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Online Appendix B

In this appendix, we provide:

B.1 the derivation of B ’s hypothetical payback function ξ(α), a characterization of how

its slope depends on guilt and reciprocity, and a graphical intuition for its different

possible quasi-convex shapes;

B.2 the complete derivation of the theoretical predictions for the Trust Minigame (rational-

izability under complete and incomplete information, and Bayesian equilibrium under

incomplete information).
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B.1 Hypothetical payback function: derivation and shapes

Here we provide the details of the derivation of B ’s payback function as a best response to

the hypothetical questions in Table 3 (phase 2 questionnaire). Our baseline assumption is

that B fills in the payback scheme of Table 3 as if the amount x that he hypothetically gives

back to A were really given to A, thus implementing the distribution (mA,mB) = (x, 4− x)

with x ∈ [0, 4]. The expected payoff for A of action Continue is 2α, hence, modeling

disappointment as in Battigalli & Dufwenberg (2007), DA(α, x) = max {0, 2α− x}, where α
is the subjective probability assigned by A to Share.

Recall that we assume that B ’s preferences are described by the following utility function:

ui(mi,mj, αj) = ln(1 +mi)−
Gi

4
· [Dj(αj,mj)]

2 +Ri ·Kj(αj) ·mj, (1)

where Gi and Ri respectively parametrize sensitivity to guilt and reciprocity. The kindness

of action Continue as a function of α is modeled as in Dufwenberg & Kirchsteiger (2004),

which implies that Continue is always a kind action, but less so the more A expects B to

share (the higher α). Indeed, the higher α, the lower the increase in B ’s payoff that A

expects to induce by choosing Continue rather than Dissolve. Specifically, the equitable

payoff of B in A’s eyes is the average of B ’s expected payoff under Continue and Dissolve:

me
B(α) =

1
2
[EA(m̃B;Diss, α) + EA(m̃B;Cont, α)] = 1+(4−2α)

2
= 5

2
− α; hence, the kindness of

Continue is KA(α) = (4− 2α)−
(
5
2
− α

)
= 3

2
− α.

Plugging DA(α, x) and KA(α) in (1), we obtain the maximization problem

max
x∈[0,4]

{
ln(5− x)− G

4
· [max {0, 2α− x}]2 +R ·

(
3

2
− α

)
· x

}
. (2)

However, there is a possible confound. Since we put the B responder in a hypothetical

situation in which he has “transgressed,”1 we have to allow for the possibility that B chooses

a higher x than implied by the solution to (2). This is because the transgression puts him

in an ex-post negative affective state that can be alleviated by giving more than he would ex

ante. Such “moral cleansing” (Sachdeva et al. 2009) is consistent with experimental findings

by psychologists and economists (Ketelaar & Au 2003, Silfver 2007, and Brañas-Garza et

al. 2013).2 Indeed, several B -subjects in our experiment provided comments to the filled-in

1Each B -subject in phase 2 is asked to consider the following hypothetical situation: “suppose that [...]
A chose Continue and you chose Take, hence you got e4 and left A with e0 in his/her pocket.” See the
experimental instructions in Online Appendix A.

2In particular, Silfver (2007) shows that the action-tendency associated to guilt is to engage in “repair
behavior.” Note that, instead, the theory of guilt aversion (Dufwenberg 2002, Battigalli & Dufwenberg 2009)
highlights avoidance of the anticipated negative valence associated with guilt.
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questionnaire in Table 2 that are in line with such repair-behavior hypothesis.3 Therefore,

we introduce in the maximization problem an ex-post feeling-mitigation parameter p ∈ [0, 1]

that boosts the payback x by adding to α in the disappointment function and subtracting

from it in the kindness function. The modified maximization problem is

max
x∈[0,4]

{
ln(5− x)− G

4
· [max {0, 2(α + p)− x}]2 +R ·

(
3

2
− (α− p)

)
· x

}
. (3)

This functional form has the advantage of being strictly concave in the payback x, with

a decreasing, continuous derivative

Ux = − 1

5− x
+

G

2
·max {0, 2p+ 2α− x}+R

(
3

2
+ p− α

)
.

By strict concavity, (3) has a unique solution x∗ = ξ(α). We call ξ(α) the payback function.

Let us now describe the main features of the payback function ξ(α) and its dependence

on guilt, reciprocity, and ex-post feeling-mitigation components. Proposition B.1.1 shows

how the slope of the payback function ξ(α) depends on the comparison between guilt and

reciprocity components. In each case, ξ(α) is quasi-convex, that is, either monotone or

U-shaped.

Proposition B.1.1 Consider the range of α where an interior solution obtains (i.e., G (p+ α)+

R(3/2 + p− α) > 1/5, R(3/2 + p− α) < 1). The payback function ξ(α) is

(i) increasing if G > R and R ≤ R (p),

(ii) first decreasing and then increasing (U-shaped) if G > R and R (p) < R < R (p),

(iii) decreasing if either G < R or R ≥ R (p),

(iv) constant if G = R and R ≤ R (p),

where R (p) = 1/[(5 − 2p)(3/2 + p)] and R (p) = 1/[(3 − 2p)(1/2 + p)]. Furthermore,

ξ(α) is increasing in a neighborhood of α only if ξ(α) < 2p+ 2α.

To prove Proposition B.1.1 we therefore need to obtain B ’s best-response function to A’s

initial belief about his strategy Share:

ξ(α;G,R, p) := arg max
x∈[0,4]

U(x;α,G,R, p),

both in the case B ’s payback depends on A’s disappointment and in the case it does not.

3In Online Appendix C we report the answers to the debriefing questions about subjects’ interpretation of
their filled-in questionnaire: (a) “Explain the meaning of the values you entered in the Hypothetical Payback
Scheme. Did you enter these values according to a specific feeling?” and (b) “What kind of relationship is
there between this feeling and your partner’s guess about you choosing Share?”
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Let us first consider the case where A’s disappointment matters to B, because he gives

back to her less than (the sum of his ex-post feeling-mitigation payoff and) what A would

have expected to get after Continue, i.e. x ∈ [0, 2p+ 2α). In this case, Ux(x;α,G,R, p) = 0

yields:

− 1

5− x
+

G

2
(2p+ 2α− x) +R

(
3

2
+ p− α

)
= 0

which, given that x < 5 by construction, can be rewritten as

G

2
x2 −

[
G

(
5

2
+ p+ α

)
+R

(
3

2
+ p− α

)]
x+ 5

[
G(p+ α) +R

(
3

2
+ p− α

)]
− 1 = 0.

The determinant of the second-order equation in x is

∆ =

[
G

(
5

2
− p− α

)
−R

(
3

2
+ p− α

)]2
+ 2G,

which is positive for G > 0. Therefore, the two roots of the second-order equation in x are

x1/2 =
G
(
5
2
+ p+ α

)
+R

(
3
2
+ p− α

)
±
√[

G
(
5
2
− p− α

)
−R

(
3
2
+ p− α

)]2
+ 2G

G
.

Given that the greater of the two roots is never lower than 2p+2α for any nonnegative vector

(α,G,R, p), the only acceptable solution is the smaller root. Therefore, the best-response

function when A’s disappointment matters, ξD(α;G,R, p), is:

ξD(α;G,R, p) =

(
5

2
+ p+ α

)
+
R

G

(
3

2
+ p− α

)
−

√[(
5

2
− p− α

)
− R

G

(
3

2
+ p− α

)]2
+

2

G

for R
(
3
2
+ p− α

)
∈

(
1
5
−G (p+ α) , 1

5−2p−2α

]
. If R

(
3
2
+ p− α

)
∈

[
0, 1

5
−G (p+ α)

]
, then

ξD(α;G,R, p) = 0.

Let us now consider the case where A’s disappointment does not matter to B, because

x ∈ [2p+ 2α, 4]. In this case, Ux(x;α,G,R, p) = 0 yields:

− 1

5− x
+R

(
3

2
+ p− α

)
= 0.

Thus, the best-response function when A’s disappointment does not matter is:

ξNoD(α;R, p) = 5− 2

R(3 + 2p− 2α)
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for R
(
3
2
+ p− α

)
∈
(

1
5−2p−2α

, 1
]
. For R

(
3
2
+ p− α

)
∈ (1,+∞) it is ξNoD(α;R, p) = 4.

To sum up, B ’s payback function is given by the following formula:

ξ(α;G,R, p) =


0 if R

(
3
2
+ p− α

)
∈
[
0, 1

5
−G (p+ α)

]
,

ξD(α;G,R, p) if R
(
3
2
+ p− α

)
∈
(

1
5
−G (p+ α) , 1

5−2p−2α

]
,

ξNoD(α;R, p) if R
(
3
2
+ p− α

)
∈
(

1
5−2p−2α

, 1
]
,

4 if R
(
3
2
+ p− α

)
∈ (1,+∞).

Now we provide a graphical intuition for the quasi-convex shapes of ξ(α) according to

Proposition 1.

The first-order condition for an interior solution of the modified maximization problem

(3) can be better understood in terms of the “marginal cost” and “marginal benefit” of the

payback x. The first-order condition can be rewritten as:

MC(x) ≡ 1

5− x
=

G

2
·max{0, 2p+ 2α− x}+R ·

(
3

2
+ p− α

)
≡ MB(x). (4)

This helps us understand how the payback changes as a function of the first-order belief α and

of parameter shifts. In Figure B.1 we draw the MC and MB schedules under different cases

(Figures B.1-a,b) and trace how their intersection is affected by parameter shifts (Figures

B.1-c,d). Figure B.1-a shows a typical solution when G > R and α is high. In this case, an

increase in α increases the payback (Figure B.1-c). Figure B.1-b shows a typical solution

when R > G and α is low. In this case, an increase in α decreases the payback (Figure

B.1-d).

The following discussion of Figure B.1 provides an intuitive proof of the four results (four

possible shapes of the payback function) in Proposition 1.

First note that an interior solution obtains if maxx∈[0,4] {MB(x)−MC(x)} > 0 and

minx∈[0,4] {MB(x)−MC(x)} < 0. This gives the condition on the range of α. The payback

function is increasing if and only if the part of the MB schedule with negative slope shifts

upward with an increase in α, and the flat part of the MB schedule is always below the

MC schedule (see Figures B.1-a, B.1-c). The first condition holds if and only if G > R; the

second condition holds if and only if R(3/2 + p− α) ≤ MC(2p+ 2α) ≡ 1/(5− 2p− 2α) for

every α ∈ [0, 1], that is, if and only if R ≤ 1/[(5− 2p)(3/2 + p)]: the reciprocity component

is low enough that A’s disappointment matters to B. This explains result (i); the intuition

for result (iv) (constant payback function) is similar.

The payback function is decreasing if either the part of MB with negative slope shifts
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Fig. B.1-a. Payback if: guilt prevails, α is
high.

Fig. B.1-b. Payback if: recipr. prevails, α
is low.

Fig. B.1-c. Payback increases if α in-
creases.

Fig. B.1-d: Payback decreases if α in-
creases.

downward with an increase in α (G < R, Figure B.1-d), or the MC schedule intersects the

MB schedule in its flat part (Figure B.1-b) for every α. The second condition is R(3/2 +

p − α) ≥ 1/(5 − 2p − 2α) for all α ∈ [0, 1], i.e. R ≥ 1/[(3 − 2p)(1/2 + p)]: the reciprocity

component is high enough that A’s disappointment does not matter to B. This explains

result (iii).

For the remaining set of parameter values, the payback function is not monotone. To

understand why it has to be U-shaped—result (ii)—, suppose that α is very small and

reciprocity considerations induce B to pay back x ≥ 2p + 2α (condition R(3/2 + p − α) ≥
1/(5 − 2p − 2α)); since there is no disappointment/guilt at x, only reciprocity matters for

small changes in α; a small increase in α induces a decrease in kindness and in the payback

determined by reciprocity; further increases in α bring the payback below the (increasing)

2p+ 2α threshold, and then an increase in α makes x increase if G > R.
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More formally, Proposition B.1.1 implies that ξ is locally increasing at α (hence it is

an interior solution) if and only if G > R and 0 < ξ(α) < 2p + 2α, which follows from

the implicit function theorem: An interior solution x∗ = ξ(α) ∈ (0, 4) to (3) satisfies the

first-order condition (4); differentiating it, we get

ξ′(α) =

{
−R(5− ξ(α))2 if ξ(α) ≥ 2p+ 2α,

2(5−ξ(α))2

G(5−ξ(α))2+2
(G−R) if ξ(α) < 2p+ 2α.
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B.2 Theoretical predictions for the Trust Minigame

Here we provide a rationalizability analysis of the sequential Trust Minigame with complete

and incomplete information based on forward-induction reasoning. For the case of incomplete

information, we use the extension to psychological games of a solution concept for games

with payoff uncertainty, that is, games with parametrized utility functions where players

have private information about the unknown utility parameters. This is not a notion of

rationalizability for Bayesian games, it is an easier and more basic procedure of iterated

elimination of non-best replies justified by Battigalli & Siniscalchi (2002) in their epistemic

analysis of forward-induction reasoning. The epistemic justification of the solution concepts

used here for psychological games can be found in Battigalli et al. (2020).

Rationalizability yields sharp predictions for some dominance regions of the parameter

space. Outside such regions, rationalizability gives only predictions about some aspects of

beliefs and the usual best-reply relation between belief and choice, but allows for every action

pair. To refine our predictions, we complement our study with an equilibrium analysis. The

complete-information equilibrium part is fully covered in the main text. Here we only analyze

incomplete-information equilibrium.

Complete-information rationalizability

Predictions are parametrized by the commonly known parameter pair (G,R) ∈ [0, L]2. We

iteratively delete pairs (sA, α) for player A, where α = PA (Share), and strategies sB for

player B. We consider pairs (sA, α) because both arguments enter the psychological utility

function of B (see Battigalli et al. 2020). First, to ease notation, define the best-reply

correspondences for A and B :

rA (α) =


{Cont} if α > 1

2

{Cont,Diss} if α = 1
2

{Diss} if α < 1
2

rB (β;G,R) =


{Share} if WS(β;G,R) > 0

{Share, Take} if WS(β;G,R) = 0

{Take} if WS(β;G,R) < 0

,

where β ∈ [0, 1] denotes the conditional second-order point belief of B about α and WS is

the willingness to share function

WS (β;G,R) := Gβ2 − 2Rβ + 3R− ℓ
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Figure B.2 B ’s equilibrium willingness to share for G+R small and R/G large

obtained in eq. (5) of the paper with ℓ := ln
(
5
3

)
(See Figure B.2). Recall that, for the

purpose of this analysis, the assumption that the conditional second-order belief of B is a

Dirac measure on [0, 1] is without loss of generality.4

Define step-n prediction sets P n
A (G,R) ⊆ SA × [0, 1] and P n

B (G,R) ⊆ SB (n ∈ N0)

recursively as follows:5

P 0
A (G,R) = SA × [0, 1], P 0

B (G,R) = SB,

P n
A (G,R) =

{
(sA, α) :

sA ∈ rA(α), P
n−1
B (G,R) = {Share} ⇒ α = 1,

P n−1
B (G,R) = {Take} ⇒ α = 0

}
,

P n
B (G,R) =

{
sB ∈ P n−1

B (G,R) :
∃β ∈ [0, 1], sB ∈ rB (β;G,R) ,(
P n−1
A,Cont (G,R) ̸= ∅

)
⇒

(
β ∈ P n−1

A,Cont (G,R)
) }

,

4Such result of “equivalence to certainty” holds in many decision problems. In particular, it holds for the
choice between two alternatives whose utility depends continuously on an unknown variable (or parameter)
that takes values in a compact and connected space.

5Let P ⊆ X × Y be a subset of a Cartesian product; the section at y of P is Py := {x ∈ X : (x, y) ∈ P}.
Formally, Pn

B (G,R) = PB,(G,R) is the section at (G,R) of the set Pn
B defined in the main text for n ∈ {1, 2},

and later on in this appendix for any n.
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where

P n−1
A,Cont (G,R) := {α ∈ [0, 1] : (Cont, α) ∈ P n−1

A (G,R)}

is the section at strategy Continue of P n−1
A (G,R), and the condition on β is the forward-

induction requirement.6 In particular, P 1
A,Cont (G,R) = [1/2, 1]; therefore, P 2

B (G,R) = {sB}
if rB (β;G,R) = {sB} for each β ∈ [1/2, 1], and P 2

B (G,R) = SB if for each sB ∈ SB there

is some β ∈ [1/2, 1] such that sB ∈ rB (β;G,R). The complete-information rationalizable

prediction set for player i ∈ {A,B} is P ∗
i (G,R) =

⋂
n∈N

P n
i (G,R).

The step-1 predictions of rationalizability are given by the graphs of the best reply corre-

spondences. The step-1 prediction set P 1
A (G,R) is independent of (G,R), because A’s utility

does not depend on B ’s psychological type; P 1
B (G,R) depends on whether (G,R) belongs

to one of the following simple dominance regions of Section 3.2.1 of the paper:

S∗ :=

{
(G,R) ∈ [0, L]2 : min

β∈[0,1]
WS (β;G,R) > 0

}
and

T∗ :=

{
(G,R) ∈ [0, L]2 : max

β∈[0,1]
WS (β;G,R) < 0

}
.

With this,

P 1
A (G,R) = graph (rA) = {Cont} ×

[
1

2
, 1

]
∪ {Diss} ×

[
0,

1

2

]
,

P 1
B (G,R) = {sB : ∃β ∈ [0, 1], sB ∈ rB (β;G,R)}

=


{Share} if (G,R) ∈ S∗

{Share, Take} if (G,R) /∈ S∗ ∪ T∗

{Take} if (G,R) ∈ T∗

.

The last equality holds because, if (G,R) belongs to a simple dominance region, then the

unique best reply is the corresponding dominant strategy independently of β, if instead

(G,R) does not belong to a dominance region, then each one of the two strategies can be

justified as a best reply to some conditional second-order belief β.

Before we proceed to the step-2 prediction, for the reader’s convenience we recall the

6The forward-induction, or “best-rationalization” requirement should be(
P k
A,Cont (G,R) ̸= ∅

)
⇒

(
β ∈ P k

A,Cont (G,R)
)

for each k ∈ {1, ..., n − 1}, but it can be shown that this seemingly stronger condition is equivalent to the
one above.
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definition of the FI-dominance regions:

S :=

{
(G,R) ∈ [0, L]2 : min

β∈[ 12 ,1]
WS (β;G,R) > 0

}

and

T :=

{
(G,R) ∈ [0, L]2 : max

β∈[ 12 ,1]
WS (β;G,R) < 0

}
.

Here we provide an explicit characterization of these regions. Since WS is strictly convex in

β, it attains a maximum on [1/2, 1] either at β = 1/2, or at β = 1. Thus, WS(β;G,R) < 0

for every β ∈ [1/2, 1] if and only if max{WS(1/2;G,R),WS(1;G,R)} < 0, where

WS(1/2;G,R) < 0 ⇐⇒ 1
8
G+R < 1

2
ℓ,

WS(1;G,R) < 0 ⇐⇒ G+R < ℓ.

Thus (see Figure 1 in the paper),

T =

{
(G,R) ∈ [0, L]2 :

1

8
G+R <

1

2
ℓ,G+R < ℓ

}
.

FI-dominance region S is the union of three sub-regions: Function WS attains its minimum

at β = R/G, which may be to the left of 1/2, to the right of 1, or in the interval [1/2, 1];

each case gives raise to a sub-region.

• If R/G < 1/2, WS is strictly increasing on [1/2, 1], hence it attains its minimum at

β = 1/2. Letting WS(1/2;G,R) > 0 in this case, we obtain

S1 :=

{
(G,R) ∈ [0, L]2 : R <

1

2
G,

1

8
G+R >

1

2
ℓ

}
.

• If 1/2 ≤ R/G ≤ 1,WS attains its minimum in the interval [1/2, 1]. LettingWS(R/G;G,R) >

0 in this case, we obtain

S2 :=
{
(G,R) ∈ [0, L]2 : 1

2
G ≤ R ≤ G,WS

(
R
G
;G,R

)
> 0

}
=

{
(G,R) ∈ [0, L]2 : 1

2
G ≤ R ≤ G,R2 − 3GR + ℓG < 0

}
.

• If R/G > 1,WS is strictly decreasing on [1/2, 1], hence it attains its minimum at β = 1.

LettingWS(1;G,R) > 0 in this case, we obtain S3 := {(G,R) ∈ [0, L]2 : R > G,G+R > ℓ}.

• Thus, S = S1 ∪ S2 ∪ S3 (see Figure 1 in the paper).
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Then, the step-2 prediction set P 2
A,(G,R) depends on whether (G,R) belongs to a simple

dominance region, whereas P 2
B,(G,R) depends on whether (G,R) belongs to an FI-dominance

region:

P 2
A (G,R) =


{(Cont, 1)} if (G,R) ∈ S∗

P 1
A (G,R) if (G,R) /∈ S∗ ∪ T∗

{(Diss, 0)} if (G,R) ∈ S∗

,

P 2
B (G,R) =

{
sB : ∃β

[
1

2
, 1

]
, sB ∈ rB (β;G,R)

}

=


{Share} if (G,R) ∈ S
{Share, Take} if (G,R) /∈ S ∪ T
{Take} if (G,R) ∈ T

.

To understand the characterization of P 2
B (G,R), note that Continue is justified as a best

reply to α ≥ 1/2, therefore P 1
A,Cont (G,R) =

[
1
2
, 1
]
, which in turn implies that each sB ∈

P n
B (G,R) must be a best reply to some β ≥ 1/2.

Finally, the step-3 prediction sets are

P 3
A (G,R) =


{(Cont, 1)} if (G,R) ∈ S
P 2
A (G,R) if (G,R) /∈ S ∪ T

{(Diss, 0)} if (G,R) ∈ S

=


{(Cont, 1)} if (G,R) ∈ S
P 1
A (G,R) if (G,R) /∈ S ∪ T

{(Diss, 0)} if (G,R) ∈ S
,

P 3
B (G,R) = P 2

B (G,R) .

The second equality for P 3
A (G,R) follows from the characterization of P 2

A (G,R) and the

fact that S∗ ⊆ S and T∗ ⊆ T. The equality for P 3
B (G,R) holds because step 3 may yield

further restrictions on conditional second-order beliefs,7 but this does not imply further

restrictions on behavior.8 This implies that P n
i (G,R) = P 3

i (G,R) for each i and n > 3.

Hence, P ∗
i (G,R) = P 3

i (G,R) is the complete-information rationalizable prediction for i

given common knowledge of (G,R). To summarize, we recall Proposition 1 of the paper:

Proposition B.2.1 Under complete information, the prediction of rationalizability based on

forward induction is as follows:

7If (G,R) ∈ S then β = 1, because B is certain—both initially and conditionally on Continue—that A
expects him to share.

8If (G,R) ∈ S, then sB = Share , as in the step 2.
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(i) Continue, Share, and α = 1 if (G,R) ∈ S,
(ii) Dissolve, Take, and α = 0 if (G,R) ∈ T,
(iii) any (sA, sB, α) such that sA is a best reply to α (i.e., (sA, α) ∈ P 1

A) is possible if

(G,R) /∈ S ∪ T.

Incomplete-information rationalizability

Under incomplete information, A does not know B ’s type (G,R); therefore, only the pre-

dictions for B depend on (G,R). To obtain a prediction about sB player A forms beliefs

about the relationship between sB and (G,R); hence, A holds a belief µ about B ’s strat-

egy and psychological type and takes a best reply to her marginal belief about sB, viz.

(α, 1− α) =margSB
µ, where α is the probability of Share. But—absent restrictions on A’s

exogenous belief about (G,R)—this does not allow to say much about A. Taking A’s per-

spective, the prediction set concerning B is a subset of SB× [0, L]2, where L is the commonly

known upper bound onG and R. The step-n prediction sets are recursively defined as follows:

P 0
A = SA × [0, 1], P 0

B = SB × [0, L]2,

P n
A =

{
(sA, α) : sA ∈ rA(α),∃µ ∈ ∆

(
P n−1
B

)
, (α, 1− α) = margSB

µ
}
,

P n
B =

{
(sB;G,R) ∈ P n−1

B : ∃β ∈ [0, 1], sB ∈ rB (β;G,R) ,
(
P n−1
A,Cont ̸= ∅

)
⇒

(
β ∈ P n−1

A,Cont

)}
.

The rationalizable prediction set for player i is P ∗
i =

⋂
n≥1

P n
i . With this, it is easy to derive

these prediction sets and relate them with the complete-information sets:

• P n
A = {(sA, α) : sA ∈ rA (α)} for each n ≥ 1, thus

P ∗
A = {Cont} ×

[
1

2
, 1

]
∪ {Diss} ×

[
0,

1

2

]
;

• for n = 1, 2 the complete-information prediction P n
B,Cont (G,R) is the section at (G,R)

of the incomplete-information prediction P n
B, thus

P 1
B = {Share} × S∗ ∪ {Take} × T∗ ∪ {Share, Take} ×

(
[0, L]2\ (S∗ ∪ T∗)

)
,

P 2
B = {Share} × S ∪ {Take} × T ∪ {Share, Take} ×

(
[0, L]2\ (S ∪ T)

)
;

• P n
B = P 2

B for every n > 2, thus

P ∗
B = {Share} × S ∪ {Take} × T ∪ {Share, Take} ×

(
[0, L]2\ (S ∪ T)

)
.
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In words, absent any hypothesis about A’s exogenous beliefs, incomplete-information

rationalizability only predicts that A chooses a best reply to whatever first-order belief α she

holds, and that B chooses according to the FI-dominance regions. To summarize, we recall

Proposition 3 of the paper:

Proposition B.2.2 Without restrictions on exogenous beliefs, incomplete-information ra-

tionalizability implies (only) that (sA, α) ∈ P 1
A and (sB;G,R) ∈ P 2

B; in particular,

B chooses Share if (G,R) ∈ S and Take if (G,R) ∈ T, while both strategies are

rationalizable for (G,R) /∈ S ∪ T.

Incomplete-information equilibrium

To give more structure to the incomplete-information predictions and for comparability with

the complete-information analysis, we introduce assumptions about players’ exogenous be-

liefs following Harsanyi’s methodology and then we perform a Bayesian-equilibrium analysis

(cf. Attanasi et al. 2016).

To obtain a (psychological) Bayesian game, we append an exogenous type structure to

the game with payoff uncertainty (cf. Harsanyi 1967-68). This yields an implicit specification

of the possible hierarchies of exogenous beliefs of A and B about the psychological type

(G,R) ∈ [0, L]2: a first-order belief of A over [0, L]2, a second-order belief of B about such

first-order belief, and so on. Formally, a type structure is given by compact, metrizable type

spaces Ti and continuous9 belief maps τ i : Ti → ∆(T−i) (i = A,B), where TB = [0, L]2×EB.
Thus, a type of B is a triple tB = (G,R, eB) where (G,R) is the psychological type and

eB is the epistemic type. The latter determines the beliefs of B about the beliefs of A.

Since the utility function of A is commonly known, A’s type is purely epistemic, and it

determines the beliefs of A about (G,R) and the beliefs of B. The (exogenous) first-order

belief of type tA about (G,R) is τ 1A(tA) =marg[0,L]2τA(tA). The belief of tB about τ 1A(tA) is

the exogenous second-order belief of tB, τ
2
B(tB), and so on. We postpone the details about

the type structure.

ABayesian equilibrium is a pair of measurable decision functions σA : TA → {Cont,Diss}
and σB : TB → {Share, Take} such that, for all i and ti, σi(ti) is at least as good as the

alternative, given the beliefs of ti about the action and beliefs of the co-player. Such en-

dogenous beliefs are derived from the exogenous belief maps and the decision functions,

as we show below. For now, it suffices to say that each type tA holds a first-order belief

9∆(T−i) is endowed with the topology of weak convergence of Borel probability measures: µn
i → µi

if and only if
∫
T−i

f(t−i)µ
n
i (dt−i) →

∫
T−i

f(t−i)µi(dt−i) for every continuous (hence bounded) function

f : T−i → R.
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α(tA) = PtA(Share), and σA(tA) = Cont only if α(tA) ≥ 1/2. Each type tB holds a second-

order cdf PtB (α̃ ≤ x|Cont) provided that τB(tB) ({tA : σA(tA) = Cont}) > 0, which implies

τB(tB) ({tA : α(tA) ≥ 1/2}) > 0.

We assume that a set with (strictly) positive measure of A’s epistemic types assigns more

than 50% probability to the simple dominance region S∗. Given a full support restriction

on the exogenous beliefs of B, this implies that in equilibrium B predicts that A chooses

Continue with strictly positive probability and has well-defined conditional beliefs given

Continue; with this, the forward-induction analysis developed above applies to such Bayesian

equilibria (which are also perfect).

Next we provide the details of the type structure (Ti, τ i)i∈{A,B} :

1. TA = ×i=dA
i=1 [0, t̄iA] ⊆ RdA .

2. TB = [0, L]2 × EB, where EB = ×j=dB
j=1 [0, ējA] ⊆ RdB (the dimensions dA, dB ∈ N may be

different).

3. τA : TA → ∆(TB) is continuous and such that, for every (G,R) ∈ [0, L]2 and open set

∅ ≠ OB ⊆ EB,

τA(tA) ([0, G]× [0, R]×OB) = FtA(G,R)µ(OB) > 0,

where µ ∈ ∆(EB) is absolutely continuous with respect to the Lebesgue measure, with

density function bounded away from zero. Furthermore,{
tA ∈ TA : τA(tA) (S∗ × EB) >

1

2

}
̸= ∅.

4. τB : TA → ∆(TB) is continuous and such that τB(G,R, eB) depends only on eB (hence

we write τB(eB) to ease notation); furthermore, for every eB ∈ EB, τB(eB) is absolutely
continuous with respect to the Lebesgue measure, with density function bounded away

from zero.

The last assumption implies that, for every open set ∅ ≠ OA ⊆ TA and every eB ∈ EB,
τB(eB)(OA) > 0. Since the belief map τA is continuous and each τB(eB) is absolutely

continuous, the set of types {
tA ∈ TA : τA(tA) (S∗ × EB) >

1

2

}
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is open.10 By assumption, this set is also nonempty, therefore

τB(eB)

({
tA ∈ TA : τA(tA) (S∗ × EB) >

1

2

})
> 0

for each eB ∈ EB. (A similar argument shows that
{
tA ∈ TA : τA(tA) (T∗ × EB) > 1

2

}
is open,

but we do not assume that it is nonempty.)

Next we describe the qualitative features of every Bayesian equilibrium of the model.11

First note that if tB = (G,R, eB) is such that (G,R) ∈ S∗, then necessarily σ (tB) = Share.

Therefore, for each tA ∈
{
tA ∈ TA : τA(tA) (S∗ × EB) > 1

2

}
,12

α (tA) := τA (tA)
(
σ−1
B (Share)

)
≥ τA(tA) (S∗ × EB) >

1

2
,

which implies σA (tA) = Cont, that is,{
tA ∈ TA : τA(tA) (S∗ × EB) >

1

2

}
⊆ σ−1

A (Cont) .

Assumptions 3 and 4 imply that, for each eB ∈ EB,

τB (eB)
(
σ−1
A (Cont)

)
= τB (eB)

({
tA ∈ TA : α(tA) >

1

2

})
≥ τB(eB)

({
tA ∈ TA : τA(tA) (S∗ × EB) >

1

2

})
> 0.

Hence, the equilibrium conditional belief

τB(eB)(·|Cont) := τB(eB)
(
·|σ−1

A (Cont)
)

is well defined for each eB, and

τB(eB)

(
α̃ ≥ 1

2

∣∣∣∣Cont

)
= τB(eB)

({
tA ∈ TA : α(tA) ≥

1

2

}
|σ−1

A (Cont)

)
= 1.

10The boundary of S×EB has zero probability for each type tA. Hence, the portmanteau theorem and
continuity of τA with respect to the weak convergence of measures imply that, for each converging sequence
tnA → t̄A, limn→∞ τA(t

n
A) (S×EB) = τA(t̄A) (S×EB). This in turn implies that, for each x ∈ [0, 1], the set of

types tA such that τA(tA) (S×EB) > x is open.
11For an incomplete-information model without reciprocity, we can prove the existence and uniqueness of

such equilibrium. We cannot do the same here without adding more structure.
12We use standard notation for the set of preimages of the value of a function. In particular, σ−1

i (si) =
{ti ∈ Ti : σi (ti) = si}.
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Therefore, for every B -type (G,R, eB),

(G,R) ∈ S ⇒ σB(G,R, eB) = Share,

(G,R) ∈ T ⇒ σB(G,R, eB) = Take.

Since each type space is connected and each belief map is continuous, it follows that

every value between the minimum and maximum of α(tA) is attained by some tA, and every

value between the minimum and maximum of β0(eB) := EeB [α̃] is attained by some eB:

α (TA) =

[
min
tA∈TA

α(tA), max
tA∈TA

α(tA)

]
,

β0(EB) =

[
min
eB∈EB

β0(eB), max
eB∈EB

β0(eB)

]
.

The belief of every type tA—including the minimizers of τA(tA) (S×EB) and τA(tA) (T×EB)—
is determined by a probability density function bounded away from zero; hence,

min
tA∈TA

α(tA) ≥ min
tA∈TA

τA(tA) (S×EB) > 0,

max
tA∈TA

α(tA) ≤ 1− min
tA∈TA

τA(tA) (T×EB) < 1.

This in turn implies:

min
eB∈EB

β0(eB) ≥ min
tA∈TA

α(tA) > 0,

max
eB∈EB

β0(eB) ≤ max
tA∈TA

α(tA) < 1.

The following proposition summarizes these observations.

Proposition B.2.3 Every Bayesian equilibrium of the model has the following features:

(a) For every tA ∈ TA,

τA(tA) (S× EB) > 1
2

⇒ σA(tA) = Cont,

τA(tA) (T× EB) > 1
2

⇒ σA(tA) = Diss,

and

τA(tA) (S× EB) ≤ α(tA) ≤ 1− τA(tA) (T× EB) .
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(b) For every (G,R, eB) ∈ TB,

(G,R) ∈ S ⇒ σB(G,R, eB) = Share,

(G,R) ∈ T ⇒ σB(G,R, eB) = Take,

and

τB(eB)

(
α̃ ≥ 1

2

∣∣∣∣Cont

)
= 1,

hence β(eB) ≥ 1/2.

(c) There are values α > 0 and ᾱ < 1 such that,

α ≤ α(tA), β
0(eB) ≤ ᾱ,

for every tA ∈ TB and eB ∈ EB.
(d) All values between mintA∈TA α(tA) and maxtA∈TA α(tA) are attained by some tA,

and all values between mineB∈EB β0(eB) and maxeB∈EB β0(eB) are attained by some eB.

Of course, we need to add assumptions about the actual distribution of types in order

to derive from the equilibrium analysis implications about the distribution of behavior and

endogenous beliefs. We assume that the distribution of types is such that the type of A and

the type of B are statistically independent, the epistemic type of B is independent of the

psychological type of B,13 and the marginal distributions are determined by density functions

bounded away from zero: For all t̆A ∈ TA, (Ğ, R̆) ∈ [0, L]2, ĕB ∈ EB,

P
(
[0, t̆A]× [0, Ğ]× [0, R̆]× [0, ĕB]

)
=

=

(∫
[0,t̆A]

fA(tA)dtA

)
×

(∫
[0,Ğ]×[0,R̆]

f 1
B(G,R)dGdR

)
×

(∫
[0,ĕB ]

f 2
B(eB)deB

)
,

where the densities fA, f
1
B and f 2

B are bounded away from zero, respectively, on TA, [0, L]
2 and

EB.14 From this, one can derive the qualitative predictions about behavior and endogenous

beliefs of Proposition 4 of the paper. In particular, the positive correlation between the

fraction of B -types with G ≥ 2R choosing Share and the conditional second-order beliefs

holds if the psychological type and epistemic type of B are statistically independent. This,

however, is just a sufficient condition to obtain such positive correlation.

13Assumption 3 about the type structure contains the corresponding independence condition for the beliefs
of A about B.

14Recall that, in the present model, tA and eB are vectors in RdA and RdB , respectively. Hence [0, t̆A] and
[0, ĕB ] are Cartesian products of intervals, and fA, f

2
B are multivariate density functions.
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