by construction, the possibility that
an opponent features —for example— some incoherence between her first- and second-order beliefs is inconceivable

for any player.



the introduction of elements of bounded rationality (or, more generally, of departures from a
canonical notion of rationality) in strategic settings, as well as for a rigorous analysis of such
phenomena.

Lastly, we build on our analysis of rationality to formalize a solution concept that captures
the implications of meaningful hypotheses about players’ rationality and strategic reasoning, that
we interpret as common strong belief in rationality. Our solution concept is a version of strong
directed rationalizability (a.k.a. strong A-rationalizability, see the textbook of Battigalli et al.,
2025, Battigalli, 2003, Battigalli and Siniscalchi, 2003, Battigalli and Tebaldi, 2019 and relevant
references therein), which characterize in standard settings the utility-relevant implications of
rationality, some belief restrictions, and common strong belief in both (Battigalli and Prestipino,
2013). We prove that the same holds in our framework (Theorem 1). Our epistemic analysis is
different from the usual one because of our type-structure-free approach. Our result establishes
that a procedure carried out taking into account only beliefs of a finite order captures the
implications of epistemic assumptions that are formulated in terms of infinite hierarchies of
beliefs. This is in the same spirit of Battigalli et al. (2020), and it leverages technical results
proved in Battigalli and Tebaldi (2019).

Roadmap The paper is organized as follows. Section 2 introduces our framework. Section
3 formalizes the inferential reasoning players carry out upon observing messages about their
opponents. Section 4 defines rationality. Section 5 introduces the solution concept. Section 6

provides the epistemic justification for the proposed procedure. Section 7 concludes.

2 Formal framework

In the following, for each compact metrizable topological space S, we denote by B(S) its Borel
o-algebra and by A(S) the space of Borel probability measures on S. Sets of probability mea-
sures are endowed with the topology of weak convergence, Cartesian products with the product
topology, finite sets with the discrete topology, and subsets of topological spaces with the rel-
ative topology. Moreover, we maintain that the (finite) set of players is I, and that the games
we model unfold within a single period and last at most L € N stages.

For a set X and for each n € N, we let X™ denote the n-fold product of X, with generic
element z". Moreover, given 2" € X" with n € N, we let Zj denote its k-th coordinate (with
k € {1,...,n}). Lastly, we also define X° := {@x}, i.e., the singleton containing the empty
sequence of elements of X.

The remainder of this section is organized as follows. Section 2.1 describes how emotions
shape feedback and utility. Section 2.2 constructively derives the game tree. Section 2.3 describes
players’ predispositions to act and to believe as the game unfolds, and relates such attitudes to

the generation of emotions. Section 2.4 further elaborates on utility functions.



2.1 Emotions, messages, and utility

We start by describing how emotional feedback is generated and how emotions determine util-
ities. Emotions are understood as broad categories, not necessarily tied to specific situations.*
Therefore, our focus here will be independent from any game, and we will embed emotions in
specific contexts only later.

First, for each i € I, we denote the (nonempty) finite set of personal traits of agent i as ©,
and the (nonempty) compact metrizable set of emotional states (henceforth simply emotions)
of agent ¢ as ;. We let © := Xier ©; and F := Xier

emotions, respectively. Agents experience streams of emotions: for each ¢ € {1,...,L +1}, E*

FE; denote the set of profiles of traits and

is the set of streams of emotion profiles of length ¢. Given that we will model games lasting at
most L stages, we consider the set ESIH! .= Ufjll E‘, which represents the possible streams
of emotions experienced by agents in the situation of interest.” For each i € I, EZASLJrl has an
analogous meaning.

We posit, for each i € I, a (nonempty) finite set of conceivable emotional messages (or
signals), M;., and we let M, := Xier MLe.G Furthermore, for each i € I, let Y; be the finite
(nonempty) set of material outcomes, and define the set of collective outcomes as Y := X, _; Y;.

We now turn to the key elements of our analysis. First, we define a continuous feedback
function about emotions and traits fo : A x © x ESLT1 A(M,), where A = Xicr A; is a
generic finite but “universal” set of action profiles that can be taken by agents. We let messages
be generated stochastically because messages about emotions are noisy. Note that we allow the
message generation to depend also on actions agents can take,” as well as on their traits. Second,
we define a profile of continuous psychological utility functions (¥; : Y x © x ESEHL 5 R),c;.
Differently from conventional utilities, they do not depend only on outcomes and traits, but also

on the streams of emotions experienced by players.

2.2 The game tree

We now move to the description of game-specific aspects. Although the peculiarity of our
framework is that players receive messages related to the emotions and traits of others, as the
play unfolds they also receive messages about previous moves, or “previous-play messages”. We
do not assume players necessarily observe their co-players” previous moves — they only receive
some “previous-play messages” that contain some information about how the game has been
played up to a given point. As a special case, such messages may exactly pin down the actions
chosen by others. Whenever a player is called upon to act, her available actions are self-evident,

regardless of whether she perfectly recalls how the game unfolded up to that point. Given that

4For instance, someone may get angry if his favorite football team loses or if he is disappointed by the behavior
of someone — the emotion experienced is arguably the same, but the situations that triggered it may be different.

5Players can experience a stream of emotions of length at most L + 1 because we assume that they hold some
initial emotional state, and then they experience a new one after each stage of the game.

6 Tt is useful to assume M, = M; j.e, where M; ;. is interpreted as the set of messages about j’s

Xjel\{i}
emotions that ¢ can observe. Whenever I = {4, j}, M; . (resp. M;.) is isomorphic to M; ;e (resp., Mj.e).

"In a game, such actions will be the ones agents can play at a given stage.



the game-specific information players receive is encoded in previous play messages, we posit
that the last such message received directly informs a player of her feasible actions at the next
stage.® This way of modeling players’ information throughout the game is the one proposed by
Battigalli and Generoso (2024) — we refer the reader to such paper for a more detailed discussion
of the conceptual and methodological issues involved in our modeling choice.

For each i € I, we let A; (with § # A; C A;) be the finite set of potentially available
actions of player ¢ in the given game, and M; , the finite set of previous play messages player
i can receive. In our framework, feedback pertains to both the actions previously chosen (and
possibly not observed) by players and the emotional states of others. The Roman subscript in
ser Ai and My, := X, M; , be

the sets of profiles of actions and previous play messages, respectively. We also posit a previous

our notation is a mnemonic for these domains. We let A := X

play message generating function, fp : U£:1 Al — M. Note that feedback about previous play
— unlike feedback about emotions — is game-dependent, as it is generated according to the rules
of the game. Unlike emotional messages, previous play messages are produced deterministically,
and letting fp be the map a’ — (af)ie 7 amounts to assuming observed actions. For each af € Af,
¢e{l,...,L}, and i € I, we let f;,(a’) := Projuy, , fo(ab).

We also posit, for each i € I, an action feasibility correspondence, A; : M; , U{@ s, } = A
The interpretation is that A;(m; ;) is the set of actions available to her after receiving previous-
play message m;, (i.e., in the subsequent stage). Moreover, & M;,, stands for the situation in
which player i has not received any message yet, so that A;(@yy, ) represents the actions player
i can choose at the beginning of the game. It is convenient to define A : M, U{@;, } = A to be
such that A(my) := X, Ai(m;p) for each my, = (myp)ier, and A(Dnr,) = X,e; Ai(Dnr,,). To
describe the end of the game, we assume that, for each mp = (m;p)icr and i € I, Aj(m;p) =0
if and only if A;(m; ) = 0 for each j € I. In such case, A(m}) = 0 as well. In words, as soon
as the game is over for one player, it is over for everyone.’

We take histories to be sequences of profiles of actions, previous-play messages, and messages
about emotions and traits. With fp, fe, and (A;)ier as primitive elements of our analysis, we
can give a constructive definition of the set H of feasible histories. A history is feasible if, at
each stage, (i) the sequence of actions played is allowed by the rules of the game (specifically,
by (A;)ier and fp), and (ii) the previous-play and emotional messages can be generated with
positive probability given the feedback functions fp and fe.m For convenience, we assume that

14 14

the empty history @ belongs to H.'' The set of terminal histories is Z := {h = (ag,mp,me) €

8For instance, the average amateur chess player arguably cannot remember the entire sequence of moves at all
the stages of the game. Yet, the disposition of pieces on the chessboard informs him of his feasible moves. For
instance, if his king is under check, he can understand which are the legitimate moves he can take (if any) based on
such disposition. One can think of previous play messages (e.g. the piece disposition) as summary indicators that
(perhaps imperfectly) aggregate past moves and that provide all the information needed to be able to continue
the game.

9This means that players who are at some stage inactive actually have only one feasible action (say, a dummy

action

wait”), which will always be neglected in our notation.
10VWe give a formal definition of feasibility in Appendix C.

" The empty history can be thought of as a history of length zero where no action has been played and no



H : A(mpy) = 0}, and the set of non-terminal histories is H := H \ Z.

Note that, at each stage, agents first act, and then observe messages. The previous-play
message profile generated at some stage k depends on the entire sequence of action profiles
played up to that stage, while emotional feedback depends on actions played, personal traits,
and emotions. To ease notation, we let M := M, x M., with generic element m = (mp, me)
describing in a concise way the (previous-play and emotional) feedback received by all players.
The set M; := M;, x M; ., with generic element m;, has analogous meaning.

The assumption that players need not observe others’ actions or messages justifies the intro-
duction of the set of personal histories of any player i, defined as H; := plrojueL:0 AL M H. The
set H; collects all the information — in terms of actions played and messages received — player
¢ may have access to as the game unfolds. The sets H; and Z; represent the sets of personal
non-terminal and terminal histories, respectively. Thus, {H;, Z;} is a partition of H;.

A (weak) “prefix of” relation < can be defined on H. Given h = (a¥, "), h = (af,m!) € H,
h < h if either h = h or k < ¢ and (a*,m*) = (a*,mF). If h < h, we say that h (weakly)
precedes h. Since @ € H, it is easy to check that H, partially ordered by =<, is a tree, and that
the same holds for H;.

Lastly, a consequence function m: Z x © — Y specifies how outcomes accrue to players at
the end of the game. For each i € I and (2,0) € Z x ©, we let m;(2,0) := projy, n(z,0). We

conclude this section introducing our running example.

Example 5 (Buy me an ice-cream). Child is at home alone and he should do his homework,
but he is tempted to play video-games. When Dad gets back from work, Child asks him to buy
him an ice-cream. Dad would be happy to reward Child, but he does not know if his son studied.
He simply asks him if he has done his homework, and to decide based on the answer. To make
the problem more interesting we add two features. First, we assume Child is concerned about
his image in Dad’s eyes: he dislikes being thought of as a liar, regardless of whether he actually
lied or not.'? Second, we assume that Child may blush when he falsely claims that he has done
his homework.

The set of Child’s potentially available actions is A¢ := {w, v, yes,no}, where the elements
denote doing homework, playing video-games, saying “yes,” and saying “no,” respectively. As
for Dad, we let Ap := {buy, not}, because he can either buy Child an ice-cream or not. Only Dad
observes emotional messages throughout, so let Mp . := {b, b, n}, whose elements respectively

7w

stand for “blushing,” “not blushing,” and “uninformative message,” and Mc, := {n}. Lastly,
assume Op is a singleton and let 80 € ©¢ C Ry denote Child’s appreciation for video-games.
We model the situation as follows. Child first privately chooses between homework and
video-games, then he answers “yes” or “no” to Dad, and lastly Dad decides whether to buy the
ice-cream. Child observes all the actions taken, while Dad observes only the actions taken from

the second stage onward. To capture this flow of information, for each a € {w, v}, a’ € {yes, no},

message has been received yet - i.e., Iy = (D4, Dm,, Pn). To simplify notation, we denote it simply as @.
12This is a form of image concern. In particular, in our case the concern depends on others’ opinions about

good actions, i.e., not lying (see Battigalli and Dufwenberg, 2022).



and a” € {buy,not}, we can define function f, to be such that (a) — (a,a), (a,a’) ((a,d),d),
(a,a',a") — ((a, a,a’),(d, a”)), where the two components are Child’s and Dad’s previous-play
messages, respectively, and a is an uninformative message. Action feasibility correspondences
are defined in an obvious way.

Recall that we would like to model a situation where Child has image concerns and may
blush with positive probability only if he lies after playing video-games. Relevant emotions in
this settings are confidence, guilt, and blame. Child is confident if he thinks he can get away
with his lie, he might feel guilty for not doing his homework, and he dislikes Dad’s blame. A
profile of emotional states is an element of the set E := [0,1] x {0,1} x [0, 1], with its three
components representing confidence, guilt, and blame, respectively. Confidence and guilt shape
emotional feedback in the “second stage” of the situation we have in mind (i.e., when Child
decides what to tell Dad). Denote these emotions as co and gz, where the subscript reminds
that these are Child’s emotional states during the second stage, and the boldface font is used to
distinguish emotions from other objects. Dad’s blame instead matters at the end of the game,
because Child cares about what Dad eventually thinks of him. Denote such emotion as bs. To
ease notation, we neglect the emotions held at other points of the interaction.

Then, we can assume that Child may blush only if he feels guilty for not doing his homework,
and that the probability of not blushing is equal to his confidence: for each (a, 6, e?) € AxO x E?,

g9 (c25ﬁb +(1- c2)5b) + (1 —go)o—p if a =yes;

fola,0,e*) = (1)

—p if a = no;

and equal to 6, in all other cases.'® This formulation implies that message b may be generated
only after Child’s second-stage action and only if he says “yes.” Also note that personal trait ¢
does not affect emotional feedback in this example.

It is natural to try to tie the emotions just discussed to a more structured model. For instance,
we hinted at the fact that guilt may arise if Child plays video-games. We will elaborate on this (cf.
p. 14) and we will explain how to embed emotions into an interactive situation. Eventually, we
will obtain that b may realize only if Child plays video-games and subsequently says “yes.” For
the moment, we leave the description of emotions and feedback unstructured. This means that
Dad can observe a trivial length-one personal history (where he waits and observes uninformative
signals about Child’s action and emotions) and three length-two personal histories, identified
with (yes,b), (yes,—b), and (no, —b).

Lastly, we describe utility functions. Child’s is the most interesting. Recall that he dis-
likes Dad’s blame bs. In terms of material outcomes, let Yo := {0,1}2, with generic ele-
ment (yc,1,Yc,2), and with the two coordinates indicating whether Child eats the ice-cream and

whether he plays video-games, respectively. Then, define

oo (y,0,e*) == yo1 + Oyc2 — bs. (2)

13We report only Dad’s message as subscript, as Child only observes uninformative messages. Moreover, we
report the argument e? to be consistent with the notation used in the main text, because the relevant feedback

is generated in the “second stage’ (i.e., after players have experienced a stream of emotions of length 2).

10



As for Dad, he incurs a cost of 1 to buy the ice-cream and he gets a payoff of 2 if he buys the

ice-cream when Child did his homework (and 0 otherwise). A

2.3 Predispositions to act and believe

We now define “states of the world,” which we take to be complete descriptions of players’ traits

)

and predispositions to act and believe. The term “predisposition,” suggests that we do not want
to define only players’ behavior and beliefs along the path of the game, but rather how they
would behave and what they would believe conditional on all possible contingencies. A state of

the world therefore encompasses all the relevant aspects of a strategic situation.

2.3.1 Behavior

Our first building block is a complete description of a player’s behavior conditional on different
personal histories. To define such objects, we introduce, for each player i € I, the correspondence
A; : H; = A;, where, for each h; € H;, fiz(hz) = {a; € A; : 3m; € My, (hi,a;,m;) € H;}. In
words, .,le(hz) is the set of player i’s available actions after personal history h;. For each i € I,
we define the set of i’s personal external states as:
Si= X Ai(h).
h;€H;

The set of personal external state profiles is S := X..; 5;, and we call s € S an external state.

i€l

A personal external state is a map from non-terminal personal histories to feasible actions.
Elements of S; can technically be labeled as player ¢’s “strategies”, but we refrain from using such
terminology because we maintain that strategies are plans in the minds of players. In particular,
we will allow player i to form beliefs about her own behavior (i.e., over the set S;): such beliefs
are interpreted as the way in which a player expects herself to behave in the future. Importantly,
a complete description of player i’s contingent behavior, s;, may or may not coincide with what

she planned to do before the game started.

2.3.2 Beliefs

We now discuss how to give a complete description of the epistemic features of a player. The
mathematical description of a player’s way of thinking is a hierarchical system of beliefs, that
is, a map from personal histories to hierarchies of beliefs. We define such objects inductively.
First, define the space of primitive uncertainty to be Q° := S x ©. This is the basic uncer-
tainty space upon which players form their first-order beliefs.'* A system of first-order beliefs is
any function that maps from H; to the set of Borel probability measures on Q°. Therefore, the
set of systems of first-order beliefs of player i is T; 1 1= [A(QO)]Hi. We define the sets of profiles
of first-order beliefs of players other than i as 7_;1 1= X jen\{i} Tj1. Lastly, for each i € I, we

let QL := Q0 x T, ;.

MNote that players form beliefs also over their own traits and personal external states. Later on, we will
make the assumption that rational players know their personal traits, while beliefs about one’s own behavior are

interpreted as players’ plans.
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Assume now that Q’:l, Tik—1, and T_; 1 have been defined for each i € I and k €

{2,...,n}. Then, define:
n—1y1H; n n—1 0 ¢
Tin = [A(Q_i )] o Toin= X Tin, QL =Q" " xT_;n=0"x (X T—z‘,k) )
jen{i} k=1

The set of systems of n-th-order beliefs of player i is T;,. We define also T, := X;c; Tin-
As a matter of notation, 7;, denotes the set of systems of n-th order beliefs, while the set of
hierarchies of systems of beliefs of order up to n will be denoted as 7", as specified below.

We let the set of n-th-order hierarchical systems of beliefs (with n € N) and the set of infinite
hierarchical systems of beliefs of player i be, respectively,

n _ n _
T = X T = [(AON) "] x X [(A@F))], 7%= X Tin.
k=1 k=2 neN

Define also 7, := XZ:I Tk, T" = XZ:I T, T2 = Xje[\{i} 7}00 and T := X, ; 7;00.15

A generic 7,° € 7,°° is an epistemic type of player ¢. Taking an infinite hierarchical system
of beliefs as the epistemic type of a player allows us to conduct an epistemic analysis without
resorting to a type structure. The interpretation of such objects is similar to that of personal
external states: 7,° represents a complete description of what player 7 would believe at different
contingencies. Unlike personal external states, we informally assume players know their epis-
temic types. Finally, note that we have not imposed any requirement in the construction above:

cognitive sophistication properties will be modeled as features that hold only at some states.
Remark 1. For each i € I and n € NU {oco}, 7, is compact metrizable.'®

We conclude with a notational clarification. For each n € N, ¢ € I, 7, € T; 5, and h; € H;,
to ease interpretation we denote 7; ,(h;) € A(Qﬁ;l) by Tin(-|hi). Indeed, recall that 7; ,, selects
a n-th-order belief for each personal history, and such notation suggests that such belief is the
one held by player ¢ conditional on observing personal history h;. Moreover, given n € N and
7' € T, we write 7;*( - |h;) as a shorthand for (7; (- |h;));_,. To ease notation and with a small
abuse, given two generic topological spaces X and Y and a measure y € A(X x Y), for each
A C X, we write pu(A) instead of (A x Y'). Therefore, expressions such as 7; ,,({s—i}|h;) should
be read as 7i,(S; x {s_i} x © x T 1|h).

2.3.3 States of the world

We can now define the set of states of the world as Q™ := Q0 x 7°°, and measurable subsets of

2% are events. For each ¢ € I, S; x ©; x T, is instead the set of personal states of player <.

5Note that it is possible to write QF = Q° x 7;*, for each @ € I and n € N. This explains the presence of
superscripts in our notation.

5Given that Q° is finite, it is compact metrizable and so is A(Q") (Aliprantis and Border, 2006, Theorem
15.11). Tychonoft’s theorem and Theorem 3.36 of Aliprantis and Border (2006) imply that 751, QF, and Q% are
compact metrizable as they are countable products of compact metrizable spaces. An inductive argument shows
that Tin, QF, and Q7; are compact metrizable. With this, for each ¢ € I and n € NU {oo}, T;" is a countable

product of compact metrizable spaces, and it is therefore compact metrizable as well.
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Remark 2. 2* and S; x ©; x T,>° are compact metrizable.

A state of the world provides all the relevant game-specific aspects about players, as it
encodes their traits and a complete description of their behavior and their beliefs conditional on
each possible contingency that may arise as the game unfolds. Throughout, we will interpret
measurable sets of states of the world as those events that can be evaluated by players’ beliefs
of some order. We will show that, under a belief coherence property, it is as if players formed
their beliefs on Q> (cf. Lemma 3). Events in Q> such as “a player is rational” (cf. Lemma 8)
can then be assessed by coherent players, and this will be key in defining a theory of strategic

reasoning (cf. Section 6; specifically, Lemma 10).

2.3.4 Epistemic types, game unfolding, and emotions

States of the world capture all the game-specific attitudes of players. Yet, we still need to
explain how emotions are triggered by players’ behavior and beliefs as the game unfolds. It
seems reasonable to think that feelings such as surprise, guilt, or frustration arise from the
unfolding of the game (e.g., from players’ choices) and from endogenous beliefs (e.g., from
player’s expectations). In our running example we introduced broad concepts such as guilt,
distrust, or blame, but the situation at hand also suggested a very natural interpretation of such
emotions (e.g., Child feels guilty if he plays video-games instead of studying). Our aim is to tie
streams of emotions experienced by players during the game to states of the world.

First, we discuss how players’ beliefs are realized as the game unfolds. The realized beliefs of a
player at some personal history are the beliefs held by that player at predecessors of such history
(i.e., along the “path” that led to such history). We define a profile of realized-beliefs functions
p = (pn)pef, where, for each h = (h;)ier € H, py, is the map 7°° — ((77°(- \hi))w<hi)ier- In
words, pp,(7%°) is the stream of belief profiles realized along h.'”

Then, we define a continuous emotion-generating function, € : H x T — A(E<FHL), and
we make the following assumptions about it. First, only realized beliefs matter in the generation
of emotions: for each h = (h;)ic; € H, the section of ¢ at h is given by e} := &}, o py, with
En : pn(T™) — A(ESE*). Second, along histories of a given length ¢ € {1,..., L} players
experience streams of emotion profiles of length ¢ + 1:'® for each h € HY, suppe, C EL
Third, we posit a belief-order K € N such that beliefs of order higher than K € N are irrelevant
for the generation of emotions: for each 7,7 ¢ T, 7K = 7K implies e(h, 7°) = ¢(h, 7>)
for each h € H. For simplicity, we write the argument of ¢ directly as elements of H x TX,

By linking the generation of emotions to game-specific contingencies, function € completes
the definition of a game with feedback about emotions. A game with feedback about emotions is a
structure I' := (I, A, fp, fo, T, €, (0i,Ai, M; 1, M, o, Y, Ej, )icr), with its components as defined

in previous sections. It is informally assumed that these elements are commonly known.

17 A brief comment on notation. Indexing objects by (personal) histories should be read as “at such history.”
So, for instance, py(7°°) are the beliefs realized at h, u; n, (s, 6, 7%) the utility i expects at h; given (s, 0, 7%), and
C(z|hi; 5,0, 7™) the probability of z occurring given (s,#,7™) and conditional on h; occurring (cf. Section 4.4).

¥Indeed, it is reasonable to assume that an emotion profile is generated after each stage. Hence, a given

length-¢ history induces one emotion for each of its £ + 1 weak predecessors.
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Next, we retrieve a profile of feedback functions about beliefs (or, simply, emotional feedback)
for=(fre: SxOXTE - A(M.))pen. Foreach h € H, (s5,0,75) € Sx © x TEK and m. € Mo,
let

Frols,0, 77 ) [me] :/ fe(s(h), 0, "M ) me] - e(h, 75)[de" M, (3)
EL(h)+1
where L(h) denotes the length of each history h € H. Continuity of fe and e implies the
following.
Remark 3. For each h € H, f} ¢ is continuous.

Note that the domain of feedback functions is now a set over which players form well-defined
beliefs. In Section 3, we present assumptions on f. that allow to prove technical results.

We also express the feedback about previous play in a way that depends on profiles (s, 8, 7).
To do so, define f;, := (frp : Sx O x TE — A(M,))nen to be such that, for each h = (af,m?) €
H, (5,0,7%) € S x © x TK and m,, € M,,

1 if fp(at,s(at)) = Myp;

0 otherwise.

fh,p(s, 0, TK) [mp} =

In words, f (s, 0, 7K) is a degenerate probability measure concentrated on the message about
previous play that would be generated by fp if players behave as described by s after history
h. Note that f}, does not depend on personal traits or on systems of beliefs. This is consistent
with the idea that previous-play messages only pertain to (past) behavior, which is entirely
summarized by personal external states.

Finally, we let f := (f, : S x © x TK — A(M))pen summarize the generation of messages
about both previous play and emotions. To this end, for each (s,6,75) € S x © x TX define

fh(5795 TK) = fh,p(57 gvTK) ® fh,e(sa G,TK), (4)

where ® denotes the product of measures. Consistently with the notation used so far, we let

Ji,n = margy, ofy, for each i € I.

Example 5 (Buy me an ice-cream, continued). A generic personal external state of Dad
is indicated as aj.ag.a3, where aj, as, and as are the actions prescribed after histories (yes,b),
(yes, —b), and (no, —b), respectively. A generic personal external state of Child is instead a;.az,
with a; (resp., as) denoting the first-stage (resp., second-stage) action he would play.”
Defining the generative process for all the streams of emotion profiles is notationally costly.
To ease the exposition, we only define how the emotions appearing in equations (1) and (2) (cf. p.

10) are generated. For simplicity, we further assume emotions to be generated deterministically,

19 Actually, according to our definition, a personal external state of Child should be a map from the set of
histories where Child is active, {@, (V), (H)}, to Ac. Letting Child’s personal external states take the form of
ai1.a2 amounts to not specifying the action prescribed at the (personal) history that is not allowed for by the

first-stage action. This is inconsequential, and it comes with an advantage in terms of parsimony of notation.
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and we let K = 1. First, Child is guilty if he plays video-games instead of doing his homework.
Hence, we simply impose go = 1 after history (v), and go = 0 after (w).?’ Second, Child’s
confidence is his belief of getting away with his lie even if he blushes. Given that we are only
interested in such emotion when he lies after playing video-games, we can let ca = 7¢ 1 ({3 D
SD ((yes, b)) = buy}|v). As for Dad, blame (bs) is equal to the probability with which he believes
Child lied. Let L := {v.yes,w.no} be the set of lies,”! and zp the terminal personal history
observed by Dad during the game unfolding. Then, b = 7p 1(L|zp). We neglect the generation
of emotions at other stages of the game, as they are ultimately inconsequential.
Feedback now takes a tractable form. We obtain, for each (s,0,7!) € S x © x T,

@+ (1—q) if sc(v)=Y;

fw ,6(37977—1) -
© O—p if s¢(v) = N;

) e(8:0,71) = fupels.0,71) = .

where ¢ = 7¢1 ({sp : sp((yes, b)) = buy}|v) and subscripts of f. denote the length-one history

after which emotional messages are generated. A

From now onward, we will base our analysis on f, rather than on fe. In some sense, emotions
seems therefore to be bypassed. This raises the question of why we have not started expressing
directly feedback functions as dependent on players’ beliefs. The reason is essentially pedagogi-
cal. The game-independent notion of “emotion” allowed us to give a constructive definition of
the game tree. We believe this approach is helpful to understand the double role of emotions.
On the one hand, they drive emotional feedback independently of a specific game. On the other
hand, they are triggered by players’ behavior and beliefs during the game unfolding.

2.4 Utility

We now only need to express utility functions in game-dependent terms. In doing so, we leverage
function € introduced in Section 2.3.4. For each player ¢ € I, a game-dependent psychological
utility function is a function v; : Z x © x TX — R, defined, for each (z,0,75) € Z x © x TX:

vz‘(Z, 0, TK) = / 271'(7T(Z, g)’ 0, eL(Z)Jrl) . 8(2, TK)[deL(Z)+1].
EL(z)+1

Conceptually, v;(z,0,7) can be thought of as i’s expected utility, if she knew that the game
unfolded according to z, and if she knew her opponents’ beliefs and traits. Note that functions
(vi)ier depend only on hierarchies of beliefs of order up to K, because higher-order beliefs do

not trigger emotions. The assumption that ©; and ¢ are continuous gives the following.
Remark 4. For each ¢ € I, v; is continuous.

It is useful to express utility functions as depending on players’ personal external states,

rather than on terminal histories, as players form beliefs over .S and not over Z. In conventional

20Recall that boldface letters represent emotional states. E.g., go describes whether Child feels guilty during
stage 2.
21Recall that v and w stand for video-games and homework, respectively, and yes and no are the answers Child

can give to the question “did you do your homework?”.
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settings, an external state s induces a unique terminal history, but in the present framework
multiple histories can be induced by the same profile (s, #, 7/), as players’ behavior may depend
on the stochastic signals they observe. Hence, we can derive the distribution over terminal
histories induced by any profile (s,8,7%). To do so, it is convenient to retrieve from f a profile
of functions g := (gn : S x © x TH® — A(A x M))peq that specifies how profiles of actions
and messages are stochastically generated after each non-terminal history. In other words,
g describes the probability measure over the immediate successors of any history h for each
underlying profile (s, 8, 75). For each h € H, (5,0,7%) € S x © x TX  and (a,m) € A x M, let
gh(s,G,TK)[(a,m)] _ fn(s,0,75)[m] if a = s(h);
0 otherwise.

In words, once we fix (s, 0, 7%) and h, the probability that profile (a,m) realizes can be positive if
and only if a is consistent with the behavior described by s after h. In such case, the probability
of realization of (a,m) is simply the probability of m, as specified by feedback function fy,.

For each history h € H and profile (s,0,7%) € S x © x TE, let ((h|s,0,7%) denote the
probability that h realizes given (s, 8, 7%).?? For a given game-dependent psychological utility
function v; of player i, we let the external-state-dependent psychological utility function describe
the psychological utility of player 7 as a function of the external states. For each i € I, we define
u; + S x © x TK — R to be such that, for each (s,0,75) € S x © x TK,

wis,0,7%) = " vi(2,0,7)¢(2]5,0,75).
z2€Z
Note that the domain of functions (u;);er is a set over which players form their beliefs of order
K + 1, and about whose elements inferences can be made using emotional signals (cf. Section
3). In light of this, we say that S x © x TX is the set of utility-relevant states.

Remark 5. For each i € I, u; is continuous.??

Example 5 (Buy me an ice-cream, continued). Game-dependent psychological utilities
are easily retrieved. For each z = (ac1,ac2,mp,ap) € Z and (0,7') € © x T1, let m¢1(2) and
mc2(%) denote the two coordinates of Child’s material outcome along z (i.e., whether he gets

the ice-cream and whether he plays video-games). Then,
vo(2,0,71) := 7m0 (2) + Onca(2) — Tpa(L|zp).

Also recall that Dad gets a payoff of 2 from buying the ice-cream when Child did his home-
work and that ice-cream costs 1 to him. Denoting as zp Dad’s terminal personal history induced

by z, we can define

Qprl({SC : 80(@) = w}]zD) —1 ifap = B;
0 if ap = N.

UD(Z,H,Tl) =

22 An explicit definition of such probability is in Appendix C.
Z¥or each h € H, ¢(h|-) is a continuous function on S x © x T (this can be checked using the fact that
functions (fx)necn are continuous as per Remark 3). Continuity of functions (v;)icr (Remark 4) then implies the

result.
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Deriving (u;);es is straightforward but notationally tedious. We postpone a detailed analysis
to Section B.1 in Appendix B. A

3 Inferences on opponents’ behavior, traits, and beliefs

Observing emotional and previous-play messages provides players with the means to make infer-
ences about others’ behavior and realized beliefs. Intuitively, the flow of information available
to a player allows her to gradually restrict the set of utility-relevant states that are consistent
with the observed evidence (i.e., the realized personal histories). In the following, we formalize
such reasoning: Section 3.1 discusses mild assumptions about feedback functions, and Section

3.2 describes the ways in which the game may unfold for each utility-relevant state.

3.1 Properties of feedback

In this section, we discuss properties that make feedback “well-behaved.” In particular, Defini-
tion 1 gives a condition for the feedback about others a player may observe to be independent
from that player’s own beliefs, and Definition 2 gives a notion of simplicity for feedback. An
additional natural requirement consists in imposing some measurability condition on the set of
utility-relevant states that allow a given message to be generated with positive probability after
each history, and Definition 3 is in this spirit.**

First, we formalize the idea that, at any history, the beliefs of a player should not influence
the generation of messages she may observe. This is natural if we stick to our interpretation of
the messages a player can observe as messages about the emotions of others. In the following,
for each i € I and h € H, we let f; o = margy, . ofh,e.25 This map describes the emotional

feedback each player may observe at each history.

Definition 1. Feedback fo = (fne)nen is own-belief independent if, for each i € I, h € H,
s€S,0e€0, and 75 € TE, the section fipe(s,0, -, 7)) of fine is constant on TX.

—1

Own-belief independence requires that the generation of the messages a player can receive
be independent from her own beliefs if we keep fixed a profile (s, 0, 7'5) Note that the messages
generated by player i’s state of mind may shape her opponents’ beliefs, and thus the realization
of messages player ¢ can observe at later stages. In some sense, then, a player’s beliefs may
influence the generation of her future messages. Own-belief independence does not rule this out,
because such effect is incorporated in the realized history and own-belief independence applies
when we keep the realized history fixed.

The most elementary feedback structure satisfying own-belief independence has two features:

(1) only first-order beliefs (of others) matter, and (i7) the generation of messages about a player’s

Z4Note that such assumptions are ultimately assumptions about functions fe and €. However, expressing them
in terms of f. comes with a substantial advantage in terms of notation and interpretation.
25 As suggested by notation, marg denotes a marginalization map. For each measure p on a finite product space

X xY, margy p is a measure on X defined, for each z € X as (margy p)(z) :=>° oy p(z,9y).
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emotions (observed by her opponents) at any history depends exclusively on the beliefs she holds

at (the personal history induced by) such history. Formally, we give the following.

Definition 2. Feedback fo = (fne)nen is stmple if (i) K = 1, and (ii) for each i € I, h =
(hi)ier € H, (s,0) € Sx0O, and L rl e 7;1, Til(' |hi) = ?Z-l(- |h;) implies that margyy, . . fh’e(S,Q,Til,Tli) =

171

margyy, . . fne(s, 0 7t 1) for each j € I\ {i} and 71, € T1,.

s lg o T —

Recall that Mj; . in the previous definition is the set of messages about 7 that j may observe.
Simplicity is a mild requirement. Indeed, the majority of psychological motivations can be
modeled resorting to first-order beliefs only (Battigalli and Dufwenberg, 2022), so that point ()
does not seem to be too restrictive. Condition (i) requires that a player’s emotional leakage be
independent of the realized beliefs of previous stages, so that only the last realized belief plays a
role — this too seems reasonable. Note that feedback is simple in all the examples we mentioned.

Next, we give conditions about feedback that allow players to make inferences.?

Definition 3. Feedback fo = (fne)hen is:

1. semi-regular if, for each h € H, the correspondences (75 — supp fi, o (s, 67TK))(S’9)€SX@
are measurable. That is, if for each h € H and me € M, the lower inverse of {me} of each

of the correspondences (T + supp fi,(s, 0, TK))(S’Q)ESX@ is measurable;

2. regular if, for each h € H and me € M., the lower inverse of {me} of each of the

correspondences (T — supp f(s, 6, TK))(Sﬂ)GSXe s a measurable rectangle.

Semi-regularity is weaker than regularity, and it arguably represents the minimal assumption

¢

needed to allow players to carry out a “well-defined” reasoning about possible ways in which
the game may unfold in Section 3.2), as it ensures that eventualities such as “receiving message
mje with positive probability at (personal) history h;” can be assessed by player i € I. This is

formalized by the following.

Remark 6. If feedback is semi-regular, sets {(s, 0,75) € SxOxTK :m, € supp fhe(s, 0, TK)}
and {(S,G,TK) ESXxOXTE :my, € suppfi,h,e(s,G,TK)} are measurable for each h € H,
Mme € Mg, i € I, and m; e € M;e. 27

Regularity is instead a slightly stronger requirement, but it has a reasonable conceptual
justification. With regularity players are able to disentangle the different factors at play in the

generation of messages. With this, we mean that each player is able to assess also, for example,

26Recall that, for given measurable space (X, X), topological space Y, and correspondence v : X = Y, the
lower inverse of v, v~ : 2¥ — 2% is defined to be such that v7'(A) = {z € X : y(z) N A # 0} for each
A C Y. Correspondence « is said to be measurable if v~ *(F) € X for each closed F C Y. Moreover, given a
countable sequence of measurable spaces (X, Xk )rcx and the product measurable space (XkeK Xk, ®kEK Xk),
C )(keK Xk, with Yy, € &), for each k € K.

a measurable rectangle is a set )(keK Y

Y"Fix h € H and, for each (s,0) € S x ©, let ¢ be the correspondence 7 — supp fu.c(s,6,75). Then, the
first set is (U, 4 {(5,0)} x fy;; (me), which is measurable because vs,9 is measurable. As for the second set, we
write it as [J, o ({(s,0)} x {Umﬂ',e vgé(mi,c,m%,c)}), which is again easily seen to be measurable.

18



the hierarchical systems of beliefs of (each of) her opponents that allow her to observe some
message with positive probability at some history. Formally, this means that the projection onto
7}K of a set of the kind {(S,H,TK) €Sx0xTK m; e supp fi’h7e(8,9,7'K)} is measurable
for each j € I\ {i}. This does not hold for all measurable subsets of S x © x T ?® and it is
ensured precisely by the rectangular shape assumed by such set under regularity of feedback.
While semi-regularity is easily acceptable, one may wonder about how restrictive regularity

actually is. It turns out that the two conditions coincide whenever feedback is also simple.?’
Proposition 1. Let feedback be simple. Then, it is semi-reqular if and only if it is reqular.

Example 5 (Buy me an ice-cream, continued). Informative messages are generated after
history (v), depending on Child’s subsequent action. Feedback is simple because it depends
only on Child’s first-order beliefs held after (v). To check (semi-)regularity of feedback, focus

on message b and history (v). We have:

{(87 977_1) tbe Supp fD,(U),e(87 977_1)}
= {sc : sc(v) = yes} x Sp x © x {7t 1 7¢.1({sp : sp((yes, b)) = buy}|v) < 1} x Tp,

which is a measurable rectangle. Similar considerations apply to message —b and to history (w).
In addition, note that the generation of feedback is independent of Dad’s beliefs of any order,

and this ensures own-belief independence. A

3.2 Making inferences

Recall that multiple (terminal and non-terminal) histories may arise from an underlying utility-
relevant state. A crucial part of players’ reasoning pertains therefore to the understanding of
the possible paths the game can follow given any underlying state.

For each i € I, we let H; : S x © x TX = H; be the correspondence that collects the
set of ¢’s personal histories that are possible given each utility relevant state. Intuitively, a
personal history h; = (af,m{) is possible at (s,0,7%) if (i) i’s observed behavior (i.e., af) is
consistent with s;, and (ii) the feedback i observes at each stage (i.e., m{) can be generated with
positive probability given (s, ,7%) according to feedback f. Given that we informally assume
that players know the rules of interaction, such correspondence can be retrieved by player ¢, by
reasoning about how the game may unfold. The interpretation of H; is straightforward, and to
ease exposition we defer its formal definition to the proof of Lemma 1 (Appendix A, p. 36).

The following result ensures that, under semi-regularity of feedback, the set of utility-relevant

states allowing for any given personal history of any player is measurable.
Lemma 1. If feedback is semi-reqular, H; is measurable for each i € I.

Upon observing a personal history, players can then check whether it is consistent with a

given utility-relevant state, leveraging the personal history correspondences just defined. In

28Indeed, projections onto Polish spaces of Borel sets are analytic but not Borel, in general (cf. Definition 12.23
and Theorem 12.24 of Aliprantis and Border, 2006).

2Proofs are collected in Appendix A.

19



particular, the set of utility-relevant states consistent with h; € H; is (H;)~'(h;). Given that
player i is assumed to know her epistemic type 7>° (hence, the induced hierarchical system of
finite-order beliefs 7€), we can focus on the section of such set at 7

OF, e (h) = {(s,0,75) € Q5 : by € Hy(s,0, 7, 75) ).

R A

For each i € I and TiK € '7;K, we call the sequence of sets (Q[_(Z K (hi))h-eﬁl- the inference sets
of player ¢ when her hierarchical system of beliefs of order K is TZ-K . Note that the inferences
players can make are in general linked to their beliefs of order up to K. The following is an

immediate consequence of Lemma, 1.

Remark 7. If feedback is semi-regular, Qi TK(hi) is measurable for each i € I, h; € H;, and

T4
K e TK.

Example 5 (Buy me an ice-cream, continued). Assume 7¢1 ({sp : sp((yes, b)) = buy}|v) =
%, so that Child blushes with probability % after lying. If s¢ = v.yes, then Hp(s,0,7') =
{(yes,b), (yes,—b)}. If instead s¢ = v.no or s¢ = w.no, then Hp(s,0,7') = {(no,—b)}. Lastly,
if sc = w.yes, then Hp(s,0,7') = {(yes, —b)}. Other correspondences are derived analogously.

The set of profiles (s,6,7!) consistent with Dad’s personal history (yes, —b) is

(Hp) ' ((yes, b)) ={(5,0,7") : s¢c = w.yes}
U{(s,0,7") : s¢ = v.yes, T1.c({sp : sp((yes,b)) = buy}|v) > 0},

and such set can be seen to be measurable. Given that Dad’s beliefs do not play a role in the gen-
eration of feedback, Dad’s corresponding inference set is just Q}J 1 ((yes,—b)) = (Hp' ((yes, b))
D

for each 7',13 € Tl%. Similar considerations apply to other cases. A

4 Rationality

In this section, we describe rationality as the conjunction of several features. First, we analyze
cognitive sophistication requirements: rational players’ beliefs should satisfy a natural notion of
coherence (Section 4.1), they should be consistent with evidence (Section 4.2), and they should
be updated according to Bayes rule throughout the game (Section 4.3). Second, the plan of
a player is required to satisfy an optimality criterion (Section 4.4), and to coincide with the
player’s actual behavioral predisposition (Section 4.5). Third, we define rationality of a player

as the conjunction of the aforementioned properties, proving that it is an event (Section 4.6).

4.1 Coherence

We say that a hierarchy of beliefs is coherent if lower-order beliefs can be recovered from higher-
order ones through marginalization. In some sense, beliefs of different orders along a coherent

hierarchy “agree” on relevant events.
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Definition 4. Epistemic type 77° of player i € I is coherent if, for each n € N and h; € H;,*"
margon—1 Tin+1( - i) = Tin (- [ha).

Let T denote the set of coherent epistemic types of player i and C; the set of personal states

(8i,0:,7°) such that T2° € el

Lemma 2. For each i € I, C; is closed.

The following result is adapted from Brandenburger and Dekel (1993), and it establishes
that a coherent epistemic type of a player can be identified with a system of beliefs over the

space of primitive uncertainty and (not necessarily coherent) epistemic types of her opponents.

Lemma 3. For each i € I, there exists an homeomorphism ¢; : T, 5 — [A(S x © x T_"f)]H’
such that, for each h; € H;, marggn—1 0i(75°)( - |hi) = Tin (- |hi).

4.2 Knowledge-implies-belief

According to the reasoning described in Section 3, upon observing h;, a player who knows her
epistemic type can rule out states that are inconsistent with the occurrence of such history. We
now formally require that the (K +41)-th-order beliefs held by a player at each personal history be
consistent with such inferential reasoning. The expression “knowledge-implies-belief” suggests
that knowing that a history has realized must imply believing (i.e., assigning probability one to)

the set of utility-relevant states that allow for such history.

Definition 5. Epistemic type 7,° of player i € I satisfies knowledge-implies-belief if, for
each h; € H;,
Ti,K+1 (Qi(lﬂ_x(hl)‘hl) =1.

Let 7;??(3 be the set of player i’s epistemic types satisfying knowledge-implies-belief, and K B;

the set of personal states (si,0;,75°) such that T° € Tk B

Lemma 4. If feedback is regular and own-belief independent, K B; is measurable for each i € I.

Note that not assuming coherence makes our notion of knowledge-implies-belief very weak,
as it requires that only (K + 1)-th-order beliefs be updated consistently with evidence. When
considering rational (hence, coherent) players, however, beliefs of all order conform to such

inferential reasoning under the hypotheses of Lemma 4.3

Example 5 (Buy me an ice-cream, continued). Seeing Child blush is the most informative

message for Dad, because it perfectly reveals a lie. We already highlighted that Qlc 1 ( (yes, b)) =
'TD

30In the following, we slightly abuse notation by writing Q°, instead of Q°, to ease the exposition.

31Coherence implies that beliefs of order higher than K + 1 conform to the inferential reasoning we outlined.
With regularity of feedback, we conclude that also lower-order beliefs do so: by coherence they assign probability
one to the projections of inference sets onto Q° and Q7; (with 1 < n < K), and measurability of such projections

is implied by regularity.
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{v.yes} x Sp x © x {7t : 7t ({sp : sp((yes, b)) = buy}|v) > 0}. Knowledge-implies-belief then
ensures that, for example, Dad’s second-order beliefs after personal history (yes, b) are such that
mp,2({sc}|(yes, b)) = 0 for each s € S¢:\ {v.yes}. With coherence, the same reasoning extends
to beliefs of different orders. A

4.3 Belief updating

To model how cognitively rational players should update their beliefs it is useful to unpack the
mechanisms through which information accrues to players. After a given personal history, a
player observes three pieces of information: she first observes the action she plays, and then she
observes the realized previous-play and emotional messages.

We want to formalize the idea that player i uses each piece of information independently,
and timing is key for this purpose. Specifically, player i should first update her beliefs about
her personal external state upon seeing the action she chooses.’” Then, she can take into
account the messages she receives to update her beliefs about others using Bayes rule. Note that
(both previous-play and emotional) messages do not provide novel information about a player’s
personal external state once the player observes the actions she takes.

Conceptually, it is as if we were endowing a player with a fictitious “interim belief” held at
stage “k+ %,” that is, after playing at stage k, but before having observed any messages. In such
metaphor, we should impose that a player does not change her beliefs about her personal external
state after acting. This formalizes a notion of own-action independence of beliefs, capturing the
idea that own actions and messages should be used to make inferences in “parallel” ways.

Before proceeding, we introduce some notation. Recall that ((h|s, 8, 7) was defined as the
probability that h realizes when the utility-relevant state is (s, 8, 7%) (cf. Section 2.4). Taking
player i’s perspective, we denote as ((h|hi;s,0,7%) the probability that h realizes when the
utility-relevant state is (s,0,7%), and conditional on observing h;.

Finally, define (fin, : S x © x TX — A(M;))n,en, to be such that, for each h; € H;,
(5,0,7%) € S x © x TX and (a;,m;) € A; x M;,

fi,hi(5797TK)[m’i] = Z fi7h(3,9,TK)[mi] : C(h|hi;83977-K)7
heH(h;)

where H(h;) is the set of “complete” histories compatible with h;. In words, these functions
describe the generation of messages of a given player ¢ € I (as a function of the utility-relevant
state) at a given personal history. Recall that the feedback functions (fp,)nep derived before
conditioned instead on “complete” histories.

At this point, we can formally describe belief updating of any player i € I. As a prerequisite,
we require that beliefs about one’s self and about others satisfy a form of independence — i.e.,
that the belief held at each given history on the space (Sx©x 7% B(Sx 0 xTX)) be obtained as
a product measure starting from measures on (S; x ©;, B(S; x ©;)) and (S_; x ©_; x T B(S_; x

32Recall that we do not assume that players know their personal external states (i-e., how they would behave

throughout the game).

22



O_; x TX)). Formally, for each h; € H;,

Tii+1(- [hi) = margg, o, i,k 1( - |hi) @ margg .o rx Tigy1( - [hi), (I

where ® is used to denote the product of measures.

Next, we require that the chain rule of conditional probability hold for personal external
states. For each i € I and h; € H;, denote Si(h;) be the set of i’s personal external states that
do not prevent h;, as S;(h;, a;) set of player i’s personal external states that allow h; and that
prescribe a; at h;, and as f_Ii(hi, a;) the set of immediate successors of h; where a; is played. The
chain rule holds if, for each h; € H;, a; € /li(hi), hl € H;(hi,a;) and s; € S;(hs,a;),*

ik 1({si}hg) - 7o s 11 (Si(hiy ai) [hi) = Ti k1 ({si ] ha).- (CR)

Finally, we require that Bayes rule hold for anything else, after playing. Let M;(h;,a;) be
the set of messages player ¢ can observe after playing a; at personal history h;. For each h; € H;,
a; € fli(hi), m; € Mi(hi,a;) and F € B(S_; x © x T&), we impose

Ti,K+1(F|hé) : / fi,hi (Si’ 54,0, Tz'K’ Tf(z)[ml] : (margs,ix@xTK. Ti7K+1) (d(s—i’ 0, 7{(1)|h1)
S_;xOxTE -
Z/ Fini(sis 50, 0,7 75 [mi] - (margg gqx Tixc) (d(s—i, 0, 75)[Rs), (BR-a;)
F

where s; above is any element of S;(h;, a;), and hl = (h;, (a;, m;)).

Definition 6. Epistemic type 7.° of player i € I satisfies correct belief updating if (I), (CR),
and (BR-a;) hold. Let T:Cpu be the set of epistemic types of player i that satisfy correct belief
updating, and CBU; the set of personal states (s;,6;,77°) such that 77° € 7;?83(].

Lemma 5. For each i € I, T 5y s measurable.

Example 5 (Buy me an ice-cream, continued). Dad is inactive and does not receive any
informative message throughout the first stage. In the second stage, he is inactive so he does not
need to update his beliefs about his personal external state with (CR). However, (BR-a;) applies.
Focus for the sake of the example on Dad’s beliefs about F := {s¢ : s¢(2) = v} x © x T2 (i.e.,
“Child played video-games”), and say that he observes (yes,—b). The probability of observing
such personal history at the second stage (i.e., after a “dummy” length-1 personal history h},)

as a function of a profile (s, 0, 75) can be checked to be

1 if s¢ = w.yes;
fD,th,Tb(Sa 977'(1))[(1/7 b)) =41—-¢q if s¢c=uv.yes;
0 if s¢ € {v.no,w.no};

where ¢ = 701 ({SD : sD((yes, b)) = buy}]v). As a result, the probability with which epistemic
type 75y expects to observe (yes, —b) is

mp2({w.yes}|h]) +/

(1—gq)- (margscxexTcl TDQ) (d(sc, G,Té)\th).
{v.yes}xOxTA

=:a(1y)

=B(r5y)

33Recall from Section 2.3.2 that we use obvious abbreviations for marginal probabilities.
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If a(r5y) + B(73y) > 0, (BR-a;) implies that:
BE)
a(ry) + B(TR)
Note that our belief updating rule implies that players do not change their beliefs about

TD,2 (F|(yes, —|b)) =

others after they act if they do not observe any informative message in the meantime. Hence,
Dad’s final blame (i.e., the probability with which he believes Child lied), which concerns Child’s
actions, actually arises at the second stage, since his beliefs about Child’s actions do not change

after his action. A

4.4 Rational planning

As a prerequisite for rational planning, we require that a player know her personal trait. Since
realized utilities at the end of the game are affected by players’ traits, different trait-types of a
player may want to behave differently at some points of the game, and knowing one’s own trait

is necessary to plan how to behave optimally.

Definition 7. Player i knows her personal trait at personal state (s, 0;, 77°) € S; x ©; x T,
if, for each h; € H;, 7; k11 ({G_Z}Ih,) = 1. Let KT; be the set of personal states where player i

knows her personal trait.**

Next, we retrieve a plan of player i (technically, a behavior strategy) from her epistemic type

7°, denoted as

o(r°) € Bi = X A(A;i(hy)).

h;€H;
It is defined, for each h; € H; and a; € .,Zli(hi), as’®

o (77°)(ailhi) :== 7i k11 (Si(hi, a;) [ hi),

where S;(h;, a;) is the set of personal external states of player i consistent with h; that prescribe
a; at h; (cf. Section 4.3).

We argue that such an object is what one can legitimately label as a “strategy.” Indeed,
we take a strategy to be a plan in the mind of a player, and the derivation of o(7;°) follows
this intuition. A plan specifies how a player expects herself to behave at each contingency she
could observe, and a player’s plan coincides with her behavioral predisposition s; if and only if
o(7°)(si(hi)|h;) = 1 for each h; € H;.

Next, we define a player’s expected utility conditional on observing a given personal history.
For each i € I, define the profile of functions (u;p, : S X © x TK - R) n;eH,; to be such that, for
each h; € H; and (s,0,7%) € S x © x TK,

Wi p, (8,0, TK) = Z vi(z, 0, TK)Q(z|hi; 5,0, TK). (5)

z2€Z

34Recall that we are not assuming coherence. Thus, our choice of working with beliefs over utility-relevant
events, although reasonable, is ultimately arbitrary. We choose to impose this condition on beliefs of order K + 1
because such beliefs are the ones used by a player to figure out her optimal plan. Also recall that 7; k41 ({§1}|hl)
is a shortcut for 7; x+1 (S x {0;} x ©_; x Tfﬂhl)

35Also in this case, we rely on beliefs of order K + 1 as we did to define knowledge of one’s personal trait.
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In words, u; , (s, 0, 7K is the expected utility of player i after h; when the utility-relevant
state is (s, 0, 7).

Defining rational planning requires some care because in our setting players may fail to be dy-
namically consistent. This can happen when a player’s utility depends on her own plan, Dynamic
inconsistency arises for this reason, for instance, in models of frustration and anger (Battigalli
et al., 2019b), anticipatory feelings (Caplin and Leahy, 2001), and reference-dependence (Kdszegi
and Rabin, 2006).

In such settings, the appropriate notion of rational planning is a form of “intra-personal
equilibrium”: each self of a player chooses the “optimal” available action taking as given the

actions chosen by other selves.?%

This notion is referred to as one-step optimality . To give a
formal definition of such property, we need to define the “(expected) utility of taking a given
action at a given personal history.” As a maintained assumption throughout this section, we
take systems of beliefs to satisfy independence (see Section 4.3).

Note that choosing a; € flz(hz) at h; induces a distribution over personal histories of the
form h, = (hi,a;,m;). Such personal histories are the instances where the player is going
to act next. The distribution can depend on the player’s type, as well as on the emotional
feedback. We denote the vector of such distributions for a player with hierarchical system of
beliefs 7T as (u(-|hy, a;, i

i) € A(H))p e, aied;(nyy- 1t is possible to obtain an explicit
expression of such distribution using the same steps as in Section 4.3. There, we used the map
fin, + S x 0O x TE — A(M;) to determine the probability that a message m; = (m;p, M)
is generated after personal history h; (as a function of the utility-relevant state). Taking the
section of such map at some s; with s;(h;) = a; gives the distribution over messages that player
i expects to receive after taking action a; at h;.>” To emphasize the role of a;, we denote such
map as f;p,q,- Then, the probability that personal history h, = (hs, a;, m;) realizes after taking

action a; at h; is

p(hilhi, ai, ) =/fi,hi,ai(s—iﬁaTZK’TKZ-)[W]'margs_ix@xﬂg Ti 1 (d(s—i, 0, 755) hy).

At this point, we can define player i’s “local” decision utility functions, (t; p, : Ai(h;) X ©; X
7;K+1 — R)p,en,. For each h; € H;, a; € Ai(hs), 0; € ©;, and 7‘14K+1 € ’EKH,

i, (a0, 0, 7T = > Mz‘(hﬂhzs%TZKH)/ui,hi(8,9,TiK,TKi)Ti,KH(dS,9i,d9—z‘7dTKi!h§)-
h;EHZ

Note that personal trait 6; is being held fixed when taking the expectation: this is needed to

identify the optimal actions for each given personal trait and belief system.

36Note that this presumes that the player understands her dynamic inconsistency and plans accordingly. For
this reason, one could legitimately talk about “sophisticated” planning.

3"Note that insofar as h; and a; are fixed, the only relevant difference between personal external states that
prescribe a; at h; is in the actions prescribed at future reachable contingencies. But those prescriptions are
irrelevant to the generation of emotional feedback thanks to our assumptions. In particular, we assumed that
only realized emotional states mattered in the generation of emotional feedback, and the description of future

behavior cannot affect present emotions.
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The actions that maximize player i’s decision utility at personal history h; are collected by
the best reply correspondence 7; 5, : ©; x T,*° = /lz-(hi), defined as

7‘-K+1).

(0;,77°) = arg max @, (as, 0;, 7

a;EA; (hq)
We are now ready to give our desired definition. In the following, we refer to a “plan,” which
is understood as a profile of probability measures over available actions and generically denoted
oi = (0i(-|hi) € A(Ai(hi))n,em,- Recall that o;(77°) denotes the plan induced by a type 72°.

Definition 8. A plan o; is one-step optimal for (0;,7°) if, for each h; € H;,
supp o ( - |hi) C rip, (05, 77°).

Player i plans rationally at personal state (s;,0;,7°) if she knows her personal trait (i.e.,

(si,0:,7°) € KT;), her epistemic type 72° satisfies independence, and her plan o(17°) is one-

step optimal. Let RP; denote the set of states where player i plans rationally.
Lemma 6. For each i € I, RP; is closed.

As is well-known, deterministic one-step optimal plans may fail to exist. This typically
happens when a player’s utility depends on her own plan, as is the case, for example, when she
is affected by disappointment aversion or anxiety. When no such dependence exist, preferences
depend on the psychological states induced by others’ beliefs, and on the anticipation of such
states. Many interesting models belong in this category, including models with image concerns or
guilt aversion (see, e.g., the survey article by Battigalli and Dufwenberg, 2022, or the discussion
in Section 6 of Battigalli et al.; 2019a). Moreover, under such “independence” assumption,
preferences admit an almost standard expected utility formulation.

This motivates the following definition. To state it, we denote as TZ-7K_ ;= (7'1-7;67,7;)?:1 the
system of beliefs about others induced by system of beliefs 7. For each k € {1,..., K}, Ti ko —i
is the k-th order belief about others’ personal external states, traits, and others’ systems of
beliefs of order up to k — 1. Formally, for each h; € H;, 7i1,—i( - |hi) = margg .o 7,1(- |h;) and
Tik,—i( - |hi) = margg o k-1 Tik(-|h;) for each k € {2,..., K}. Note that Tf_i is obtained
by system of beliefs TZ-K esse;ltially by excluding i’s beliefs about her own behavior (i.e., the
marginal of her beliefs of any order on S;). Finally, we can state our desired condition as the
requirement that a player’s utility be the same whenever her system of beliefs differ only in the

induced beliefs about her own behavior.

Definition 9. Player i’s preferences are own-plan independent if for each (8,0,7{2) €S x
O x TE and &, 7K € TK,

-1’ A )

r -:ﬂ{ii=>ui(s,0 K K

1,—1 sl v l—g

= ui(s,e,ﬂ-K,Tﬁ).

Under own-plan independence, preferences are dynamically consistent and rational plans can
be obtained by dynamic programming methods. To illustrate, we focus on the “(expected) utility

of following a given plan from a given personal history onward.” Previously, we used the notation
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C(z|hs; 5,0, 75) to denote the probability of terminal history z conditional on having reached per-
sonal history h;, when the utility-relevant state is (s, 6, 7). The notation (z|hs; 0i, 54,0, 75)
has analogous meaning, but player i’s behavior is described by a plan o; € X, . A(A;i(hy)).?
Note that such probability is affected only by the behavior prescribed by o; after personal history
h;, that is, by the continuation plan (o;( - |h})) n=h;- We slightly abuse notation by letting

ui,hi (Uia S—i, 07 TK) = Z UZ‘(Z, 07 TK) : C(Z|hla TiyS—i 97 TK)'
z2€Z
Conceptually, this is an intuitive modification of (5). The expected utility of following plan o;

from h; onward for type (6;,7,°) is then
;i p; (04,05, 77°) = /Ui,hi(ai,8—1'79@‘,9—1‘,71-[{77[2) i g1 (80, 05, (55, 05, 755 | 1a)).
Say that a plan ¢ is sequentially optimal for (¢;,77°) if, for each h; € H;,

* ~ 00
o; € arg max U, p, (04, 6;, 7,°).
;€Y

Standard dynamic programming results give the following.*

Remark 8. Assume player ¢ has own-plan independent preferences. Then, a plan is sequentially
optimal for (0;, 77°) if and only if it is one-step optimal for (6;, 7°°). Moreover, a pure sequentially

optimal plan exists.*’

The issue of dynamic (in)consistency with psychological preferences is discussed in detail by
(Battigalli and Dufwenberg, 2009, Section 6.3) and Battigalli et al. (2019a), to which we refer
the interested reader.

We conclude with an illustration.

Example 5 (Buy me an ice-cream, continued). Suppose that Child’s epistemic type 7&°
satisfies independence and knowledge of personal trait, and that his system of second-order
beliefs 7¢ 2 is such that, for each he € {9, (w), (v)},

margg TC,Z( : ’hC) = Onot.buy.not; (6)
Erc, [TD’l (LC|(yes, —|b)) \hc] =E;, [TDJ (L|(yes, b)) |hc} =E;, [TD’l (LC\(no, —|b)) |hC] =1.

(7)

In words, (6) says that, at each history where he is active, Child is sure that Dad would behave

according to not.buy.not (i.e., that Dad would buy him the ice-cream only if he says “no” without
blushing).*! Equation (7) instead says that Child thinks that Dad would be sure he is a liar

38The derivation of objects of this kind is conceptually straightforward. We offer an explicit discussion in
Appendix C.

39G8ee Kreps (2013) for an overview.

4ORandomization is superfluous because the expected utility is affine in the probabilities assigned by plans to
personal external states.

4INote that this implies that he would blush for sure if he says “yes” after having played video-games.
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if and only if he blushes. (Recall that L is the set of personal external states where Child lies,
and note that L denotes its complement.) The expected utilities of saying “yes” or “no” after

doing homework and playing videogames can be retrieved as®?

uc,(w) (yes, O, 8) = 7'072({5D : sD((yes, —|b)) = buy}|w) —Ere, [TDJ (L|(yes, —|b)) ]w] =1;
ﬂq(w)(no, Oc, 7(2;) = TC72({SD : sD((no, —|b)) = buy}]w) —Ere, [TDJ (L|(n0, ﬁb))|w] = 0;
e, (v (yes, Oc, 78) =0+ q(rc2({sp : sp((yes,—b)) = buy}|v) — Ere, [TD1 (Ll (yes, —b))|v] )+
+(1—9q) (7'072({313 : sD((yes, b)) = buy}\v) —Ere, [TDJ (L|(yes, b))]v])
=60-1,
uc, () (no, 0c, 8) =0+ tc2({sp : sp((no,=b)) = buy }|v) — Ere, [7D,1 (L|(no, =b))|v]) = 6;
where the second equality in each line follows from assumptions (6) and (7) on Child’s beliefs.
Under (6) and (7), it is optimal for Child to say yes after doing homework, and to say no
after playing video-games. Knowing this, at the beginning of the game, Child chooses between
doing his homework and saying yes, and playing video-games and saying no. These two courses

of actions yield expected utilities of 1 and 6, respectively. The latter is preferred if and only if

0 > 1. Note that Child’s preferences are own-plan independent. A

4.5 Consistency

As a final building block for our definition of rationality, we require that rational players effec-
tively carry out their plans — that is, the behavior described by their personal external states

coincides with what they plan to do.

Definition 10. Player i is consistent at personal state (s;,0;,7°) if, for each h; € H;,
o(17°)(si(hi)|hi) = 1.

Let CON; be the set of personal states where player i is consistent.

Lemma 7. For each i € I, CON; is closed.

4.6 Rationality

We take rationality to be the conjunction of the requirements listed in Sections 4.1-4.5.

Definition 11. Player i is rational at personal state (s;,0;,7°) if (s;,0;,7°) € C; N KB; N
BR, N RP,NCON;. Let R; denote the set of personal states where i is rational.

By the results of previous sections, the following is straightforward.

Lemma 8. If feedback is reqular and own-belief independent, R; is measurable for each i € I.

42A detailed derivation of Child’s local decision utilities is given in Appendix B.1.
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Our notion of rationality deserves some comments. First, it is richer than the one usually
adopted in the literature because we distinguish plans from objective behavior (cf. also Battigalli
and De Vito, 2021). Moreover, we require a player’s plan to assign positive probability, at each
personal history, only to optimal actions: in conjunction with consistency, this implies that a
player’s personal external state must prescribe optimal actions at each personal history, and not
only at personal histories it allows for. This is motivated by the observation that players do not
commit to personal external states (in fact, they need not even know their true ones).

In light of Lemma 3, rational (hence, coherent) players are able to formulate beliefs over the
set of personal states of opponents. Measurability of R; C S; x ©; x T,>° (i € I) ensures that a

rational player j € I \ {i} can wonder about the rationality of i in a well-defined way.

5 Strong A-rationalizability

The aim of this section is to consider some profile A of restricted sets of beliefs — suggested by
the application and context — and define a strong A-rationalizability procedure for the frame-
work developed so far. Such procedure is a version of the strong rationalizability procedure that
incorporates some contextual and transparent restrictions to players’ beliefs (see Battigalli and
Tebaldi, 2019, Battigalli et al., 2019a and relevant references therein). This in turn builds on
earlier concepts of rationalizability for sequential games (Pearce, 1984). The epistemic founda-
tions of our solution concept will be discussed in Section 6 — for the moment, it is enough to
note that it captures the behavioral implications of rationality and forward-induction reasoning.
This way of reasoning posits that players interpret others’ moves as purposeful choices: in this
way, they try to rationalize such moves, making inferences about opponents’ beliefs, traits, and
future behavior.

We begin with some terminology. A profile of belief restrictions is A = (A;);er, where, for
each i € I, A; = (Ap,)o,co, and Ay, € B(’EKH). That is, each trait-type of a given player
is associated to a measurable subset of the set of hierarchical system of beliefs of order K + 1
of that player, and such mapping reflects some belief restrictions that are deemed relevant in
the applications at hands. For notational convenience, define, for each i € I and 0, € ©,,
Agf = Ay, X (sz K42 ﬁk) Throughout this section and the next one, assume that a game
and a profile A are fixed.

Given a measure p defined over the measurable space (D, B(D)) with D Polish, we denote
by p* the outer measure defined over (D, 2D ) defined, for each F' C D, as:**

p*(F) == inf {u(G) € [0,1] : G € B(D),F C G}.

Then, we say that a (K + 1)-th-order system of beliefs of player i 7; xy1, strongly believes
F e 2°% if, for each h; € H;, F N QIE@',T.K(}”) # 0 implies 7/ (F|h;) = 1, where 7/ is the

i
K-th-order hierarchical system of beliefs obtained by taking, for each h; € H; the marginals of
7i.k+1( - |hi) over the tuple of sets (Q0, (Q" )5 1),

i/n=1

“3Note that the following definition implies that u*(F) = u(F) if F is Borel, and that F' differs from a Borel
set only by a p*-null set if F' is analytic but not Borel.

29



Consider the following procedure.*

Definition 12. First, define P2(0) := S; x ©; x TX, P2,(0) := S_; x O_; x TE, and P2(0) :=
S % © x TH. Then, for eachn > 1 and i € I, (3i79z‘,7’,-K) € PZ-A(n) if and only if there exists
Tik+1 € Ti k41,88 N Ti k+1,cBU such that:

1. (TZ-K,ﬂJﬂ_l) € prOjTiKH (7;08 N Agf);

2. for each h; € H;, si(h;) € 7 p, (6, (TK77_—Z"K+1));

3. fOT' each h; € H;, Ti,K-i—l(Si(hi; Sz(hz))‘hz) =1

4. for each k € {1,...,n — 1}, Ti 11 strongly believes P2, (k).

Define P2,(n) := Xien (i} PJ-A(n) and P2 (n) := X, P2 (n).

In Definition 12, utility-relevant states are iteratively deleted if they fail to satisfy some
requirements that mirror closely the rationality conditions of Section 4, plus the strong-belief
requirement. However, this procedure is carried out on utility-relevant states, rather than on
states of the world. Note that for standard games (i.e., when K = 0) utility-relevant states have
the form (0, s), and we obtain the strong rationalizability procedure of Battigalli (2003) and
Battigalli and Prestipino (2013).

Lemma 9. Fiz a profile of belief restrictions A. For each n € N and i € I, (i) if feedback is
reqular and own-belief independent, P™(n) is analytic, and (ii) P2 (n) C P2 (n — 1).

Thanks to Lemma 9, the limit of the sequence (P2(n))en is well-defined: we say that a
utility-relevant state (s, 8, 7) is strongly A-rationalizable if (s, 0, 7%) € P2 (00) 1= ,,en P2 (R).
Note that, without additional assumptions, the set of strongly A-rationalizable states may be
empty because A may entail restrictions on endogenous beliefs that are ultimately inconsistent
with strategic reasoning.

However, nonemptiness obtains in a number of cases of interest. For instance, one can show
that the set of strongly A-rationalizable states is nonempty when feedback is regular and own-
belief independent, players’ preferences are own-plan independent, and A only restricts initial
beliefs about traits, or beliefs about such beliefs.

A slightly simpler and more convenient procedure has been proposed in the literature for

standard games. We adapt it to our framework with belief-dependent preferences.

Definition 13. First, define Q®(0) := S; x 0; x T.K, Q2,(0) := S_; xO_; x TX

—1

S x O x TK. Then, for eachn>1 andi € I, (s;,0;,75) € Q2 (n) if and only if

)

and Q(0)2 :=

oM (Si,ei,TiK) € QzA(n —1);

and there exists T; k+1 € Ti k+1,kB N Ti,k+1,cBU such that

441n th following, we denote by Ti x+1,xB and T; k+1,cBu the set of systems of beliefs of order K + 1 that

satisfy knowledge-implies-belief and correct belief updating, respectively.
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M (TiKa 7_'2'7[(_._1) € prOjTiKH (7;?8 N Agf)}.

2M fO?” each h; € H;, Sz(hz) S Ti,hi(ei, (T‘K,?i,K-i-l));'

3M for each h; € H;, Ti ic+1(Si(hi, si(hi))|hi) = 1;
4M T; i 41 strongly believes Q2;(n — 1).

Define Q2,(n) := Xjen iy Q]-A(n) and Q4 (n) := X,.; Qi(n).

Such procedure has been called as “naive” strong A-rationalizability (Battigalli and Prestipino,
2013). We could also label it as “memoryless,” or “one-step,” as each elimination round only
relies on the previous step (to appreciate this, compare requirements OM and 4M of Definition

13 with requirement 4 of Definition 12). Adapting the proof of Lemma 9, one gets the following.

Remark 9. Fix a profile of belief restrictions A. For each n € N and i € I, (i) if feedback is
regular and own-belief independent, Q2 (n) is analytic, and (ii) Q2 (n) C QX (n — 1).

Remark 9 implies that Q2 (c0) := (),cy Q2 (n) is meaningfully defined. It is natural to
wonder if the two procedures are equivalent. We provide an affirmative answer for a special
case of belief restrictions (see Battigalli and Prestipino, 2013 for a similar result concerning
standard games) under the assumption of own-plan independence of preferences. We say that
A = (Ay,)icr0,co, is rectangular if, for each i € I and 0; € ©;, Ay, is a measurable rectan-
gle. This means that, for each ¢ € I and 0; € ©;, there exists a profile of measurable sets
((Bei7n7hi)hi€f{i)'r]z(:+11 such that By, ,,p, C A(Qﬁ;l) and Ay, = XnK:11 X, e, B, n.h;- > In words,
By, nh; is the measurable set of n-th-order beliefs player ¢ is allowed to hold at history h; when

her trait is 6;.

Proposition 2. Assume that the profile of belief restrictions A is rectangular and preferences
are own-plan independent for each player. For alli € T and n € NU {0}, P2(n) = Q®(n).

We conclude with an illustration of the procedure.

Example 5 (Buy me an ice-cream, continued). For simplicity, we do not impose belief
restrictions and we assume O¢ = {6',0"}, with 0 < ¢/ < 1 < 6”. To keep the exposition
simple, we describe the procedure only informally.* Moreover, given condition 3 of Definition
12, we can assume players have deterministic plans coinciding with their personal external
state: for simplicity, we talk directly of optimal personal external states. Lastly, with own-plan
independence (hence, consistency) of preferences, we can assume that Child commits to a plan

among w.yes, w.no, v.yes, and v.no at the root of the game.

Step 1 It is possible to check that v.no grants Child a strictly higher expected utility than w.no
at the root of the game.”” Thus, projg,xe. Pc(1) = {w.yes, v.yes, v.no} x {¢',6"}.

0 . instead of Q° to ease notation.

45With some abuse, we write Q°;
46 A formal analysis is reported in Appendix B.
4TIntuitively, if he correctly expects to play no in the second stage, he would be sure not to blush after his
report. Then, his expectation about Dad’s behavior (which he knows to depend on the fact that he observes
personal history (no, —b)) will be exactly the same regardless of whether he plays w.no or v.no, as they both give

rise to Dad’s personal history (no, —b). Playing video-games thus allows Child to secure a higher expected utility.
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Step 2

Step 3

Step 4

Turning to Dad, note that condition 1 of Definition 12 implies that he is sure that
Child played video-games in the first stage whenever he observes (yes,b). He is better
off not buying him the ice-cream in such case, so that projs, Pp(1) = {sD € Sp:
sp((yes,b)) = not}.

Taking into account the first step, Child realizes that Dad will not buy the ice-cream
if he sees him blush. This undermine Child confidence, who will blush for sure upon
choosing v.yes.”® Moreover, Dad will spot Child’s lie for sure, and Child’s image
concerns then imply that v.yes is strictly worse than v.no. Now note that v.no ensures
a utility of 6 coming from video-games: for trait-type 6", this is higher than the
maximum utility that w.yes may lead to (i.e., the utility of 1 coming from the ice-
cream). Hence, projg .o, Pc(2) = ({w.yes,v.no} x {#}) U ({v.no} x {6"}). On the
other hand, Dad’s strong belief in P (1) leads him to conclude that it must be the
case that Child played video-games in the first stage whenever he observes (N, —b).
Thus, upon observing (no, —b), he is sure that Child did not do his homework, and
he will not buy him the ice-cream in such case. We obtain projg, Pp(2) = {sD :
sp((no,—b)) = sp((yes,b)) = not}. That is, he will not buy Child an ice-cream if he

observes (no, —b) or (yes,b).

This step has no behavioral implications for Child, because trait-type 6’ is not sure of
Dad’s behavior after (yes, —b), so both w.yes and v.no can be optimal for some belief
(e.g., the latter is optimal if he is sure that Dad would not buy him the ice-cream also
if he observes (yes,—b)). Dad instead concludes, by strong belief in P(1) and P (2),
that personal history (yes, —b) realizes if and only if Child did his homework. Upon
observing such personal history, he should therefore buy him an ice-cream. Thus,

projs, Pp(3) = {not.buy.not}.

At this point, by strong belief in all previous steps, Child is sure that Dad will believe
him and buy him an ice-cream if she observes (yes, —b). Therefore, w.yes allows to
secure the ice-cream without being blamed. Trait-type 6’ finds it optimal to play
according to w.yes, as his value of video-games (i.e., #) is lower than that of ice-cream

(i.e., 1). Hence, projs.xe, Pc(4) = {(w.yes,#'), (v,no,0")}.

Subsequent steps of the procedure do not yield further behavioral implications. This result

shows that the possibility of betraying a lie through an emotional signal provides Child with a

strong enough incentive to truthfully reveal the action he privately chose. This “full disclosure”

result seems interesting, as we believe that this basic structure of interaction can be applied also

to other situations, where (i) player 1 privately chooses an action and makes a declaration about

his behavior to player 2, (i7) player 1 dislikes being perceived as a liar, and (éi7) player 2 acts

after observing player 1’s report. Resorting to image concern motivations may be less reasonable

in different economic settings, but our insights would still apply if we replace condition (iz) with

“®Recall that Child’s confidence (i.e., his ability to not blush) is exactly the probability with which he believes

Dad would buy him an ice-cream despite the blushing.
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the possibility for player 2 to enforce a punishment. The possibility of using emotional feedback
to assess the truthfulness of a statement makes our framework well-suited for the analysis of
information transmission in situations where factors like facial mimicry are crucial (e.g., political

speeches, sales pitches, or face-to-face bargaining). A

6 Epistemic justification of strong A-rationalizability

In this section, we show that the proposed procedure captures the utility-relevant implications
of some meaningful epistemic assumptions, that is, players’ rationality and strong belief in
rationality, as well as common strong (correct) belief in the restrictions described by A.*’ The
notion of strong belief requires that a player be certain of a given event about her opponents
whenever it is not falsified by evidence (cf. the definition of strong belief for hierarchical systems
of beliefs given in Section 5). Imposing strong belief in rationality therefore essentially entails
an assumption about players’ belief-revision policy.

In order to carry out a formal analysis, we introduce two operators, that define sets which
formally represent the propositions “player ¢ would believe event F_;, were she to observe per-

sonal history h;” and “player ¢ strongly believes event F_;.”

To invoke Lemma 3, we restrict
attention to coherent epistemic types of a player. Then, we formalize the notion of “degree of
strategic sophistication,” and we prove the main result of the paper.

For each player i € I, personal history h; € H;, and event F_; € B(S_; x ©_; x T°%), we

define the belief operator of player i at personal history h; and the strong belief operator, as:

Bi,hi(F—i) = {(Si,ei,’rioo) S CZ : QOZ(TZOO)(F’hz) = 1}; SBZ(F_Z) = m Bi,hi(F—i)-
hiEHi:Q‘ioi LK (hi)NF_;#0

7

Note that the intersection in the definition of the strong belief operator is taken over personal
histories that do not contradict event F_;. This clarifies the interpretation of strong belief as
“belief whenever possible.” Under the usual technical assumptions, the belief and strong belief

operators can be seen as maps from B(S_; x ©_; x T°7) to B(C;).

Lemma 10. If feedback is regular and own-belief independent, B;p,(F_;) and SB;(F_;) are
measurable for alli € I, h; € H;, and F_; € B(S_; x ©_; x T°%).

Lastly, the set of personal states of a given player in which given belief restrictions (specified
by A) are met is denoted [A;] = {(si, 0;, 7°) € S; x ©; x T : 7% € A}

Remark 10. For each i € I, [A;] is measurable.”

“Battigalli and Siniscalchi (2002) provide an epistemic justification of strong rationalizability, neglecting re-
strictions on players’ beliefs. For an epistemic foundation of strong directed rationalizability, see Battigalli and
Prestipino (2013) and relevant references therein. Battigalli and Tebaldi (2019) and Battigalli et al. (2020) analyze
strong directed rationalizability in a class of infinite games and in psychological games, respectively.

"The remark follows from the fact that [A;] can be written as S; x Us, co, ({0} x AG). Then, measurability
of Ay, (which is assumed) yields the desired result.
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At this point, we can turn to the description of players’ degrees of strategic sophistication.

For each ¢ € I, we define the following:

RA(1):=R;n[A], R%(1):= X RH(1), RA(1):=XRi(1).
JjeI\{:} iel

Then, for each n > 2, define:

R (n) =Ry (n—1)NSB;(R2(n—1)), R2(n):= X Rf(n), R2(n):=XRH(n).
Je{s} iel

In words, the first degree of strategic sophistication consists in being rational and holding
beliefs that satisfy the relevant restrictions described by profile A. A second-order strategically
sophisticated player maintains whenever possible that her opponents are first-order strategi-
cally sophisticated, on top of being rational herself. A third-order strategically sophisticated
player is rational and maintains whenever possible that her opponents are second-order strate-
gically sophisticated. Were the latter hypothesis to be contradicted by evidence, a third-order
strategically sophisticated player would “switch” to the assumption that her opponents are only
first-order strategically sophisticated, unless also this weaker hypothesis is contradicted. The
bottom line is that, under our epistemic assumptions, players ascribe to opponents the high-
est level of strategic sophistication consistent with evidence, i.e., they comply with the “best
rationalization principle” (see, e.g., Battigalli and Prestipino, 2013 and the relevant references

therein).

Remark 11. Fix a profile of belief restrictions A. If feedback is regular and own-belief inde-
pendent, R®(n) is measurable and R2(n + 1) € R2(n) for each i € T and n € N.°!

Given that (R2(n))nen is decreasing for each i € I, so is (R®(n))nen. Thus, we can define
RA2(00) := ey R?(n), which is measurable because of Remark 11. We say that R®(c0) is
the event in which (i) players are rational, (ii) players’ beliefs satisfy restrictions A, and (ii7)
there is common strong belief in (i) and (7). The following result establishes the epistemic

justification of strong A-rationalizability.

Theorem 1. Fix a profile of belief restrictions A. If feedback is reqular and own-belief indepen-
dent, P2 (n) = PrOjg. x @, x TK R2(n) for eachi € I andn € N.

By Theorem 1, strong A-rationalizability characterizes the utility-relevant implications of
rationality, the belief restrictions A and n-mutual strong belief of the conjunction of rationality

and the belief restriction.

*1That the sequence (R (n))nen is decreasing is immediate. The first part of the remark follows instead from
an induction argument. As for the basis step, note that R (1) = R; N [A;], and both R; and [A;] are measurable
(as per Lemma 8 and Remark 10). Then, assuming that R (k) is measurable for each i € I and k € {1,...,n},
we write R (n + 1) = R (n) N SBi(R2;(n)): RS (n) and R2;(n) are measurable by the inductive hypothesis,
and SB;(R2;(n)) is measurable as per Lemma 10.
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7 Conclusion

In this paper, we introduced a novel framework (i.e., a theoretical language and some struc-
tural assumptions) to incorporate noisy emotional feedback into games, that may effectively be
adapted to relevant applications. Our framework can be used to derive testable theoretical pre-
dictions about the extent to which the appraisal of others’ emotion affects choices (cf. Examples
1, 2, and 3), and to analyze an important economic problem such as information transmission
in face-to-face interactions (cf. Examples 4 and 5). Our framework can be naturally applied to
situations such as court hearings, presidential debates, political speeches, bargaining, product
advertisement by salesmen, and physician-patient interactions. In all these settings, emotional
leakage may shape incentives in interesting ways that would not be captured by standard models

In addition to calling for applied models, we believe that our contribution also adds value
at a more abstract level. First, our rich description of rationality has the merit of disentangling
the different requirements rational players should satisfy, as already emphasized in Section 1.3.
In particular, specific failures of rationality both on the cognitive side (e.g., failure to update
beliefs consistently with evidence) and the behavioral side (e.g., failure to implement plans) may
be analyzed from an analyst’s perspective. Even more interestingly, our language is rich enough
to model situations in which players may contemplate and reason about cognitive failures of
opponents. Such expressiveness is a key step toward a rigorous analysis of the implications
of failures of rationality in strategic settings. In this regard, future research may investigate
the utility-relevant implications of different sets of assumptions about players’ cognitive and
behavioral features.

All in all, we believe that the present paper offers an innovative and flexible way to analyze
a pervasive phenomenon such as emotional leakage in face-to-face interactions. In this regard,
we see our contribution as foundational, in that it provides the tools to model a class of relevant
situations and a meaningfully-founded solution procedure to predict behavior. As showed by
our running example, it is possible to derive tractable applications and interesting predictions,
and further research along this lines would lead to a better understanding of how decisions are

formed in a number of social interactions.

A Proofs

Proof of Proposition 1 (p. 19)

Fix h = (hi)ier € H, (s,0) € S x © and me € M.. Recall that we can write m, =
((Mije)ier)jeriy (cf. footnote 6), where m; ;. is a message i observes about j. Then, to
ease notation, let f; = (My,ie)jer\fiy- In words, /; is i’s emotional leakage (i.e., the profile of
messages about i received by her opponents) implied by 7m.. Note that £; belongs to the set
L; = Xje[\{i} M; ; e, and that me = (€:)icr-

Consider now {(s,0)} x {rt € T' : me € supp fre(s,0,71)}, where we let K = 1 because
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feedback is simple (cf. point (i) of Definition 2). It is possible to check that:

{rt e T : m, € supp fre(s, 0, ™} = ﬂ {Tl eTl: 0 e supp(margy, fne(s,0, Tl))}. (8)
i€l
Simplicity of feedback implies that, for each ¢ € I, {7'1 eT' 4 ¢ supp(margy . fpe(s,0, 7'1))}
depends exclusively on 7;}( - |h;) (cf. point (ii) of Definition 2). Let B; C A(Q) be the set of i’s
first-order beliefs allowing for ¢; at h;. Hence, for each i € I,

{Tl eTl: 0 e supp(marg;, fh’e(579,7'1))} = B; x ( X A(QO)) X ( X 7;1>

Wih; jen{iy

Then, expression (8) can be rewritten as

{7'1 e T : me € supp fh’e(S,H,Tl)} = <>( BZ-) X (X X A(QO)>,

iel i€l h)#h;

which is a rectangle. However, {7! € T! : me € supp fhe(s,0,7")} is measurable because
of semi-regularity of feedback. Sections of measurable sets in product measurable spaces are
measurable by definition, and therefore B; is measurable for each i € I. Hence, {7! € T : m, €

supp fre(s,0,7')} is a measurable rectangle, proving regularity. [ |

Proof of Lemma 1 (p. 19)

We begin by defining the correspondence H; : S x © x TX = H;. We proceed inductively on the
length of target personal histories to retrieve a sequence of correspondences (Hf SxOxTK =
ﬁf)KTZO, where Hf specifies i’s possible personal histories of length ¢ for each utility-relevant
state.
First, HY is simply the correspondence (s, 8, 7%) +— {@}. Then, assume H¥ has been defined
for k € {0,...,¢ —1}. Define Hf to be such that, for each (s,0,75) € S x © x TX,
Hi(s,0,75) := {(aé mf) € H : (a1, mi™Y) e HE (s, 0, 75),

77 (2 3 3

aip = si(at=tmi™h),

mj ¢ € supp fiv(afﬂ’qu)’e(s, H,TK)}.

In words, hf € HY(s, 0, 75) if (i) its immediate predecessor hffl belongs to Hffl(s, 9, 75), (ii)
i’s behavior at hf_l is described by s;, and (ii7), the message i receives after hf_l is in the
support of fi’h¢—17e(8,9,7—K).

Finally, for each (5,0, 75) € S x © x TK | let

H;(s,0, 7% U Hf (s,0, K
Next, we move to the proof of the lemma. It is easy to check that the claim follows if we

prove that the correspondences in the sequence (He SxOxTK = H Z) ., are measurable. We

do so by induction, starting to note that HY is trivially measurable. As basis step, assume that
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HY is measurable for k € {0,...,£ — 1}. Consider then (HY)~!. For each h{ = (af,m{) € H!,

we have

(H) ' (h5) = {(.0,77) : (i tomi™h) € H H(s,60,77),

af—l

Qi p = Si( i 7m€_1)7

K3
mj ¢ € supp fi’(af—17mf—1)7o($7 H,TK)}

= {(s.6,7") : (a7 ,m; ") € H (5,0, 77) }
N {(S,H,TK) AR si(af_l,mf_l)}

N {(s,0,7) : m; € supp fi,(af‘l,mf—l),o(sa 0, 7))

-1
a;

/-1
)

Consider the three intersected sets. The first one is simply (Hffl)_l(

measurable by the inductive hypothesis. The second set is measurable because it takes the form

,m; ), and it is
S;x S_i x O x TK for some S; C S;, and any subset of S; is measurable (because S; is finite and
equipped with the discrete o-algebra). Finally, the third set is measurable by semi-regularity of
feedback.

To conclude the proof, note that that each Q C HY is trivially closed, and (H{)™1(Q) =
U, EQ(Hf)*l(hi) is measurable. This checks the definition of measurability of correspondence
HY. The result follows. n

Proof of Lemma 2 (p. 21)
With some abuse, let Qgi =5 x O to simplify notation. Then, we rewrite 7;08 as follows:
Te=01 N {Tfo € 77 s marggn-1 Tint1( - [hi) = Tin (- |hz‘)}-
neN hZGHl

Fix generic 7 € N and h; € H;, and consider the corresponding set in the intersection
above. Take a sequence (7'52) xen Of elements of such set converging to 7°. This implies that
Tint1k( - |h;) converges to Timt1(- |h;) in the topology of weak convergence. Then, by continuity
of the marginalization map, margqa-1 7; a41,%( - |hi) = Tink(-|h;). The same holds for any n € N
and h; € H;, as the chosen 7 andﬂﬁi were generic. Thus, 7;08 can be written as a countable
intersection of closed sets. Arbitrary intersections of closed sets are closed, so we conclude that

Zog is closed as well. Then, also C} is closed, and the same holds for each i € I. |

Proof of Lemma 3 (p. 21)

The following auxiliary result is Lemma 1 of Brandenburger and Dekel (1993).

Lemma A1l. Let (Zn)nenuqoy be a sequence of Polish spaces, and define

n—1
== {(fn)neN Vn>1, &, e A (X Zk> , MArg n-1 7 Eni1 = gn} .

k=0

Then, there exists an homeomorphism v : 2 — A (XnENU{O} Zn>.
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In our setting, fixing i € I, we denote Zg = Q°, and Z,, = T_;,, for each n € N. All such sets
are compact metrizable (hence, Polish), as implied by Remark 2.

At this point, for each h; € H;, define vy, : ¢ — E to be the map 77° — 720+ |hi).
Note that «, is clearly continuous for each h; € H;. Moreover, by Lemma Al, also the map
Pn; = oy, 5 — A(Q° x T°9) is continuous. Define now the map ¢; := (¢p, )n,en; : T.o —
[A(QY x fof)]HZ We want to show that it is indeed an homeomorphism.°?

It is immediate to see that ¢; is continuous and that it satisfies the condition of Lemma
3. The latter fact implies that (i) ¢; is one-to-one, and (ii) ¢; ' is continuous on ei(T;5)-
Lastly, we show that ¢;(T; %) = [A(Q x Tff)]Hl Indeed, ¢;(7,%) C [A(Q0 x 'Tff)]Hz holds
by definition. To see that [A(Q? x T_"f)]H’ C @i(Ti), take t; € [A(Q° x Tff)]HZ and define
72° € T,°° to be such that, for each n € N and h; € H;, 70(-|hi) = margon—1 ti(-|hi): by

construction, 77° € T, and ¢;(77°) = t;, so that 77° € ¢;(T,5)- [ ]

Proof of Lemma 4 (p. 21)

We first state some preparatory results for the proof of Lemma 4.

Lemma A2. If feedback is own-belief independent, the collection {Qi TK(hi)}TKGTK is finite
for each i € I and h; € H;. '

Proof of Lemma A2. Fix i € I and hf € H;. We start by noting that:

= U (9 wn) = U (@ x @) wh) o)

(5,0)ESXO ' (5,0)ES%O

where subscripts denote sections of the correspondence (HY)~'. Focus on (Hf K 9)_1(hf).

Denoting as h¥ the k-long predecessor of hf (with k € {0,...,£}), it can be written as:

(H! x ) (hD) ::{Tﬁ. eTE Vke{l,.... 0}, (1,k) app = s;(AF1),

LTS,

(2,k) miy € U supp fi7(h@_17hkf1)(370,TK)}.
RF= L (RET Ry ! -
€HY " (5,0,75))jex

Note that this expression for (Hf K 9)_1(hf) features requirements that we labeled (1, k)

LA

and (2, k) (for k € {1,...,£}). Denote as G; ;, C T the set where condition (i, k) from the above

definition holds. Note that G is independent from players’ hierarchical systems of beliefs for
each k € {1,...,¢}. On the other hand, it is easy to check that, for each k € {1,...,¢}, Ga

belongs to following collection:

{T_i S 7:15 Ty ks € supp fi,(hf_l,hlizl) ((ai’k,a_i), 9, (TlK’Tf{i))}ali;lEAigl,hﬁzleﬁﬁfl’

%2That is, a continuous one-to-one function with continuous inverse. Moreover, in order to establish that T:e
and [A(Q° x T2)] i are actually homeomorphic, we will show that ¢; is also onto.
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which is finite (by finiteness of A_; and H_;) and independent from 75 € T.X (by own-belief
independence).

Thus, since (Hf 59)
that the collection {(HKT . o) l(hf)}n}(ean is finite. With equation (9) and finiteness of set
S x O, the desired result follows. |

1 (hf) = ﬂizl ﬂ?zl G 1, the foregoing argument allows us to conclude

The proof is greatly simplified if we can partition the sets 7, (i € I) into measurable sets
such that, all the hierarchical systems of beliefs in each of the cells of the partition lead to the
same inference set (for a given personal history h; € FI,) To do so, for each i € I and h; € H;,
define the relation ~j, to be such that

7’~K ~h T R QK K(hi) = QK» —K(hi)'

g —1,T;

It is routine to check that, for each h; € H;, ~p, is an equivalence relation. We can then define
equivalence classes of elements of 7% in a standard way, as [tX],, := {7K € T : 7K ~),, 7K.

Before checking that such classes are measurable for each i € I and h; € H;, we report two
auxiliary results. The first is essentially a strengthening of Lemma 1 implied by regularity of

feedback. The second is a result on measurable rectangles in product measurable spaces.

Lemma A3. Let feedback be reqular. For eachi € I, (s,0) € S x ©, and h; € H;, (Hiy&g)é(hi)

s a union of measurable rectangles.

Proof of Lemma AS3. The proof is as that of Lemma 1: it is enough to replace semi-regularity

with regularity. |

Lemma A4. Let (X,X) and (Y,)) be measurable spaces, A, B, and C C A x B finite
sets, and ((Rap)acA)bec, @ profile of measurable rectangles in (X x Y, X ® V).”® Let R* :=
NacaUsec, Rap- Then, for each 7 € X, {zx € X : R} = R;} € X.

Proof of Lemma A/. First recall that, by standard results, a finite union of measurable rectan-
gles can be written as a finite union of disjoint measurable rectangles. Hence, for each a € A,
Ubeca R,y = UdeD(a) Qa,q for some finite profile of disjoint measurable rectangles (Qq,q)dcp(a)
(note that we make the dependence of such profile on a explicit). Consider now the profile
((Qa,d)deD(a))aca: We show that (,c 4 Uge p(a) @a,a is a union of disjoint measurable rectangles.
In particular, it is enough to show that this holds when |A] = 2 — then, an easy induction proves
that the same holds for any finite A. Let A = {«, 5}. We claim that:

N U Qui= U U @Qainasy,

a€A deD(a) i€D(a) j€D(B)

where the right hand side is clearly a finite union of (disjoint) measurable rectangles.
Fix # € Nye4 Ugep(a) Qa,a- This implies that, for each a € A, there is d € D(a) such that
r € (Qq,q- However, note that, for each a € A, sets of the profile (Qq,4)4cp(q) are disjoint. Hence,

®Note that we are allowing C not to have a rectangular shape. This justifies the presence of C, (that is, the

section of C' at a € A) in the definition of the profile of measurable rectangles.
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for each a € A, there is a unique d* € D(a) such that z € Q4 4-. Note that A = {«, 3} and let
i* € D(a) and j* € D(f) be such that v € Qu+ and x € Qg+ — that is, x € Qaix N Qg j+-
With this, we can conclude that @ € ;e p(a) Ujep(s)(Qa,i N @3,5)-

Now fix @ € Uiepa) Ujen(s)(Qai N @p,7). This implies that there are i* € D(a) and
J* € D(B) such that x € Qq,+ NQp,j+ (specifically, such i* and j* are unique). This means that,
for each a € A = {a, 8}, there is d € D(a) such that z € Quq — that is, € (N,c 4 Uge p(a) Qa.d-

At this point, we can conclude that the set of interest R* is a finite union of (disjoint)
measurable rectangles. For simplicity, write it as R* = J,cx R}, where K is finite and the
measurable rectangles (Rj)rex are disjoint. Fix a generic € X. If Z € projx R*, it means
that there is a (unique) k € K such that z € projy Ry. Then, {z € X : R} = R;} = projx I},
which is measurable as R} is a measurable rectangle.

If instead Z ¢ projy R*, R = ) and {z € X : R, = RL} = pron(Ri)C. Now, (Rz)c is
the complement of a measurable rectangle, hence it can be written as a (finite) union of disjoint
measurable rectangles. The projection onto X of such union is simply the (finite) union of the
projections of such measurable rectangles onto X, which are all measurable. Again, we conclude
that {x € X : R = R%} is measurable, and this gives the desired result. |

We can now check the measurability of the partition induced by ~p,, (i € I, h; € ;).

Lemma A5. If feedback is reqular, [t5],, is measurable for each i € I and h; € H;.

)

Proof of Lemma A5. Fix generic i € I, hf € f_ff, and ?Z»K € ’EK, and note that, for each
K e TK

o x 1= U (2 D),

(5,0)€SxO

where Qi K g(hf) is the section of Qiﬁf((hf) at (s,0). Thus, it can be checked that, for each

slg 09

" e TK, QI_(Z 7__K(hf) = QI_(H_K(hf) if and only if, for each (s,0) € S x O, QI_(”_KSO(hf) =

7

QI_(Z K e(hf). Note that, for each 7€ € TX,

QF, e, g (h) = {s} % {0} x (H[ i ;)" (h).

—,7;

Then, we can say that, for each TiK € ’EK , Qi
(Hfﬂ"f(,s’@)il(hf) = (Hi{-ZK’s’Q)il(hf)'
Note that for each i € I, 7; € T,X and h¢ € H; we can write (H{Sﬂ)_l(hf) as:

7

hf) = QK ,Kse(hf) if and only if

K g gl :
777; 7570 77‘77-1' )

(Hf . 0) " () :{TK e TR Vhke{l,....00 (Lk) aiy = si(h "),

—i,85,0\ " —1

(2,k) Elh'jzl e H! (7)), m; 1 € supp f; (hb1 hktl)(s,e,TK)}.

As before, let G, C 7'_[5 denote the set where condition (i, k) from the definition above holds,
and define G* := ﬂ';;zl ﬂ?:l G- Let GjiK denote the section of G* at a generic 75 € TK.
With this, we observe that, for each 7% € TK, (Hf,TlK,S,G)_l(hf) = (Hf7@K7579)_1(hz€) if and only
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if G*K = GLk. Next, note that Gy is either empty or equal to THK for each k € {1,...,¢}.
On the other hand, G, is a (finite) union of measurable rectangles as per Lemma A3. Hence
N N ;-1 Gjr and is a (finite) intersection of (finite) unions of measurable rectangles. Then, by
Lemma A4, the set {7/ € TK : G:L_K =Gx iK} is measurable, and this establishes the result. W

Lemmas A2 and A5 imply the following convenient result.

Corollary A1. If feedback is own-belief independent, {[7&]y, : 75 € T} is a finite partition of
T.X for eachi € I and h; € H;. If feedback is also regular, such partition is made of measurable

sets.

Next, we discuss measurability in A(X), where X is a separable topological space. In

particular, the following is Proposition 7.25 of Bertsekas and Shreve (1996).

Lemma AG6. let X be a separable topological space, and F a collection of subsets of X that is
closed under finite intersections and for which o(F) = B(X). Consider the sequence of functions
(Vp : A(X) — [0,1)) per, where, for each F € F, U is the map & — §(F). Then,

BA( —U<U U o5 )

FeF BeB(R)

When F is taken to be the collection of Borel sets of X, Lemma A6 gives the following, which
is the definition of the Borel o-algebra of A(X) used, e.g., by Dubins and Freedman (1964).

Remark A1l. Let X be separable. B(A(X)) is the smallest o-algebra that makes the evaluation
maps (§ — &(B))pep(x) measurable.

We are now ready to start the proof of Lemma 4. Fix a generic ¢ € I and rewrite:

'ivo[O(B = {Tioo € 7;00 : vhz S g’ivTi,K—&-l (QI_(Z TK(hZ)‘h'L> = 1}

N m* {Tioo < 7200 +3 [?ZK]hi - 7;K77-1K € [fiK]hmTi,K-i—l (QKz [T ‘h ) }
h;,€H;
- N U (( b X T’“) " {”’m €T Tk (QKz ey, (Bi)| i) = }> (10)
h; eH k>K+1

Consider the expression within parentheses. The first set is measurable as per Lemma A5. As
for the second one, it is measurable because the set {TZ'7K+1( |hi) € AQE) ik (Ql—ii,TZK (h;) ‘hl) =
1} is measurable as per Remark A1l. Then, the intersection and the union of equation (10) are
countable (in particular, Corollary Al ensures that the union over equivalence classes is finite).
All in all, we conclude that 7;0[0( p can be written as the countable intersection and union of
measurable sets, hence it is measurable. K B; = .5; x ©; X 7;010{ p 1s measurable as well, and the

same is true for each 7 € I. [ ]
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Proof of Lemma 5 (p. 23)

Fix a generic ¢ € I and define the following:

r= ) ) N (1 {7 €77 : (CR) holds}; (11)

hi€H; q;e A;(hy) h,€H;(hi) si€Si(hisa;)

Z?ER = ﬂ ﬂ m ﬂ {r° € 7,°° : (BR-a;) holds},
h;€H; aie.ﬁii(hi) m;E€M;(hy,a;) FEB(S%X@XTE)
7% = () {75° € T : (1) holds}.
h;€H;
Note that 7?,)83(] = 7;‘7’8 g 7;‘7’]3 r- To establish the desired result, we prove that both 7;?8 r and
bR are measurable.
Step 1: g is measurable. Fix hy € Hy, ai € Ay(hi), hi € Hy(hi), and s; € S;(hi, a;), and

consider the corresponding set in equation (11):
{70 e T2 mie1({sid ) - i w1 (Si(hiy ai)|hi) = 7y k1 ({5i} i) }-

Note that the intersections in (11) are finite. Thus, it is enough to prove that the above set is
measurable to conclude that 7;08 r is also measurable. We will actually do more: we will prove
that the above set is closed — hence the intersection of (11) will also be closed.

Consider a sequence (777),,cy of elements of T:Cr converging to 7,°. Note that 7,5 p is a
product space, and recall that convergence in product spaces occurs coordinate-wise under the as-
sumed product topology. Thus, 7 g1.,( - |h;) = Ti k+1(-|h)) and 7 g1.0( - |hi) = Tig+1(- | Ri).
Moreover, by the properties of the weak convergence topology, if 7 k1, ( - |h}) — Ti k+1(-|h}),
then it must be the case that 7 g41.,(C|h;) — 7 k+1(C|h;) for every Borel set C' with empty
boundary (see Theorem 15.3 in Aliprantis and Border, 2006). Now notice that {s;}, which is a
shorthand for {s;} x S_; x © x T is a clopen set because it is the product of clopen sets: {s;}
is a subset of a finite space (hence it is clopen), and S_; x © x ’7'5 is a compact metrizable space
(and for each compact metrizable space X, both X and () are clopen). Clopen sets have empty
boundaries, so we conclude that 7 g1, ({si}|h}) converges to 7; xy1({s;}|h;). An entirely analo-
gous point applies to show that 7; g1, ({si}hi) = 7o, k1 ({si}hi) and 7 g 1.0(Si(hi, ai)|hi) —
i, k+1(Si(hi, ai)|hi). Wrapping up, we obtain

Tiic+1({si 1)) - 7o k1 (Sihay as)|hi) = Ti k41 ({5} i),

so that 7,° € 7;08 r» as desired. We conclude that 7;08 r 1s closed, hence measurable.

Step 2: i(,)fi r 18 measurable. Consider now

dr= () ) N M {#° €77 : (BR-a,) holds}.

hi€H;i q;e A;(h;) mi€Mi(hia;) FEB(S_ixOXTXE)

Note that in the expression above the intersection over B(S_; x © x TX) is uncountable. Yet,
S_; X O x 7'5 is a compact metrizable space (it is the product of two finite spaces, S_; and O,

and of 7‘5 , which is compact metrizable as per Remark 2), hence it is second countable — i.e., it
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admits a countable base %. Therefore, each Borel set in S_; x © x T% can be obtained through

countable unions or intersections of elements of 4. We can then write:

ﬂ ﬂ m m {7 € T, : (BR-q;) holds}.

h;€H; aiEAi(hi) m;EM;(hi,a;) BEA

Note that now the intersections are countable: proving measurability of the intersected sets
would then imply the desired result. Therefore, fix h; € H;, a; € Ai(hi), m; € M;(h;,a;), and

B € %, and consider the corresponding set in the above intersection:

{Tioo € T : tik+1(BIh) / Fipyseeic () [ma] - (marg 7 k1) (d(s—i, 0, 77%5) [ i)
S_ixOxTK v

/fzh s,k () [ma] - (marg 7 gesr ) (d(s—, 0, 72 )!h)} (12)

where we write simply “marg” instead of “margg g, 7x” to ease notation.
In order to show its measurability, we show that the above set is the inverse image of a
measurable set in R through a measurable function 1 : 7,°° — R. To retrieve such function, we

proceed in three steps:

1. Let 91 be the map 7° — 7; x4+1(B|h;). Such map is measurable. Indeed, it is the
composition of the two maps 77° — 7, gy1(-|h;) and 7 g11(-|h}) — 7 k41(B|h,): the
former is continuous (hence, measurable), and the latter is measurable (by the properties of
the Borel o-algebras of sets of probability measures and by the fact that B is measurable, cf.

Remark A1). Compositions of measurable maps are measurable, hence ¢, is measurable.

2. Let 19 be the map

Bl Fi sz i< ()lmi] - (marg 7 e 41) (d(s—i, 0, 755) |hi).
S_ixOxTE

Such map is continuous. To see it, consider a sequence (7} )neN of elements of 7,°° converg-
ing to 7,°. This implies that 7; gy1,,( - |hi) converges to Ti7 x+1(-|h;). Now note that, since
the marginalization map is continuous, marg 7; 41, (- |hs) converges to marg 7; g+1( - |hs).
Since fjp, o oK k()mg] 2 S—i x © x TE — [0,1] is continuous and bounded, by the very
definition of the topology of weak convergence 12(77%,) converges to ¢2(77°). This proves

continuity (hence, measurability) of 1.

3. Let 13 be the map

/flh sr 7K [my] - (margTi,KJrl)(d(s 00,70 )|h)

By arguments analogous to those of the previous point, 13 is continuous.

Now define function ¢ : 7,°° — R as v := 91 - ¢2 — 13, and note that the set in (12) can be
written as {77° € T, : ¢(7°) = 0} = ¢»~1({0}). As a final step note that {0} € B(R) and that
1) is measurable (as sums and products of measurable maps are measurable). We conclude that

the set of interest is measurable, and this establishes measurability of 7,5 5.
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Step 3: 7;010 is measurable. We are actually going to prove that 7;010 is closed. To this end,

write the set as

T7 = () {7 mikra (- [h) = margg, e, 71 (- |hi) ® margg .o ,x7k TinK+1(- i)}
hiGHz‘
To show that each set in the above intersection is closed, fix h; € H; and consider a sequence
(Tl-cfz)ne[\] converging to 7,°. This sequence induces a sequence of conditional beliefs of order K+1,
(Tin,K+1( - |hi))nen that (under the assumed product topology) converges to 7; x41(-|hi). By

construction, we have that the following holds for each n:

Tink+1(- [hi) = margs, o, Tink+1(- |hi) @ margg o w7 Tinx+1(- |hi)}-

Moreover, convergence of (7; » k+1( - |hi))nen and continuity of the marginalization maps implies

margs, e, Tin K+1(+ [hi) = Tirp1(-[hi),  margg o w7k Tink1(-[hi) = Tiga(-[hi),

in the topology of weak convergence. To conclude that

Tig+1(|hi) = margg,vo, Tix+1(-|hi) @ margg .o rx Tig+1(- |hi),

we state without proof the following fact. Consider standard Borel spaces (X,B(X)) and
(X',B(X’)) and sequences of measures (fin)nen and (ul)nen defined on them; if X x X’ is
separable, then p, ® u! — p @ p' if and only if p, — p and u!, — /. This fact, together with
the convergence of marginals, implies (A).

Conclusion. Given the measurability of 7,5, T;5g, and 7,7, T, Cpy 1s measurable. |

Proof of Lemma 6 (p. 26)

We begin with two preliminary observations. First, note that RP; = S; X pro j@ixf];oo RP; because
personal external states are irrelevant in the definition of rational planning. Hence, it is enough
to prove that 1?151 = proj@ixTioo RP; is closed.

Second, Berge’s maximum theorem, together with the observation that the objective function
Ui, ftl(hl) X ©; x T,>° — R is continuous (which is easily checked), implies that r;p, : ©; x
T = /All(hl) is a upper hemicontinuous correspondence. For each sequences (Oim,Tffl)neN €
Xnen(©i X T2°) and (@in)nen € X, ey ri,hi(ﬁi,n,qﬁ), and af € Ai(hi), (0in, 7'32) — (0;,77°) and
a;n — a; only if af € ryp, (0;, 7).

Next, we move to the main part of the proof, where we show that RAJPZ is closed. Consider
i)

a sequence (0;n, 7 ),cy Of elements of E]/DZ converging to (éi,TZ- It is straightforward to

54

check that (6;,77°) € proje, 7 KT; (i.e., 7° knows 6;), and that 7 satisfies independence.
Proving that supp ;(77°)( - |h;) C rip, (0;, 7°°) for each h; € H; then gives the desired result.

%4The latter claim follows from relatively straightforward results in measure theory. In particular, consider
measurable spaces (X, X) and (X', X’), and sequences of measures (fin)nen and (), )nen defined on them. If
X x X' is separable, pn x pl, — px g’ if and only if p, — p and pl, — p’, where convergence is assumed to occur
in the topology of weak convergence of measures. This fact, together with the product structure and separability

of 7,°°, can be employed to show that independence is preserved in the limit.
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To this end, fix h; € H; and note that o(7)(-|h;) converges to o(77°)(-|h;) because
Tik+1,n( " [hi) converges to Tj k41(-|h;). Given that o(77)(-|hi) and o(77°)(-[hi) are prob-
ability measures defined over the finite set 4;(h;), we have that a(ton)(ailhi) — o(77°)(ailhi)
for each a; € A;(h;). Consider then a* € supp o;(7°)( - |h;). By the aforementioned convergence,
it must be that there is ny € N such that a; € supp o;(777) (- [hi) C 7ip; (0in, 775,) for all n > ny.
Construct therefore the sequence (a;,)nen to be such that a;, = af for all n > n; and a;, is
picked arbitrarily from 7; 4, (6; n, Tﬁfl) for all n < ny. This sequence by construction satisfies the

properties that a;, € 7 4,(0in, 77%) and a;, — a;. Upper hemicontinuity of r; 5, implies that

©,n P
a; € rip; (imp 00 (0in, 770)) = T, (6;,7°). This concludes the proof that (6;,7°°) € RP;. The
desired result then follows. |

Proof of Lemma 7 (p. 28)

We start by fixing a generic ¢ € I and by rewriting:

coi = (] {suti7%) € T o)) = 1}

hieHi

Then, fix h; € H; and focus on the corresponding set in the above intersection. Consider a se-

quence of elements of such set, (8; n, 0; n, TZOZ) nens converging to (3, 05, 7,°). Convergence implies
that there is 7 € N such that, for each n > 7, s; , = 5; (this follows from finiteness of S;). There-
fore, (Sim,el"nﬂffl) = (Ei,ei,n,fﬁfb) € CON; and Ti,K+1,n(S’i(7’/i7gi(ﬁi))‘ﬁi) =1 for each n > n.

Moreover, by convergence of 7.5 to 77°, Ti k+1,n( - |h;) converges to Tik+1(- |h;). As mentioned in

i\n
earlier proofs (see the proofs of Lemmas 5 and 6), this implies that 7; 1., ({si}|h:) converges to
7_'i,K+1({Si}|Bi) for each s; € S;. We conclude that also 77° is such that 7‘,'7K+1(Si(ﬁi, 5;(hi))|hi) =
1, proving that the set of interest is closed. Hence, CON; is a finite intersection of closed sets,
hence it is closed, and the same holds for each i € I. |
Proof of Lemma 8 (p. 28)

The result follows from Lemmas 2, 4, 5, 6, and 7, because, for each player i € I, R; is a finite
intersection of measurable sets. |

Proof of Lemma 9 (p. 30)

We first state and prove an auxiliary result.

Lemma A7. Fizi € I and analytic F C Q. The set {TZK+1 € ’EKH : Ti, Kk +1 strongly believes F}

1s measurable.

Proof. We rewrite the set of interest as T;% x {T@ K+1 : Ti,kK+1 strongly believes F } Then,

{7' i, K+1 : Ti,k+1 strongly believes I’ }

:{TLK—H :Vh; € H;, (FQQKi(hZ‘) #* @) - <VG S B(Q{{l),F cG = Ti7K+1(G‘hZ‘) > 1)}
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- N N {7 ma(Glh) = 1}

hi:FNQE (hi)£0 GeB(QX,):FCG

= ﬂ ﬂ {70511 Tiw41(Glh) > 1},

hi:FNQX, (k) £0 GEBFCG

where the first equality holds by definition of strong belief, the second is obvious, and the third
follows once we note that Q¥; is Polish (hence, separable), hence second countable (we let %
denote its countable base). With Remark A1, it is easy to see that all the intersected sets above

are measurable. Given that the intersections are countable, our result follows. |

We proceed by induction to prove Lemma 9. As for part (i), we start by noting that
P2(0) = S; x ©; x T;® is trivially measurable (hence, analytic) for each i € I. Now assume
by induction that P2 (k) is analytic for k € {1,...,n}, with n € N: we show that P®(n + 1) is
analytic. Define 77?}31, TKH, and TIZV—EIU as the set of (K + 1)-th-order hierarchical systems
of beliefs where knowledge-implies-belief, coherence, and the Bayes rule hold, respectively. By
inspection of the proofs of Lemmas 2, 4, and 5, such sets can be checked to be measurable.

Next, consider the following sets.

Py ={(ss,0;, 7 ) : 1 7;1?;31 A TK+1 ﬂ Z%EU A A
P2 _{ S’La0177_lK+l \V/hz S Hl', Sl(hz) (= Tihy (GZ’TZK+1)},
P3:=0; x { Si, T, zK+1) :Vh; € Hi,Ti,l(Si(hi,Si( hi))|h;) = 1};

Py :=S; x ©; x {7 . VEk € {1,...,n},7i k41 strongly believes P2;(k)}.

P; measurable, by our foregoing observation about T%ElU, TK A

, and Tc pu» and because
Ay, is assumed to be measurable for each i € I and §; € ©;. P3 can be showed to be measurable
by an argument similar to that of the proof of Lemma 7. Pj is measurable as per Lemma A7,
once we note that sets (Péi(k))zzl are analytic by the inductive hypothesis. As for P, note

that we can rewrite the first intersected set as follows:

m {(SiaeiszK_‘—l) :VS; S Siaai,hi(siaehTiK'_‘_l) > ’ai,hi(S;’ehTi[{_‘_l)}
h;€H;

— ﬂ ﬂ U <{(5i,9i)} X {T%KJrl S 7;K+1 :fL@hi(Si,ei,TZKJrl) > (S 0; TK+1)})‘

h;€H; SQESFL (Si,ei)ESixei

In the expression above, the sets within parentheses are measurable — this holds because the map
TiKH — ﬁi7hi(sz,91,rl ) is continuous for each i € I, h; € H;, s; € S;, and 6; € ©;, and thus
the set {T,LK+1 € 7;K+1 : ﬂi,hi(sz,el,q}@r ) > Uipn, (s, Qz,TZK—H } is measurable for each s, € S;.
Then, P, is measurable because it is given by finite intersections and unions of measurable sets.

Thus, ﬂizl Pj, =: P* is measurable. Note that P2 (n+1) = Projg, xe,x7x P*: since it is the
projection over a Polish space of a measurable set, it is analytic. The same ilOldS for each ¢ € I.

Part (ii) is immediate. Obviously, P®(1) € P2(0) = S; x ©; x TX trivially holds for
each i € I. Assume by induction that, for each k € {1,...,n} and i € I, P2(k) C P2 (k —
1) = S; x ©; x TK. We want to show that P2(n + 1) € P2(n). Then, for each ¢ € N,
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let Py(q) = S; x ©; x {TZ-KH € 7;[((;“ :Vk € {1,...,q — 1}, 75 k41 strongly believes Pél(k‘)}
Note that, for each k € N, we can write P2 (k) = Projg. we,x7K (P1 N Py N Py N Py(k — 1)),
and that, for each k& € N, Py(k) C Py(k —1). With this, we conclude that PAn+1) =
Projg. wo,x 7% (PN PaN P3N Py(n)) C projg. o, x7x (PLN Py N P3N Py(n — 1)) = P2(n), which
yields the d:asired result. Z |

Proof of Proposition 2 (p. 31)

We begin this proof by introducing some terminology and by proving auxiliary results. To ease
notation, we denote generic elements of 7;K and 7; g+1 (i € I) as 7; and p;, respectively.

Fix a generic i € I. Consider ,uil, u? € Tik+1,kBNTi k+1,cBU and F1 F2 C fol The profile
(uk, Fk)ke{l’Q} is admissible if F? C F' and u? strongly believes F™ (n € {1,2}). As a matter
of terminology, for each F' C QF, and yu; € Ti k+1, we say that F'is compatible with p; and h; if

Fnok (hi) # 0,

—i,marg fi;

where marg p; is a shorthand to denote the hierarchical system of beliefs of order K obtained
by taking the marginals of y1; over the sets (20, (Q™,)5=1). The (F', F2)-composition of u} and
M? is fi; € Ti k+1 such that f;(-|h;) = uf( |h;) whenever F? is compatible with ,u? and h;, and
fii(- [hi) = pk(-|h;) otherwise. For each sequence (uf, FF)_, where (F¥)?_, is a decreasing
sequence of subsets of S_; x ©_; x 7'5 and uf € Ti.k+1,kBNTi k+1,cBv for each k € {1,...,n},
the (F*)1_, -composition (or, simply, composition) of (u¥)1_, can be defined in a natural way.

We first prove an auxiliary fact.

Lemma AS8. Fiz ai € I, an admissible (,uf, Fk)ke{LQ}, and let pi; be the composition of uil and
u?. Then, fi; € T k+1,kB N Ti,k+1,cBU and ji; strongly believes F' and F?.

Proof of Lemma AS. That fi; € T; xk+1,xp follows from inspection of the definition of compo-
sition. We need to show that ji; € T; k+1,cBy — that is, we need to show that the chain rule,
Bayes rule, and independence are satisfied by ji;. Independence is easily checked, so we are left
to prove that the other two properties hold.

Step 1: the chain rule holds. Fix h; € H;, a; € fli(hi), k. € Hi(hi,a;), and s; € Si(h;,a;).
We want to show that

fii(silh) - i (Si(hay ai) i) = fii(silhi) (CR)

Notice that, if F2 is not pu2-compatible with h;, (CR) boils down to p} (s;|h})pt (Si(hi, ai)|hi) =
u%(sﬂhi), which is verified as ,uz1 € Ti, k+1,CBU-

Suppose then that F? is ,u?—compatible with h;. We further distinguish two cases: either F? is
p2-compatible with A/ or not. In the former case, (CR) boils down to p?(s;|h})u?(Si(hi, a;)|h;) =
M?(si|hi), which holds because ,u? € Tik+1,cBu- Focus then on the latter case and notice
the following. First, since F? N Qlfw?(h;) = (0 and F? N Qi{i,u?(hi) # 0, (u2)*(F*h) = 1

and (Mf)*(QI_{wg(hmhz) = 0.” Second, since h} € H;(hi,a;), each s, € Qi’,u?(h;) must also

%5Recall that (u?)* is the outer measure induced by pu?.
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belong to S;(h;,a;). Taken together, these observations yield p?(s;|hi) = u2(Si(hi,a;)|h;) = 0.7

Therefore

fii(silhy) - i (Si(hiy i) [h) = g (silR)) - 12 (Si(hi, )| hs)
= i (si|hj)-0=0
= i (silhi) = fi(silhi),

where the first equality follows from the definition of fi;, under the assumption that F? is ,u%—
compatible with h; but not with A/, the second one from the foregoing observations, and the
remaining ones are obvious.
We established that the chain rule holds for fi;, and this concludes the first step of the proof.
Step 2: Bayes rule holds. To simplify the notation, let Vil, v?

#, and 7; denote the marginals
over S_; X © x ’T_If of ,uzl, ,u?, and [i;, respectively. Fix generic h; € H;, a; € A; , m; € M;(h;, a;),
G € B(S_ix©xTE). Let h, = (h;, (a;,m;)), and denote fihs 53 marg p;  S—i X © % TE — A(M;)

as f for simplicity (s} is a generic element of S;(h;,a;)). We want to show that
7;(G|h7) - / SO mildzi (- i) = / S ) mildzi (- [hi). (BR-a;)
S_ixOxTK G

We proceed in a way similar to that followed to prove Step 1. Specifically, note the following.
First, if F2 is not u?-compatible with h;, then it is not compatible with h/ either: then, 7;( - |h;) =
vi(-|hi) and (- |hl) = v} (- |hL), and this yields (BR-a;), as u} € T; k+1,cB0- Second, if F? is
p2-compatible with both h; and hf, 7;(- |h;) = v2(-|h;) and 7;(- |h;) = v2(-|h}), and this again
yields (BR-a;), as u? € Ti. K+1,CBU-

Suppose now that F? is ,u?—compatible with h; but not with h,. We want to show that

VG - Vgl dv2( - |hy) = Nl d2( - 1hy).
i (Gh;) /S_i><6><7'_’§f( )mildv; (- [hi) /Gf( )[mildv; (- [hi)

By assumption, F? is such that F? N QI_(Z.’“? (hf) =0 and F?2 N QI_(Z.,M? (h;) # 0, and this implies

(p2)*(F?|h;) = 1 and (u?)*(Qﬁuf(h;ﬂhz) = 0. At this point, it is possible to check that

f(s—i,0,7—)[m;] > 0 only if (s_;,0,7—;) € Projg_, xex Tk Q—i,margy?(h;) =: X.°T Moreover,
(v2)*(X|h;) = 0 by the foregoing observations concerning (y?)*. This means that there exists
a measurable Y C S_; x © x T& such that X C Y and v?(Y|h;) = (v?)*(X|h;) = 0. Clearly,
f(s—=i,0,7—i)[m;] > 0 only if (s_;,0,7—;) € Y.

At this point, it is easy to check that
/ FOmidr? (- h) = [ £ mildi? (- ) =0
S,iXGXTfi— Y

N ldu?(- b
zLﬂ)[mlumzm

where the first equality follows from the consideration that f(-)[m;] takes positive values only

on Y, the second one follows because v2(Y|h;) = 0, the first inequality is implied by the fact

5 . . . .
*0There is no need to use outer measures here, as all subsets of S; (which is finite) are measurable.

5TNote that X is analytic.
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that G C S_; x © x TX and f(-)[m;] : S—; x © x TE — [0,1] is non-negative, and the last
inequality holds because g*(-)[m}]: S—; x © x TX — [0, 1] is non-negative.

Hence, (BR-a;) hold, and this establishes that fi; € T; k+1,x8 N Ti k+1,cBu. Finally, notice
that by construction Ji; strongly believes both F! and F2. |

An easy induction yields the following.

Corollary A2. Fiz ai € I, an admissible (uF, Fk)zzl, and let fi; be the composition of (uf)zzl.
Then, fi; € Ti,k+1,kB N Ti,k+1,cBU and, for each k € {1,...,n}, pu; strongly believes Fk.

At this point, we prove Proposition 2 by induction. As a basis step, note that the statement
trivially holds for n = 0. Assume by means of induction that it holds for n € N. We show that,
for each i € I, PR (n+1) = Q2 (n +1).

Step 1: PR (n+1) C QP (n +1). Take (s;,0;,7:) € P2(n+1). Note that, by Remark 9,
(s:,0:,7:) € P2(n) = QP (n), where the equality holds by the inductive hypothesis. Therefore,
P2 (n+1) C Q2(n), and this verifies requirement OM of Definition 13. We are now left to show
that there is fi; € T; k41 such that conditions 1M-4M of Definition 13 hold. Since (s;,0;,7;) €
PiA(n—i— 1), conditions 1-4 of Definition 12 are satisfied by some fi; € T; k+1,k8N7Ti,k+1,cBU- It is
readily verified that fi; satisfies conditions 1M-4M of Definition 13. Hence, (s, i, 7;) € Q7 (n+1).

Step 2: P2 (n+1) 2 Q2 (n+1). Pick (si,0;,7;) € Q2 (n+ 1). This implies that (s;,0;,7;) €
Q2 (k) for each k € {1,...,n}. Therefore, for each k € {1,...,n}, there is u¥ € T, k4155 N
Ti k+1,cBU strongly believing QiA(k; —1) and satisfying conditions 1M-3M of Definition 13. It is
easy to check that the sequence (1f, Q2 (k—1))?_, is admissible. Consider then its composition
fi;, which also belongs to 7; k+1.xkB N Ti k+1,cBU as per Corollary A2. Now note the following:

1. Given that, for each k € {1,...,n}, (1, uf) € pI'Oj,];K+1 T: G then (7, f1;) € pr0j7-iK+1 T.C
To see why this holds, consider that, for each h; € H;, there is k € {1,...,n} such
that f;(-|h;) = ,uf“( -|h;). Given that (Ti,,uf) € projyx+1 75, then marg,x— ,uf“( |h;) =
7.k (- |hi) for each h; € H;, and the same holds for ez;ch kEe{l,...,n} (cf._lcondition 1M
of Definition 13). Therefore, we can conclude that, for each h; € H;, margqgx—1 fi;( - |hi) =
7i k(- |hi). Coherence of lower-order beliefs is independent of fi; (it is a feature of i), SO
that the foregoing observations are enough to conclude that (7;, ﬂf) € projﬁxﬂ 7;"8
Similarly, we have that, for each k € {1,...,n}, (1, u¥) € Ay,. Recall that A is rectangular,
so that we can write Ag, = Xff;rll Xhi e, Bg, n.pn,; for a suitable profile of measurable sets.
Thanks to this, we can conclude that 7; € projTiK Ny, = szl Xh.ed, By, n.h;- Moreover,
note that, for each h; € H;, there is k € {1,...,n} such that ji;(-|h;) = u§(~\hi), and
that, for each k € {1,...,n}, u¥ € Proj7: 4o\, Ao, = Xy, 1, Boi k+1,n,- As a consequence,
we have that, for each h; € H;, fi;(-|hi) € By, k+1,n,, and this yields i; € projy. . Ag,.

Wrapping up, 7; € pI'Oj/EK Ay, and f1; € Projr; oy Ay, imply (7, i) € projﬁx Ay, X

7

PIOJT, 1oy Ap, = Ay,, where the last equality holds because of the rectangularity of Ag,.

Hence, condition 1 of Definition 12 is met.
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2. Recall that, for each h; € H; and (s;,6;, (7i, i) € Si X ©; x 7;K+1, Ui p, (84,05, (Tis i) =

fS,ix@,ixTKi Wi n,.s;.0,Avi( - |hi), where v;(-|h;) is the marginal over S_; x ©_; x TX of
pi(-|h;). For each i € I and h; € H;, let 75, : ©; X 7;K+1 = S; be the correspondence
(0i, (13, i) — argmaxy @ p, (8}, 05, (7i, pa))-
Since (s;,0;,7) € iy Q2 (k) and preferences are own-plan independent, Remark 8
implies that s; € (N, cq, Fin (%, (1i,uf =)) for k € {1,...,n}. Fix h; € H;. We
know that there is k € {1,...,n} such that f;(-|h;) = pF(-|h;). This implies that
Pin; (0iy (T4, 15)) = 4.5, (03, (73, 13)), because pk (- |h;) and fi;( - |h;) have the same marginal
over S_; x ©_; x 7’5 We conclude that s; € 7 p,(6;, (i, i) for each h; € H;, proving
that fi; satisfies condition 2 of Definition 12.

3. Consider that p¥(S;(h;, si(hi))|hi) = 1 for each k € {1,...,n} and h; € H;, as p¥ satisfies
condition 3M of Definition 13. Then note that, for each h; € H;, there is k € {1,...,n}
such that fi;(-|h;) = pk (- |h;). Therefore, for each h; € Hy, fi;(Si(hi, si(h;))|h;) = 1. This

proves that fi; satisfies condition 3 of Definition 12.

4. By Corollary A2, for each k € {1,...,n}, fi; strongly believes Q*(k — 1) = P2 (k — 1),
with the equality following from the inductive hypothesis. This implies requirement 4 of
Definition 12.

In light of the foregoing remarks, we conclude that fi; (as obtained above) satisfies conditions
1-4 of Definition 12, proving that (s;, 6;, 7;) € P2 (n + 1). This concludes the proof. [ |
Proof of Lemma 10 (p. 33)

Fix i € I. Define, for each 7% € T,X:

[TiK] = {7_'1-K € IEK :Vh; € Ei,’l_'iK ~h, TZ-K} = m [TK]}LZ

Each such set is nonempty (for each 7/ € TK, 7K € [rK] trivially holds). Moreover, by
finiteness of H; and by Lemma A5, each such set is measurable.
Now fix F_; € B(S_; x ©_; x T°¢). Recall that:

Bi,hi(F—i) = {(Si,(gi,’i'fo) € Cz : (pZ(TZOO)(F‘hz) = 1}.
By continuity of ¢; and by Remark A1, such set is measurable. Then, write:

SBZ(F_Z) :{(Si,ei,Tioo) € CZ : (E| ﬂK € 7;K,TiK € [ﬂK]),
(Vhl S H“Qofoz,[ff(}(h’) NF_; # ) = (pZ(TzOO)(F_Z|hZ) = 1)}

- U ((SZ x 0; x [Fh, x X 7§,k>
(75

E>K+1

N N {(s5i,05,77°) € Ci - @i (77°) (F_i|hi) = 1)}
(.o )

[?K](hi)ﬂF—i#@

i
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:[g} ((Sz x 0; x [7fh, x X 7§,k> N <hi:9mi’ ﬂ Bz’,hi(F—z‘)>>- (13)

k2K+1 (=K (hi)NF_;#0

In (13), the first set within parentheses is measurable as per Lemma A5, and the second one
is a finite intersection of measurable sets, by the foregoing reasoning. Then, the union over
equivalence classes is finite, as per Corollary Al. We conclude that the expression in (13) is
measurable. Thus, B; 5, (F;) and SB;(F_;) are measurable. The same clearly holds for each
i€l, hi€ Hy,and F_; € B(S_; x ©O_; x T%). [ |

Proof of Theorem 1 (p. 34)

We first report an auxiliary result, which is an adaptation of Lemma 3 in Battigalli and Tebaldi
(2019). For a Polish set X and a countable collection C of Borel subsets of X, we call a conditional
probability system (CPS) on (X,C), any u = (u(-|C))cec € [A(X)]C such that:

1. for each C € C, u(C|C) = 1,
2. for each £ € B(C) and C,D € C, E C D C C implies u(E|C) = p(E|D)u(D|C).

Moreover, for each X,Y Polish and for each countable collection C of Borel subsets of X,
a CPSon (X xY,C)isaCPSon X xY with {C xY : C € C} as collection of conditioning
events. If 1 is a CPS on (X,C) and v is a CPS on (X x Y,C), we write margy v as a shorthand
for (margy v(-|C))cec. With this, we can state the following.

Lemma A9. Let X,Y be Polish spaces, C a countable collection of Borel subsets of C, and
(Dg)p_y a finite decreasing sequence of Borel subsets of X x Y. If u is a CPS on (C,C) that
strongly believes (projc Dy)j_y, then there exists a CPS v on (C x X,C) that strongly believes
(Dr)p—q and such that margs v = pu.

We now proceed with the proof of Theorem 1.

For eachi € I, P2(0) = SixO;x TX = projg o, x7x (SixOixT;®) = projg. .o, x7x R (0).
Assume by induction that, for each i € I and k € {1,. .Z. n—1}, PA(k) = projSiX@iXF;K RA(k).
We want to show that P2 (n) = PrOjg. @, x TK R2(n). l

First, we show P2 (n) C PrOjg. @, x TK i:{ZA(n) Take (si,0;,7%) € P2(n): by definition,
there exists 7; k41 € 7Ti k41 such that t}Lle conditions of Definition 12 are satisfied. Specifi-
cally, 7; k+1 is a CPS on (QF,, {Q§i775<(hi)}hieHi)a according to the terminology we introduced,
K

where 7;

is the K-th-order hierarchy of systems of beliefs induced by 7; k41 by taking the
marginals over (Q°, Q% ... Q%1 Moreover, 7; 41 strongly believes (P2,(1),...,P2,(n —
1)) = (projg, ve,x7x RE(1), ... ,PIOJg_ xo_,xTK R2,(n — 1)), with the equality holding by our
inductive hypotheszis. Then, by Lemma A9, theré is a CPS pon (S XOx T, {QI_(W_K (hi)}hieHi)
strongly believing (R2;(1),...,R2,(n — 1)) such that Margor p = TiK+1- Note that we can
take the inverse through ¢; of u (cf. Lemma 3). Let 77° = ¢; !(u), and note that it induces
+1 _ ( K

a (K + 1)-th-order hierarchy of systems of beliefs ﬂ-K +1 satisfying ﬂ.K = (7%, Ti,k+1), since

margok fi = T; k+1. Hence, if conditions 2 and 3 of Definition 12 hold for (5, 7i k41), they
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must hold for fiK +1 This proves that (si,0;, 7°) satisfies both rational planning and coherence.
Moreover, 7,° satisfies coherence because goi_l maps to 7,7, and it satisfies knowledge-implies-
belief and the chain rule because (TZK ,Ti,ik+1) satisfies condition 1 of Definition 12. Lastly, it
strongly believes (R2,(1),...,R2,(n — 1)) as already mentioned. Hence, (s;,6;,7°) € R2(n),
so that (s;, 0, 7) € projg o, x7x R (n).

Second, we show projSiX@iX%K R2(n) C PR (n). Take (s;,0;,75) € PrOjs, @, x T R2(n).
Then, by definition there exists p = (ug)r>r+1 € Xpspgyq Tik such that (si,ﬁi,TiK,,u) IS
R2(n) = R; N (ﬂz;ll SB;(R2;(k))). Conditions 1, 2,_3 of Definition 12 are satisfied by
(75, 1), because (s;,0;, 75, 1) € R;. At this point, we just need to show that g1 strongly
believes (P2,(1),...,P2,(n—1)). Note that, by coherence, the K-th-order hierarchy of systems
of beliefs induced by g1 is exactly 7. Hence, pick k € {1,...,n — 1} and h; € H; such
that P2 (k) N Qﬁﬂ(hz) # . By the inductive hypothesis, the coherence of (75, 1), and the
definition of inference sets, this is equivalent to writing R2;(k) N Qi,T,K(hi) # (). However, if
such condition holds, we have that ¢; (7, 1)) (R2;(k)|h;) = 1, because (ZTK , ) strongly believes

(2 K3

(RiA(l), ...,RA,(n —1)). At this point, we can write:

i1 (P2 (k) |he) = marggr i (75, 1)) (P2,(0)|hs) = marggre i((/, 1)) (projor. R, (k)|hy)
=pi((7, ) (projgk (projor, PA,(k))) = i((7, 1) (R2 () = 1.

The same holds for each k € {1,...,n — 1} and h; € H;, proving that pux41 strongly believes
(PA.(1),...,P2,(n —1)). Hence, (si,0;, %) € PA(n), which yields the desired result. [

B Strong rationalizability analysis of Example 5

B.1 Utility functions

ot (resp., 2™¥) denote a generic

External-state-dependent utility For convenience, we let z
terminal history where Dad plays not (resp., buy). That is, an element of {(ac1,ac2, mp,ap) €
Z :ap = not} (resp., {(ac1,acz2,mp,ap) € Z : ap = buy}), and let zp be the length-two per-
sonal history of Dad induced by a generic terminal history z. In the following, consider a generic
Oc € O¢, and 7t € T, Also, recall that L = {w.no,v.yes} C Sc and G = {w.yes, w.no} C S¢
are the sets of personal external states where Child lies and does homework, respectively. (The

labels L and G are mnemonics for “lies” and “good behavior.”) Then:

1. A terminal history 2" occurs with certainty if: (i) sc = w.no and sp((no, b)) = not;
(ii) s = w.yes and sp((yes, b)) = not; (iii) s¢c = v.no and sp((no,—b)) = not; (iv)
sc = v.yes and sD((yes, b)) = SD((yes, —|b)) = not. In such case, up(s,0,7!) =0, and

—7pa(L]2%") if s¢(@) = w;

’U,C(S, 97 7—1) =
0 —tp1 (LK) if s¢(9) =wv.

2. A terminal history z®*¥ occurs with certainty if: (i) s¢ = w.no and sp((no, b)) = buy;

(it) sc = w.yes and sp((yes, b)) = buy; (iii) s¢ = v.no and sp((no,—b)) = buy; (iv)
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sc = v.yes and SD((yeS, b)) = SD((yes, —|b)) = buy. Then,”®
up(s,0,71) = 2-1[s¢(2) = w| — 1;

. 1 —7p1(L|z0) if s0(2) = w;
UC(S,G,T ) = , b
1+60—71p1(LlzpY) if se(@) =wv.

not )

3. A terminal history %Y (resp., z occurs with probability ¢ (resp., 1 — q) if s¢ = v.yes,

sD((yes,b)) = buy, and SD((yes,—'b)) = not. Hence,
uc(s,0,7") =q(1 40 — 7o, (LI2Y)) + (1 = 0)(8 — 7p1 (LIzB")) =

= q+0 —q(p,1(L|(yes,~b))) — (1 — q)(7p,1(L|(yes, b)));
up(s,0,74) = q(2 “1[sc(2) = w| — 1).

not )

4. A terminal history zb™ (resp., z occurs with probability 1 — ¢ (resp., q) if s¢ = v.yes,

sp((yes, b)) = not, and sp((yes, b)) = buy. Hence,

uc(s,0,7) = (1= q)(1 4+ 0 — 7p1 (L20) + ¢(6 — mp1(L|2H1)) =
=(1—q)+0—(1—q) (mp1(L|(yes, b)) — q(rp1(L|(yes,b)));
up(s, 0,7 = (1 - q)(2-1[sc(@) =w] —1).

In words, Child’s personal external state unambiguously defines the first two actions of a
terminal history. Then, multiple terminal histories may arise only if when Child plays according
to v.yes and Dad according to a personal external state that prescribes different actions after

observing (yes, b) and (yes, —b).

Local decision utilities Child’s preferences are own-plan independent and hence dynamically
consistent. Dad’s preferences are also trivially own-plan independent. For ease of exposition,
we use the local utilities (4 n, : A(Si) x ©; X T;°)icic,py,hen, defined in Section 4.4, which
is inconsequential thanks to Remark 8. The remark also ensures that we can focus on pure
plans. Finally, we only consider beliefs of orders up to 2 (note that second-order beliefs are
necessary, e.g., for Child to form expectations about Dad’s blame). As a result, @; , (s, 0;,77)
is interpreted as player i’s expected utility of following the deterministic plan s; from personal
history h; onward, when his trait is #; and he holds beliefs described by Ti2 .

We start from Child. Note that he acts twice in a row, and he is the only active player in
the first two stages. Dynamic consistency of his preferences, in conjunction with the rationality
requirements embodied in our solution procedure, then implies that we can simply look at his
choice between pure plans at the root of the game. To save on notation, we therefore derive
functions ¢ ., only for hc = @. Given that the set of possible trait-types for Dad is a singleton,
we identify a profile of trait types 6 = (¢, 0p) with 6¢, therefore dropping the subscript. We

have:

’ELC}@(’LU.?/GS,O,T%) = TC,Q({SD : sD((yes, —|b)) = buy}|®) —Erc, [TDJ(L](yes, —|b))|®];

"8We denote as 1[-] the indicator function. The domain of such function is B(S x © x T1).
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fLQg(w.no,O,Tg) = TC’Q({SD : sD((no, ﬁb)) = buy}|®) —Erc, [TDJ(L’(HO, ﬁb))|®];

o,z (v.yes, 0,7’%) =0+ q<TC72({5D : sD((yes, ﬂb)) = buy}|®) —Ere, [TDJ (L|(yes, ﬁ)))\@})

+(1—-9q) <TC72({SD : sD((yes, b)) = buy}]@) —E, [TDJ (L](yes, b))]@]);
c,z(v.n0,0,78) = 0+ 1c2({sp : sp((no, b)) = buy }|@) — Ere.[m0,1(L|(n0,-b))|2]).

As for Dad, for each hp € {(yes, -b), (yes, b), (no, —|b)}, sp € Sp and 7% € Tl%,

27p2(Glhp)) =1 if sp(hp) = buy;

. 2
Up.hp (5D, TDH) =
Y 0 if sD(hD) = not;

where we avoid specifying the dependence of @p j,, on Dad’s personal trait, as © p was assumed

to be a singleton.

B.2 Solution procedure

For simplicity, we carry out the “memoryless” solution procedure outlined in Definition 13. This
is equivalent to the strong rationalizability procedure (Definition 12) because here preferences

are own-plan independence and belief restrictions are absent (cf. Proposition 2).

First step By inspection of the decision utilities defined in the previous section, it is easy to
check that ¢, z(w.no, 8, 73) < ¢z (v.no, 0, 72) for all 6 and 72 (recall that 6 > 0). Moreover,
if Child’s beliefs satisfy (6) and (7) but with Er,, [7p.1(L|(no,—b))|@]) = 1, w.yes is optimal
for both Child’s trait-types. Such second-order system of beliefs trivially strongly believes Sp x
Op X TII), and it can be checked that condition 1 is met by (Té,i'qg) for some Té« € TCI.
Lastly, note that v.yes maximizes ﬁc,@( -, 0, (Té,chg)) for both trait-types if 7¢ 2 is such that
tc2({sp : sp((yes,b)) = buy}|@) = 1 and Er,, [7p1(L|(yes, —b))|@] = 0. Again, such 7¢
strongly believes Sp x ©p x T3, and it can be checked that there is 7 € 72 such that condition
1 is met by (74, 7c,2). We conclude that projg,xe. Pc(1) = {w.yes,v.yes,v.no} x {¢',6"}.

As for Dad, it is immediate to notice that condition 1 of Definition 12 implies that, to survive
this deletion step, a profile (sp,7},) has to be such that 7p;({sc : sc(@) = v}|(yes,b)) =
1. This in turn implies that 7p,1(G|(yes,b)) = 0 and 7p;1(L|(yes,b)) = 1. Then, any 7p2
that we may look for to carry out the procedure has to conform to such features. Therefore,
Up, (yes,b) (-, (7], 7p,2)) is maximized by any sp such that sp((yes, b)) = not. On the other hand,
if 7p2(G|(yes,—b)) = 7p2(G|(no,—b)) = 1, any sp maximizes both Up,(yes,b) (5 (Th, TD,2))
and ﬂD’(no’_,b)<',(Tb,TD’2)). Thus, projs, Pp(1) = {SD : sD((yes, b)) = not}.

Second step We now have to restrict attention to 7¢ 2 such that, for each non-terminal per-
sonal history he € He, 7o2({sp : sp((yes,b)) = buy}|hc} = 0and Er., [tp1(L|(yes, b)) |hc] =
1. By construction of emotional feedback, we can conclude that lying after playing video-games
makes Child blush with certainty. It is easy to check that dc,z(v.yes, 0, (18, 7¢2)) =0 — 1 <

0 =1tcu (v.no, 0, (Té, chg)) for each 7¢ 9 satisfying the aforementioned restrictions and for each
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0 € ©¢. Thus, any (sc,0,74) € Po(1) with s¢ = v.yes fails condition 2 of Definition 12. More-
over, it can be checked that playing according to h.yes yields a utility of at most 1. It follows
that for trait-type 6", such personal external state is never optimal, as v.no yields a utility of
0" > 1. It follows that projs, e, Pc(2) = ({w.yes, v.no} x {6'}) U ({v.no} x {6"}).

As for Dad, any 7p s strongly believing P¢(1) must be such that 7p 2 ({v.no}|(no, =b)) = 1.
That is, he is now sure that Child must have played video-games whenever he answers “no.”
This implies that the aforementioned 7p o must be such that 7p o (G|(n0, —|b)) = 0. It is easy
to see that ﬁD7(nO7ﬂb)(',(Tb,TD72)) is maximized by any sp with sp((no,—b)) = not, for each
Tp,2 strongly believing P¢(1) and (Té,TDQ)) satisfying condition 1 of Definition 12. Hence,
projs, Pp(2) = {sp : sp((yes,b)) = sp((no, b)) = not}.

Third step We now have to consider only 7¢ 2 strongly believing P p(2), and we can focus on
trait-type 6. This means that tc2({sp : sp((no,—b)) = buy}|hc) = 0 for each non-terminal
hc € He. This implies that tic e (v.yes,ﬁ/, (75,7072)) = 0’ for each 7¢ o strongly believing
Pp(2) and for each (74, 7¢2) meeting requirement 1 of Definition 12. Moreover, note that, if
7¢,2 has to strongly believe P p(2), we obtain tc,g (w.yes, 0/, (&, 7¢,2)) = 7¢,1({not.buy.not }|).
Thus, both w.yes and v.no can be optimal for trait-type ', and this leads us to conclude that
Projs,xe. Po(3) = projs.xe. Po(2) = ({w.yes,v.no} x {0'}) U ({v.no} x {0"}).

On the other hand, any 7p s strongly believing P¢(2) is such that 7p 2 ({w.yes}|(yes, b)) =
1. Therefore, 7p2(L|(yes, =b)) = 0 and 7p 2 (G|(yes, =b)) = 1. With this, @p (ne-p) (-, (Th: TD,2))
is maximized by any sp with sD((no, ﬁb)) = not, for each 7p 2 strongly believing P¢(1) and
(7h,7p,2)) satisfying condition 1 of Definition 12. Hence, projg, RS (3) = {not.buy.not}.

Fourth step At this point, any 7¢ 2 strongly believing P p(3) must assign probability one to
not.buy.not at each non-terminal personal history. Hence, ¢ g (w.yes, 0, (Té, qu)) =1>0 =
e, (U.no, o', (Té,TC,Q)) for each 7¢ 2 satisfying the above mentioned restrictions and for each
0 € ©¢. Therefore, we conclude that projg, e, R&(4) = {(w.yes,¢'), (v.no,6")}.

C A recap on notation

The following table summarizes the pieces of notation we introduced throughout the paper.
For sets, we report on the left column the chosen notation, as well as a generic element. The
Cartesian product of indexed sets is defined in an intuitive way, and we avoid mentioning it

explicitly below.

Notation Meaning
I, Players
A;, a; Actions of 7
0, 0; Personal traits of 4
Y, vi Outcomes of 1
E;, e; Emotions of ¢
EsL Sequences of emotion profiles of length up to L
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Notation

Meaning

M; e, mje
M;p, mip
M; = M;, x M;, m;
fo: Ax 0 x EST — A(M,)
fp : U{Zl At — M,
;Y xOx EST 5 R
A MZEP U {gMi,p} = A;

Z(hi)
H;(hi,a;)
Mi(h,-,ai)
T:ZAXx0 =Y
A Hy = A
Si = Xy, e, Ai(hi), si
i
,EK? Tz‘K
Ti K+1s Ti,K+1
Ti,k+1( - [hi)
XhieHZ- A(Ai(hi))v U(Tioo)
e:HxT>® = AEST)
O>* = Xiel(si X ©; x T,>)
S,' X @, X 7;00
SxOxTK
(fre:Sx O xTE = A(M))nen
(fop:SxOxTE = A(Mp))hen
(fn:SxOxXTE = A(M))her
(gn: S x O x THK — A(Ax M))hen

C(h|s,9,TK)
C(h|h;s,0,7H)
fishy Gih
fishis Gihis 9in,

v, ZXxOxTK SR

Emotional messages receivable by 4

previous-play messages receivable by i

Message pairs receivable by ¢

Game-independent emotional feedback function
previous-play messages generating function
Game-independent psychological utility of ¢
Feasibility correspondence of ¢

Feasible, non-terminal, and terminal histories
Feasible, non-terminal, and terminal

personal histories of ¢

Histories compatible with h;

Terminal histories possible after h;

Immediate successors of h; where a; is played
Message pairs receivable by i after h; and a;
Outcome function

History-dependent feasibility correspondence of ¢
Personal external states of ¢

Epistemic types of 4

Hierarchical systems of beliefs of i of order K
Systems of beliefs of ¢ of order K 4 1

Belief of 7 of order K + 1 held at h;

Plans of i

Emotion-generating function

States of the world

Personal states of 4

Utility-relevant states

Game-dependent emotional feedback functions
Game-dependent previous-play feedback functions
Game-dependent emotional and previous-play feedback functions
State-history-dependent distribution

of action-message profiles

Probability of realization of history h

given utility-relevant state (s, 0, 7%)

Probability of realization of history h

given utility-relevant state (s, 0, 7%) and personal history h;
State-dependent distributions over M; and A; x M;
derived from f; and gy

Expected state-dependent distributions over M; and
A; x M;, after h;, derived from f;; and g; 5
Game-dependent psychological utility of ¢
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Notation Meaning

u:SxOxTE SR State-dependent psychological utility of ¢
Uip, © S X O x TK R Psychological expected utility of 7 at h;
Uip, ° fll(hl) X ©; x 7;K+1 —R Decision utility of ¢ at h;
Tin, : ©O X T = /ll(hl) Optimality correspondence of 7 at h;
H,:Sx0xTK=H, State-dependent personal history correspondence
QZKT K(hz) Inference about states of i given beliefs 7€ at h;

We now give an explicit definition of some functions and sets introduced in the main text.

First, We say that a history (ae,mf), mt) € A’ x Mg x MY (with £ € {1,...,L}) is feasible if:

1. a1 € A(@n,), and, for each k € {1,...,0 — 1}, apq1 € A(mpr);
2. foreach k € {1,..., 0}, mpp = fo(a®);

3. for each k € {1,...,/}, there exists (0, e*) € © x E* such that my € supp fe(ak,e,ek).

Second, in Section 2.4, we introduced the notation ((h|s, 8, 7) to denote the probability that
history h realizes when the utility-relevant state is (s, 6, 7%). This probability is obtained as

L(h)
C(hls,0,75) == T] gne(s, 6,7 [(ars1(2), mey1(2))), (14)
t=0

where h! is the truncation of h at stage £ < L(h), and a,(z) and my(z) are the /-th-stage action
and message components of h, respectively. Recall that g;,(s,0,75) € A(A x M) specifies the
probability that a give profile of actions and (previous-play and emotional) messages is generated
at history h when the utility-relevant state is (s, 8, 7).

Third, we used the notation ¢(h|h/K) to denote the probability that h realizes when the
utility-relevant state is (s, , 7%), conditional on having reached h’. This probability is positive

only if h’ < h, and in such case it is simply

C(hls, 0, 75)
C(WE)

We also used the notation {(h|h;; s, 0, K ). The interpretation is similar to the one just discussed,

(A" =

but in this case one conditions on the realization of a personal history of a given player. For
each i € I and h; € H;, define as H(h;) := {h € H : 3h_; € H_;, h = (h;;h_;)} the set of
complete histories compatible with h;. That is, player ¢ infers that the complete history must
belong to H(h;) if she observes h;. Then,

((hls,0,7")
C(h|hi;87977—K) = Zh’EH(hi) C(h/‘S,G,TK)
0 if h¢ H(h).

if he H(h;);

In Section 4.4, we allowed a player’s behavior to be defined in terms of plans rather than

personal external states. The derivation of the probability of realization of each history is
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A~

conceptually similar to the procedure just described. In the following, o; € X, g, A(Ai(h;))
denotes a generic plan for player i. We define

L(z)

C(hloiys—i,0,7%) = T] oilaien1(2)hi(2)) - Laieri(2) = s—i(hli(2))}
=0

) fhe(z) (5;(7 s—i,0, TK) [mf-f—l (Z)]

The functions in Roman font extract action and message profiles realized during terminal history
z, as well as suitable predecessors of given lengths, and s} is any personal external state of player

i that prescribes a; ¢41(2) at hf(2)."” The conditional version of such distribution would be
C(h|ai7 S—i, 97 TK)

<(h|o-i7 S—is 9, TK) = Zh’EH(hi) C(h/‘a’ia S—i, 0, TK)

0 if h & Hy(h).
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