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In these notes, I consider mechanisms á la Mezzetti (2004). Allocation

and payments in each period are determined on different rounds of reporting,

rather than being determined simultaneously. More precisely, first-round type

reports determine the allocation, while second-round ex-post-utility reports,

the payments. Such mechanisms restore efficiency in environments where stan-

dard, single-report mechanisms generically fail, lifting the winner’s curse and

eliminating the dynamic equilibrium externality.

Start at the second period. There is no efficiency conflict at history h(0),

and therefore no need to resort to two-stage reporting. The same applies to

history hD, if double sourcing is allowed. Therefore, consider history h(i). Let

agent i’s type be the pair (v, wi2), while agent −i’s type is w−i2. The first-best

allocation rule disregards v and allocates the second unit to i if wi2 > w−i2,

and to −i if wi2 < w−i2.

In Mezzetti’s generalized Groves mechanism, the second-period winner re-

ports her ex-post utility, and this report determines the payment due to the

loser up to a function that depends on the opponent’s type report. Let

(v′, w′
i2, w

′
−i2) be the profile of type reports. If the second-period unit goes

to i — that is to say, if w′
i2 > w′

−i2 —, this agent is asked to report her ex-

post utility, while −i need not send any further messages (her utility from the
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allocation is known to be 0). If i reports payoff ũi2, second-period ex-post

payments, denoted by τ ∗
i2, τ

∗
−i2, are given by:

τ ∗
i2(ũi2; v

′, w′
i2, w

′
−i2) = γi(w

′
−i2),

τ ∗
−i2(0; ũi2, v

′, w′
i2, w

′
−i2) = −ũi2 + γ−i(v

′, w′
i2).

If the second-period unit goes to agent −i, and she reports ũ−i2, we have:

τ ∗
i2(0; ũ−i2, v

′, w′
i2, w

′
−i2) = −ũ−i2 + γi(w

′
−i2),

τ ∗
−i2(ũ−i2; v

′, w′
i2, w

′
−i2) = γ−i(v

′, w′
i2).

In either case, the utility report of an agent does not affect her own payoff,

only that of her opponent. Thus, there are no incentives to misreport.

The second-period allocation is determined in the first round of reports

of the second period. Assume that types are v, wi2, w−i2. If agent i reports

truthfully, agent −i’s ex-post payoff from reporting w′
−i2 is:

s−i2(w
′
−i2; v, wi2, w−i2) :=

(v + w−i2 − γ−i(v, wi2))I(wi2 < w′
−i2) + (v + wi2 − γ−i(v, wi2))I(wi2 > w′

−i2)

= v + wi2 − γ−i(v, wi2) + (w−i2 − wi2)I(wi2 < w′
−i2),

where I denotes the indicator function, taking the value 1 if the statement in

the argument is true and 0 otherwise. Therefore, truthful reporting is a best

response. Similarly, consider the incentive problem of agent i, assuming that

−i reports truthfully. We have:

si2(v
′, w′

i2; v, wi2, w−i2) :=

(v + wi2 − γi(w−i2))I(w′
i2 > w−i2) + (v + w−i2 − γi(wi2))I(w′

i2 < w−i2)

= v + w−i2 − γi(w−i2) + (wi2 − w−i2)I(w′
i2 > w−i2).

Again, truthful reporting is a best response. It follows that truthful reporting

is an ex-post equilibrium.
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Notice that v′ does not enter i’s payoff function: The allocation rule disre-

gards this report, and payments are determined by the (truthful) second-round

reports.

In the first period, there is no need to resort to two stages of reporting

in a direct-revelation mechanism: Incentives are given for the neighbor to

truthfully report v together with her second-period idiosyncratic-component

signal.

In what follows, for the sake of concreteness, consider the case where

γi(w−i2) = w−i2 and γ−i(v, wi2) = v + wi2. In this case, we have:

s∗−i2(v, wi2, w−i2) : = max{w−i2 − wi2, 0},

s∗i2(v, wi2, w−i2) : = v + max{wi2 − w−i2, 0}.

Continuation payoffs upon winning and losing are, respectively,

S2 := E[s∗−i2(V,Wi2,W−i2)] = E[max{W−i2 − Wi2, 0}] = S0
2 ,

S2 := E[s∗−i2(V,Wi2,W−i2)] = E(V ) + E[max{wi2 − w−i2, 0}] = E(V ) + S0
2 .

The informational value of winning, ΔS, is equal to E(V ). The winner’s

curse is lifted: The continuation payoff of the non-neighbor is the same as

under symmetric information. Therefore, the dynamic equilibrium externality

vanishes: The continuation payoff in the event of losing is the same whether

or not the opponent has also been excluded.

For this reason, there is no need to resort to deposits and contingent rebaits

to implement this mechanism. Implementation details are presented in the

next theorem. While they are not needed in a direct mechanism, the suggested

auction features ex-post reports in both periods. This way, bids in the auction

can be unidimensional.

Theorem 1. The first-best allocation rule is implemented by the following

sequential auction. The first-period auction is a standard second-price auction.

Before the second auction, the winner reports the value of the unit to the
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auctioneer. The loser is charged an entry fee for the second-period auction,

equal to the difference between the reported value and the winning bid. If this

fee is not paid, the second-period auction is cancelled. Otherwise, in the second

period, bidders (simultaneously) submit bids, and the highest bidder wins. Each

bidder — even the loser — pays her opponent’s bid. The winner reports the

value of the unit, and the loser gets a bonus equal to the reported value.

Proof . Since the first period always results in trade, the only type of history

that is allowed for is h(a), h(b). Consider bidder i’s problem of type wi1, wi2, if

bidder −i of type w−i1, w−i2 adopts the following strategy:

• If −i is awarded the second-period unit, report u−i2 = v + w−i2.

• At history h(−i), regardless of v, bid wi2.

• At history h(i), bid w−i2.

• If −i is awarded the first-period unit, report u−i1 = v + w−i1.

• If i is awarded the first-period unit, pay the entry fee.

• In the first period, bid w−i1 + (1 + δ)E(V ).

As discussed above, the second-period winner has no incentives to misre-

port the value of the second-period unit. At history h(i), agent i’s ex-post

payoff from bidding b in the second-period auction is:

si2(b; v, wi2, w−i2) : = (v + wi2 − w−i2)I(b > w−i2) + (u−i2 − w−i2)I(b < w−i2)

= v + (wi2 − w−i2)I(b > w−i2).

Bidding b = wi2 is a best response. Next, consider history h(−i). If charged

entry fee e1 = u−i1 − w−i1 = v, agent i’s payoff is:

si2(b; e1, v, wi2, w−i2)

: = −e1 + (v + wi2 − w−i2)I(b > w−i2) + (v + w−i2 − w−i2)I(b < w−i2)

= (wi2 − w−i2)I(b > w−i2);
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she is willing to pay the entry fee, and, once again, bidding b = wi2 is a best

response.

At the end of the first period, if the first-period unit is awarded to agent i,

her report determines her opponent’s entry fee. There is no gain to her from

under-reporting this value, and over-reporting may only discourage −i from

entering the second-period auction and thus cause trade to shut down.

At the bidding stage of the first period, the problem is equivalent to one

of independent and private values; bidding her valuation, wi1 + (1 + δ)E(V ),

is a weakly-dominant strategy.

In equilibrium, the difference between the reported value and the winning

bid is the same in both periods. The auctioneer could exploit this feature of

the equilibrium in the design by imposing penalties for (off-equilibrium) bids

and reports that are inconsistent. For the selected γi, γ−i functions, there is

no need for the auctioneer to do so: Leaving the utility reports unrestricted

but requiring both bidders to participate does the trick.

As Mezzetti (2004) notes, the second-period winner is indifferent between

reporting truthfully and lying in the second-stage reports. This leaves open

the possibility of inefficient equilibria. Of course, the existence of inefficient or

otherwise undesirable equilibria is a standard concern in mechanisms designed

under partial implementation, and the mechanisms I propose are no exception

— especially the mechanism in Theorem C1. However, in the second-best

auction of Theorem 2 in my paper, agents have stronger incentives to behave

as the desired equilibrium dictates.

To maximize revenues, a seller with full commitment power can hold the

efficient second-period auction and capture the surplus created by means of

entry fees. The proof of this result is very similar to the proof of Theorem 3

in the paper, so the details are omitted.

Theorem 2. The following mechanism maximizes expected revenues. The

first-period auction is a second-price or English auction with reserve price

rπ∗ := (φ0)
−1

(−E(V ) + δΔω). After the bids are in and the winner is an-
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nounced, but before allocating the unit, the winner is charged a second-period

entry fee of e1 := δ (E(V ) + S0
2), and the loser, or both bidders if the first unit

goes unsold, of e2 := δS0
2 . If both bidders pay the corresponding entry fee,

the first-period unit is allocated and a second-price or English auction follows.

If only one bidder pays the fee, she gets the first-period unit and a rebate of

e− δE(U), where e is the fee she paid; she also gets the second-period unit for

free. If no bidder pays the fee, the first-period winner gets the first-period unit

but the second-period unit is withheld.

Full commitment power enables the seller to raise the maximum surplus

and capture it via entry fees. With limited commitment power, the seller

cannot credibly threaten to exclude bidders who don’t pay the fees, and dis-

tortions to the allocation may be profitable to save on information rents. The

general consideration of ex-post reports requires a characterization of incentive

compatibility; Mezzetti (2004) focuses on efficiency.
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