
Institutional Members: CEPR, NBER and Università Bocconi 

WORKING PAPER SERIES 

Games with Noisy Signals About Emotions
 Pierpaolo Battigalli and Nicolò Generoso 

Working Paper n. 719 
This Version: November 1, 2025 

IGIER – Università Bocconi, Via Guglielmo Röntgen 1, 20136 Milano –Italy 
http://www.igier.unibocconi.it 

The opinions expressed in the working papers are those of the authors alone, and not those of the Institute, 
which takes non institutional policy position, nor those of CEPR, NBER or Università Bocconi.  



Games with Noisy Signals About Emotions∗

Pierpaolo Battigalli† Nicolò Generoso‡

November 1, 2025

Abstract

We formalize a novel framework allowing for the observation of noisy signals about co-

players’ emotions, or states of mind. Insofar as the latter are belief-dependent, such feedback

allows players to draw inferences informing their strategic thinking. We analyze players’

strategic reasoning adapting the strong rationalizability solution concept, and we give its

epistemic justification in terms of players’ rationality and interactive beliefs. The “forward-

induction” reasoning entailed by such solution allows players to make inferences about their

co-players’ beliefs, private information, and future, or past and unobserved behavior based

on the behavioral and emotional feedback they obtain as the game unfolds. We illustrate

our framework with a signaling-like example, showing that the possibility of betraying lies,

e.g., by blushing, may incentivize truth-telling.

1 Introduction

Emotions shape social phenomena and they are often betrayed by some signals, as both common

sense and everyday experience suggest. For instance, blushing may reveal embarrassment, and

gaze contact may indicate that a person is captivated by a conversation. The relevance of

emotional signals is highlighted by a number of experimental studies: emotional leakage occurs

when people lie (Porter et al., 2012), nonverbal communication is key in courtship encounters

(Givens, 1978), individuals seem to recognize others’ predisposition to anger or trustworthiness

by observing facial cues (Van Leeuwen et al., 2018; Stirrat and Perrett, 2010), and gesture

effectively informs listeners of a speaker’s unspoken thoughts (Goldin-Meadow, 1999). Evidence

also suggests that states of mind and behavior may be influenced by signals about the emotions of

others: individuals tend to mimic others’ states of mind, therefore sparking a sort of “emotional
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contagion” (Hatfield et al., 2014; Vásquez and Weretka, 2020). All in all, emotional expressions

of others provide useful tools that can be exploited to make social interactions more predictable

and manageable (see the survey by Van Kleef and Côté, 2022).

The effect of emotions on decision-making should be of primary interest for economists.

Elster (1996, 1998) convincingly argued that a careful study of emotions could help to get a

better grip on how decisions are formed, and in this regard psychological game theory – pioneered

by Geanakoplos et al. (1989) and substantially developed by Battigalli and Dufwenberg (2009)

and Battigalli et al. (2019a) – represents a rich framework to address the issue.1 To the best of

our knowledge, the role of emotional signals has never been formally analyzed. Incorporating

such aspect in a formal analysis would yield a more accurate description of reality and new

insights when strategic reasoning is studied. Observing such signals allows to make inferences

about someone else’s state of mind and, insofar as emotions are triggered by beliefs,2 emotional

signals may shed light also on the beliefs of others. Moreover, emotional signals may also depend

on actions taken (e.g., lying may cause discomfort and hence emotional leakage), or on personal

traits (e.g., a very emotional person may be more likely to betray her state of mind with, say,

facial expressions). Therefore, the signals we introduce may allow players to draw conclusions

not only on the beliefs of others, but also on their past behavior and traits. Such inferential

reasoning can thus fruitfully inform strategic thinking.

In Section 1.1, we sketch out some heuristic examples to clarify the phenomena we aim

to model. In Section 1.2, we present our contribution. In Section 1.3, we elaborate on our

methodological position, and we briefly discuss the related literature.

1.1 Heuristic examples

As hinted above, emotional signals can shed light on the emotions of others, on their personal

traits, on their future behavior, and on past actions. We sketch some examples where this occurs.

(Unless otherwise stated, game trees with payoff vectors at terminal nodes are interpreted as

game forms with monetary payoffs that do not necessarily represent players’ player’s utilities.)

Example 1 (Trust mini-game). The following game form with monetary payoffs is widely

used in the experimental literature, to assess whether guilt may shape the second mover’s (Bob’s)

behavior.

1The main innovation introduced by the theoretical apparatus of PGT consists in letting players’ utilities

depend on (their own and their opponents’) beliefs. In this way, a wide array of belief-dependent sentiments and

emotions, ranging from reciprocity to self-esteem, can be modeled. See Battigalli and Dufwenberg (2022) for a

survey of recent developments in the literature.
2For instance, disappointment may be a consequence of unmet expectations about others’ behavior and guilt

may be generated by the failure to live up to (one’s own or others’) expectations.
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Ann

(1, 1)

Not trust Trust

Bob

(2, 2)

Share

(0, 3)

Grab

Behrens and Kret (2019) find that face-to-face contact may foster cooperation and pro-social

behavior. We can enrich the traditional representation of the Trust Mini-Game by allowing Bob

to receive a signal about Ann’s emotions before making his choice. A relevant emotional state

in this setting is Ann’s trustfulness – for instance, smiling may convey her desire to cooperate,

and Bob would make inferences about Ann’s emotions upon observing such signal. In this

environment, trustfulness could be thought of as the extent to which Ann expects Bob to share.

Upon seeing Ann smile, Bob may infer that she expects him to share, and this would provide

him with further incentives to avoid letting her down. ▲

Example 2 (Ultimatum Mini-Game). Consider the following game form.

Ann

(2, 2)

Fair Greedy

Bob

(0, 0)

Reject

(3, 1)

Take

If Bob gets angry after receiving a greedy offer, he may decide to forego $1 to punish Ann.

Rejections at the second stage can be accounted for by the model of frustration and anger of

Battigalli et al. (2019b). Van Leeuwen et al. (2018) suggest that individuals playing such game

in the lab can infer how much their opponents are prone to anger by observing facial cues. Such

cues cannot concern Bob’s frustration, because frustration arises only as a consequence of others’

choices. Nonetheless, facial cues may provide hints about a player’s personal trait, that is, how

prone one is to getting angry. ▲

Example 3 (Negotiation). Successful coordination and exchange of information are key in

negotiations. Verbal (e.g., statements) and nonverbal (e.g., gesture) emotional expressions allow

to infer the counterparts’ intentions (Druckman and Olekalns, 2008). Elfenbein et al. (2007) find

that individuals with a better emotion recognition accuracy attain better outcomes in negotiation

exercises. In a stylized situation, we could imagine two agents engaging in an alternating-offer

bargaining procedure. We could also assume that irritation may arise if one party receives

an offer that is far from her minimal acceptable outcome, or that impatience may emerge as

the negotiation lengthens. In the former case, emotional signal allow to better assess others’

reservation values, which may be thought of as a personal trait. In the latter, one party may
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realize that the other could settle for less advantageous terms to end the costly delay, therefore

using emotional signals to make inferences about others’ future behavior. ▲

Example 4 (Police interrogation). Police manuals recommend to pay attention to stereotyp-

ical cues such as gaze aversion and fidgeting to detect lies when questioning suspects. Whether

this helps officers or not is unclear – in fact, evidence suggests that doing so may hamper lie

detection (DePaulo et al., 2003). Yet, the majority of policemen participating in the experiment

of Mann et al. (2004) declared that they look primarily at gaze aversion to detect lies in interro-

gations. Hence, they (perhaps mistakenly) use emotional cues to infer past unobserved actions

of others and to infer whether the suspects’ stories coincide with their actual past behavior.

▲

1.2 Our contribution

We develop a novel framework to model sequential psychological games where players receive

signals, here called “messages”, about their opponents’ states of mind, in the form, e.g., of facial

cues or involuntary behavior. In this regard, our contribution is twofold. First of all, an innova-

tion is represented by the proposed framework, and by the incorporation of emotional feedback

in game-theoretic analysis. More specifically, we allow such signals to be generated stochasti-

cally, and we take this generative process to be driven by the agents’ states of mind. Relatedly,

we also discuss how emotions are generated by players’ beliefs and behavior as the game unfolds,

and how signals about emotions allow to make inferences when reasoning strategically.

Second, we carry out an analysis of the key features that allow to derive behavioral predic-

tions. We first give a definition of players’ rationality as the conjunction of several requirements

concerning players’ cognitive sophistication and optimality of plans and behavior. We provide

an explicit formal analysis of players’ inferential reasoning and of players’ rationality, showing

that the set of states corresponding to the event “player i is rational” is a measurable subset of

the set of states of the world. While measurability is essentially a mathematical property, it has

relevant conceptual meaning, because we interpret measurable sets of states of the world as the

events about which players can form their beliefs. Saying that rationality is an event implies

that a given player may wonder about her opponents’ rationality, incorporating such event into

her strategic reasoning.

Finally, we propose a rationalizability-like solution concept to predict behavior, and we

justify it in terms of underlying assumptions about players’ rationality and interactive beliefs

(Theorem 1). Such solution concept is particularly suited to our context, since it entails a form of

forward-induction reasoning. That is, players try to make sense of (i.e., they try to rationalize)

the information they receive as the game unfolds in a way that is consistent with their opponents

being rational and strategically sophisticated. This solution concept is particularly compelling

in our framework, because it captures the idea that players use emotional signals to infer their

opponents’ beliefs, private information, future behavior, and past unobserved actions. We apply

our solution procedure to a simple situation, showing how the possibility of betraying false

statements with emotional messages (e.g., by blushing) may represent a strong enough incentive

for the disclosure of private information.
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1.3 The bigger picture: methodology and related literature

In this section, we discuss some of our modeling choices, relating them to the existing literature.

First, our work builds on the methodological paper of Battigalli et al. (2019a) in the way it

models psychological games and belief-dependent motivations. Differently from such paper,

states of the world include a description of how players would behave also at histories that do

not realize, rather than just a description of how the game unfolds. In this, our approach mirrors

that of Battigalli and De Vito (2021). Like them, we explicitly distinguish between players’ plans

and descriptions of behavior, requiring that they coincide for rational players, but may differ

otherwise. This means that we do not assume that players necessarily know how they would

behave at different contingencies: they can plan what to do, but they may fail to stick to their

own plans.

Our approach to modeling rationality presents some innovations as well. Rationality is

traditionally understood as the conjunction of several features, concerning both behavior and

cognition. Some of these assumptions are typically implied by the modeling tools employed. For

example, a “correct” updating policy is embedded in the definition of conditional probability

systems (cf. Axiom 3 in Battigalli and Siniscalchi, 1999 and the analysis in Battigalli et al.,

2023), which are conventionally used to model beliefs in sequential games, and transparency of

coherence between beliefs of different orders follows from the choice of positing a type structure

(cf. Battigalli and Siniscalchi, 1999 and Dekel and Siniscalchi, 2015). We instead construct a

rich state space, and take the desired rationality features to be properties holding only at some

states – this way, each requirement becomes an explicit assumption, represented by an event in

a state space. Like in Battigalli et al. (2020), we do not posit a type structure, and we take

instead an infinite hierarchical system of beliefs to be the epistemic/doxastic type of a player:

with this, a player’s way of thinking is described by a map that associates an infinite hierarchy

of beliefs to each history she may observe. In a state of the world, such descriptions of “ways of

thinking” will be coupled with descriptions of behavior and with personal traits. For rational

players, we impose some cognitive sophistication properties (i.e., that beliefs of different orders

be coherent, and that beliefs be updated consistently with evidence and according to the rules

of conditional probabilities), as well as the requirement that rational players plan optimally and

implement their plans. All in all, our notion of rationality shares similarities with the traditional

one, but it is more explicit and more structured.

With this approach, showing the measurability of the event “player i is rational” is non-

trivial. Even if this comes at a cost, we believe that our language features enough flexibility to

model a wide variety of cognitive failures and behavioral inconsistencies. The richness of our

framework also allows to let players entertain the possibility that some of their opponents be

in some sense unsophisticated.3 Such a level of expressiveness seems to be a prerequisite for

3In contrast to our approach, in a canonical type structure, types are collectively coherent hierarchies of condi-

tional beliefs (in the words of Dekel and Siniscalchi, 2015). This means that, by construction, the possibility that

an opponent features —for example— some incoherence between her first- and second-order beliefs is inconceivable

for any player.
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the introduction of elements of bounded rationality (or, more generally, of departures from a

canonical notion of rationality) in strategic settings, as well as for a rigorous analysis of such

phenomena.

Lastly, we build on our analysis of rationality to formalize a solution concept that captures

the implications of meaningful hypotheses about players’ rationality and strategic reasoning, that

we interpret as common strong belief in rationality. Our solution concept is a version of strong

directed rationalizability (a.k.a. strong ∆-rationalizability, see the textbook of Battigalli et al.,

2025, Battigalli, 2003, Battigalli and Siniscalchi, 2003, Battigalli and Tebaldi, 2019 and relevant

references therein), which characterize in standard settings the utility-relevant implications of

rationality, some belief restrictions, and common strong belief in both (Battigalli and Prestipino,

2013). We prove that the same holds in our framework (Theorem 1). Our epistemic analysis is

different from the usual one because of our type-structure-free approach. Our result establishes

that a procedure carried out taking into account only beliefs of a finite order captures the

implications of epistemic assumptions that are formulated in terms of infinite hierarchies of

beliefs. This is in the same spirit of Battigalli et al. (2020), and it leverages technical results

proved in Battigalli and Tebaldi (2019).

Roadmap The paper is organized as follows. Section 2 introduces our framework. Section

3 formalizes the inferential reasoning players carry out upon observing messages about their

opponents. Section 4 defines rationality. Section 5 introduces the solution concept. Section 6

provides the epistemic justification for the proposed procedure. Section 7 concludes.

2 Formal framework

In the following, for each compact metrizable topological space S, we denote by B(S) its Borel
σ-algebra and by ∆(S) the space of Borel probability measures on S. Sets of probability mea-

sures are endowed with the topology of weak convergence, Cartesian products with the product

topology, finite sets with the discrete topology, and subsets of topological spaces with the rel-

ative topology. Moreover, we maintain that the (finite) set of players is I, and that the games

we model unfold within a single period and last at most L ∈ N stages.

For a set X and for each n ∈ N, we let Xn denote the n-fold product of X, with generic

element xn. Moreover, given x̄n ∈ Xn with n ∈ N, we let x̄k denote its k-th coordinate (with

k ∈ {1, . . . , n}). Lastly, we also define X0 := {∅X}, i.e., the singleton containing the empty

sequence of elements of X.

The remainder of this section is organized as follows. Section 2.1 describes how emotions

shape feedback and utility. Section 2.2 constructively derives the game tree. Section 2.3 describes

players’ predispositions to act and to believe as the game unfolds, and relates such attitudes to

the generation of emotions. Section 2.4 further elaborates on utility functions.
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2.1 Emotions, messages, and utility

We start by describing how emotional feedback is generated and how emotions determine util-

ities. Emotions are understood as broad categories, not necessarily tied to specific situations.4

Therefore, our focus here will be independent from any game, and we will embed emotions in

specific contexts only later.

First, for each i ∈ I, we denote the (nonempty) finite set of personal traits of agent i as Θi,

and the (nonempty) compact metrizable set of emotional states (henceforth simply emotions)

of agent i as Ei. We let Θ :=×i∈I Θi and E :=×i∈I Ei denote the set of profiles of traits and

emotions, respectively. Agents experience streams of emotions: for each ℓ ∈ {1, . . . , L + 1}, Eℓ

is the set of streams of emotion profiles of length ℓ. Given that we will model games lasting at

most L stages, we consider the set E≤L+1 :=
⋃L+1

ℓ=1 E
ℓ, which represents the possible streams

of emotions experienced by agents in the situation of interest.5 For each i ∈ I, E≤L+1
i has an

analogous meaning.

We posit, for each i ∈ I, a (nonempty) finite set of conceivable emotional messages (or

signals), Mi,e, and we let Me :=×i∈I Mi,e.
6 Furthermore, for each i ∈ I, let Yi be the finite

(nonempty) set of material outcomes, and define the set of collective outcomes as Y :=×i∈I Yi.

We now turn to the key elements of our analysis. First, we define a continuous feedback

function about emotions and traits f̃e : Ã × Θ × E≤L+1 → ∆(Me), where Ã =×i∈I Ãi is a

generic finite but “universal” set of action profiles that can be taken by agents. We let messages

be generated stochastically because messages about emotions are noisy. Note that we allow the

message generation to depend also on actions agents can take,7 as well as on their traits. Second,

we define a profile of continuous psychological utility functions (ṽi : Y × Θ × E≤L+1 → R)i∈I .
Differently from conventional utilities, they do not depend only on outcomes and traits, but also

on the streams of emotions experienced by players.

2.2 The game tree

We now move to the description of game-specific aspects. Although the peculiarity of our

framework is that players receive messages related to the emotions and traits of others, as the

play unfolds they also receive messages about previous moves, or “previous-play messages”. We

do not assume players necessarily observe their co-players” previous moves – they only receive

some “previous-play messages” that contain some information about how the game has been

played up to a given point. As a special case, such messages may exactly pin down the actions

chosen by others. Whenever a player is called upon to act, her available actions are self-evident,

regardless of whether she perfectly recalls how the game unfolded up to that point. Given that

4For instance, someone may get angry if his favorite football team loses or if he is disappointed by the behavior

of someone – the emotion experienced is arguably the same, but the situations that triggered it may be different.
5Players can experience a stream of emotions of length at most L+ 1 because we assume that they hold some

initial emotional state, and then they experience a new one after each stage of the game.
6 It is useful to assume Mi,e =×j∈I\{i} Mi,j,e, where Mi,j,e is interpreted as the set of messages about j’s

emotions that i can observe. Whenever I = {i, j}, Mi,e (resp. Mj,e) is isomorphic to Mi,j,e (resp., Mj,i,e).
7In a game, such actions will be the ones agents can play at a given stage.
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the game-specific information players receive is encoded in previous play messages, we posit

that the last such message received directly informs a player of her feasible actions at the next

stage.8 This way of modeling players’ information throughout the game is the one proposed by

Battigalli and Generoso (2024) – we refer the reader to such paper for a more detailed discussion

of the conceptual and methodological issues involved in our modeling choice.

For each i ∈ I, we let Ai (with ∅ ̸= Ai ⊆ Ãi) be the finite set of potentially available

actions of player i in the given game, and Mi,p the finite set of previous play messages player

i can receive. In our framework, feedback pertains to both the actions previously chosen (and

possibly not observed) by players and the emotional states of others. The Roman subscript in

our notation is a mnemonic for these domains. We let A :=×i∈I Ai and Mp :=×i∈I Mi,p be

the sets of profiles of actions and previous play messages, respectively. We also posit a previous

play message generating function, f̃p :
⋃L

ℓ=1A
ℓ → Mp. Note that feedback about previous play

– unlike feedback about emotions – is game-dependent, as it is generated according to the rules

of the game. Unlike emotional messages, previous play messages are produced deterministically,

and letting f̃p be the map aℓ 7→ (aℓi)i∈I amounts to assuming observed actions. For each aℓ ∈ Aℓ,

ℓ ∈ {1, . . . , L}, and i ∈ I, we let f̃i,p(a
ℓ) := projMi,p

f̃p(a
ℓ).

We also posit, for each i ∈ I, an action feasibility correspondence, Ai :Mi,p ∪ {∅Mi,p} ⇒ Ai.

The interpretation is that Ai(mi,p) is the set of actions available to her after receiving previous-

play message mi,p (i.e., in the subsequent stage). Moreover, ∅Mi,p stands for the situation in

which player i has not received any message yet, so that Ai(∅Mi,p) represents the actions player

i can choose at the beginning of the game. It is convenient to define A :Mp∪{∅Mp} ⇒ A to be

such that A(mp) :=×i∈I Ai(mi,p) for each mp = (mi,p)i∈I , and A(∅Mp) :=×i∈I Ai(∅Mi,p). To

describe the end of the game, we assume that, for each mp = (mi,p)i∈I and i ∈ I, Ai(mi,p) = ∅
if and only if Aj(mj,p) = ∅ for each j ∈ I. In such case, A(mp) = ∅ as well. In words, as soon

as the game is over for one player, it is over for everyone.9

We take histories to be sequences of profiles of actions, previous-play messages, and messages

about emotions and traits. With f̃p, f̃e, and (Ai)i∈I as primitive elements of our analysis, we

can give a constructive definition of the set H̄ of feasible histories. A history is feasible if, at

each stage, (i) the sequence of actions played is allowed by the rules of the game (specifically,

by (Ai)i∈I and f̃p), and (ii) the previous-play and emotional messages can be generated with

positive probability given the feedback functions f̃p and f̃e.
10 For convenience, we assume that

the empty history ∅ belongs to H̄.11 The set of terminal histories is Z := {h = (aℓ,mℓ
p,m

ℓ
e) ∈

8For instance, the average amateur chess player arguably cannot remember the entire sequence of moves at all

the stages of the game. Yet, the disposition of pieces on the chessboard informs him of his feasible moves. For

instance, if his king is under check, he can understand which are the legitimate moves he can take (if any) based on

such disposition. One can think of previous play messages (e.g. the piece disposition) as summary indicators that

(perhaps imperfectly) aggregate past moves and that provide all the information needed to be able to continue

the game.
9This means that players who are at some stage inactive actually have only one feasible action (say, a dummy

action “wait”), which will always be neglected in our notation.
10We give a formal definition of feasibility in Appendix C.
11The empty history can be thought of as a history of length zero where no action has been played and no
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H : A(mp,ℓ) = ∅}, and the set of non-terminal histories is H := H̄ \ Z.
Note that, at each stage, agents first act, and then observe messages. The previous-play

message profile generated at some stage k depends on the entire sequence of action profiles

played up to that stage, while emotional feedback depends on actions played, personal traits,

and emotions. To ease notation, we let M := Mp ×Me, with generic element m = (mp,me)

describing in a concise way the (previous-play and emotional) feedback received by all players.

The set Mi :=Mi,p ×Mi,e, with generic element mi, has analogous meaning.

The assumption that players need not observe others’ actions or messages justifies the intro-

duction of the set of personal histories of any player i, defined as H̄i := proj⋃L
ℓ=0 A

ℓ
i×Mℓ

i
H̄. The

set H̄i collects all the information – in terms of actions played and messages received – player

i may have access to as the game unfolds. The sets Hi and Zi represent the sets of personal

non-terminal and terminal histories, respectively. Thus, {Hi, Zi} is a partition of H̄i.

A (weak) “prefix of” relation ⪯ can be defined on H̄. Given ĥ = (âk, m̂k), h = (aℓ,mℓ) ∈ H̄,

ĥ ⪯ h if either ĥ = h or k < ℓ and (âk, m̂k) = (ak,mk). If ĥ ⪯ h, we say that ĥ (weakly)

precedes h. Since ∅ ∈ H̄, it is easy to check that H̄, partially ordered by ⪯, is a tree, and that

the same holds for H̄i.

Lastly, a consequence function π : Z × Θ → Y specifies how outcomes accrue to players at

the end of the game. For each i ∈ I and (z, θ) ∈ Z × Θ, we let πi(z, θ) := projYi
π(z, θ). We

conclude this section introducing our running example.

Example 5 (Buy me an ice-cream). Child is at home alone and he should do his homework,

but he is tempted to play video-games. When Dad gets back from work, Child asks him to buy

him an ice-cream. Dad would be happy to reward Child, but he does not know if his son studied.

He simply asks him if he has done his homework, and to decide based on the answer. To make

the problem more interesting we add two features. First, we assume Child is concerned about

his image in Dad’s eyes: he dislikes being thought of as a liar, regardless of whether he actually

lied or not.12 Second, we assume that Child may blush when he falsely claims that he has done

his homework.

The set of Child’s potentially available actions is AC := {w, v, yes, no}, where the elements

denote doing homework, playing video-games, saying “yes,” and saying “no,” respectively. As

for Dad, we let AD := {buy, not}, because he can either buy Child an ice-cream or not. Only Dad

observes emotional messages throughout, so let MD,e := {b,¬b, n}, whose elements respectively

stand for “blushing,” “not blushing,” and “uninformative message,” and MC,e := {n}. Lastly,

assume ΘD is a singleton and let θC ∈ ΘC ⊂ R+ denote Child’s appreciation for video-games.

We model the situation as follows. Child first privately chooses between homework and

video-games, then he answers “yes” or “no” to Dad, and lastly Dad decides whether to buy the

ice-cream. Child observes all the actions taken, while Dad observes only the actions taken from

the second stage onward. To capture this flow of information, for each a ∈ {w, v}, a′ ∈ {yes, no},

message has been received yet – i.e., ∅H = (∅A,∅Mp ,∅M ). To simplify notation, we denote it simply as ∅.
12This is a form of image concern. In particular, in our case the concern depends on others’ opinions about

good actions, i.e., not lying (see Battigalli and Dufwenberg, 2022).
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and a′′ ∈ {buy, not}, we can define function f̃p to be such that (a) 7→ (a, ā), (a, a′) 7→
(
(a, a′), a′

)
,

(a, a′, a′′) 7→
(
(a, a′, a′′), (a′, a′′)

)
, where the two components are Child’s and Dad’s previous-play

messages, respectively, and ā is an uninformative message. Action feasibility correspondences

are defined in an obvious way.

Recall that we would like to model a situation where Child has image concerns and may

blush with positive probability only if he lies after playing video-games. Relevant emotions in

this settings are confidence, guilt, and blame. Child is confident if he thinks he can get away

with his lie, he might feel guilty for not doing his homework, and he dislikes Dad’s blame. A

profile of emotional states is an element of the set E := [0, 1] × {0, 1} × [0, 1], with its three

components representing confidence, guilt, and blame, respectively. Confidence and guilt shape

emotional feedback in the “second stage” of the situation we have in mind (i.e., when Child

decides what to tell Dad). Denote these emotions as c2 and g2, where the subscript reminds

that these are Child’s emotional states during the second stage, and the boldface font is used to

distinguish emotions from other objects. Dad’s blame instead matters at the end of the game,

because Child cares about what Dad eventually thinks of him. Denote such emotion as b3. To

ease notation, we neglect the emotions held at other points of the interaction.

Then, we can assume that Child may blush only if he feels guilty for not doing his homework,

and that the probability of not blushing is equal to his confidence: for each (a, θ, e2) ∈ A×Θ×E2,

f̃e(a, θ, e
2) =

g2
(
c2δ¬b + (1− c2)δb

)
+ (1− g2)δ¬b if a = yes;

δ¬b if a = no;
(1)

and equal to δn in all other cases.13 This formulation implies that message b may be generated

only after Child’s second-stage action and only if he says “yes.” Also note that personal trait θ

does not affect emotional feedback in this example.

It is natural to try to tie the emotions just discussed to a more structured model. For instance,

we hinted at the fact that guilt may arise if Child plays video-games. We will elaborate on this (cf.

p. 14) and we will explain how to embed emotions into an interactive situation. Eventually, we

will obtain that b may realize only if Child plays video-games and subsequently says “yes.” For

the moment, we leave the description of emotions and feedback unstructured. This means that

Dad can observe a trivial length-one personal history (where he waits and observes uninformative

signals about Child’s action and emotions) and three length-two personal histories, identified

with (yes, b), (yes,¬b), and (no,¬b).
Lastly, we describe utility functions. Child’s is the most interesting. Recall that he dis-

likes Dad’s blame b3. In terms of material outcomes, let YC := {0, 1}2, with generic ele-

ment (yC,1, yC,2), and with the two coordinates indicating whether Child eats the ice-cream and

whether he plays video-games, respectively. Then, define

ṽC(y, θ, e
4) := yC,1 + θyC,2 − b3. (2)

13We report only Dad’s message as subscript, as Child only observes uninformative messages. Moreover, we

report the argument e2 to be consistent with the notation used in the main text, because the relevant feedback

is generated in the “second stage’ (i.e., after players have experienced a stream of emotions of length 2).
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As for Dad, he incurs a cost of 1 to buy the ice-cream and he gets a payoff of 2 if he buys the

ice-cream when Child did his homework (and 0 otherwise). ▲

2.3 Predispositions to act and believe

We now define “states of the world,” which we take to be complete descriptions of players’ traits

and predispositions to act and believe. The term “predisposition,” suggests that we do not want

to define only players’ behavior and beliefs along the path of the game, but rather how they

would behave and what they would believe conditional on all possible contingencies. A state of

the world therefore encompasses all the relevant aspects of a strategic situation.

2.3.1 Behavior

Our first building block is a complete description of a player’s behavior conditional on different

personal histories. To define such objects, we introduce, for each player i ∈ I, the correspondence

Âi : Hi ⇒ Ai, where, for each hi ∈ Hi, Âi(hi) := {ai ∈ Ai : ∃mi ∈ Mi, (hi, ai,mi) ∈ H̄i}. In

words, Âi(hi) is the set of player i’s available actions after personal history hi. For each i ∈ I,

we define the set of i’s personal external states as:

Si := ×
hi∈Hi

Âi(hi).

The set of personal external state profiles is S :=×i∈I Si, and we call s ∈ S an external state.

A personal external state is a map from non-terminal personal histories to feasible actions.

Elements of Si can technically be labeled as player i’s “strategies”, but we refrain from using such

terminology because we maintain that strategies are plans in the minds of players. In particular,

we will allow player i to form beliefs about her own behavior (i.e., over the set Si): such beliefs

are interpreted as the way in which a player expects herself to behave in the future. Importantly,

a complete description of player i’s contingent behavior, si, may or may not coincide with what

she planned to do before the game started.

2.3.2 Beliefs

We now discuss how to give a complete description of the epistemic features of a player. The

mathematical description of a player’s way of thinking is a hierarchical system of beliefs, that

is, a map from personal histories to hierarchies of beliefs. We define such objects inductively.

First, define the space of primitive uncertainty to be Ω0 := S ×Θ. This is the basic uncer-

tainty space upon which players form their first-order beliefs.14 A system of first-order beliefs is

any function that maps from H̄i to the set of Borel probability measures on Ω0. Therefore, the

set of systems of first-order beliefs of player i is Ti,1 := [∆(Ω0)]H̄i . We define the sets of profiles

of first-order beliefs of players other than i as T−i,1 :=×j∈I\{i} Tj,1. Lastly, for each i ∈ I, we

let Ω1
−i := Ω0 × T−i,1.

14Note that players form beliefs also over their own traits and personal external states. Later on, we will

make the assumption that rational players know their personal traits, while beliefs about one’s own behavior are

interpreted as players’ plans.
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Assume now that Ωk−1
−i , Ti,k−1, and T−i,k−1 have been defined for each i ∈ I and k ∈

{2, . . . , n}. Then, define:

Ti,n :=
[
∆(Ωn−1

−i )
]H̄i , T−i,n := ×

j∈I\{i}
Tj,n, Ωn

−i := Ωn−1
−i × T−i,n = Ω0 ×

(
n

×
k=1

T−i,k

)
.

The set of systems of n-th-order beliefs of player i is Ti,n. We define also Tn := ×i∈I Ti,n.
As a matter of notation, Ti,n denotes the set of systems of n-th order beliefs, while the set of

hierarchies of systems of beliefs of order up to n will be denoted as T n
i , as specified below.

We let the set of n-th-order hierarchical systems of beliefs (with n ∈ N) and the set of infinite

hierarchical systems of beliefs of player i be, respectively,

T n
i :=

n

×
k=1

Ti,k =
[(
∆(Ω0)

)H̄i
]
×

n

×
k=2

[(
∆(Ωk−1

−i )
)H̄i
]
, T ∞

i :=×
n∈N

Ti,n.

Define also T n
−i :=×n

k=1 T−i,k, T n :=×n
k=1 Tk, T

∞
−i :=×j∈I\{i} T

∞
j and T ∞ :=×i∈I T

∞
i .15

A generic τ∞i ∈ T ∞
i is an epistemic type of player i. Taking an infinite hierarchical system

of beliefs as the epistemic type of a player allows us to conduct an epistemic analysis without

resorting to a type structure. The interpretation of such objects is similar to that of personal

external states: τ∞i represents a complete description of what player i would believe at different

contingencies. Unlike personal external states, we informally assume players know their epis-

temic types. Finally, note that we have not imposed any requirement in the construction above:

cognitive sophistication properties will be modeled as features that hold only at some states.

Remark 1. For each i ∈ I and n ∈ N ∪ {∞}, T n
i is compact metrizable.16

We conclude with a notational clarification. For each n ∈ N, i ∈ I, τi,n ∈ Ti,n, and hi ∈ H̄i,

to ease interpretation we denote τi,n(hi) ∈ ∆(Ωn−1
−i ) by τi,n( · |hi). Indeed, recall that τi,n selects

a n-th-order belief for each personal history, and such notation suggests that such belief is the

one held by player i conditional on observing personal history hi. Moreover, given n ∈ N and

τni ∈ T n
i , we write τni ( · |hi) as a shorthand for (τi,k( · |hi))nk=1. To ease notation and with a small

abuse, given two generic topological spaces X and Y and a measure µ ∈ ∆(X × Y ), for each

A ⊆ X, we write µ(A) instead of µ(A×Y ). Therefore, expressions such as τi,n({s−i}|hi) should
be read as τi,n(Si × {s−i} ×Θ× T n−1

−i |hi).

2.3.3 States of the world

We can now define the set of states of the world as Ω∞ := Ω0 ×T ∞, and measurable subsets of

Ω∞ are events. For each i ∈ I, Si ×Θi × T ∞
i is instead the set of personal states of player i.

15Note that it is possible to write Ωn
i = Ω0 × T n

i , for each i ∈ I and n ∈ N. This explains the presence of

superscripts in our notation.
16Given that Ω0 is finite, it is compact metrizable and so is ∆(Ω0) (Aliprantis and Border, 2006, Theorem

15.11). Tychonoff’s theorem and Theorem 3.36 of Aliprantis and Border (2006) imply that Ti,1, Ω
1
i , and Ω1

−i are

compact metrizable as they are countable products of compact metrizable spaces. An inductive argument shows

that Ti,n, Ω
n
i , and Ωn

−i are compact metrizable. With this, for each i ∈ I and n ∈ N ∪ {∞}, T n
i is a countable

product of compact metrizable spaces, and it is therefore compact metrizable as well.
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Remark 2. Ω∞ and Si ×Θi × T ∞
i are compact metrizable.

A state of the world provides all the relevant game-specific aspects about players, as it

encodes their traits and a complete description of their behavior and their beliefs conditional on

each possible contingency that may arise as the game unfolds. Throughout, we will interpret

measurable sets of states of the world as those events that can be evaluated by players’ beliefs

of some order. We will show that, under a belief coherence property, it is as if players formed

their beliefs on Ω∞ (cf. Lemma 3). Events in Ω∞ such as “a player is rational” (cf. Lemma 8)

can then be assessed by coherent players, and this will be key in defining a theory of strategic

reasoning (cf. Section 6; specifically, Lemma 10).

2.3.4 Epistemic types, game unfolding, and emotions

States of the world capture all the game-specific attitudes of players. Yet, we still need to

explain how emotions are triggered by players’ behavior and beliefs as the game unfolds. It

seems reasonable to think that feelings such as surprise, guilt, or frustration arise from the

unfolding of the game (e.g., from players’ choices) and from endogenous beliefs (e.g., from

player’s expectations). In our running example we introduced broad concepts such as guilt,

distrust, or blame, but the situation at hand also suggested a very natural interpretation of such

emotions (e.g., Child feels guilty if he plays video-games instead of studying). Our aim is to tie

streams of emotions experienced by players during the game to states of the world.

First, we discuss how players’ beliefs are realized as the game unfolds. The realized beliefs of a

player at some personal history are the beliefs held by that player at predecessors of such history

(i.e., along the “path” that led to such history). We define a profile of realized-beliefs functions

ρ := (ρh)h∈H̄ , where, for each h = (hi)i∈I ∈ H̄, ρh is the map τ∞ 7→ ((τ∞i ( · |h′i))h′
i⪯hi

)i∈I . In

words, ρh(τ
∞) is the stream of belief profiles realized along h.17

Then, we define a continuous emotion-generating function, ε : H̄ × T ∞ → ∆(E≤L+1), and

we make the following assumptions about it. First, only realized beliefs matter in the generation

of emotions: for each h = (hi)i∈I ∈ H̄, the section of ε at h is given by εh := ε̄h ◦ ρh, with
ε̄h : ρh(T ∞) → ∆(E≤L+1). Second, along histories of a given length ℓ ∈ {1, . . . , L} players

experience streams of emotion profiles of length ℓ + 1:18 for each h ∈ H̄ℓ, supp εh ⊆ Eℓ+1.

Third, we posit a belief-order K ∈ N such that beliefs of order higher than K ∈ N are irrelevant

for the generation of emotions: for each τ∞, τ̄∞ ∈ T ∞, τK = τ̄K implies ε(h, τ∞) = ε(h, τ̄∞)

for each h ∈ H̄. For simplicity, we write the argument of ε directly as elements of H̄ × T K .

By linking the generation of emotions to game-specific contingencies, function ε completes

the definition of a game with feedback about emotions. A game with feedback about emotions is a

structure Γ := ⟨I,A, f̃p, f̃e, π, ε, (Θi, Ai,Mi,p,Mi,e, Yi, Ei, ṽi)i∈I⟩, with its components as defined

in previous sections. It is informally assumed that these elements are commonly known.

17A brief comment on notation. Indexing objects by (personal) histories should be read as “at such history.”

So, for instance, ρh(τ
∞) are the beliefs realized at h, ui,hi(s, θ, τ

K) the utility i expects at hi given (s, θ, τK), and

ζ(z|hi; s, θ, τ
K) the probability of z occurring given (s, θ, τK) and conditional on hi occurring (cf. Section 4.4).

18Indeed, it is reasonable to assume that an emotion profile is generated after each stage. Hence, a given

length-ℓ history induces one emotion for each of its ℓ+ 1 weak predecessors.
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Next, we retrieve a profile of feedback functions about beliefs (or, simply, emotional feedback)

fe := (fh,e : S×Θ×T K → ∆(Me))h∈H . For each h ∈ H, (s, θ, τK) ∈ S×Θ×T K and me ∈Me,

let

fh,e(s, θ, τ
K)[me] :=

∫
EL(h)+1

f̃e(s(h), θ, e
L(h)+1)[me] · ε(h, τK)[deL(h)+1], (3)

where L(h) denotes the length of each history h ∈ H̄. Continuity of f̃e and ε implies the

following.

Remark 3. For each h ∈ H, fh,e is continuous.

Note that the domain of feedback functions is now a set over which players form well-defined

beliefs. In Section 3, we present assumptions on fe that allow to prove technical results.

We also express the feedback about previous play in a way that depends on profiles (s, θ, τK).

To do so, define fp := (fh,p : S×Θ×T K → ∆(Mp))h∈H to be such that, for each h = (at,mt) ∈
H, (s, θ, τK) ∈ S ×Θ× T K and mp ∈Mp,

fh,p(s, θ, τ
K)[mp] =

1 if f̃p(a
t, s(at)) = mp;

0 otherwise.

In words, fh,p(s, θ, τ
K) is a degenerate probability measure concentrated on the message about

previous play that would be generated by f̃p if players behave as described by s after history

h. Note that fp does not depend on personal traits or on systems of beliefs. This is consistent

with the idea that previous-play messages only pertain to (past) behavior, which is entirely

summarized by personal external states.

Finally, we let f := (fh : S ×Θ× T K → ∆(M))h∈H summarize the generation of messages

about both previous play and emotions. To this end, for each (s, θ, τK) ∈ S ×Θ× T K , define

fh(s, θ, τ
K) := fh,p(s, θ, τ

K)⊗ fh,e(s, θ, τ
K), (4)

where ⊗ denotes the product of measures. Consistently with the notation used so far, we let

fi,h = margMi
◦fh for each i ∈ I.

Example 5 (Buy me an ice-cream, continued). A generic personal external state of Dad

is indicated as a1.a2.a3, where a1, a2, and a3 are the actions prescribed after histories (yes, b),

(yes,¬b), and (no,¬b), respectively. A generic personal external state of Child is instead a1.a2,

with a1 (resp., a2) denoting the first-stage (resp., second-stage) action he would play.19

Defining the generative process for all the streams of emotion profiles is notationally costly.

To ease the exposition, we only define how the emotions appearing in equations (1) and (2) (cf. p.

10) are generated. For simplicity, we further assume emotions to be generated deterministically,

19Actually, according to our definition, a personal external state of Child should be a map from the set of

histories where Child is active, {∅, (V ), (H)}, to AC . Letting Child’s personal external states take the form of

a1.a2 amounts to not specifying the action prescribed at the (personal) history that is not allowed for by the

first-stage action. This is inconsequential, and it comes with an advantage in terms of parsimony of notation.
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and we let K = 1. First, Child is guilty if he plays video-games instead of doing his homework.

Hence, we simply impose g2 = 1 after history (v), and g2 = 0 after (w).20 Second, Child’s

confidence is his belief of getting away with his lie even if he blushes. Given that we are only

interested in such emotion when he lies after playing video-games, we can let c2 = τC,1

(
{sD :

sD
(
(yes, b)

)
= buy}|v

)
. As for Dad, blame (b3) is equal to the probability with which he believes

Child lied. Let L :=
{
v.yes, w.no

}
be the set of lies,21 and zD the terminal personal history

observed by Dad during the game unfolding. Then, b3 = τD,1(L|zD). We neglect the generation

of emotions at other stages of the game, as they are ultimately inconsequential.

Feedback now takes a tractable form. We obtain, for each (s, θ, τ1) ∈ S ×Θ× T 1,

f(v),e(s, θ, τ
1) =

qδ¬b + (1− q)δb if sC(v) = Y ;

δ¬b if sC(v) = N ;
f(w),e(s, θ, τ

1) = f(w),e(s, θ, τ
1) = δ¬b.

where q = τC,1

(
{sD : sD

(
(yes, b)

)
= buy}|v

)
and subscripts of fe denote the length-one history

after which emotional messages are generated. ▲

From now onward, we will base our analysis on fe rather than on f̃e. In some sense, emotions

seems therefore to be bypassed. This raises the question of why we have not started expressing

directly feedback functions as dependent on players’ beliefs. The reason is essentially pedagogi-

cal. The game-independent notion of “emotion” allowed us to give a constructive definition of

the game tree. We believe this approach is helpful to understand the double role of emotions.

On the one hand, they drive emotional feedback independently of a specific game. On the other

hand, they are triggered by players’ behavior and beliefs during the game unfolding.

2.4 Utility

We now only need to express utility functions in game-dependent terms. In doing so, we leverage

function ε introduced in Section 2.3.4. For each player i ∈ I, a game-dependent psychological

utility function is a function vi : Z ×Θ× T K → R, defined, for each (z, θ, τK) ∈ Z ×Θ× T K :

vi(z, θ, τ
K) :=

∫
EL(z)+1

ṽi(π(z, θ), θ, e
L(z)+1) · ε(z, τK)[deL(z)+1].

Conceptually, vi(z, θ, τ
K) can be thought of as i’s expected utility, if she knew that the game

unfolded according to z, and if she knew her opponents’ beliefs and traits. Note that functions

(vi)i∈I depend only on hierarchies of beliefs of order up to K, because higher-order beliefs do

not trigger emotions. The assumption that ṽi and ε are continuous gives the following.

Remark 4. For each i ∈ I, vi is continuous.

It is useful to express utility functions as depending on players’ personal external states,

rather than on terminal histories, as players form beliefs over S and not over Z. In conventional

20Recall that boldface letters represent emotional states. E.g., g2 describes whether Child feels guilty during

stage 2.
21Recall that v and w stand for video-games and homework, respectively, and yes and no are the answers Child

can give to the question “did you do your homework?”.
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settings, an external state s induces a unique terminal history, but in the present framework

multiple histories can be induced by the same profile (s, θ, τK), as players’ behavior may depend

on the stochastic signals they observe. Hence, we can derive the distribution over terminal

histories induced by any profile (s, θ, τK). To do so, it is convenient to retrieve from f a profile

of functions g := (gh : S × Θ × T K → ∆(A ×M))h∈H that specifies how profiles of actions

and messages are stochastically generated after each non-terminal history. In other words,

g describes the probability measure over the immediate successors of any history h for each

underlying profile (s, θ, τK). For each h ∈ H, (s, θ, τK) ∈ S ×Θ×T K , and (a,m) ∈ A×M , let

gh(s, θ, τ
K)[(a,m)] :=

fh(s, θ, τK)[m] if a = s(h);

0 otherwise.

In words, once we fix (s, θ, τK) and h, the probability that profile (a,m) realizes can be positive if

and only if a is consistent with the behavior described by s after h. In such case, the probability

of realization of (a,m) is simply the probability of m, as specified by feedback function fh.

For each history h ∈ H̄ and profile (s, θ, τK) ∈ S × Θ × T K , let ζ(h|s, θ, τK) denote the

probability that h realizes given (s, θ, τK).22 For a given game-dependent psychological utility

function vi of player i, we let the external-state-dependent psychological utility function describe

the psychological utility of player i as a function of the external states. For each i ∈ I, we define

ui : S ×Θ× T K → R to be such that, for each (s, θ, τK) ∈ S ×Θ× T K ,

ui(s, θ, τ
K) :=

∑
z∈Z

vi(z, θ, τ
K)ζ(z|s, θ, τK).

Note that the domain of functions (ui)i∈I is a set over which players form their beliefs of order

K + 1, and about whose elements inferences can be made using emotional signals (cf. Section

3). In light of this, we say that S ×Θ× T K is the set of utility-relevant states.

Remark 5. For each i ∈ I, ui is continuous.
23

Example 5 (Buy me an ice-cream, continued). Game-dependent psychological utilities

are easily retrieved. For each z = (aC,1, aC,2,mD, aD) ∈ Z and (θ, τ1) ∈ Θ×T 1, let πC,1(z) and

πC,2(z) denote the two coordinates of Child’s material outcome along z (i.e., whether he gets

the ice-cream and whether he plays video-games). Then,

vC(z, θ, τ
1) := πC,1(z) + θπC,2(z)− τD,1(L|zD).

Also recall that Dad gets a payoff of 2 from buying the ice-cream when Child did his home-

work and that ice-cream costs 1 to him. Denoting as zD Dad’s terminal personal history induced

by z, we can define

vD(z, θ, τ
1) :=

2τD,1({sC : sC(∅) = w}|zD)− 1 if aD = B;

0 if aD = N.

22An explicit definition of such probability is in Appendix C.
23For each h ∈ H̄, ζ(h|·) is a continuous function on S × Θ × T K (this can be checked using the fact that

functions (fh)h∈H are continuous as per Remark 3). Continuity of functions (vi)i∈I (Remark 4) then implies the

result.
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Deriving (ui)i∈I is straightforward but notationally tedious. We postpone a detailed analysis

to Section B.1 in Appendix B. ▲

3 Inferences on opponents’ behavior, traits, and beliefs

Observing emotional and previous-play messages provides players with the means to make infer-

ences about others’ behavior and realized beliefs. Intuitively, the flow of information available

to a player allows her to gradually restrict the set of utility-relevant states that are consistent

with the observed evidence (i.e., the realized personal histories). In the following, we formalize

such reasoning: Section 3.1 discusses mild assumptions about feedback functions, and Section

3.2 describes the ways in which the game may unfold for each utility-relevant state.

3.1 Properties of feedback

In this section, we discuss properties that make feedback “well-behaved.” In particular, Defini-

tion 1 gives a condition for the feedback about others a player may observe to be independent

from that player’s own beliefs, and Definition 2 gives a notion of simplicity for feedback. An

additional natural requirement consists in imposing some measurability condition on the set of

utility-relevant states that allow a given message to be generated with positive probability after

each history, and Definition 3 is in this spirit.24

First, we formalize the idea that, at any history, the beliefs of a player should not influence

the generation of messages she may observe. This is natural if we stick to our interpretation of

the messages a player can observe as messages about the emotions of others. In the following,

for each i ∈ I and h ∈ H, we let fi,h,e = margMi,e
◦fh,e.25 This map describes the emotional

feedback each player may observe at each history.

Definition 1. Feedback fe = (fh,e)h∈H is own-belief independent if, for each i ∈ I, h ∈ H,

s ∈ S, θ ∈ Θ, and τK−i ∈ T K
−i , the section fi,h,e(s, θ, · , τK−i) of fi,h,e is constant on T K

i .

Own-belief independence requires that the generation of the messages a player can receive

be independent from her own beliefs if we keep fixed a profile (s, θ, τK−i). Note that the messages

generated by player i’s state of mind may shape her opponents’ beliefs, and thus the realization

of messages player i can observe at later stages. In some sense, then, a player’s beliefs may

influence the generation of her future messages. Own-belief independence does not rule this out,

because such effect is incorporated in the realized history and own-belief independence applies

when we keep the realized history fixed.

The most elementary feedback structure satisfying own-belief independence has two features:

(i) only first-order beliefs (of others) matter, and (ii) the generation of messages about a player’s

24Note that such assumptions are ultimately assumptions about functions f̃e and ε. However, expressing them

in terms of fe comes with a substantial advantage in terms of notation and interpretation.
25As suggested by notation, marg denotes a marginalization map. For each measure µ on a finite product space

X × Y , margX µ is a measure on X defined, for each x ∈ X as (margX µ)(x) :=
∑

y∈Y µ(x, y).
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emotions (observed by her opponents) at any history depends exclusively on the beliefs she holds

at (the personal history induced by) such history. Formally, we give the following.

Definition 2. Feedback fe = (fh,e)h∈H is simple if (i) K = 1, and (ii) for each i ∈ I, h =

(hi)i∈I ∈ H, (s, θ) ∈ S×Θ, and τ1i , τ̄
1
i ∈ T 1

i , τ
1
i ( · |hi) = τ̄1i ( · |hi) implies that margMj,i,e

fh,e(s, θ, τ
1
i , τ

1
−i) =

margMj,i,e
fh,e(s, θ, τ̄

1
i , τ

1
−i) for each j ∈ I \ {i} and τ1−i ∈ T 1

−i.

Recall thatMj,i,e in the previous definition is the set of messages about i that j may observe.

Simplicity is a mild requirement. Indeed, the majority of psychological motivations can be

modeled resorting to first-order beliefs only (Battigalli and Dufwenberg, 2022), so that point (i)

does not seem to be too restrictive. Condition (ii) requires that a player’s emotional leakage be

independent of the realized beliefs of previous stages, so that only the last realized belief plays a

role – this too seems reasonable. Note that feedback is simple in all the examples we mentioned.

Next, we give conditions about feedback that allow players to make inferences.26

Definition 3. Feedback fe = (fh,e)h∈H is:

1. semi-regular if, for each h ∈ H, the correspondences (τK 7→ supp fh,e(s, θ, τ
K))(s,θ)∈S×Θ

are measurable. That is, if for each h ∈ H and me ∈Me the lower inverse of {me} of each

of the correspondences (τK 7→ supp fh(s, θ, τ
K))(s,θ)∈S×Θ is measurable;

2. regular if, for each h ∈ H and me ∈ Me, the lower inverse of {me} of each of the

correspondences (τK 7→ supp fh(s, θ, τ
K))(s,θ)∈S×Θ is a measurable rectangle.

Semi-regularity is weaker than regularity, and it arguably represents the minimal assumption

needed to allow players to carry out a “well-defined” reasoning about possible ways in which

the game may unfold in Section 3.2), as it ensures that eventualities such as “receiving message

mi,e with positive probability at (personal) history hi” can be assessed by player i ∈ I. This is

formalized by the following.

Remark 6. If feedback is semi-regular, sets
{
(s, θ, τK) ∈ S×Θ×T K : me ∈ supp fh,e(s, θ, τ

K)
}

and
{
(s, θ, τK) ∈ S × Θ × T K : mi,e ∈ supp fi,h,e(s, θ, τ

K)
}

are measurable for each h ∈ H,

me ∈Me, i ∈ I, and mi,e ∈Mi,e.
27

Regularity is instead a slightly stronger requirement, but it has a reasonable conceptual

justification. With regularity players are able to disentangle the different factors at play in the

generation of messages. With this, we mean that each player is able to assess also, for example,

26Recall that, for given measurable space (X,X ), topological space Y , and correspondence γ : X ⇒ Y , the

lower inverse of γ, γ−1 : 2Y → 2X , is defined to be such that γ−1(A) = {x ∈ X : γ(x) ∩ A ̸= ∅} for each

A ⊆ Y . Correspondence γ is said to be measurable if γ−1(F ) ∈ X for each closed F ⊆ Y . Moreover, given a

countable sequence of measurable spaces (Xk,Xk)k∈K and the product measurable space
(×k∈K

Xk,
⊗

k∈K Xk

)
,

a measurable rectangle is a set×k∈K
Yk ⊆×k∈K

Xk, with Yk ∈ Xk for each k ∈ K.
27Fix h ∈ H and, for each (s, θ) ∈ S × Θ, let γs,θ be the correspondence τK 7→ supp fh,e(s, θ, τ

K). Then, the

first set is
⋃

(s,θ)

{
(s, θ)

}
× γ−1

s,θ (me), which is measurable because γs,θ is measurable. As for the second set, we

write it as
⋃

(s,θ)

({
(s, θ)

}
×

{⋃
m−i,e

γ−1
s,θ (mi,e,m−i,e)

})
, which is again easily seen to be measurable.
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the hierarchical systems of beliefs of (each of) her opponents that allow her to observe some

message with positive probability at some history. Formally, this means that the projection onto

T K
j of a set of the kind

{
(s, θ, τK) ∈ S × Θ × T K : mi ∈ supp fi,h,e(s, θ, τ

K)
}
is measurable

for each j ∈ I \ {i}. This does not hold for all measurable subsets of S × Θ × T K ,28 and it is

ensured precisely by the rectangular shape assumed by such set under regularity of feedback.

While semi-regularity is easily acceptable, one may wonder about how restrictive regularity

actually is. It turns out that the two conditions coincide whenever feedback is also simple.29

Proposition 1. Let feedback be simple. Then, it is semi-regular if and only if it is regular.

Example 5 (Buy me an ice-cream, continued). Informative messages are generated after

history (v), depending on Child’s subsequent action. Feedback is simple because it depends

only on Child’s first-order beliefs held after (v). To check (semi-)regularity of feedback, focus

on message b and history (v). We have:{
(s, θ, τ1) : b ∈ supp fD,(v),e(s, θ, τ

1)
}

= {sC : sC(v) = yes} × SD ×Θ×
{
τ1C : τC,1

(
{sD : sD

(
(yes, b)

)
= buy}|v

)
< 1
}
× T 1

D,

which is a measurable rectangle. Similar considerations apply to message ¬b and to history (w).

In addition, note that the generation of feedback is independent of Dad’s beliefs of any order,

and this ensures own-belief independence. ▲

3.2 Making inferences

Recall that multiple (terminal and non-terminal) histories may arise from an underlying utility-

relevant state. A crucial part of players’ reasoning pertains therefore to the understanding of

the possible paths the game can follow given any underlying state.

For each i ∈ I, we let Hi : S × Θ × T K ⇒ H̄i be the correspondence that collects the

set of i’s personal histories that are possible given each utility relevant state. Intuitively, a

personal history hi = (aℓi ,m
ℓ
i) is possible at (s, θ, τK) if (i) i’s observed behavior (i.e., aℓi) is

consistent with si, and (ii) the feedback i observes at each stage (i.e., mℓ
i) can be generated with

positive probability given (s, θ, τK) according to feedback f . Given that we informally assume

that players know the rules of interaction, such correspondence can be retrieved by player i, by

reasoning about how the game may unfold. The interpretation of Hi is straightforward, and to

ease exposition we defer its formal definition to the proof of Lemma 1 (Appendix A, p. 36).

The following result ensures that, under semi-regularity of feedback, the set of utility-relevant

states allowing for any given personal history of any player is measurable.

Lemma 1. If feedback is semi-regular, Hi is measurable for each i ∈ I.

Upon observing a personal history, players can then check whether it is consistent with a

given utility-relevant state, leveraging the personal history correspondences just defined. In

28Indeed, projections onto Polish spaces of Borel sets are analytic but not Borel, in general (cf. Definition 12.23

and Theorem 12.24 of Aliprantis and Border, 2006).
29Proofs are collected in Appendix A.
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particular, the set of utility-relevant states consistent with hi ∈ H̄i is (Hi)
−1(hi). Given that

player i is assumed to know her epistemic type τ̄∞i (hence, the induced hierarchical system of

finite-order beliefs τ̄Ki ), we can focus on the section of such set at τ̄Ki :

ΩK
−i,τ̄Ki

(hi) :=
{
(s, θ, τK−i) ∈ ΩK

−i : hi ∈ Hi(s, θ, τ̄
K
i , τ

K
−i)
}
.

For each i ∈ I and τKi ∈ T K
i , we call the sequence of sets

(
ΩK
−i,τKi

(hi)
)
hi∈H̄i

the inference sets

of player i when her hierarchical system of beliefs of order K is τKi . Note that the inferences

players can make are in general linked to their beliefs of order up to K. The following is an

immediate consequence of Lemma 1.

Remark 7. If feedback is semi-regular, ΩK
−i,τKi

(hi) is measurable for each i ∈ I, hi ∈ H̄i, and

τKi ∈ T K
i .

Example 5 (Buy me an ice-cream, continued). Assume τC,1

(
{sD : sD

(
(yes, b)

)
= buy}|v

)
=

1
2 , so that Child blushes with probability 1

2 after lying. If sC = v.yes, then HD(s, θ, τ
1) =

{(yes, b), (yes,¬b)}. If instead sC = v.no or sC = w.no, then HD(s, θ, τ
1) = {(no,¬b)}. Lastly,

if sC = w.yes, then HD(s, θ, τ
1) = {(yes,¬b)}. Other correspondences are derived analogously.

The set of profiles (s, θ, τ1) consistent with Dad’s personal history (yes,¬b) is

(HD)
−1
(
(yes,¬b)

)
=
{
(s, θ, τ1) : sC = w.yes

}
∪
{
(s, θ, τ1) : sC = v.yes, τ1,C

(
{sD : sD

(
(yes, b)

)
= buy}|v

)
> 0
}
,

and such set can be seen to be measurable. Given that Dad’s beliefs do not play a role in the gen-

eration of feedback, Dad’s corresponding inference set is just Ω1
C,τ1D

(
(yes,¬b)

)
= (H−1

D

(
(yes,¬b)

)
for each τ1D ∈ T 1

D. Similar considerations apply to other cases. ▲

4 Rationality

In this section, we describe rationality as the conjunction of several features. First, we analyze

cognitive sophistication requirements: rational players’ beliefs should satisfy a natural notion of

coherence (Section 4.1), they should be consistent with evidence (Section 4.2), and they should

be updated according to Bayes rule throughout the game (Section 4.3). Second, the plan of

a player is required to satisfy an optimality criterion (Section 4.4), and to coincide with the

player’s actual behavioral predisposition (Section 4.5). Third, we define rationality of a player

as the conjunction of the aforementioned properties, proving that it is an event (Section 4.6).

4.1 Coherence

We say that a hierarchy of beliefs is coherent if lower-order beliefs can be recovered from higher-

order ones through marginalization. In some sense, beliefs of different orders along a coherent

hierarchy “agree” on relevant events.
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Definition 4. Epistemic type τ∞i of player i ∈ I is coherent if, for each n ∈ N and hi ∈ Hi,
30

margΩn−1
−i

τi,n+1( · |hi) = τi,n( · |hi).

Let T ∞
i,C denote the set of coherent epistemic types of player i and Ci the set of personal states

(si, θi, τ
∞
i ) such that τ∞i ∈ T ∞

i,C .

Lemma 2. For each i ∈ I, Ci is closed.

The following result is adapted from Brandenburger and Dekel (1993), and it establishes

that a coherent epistemic type of a player can be identified with a system of beliefs over the

space of primitive uncertainty and (not necessarily coherent) epistemic types of her opponents.

Lemma 3. For each i ∈ I, there exists an homeomorphism φi : T ∞
i,C →

[
∆(S ×Θ× T ∞

−i )
]H̄i

such that, for each hi ∈ H̄i, margΩn−1
−i

φi(τ
∞
i )( · |hi) = τi,n( · |hi).

4.2 Knowledge-implies-belief

According to the reasoning described in Section 3, upon observing hi, a player who knows her

epistemic type can rule out states that are inconsistent with the occurrence of such history. We

now formally require that the (K+1)-th-order beliefs held by a player at each personal history be

consistent with such inferential reasoning. The expression “knowledge-implies-belief” suggests

that knowing that a history has realized must imply believing (i.e., assigning probability one to)

the set of utility-relevant states that allow for such history.

Definition 5. Epistemic type τ∞i of player i ∈ I satisfies knowledge-implies-belief if, for

each hi ∈ H̄i,

τi,K+1

(
ΩK
−i,τKi

(hi)
∣∣hi) = 1.

Let T ∞
i,KB be the set of player i’s epistemic types satisfying knowledge-implies-belief, and KBi

the set of personal states (si, θi, τ
∞
i ) such that τ∞i ∈ T ∞

i,KB.

Lemma 4. If feedback is regular and own-belief independent, KBi is measurable for each i ∈ I.

Note that not assuming coherence makes our notion of knowledge-implies-belief very weak,

as it requires that only (K + 1)-th-order beliefs be updated consistently with evidence. When

considering rational (hence, coherent) players, however, beliefs of all order conform to such

inferential reasoning under the hypotheses of Lemma 4.31

Example 5 (Buy me an ice-cream, continued). Seeing Child blush is the most informative

message for Dad, because it perfectly reveals a lie. We already highlighted that Ω1
C,τ1D

(
(yes, b)

)
=

30In the following, we slightly abuse notation by writing Ω0
−i instead of Ω0, to ease the exposition.

31Coherence implies that beliefs of order higher than K + 1 conform to the inferential reasoning we outlined.

With regularity of feedback, we conclude that also lower-order beliefs do so: by coherence they assign probability

one to the projections of inference sets onto Ω0 and Ωn
−i (with 1 ≤ n < K), and measurability of such projections

is implied by regularity.
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{v.yes} × SD ×Θ× {τ1C : τ1C({sD : sD
(
(yes, b)

)
= buy}|v) > 0}. Knowledge-implies-belief then

ensures that, for example, Dad’s second-order beliefs after personal history (yes, b) are such that

τD,2

(
{sC}|(yes, b)

)
= 0 for each sC ∈ SC \{v.yes}. With coherence, the same reasoning extends

to beliefs of different orders. ▲

4.3 Belief updating

To model how cognitively rational players should update their beliefs it is useful to unpack the

mechanisms through which information accrues to players. After a given personal history, a

player observes three pieces of information: she first observes the action she plays, and then she

observes the realized previous-play and emotional messages.

We want to formalize the idea that player i uses each piece of information independently,

and timing is key for this purpose. Specifically, player i should first update her beliefs about

her personal external state upon seeing the action she chooses.32 Then, she can take into

account the messages she receives to update her beliefs about others using Bayes rule. Note that

(both previous-play and emotional) messages do not provide novel information about a player’s

personal external state once the player observes the actions she takes.

Conceptually, it is as if we were endowing a player with a fictitious “interim belief” held at

stage “k+ 1
2 ,” that is, after playing at stage k, but before having observed any messages. In such

metaphor, we should impose that a player does not change her beliefs about her personal external

state after acting. This formalizes a notion of own-action independence of beliefs, capturing the

idea that own actions and messages should be used to make inferences in “parallel” ways.

Before proceeding, we introduce some notation. Recall that ζ(h|s, θ, τK) was defined as the

probability that h realizes when the utility-relevant state is (s, θ, τK) (cf. Section 2.4). Taking

player i’s perspective, we denote as ζ(h|hi; s, θ, τK) the probability that h realizes when the

utility-relevant state is (s, θ, τK), and conditional on observing hi.

Finally, define (fi,hi
: S × Θ × T K → ∆(Mi))hi∈Hi

to be such that, for each hi ∈ Hi,

(s, θ, τK) ∈ S ×Θ× T K and (ai,mi) ∈ Ai ×Mi,

fi,hi
(s, θ, τK)[mi] :=

∑
h∈H̄(hi)

fi,h(s, θ, τ
K)[mi] · ζ(h|hi; s, θ, τK),

where H̄(hi) is the set of “complete” histories compatible with hi. In words, these functions

describe the generation of messages of a given player i ∈ I (as a function of the utility-relevant

state) at a given personal history. Recall that the feedback functions (fh)h∈H derived before

conditioned instead on “complete” histories.

At this point, we can formally describe belief updating of any player i ∈ I. As a prerequisite,

we require that beliefs about one’s self and about others satisfy a form of independence – i.e.,

that the belief held at each given history on the space (S×Θ×T K
−i ,B(S×Θ×T K

−i )) be obtained as

a product measure starting from measures on (Si×Θi,B(Si×Θi)) and (S−i×Θ−i×T K
−i ,B(S−i×

32Recall that we do not assume that players know their personal external states (i.e., how they would behave

throughout the game).
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Θ−i × T K
−i )). Formally, for each hi ∈ H̄i,

τi,K+1( · |hi) = margSi×Θi
τi,K+1( · |hi)⊗margS−i×Θ−i×T K

−i
τi,K+1( · |hi), (I)

where ⊗ is used to denote the product of measures.

Next, we require that the chain rule of conditional probability hold for personal external

states. For each i ∈ I and hi ∈ H̄i, denote Si(hi) be the set of i’s personal external states that

do not prevent hi, as Si(hi, ai) set of player i’s personal external states that allow hi and that

prescribe ai at hi, and as H̄i(hi, ai) the set of immediate successors of hi where ai is played. The

chain rule holds if, for each hi ∈ Hi, ai ∈ Âi(hi), h
′
i ∈ H̄i(hi, ai) and si ∈ Si(hi, ai),

33

τi,K+1({si}|h′i) · τi,K+1(Si(hi, ai)|hi) = τi,K+1({si}|hi). (CR)

Finally, we require that Bayes rule hold for anything else, after playing. Let Mi(hi, ai) be

the set of messages player i can observe after playing ai at personal history hi. For each hi ∈ Hi,

ai ∈ Âi(hi), mi ∈Mi(hi, ai) and F ∈ B(S−i ×Θ× T K
−i ), we impose

τi,K+1(F |h′i) ·
∫
S−i×Θ×T K

−i

fi,hi
(si, s−i, θ, τ

K
i , τ

K
−i)[mi] ·

(
margS−i×Θ×T K

−i
τi,K+1

)(
d(s−i, θ, τ

K
−i)|hi

)
=

∫
F
fi,hi

(si, s−i, θ, τ
K
i , τ

K
−i)[mi] ·

(
margS−i×Θ×T K

−i
τi,K+1

)(
d(s−i, θ, τ

K
−i)|hi

)
, (BR-ai)

where si above is any element of Si(hi, ai), and h
′
i = (hi, (ai,mi)).

Definition 6. Epistemic type τ∞i of player i ∈ I satisfies correct belief updating if (I), (CR),

and (BR-ai) hold. Let T ∞
i,CBU be the set of epistemic types of player i that satisfy correct belief

updating, and CBUi the set of personal states (si, θi, τ
∞
i ) such that τ∞i ∈ T ∞

i,CBU .

Lemma 5. For each i ∈ I, T ∞
i,CBU is measurable.

Example 5 (Buy me an ice-cream, continued). Dad is inactive and does not receive any

informative message throughout the first stage. In the second stage, he is inactive so he does not

need to update his beliefs about his personal external state with (CR). However, (BR-ai) applies.

Focus for the sake of the example on Dad’s beliefs about F := {sC : sC(∅) = v} ×Θ× T 1
C (i.e.,

“Child played video-games”), and say that he observes (yes,¬b). The probability of observing

such personal history at the second stage (i.e., after a “dummy” length-1 personal history h1D)

as a function of a profile (s, θ, τ1C) can be checked to be

fD,h1
D,τ1D

(s, θ, τ1C)[(Y,¬b)] =


1 if sC = w.yes;

1− q if sC = v.yes;

0 if sC ∈ {v.no, w.no};

where q = τC,1

(
{sD : sD

(
(yes, b)

)
= buy}|v

)
. As a result, the probability with which epistemic

type τ∞D expects to observe (yes,¬b) is

τD,2({w.yes}|h1D)︸ ︷︷ ︸
=:α(τ∞D )

+

∫
{v.yes}×Θ×T 1

C

(1− q) ·
(
margSC×Θ×T 1

C
τD,2

)(
d(sC , θ, τ

1
C)|h1D

)
.︸ ︷︷ ︸

=:β(τ∞D )

33Recall from Section 2.3.2 that we use obvious abbreviations for marginal probabilities.
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If α(τ∞D ) + β(τ∞D ) > 0, (BR-ai) implies that:

τD,2

(
F |(yes,¬b)

)
=

β(τ∞D )

α(τ∞D ) + β(τ∞D )
.

Note that our belief updating rule implies that players do not change their beliefs about

others after they act if they do not observe any informative message in the meantime. Hence,

Dad’s final blame (i.e., the probability with which he believes Child lied), which concerns Child’s

actions, actually arises at the second stage, since his beliefs about Child’s actions do not change

after his action. ▲

4.4 Rational planning

As a prerequisite for rational planning, we require that a player know her personal trait. Since

realized utilities at the end of the game are affected by players’ traits, different trait-types of a

player may want to behave differently at some points of the game, and knowing one’s own trait

is necessary to plan how to behave optimally.

Definition 7. Player i knows her personal trait at personal state (si, θ̄i, τ
∞
i ) ∈ Si×Θi×T ∞

i

if, for each hi ∈ H̄i, τi,K+1

(
{θ̄i}|hi

)
= 1. Let KTi be the set of personal states where player i

knows her personal trait.34

Next, we retrieve a plan of player i (technically, a behavior strategy) from her epistemic type

τ∞i , denoted as

σ(τ∞i ) ∈ Σi := ×
hi∈Hi

∆(Âi(hi)).

It is defined, for each hi ∈ Hi and ai ∈ Âi(hi), as
35

σ(τ∞i )(ai|hi) := τi,K+1(Si(hi, ai)|hi),

where Si(hi, ai) is the set of personal external states of player i consistent with hi that prescribe

ai at hi (cf. Section 4.3).

We argue that such an object is what one can legitimately label as a “strategy.” Indeed,

we take a strategy to be a plan in the mind of a player, and the derivation of σ(τ∞i ) follows

this intuition. A plan specifies how a player expects herself to behave at each contingency she

could observe, and a player’s plan coincides with her behavioral predisposition si if and only if

σ(τ∞i )(si(hi)|hi) = 1 for each hi ∈ Hi.

Next, we define a player’s expected utility conditional on observing a given personal history.

For each i ∈ I, define the profile of functions (ui,hi
: S×Θ×T K → R)hi∈Hi

to be such that, for

each hi ∈ Hi and (s, θ, τK) ∈ S ×Θ× T K ,

ui,hi
(s, θ, τK) :=

∑
z∈Z

vi(z, θ, τ
K)ζ(z|hi; s, θ, τK). (5)

34Recall that we are not assuming coherence. Thus, our choice of working with beliefs over utility-relevant

events, although reasonable, is ultimately arbitrary. We choose to impose this condition on beliefs of order K +1

because such beliefs are the ones used by a player to figure out her optimal plan. Also recall that τi,K+1

(
{θ̄i}|hi

)
is a shortcut for τi,K+1

(
S × {θ̄i} ×Θ−i × T K

−i |hi

)
.

35Also in this case, we rely on beliefs of order K + 1 as we did to define knowledge of one’s personal trait.
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In words, ui,hi
(s, θ, τK) is the expected utility of player i after hi when the utility-relevant

state is (s, θ, τK).

Defining rational planning requires some care because in our setting players may fail to be dy-

namically consistent. This can happen when a player’s utility depends on her own plan, Dynamic

inconsistency arises for this reason, for instance, in models of frustration and anger (Battigalli

et al., 2019b), anticipatory feelings (Caplin and Leahy, 2001), and reference-dependence (Kőszegi

and Rabin, 2006).

In such settings, the appropriate notion of rational planning is a form of “intra-personal

equilibrium”: each self of a player chooses the “optimal” available action taking as given the

actions chosen by other selves.36 This notion is referred to as one-step optimality . To give a

formal definition of such property, we need to define the “(expected) utility of taking a given

action at a given personal history.” As a maintained assumption throughout this section, we

take systems of beliefs to satisfy independence (see Section 4.3).

Note that choosing ai ∈ Âi(hi) at hi induces a distribution over personal histories of the

form h′i = (hi, ai,mi). Such personal histories are the instances where the player is going

to act next. The distribution can depend on the player’s type, as well as on the emotional

feedback. We denote the vector of such distributions for a player with hierarchical system of

beliefs τK+1
i as (µ( · |hi, ai, τK+1

i ) ∈ ∆(Hi))hi∈Hi,ai∈Âi(hi)
. It is possible to obtain an explicit

expression of such distribution using the same steps as in Section 4.3. There, we used the map

fi,hi
: S × Θ × T K → ∆(Mi) to determine the probability that a message mi = (mi,p,mi,e)

is generated after personal history hi (as a function of the utility-relevant state). Taking the

section of such map at some si with si(hi) = ai gives the distribution over messages that player

i expects to receive after taking action ai at hi.
37 To emphasize the role of ai, we denote such

map as fi,hi,ai . Then, the probability that personal history h′i = (hi, ai,mi) realizes after taking

action ai at hi is

µ(h′i|hi, ai, τKi ) =

∫
fi,hi,ai(s−i, θ, τ

K
i , τ

K
−i)[mi] ·margS−i×Θ×T K

−i
τi,K+1(d(s−i, θ, τ

K
−i)|hi).

At this point, we can define player i’s “local” decision utility functions, (ūi,hi
: Âi(hi)×Θi×

T K+1
i → R)hi∈Hi

. For each hi ∈ Hi, ai ∈ ˆAi(hi), θi ∈ Θi, and τ
K+1
i ∈ T K+1

i ,

ūi,hi
(ai, θi, τ

K+1
i ) =

∑
h′
i∈H̄i

µi(h
′
i|hi, ai, τK+1

i )

∫
ui,hi

(s, θ, τKi , τ
K
−i)τi,K+1(ds, θi,dθ−i,dτ

K
−i|h′i).

Note that personal trait θi is being held fixed when taking the expectation: this is needed to

identify the optimal actions for each given personal trait and belief system.

36Note that this presumes that the player understands her dynamic inconsistency and plans accordingly. For

this reason, one could legitimately talk about “sophisticated” planning.
37Note that insofar as hi and ai are fixed, the only relevant difference between personal external states that

prescribe ai at hi is in the actions prescribed at future reachable contingencies. But those prescriptions are

irrelevant to the generation of emotional feedback thanks to our assumptions. In particular, we assumed that

only realized emotional states mattered in the generation of emotional feedback, and the description of future

behavior cannot affect present emotions.
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The actions that maximize player i’s decision utility at personal history hi are collected by

the best reply correspondence ri,hi
: Θi × T ∞

i ⇒ Âi(hi), defined as

(θi, τ
∞
i ) 7→ arg max

ai∈Âi(hi)
ūi,hi

(ai, θi, τ
K+1
i ).

We are now ready to give our desired definition. In the following, we refer to a “plan,” which

is understood as a profile of probability measures over available actions and generically denoted

σi = (σi( · |hi) ∈ ∆(Âi(hi))hi∈Hi
. Recall that σi(τ

∞
i ) denotes the plan induced by a type τ∞i .

Definition 8. A plan σi is one-step optimal for (θi, τ
∞
i ) if, for each hi ∈ Hi,

suppσi( · |hi) ⊆ ri,hi
(θi, τ

∞
i ).

Player i plans rationally at personal state (si, θi, τ
∞
i ) if she knows her personal trait (i.e.,

(si, θi, τ
∞
i ) ∈ KTi), her epistemic type τ∞i satisfies independence, and her plan σ(τ∞i ) is one-

step optimal. Let RPi denote the set of states where player i plans rationally.

Lemma 6. For each i ∈ I, RPi is closed.

As is well-known, deterministic one-step optimal plans may fail to exist. This typically

happens when a player’s utility depends on her own plan, as is the case, for example, when she

is affected by disappointment aversion or anxiety. When no such dependence exist, preferences

depend on the psychological states induced by others’ beliefs, and on the anticipation of such

states. Many interesting models belong in this category, including models with image concerns or

guilt aversion (see, e.g., the survey article by Battigalli and Dufwenberg, 2022, or the discussion

in Section 6 of Battigalli et al., 2019a). Moreover, under such “independence” assumption,

preferences admit an almost standard expected utility formulation.

This motivates the following definition. To state it, we denote as τKi,−i = (τi,k,−i)
K
k=1 the

system of beliefs about others induced by system of beliefs τKi . For each k ∈ {1, . . . ,K}, τi,k,−i

is the k-th order belief about others’ personal external states, traits, and others’ systems of

beliefs of order up to k − 1. Formally, for each hi ∈ H̄i, τi,1,−i( · |hi) = margS−i×Θ τi,1( · |hi) and
τi,k,−i( · |hi) = margS−i×Θ×T k−1

−i
τi,k( · |hi) for each k ∈ {2, . . . ,K}. Note that τKi,−i is obtained

by system of beliefs τKi essentially by excluding i’s beliefs about her own behavior (i.e., the

marginal of her beliefs of any order on Si). Finally, we can state our desired condition as the

requirement that a player’s utility be the same whenever her system of beliefs differ only in the

induced beliefs about her own behavior.

Definition 9. Player i’s preferences are own-plan independent if for each (s, θ, τK−i) ∈ S ×
Θ× T K

−i , and τ
K
i , τ̄

K
i ∈ T K

i ,

τKi,−i = τ̄Ki,−i =⇒ ui(s, θ, τ
K
i , τ

K
−i) = ui(s, θ, τ̄

K
i , τ

K
−i).

Under own-plan independence, preferences are dynamically consistent and rational plans can

be obtained by dynamic programming methods. To illustrate, we focus on the “(expected) utility

of following a given plan from a given personal history onward.” Previously, we used the notation
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ζ(z|hi; s, θ, τK) to denote the probability of terminal history z conditional on having reached per-

sonal history hi, when the utility-relevant state is (s, θ, τK). The notation ζ(z|hi;σi, s−i, θ, τ
K)

has analogous meaning, but player i’s behavior is described by a plan σi ∈×hi∈Hi
∆(Âi(hi)).

38

Note that such probability is affected only by the behavior prescribed by σi after personal history

hi, that is, by the continuation plan (σi( · |h′i))h′
i⪰hi

. We slightly abuse notation by letting

ui,hi
(σi, s−i, θ, τ

K) =
∑
z∈Z

vi(z, θ, τ
K) · ζ(z|hi;σi, s−i, θ, τ

K).

Conceptually, this is an intuitive modification of (5). The expected utility of following plan σi

from hi onward for type (θi, τ
∞
i ) is then

ûi,hi
(σi, θi, τ

∞
i ) :=

∫
ui,hi

(σi, s−i, θi, θ−i, τ
K
i , τ

K
−i) · τi,K+1(si, θi, d(s−i, θ−i, τ

K
−i)|hi)).

Say that a plan σ∗i is sequentially optimal for (θi, τ
∞
i ) if, for each hi ∈ Hi,

σ∗i ∈ arg max
σi∈Σi

ûi,hi
(σi, θi, τ

∞
i ).

Standard dynamic programming results give the following.39

Remark 8. Assume player i has own-plan independent preferences. Then, a plan is sequentially

optimal for (θi, τ
∞
i ) if and only if it is one-step optimal for (θi, τ

∞
i ). Moreover, a pure sequentially

optimal plan exists.40

The issue of dynamic (in)consistency with psychological preferences is discussed in detail by

(Battigalli and Dufwenberg, 2009, Section 6.3) and Battigalli et al. (2019a), to which we refer

the interested reader.

We conclude with an illustration.

Example 5 (Buy me an ice-cream, continued). Suppose that Child’s epistemic type τ∞C
satisfies independence and knowledge of personal trait, and that his system of second-order

beliefs τC,2 is such that, for each hC ∈ {∅, (w), (v)},

margSD
τC,2( · |hC) = δnot.buy.not; (6)

EτC,2

[
τD,1

(
Lc|(yes,¬b)

)
|hC
]
= EτC,2

[
τD,1

(
L|(yes, b)

)
|hC
]
= EτC,2

[
τD,1

(
Lc|(no,¬b)

)
|hC
]
= 1.

(7)

In words, (6) says that, at each history where he is active, Child is sure that Dad would behave

according to not.buy.not (i.e., that Dad would buy him the ice-cream only if he says “no” without

blushing).41 Equation (7) instead says that Child thinks that Dad would be sure he is a liar

38The derivation of objects of this kind is conceptually straightforward. We offer an explicit discussion in

Appendix C.
39See Kreps (2013) for an overview.
40Randomization is superfluous because the expected utility is affine in the probabilities assigned by plans to

personal external states.
41Note that this implies that he would blush for sure if he says “yes” after having played video-games.
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if and only if he blushes. (Recall that L is the set of personal external states where Child lies,

and note that Lc denotes its complement.) The expected utilities of saying “yes” or “no” after

doing homework and playing videogames can be retrieved as42

ūC,(w)(yes, θC , τ
2
C) = τC,2

({
sD : sD

(
(yes,¬b)

)
= buy

}
|w
)
− EτC,2

[
τD,1

(
L|(yes,¬b)

)
|w
]
= 1;

ūC,(w)(no, θC , τ
2
C) = τC,2

({
sD : sD

(
(no,¬b)

)
= buy

}
|w
)
− EτC,2

[
τD,1

(
L|(no,¬b)

)
|w
]
= 0;

ūC,(v)(yes, θC , τ
2
C) = θ + q

(
τC,2

({
sD : sD

(
(yes,¬b)

)
= buy

}
|v
)
− EτC,2

[
τD,1

(
L|(yes,¬b)

)
|v
])
+

+ (1− q)
(
τC,2

({
sD : sD

(
(yes, b)

)
= buy

}
|v
)
− EτC,2

[
τD,1

(
L|(yes, b)

)
|v
])

= θ − 1;

ūC,(v)(no, θC , τ
2
C) = θ + τC,2

({
sD : sD

(
(no,¬b)

)
= buy

}
|v
)
− EτC,2

[
τD,1

(
L|(no,¬b)

)
|v
])

= θ;

where the second equality in each line follows from assumptions (6) and (7) on Child’s beliefs.

Under (6) and (7), it is optimal for Child to say yes after doing homework, and to say no

after playing video-games. Knowing this, at the beginning of the game, Child chooses between

doing his homework and saying yes, and playing video-games and saying no. These two courses

of actions yield expected utilities of 1 and θ, respectively. The latter is preferred if and only if

θ ≥ 1. Note that Child’s preferences are own-plan independent. ▲

4.5 Consistency

As a final building block for our definition of rationality, we require that rational players effec-

tively carry out their plans – that is, the behavior described by their personal external states

coincides with what they plan to do.

Definition 10. Player i is consistent at personal state (si, θi, τ
∞
i ) if, for each hi ∈ Hi,

σ(τ∞i )(si(hi)|hi) = 1.

Let CONi be the set of personal states where player i is consistent.

Lemma 7. For each i ∈ I, CONi is closed.

4.6 Rationality

We take rationality to be the conjunction of the requirements listed in Sections 4.1-4.5.

Definition 11. Player i is rational at personal state (si, θi, τ
∞
i ) if (si, θi, τ

∞
i ) ∈ Ci ∩ KBi ∩

BRi ∩RPi ∩ CONi. Let Ri denote the set of personal states where i is rational.

By the results of previous sections, the following is straightforward.

Lemma 8. If feedback is regular and own-belief independent, Ri is measurable for each i ∈ I.

42A detailed derivation of Child’s local decision utilities is given in Appendix B.1.
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Our notion of rationality deserves some comments. First, it is richer than the one usually

adopted in the literature because we distinguish plans from objective behavior (cf. also Battigalli

and De Vito, 2021). Moreover, we require a player’s plan to assign positive probability, at each

personal history, only to optimal actions: in conjunction with consistency, this implies that a

player’s personal external state must prescribe optimal actions at each personal history, and not

only at personal histories it allows for. This is motivated by the observation that players do not

commit to personal external states (in fact, they need not even know their true ones).

In light of Lemma 3, rational (hence, coherent) players are able to formulate beliefs over the

set of personal states of opponents. Measurability of Ri ⊆ Si ×Θi × T ∞
i (i ∈ I) ensures that a

rational player j ∈ I \ {i} can wonder about the rationality of i in a well-defined way.

5 Strong ∆-rationalizability

The aim of this section is to consider some profile ∆ of restricted sets of beliefs — suggested by

the application and context — and define a strong ∆-rationalizability procedure for the frame-

work developed so far. Such procedure is a version of the strong rationalizability procedure that

incorporates some contextual and transparent restrictions to players’ beliefs (see Battigalli and

Tebaldi, 2019, Battigalli et al., 2019a and relevant references therein). This in turn builds on

earlier concepts of rationalizability for sequential games (Pearce, 1984). The epistemic founda-

tions of our solution concept will be discussed in Section 6 – for the moment, it is enough to

note that it captures the behavioral implications of rationality and forward-induction reasoning.

This way of reasoning posits that players interpret others’ moves as purposeful choices: in this

way, they try to rationalize such moves, making inferences about opponents’ beliefs, traits, and

future behavior.

We begin with some terminology. A profile of belief restrictions is ∆ = (∆i)i∈I , where, for

each i ∈ I, ∆i = (∆θi)θi∈Θi
and ∆θi ∈ B(T K+1

i ). That is, each trait-type of a given player

is associated to a measurable subset of the set of hierarchical system of beliefs of order K + 1

of that player, and such mapping reflects some belief restrictions that are deemed relevant in

the applications at hands. For notational convenience, define, for each i ∈ I and θi ∈ Θi,

∆∞
θi

:= ∆θi ×
(×k≥K+2 Ti,k

)
. Throughout this section and the next one, assume that a game

and a profile ∆ are fixed.

Given a measure µ defined over the measurable space (D,B(D)) with D Polish, we denote

by µ∗ the outer measure defined over (D, 2D) defined, for each F ⊆ D, as:43

µ∗(F ) := inf
{
µ(G) ∈ [0, 1] : G ∈ B(D), F ⊆ G

}
.

Then, we say that a (K + 1)-th-order system of beliefs of player i τi,K+1, strongly believes

F ∈ 2Ω
K
−i if, for each hi ∈ Hi, F ∩ ΩK

−i,τKi
(hi) ̸= ∅ implies τ∗i,K+1(F |hi) = 1, where τKi is the

K-th-order hierarchical system of beliefs obtained by taking, for each hi ∈ Hi the marginals of

τi,K+1( · |hi) over the tuple of sets (Ω0, (Ωn
−i)

K−1
n=1 ).

43Note that the following definition implies that µ∗(F ) = µ(F ) if F is Borel, and that F differs from a Borel

set only by a µ∗-null set if F is analytic but not Borel.
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Consider the following procedure.44

Definition 12. First, define P∆
i (0) := Si×Θi×T K

i , P∆
−i(0) := S−i×Θ−i×T K

−i , and P∆(0) :=

S × Θ × T K . Then, for each n ≥ 1 and i ∈ I, (si, θi, τ
K
i ) ∈ P∆

i (n) if and only if there exists

τ̄i,K+1 ∈ Ti,K+1,KB ∩ Ti,K+1,CBU such that:

1. (τKi , τ̄i,K+1) ∈ projT K+1
i

(
T ∞
i,C ∩∆∞

θi

)
;

2. for each hi ∈ Hi, si(hi) ∈ ri,hi
(θi, (τ

K
i , τ̄i,K+1));

3. for each hi ∈ Hi, τi,K+1(Si(hi, si(hi))|hi) = 1;

4. for each k ∈ {1, . . . , n− 1}, τ̄i,K+1 strongly believes P∆
−i(k).

Define P∆
−i(n) :=×j∈I\{i}P

∆
j (n) and P∆(n) :=×i∈I P

∆
i (n).

In Definition 12, utility-relevant states are iteratively deleted if they fail to satisfy some

requirements that mirror closely the rationality conditions of Section 4, plus the strong-belief

requirement. However, this procedure is carried out on utility-relevant states, rather than on

states of the world. Note that for standard games (i.e., when K = 0) utility-relevant states have

the form (θ, s), and we obtain the strong rationalizability procedure of Battigalli (2003) and

Battigalli and Prestipino (2013).

Lemma 9. Fix a profile of belief restrictions ∆. For each n ∈ N and i ∈ I, (i) if feedback is

regular and own-belief independent, P∆
i (n) is analytic, and (ii) P∆

i (n) ⊆ P∆
i (n− 1).

Thanks to Lemma 9, the limit of the sequence (P∆(n))n∈N is well-defined: we say that a

utility-relevant state (s, θ, τK) is strongly ∆-rationalizable if (s, θ, τK) ∈ P∆(∞) :=
⋂

n∈NP∆(n).

Note that, without additional assumptions, the set of strongly ∆-rationalizable states may be

empty because ∆ may entail restrictions on endogenous beliefs that are ultimately inconsistent

with strategic reasoning.

However, nonemptiness obtains in a number of cases of interest. For instance, one can show

that the set of strongly ∆-rationalizable states is nonempty when feedback is regular and own-

belief independent, players’ preferences are own-plan independent, and ∆ only restricts initial

beliefs about traits, or beliefs about such beliefs.

A slightly simpler and more convenient procedure has been proposed in the literature for

standard games. We adapt it to our framework with belief-dependent preferences.

Definition 13. First, define Q∆
i (0) := Si×Θi×T K

i , Q∆
−i(0) := S−i×Θ−i×T K

−i , and Q(0)∆ :=

S ×Θ× T K . Then, for each n ≥ 1 and i ∈ I, (si, θi, τ
K
i ) ∈ Q∆

i (n) if and only if

0M (si, θi, τ
K
i ) ∈ Q∆

i (n− 1);

and there exists τ̄i,K+1 ∈ Ti,K+1,KB ∩ Ti,K+1,CBU such that

44In th following, we denote by Ti,K+1,KB and Ti,K+1,CBU the set of systems of beliefs of order K + 1 that

satisfy knowledge-implies-belief and correct belief updating, respectively.
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1M (τKi , τ̄i,K+1) ∈ projT K+1
i

(
T ∞
i,C ∩∆∞

θi

)
;

2M for each hi ∈ Hi, si(hi) ∈ ri,hi
(θi, (τ

K
i , τ̄i,K+1));

3M for each hi ∈ Hi, τ̄i,K+1(Si(hi, si(hi))|hi) = 1;

4M τ̄i,K+1 strongly believes Q∆
−i(n− 1).

Define Q∆
−i(n) :=×j∈I\{i}Q

∆
j (n) and Q∆(n) :=×i∈I Qi(n).

Such procedure has been called as “naive” strong ∆-rationalizability (Battigalli and Prestipino,

2013). We could also label it as “memoryless,” or “one-step,” as each elimination round only

relies on the previous step (to appreciate this, compare requirements 0M and 4M of Definition

13 with requirement 4 of Definition 12). Adapting the proof of Lemma 9, one gets the following.

Remark 9. Fix a profile of belief restrictions ∆. For each n ∈ N and i ∈ I, (i) if feedback is

regular and own-belief independent, Q∆
i (n) is analytic, and (ii) Q∆

i (n) ⊆ Q∆
i (n− 1).

Remark 9 implies that Q∆(∞) :=
⋂

n∈NQ∆(n) is meaningfully defined. It is natural to

wonder if the two procedures are equivalent. We provide an affirmative answer for a special

case of belief restrictions (see Battigalli and Prestipino, 2013 for a similar result concerning

standard games) under the assumption of own-plan independence of preferences. We say that

∆ = (∆θi)i∈I,θi∈Θi
is rectangular if, for each i ∈ I and θi ∈ Θi, ∆θi is a measurable rectan-

gle. This means that, for each i ∈ I and θi ∈ Θi, there exists a profile of measurable sets

((Bθi,n,hi
)hi∈H̄i

)K+1
n=1 such that Bθi,n,hi

⊆ ∆(Ωn−1
−i ) and ∆θi =×K+1

n=1×hi∈H̄i
Bθi,n,hi

.45 In words,

Bθi,n,hi
is the measurable set of n-th-order beliefs player i is allowed to hold at history hi when

her trait is θi.

Proposition 2. Assume that the profile of belief restrictions ∆ is rectangular and preferences

are own-plan independent for each player. For all i ∈ I and n ∈ N ∪ {0}, P∆
i (n) = Q∆

i (n).

We conclude with an illustration of the procedure.

Example 5 (Buy me an ice-cream, continued). For simplicity, we do not impose belief

restrictions and we assume ΘC = {θ′, θ′′}, with 0 < θ′ < 1 < θ′′. To keep the exposition

simple, we describe the procedure only informally.46 Moreover, given condition 3 of Definition

12, we can assume players have deterministic plans coinciding with their personal external

state: for simplicity, we talk directly of optimal personal external states. Lastly, with own-plan

independence (hence, consistency) of preferences, we can assume that Child commits to a plan

among w.yes, w.no, v.yes, and v.no at the root of the game.

Step 1 It is possible to check that v.no grants Child a strictly higher expected utility than w.no

at the root of the game.47 Thus, projSC×ΘC
PC(1) = {w.yes, v.yes, v.no} × {θ′, θ′′}.

45With some abuse, we write Ω0
−i instead of Ω0 to ease notation.

46A formal analysis is reported in Appendix B.
47Intuitively, if he correctly expects to play no in the second stage, he would be sure not to blush after his

report. Then, his expectation about Dad’s behavior (which he knows to depend on the fact that he observes

personal history (no,¬b)) will be exactly the same regardless of whether he plays w.no or v.no, as they both give

rise to Dad’s personal history (no,¬b). Playing video-games thus allows Child to secure a higher expected utility.

31



Turning to Dad, note that condition 1 of Definition 12 implies that he is sure that

Child played video-games in the first stage whenever he observes (yes, b). He is better

off not buying him the ice-cream in such case, so that projSD
PD(1) =

{
sD ∈ SD :

sD
(
(yes, b)

)
= not

}
.

Step 2 Taking into account the first step, Child realizes that Dad will not buy the ice-cream

if he sees him blush. This undermine Child confidence, who will blush for sure upon

choosing v.yes.48 Moreover, Dad will spot Child’s lie for sure, and Child’s image

concerns then imply that v.yes is strictly worse than v.no. Now note that v.no ensures

a utility of θ coming from video-games: for trait-type θ′′, this is higher than the

maximum utility that w.yes may lead to (i.e., the utility of 1 coming from the ice-

cream). Hence, projSC×ΘC
PC(2) =

(
{w.yes, v.no} × {θ′}

)
∪
(
{v.no} × {θ′′}

)
. On the

other hand, Dad’s strong belief in PC(1) leads him to conclude that it must be the

case that Child played video-games in the first stage whenever he observes (N,¬b).
Thus, upon observing (no,¬b), he is sure that Child did not do his homework, and

he will not buy him the ice-cream in such case. We obtain projSD
PD(2) =

{
sD :

sD
(
(no,¬b)

)
= sD

(
(yes, b)

)
= not

}
. That is, he will not buy Child an ice-cream if he

observes (no,¬b) or (yes, b).

Step 3 This step has no behavioral implications for Child, because trait-type θ′ is not sure of

Dad’s behavior after (yes,¬b), so both w.yes and v.no can be optimal for some belief

(e.g., the latter is optimal if he is sure that Dad would not buy him the ice-cream also

if he observes (yes,¬b)). Dad instead concludes, by strong belief in PC(1) and PC(2),

that personal history (yes,¬b) realizes if and only if Child did his homework. Upon

observing such personal history, he should therefore buy him an ice-cream. Thus,

projSD
PD(3) =

{
not.buy.not

}
.

Step 4 At this point, by strong belief in all previous steps, Child is sure that Dad will believe

him and buy him an ice-cream if she observes (yes,¬b). Therefore, w.yes allows to

secure the ice-cream without being blamed. Trait-type θ′ finds it optimal to play

according to w.yes, as his value of video-games (i.e., θ′) is lower than that of ice-cream

(i.e., 1). Hence, projSC×ΘC
PC(4) = {(w.yes, θ′), (v, no, θ′′)}.

Subsequent steps of the procedure do not yield further behavioral implications. This result

shows that the possibility of betraying a lie through an emotional signal provides Child with a

strong enough incentive to truthfully reveal the action he privately chose. This “full disclosure”

result seems interesting, as we believe that this basic structure of interaction can be applied also

to other situations, where (i) player 1 privately chooses an action and makes a declaration about

his behavior to player 2, (ii) player 1 dislikes being perceived as a liar, and (iii) player 2 acts

after observing player 1’s report. Resorting to image concern motivations may be less reasonable

in different economic settings, but our insights would still apply if we replace condition (ii) with

48Recall that Child’s confidence (i.e., his ability to not blush) is exactly the probability with which he believes

Dad would buy him an ice-cream despite the blushing.
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the possibility for player 2 to enforce a punishment. The possibility of using emotional feedback

to assess the truthfulness of a statement makes our framework well-suited for the analysis of

information transmission in situations where factors like facial mimicry are crucial (e.g., political

speeches, sales pitches, or face-to-face bargaining). ▲

6 Epistemic justification of strong ∆-rationalizability

In this section, we show that the proposed procedure captures the utility-relevant implications

of some meaningful epistemic assumptions, that is, players’ rationality and strong belief in

rationality, as well as common strong (correct) belief in the restrictions described by ∆.49 The

notion of strong belief requires that a player be certain of a given event about her opponents

whenever it is not falsified by evidence (cf. the definition of strong belief for hierarchical systems

of beliefs given in Section 5). Imposing strong belief in rationality therefore essentially entails

an assumption about players’ belief-revision policy.

In order to carry out a formal analysis, we introduce two operators, that define sets which

formally represent the propositions “player i would believe event F−i, were she to observe per-

sonal history hi” and “player i strongly believes event F−i.” To invoke Lemma 3, we restrict

attention to coherent epistemic types of a player. Then, we formalize the notion of “degree of

strategic sophistication,” and we prove the main result of the paper.

For each player i ∈ I, personal history hi ∈ H̄i, and event F−i ∈ B(S−i × Θ−i × T ∞
−i ), we

define the belief operator of player i at personal history hi and the strong belief operator, as:

Bi,hi
(F−i) :=

{
(si, θi, τ

∞
i ) ∈ Ci : φi(τ

∞
i )(F |hi) = 1

}
; SBi(F−i) :=

⋂
hi∈Hi:Ω∞

−i,τK
i

(hi)∩F−i ̸=∅

Bi,hi
(F−i).

Note that the intersection in the definition of the strong belief operator is taken over personal

histories that do not contradict event F−i. This clarifies the interpretation of strong belief as

“belief whenever possible.” Under the usual technical assumptions, the belief and strong belief

operators can be seen as maps from B(S−i ×Θ−i × T ∞
−i ) to B(Ci).

Lemma 10. If feedback is regular and own-belief independent, Bi,hi
(F−i) and SBi(F−i) are

measurable for all i ∈ I, hi ∈ H̄i, and F−i ∈ B(S−i ×Θ−i × T ∞
−i ).

Lastly, the set of personal states of a given player in which given belief restrictions (specified

by ∆) are met is denoted [∆i] = {(si, θi, τ∞i ) ∈ Si ×Θi × T ∞
i : τ∞i ∈ ∆∞

θi
}.

Remark 10. For each i ∈ I, [∆i] is measurable.50

49Battigalli and Siniscalchi (2002) provide an epistemic justification of strong rationalizability, neglecting re-

strictions on players’ beliefs. For an epistemic foundation of strong directed rationalizability, see Battigalli and

Prestipino (2013) and relevant references therein. Battigalli and Tebaldi (2019) and Battigalli et al. (2020) analyze

strong directed rationalizability in a class of infinite games and in psychological games, respectively.
50The remark follows from the fact that [∆i] can be written as Si ×

⋃
θi∈Θi

({θi} ×∆∞
θi
). Then, measurability

of ∆θi (which is assumed) yields the desired result.
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At this point, we can turn to the description of players’ degrees of strategic sophistication.

For each i ∈ I, we define the following:

R∆
i (1) := Ri ∩ [∆i], R∆

−i(1) := ×
j∈I\{i}

R∆
j (1), R∆(1) :=×

i∈I
R∆

i (1).

Then, for each n ≥ 2, define:

R∆
i (n) := R∆

i (n− 1) ∩ SBi(R
∆
−i(n− 1)), R∆

−i(n) := ×
j∈I\{i}

R∆
j (n), R∆(n) :=×

i∈I
R∆

i (n).

In words, the first degree of strategic sophistication consists in being rational and holding

beliefs that satisfy the relevant restrictions described by profile ∆. A second-order strategically

sophisticated player maintains whenever possible that her opponents are first-order strategi-

cally sophisticated, on top of being rational herself. A third-order strategically sophisticated

player is rational and maintains whenever possible that her opponents are second-order strate-

gically sophisticated. Were the latter hypothesis to be contradicted by evidence, a third-order

strategically sophisticated player would “switch” to the assumption that her opponents are only

first-order strategically sophisticated, unless also this weaker hypothesis is contradicted. The

bottom line is that, under our epistemic assumptions, players ascribe to opponents the high-

est level of strategic sophistication consistent with evidence, i.e., they comply with the “best

rationalization principle” (see, e.g., Battigalli and Prestipino, 2013 and the relevant references

therein).

Remark 11. Fix a profile of belief restrictions ∆. If feedback is regular and own-belief inde-

pendent, R∆
i (n) is measurable and R∆

i (n+ 1) ⊆ R∆
i (n) for each i ∈ I and n ∈ N.51

Given that (R∆
i (n))n∈N is decreasing for each i ∈ I, so is (R∆(n))n∈N. Thus, we can define

R∆(∞) :=
⋂

n∈NR∆(n), which is measurable because of Remark 11. We say that R∆(∞) is

the event in which (i) players are rational, (ii) players’ beliefs satisfy restrictions ∆, and (iii)

there is common strong belief in (i) and (ii). The following result establishes the epistemic

justification of strong ∆-rationalizability.

Theorem 1. Fix a profile of belief restrictions ∆. If feedback is regular and own-belief indepen-

dent, P∆
i (n) = projSi×Θi×T K

i
R∆

i (n) for each i ∈ I and n ∈ N.

By Theorem 1, strong ∆-rationalizability characterizes the utility-relevant implications of

rationality, the belief restrictions ∆ and n-mutual strong belief of the conjunction of rationality

and the belief restriction.

51That the sequence (R∆
i (n))n∈N is decreasing is immediate. The first part of the remark follows instead from

an induction argument. As for the basis step, note that R∆
i (1) = Ri ∩ [∆i], and both Ri and [∆i] are measurable

(as per Lemma 8 and Remark 10). Then, assuming that R∆
i (k) is measurable for each i ∈ I and k ∈ {1, . . . , n},

we write R∆
i (n + 1) = R∆

i (n) ∩ SBi(R
∆
−i(n)): R∆

i (n) and R∆
−i(n) are measurable by the inductive hypothesis,

and SBi(R
∆
−i(n)) is measurable as per Lemma 10.
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7 Conclusion

In this paper, we introduced a novel framework (i.e., a theoretical language and some struc-

tural assumptions) to incorporate noisy emotional feedback into games, that may effectively be

adapted to relevant applications. Our framework can be used to derive testable theoretical pre-

dictions about the extent to which the appraisal of others’ emotion affects choices (cf. Examples

1, 2, and 3), and to analyze an important economic problem such as information transmission

in face-to-face interactions (cf. Examples 4 and 5). Our framework can be naturally applied to

situations such as court hearings, presidential debates, political speeches, bargaining, product

advertisement by salesmen, and physician-patient interactions. In all these settings, emotional

leakage may shape incentives in interesting ways that would not be captured by standard models

In addition to calling for applied models, we believe that our contribution also adds value

at a more abstract level. First, our rich description of rationality has the merit of disentangling

the different requirements rational players should satisfy, as already emphasized in Section 1.3.

In particular, specific failures of rationality both on the cognitive side (e.g., failure to update

beliefs consistently with evidence) and the behavioral side (e.g., failure to implement plans) may

be analyzed from an analyst’s perspective. Even more interestingly, our language is rich enough

to model situations in which players may contemplate and reason about cognitive failures of

opponents. Such expressiveness is a key step toward a rigorous analysis of the implications

of failures of rationality in strategic settings. In this regard, future research may investigate

the utility-relevant implications of different sets of assumptions about players’ cognitive and

behavioral features.

All in all, we believe that the present paper offers an innovative and flexible way to analyze

a pervasive phenomenon such as emotional leakage in face-to-face interactions. In this regard,

we see our contribution as foundational, in that it provides the tools to model a class of relevant

situations and a meaningfully-founded solution procedure to predict behavior. As showed by

our running example, it is possible to derive tractable applications and interesting predictions,

and further research along this lines would lead to a better understanding of how decisions are

formed in a number of social interactions.

A Proofs

Proof of Proposition 1 (p. 19)

Fix h = (hi)i∈I ∈ H, (s, θ) ∈ S × Θ and m̄e ∈ Me. Recall that we can write m̄e =

((m̄i,j,e)i∈I)j∈I\{i} (cf. footnote 6), where mi,j,e is a message i observes about j. Then, to

ease notation, let ℓ̄i = (m̄j,i,e)j∈I\{i}. In words, ℓ̄i is i’s emotional leakage (i.e., the profile of

messages about i received by her opponents) implied by m̄e. Note that ℓ̄i belongs to the set

Li :=×j∈I\{i}Mj,i,e, and that m̄e = (ℓ̄i)i∈I .

Consider now {(s, θ)} × {τ1 ∈ T 1 : m̄e ∈ supp fh,e(s, θ, τ
1)}, where we let K = 1 because
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feedback is simple (cf. point (i) of Definition 2). It is possible to check that:

{τ1 ∈ T 1 : m̄e ∈ supp fh,e(s, θ, τ
1)} =

⋂
i∈I

{
τ1 ∈ T 1 : ℓ̄i ∈ supp(margLi

fh,e(s, θ, τ
1))
}
. (8)

Simplicity of feedback implies that, for each i ∈ I,
{
τ1 ∈ T 1 : ℓ̄i ∈ supp(margLi

fh,e(s, θ, τ
1))
}

depends exclusively on τ1i ( · |hi) (cf. point (ii) of Definition 2). Let Bi ⊆ ∆(Ω0) be the set of i’s

first-order beliefs allowing for ℓ̄i at hi. Hence, for each i ∈ I,

{
τ1 ∈ T 1 : ℓ̄i ∈ supp(margLi

fh,e(s, θ, τ
1))
}
= Bi ×

(
×
h′
i ̸=hi

∆(Ω0)

)
×
(
×

j∈I\{i}
T 1
j

)
.

Then, expression (8) can be rewritten as

{τ1 ∈ T 1 : m̄e ∈ supp fh,e(s, θ, τ
1)} =

(
×
i∈I

Bi

)
×
(
×
i∈I
×
h′
i ̸=hi

∆(Ω0)

)
,

which is a rectangle. However, {τ1 ∈ T 1 : m̄e ∈ supp fh,e(s, θ, τ
1)} is measurable because

of semi-regularity of feedback. Sections of measurable sets in product measurable spaces are

measurable by definition, and therefore Bi is measurable for each i ∈ I. Hence, {τ1 ∈ T 1 : m̄e ∈
supp fh,e(s, θ, τ

1)} is a measurable rectangle, proving regularity. ■

Proof of Lemma 1 (p. 19)

We begin by defining the correspondence Hi : S×Θ×T K ⇒ H̄i. We proceed inductively on the

length of target personal histories to retrieve a sequence of correspondences (Hℓ
i : S×Θ×T K ⇒

H̄ℓ
i )

T
ℓ=0, where Hℓ

i specifies i’s possible personal histories of length ℓ for each utility-relevant

state.

First, H0
i is simply the correspondence (s, θ, τK) 7→ {∅}. Then, assume Hk

i has been defined

for k ∈ {0, . . . , ℓ− 1}. Define Hℓ
i to be such that, for each (s, θ, τK) ∈ S ×Θ× T K ,

Hℓ
i(s, θ, τ

K) :=
{
(aℓi ,m

ℓ
i) ∈ H̄ℓ

i : (aℓ−1
i ,mℓ−1

i ) ∈ Hℓ−1
i (s, θ, τK),

ai,ℓ = si(a
ℓ−1
i ,mℓ−1

i ),

mi,ℓ ∈ supp fi,(aℓ−1
i ,mℓ−1

i ),e(s, θ, τ
K)
}
.

In words, hℓi ∈ Hℓ
i(s, θ, τ

K) if (i) its immediate predecessor hℓ−1
i belongs to Hℓ−1

i (s, θ, τK), (ii)

i’s behavior at hℓ−1
i is described by si, and (iii), the message i receives after hℓ−1

i is in the

support of fi,hℓ−1
i ,e(s, θ, τ

K).

Finally, for each (s, θ, τK) ∈ S ×Θ× T K , let

Hi(s, θ, τ
K) :=

L⋃
ℓ=0

Hℓ
i(s, θ, τ

K).

Next, we move to the proof of the lemma. It is easy to check that the claim follows if we

prove that the correspondences in the sequence (Hℓ
i : S×Θ×T K ⇒ H̄ℓ

i )
L
ℓ=0 are measurable. We

do so by induction, starting to note that H0
i is trivially measurable. As basis step, assume that
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Hk
i is measurable for k ∈ {0, . . . , ℓ − 1}. Consider then (Hℓ

i)
−1. For each hℓi = (aℓi ,m

ℓ
i) ∈ H̄ℓ

i ,

we have

(Hℓ
i)

−1(hℓi) =
{
(s, θ, τK) : (aℓ−1

i ,mℓ−1
i ) ∈ Hℓ−1

i (s, θ, τK),

ai,ℓ = si(a
ℓ−1
i ,mℓ−1

i ),

mi,ℓ ∈ supp fi,(aℓ−1
i ,mℓ−1

i ),e(s, θ, τ
K)
}

=
{
(s, θ, τK) : (aℓ−1

i ,mℓ−1
i ) ∈ Hℓ−1

i (s, θ, τK)
}

∩
{
(s, θ, τK) : ai,ℓ = si(a

ℓ−1
i ,mℓ−1

i )
}

∩
{
(s, θ, τK) : mi,ℓ ∈ supp fi,(aℓ−1

i ,mℓ−1
i ),e(s, θ, τ

K)
}
.

Consider the three intersected sets. The first one is simply (Hℓ−1
i )−1(aℓ−1

i ,mℓ−1
i ), and it is

measurable by the inductive hypothesis. The second set is measurable because it takes the form

S̃i×S−i×Θ×T K for some S̃i ⊆ Si, and any subset of Si is measurable (because Si is finite and

equipped with the discrete σ-algebra). Finally, the third set is measurable by semi-regularity of

feedback.

To conclude the proof, note that that each Q ⊂ H̄ℓ
i is trivially closed, and (Hℓ

i)
−1(Q) =⋃

hi∈Q(H
ℓ
i)

−1(hi) is measurable. This checks the definition of measurability of correspondence

Hℓ
i . The result follows. ■

Proof of Lemma 2 (p. 21)

With some abuse, let Ω0
−i = S ×Θ to simplify notation. Then, we rewrite T ∞

i,C as follows:

T ∞
i,C =

⋂
n∈N

⋂
hi∈H̄i

{
τ∞i ∈ T ∞

i : margΩn−1
−i

τi,n+1( · |hi) = τi,n( · |hi)
}
.

Fix generic n̄ ∈ N and h̄i ∈ H̄i, and consider the corresponding set in the intersection

above. Take a sequence (τ∞i,k)k∈N of elements of such set converging to τ̄∞i . This implies that

τi,n̄+1,k( · |h̄i) converges to τ̄i,n̄+1( · |h̄i) in the topology of weak convergence. Then, by continuity

of the marginalization map, margΩn̄−1
−i

τ̄i,n̄+1,k( · |h̄i) = τ̄i,n̄,k( · |h̄i). The same holds for any n ∈ N
and hi ∈ H̄i, as the chosen n̄ and h̄i were generic. Thus, T ∞

i,C can be written as a countable

intersection of closed sets. Arbitrary intersections of closed sets are closed, so we conclude that

T ∞
i,C is closed as well. Then, also Ci is closed, and the same holds for each i ∈ I. ■

Proof of Lemma 3 (p. 21)

The following auxiliary result is Lemma 1 of Brandenburger and Dekel (1993).

Lemma A1. Let (Zn)n∈N∪{0} be a sequence of Polish spaces, and define

Ξ :=

{
(ξn)n∈N : ∀n ≥ 1, ξn ∈ ∆

(
n−1

×
k=0

Zk

)
, marg×n−1

k=0 Zk
ξn+1 = ξn

}
.

Then, there exists an homeomorphism ψ : Ξ → ∆
(
×n∈N∪{0} Zn

)
.
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In our setting, fixing i ∈ I, we denote Z0 = Ω0, and Zn = T−i,n for each n ∈ N. All such sets

are compact metrizable (hence, Polish), as implied by Remark 2.

At this point, for each hi ∈ H̄i, define γhi
: T ∞

i,C → Ξ to be the map τ∞i 7→ τ∞i ( · |hi).
Note that γhi

is clearly continuous for each hi ∈ H̄i. Moreover, by Lemma A1, also the map

φhi
:= ψ ◦γhi

: T ∞
i,C → ∆(Ω0×T ∞

−i ) is continuous. Define now the map φi := (φhi
)hi∈Hi

: T ∞
i,C →[

∆(Ω0 × T ∞
−i )
]Hi . We want to show that it is indeed an homeomorphism.52

It is immediate to see that φi is continuous and that it satisfies the condition of Lemma

3. The latter fact implies that (i) φi is one-to-one, and (ii) φ−1
i is continuous on φi(T ∞

i,C).

Lastly, we show that φi(T ∞
i,C) =

[
∆(Ω0 × T ∞

−i )
]Hi . Indeed, φi(T ∞

i,C) ⊆
[
∆(Ω0 × T ∞

−i )
]Hi holds

by definition. To see that
[
∆(Ω0 × T ∞

−i )
]Hi ⊆ φi(T ∞

i,C), take ti ∈
[
∆(Ω0 × T ∞

−i )
]Hi and define

τ∞i ∈ T ∞
i to be such that, for each n ∈ N and hi ∈ Hi, τi,n( · |hi) = margΩn−1

−i
ti( · |hi): by

construction, τ∞i ∈ T ∞
i,C and φi(τ

∞
i ) = ti, so that τ∞i ∈ φi(T ∞

i,C). ■

Proof of Lemma 4 (p. 21)

We first state some preparatory results for the proof of Lemma 4.

Lemma A2. If feedback is own-belief independent, the collection
{
ΩK
−i,τKi

(hi)
}
τKi ∈T K

i
is finite

for each i ∈ I and hi ∈ H̄i.

Proof of Lemma A2. Fix i ∈ I and hℓi ∈ H̄i. We start by noting that:

ΩK
−i,τKi

(hℓi) =
⋃

(s,θ)∈S×Θ

(
ΩK
−i,τKi ,s,θ

(hℓi)

)
=

⋃
(s,θ)∈S×Θ

(
{s} × {θ} × (Hℓ

i,τKi ,s,θ
)−1(hℓi)

)
, (9)

where subscripts denote sections of the correspondence (Hℓ
i)

−1. Focus on (Hℓ
i,τKi ,s,θ

)−1(hℓi).

Denoting as hki the k-long predecessor of hℓi (with k ∈ {0, . . . , ℓ}), it can be written as:

(Hℓ
i,τKi ,s,θ

)−1(hℓi) :=

{
τK−i ∈ T K

−i : ∀ k ∈ {1, . . . , ℓ}, (1, k) ai,k = si(h
k−1
i ),

(2, k) mi,k ∈
⋃

hk−1
−i :(hk−1

i ,hk−1
−i )

∈(Hk−1
j (s,θ,τK))j∈I

supp fi,(hk−1
i ,hk−1

−i )(s, θ, τ
K)

}
.

Note that this expression for (Hℓ
i,τKi ,s,θ

)−1(hℓi) features requirements that we labeled (1, k)

and (2, k) (for k ∈ {1, . . . , ℓ}). Denote as Gi,k ⊆ T K
−i the set where condition (i, k) from the above

definition holds. Note that G1,k is independent from players’ hierarchical systems of beliefs for

each k ∈ {1, . . . , ℓ}. On the other hand, it is easy to check that, for each k ∈ {1, . . . , ℓ}, G2,k

belongs to following collection:{
τ−i ∈ T K

−i : mi,k ∈ supp fi,(hk−1
i ,hk−1

−i )

(
(ai,k, a−i), θ, (τ

K
i , τ

K
−i)
)}

ak−1
−i ∈Ak−1

−i ,hk−1
−i ∈H̄k−1

−i
,

52That is, a continuous one-to-one function with continuous inverse. Moreover, in order to establish that T ∞
i,C

and
[
∆(Ω0 × T ∞

−i )
]Hi are actually homeomorphic, we will show that φi is also onto.
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which is finite (by finiteness of A−i and H̄−i) and independent from τKi ∈ T K
i (by own-belief

independence).

Thus, since (Hℓ
i,τKi ,s,θ

)−1(hℓi) =
⋂ℓ

k=1

⋂2
i=1Gi,k, the foregoing argument allows us to conclude

that the collection {(Hℓ
i,τKi ,s,θ

)−1(hℓi)}τKi ∈T K
i

is finite. With equation (9) and finiteness of set

S ×Θ, the desired result follows. ■

The proof is greatly simplified if we can partition the sets T K
i (i ∈ I) into measurable sets

such that, all the hierarchical systems of beliefs in each of the cells of the partition lead to the

same inference set (for a given personal history hi ∈ H̄i). To do so, for each i ∈ I and hi ∈ H̄i,

define the relation ∼hi
to be such that

τKi ∼hi
τ̄Ki ⇐⇒ ΩK

−i,τKi
(hi) = ΩK

−i,τ̄Ki
(hi).

It is routine to check that, for each hi ∈ H̄i, ∼hi
is an equivalence relation. We can then define

equivalence classes of elements of T K
i in a standard way, as [τKi ]hi

:= {τ̄Ki ∈ T K
i : τ̄Ki ∼hi

τKi }.
Before checking that such classes are measurable for each i ∈ I and hi ∈ H̄i, we report two

auxiliary results. The first is essentially a strengthening of Lemma 1 implied by regularity of

feedback. The second is a result on measurable rectangles in product measurable spaces.

Lemma A3. Let feedback be regular. For each i ∈ I, (s, θ) ∈ S ×Θ, and hi ∈ H̄i, (Hi,s,θ)
ℓ(hi)

is a union of measurable rectangles.

Proof of Lemma A3. The proof is as that of Lemma 1: it is enough to replace semi-regularity

with regularity. ■

Lemma A4. Let (X,X ) and (Y,Y) be measurable spaces, A, B, and C ⊆ A × B finite

sets, and ((Ra,b)a∈A)b∈Ca a profile of measurable rectangles in (X × Y,X ⊗ Y).53 Let R∗ :=⋂
a∈A

⋃
b∈Ca

Ra,b. Then, for each x̄ ∈ X, {x ∈ X : R∗
x = R∗

x̄} ∈ X .

Proof of Lemma A4. First recall that, by standard results, a finite union of measurable rectan-

gles can be written as a finite union of disjoint measurable rectangles. Hence, for each a ∈ A,⋃
b∈Ca

Ra,b =
⋃

d∈D(a)Qa,d for some finite profile of disjoint measurable rectangles (Qa,d)d∈D(a)

(note that we make the dependence of such profile on a explicit). Consider now the profile

((Qa,d)d∈D(a))a∈A: we show that
⋂

a∈A
⋃

d∈D(a)Qa,d is a union of disjoint measurable rectangles.

In particular, it is enough to show that this holds when |A| = 2 – then, an easy induction proves

that the same holds for any finite A. Let A = {α, β}. We claim that:⋂
a∈A

⋃
d∈D(a)

Qa,d =
⋃

i∈D(α)

⋃
j∈D(β)

(Qα,i ∩Qβ,j),

where the right hand side is clearly a finite union of (disjoint) measurable rectangles.

Fix x ∈
⋂

a∈A
⋃

d∈D(a)Qa,d. This implies that, for each a ∈ A, there is d ∈ D(a) such that

x ∈ Qa,d. However, note that, for each a ∈ A, sets of the profile (Qa,d)d∈D(a) are disjoint. Hence,

53Note that we are allowing C not to have a rectangular shape. This justifies the presence of Ca (that is, the

section of C at a ∈ A) in the definition of the profile of measurable rectangles.
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for each a ∈ A, there is a unique d∗ ∈ D(a) such that x ∈ Qa,d∗ . Note that A = {α, β} and let

i∗ ∈ D(α) and j∗ ∈ D(β) be such that x ∈ Qα,i∗ and x ∈ Qβ,j∗ – that is, x ∈ Qα,i∗ ∩ Qβ,j∗ .

With this, we can conclude that x ∈
⋃

i∈D(α)

⋃
j∈D(β)(Qα,i ∩Qβ,j).

Now fix x ∈
⋃

i∈D(α)

⋃
j∈D(β)(Qα,i ∩ Qβ,j). This implies that there are i∗ ∈ D(α) and

j∗ ∈ D(β) such that x ∈ Qα,i∗ ∩Qβ,j∗ (specifically, such i∗ and j∗ are unique). This means that,

for each a ∈ A = {α, β}, there is d ∈ D(a) such that x ∈ Qa,d – that is, x ∈
⋂

a∈A
⋃

d∈D(a)Qa,d.

At this point, we can conclude that the set of interest R∗ is a finite union of (disjoint)

measurable rectangles. For simplicity, write it as R∗ =
⋃

k∈K R∗
k, where K is finite and the

measurable rectangles (R∗
k)k∈K are disjoint. Fix a generic x̄ ∈ X. If x̄ ∈ projX R∗, it means

that there is a (unique) k̄ ∈ K such that x̄ ∈ projX R∗
k̄
. Then, {x ∈ X : R∗

x = R∗
x̄} = projX R∗

k̄
,

which is measurable as R∗
k̄
is a measurable rectangle.

If instead x̄ ̸∈ projX R∗, R∗
x̄ = ∅ and {x ∈ X : R∗

x = R∗
x̄} = projX(R∗

k̄
)C . Now, (R∗

k̄
)C is

the complement of a measurable rectangle, hence it can be written as a (finite) union of disjoint

measurable rectangles. The projection onto X of such union is simply the (finite) union of the

projections of such measurable rectangles onto X, which are all measurable. Again, we conclude

that {x ∈ X : R∗
x = R∗

x̄} is measurable, and this gives the desired result. ■

We can now check the measurability of the partition induced by ∼hi
(i ∈ I, hi ∈ H̄i).

Lemma A5. If feedback is regular, [τKi ]hi
is measurable for each i ∈ I and hi ∈ H̄i.

Proof of Lemma A5. Fix generic i ∈ I, hℓi ∈ H̄ℓ
i , and τ̄Ki ∈ T K

i , and note that, for each

τKi ∈ T K
i ,

ΩK
−i,τKi

(hℓi) =
⋃

(s,θ)∈S×Θ

(
ΩK
−i,τKi ,s,θ

(hℓi)

)
,

where ΩK
−i,τKi ,s,θ

(hℓi) is the section of ΩK
−i,τKi

(hℓi) at (s, θ). Thus, it can be checked that, for each

τKi ∈ T K
i , ΩK

−i,τKi
(hℓi) = ΩK

−i,τ̄Ki
(hℓi) if and only if, for each (s, θ) ∈ S × Θ, ΩK

−i,τKi ,s,θ
(hℓi) =

ΩK
−i,τ̄Ki ,s,θ

(hℓi). Note that, for each τKi ∈ T K
i ,

ΩK
−i,τKi ,s,θ

(hℓi) = {s} × {θ} × (Hℓ
i,τKi ,s,θ

)−1(hℓi).

Then, we can say that, for each τKi ∈ T K
i , ΩK

−i,τKi ,s,θ
(hℓi) = ΩK

−i,τ̄Ki ,s,θ
(hℓi) if and only if

(Hℓ
i,τKi ,s,θ

)−1(hℓi) = (Hℓ
i,τ̄Ki ,s,θ

)−1(hℓi).

Note that for each i ∈ I, τi ∈ T K
i and hℓi ∈ H̄i we can write (Hℓ

i,s,θ)
−1(hℓi) as:

(Hℓ
i,s,θ)

−1(hℓi) =

{
τK ∈ T K : ∀ k ∈ {1, . . . , ℓ}, (1, k) ai,k = si(h

k−1
i ),

(2, k) ∃hk−1
−i ∈ Hk−1

−i,s,θ(τ
K
−i),mi,k ∈ supp fi,(hk−1

i ,hk−1
−i )(s, θ, τ

K)

}
.

As before, let Gi,k ⊆ T K
−i denote the set where condition (i, k) from the definition above holds,

and define G∗ :=
⋂t

k=1

⋂2
j=1Gj,k. Let G∗

τKi
denote the section of G∗ at a generic τKi ∈ T K

i .

With this, we observe that, for each τKi ∈ T K
i , (Hℓ

i,τKi ,s,θ
)−1(hℓi) = (Hℓ

i,τ̄Ki ,s,θ
)−1(hℓi) if and only
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if G∗
τKi

= G∗
τ̄Ki

. Next, note that G1,k is either empty or equal to T K for each k ∈ {1, . . . , ℓ}.
On the other hand, G2,k is a (finite) union of measurable rectangles as per Lemma A3. Hence,⋂ℓ

k=1

⋂2
j=1Gj,k and is a (finite) intersection of (finite) unions of measurable rectangles. Then, by

Lemma A4, the set {τKi ∈ T K
i : G∗

τKi
= G∗

τ̄Ki
} is measurable, and this establishes the result. ■

Lemmas A2 and A5 imply the following convenient result.

Corollary A1. If feedback is own-belief independent, {[τKi ]hi
: τKi ∈ T K

i } is a finite partition of

T K
i for each i ∈ I and hi ∈ H̄i. If feedback is also regular, such partition is made of measurable

sets.

Next, we discuss measurability in ∆(X), where X is a separable topological space. In

particular, the following is Proposition 7.25 of Bertsekas and Shreve (1996).

Lemma A6. let X be a separable topological space, and F a collection of subsets of X that is

closed under finite intersections and for which σ(F) = B(X). Consider the sequence of functions

(ϑF : ∆(X) → [0, 1])F∈F , where, for each F ∈ F , ϑF is the map ξ 7→ ξ(F ). Then,

B(∆(X)) = σ

( ⋃
F∈F

⋃
B∈B(R)

ϑ−1
F (B)

)
.

When F is taken to be the collection of Borel sets of X, Lemma A6 gives the following, which

is the definition of the Borel σ-algebra of ∆(X) used, e.g., by Dubins and Freedman (1964).

Remark A1. Let X be separable. B(∆(X)) is the smallest σ-algebra that makes the evaluation

maps (ξ 7→ ξ(B))B∈B(X) measurable.

We are now ready to start the proof of Lemma 4. Fix a generic i ∈ I and rewrite:

T ∞
i,KB =

{
τ∞i ∈ T ∞

i : ∀hi ∈ H̄i, τi,K+1

(
ΩK
−i,τKi

(hi)
∣∣hi) = 1

}
=
⋂

hi∈H̄i

{
τ∞i ∈ T ∞

i : ∃ [τ̄Ki ]hi
⊆ T K

i , τKi ∈ [τ̄Ki ]hi
, τi,K+1

(
ΩK
−i,[τ̄Ki ]hi

(hi)
∣∣hi) = 1

}

=
⋂

hi∈H̄i

⋃
[τ̄Ki ]hi

((
[τ̄Ki ]hi

× ×
k≥K+1

Ti,k
)
∩
{
τ∞i ∈ T ∞

i : τi,K+1

(
ΩK
−i,[τ̄Ki ]hi

(hi)
∣∣hi) = 1

})
. (10)

Consider the expression within parentheses. The first set is measurable as per Lemma A5. As

for the second one, it is measurable because the set
{
τi,K+1( · |hi) ∈ ∆(ΩK

−i) : τi,K+1

(
ΩK
−i,τKi

(hi)
∣∣hi) =

1
}
is measurable as per Remark A1. Then, the intersection and the union of equation (10) are

countable (in particular, Corollary A1 ensures that the union over equivalence classes is finite).

All in all, we conclude that T ∞
i,KB can be written as the countable intersection and union of

measurable sets, hence it is measurable. KBi = Si ×Θi × T ∞
i,KB is measurable as well, and the

same is true for each i ∈ I. ■
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Proof of Lemma 5 (p. 23)

Fix a generic i ∈ I and define the following:

T ∞
i,CR :=

⋂
hi∈Hi

⋂
ai∈Âi(hi)

⋂
h′
i∈H̄i(hi)

⋂
si∈Si(hi,ai)

{τ∞i ∈ T ∞
i : (CR) holds}; (11)

T ∞
i,BR :=

⋂
hi∈Hi

⋂
ai∈Âi(hi)

⋂
mi∈Mi(hi,ai)

⋂
F∈B(S−i×Θ×T K

−i)

{τ∞i ∈ T ∞
i : (BR-ai) holds},

T ∞
i,I :=

⋂
hi∈Hi

{τ∞i ∈ T ∞
i : (I) holds}.

Note that T ∞
i,CBU = T ∞

i,CR ∩ T ∞
i,BR. To establish the desired result, we prove that both T ∞

i,CR and

T ∞
i,BR are measurable.

Step 1: T ∞
i,CR is measurable. Fix hi ∈ Hi, ai ∈ Âi(hi), h

′
i ∈ H̄i(hi), and si ∈ Si(hi, ai), and

consider the corresponding set in equation (11):{
τ∞i ∈ T ∞

i : τi,K+1({si}|h′i) · τi,K+1(Si(hi, ai)|hi) = τi,K+1({si}|hi)
}
.

Note that the intersections in (11) are finite. Thus, it is enough to prove that the above set is

measurable to conclude that T ∞
i,CR is also measurable. We will actually do more: we will prove

that the above set is closed – hence the intersection of (11) will also be closed.

Consider a sequence (τ∞i,n)n∈N of elements of T ∞
i,CR converging to τ̄∞i . Note that T ∞

i,CR is a

product space, and recall that convergence in product spaces occurs coordinate-wise under the as-

sumed product topology. Thus, τi,K+1,n( · |h′i) → τ̄i,K+1( · |h′i) and τi,K+1,n( · |hi) → τ̄i,K+1( · |hi).
Moreover, by the properties of the weak convergence topology, if τi,K+1,n( · |h′i) → τ̄i,K+1( · |h′i),
then it must be the case that τi,K+1,n(C|h′i) → τ̄i,K+1(C|h′i) for every Borel set C with empty

boundary (see Theorem 15.3 in Aliprantis and Border, 2006). Now notice that {si}, which is a

shorthand for {si}×S−i×Θ×T K
−i , is a clopen set because it is the product of clopen sets: {si}

is a subset of a finite space (hence it is clopen), and S−i×Θ×T K
−i is a compact metrizable space

(and for each compact metrizable space X, both X and ∅ are clopen). Clopen sets have empty

boundaries, so we conclude that τi,K+1,n({si}|h′i) converges to τ̄i,K+1({si}|h′i). An entirely analo-

gous point applies to show that τi,K+1,n({si}|hi) → τ̄i,K+1({si}|hi) and τi,K+1,n(Si(hi, ai)|hi) →
τ̄i,K+1(Si(hi, ai)|hi). Wrapping up, we obtain

τ̄i,K+1({si}|h′i) · τ̄i,K+1(Si(hi, ai)|hi) = τ̄i,K+1({si}|hi),

so that τ̄∞i ∈ T ∞
i,CR, as desired. We conclude that T ∞

i,CR is closed, hence measurable.

Step 2: T ∞
i,BR is measurable. Consider now

T ∞
i,BR :=

⋂
hi∈Hi

⋂
ai∈Âi(hi)

⋂
mi∈Mi(hi,ai)

⋂
F∈B(S−i×Θ×T K

−i)

{τ∞i ∈ T ∞
i : (BR-ai) holds}.

Note that in the expression above the intersection over B(S−i × Θ × T K
−i ) is uncountable. Yet,

S−i ×Θ× T K
−i is a compact metrizable space (it is the product of two finite spaces, S−i and Θ,

and of T K
−i , which is compact metrizable as per Remark 2), hence it is second countable – i.e., it
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admits a countable base B. Therefore, each Borel set in S−i×Θ×T K
−i can be obtained through

countable unions or intersections of elements of B. We can then write:

T ∞
i,BR :=

⋂
hi∈Hi

⋂
ai∈Âi(hi)

⋂
mi∈Mi(hi,ai)

⋂
B∈B

{τ∞i ∈ T ∞
i : (BR-ai) holds}.

Note that now the intersections are countable: proving measurability of the intersected sets

would then imply the desired result. Therefore, fix hi ∈ Hi, ai ∈ Âi(hi), mi ∈ Mi(hi, ai), and

B ∈ B, and consider the corresponding set in the above intersection:{
τ∞i ∈ T ∞

i : τi,K+1(B|h′i) ·
∫
S−i×Θ×T K

−i

fi,hi,s∗i ,τ
K
i
( · )[mi] ·

(
marg τi,K+1

)(
d(s−i, θ, τ

K
−i)|hi

)
=

∫
B
fi,hi,s∗i ,τ

K
i
( · )[mi] ·

(
marg τi,K+1

)(
d(s−i, θ, τ

K
−i)|hi

)}
, (12)

where we write simply “marg” instead of “margS−i×Θ×T K
−i
” to ease notation.

In order to show its measurability, we show that the above set is the inverse image of a

measurable set in R through a measurable function ψ : T ∞
i → R. To retrieve such function, we

proceed in three steps:

1. Let ψ1 be the map τ∞i 7→ τi,K+1(B|h′i). Such map is measurable. Indeed, it is the

composition of the two maps τ∞i 7→ τi,K+1( · |h′i) and τi,K+1( · |h′i) 7→ τi,K+1(B|h′i): the

former is continuous (hence, measurable), and the latter is measurable (by the properties of

the Borel σ-algebras of sets of probability measures and by the fact that B is measurable, cf.

Remark A1). Compositions of measurable maps are measurable, hence ψ1 is measurable.

2. Let ψ2 be the map

τ∞i 7→
∫
S−i×Θ×T K

−i

fi,hi,s∗i ,τ
K
i
( · )[mi] ·

(
marg τi,K+1

)(
d(s−i, θ, τ

K
−i)|hi

)
.

Such map is continuous. To see it, consider a sequence (τ∞i,n)n∈N of elements of T ∞
i converg-

ing to τ̄∞i . This implies that τi,K+1,n( · |hi) converges to τ̄i,K+1( · |hi). Now note that, since

the marginalization map is continuous, marg τi,K+1,n( · |hi) converges to marg τ̄i,K+1( · |hi).
Since fi,hi,s∗i ,τ

K
i
( · )[mi] : S−i × Θ × T K

−i → [0, 1] is continuous and bounded, by the very

definition of the topology of weak convergence ψ2(τ
∞
i,n) converges to ψ2(τ̄

∞
i ). This proves

continuity (hence, measurability) of ψ2.

3. Let ψ3 be the map

τ∞i 7→
∫
B
fi,hi,s∗i ,τ

K
i
( · )[mi] ·

(
marg τi,K+1

)(
d(s−i, θ, τ

K
−i)|hi

)
.

By arguments analogous to those of the previous point, ψ3 is continuous.

Now define function ψ : T ∞
i → R as ψ := ψ1 · ψ2 − ψ3, and note that the set in (12) can be

written as {τ∞i ∈ T ∞
i : ψ(τ∞i ) = 0} = ψ−1({0}). As a final step note that {0} ∈ B(R) and that

ψ is measurable (as sums and products of measurable maps are measurable). We conclude that

the set of interest is measurable, and this establishes measurability of T ∞
i,BR.

43



Step 3: T ∞
i,I is measurable. We are actually going to prove that T ∞

i,I is closed. To this end,

write the set as

T ∞
i,I =

⋂
hi∈H̄i

{τ∞i : τi,K+1( · |hi) = margSi×Θi
τi,K+1( · |hi)⊗margS−i×Θ−i×T K

−i
τi,n,K+1( · |hi)}.

To show that each set in the above intersection is closed, fix hi ∈ H̄i and consider a sequence

(τ∞i,n)n∈N converging to τ̄∞i . This sequence induces a sequence of conditional beliefs of orderK+1,

(τi,n,K+1( · |hi))n∈N that (under the assumed product topology) converges to τ̄i,K+1( · |hi). By

construction, we have that the following holds for each n:

τi,n,K+1( · |hi) = margSi×Θi
τi,n,K+1( · |hi)⊗margS−i×Θ−i×T K

−i
τi,n,K+1( · |hi)}.

Moreover, convergence of (τi,n,K+1( · |hi))n∈N and continuity of the marginalization maps implies

margSi×Θi
τi,n,K+1( · |hi) → τ̄i,K+1( · |hi), margS−i×Θ−i×T K

−i
τi,n,K+1( · |hi) → τ̄i,K+1( · |hi),

in the topology of weak convergence. To conclude that

τ̄i,K+1( · |hi) = margSi×Θi
τ̄i,K+1( · |hi)⊗margS−i×Θ−i×T K

−i
τ̄i,K+1( · |hi),

we state without proof the following fact. Consider standard Borel spaces (X,B(X)) and

(X ′,B(X ′)) and sequences of measures (µn)n∈N and (µ′n)n∈N defined on them; if X × X ′ is

separable, then µn ⊗ µ′n → µ⊗ µ′ if and only if µn → µ and µ′n → µ′. This fact, together with

the convergence of marginals, implies (A).

Conclusion. Given the measurability of T ∞
i,CR, T ∞

i,BR, and T ∞
i,I , T ∞

i,CBU is measurable. ■

Proof of Lemma 6 (p. 26)

We begin with two preliminary observations. First, note that RPi = Si×projΘi×T ∞
i
RPi because

personal external states are irrelevant in the definition of rational planning. Hence, it is enough

to prove that R̃P i := projΘi×T ∞
i
RPi is closed.

Second, Berge’s maximum theorem, together with the observation that the objective function

ui,hi
: Âi(hi) × Θi × T ∞

i → R is continuous (which is easily checked), implies that ri,hi
: Θi ×

T ∞
i ⇒ Âi(hi) is a upper hemicontinuous correspondence. For each sequences (θi,n, τ

∞
i,n)n∈N ∈

×n∈N(Θi×T ∞
i ) and (ai,n)n∈N ∈×n∈N ri,hi

(θi,n, τ
∞
i,n), and a

∗
i ∈ Âi(hi), (θi,n, τ

∞
i,n) → (θ̄i, τ̄

∞
i ) and

ai,n → a∗i only if a∗i ∈ ri,hi
(θ̄i, τ̄

∞
i ).

Next, we move to the main part of the proof, where we show that R̃P i is closed. Consider

a sequence (θi,n, τ
∞
i,n)n∈N of elements of R̃P i converging to (θ̄i, τ̄

∞
i ). It is straightforward to

check that (θ̄i, τ̄
∞
i ) ∈ projΘi×T ∞

i
KTi (i.e., τ̄

∞
i knows θi), and that τ̄∞i satisfies independence.54

Proving that suppσi(τ̄
∞
i )( · |hi) ⊆ ri,hi

(θ̄i, τ̄
∞
i ) for each hi ∈ Hi then gives the desired result.

54The latter claim follows from relatively straightforward results in measure theory. In particular, consider

measurable spaces (X,X ) and (X ′,X ′), and sequences of measures (µn)n∈N and (µ′
n)n∈N defined on them. If

X×X ′ is separable, µn×µ′
n → µ×µ′ if and only if µn → µ and µ′

n → µ′, where convergence is assumed to occur

in the topology of weak convergence of measures. This fact, together with the product structure and separability

of T ∞
i , can be employed to show that independence is preserved in the limit.
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To this end, fix hi ∈ Hi and note that σ(τ∞i,n)( · |hi) converges to σ(τ̄∞i )( · |hi) because

τi,K+1,n( · |hi) converges to τ̄i,K+1( · |hi). Given that σ(τ∞i,n)( · |hi) and σ(τ̄∞i )( · |hi) are prob-

ability measures defined over the finite set Âi(hi), we have that σ(τ∞i,n)(ai|hi) → σ(τ̄∞i )(ai|hi)
for each ai ∈ Âi(hi). Consider then a

∗
i ∈ suppσi(τ̄

∞
i )( · |hi). By the aforementioned convergence,

it must be that there is n1 ∈ N such that a∗i ∈ suppσi(τ
∞
i,n)( · |hi) ⊆ ri,hi

(θi,n, τ
∞
i,n) for all n ≥ n1.

Construct therefore the sequence (ai,n)n∈N to be such that ai,n = a∗i for all n ≥ n1 and ai,n is

picked arbitrarily from ri,hi
(θi,n, τ

∞
i,n) for all n < n1. This sequence by construction satisfies the

properties that ai,n ∈ ri,hi
(θi,n, τ

∞
i,n) and ai,n → a∗i . Upper hemicontinuity of ri,hi

implies that

a∗i ∈ ri,hi
(limn→∞(θi,n, τ

∞
i,n)) = ri,hi

(θ̄i, τ̄
∞
i ). This concludes the proof that (θ̄i, τ̄

∞
i ) ∈ R̃P i. The

desired result then follows. ■

Proof of Lemma 7 (p. 28)

We start by fixing a generic i ∈ I and by rewriting:

CONi =
⋂

hi∈Hi

{
(si, θi, τ

∞
i ) ∈ T ∞

i : σ(τ∞i )(si(hi)|hi) = 1

}
.

Then, fix h̄i ∈ Hi and focus on the corresponding set in the above intersection. Consider a se-

quence of elements of such set, (si,n, θi,n, τ
∞
i,n)n∈N, converging to (s̄i, θ̄i, τ̄

∞
i ). Convergence implies

that there is n̄ ∈ N such that, for each n ≥ n̄, si,n = s̄i (this follows from finiteness of Si). There-

fore, (si,n, θi,n, τ
∞
i,n) = (s̄i, θi,n, τ

∞
i,n) ∈ CONi and τi,K+1,n(Si(h̄i, s̄i(h̄i))|h̄i) = 1 for each n ≥ n̄.

Moreover, by convergence of τ∞i,n to τ̄∞i , τi,K+1,n( · |h̄i) converges to τ̄i,K+1( · |h̄i). As mentioned in

earlier proofs (see the proofs of Lemmas 5 and 6), this implies that τi,K+1,n({si}|h̄i) converges to
τ̄i,K+1({si}|h̄i) for each si ∈ Si. We conclude that also τ̄∞i is such that τ̄i,K+1(Si(h̄i, s̄i(h̄i))|h̄i) =
1, proving that the set of interest is closed. Hence, CONi is a finite intersection of closed sets,

hence it is closed, and the same holds for each i ∈ I. ■

Proof of Lemma 8 (p. 28)

The result follows from Lemmas 2, 4, 5, 6, and 7, because, for each player i ∈ I, Ri is a finite

intersection of measurable sets. ■

Proof of Lemma 9 (p. 30)

We first state and prove an auxiliary result.

Lemma A7. Fix i ∈ I and analytic F ⊆ ΩK
−i. The set

{
τK+1
i ∈ T K+1

i : τi,K+1 strongly believes F
}

is measurable.

Proof. We rewrite the set of interest as T K
i ×

{
τi,K+1 : τi,K+1 strongly believes F

}
. Then,{

τi,K+1 : τi,K+1 strongly believes F
}

=

{
τi,K+1 : ∀hi ∈ Hi,

(
F ∩ ΩK

−i(hi) ̸= ∅
)

=⇒
(
∀G ∈ B(ΩK

−i), F ⊂ G =⇒ τi,K+1(G|hi) ≥ 1

)}
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=
⋂

hi:F∩ΩK
−i(hi )̸=∅

⋂
G∈B(ΩK

−i):F⊂G

{
τi,K+1 : τi,K+1(G|hi) ≥ 1

}
=

⋂
hi:F∩ΩK

−i(hi )̸=∅

⋂
G∈B:F⊂G

{
τi,K+1 : τi,K+1(G|hi) ≥ 1

}
,

where the first equality holds by definition of strong belief, the second is obvious, and the third

follows once we note that ΩK
−i is Polish (hence, separable), hence second countable (we let B

denote its countable base). With Remark A1, it is easy to see that all the intersected sets above

are measurable. Given that the intersections are countable, our result follows. ■

We proceed by induction to prove Lemma 9. As for part (i), we start by noting that

P∆
i (0) = Si × Θi × T ∞

i is trivially measurable (hence, analytic) for each i ∈ I. Now assume

by induction that P∆
i (k) is analytic for k ∈ {1, . . . , n}, with n ∈ N: we show that P∆

i (n+ 1) is

analytic. Define T K+1
i,KB , T K+1

i,C , and T K+1
i,CBU as the set of (K + 1)-th-order hierarchical systems

of beliefs where knowledge-implies-belief, coherence, and the Bayes rule hold, respectively. By

inspection of the proofs of Lemmas 2, 4, and 5, such sets can be checked to be measurable.

Next, consider the following sets.

P1 :=
{
(si, θi, τ

K+1
i ) : τK+1

i ∈ T K+1
i,KB ∩ T K+1

i,C ∩ T K+1
i,CBU ∩∆θi};

P2 :=
{
(si, θi, τ

K+1
i ) : ∀hi ∈ Hi, si(hi) ∈ ri,hi

(θi, τ
K+1
i )

}
;

P3 :=Θi ×
{
(si, τ

K+1
i ) : ∀hi ∈ Hi, τi,1(Si(hi, si(hi))|hi) = 1

}
;

P4 :=Si ×Θi ×
{
τK+1
i : ∀ k ∈ {1, . . . , n}, τi,K+1 strongly believes P∆

−i(k)
}
.

P1 measurable, by our foregoing observation about T K+1
i,CBU , T

K+1
i,C , and T K+1

i,CBU , and because

∆θi is assumed to be measurable for each i ∈ I and θi ∈ Θi. P3 can be showed to be measurable

by an argument similar to that of the proof of Lemma 7. P4 is measurable as per Lemma A7,

once we note that sets (P∆
−i(k))

n
k=1 are analytic by the inductive hypothesis. As for P2, note

that we can rewrite the first intersected set as follows:⋂
hi∈Hi

{
(si, θi, τ

K+1
i ) : ∀ s′i ∈ Si, ūi,hi

(si, θi, τ
K+1
i ) ≥ ūi,hi

(s′i, θi, τ
K+1
i )

}
=
⋂

hi∈Hi

⋂
s′i∈Si

⋃
(si,θi)∈Si×Θi

(
{(si, θi)} ×

{
τK+1
i ∈ T K+1

i : ūi,hi
(si, θi, τ

K+1
i ) ≥ ūi,hi

(s′i, θi, τ
K+1
i )

})
.

In the expression above, the sets within parentheses are measurable – this holds because the map

τK+1
i 7→ ūi,hi

(si, θi, τ
K+1
i ) is continuous for each i ∈ I, hi ∈ Hi, si ∈ Si, and θi ∈ Θi, and thus

the set
{
τK+1
i ∈ T K+1

i : ūi,hi
(si, θi, τ

K+1
i ) ≥ ūi,hi

(s′i, θi, τ
K+1
i )

}
is measurable for each s′i ∈ Si.

Then, P2 is measurable because it is given by finite intersections and unions of measurable sets.

Thus,
⋂4

k=1 Pk =: P ∗ is measurable. Note that P∆
i (n+1) = projSi×Θi×T K

i
P ∗: since it is the

projection over a Polish space of a measurable set, it is analytic. The same holds for each i ∈ I.

Part (ii) is immediate. Obviously, P∆
i (1) ⊆ P∆

i (0) = Si × Θi × T K
i trivially holds for

each i ∈ I. Assume by induction that, for each k ∈ {1, . . . , n} and i ∈ I, P∆
i (k) ⊆ P∆

i (k −
1) = Si × Θi × T K

i . We want to show that P∆
i (n + 1) ⊆ P∆

i (n). Then, for each q ∈ N,
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let P4(q) = Si × Θi ×
{
τK+1
i ∈ T K+1

i,C : ∀k ∈ {1, . . . , q − 1}, τi,K+1 strongly believes P∆
−i(k)

}
.

Note that, for each k ∈ N, we can write P∆
i (k) = projSi×Θi×T K

i
(P1 ∩ P2 ∩ P3 ∩ P4(k − 1)),

and that, for each k ∈ N, P4(k) ⊆ P4(k − 1). With this, we conclude that P∆
i (n + 1) =

projSi×Θi×T K
i
(P1 ∩ P2 ∩ P3 ∩ P4(n)) ⊆ projSi×Θi×T K

i
(P1 ∩ P2 ∩ P3 ∩ P4(n− 1)) = P∆

i (n), which

yields the desired result. ■

Proof of Proposition 2 (p. 31)

We begin this proof by introducing some terminology and by proving auxiliary results. To ease

notation, we denote generic elements of T K
i and Ti,K+1 (i ∈ I) as τi and µi, respectively.

Fix a generic i ∈ I. Consider µ1i , µ
2
i ∈ Ti,K+1,KB ∩Ti,K+1,CBU and F 1, F 2 ⊆ ΩK

−i. The profile

(µki , F
k)k∈{1,2} is admissible if F 2 ⊆ F 1 and µni strongly believes Fn (n ∈ {1, 2}). As a matter

of terminology, for each F ⊆ ΩK
−i and µi ∈ Ti,K+1, we say that F is compatible with µi and hi if

F ∩ ΩK
−i,margµi

(hi) ̸= ∅,

where margµi is a shorthand to denote the hierarchical system of beliefs of order K obtained

by taking the marginals of µi over the sets (Ω
0, (Ωn

−i)
K−1
n=1 ). The (F

1, F 2)-composition of µ1i and

µ2i is µ̄i ∈ Ti,K+1 such that µ̄i( · |hi) = µ2i ( · |hi) whenever F 2 is compatible with µ2i and hi, and

µ̄i( · |hi) = µ1i ( · |hi) otherwise. For each sequence (µki , F
k)nk=1 where (F k)nk=1 is a decreasing

sequence of subsets of S−i×Θ−i×T K
−i and µ

k
i ∈ Ti,K+1,KB ∩Ti,K+1,CBU for each k ∈ {1, . . . , n},

the (F k)nk=1-composition (or, simply, composition) of (µki )
n
k=1 can be defined in a natural way.

We first prove an auxiliary fact.

Lemma A8. Fix a i ∈ I, an admissible (µki , F
k)k∈{1,2}, and let µ̄i be the composition of µ1i and

µ2i . Then, µ̄i ∈ Ti,K+1,KB ∩ Ti,K+1,CBU and µ̄i strongly believes F 1 and F 2.

Proof of Lemma A8. That µ̄i ∈ Ti,K+1,KB follows from inspection of the definition of compo-

sition. We need to show that µ̄i ∈ Ti,K+1,CBU – that is, we need to show that the chain rule,

Bayes rule, and independence are satisfied by µ̄i. Independence is easily checked, so we are left

to prove that the other two properties hold.

Step 1: the chain rule holds. Fix hi ∈ Hi, ai ∈ Âi(hi), h
′
i ∈ H̄i(hi, ai), and si ∈ Si(hi, ai).

We want to show that

µ̄i(si|h′i) · µ̄i(Si(hi, ai)|hi) = µ̄i(si|hi) (CR)

Notice that, if F 2 is not µ2i -compatible with hi, (CR) boils down to µ1i (si|h′i)µ1i (Si(hi, ai)|hi) =
µ1i (si|hi), which is verified as µ1i ∈ Ti,K+1,CBU .

Suppose then that F 2 is µ2i -compatible with hi. We further distinguish two cases: either F 2 is

µ2i -compatible with h′i or not. In the former case, (CR) boils down to µ2i (si|h′i)µ2i (Si(hi, ai)|hi) =
µ2i (si|hi), which holds because µ2i ∈ Ti,K+1,CBU . Focus then on the latter case and notice

the following. First, since F 2 ∩ ΩK
−i,µ2

i
(h′i) = ∅ and F 2 ∩ ΩK

−i,µ2
i
(hi) ̸= ∅, (µ2i )

∗(F 2|hi) = 1

and (µ2i )
∗(ΩK

−i,µ2
i
(h′i)|hi) = 0.55 Second, since h′i ∈ H̄i(hi, ai), each s′i ∈ ΩK

−i,µ2
i
(h′i) must also

55Recall that (µ2
i )

∗ is the outer measure induced by µ2
i .
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belong to Si(hi, ai). Taken together, these observations yield µ2i (si|hi) = µ2i (Si(hi, ai)|hi) = 0.56

Therefore

µ̄i(si|h′i) · µ̄i(Si(hi, ai)|hi) = µ1i (si|h′i) · µ2i (Si(hi, ai)|hi)

= µ1i (si|h′i) · 0 = 0

= µ2i (si|hi) = µ̄i(si|hi),

where the first equality follows from the definition of µ̄i, under the assumption that F 2 is µ2i -

compatible with hi but not with h′i, the second one from the foregoing observations, and the

remaining ones are obvious.

We established that the chain rule holds for µ̄i, and this concludes the first step of the proof.

Step 2: Bayes rule holds. To simplify the notation, let ν1i , ν
2
i , and ν̄i denote the marginals

over S−i×Θ×T K
−i of µ

1
i , µ

2
i , and µ̄i, respectively. Fix generic hi ∈ Hi, ai ∈ Ai , mi ∈Mi(hi, ai),

G ∈ B(S−i×Θ×T K
−i ). Let h

′
i = (hi, (ai,mi)), and denote fi,hi,s∗i ,marg µi

: S−i×Θ×T K
−i → ∆(Mi)

as f for simplicity (s∗i is a generic element of Si(hi, ai)). We want to show that

ν̄i(G|h′i) ·
∫
S−i×Θ×T K

−i

f( · )[mi]dν̄i( · |hi) =
∫
G
f( · )[mi]dν̄i( · |hi). (BR-ai)

We proceed in a way similar to that followed to prove Step 1. Specifically, note the following.

First, if F 2 is not µ2i -compatible with hi, then it is not compatible with h′i either: then, ν̄i( · |hi) =
ν1i ( · |hi) and ν̄i( · |h′i) = ν1i ( · |h′i), and this yields (BR-ai), as µ

1
i ∈ Ti,K+1,CBU . Second, if F 2 is

µ2i -compatible with both hi and h
′
i, ν̄i( · |hi) = ν2i ( · |hi) and ν̄i( · |h′i) = ν2i ( · |h′i), and this again

yields (BR-ai), as µ
2
i ∈ Ti,K+1,CBU .

Suppose now that F 2 is µ2i -compatible with hi but not with h
′
i. We want to show that

ν1i (G|h′i) ·
∫
S−i×Θ×T K

−i

f( · )[mi]dν
2
i ( · |hi) =

∫
G
f( · )[mi]dν

2
i ( · |hi).

By assumption, F 2 is such that F 2 ∩ ΩK
−i,µ2

i
(h′i) = ∅ and F 2 ∩ ΩK

−i,µ2
i
(hi) ̸= ∅, and this implies

(µ2i )
∗(F 2|hi) = 1 and (µ2i )

∗(ΩK
−i,µ2

i
(h′i)|hi

)
= 0. At this point, it is possible to check that

f(s−i, θ, τ−i)[mi] > 0 only if (s−i, θ, τ−i) ∈ projS−i×Θ×T K
−i

Ω−i,margµ2
i
(h′i) =: X.57 Moreover,

(ν2i )
∗(X|hi) = 0 by the foregoing observations concerning (µ2i )

∗. This means that there exists

a measurable Y ⊆ S−i × Θ × T K
−i such that X ⊆ Y and ν2i (Y |hi) = (ν2i )

∗(X|hi) = 0. Clearly,

f(s−i, θ, τ−i)[mi] > 0 only if (s−i, θ, τ−i) ∈ Y .

At this point, it is easy to check that∫
S−i×Θ×T K

−i

f( · )[mi]dν
2
i ( · |hi) =

∫
Y
f( · )[mi]dν

2
i ( · |hi) = 0

≥
∫
G
f( · )[mi]dν

2
i ( · |hi) ≥ 0,

where the first equality follows from the consideration that f( · )[mi] takes positive values only

on Y , the second one follows because ν2i (Y |hi) = 0, the first inequality is implied by the fact

56There is no need to use outer measures here, as all subsets of Si (which is finite) are measurable.
57Note that X is analytic.
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that G ⊆ S−i × Θ × T K
−i and f( · )[mi] : S−i × Θ × T K

−i → [0, 1] is non-negative, and the last

inequality holds because g∗( · )[m∗
i ] : S−i ×Θ× T K

−i → [0, 1] is non-negative.

Hence, (BR-ai) hold, and this establishes that µ̄i ∈ Ti,K+1,KB ∩ Ti,K+1,CBU . Finally, notice

that by construction µ̄i strongly believes both F 1 and F 2. ■

An easy induction yields the following.

Corollary A2. Fix a i ∈ I, an admissible (µki , F
k)nk=1, and let µ̄i be the composition of (µki )

n
k=1.

Then, µ̄i ∈ Ti,K+1,KB ∩ Ti,K+1,CBU and, for each k ∈ {1, . . . , n}, µi strongly believes F k.

At this point, we prove Proposition 2 by induction. As a basis step, note that the statement

trivially holds for n = 0. Assume by means of induction that it holds for n ∈ N. We show that,

for each i ∈ I, P∆
i (n+ 1) = Q∆

i (n+ 1).

Step 1: P∆
i (n + 1) ⊆ Q∆

i (n + 1). Take (si, θi, τi) ∈ P∆
i (n + 1). Note that, by Remark 9,

(si, θi, τi) ∈ P∆
i (n) = Q∆

i (n), where the equality holds by the inductive hypothesis. Therefore,

P∆
i (n+1) ⊆ Q∆

i (n), and this verifies requirement 0M of Definition 13. We are now left to show

that there is µ̄i ∈ Ti,K+1 such that conditions 1M-4M of Definition 13 hold. Since (si, θi, τi) ∈
P∆

i (n+1), conditions 1-4 of Definition 12 are satisfied by some µ̄i ∈ Ti,K+1,KB∩Ti,K+1,CBU . It is

readily verified that µ̄i satisfies conditions 1M-4M of Definition 13. Hence, (si, θi, τi) ∈ Q∆
i (n+1).

Step 2: P∆
i (n+1) ⊇ Q∆

i (n+1). Pick (si, θi, τi) ∈ Q∆
i (n+1). This implies that (si, θi, τi) ∈

Q∆
i (k) for each k ∈ {1, . . . , n}. Therefore, for each k ∈ {1, . . . , n}, there is µki ∈ Ti,K+1,KB ∩

Ti,K+1,CBU strongly believing Q∆
i (k−1) and satisfying conditions 1M-3M of Definition 13. It is

easy to check that the sequence (µki ,Q
∆
i (k−1))nk=1 is admissible. Consider then its composition

µ̄i, which also belongs to Ti,K+1,KB ∩ Ti,K+1,CBU as per Corollary A2. Now note the following:

1. Given that, for each k ∈ {1, . . . , n}, (τi, µki ) ∈ projT K+1
i

T ∞
i,C , then (τi, µ̄i) ∈ projT K+1

i
T ∞
i,C .

To see why this holds, consider that, for each hi ∈ H̄i, there is k̄ ∈ {1, . . . , n} such

that µ̄i( · |hi) = µk̄i ( · |hi). Given that (τi, µ
k̄
i ) ∈ projT K+1

i
T ∞
i,C , then margΩK−1

−i
µk̄i ( · |hi) =

τi,K( · |hi) for each hi ∈ H̄i, and the same holds for each k ∈ {1, . . . , n} (cf. condition 1M

of Definition 13). Therefore, we can conclude that, for each hi ∈ H̄i, margΩK−1
−i

µ̄i( · |hi) =
τi,K( · |hi). Coherence of lower-order beliefs is independent of µ̄i (it is a feature of τi), so

that the foregoing observations are enough to conclude that (τi, µ̄
k
i ) ∈ projT K+1

i
T ∞
i,C .

Similarly, we have that, for each k ∈ {1, . . . , n}, (τi, µki ) ∈ ∆θi . Recall that ∆ is rectangular,

so that we can write ∆θi =×K+1
n=1×hi∈H̄i

Bθi,n,hi
for a suitable profile of measurable sets.

Thanks to this, we can conclude that τi ∈ projT K
i

∆θi =×K
n=1×hi∈H̄i

Bθi,n,hi
. Moreover,

note that, for each hi ∈ H̄i, there is k̄ ∈ {1, . . . , n} such that µ̄i( · |hi) = µk̄i ( · |hi), and
that, for each k ∈ {1, . . . , n}, µki ∈ projTi,K+1

∆θi =×hi∈H̄i
Bθi,K+1,hi

. As a consequence,

we have that, for each hi ∈ H̄i, µ̄i( · |hi) ∈ Bθi,K+1,hi
, and this yields µ̄i ∈ projTi,K+1

∆θi .

Wrapping up, τi ∈ projT K
i

∆θi and µ̄i ∈ projTi,K+1
∆θi imply (τi, µ̄i) ∈ projT K

i
∆θi ×

projTi,K+1
∆θi = ∆θi , where the last equality holds because of the rectangularity of ∆θi .

Hence, condition 1 of Definition 12 is met.
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2. Recall that, for each hi ∈ Hi and (si, θi, (τi, µi)) ∈ Si × Θi × T K+1
i , ûi,hi

(si, θi, (τi, µi)) =∫
S−i×Θ−i×T K

−i
ui,hi,si,θidνi( · |hi), where νi( · |hi) is the marginal over S−i × Θ−i × T K

−i of

µi( · |hi). For each i ∈ I and hi ∈ Hi, let r̂i,hi
: Θi × T K+1

i ⇒ Si be the correspondence

(θi, (τi, µi)) 7→ argmaxs′i ûi,hi
(s′i, θi, (τi, µi)).

Since (si, θi, τi) ∈
⋂n

k=1Q
∆
i (k) and preferences are own-plan independent, Remark 8

implies that si ∈
⋂

hi∈Hi
r̂i,hi

(θi, (τi, µ
k
i =)) for k ∈ {1, . . . , n}. Fix hi ∈ Hi. We

know that there is k ∈ {1, . . . , n} such that µ̄i( · |hi) = µki ( · |hi). This implies that

r̂i,hi
(θi, (τi, µ

k
i )) = r̂i,hi

(θi, (τi, µ̄i)), because µ
k
i ( · |hi) and µ̄i( · |hi) have the same marginal

over S−i × Θ−i × T K
−i . We conclude that si ∈ r̂i,hi

(θi, (τi, µ̄i)) for each hi ∈ Hi, proving

that µ̄i satisfies condition 2 of Definition 12.

3. Consider that µki (Si(hi, si(hi))|hi) = 1 for each k ∈ {1, . . . , n} and hi ∈ Hi, as µ
k
i satisfies

condition 3M of Definition 13. Then note that, for each hi ∈ Hi, there is k̄ ∈ {1, . . . , n}
such that µ̄i( · |hi) = µk̄i ( · |hi). Therefore, for each hi ∈ Hi, µ̄i(Si(hi, si(hi))|hi) = 1. This

proves that µ̄i satisfies condition 3 of Definition 12.

4. By Corollary A2, for each k ∈ {1, . . . , n}, µ̄i strongly believes Q∆
i (k − 1) = P∆

i (k − 1),

with the equality following from the inductive hypothesis. This implies requirement 4 of

Definition 12.

In light of the foregoing remarks, we conclude that µ̄i (as obtained above) satisfies conditions

1-4 of Definition 12, proving that (si, θi, τi) ∈ P∆
i (n+ 1). This concludes the proof. ■

Proof of Lemma 10 (p. 33)

Fix i ∈ I. Define, for each τKi ∈ T K
i :

[τKi ] :=
{
τ̄Ki ∈ T K

i : ∀hi ∈ H̄i, τ̄
K
i ∼hi

τKi
}
=

⋂
hi∈H̄i

[τKi ]hi
.

Each such set is nonempty (for each τKi ∈ T K
i , τKi ∈ [τKi ] trivially holds). Moreover, by

finiteness of H̄i and by Lemma A5, each such set is measurable.

Now fix F−i ∈ B(S−i ×Θ−i × T ∞
−i ). Recall that:

Bi,hi
(F−i) =

{
(si, θi, τ

∞
i ) ∈ Ci : φi(τ

∞
i )(F |hi) = 1

}
.

By continuity of φi and by Remark A1, such set is measurable. Then, write:

SBi(F−i) =
{
(si, θi, τ

∞
i ) ∈ Ci : (∃ τ̄Ki ∈ T K

i , τKi ∈ [τ̄Ki ]),

(∀hi ∈ Hi,Ω
∞
−i,[τ̄Ki ]

(hi) ∩ F−i ̸= ∅ =⇒ φi(τ
∞
i )(F−i|hi) = 1)

}
=
⋃
[τ̄Ki ]

((
Si ×Θi × [τ̄Ki ]hi

× ×
k≥K+1

Ti,k
)

∩
( ⋂

hi:Ω∞
−i,[τ̄K

i
]
(hi)∩F−i ̸=∅

{
(si, θi, τ

∞
i ) ∈ Ci : φi(τ

∞
i )(F−i|hi) = 1)

}))
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=
⋃
[τ̄Ki ]

((
Si ×Θi × [τ̄Ki ]hi

× ×
k≥K+1

Ti,k
)
∩
( ⋂

hi:Ω∞
−i,[τ̄K

i
]
(hi)∩F−i ̸=∅

Bi,hi
(F−i)

))
. (13)

In (13), the first set within parentheses is measurable as per Lemma A5, and the second one

is a finite intersection of measurable sets, by the foregoing reasoning. Then, the union over

equivalence classes is finite, as per Corollary A1. We conclude that the expression in (13) is

measurable. Thus, Bi,hi
(Fi) and SBi(F−i) are measurable. The same clearly holds for each

i ∈ I, hi ∈ H̄i, and F−i ∈ B(S−i ×Θ−i × T ∞
−i ). ■

Proof of Theorem 1 (p. 34)

We first report an auxiliary result, which is an adaptation of Lemma 3 in Battigalli and Tebaldi

(2019). For a Polish setX and a countable collection C of Borel subsets ofX, we call a conditional

probability system (CPS) on (X, C), any µ = (µ( · |C))C∈C ∈ [∆(X)]C such that:

1. for each C ∈ C, µ(C|C) = 1;

2. for each E ∈ B(C) and C,D ∈ C, E ⊆ D ⊆ C implies µ(E|C) = µ(E|D)µ(D|C).

Moreover, for each X,Y Polish and for each countable collection C of Borel subsets of X,

a CPS on (X × Y, C) is a CPS on X × Y with {C × Y : C ∈ C} as collection of conditioning

events. If µ is a CPS on (X, C) and ν is a CPS on (X × Y, C), we write margX ν as a shorthand

for (margX ν( · |C))C∈C . With this, we can state the following.

Lemma A9. Let X,Y be Polish spaces, C a countable collection of Borel subsets of C, and

(Dk)
n
k=1 a finite decreasing sequence of Borel subsets of X × Y . If µ is a CPS on (C, C) that

strongly believes (projC Dk)
n
k=1, then there exists a CPS ν on (C ×X, C) that strongly believes

(Dk)
n
k=1 and such that margC ν = µ.

We now proceed with the proof of Theorem 1.

For each i ∈ I, P∆
i (0) = Si×Θi×T K

i = projSi×Θi×T K
i

(
Si×Θi×T ∞

i

)
= projSi×Θi×T K

i
R∆

i (0).

Assume by induction that, for each i ∈ I and k ∈ {1, . . . , n− 1}, P∆
i (k) = projSi×Θi×T K

i
R∆

i (k).

We want to show that P∆
i (n) = projSi×Θi×T K

i
R∆

i (n).

First, we show P∆
i (n) ⊆ projSi×Θi×T K

i
R∆

i (n). Take (si, θi, τ
K
i ) ∈ P∆

i (n): by definition,

there exists τi,K+1 ∈ Ti,K+1 such that the conditions of Definition 12 are satisfied. Specifi-

cally, τi,K+1 is a CPS on
(
ΩK
−i, {ΩK

−i,τKi
(hi)}hi∈Hi

)
, according to the terminology we introduced,

where τKi is the K-th-order hierarchy of systems of beliefs induced by τi,K+1 by taking the

marginals over (Ω0,Ω1
−i, . . . ,Ω

K−1
−i ). Moreover, τi,K+1 strongly believes (P∆

−i(1), . . . ,P
∆
−i(n −

1)) = (projSi×Θi×T K
i

R∆
i (1), . . . ,projS−i×Θ−i×T K

−i
R∆

−i(n− 1)), with the equality holding by our

inductive hypothesis. Then, by Lemma A9, there is a CPS µ on
(
S×Θ×T ∞

−i , {ΩK
−i,τKi

(hi)}hi∈Hi

)
strongly believing (R∆

−i(1), . . . ,R
∆
−i(n − 1)) such that margΩK

−i
µ = τi,K+1. Note that we can

take the inverse through φi of µ (cf. Lemma 3). Let τ̄∞i = φ−1
i (µ), and note that it induces

a (K + 1)-th-order hierarchy of systems of beliefs τ̄K+1
i satisfying τ̄K+1

i = (τKi , τi,K+1), since

margΩK
−i
µ = τi,K+1. Hence, if conditions 2 and 3 of Definition 12 hold for (τKi , τi,K+1), they
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must hold for τ̄K+1
i . This proves that (si, θi, τ̄

∞
i ) satisfies both rational planning and coherence.

Moreover, τ̄∞i satisfies coherence because φ−1
i maps to T ∞

i,C , and it satisfies knowledge-implies-

belief and the chain rule because (τKi , τi,K+1) satisfies condition 1 of Definition 12. Lastly, it

strongly believes (R∆
−i(1), . . . ,R

∆
−i(n − 1)) as already mentioned. Hence, (si, θi, τ̄

∞
i ) ∈ R∆

i (n),

so that (si, θi, τ
K
i ) ∈ projSi×Θi×T K

i
R∆

i (n).

Second, we show projSi×Θi×T K
i

R∆
i (n) ⊆ P∆

i (n). Take (si, θi, τ
K
i ) ∈ projSi×Θi×T K

i
R∆

i (n).

Then, by definition there exists µ = (µk)k≥K+1 ∈ ×k≥K+1 Ti,k such that (si, θi, τ
K
i , µ) ∈

R∆
i (n) = Ri ∩

(⋂n−1
k=1 SBi(R

∆
−i(k))

)
. Conditions 1, 2, 3 of Definition 12 are satisfied by

(τKi , µK+1), because (si, θi, τ
K
i , µ) ∈ Ri. At this point, we just need to show that µK+1 strongly

believes (P∆
−i(1), . . . ,P

∆
−i(n− 1)). Note that, by coherence, the K-th-order hierarchy of systems

of beliefs induced by µK+1 is exactly τKi . Hence, pick k ∈ {1, . . . , n − 1} and hi ∈ Hi such

that P∆
i (k) ∩ ΩK

−i,τi
(hi) ̸= ∅. By the inductive hypothesis, the coherence of (τKi , µ), and the

definition of inference sets, this is equivalent to writing R∆
−i(k) ∩ Ω∞

−i,τKi
(hi) ̸= ∅. However, if

such condition holds, we have that φi

(
(τKi , µ)

)
(R∆

−i(k)|hi) = 1, because (τKi , µ) strongly believes

(R∆
i
(1), . . . ,R∆

−i(n− 1)). At this point, we can write:

µ∗K+1(P
∆
−i(k)|hi) = margΩK

−i
φi

(
(τKi , µ)

)
(P∆

−i(k)|hi) = margΩK
−i
φi

(
(τKi , µ)

)
(projΩK

−i
R∆

−i(k)|hi) =

=φi

(
(τKi , µ)

)(
proj−1

ΩK
−i
(projΩK

−i
P∆

−i(k))
)
≥ φi

(
(τKi , µ)

)
(R∆

−i(q)) = 1.

The same holds for each k ∈ {1, . . . , n − 1} and hi ∈ Hi, proving that µK+1 strongly believes

(P∆
−i(1), . . . ,P

∆
−i(n− 1)). Hence, (si, θi, τ

K
i ) ∈ P∆

i (n), which yields the desired result. ■

B Strong rationalizability analysis of Example 5

B.1 Utility functions

External-state-dependent utility For convenience, we let znot (resp., zbuy) denote a generic

terminal history where Dad plays not (resp., buy). That is, an element of {(aC,1, aC,2,mD, aD) ∈
Z : aD = not} (resp., {(aC,1, aC,2,mD, aD) ∈ Z : aD = buy}), and let zD be the length-two per-

sonal history of Dad induced by a generic terminal history z. In the following, consider a generic

θC ∈ ΘC , and τ
1 ∈ T 1. Also, recall that L = {w.no, v.yes} ⊂ SC and G = {w.yes, w.no} ⊂ SC

are the sets of personal external states where Child lies and does homework, respectively. (The

labels L and G are mnemonics for “lies” and “good behavior.”) Then:

1. A terminal history znot occurs with certainty if: (i) sC = w.no and sD
(
(no,¬b)

)
= not;

(ii) sC = w.yes and sD
(
(yes,¬b)

)
= not; (iii) sC = v.no and sD

(
(no,¬b)

)
= not; (iv)

sC = v.yes and sD
(
(yes, b)

)
= sD

(
(yes,¬b)

)
= not. In such case, uD(s, θ, τ

1) = 0, and

uC(s, θ, τ
1) =

−τD,1(L|znotD ) if sC(∅) = w;

θ − τD,1(L|znotD ) if sC(∅) = v.

2. A terminal history zbuy occurs with certainty if: (i) sC = w.no and sD
(
(no,¬b)

)
= buy;

(ii) sC = w.yes and sD
(
(yes,¬b)

)
= buy; (iii) sC = v.no and sD

(
(no,¬b)

)
= buy; (iv)
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sC = v.yes and sD
(
(yes, b)

)
= sD

(
(yes,¬b)

)
= buy. Then,58

uD(s, θ, τ
1) = 2 · 1[sC(∅) = w]− 1;

uC(s, θ, τ
1) =

1− τD,1(L|zbuyD ) if sC(∅) = w;

1 + θ − τD,1(L|zbuyD ) if sC(∅) = v.

3. A terminal history zbuy (resp., znot) occurs with probability q (resp., 1− q) if sC = v.yes,

sD
(
(yes, b)

)
= buy, and sD

(
(yes,¬b)

)
= not. Hence,

uC(s, θ, τ
1) =q

(
1 + θ − τD,1(L|zbuyD )) + (1− q)(θ − τD,1(L|znotD )

)
=

= q + θ − q
(
τD,1(L|(yes,¬b))

)
− (1− q)

(
τD,1(L|(yes, b))

)
;

uD(s, θ, τ
1) = q

(
2 · 1[sC(∅) = w]− 1

)
.

4. A terminal history zbuy (resp., znot) occurs with probability 1− q (resp., q) if sC = v.yes,

sD
(
(yes, b)

)
= not, and sD

(
(yes,¬b)

)
= buy. Hence,

uC(s, θ, τ
1) = (1− q)

(
1 + θ − τD,1(L|zbuyD )) + q(θ − τD,1(L|znotD )

)
=

= (1− q) + θ − (1− q)
(
τD,1(L|(yes,¬b))

)
− q
(
τD,1(L|(yes, b))

)
;

uD(s, θ, τ
1) = (1− q)

(
2 · 1[sC(∅) = w]− 1

)
.

In words, Child’s personal external state unambiguously defines the first two actions of a

terminal history. Then, multiple terminal histories may arise only if when Child plays according

to v.yes and Dad according to a personal external state that prescribes different actions after

observing (yes, b) and (yes,¬b).

Local decision utilities Child’s preferences are own-plan independent and hence dynamically

consistent. Dad’s preferences are also trivially own-plan independent. For ease of exposition,

we use the local utilities (ûi,hi
: ∆(Si) × Θi × T ∞

i )i∈{C,D},hi∈Hi
defined in Section 4.4, which

is inconsequential thanks to Remark 8. The remark also ensures that we can focus on pure

plans. Finally, we only consider beliefs of orders up to 2 (note that second-order beliefs are

necessary, e.g., for Child to form expectations about Dad’s blame). As a result, ûi,hi
(si, θi, τ

2
i )

is interpreted as player i’s expected utility of following the deterministic plan si from personal

history hi onward, when his trait is θi and he holds beliefs described by τ2i .

We start from Child. Note that he acts twice in a row, and he is the only active player in

the first two stages. Dynamic consistency of his preferences, in conjunction with the rationality

requirements embodied in our solution procedure, then implies that we can simply look at his

choice between pure plans at the root of the game. To save on notation, we therefore derive

functions ûC,hC
only for hC = ∅. Given that the set of possible trait-types for Dad is a singleton,

we identify a profile of trait types θ = (θC , θD) with θC , therefore dropping the subscript. We

have:

ûC,∅(w.yes, θ, τ
2
C) = τC,2

({
sD : sD

(
(yes,¬b)

)
= buy

}
|∅
)
− EτC,2

[
τD,1

(
L|(yes,¬b)

)
|∅
]
;

58We denote as 1[ · ] the indicator function. The domain of such function is B(S ×Θ× T 1).
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ûC,∅(w.no, θ, τ
2
C) = τC,2

({
sD : sD

(
(no,¬b)

)
= buy

}
|∅
)
− EτC,2

[
τD,1

(
L|(no,¬b)

)
|∅
]
;

ûC,∅(v.yes, θ, τ
2
C) = θ + q

(
τC,2

({
sD : sD

(
(yes,¬b)

)
= buy

}
|∅
)
− EτC,2

[
τD,1

(
L|(yes,¬b)

)
|∅
])

+ (1− q)

(
τC,2

({
sD : sD

(
(yes, b)

)
= buy

}
|∅
)
− EτC,2

[
τD,1

(
L|(yes, b)

)
|∅
])

;

ûC,∅(v.no, θ, τ
2
C) = θ + τC,2

({
sD : sD

(
(no,¬b)

)
= buy

}
|∅
)
− EτC,2

[
τD,1

(
L|(no,¬b)

)
|∅
])
.

As for Dad, for each hD ∈
{
(yes,¬b), (yes, b), (no,¬b)

}
, sD ∈ SD and τ2D ∈ T 2

D,

ûD,hD
(sD, τ

2
D) =

2τD,2

(
G|hD)

)
− 1 if sD

(
hD
)
= buy;

0 if sD
(
hD
)
= not;

where we avoid specifying the dependence of ûD,hD
on Dad’s personal trait, as ΘD was assumed

to be a singleton.

B.2 Solution procedure

For simplicity, we carry out the “memoryless” solution procedure outlined in Definition 13. This

is equivalent to the strong rationalizability procedure (Definition 12) because here preferences

are own-plan independence and belief restrictions are absent (cf. Proposition 2).

First step By inspection of the decision utilities defined in the previous section, it is easy to

check that ûC,∅(w.no, θ, τ
2
C) < ûC,∅(v.no, θ, τ

2
C) for all θC and τ2C (recall that θ > 0). Moreover,

if Child’s beliefs satisfy (6) and (7) but with EτC,2

[
τD,1

(
L|(no,¬b)

)
|∅
])

= 1, w.yes is optimal

for both Child’s trait-types. Such second-order system of beliefs trivially strongly believes SD ×
ΘD × T 1

D, and it can be checked that condition 1 is met by (τ1C , τ̄C,2) for some τ1C ∈ T 1
C .

Lastly, note that v.yes maximizes ûC,∅
(
· , θ, (τ1C , τC,2)

)
for both trait-types if τC,2 is such that

τC,2

({
sD : sD

(
(yes, b)

)
= buy

}
|∅
)
= 1 and EτC,2

[
τD,1(L|(yes,¬b))|∅

]
= 0. Again, such τC,2

strongly believes SD×ΘD×T 1
D, and it can be checked that there is τ1C ∈ T 1

C such that condition

1 is met by (τ1C , τ̄C,2). We conclude that projSC×ΘC
PC(1) = {w.yes, v.yes, v.no} × {θ′, θ′′}.

As for Dad, it is immediate to notice that condition 1 of Definition 12 implies that, to survive

this deletion step, a profile (sD, τ
1
D) has to be such that τD,1

(
{sC : sC(∅) = v}|(yes, b)

)
=

1. This in turn implies that τD,1

(
G|(yes, b)

)
= 0 and τD,1

(
L|(yes, b)

)
= 1. Then, any τD,2

that we may look for to carry out the procedure has to conform to such features. Therefore,

ûD,(yes,b)

(
· , (τ1D, τD,2)

)
is maximized by any sD such that sD

(
(yes, b)

)
= not. On the other hand,

if τD,2

(
G|(yes,¬b)

)
= τD,2

(
G|(no,¬b)

)
= 1

2 , any sD maximizes both ûD,(yes,¬b)
(
· , (τ1D, τD,2)

)
and ûD,(no,¬b)

(
· , (τ1D, τD,2)

)
. Thus, projSD

PD(1) =
{
sD : sD

(
(yes, b)

)
= not

}
.

Second step We now have to restrict attention to τC,2 such that, for each non-terminal per-

sonal history hC ∈ HC , τC,2

({
sD : sD

(
(yes, b)

)
= buy}|hC

}
= 0 and EτC,2

[
τD,1

(
L|(yes, b)

)
|hC
]
=

1. By construction of emotional feedback, we can conclude that lying after playing video-games

makes Child blush with certainty. It is easy to check that ûC,∅
(
v.yes, θ, (τ1C , τC,2)

)
= θ − 1 <

θ = ûC,∅
(
v.no, θ, (τ1C , τC,2)

)
for each τC,2 satisfying the aforementioned restrictions and for each
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θ ∈ ΘC . Thus, any (sC , θ, τ
1
C) ∈ PC(1) with sC = v.yes fails condition 2 of Definition 12. More-

over, it can be checked that playing according to h.yes yields a utility of at most 1. It follows

that for trait-type θ′′, such personal external state is never optimal, as v.no yields a utility of

θ′′ > 1. It follows that projSC×ΘC
PC(2) =

(
{w.yes, v.no} × {θ′}

)
∪
(
{v.no} × {θ′′}

)
.

As for Dad, any τD,2 strongly believing PC(1) must be such that τD,2

(
{v.no}|(no,¬b)

)
= 1.

That is, he is now sure that Child must have played video-games whenever he answers “no.”

This implies that the aforementioned τD,2 must be such that τD,2

(
G|(no,¬b)

)
= 0. It is easy

to see that ûD,(no,¬b)
(
· , (τ1D, τD,2)

)
is maximized by any sD with sD

(
(no,¬b)

)
= not, for each

τD,2 strongly believing PC(1) and (τ1D, τD,2)
)
satisfying condition 1 of Definition 12. Hence,

projSD
PD(2) =

{
sD : sD

(
(yes, b)

)
= sD

(
(no,¬b)

)
= not

}
.

Third step We now have to consider only τC,2 strongly believing PD(2), and we can focus on

trait-type θ′. This means that τC,2

({
sD : sD

(
(no,¬b)

)
= buy

}
|hC) = 0 for each non-terminal

hC ∈ HC . This implies that ûC,∅
(
v.yes, θ′, (τ1C , τC,2)

)
= θ′ for each τC,2 strongly believing

PD(2) and for each (τ1C , τC,2) meeting requirement 1 of Definition 12. Moreover, note that, if

τC,2 has to strongly believe PD(2), we obtain ûC,∅
(
w.yes, θ′, (τ1C , τC,2)

)
= τC,1({not.buy.not}|∅).

Thus, both w.yes and v.no can be optimal for trait-type θ′, and this leads us to conclude that

projSC×ΘC
PC(3) = projSC×ΘC

PC(2) =
(
{w.yes, v.no} × {θ′}

)
∪
(
{v.no} × {θ′′}

)
.

On the other hand, any τD,2 strongly believing PC(2) is such that τD,2

(
{w.yes}|(yes,¬b)

)
=

1. Therefore, τD,2

(
L|(yes,¬b)

)
= 0 and τD,2

(
G|(yes,¬b)

)
= 1. With this, ûD,(no,¬b)

(
· , (τ1D, τD,2)

)
is maximized by any sD with sD

(
(no,¬b)

)
= not, for each τD,2 strongly believing PC(1) and

(τ1D, τD,2)
)
satisfying condition 1 of Definition 12. Hence, projSD

R∆
D(3) = {not.buy.not}.

Fourth step At this point, any τC,2 strongly believing PD(3) must assign probability one to

not.buy.not at each non-terminal personal history. Hence, ûC,∅
(
w.yes, θ′, (τ1C , τC,2)

)
= 1 > θ′ =

ûC,∅
(
v.no, θ′, (τ1C , τC,2)

)
for each τC,2 satisfying the above mentioned restrictions and for each

θ ∈ ΘC . Therefore, we conclude that projSC×ΘC
R∆

C (4) =
{
(w.yes, θ′), (v.no, θ′′)

}
.

C A recap on notation

The following table summarizes the pieces of notation we introduced throughout the paper.

For sets, we report on the left column the chosen notation, as well as a generic element. The

Cartesian product of indexed sets is defined in an intuitive way, and we avoid mentioning it

explicitly below.

Notation Meaning

I, i Players

Ai, ai Actions of i

Θ, θi Personal traits of i

Yi, yi Outcomes of i

Ei, ei Emotions of i

E≤L Sequences of emotion profiles of length up to L
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Notation Meaning

Mi,e, mi,e Emotional messages receivable by i

Mi,p, mi,p previous-play messages receivable by i

Mi =Mi,p ×Mi, mi Message pairs receivable by i

f̃e : A×Θ× E≤T → ∆(Me) Game-independent emotional feedback function

f̃p :
⋃T

t=1A
t →Mp previous-play messages generating function

ṽi : Y ×Θ× E≤T → R Game-independent psychological utility of i

Ai :Mi,p ∪ {∅Mi,p} ⇒ Ai Feasibility correspondence of i

H̄, H, Z Feasible, non-terminal, and terminal histories

H̄i, Hi, Zi Feasible, non-terminal, and terminal

personal histories of i

H̄(hi) Histories compatible with hi

Z(hi) Terminal histories possible after hi

H̄i(hi, ai) Immediate successors of hi where ai is played

Mi(hi, ai) Message pairs receivable by i after hi and ai

π : Z ×Θ → Y Outcome function

Âi : Hi ⇒ Ai History-dependent feasibility correspondence of i

Si =×hi∈Hi
Âi(hi), si Personal external states of i

T ∞
i , τ∞i Epistemic types of i

T K
i , τKi Hierarchical systems of beliefs of i of order K

Ti,K+1, τi,K+1 Systems of beliefs of i of order K + 1

τi,K+1( · |hi) Belief of i of order K + 1 held at hi

×hi∈Hi
∆(Âi(hi)), σ(τ

∞
i ) Plans of i

ε : H × T ∞ → ∆(E≤T ) Emotion-generating function

Ω∞ =×i∈I(Si ×Θi × T ∞
i ) States of the world

Si ×Θi × T ∞
i Personal states of i

S ×Θ× T K Utility-relevant states

(fh,e : S ×Θ× T K → ∆(Me))h∈H Game-dependent emotional feedback functions

(fh,p : S ×Θ× T K → ∆(Mp))h∈H Game-dependent previous-play feedback functions

(fh : S ×Θ× T K → ∆(M))h∈H Game-dependent emotional and previous-play feedback functions

(gh : S ×Θ× T K → ∆(A×M))h∈H State-history-dependent distribution

of action-message profiles

ζ(h|s, θ, τK) Probability of realization of history h

given utility-relevant state (s, θ, τK)

ζ(h|hi; s, θ, τK) Probability of realization of history h

given utility-relevant state (s, θ, τK) and personal history hi

fi,h, gi,h State-dependent distributions over Mi and Ai ×Mi

derived from fh and gh

fi,hi
, gi,hi

, g∗i,hi
Expected state-dependent distributions over Mi and

Ai ×Mi, after hi, derived from fi,h and gi,h

vi : Z ×Θ× T K → R Game-dependent psychological utility of i
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Notation Meaning

ui : S ×Θ× T K → R State-dependent psychological utility of i

ui,hi
: S ×Θ× T K → R Psychological expected utility of i at hi

ūi,hi
: Âi(hi)×Θi × T K+1

i → R Decision utility of i at hi

ri,hi
: Θ× T ∞

i ⇒ Âi(hi) Optimality correspondence of i at hi

Hi : S ×Θ× T K ⇒ H̄i State-dependent personal history correspondence

ΩK
i,τKi

(hi) Inference about states of i given beliefs τKi at hi

We now give an explicit definition of some functions and sets introduced in the main text.

First, We say that a history (aℓ,mℓ
p,m

ℓ
e) ∈ Aℓ ×M ℓ

p ×M ℓ
e (with ℓ ∈ {1, . . . , L}) is feasible if:

1. a1 ∈ A(∅Mp), and, for each k ∈ {1, . . . , ℓ− 1}, ak+1 ∈ A(mp,k);

2. for each k ∈ {1, . . . , ℓ}, mp,k = f̃p(a
k);

3. for each k ∈ {1, . . . , ℓ}, there exists (θ, ek) ∈ Θ× Ek such that mk ∈ supp f̃e(ak, θ, e
k).

Second, in Section 2.4, we introduced the notation ζ(h|s, θ, τ) to denote the probability that

history h realizes when the utility-relevant state is (s, θ, τK). This probability is obtained as

ζ(h|s, θ, τK) :=

L(h)∏
t=0

ghℓ(s, θ, τK)[(aℓ+1(z),mℓ+1(z))], (14)

where hℓ is the truncation of h at stage ℓ ≤ L(h), and aℓ(z) and mℓ(z) are the ℓ-th-stage action

and message components of h, respectively. Recall that gh(s, θ, τ
K) ∈ ∆(A ×M) specifies the

probability that a give profile of actions and (previous-play and emotional) messages is generated

at history h when the utility-relevant state is (s, θ, τK).

Third, we used the notation ζ(h|h′K) to denote the probability that h realizes when the

utility-relevant state is (s, θ, τK), conditional on having reached h′. This probability is positive

only if h′ ⪯ h, and in such case it is simply

ζ(h|h′K) :=
ζ(h|s, θ, τK)

ζ(h′K)
.

We also used the notation ζ(h|hi; s, θ, τK). The interpretation is similar to the one just discussed,

but in this case one conditions on the realization of a personal history of a given player. For

each i ∈ I and hi ∈ H̄i, define as H̄(hi) := {h ∈ H̄ : ∃h−i ∈ H̄−i, h = (hi, h−i)} the set of

complete histories compatible with hi. That is, player i infers that the complete history must

belong to H̄(hi) if she observes hi. Then,

ζ(h|hi; s, θ, τK) :=


ζ(h|s, θ, τK)∑

h′∈H̄(hi)
ζ(h′|s, θ, τK)

if h ∈ H̄(hi);

0 if h ̸∈ H̄(hi).

In Section 4.4, we allowed a player’s behavior to be defined in terms of plans rather than

personal external states. The derivation of the probability of realization of each history is

57



conceptually similar to the procedure just described. In the following, σi ∈×hi∈Hi
∆(Âi(hi))

denotes a generic plan for player i. We define

ζ(h|σi, s−i, θ, τ
K) :=

L(z)∏
ℓ=0

σi(ai,ℓ+1(z)|hℓi(z)) · 1{a−i,ℓ+1(z) = s−i(h
ℓ
−i(z))}

· fhℓ(z)(s∗i , s−i, θ, τ
K)[mℓ+1(z)].

The functions in Roman font extract action and message profiles realized during terminal history

z, as well as suitable predecessors of given lengths, and s∗i is any personal external state of player

i that prescribes ai,ℓ+1(z) at h
ℓ
i(z).

59 The conditional version of such distribution would be

ζ(h|σi, s−i, θ, τ
K) =


ζ(h|σi, s−i, θ, τ

K)∑
h′∈H̄(hi)

ζ(h′|σi, s−i, θ, τK)
if h ∈ H̄i(hi);

0 if h ̸∈ H̄i(hi).
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