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In these notes, we consider allocations in period t = 1, 2 as profiles of

shares θt := (θat, θbt) ∈ [0, 1]2 such that θa + θb ≤ 1, where θit denotes agent i’s

share. The gathering of proprietary information about the asset is endogenous,

and it is linked to the allocation as follows: If the profile of shares is θ1,

each agent observes v, privately and independently, with probabilities θa1, θb1,

respectively.

I explore efficiency and implementation. The second-period portion of the

second-best allocation rule can be implemented by a second-price or English

auction. The notes that follow focus on the first-period problem. To simplify

notation, I will write θ := θ1. Given an allocation rule θ : [w,w]2 → [0, 1]2,

total welfare is:

Sω(θ) = E
[
V + θa(W1)Wa1 + θb(W1)Wb1 + δSω0

2

+δ [2θa(W1)θb(W1) − θa(W1) − θb(W1)] Δ
ω] .

The constrained-efficient allocation of shares is given by the maximizer

of g(θ; w1) := θawa1 + θbwb1 + (2θaθb − θa − θb)δΔ
ω on [0, 1]2, subject to the

restriction that the shares add up to at least one, allowing for the possibility

that less than all the shares are allocated: θa + θb ≤ 1. In particular, we want
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to allow for trade not to take place, which is equivalent to allocating 0 shares.

The maximizer is:

θ∗(w1) :=





(0, 1) min {wa1, wb1} ≥ δΔω, wa1 − wb1 < −2δΔω;
(

1
2

+ wa1−wb1

4δΔω , 1
2

+ wb1−wa1

4δΔω

)
min {wa1, wb1} ≥ δΔω, |wa1 − wb1| ≤ 2δΔω;

(1, 0) min {wa1, wb1} ≥ δΔω, wa1 − wb1 > 2δΔω;

(0, 1) wa1 < δΔω < wb1;

(1, 0) wa1 > δΔω > wb1;

(0, 0) max {wa1, wb1} < δΔω.

If both agents’ first-period types are sufficiently low, then no shares at all

are allocated. If only one of the agents has a valuation above this threshold,

she gets all the shares for the unit. When both agents’ types are sufficiently

high, then the second-best allocation of shares dictates deviating from the

50-50 split by an amount that is directly proportional to the excess surplus

generated by the beneficiary, and inversely proportional to the welfare cost of

implementability, Δω. See Figure 1.

Figure 1: Second-best shares, θ∗.
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Given a mechanism (θ, τ ) : [w,w]2 → [0, 1] × R2, continuation payoffs are:

Ua2 (w̃a1, wb1) : = S0
2 + θa (w̃a1, wb1)

(
S2 − S0

2

)
− θb (w̃a1, wb1)

(
S0

2 − S2

)

− θa (w̃a1, wb1) θb (w̃a1, wb1)
(
S2 + S2 − 2S0

2

)
,

Ub2 (wa1, w̃b1) : = S0
2 + θb (wa1, w̃b1)

(
S2 − S0

2

)
− θa (wa1, w̃b1)

(
S0

2 − S2

)

− θb (wa1, w̃b1) θa (wa1, w̃b1)
(
S2 + S2 − 2S0

2

)
;

total payoffs are:

Ua (w̃a1, wb1; wa1) : = θa (w̃a1, wb1) [E(V ) + wa1] − τa (w̃a1, wb1) + δUa2 (w̃a1, wb1) ,

Ub (w̃b1, wa1; wb1) : = θb (wa1, w̃b1) [E(V ) + wb1] − τb (wa1, w̃b1) + δUb2 (w̃b1, wa1) .

We want to identify a mechanism that implements θ∗. Truthful continua-

tion payoffs are given by:

Ua2 (w1) = S0
2 + θ∗a (w1)

(
S2 − S0

2

)
− θ∗b (w1)

(
S0

2 − S2

)

− θ∗a (w1) θ∗b (w1)
(
S2 + S2 − 2S0

2

)
,

Ub2 (w1) = S0
2 + θ∗b (w1)

(
S2 − S0

2

)
− θ∗a (w1)

(
S0

2 − S2

)

− θ∗b (w1) θ∗a (w1)
(
S2 + S2 − 2S0

2

)
.

In the truthful equilibrium, we have:

Ua (w1) : = Ua (wa1, wb1; wa1) = θ∗a (w1) [E(V ) + wa1] − τa (w1) + δUa2 (w1) ,

Ub (w1) : = Ub (wb1, wa1; wb1) = θ∗b (w1) [E(V ) + wb1] − τb (w1) + δUb2 (w1) .

By the envelope formula for payoffs, we have:

Ua (w1) = Ua (w,wb1) +

∫ wa1

w

θ∗a(ε, wb1)λ(dε),

Ub (w1) = Ub (w,wa1) +

∫ wb1

w

θ∗b (ε, wa1)λ(dε).

Combining these two ways to express payoffs gives a formula for expected
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transfers τ ∗
a (w1) that implement the constrained-efficient share-allocation rule:






0 wa1 < δΔω ;

0 min {wa1, wb1} ≥ δΔω ,

wa1 < wb1 − 2δΔω ;

θ∗(w1)
[
E(V ) + wa1+wb1

2
+ δ

(
S0

2 − S2 − Δω
)

+ θ∗(w1)δ
(
S2 + S2 − 2S0

2

)]
min {wa1, wb1} ≥ δΔω ,

|wa1 − wb1| ≤ 2δΔω ;

E(V ) + wb1 + δ
(
S2 − S0

2

)
min {wa1, wb1} ≥ δΔω ,

wa1 > wb1 + 2δΔω ;

δ
(
S2 − S0

2 + Δω
)

wa1 ≥ δΔω ,

wb1 < δΔω ;

for b, we have τ ∗
b (wa1, wb1) := τ ∗

a (wb1, wa1).

The second-best allocation rule can be implemented by means of the follow-

ing dynamic auction. As before, the second-period unit is allocated by means

of a second-price or English auction. In the first period, bidders are asked to

pay deposits r0 each, to participate. These deposits are returned either totally

or partially according to the outcome of the auction, and also act as floors for

admissible bids.

In the event in which both bidders participate, the outcome is as follows.

If the profile of bids is β := (βa, βb), if βa ∨ βb > βa ∧ βb + 2δΔω, the highest

bidder wins and pays her opponent’s bid net of the deposit; the loser gets her

deposit back and ends up empty-handed. If |βa − βb| ≤ 2δΔω, then bidder a

receives q(β) := 1
2
+ βa−βb

4δΔω shares, while bidder b gets 1− q(β) shares. If bidder

i receives q shares, she pays

τ(q, β) := q

[
βa + βb

2
+ qδ

(
S2 + S2 − 2S0

2

)
− δ

(
Δω + S2 + S2 − 2S0

2

)
]

minus the deposit. See Figure 2.

Under τ , for each of her shares, an agent pays a non-linear price. This price

is the average bid, minus a discount, plus an extra charge that is proportional

to the number of shares already allocated to the agent. By allocating an

additional share to an agent, we are subtracting this marginal share from her

opponent. Moreover, larger shares make it more for likely for an agent and,

simultaneously, less likely for her opponent, to have access to v.
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Figure 2: Second-best auction, t = 1.

Theorem 1. Define r0 := δ
[
Δω + ΔS

]
and r1 := r0 − δ (S0

2 − S2). The

second-best allocation rule can be implemented by the following sequential auc-

tions. In the first period, bidders are asked to pay (simultaneously) a deposit

of r0. If only one bidder pays, she is given the option to get the full first-period

unit and a partial refund on her deposit of r0 − r1 = δ (S0
2 − S2), or to get the

full refund. If both pay, they (simultaneously) submit bids. Admissible bids are

not lower than r0. If the difference between the bids is at least 2δΔω, the high-

est bidder wins the full unit and pays the difference between the lowest bid and

r0; the loser gets her deposit back. If the bids are within 2δΔω of each other,

then bidder a receives q(β) := 1
2

+ βa−βb

4δΔω shares, while bidder b gets 1 − q(β)

shares, where β = (βa, βb) is the profile of bids; payments are, respectively,

τ(q(β), β) and τ(1 − q(β), β). The first-period unit is withheld if no bidder

pays the deposit.

Proof . Let h(i) denote the history in which agent i, and only agent i, has

observed v. Similarly, let h(0) denote the history in which neither has observed

v, while h(∗) represents the history under which both agents observe v.

Consider bidder i’s problem of type wi1, wi2, if bidder −i of type w−i1, w−i2

adopts the following strategy:
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• At history h(0), bid w−i2 + E(V ).

• At history h(∗), bid u−i2.

• At history h(−i), if v is the realized common component, bid u−i2 =

v + wi2.

• At history h(i), bid h−1(w−i2).

• If both bidders have paid the deposit, bid w−i1 + E(V ) + δΔS.

• If only −i has paid the deposit, accept if w−i1 + E(V ) + δS2 − r1 ≥ δS0
2 .

• Pay the deposit if w−i1 ≥ w∗ := δΔω − E(V ).

As first-period signals are uninformative of v, beliefs for agent i at histories

h(0) and h−i are given by the priors. At histories h(0) and h(∗), the symmetric

equilibrium in the second-price auction has both bidders bidding their (ex-

pected) valuations. Straightforward bidding gives a bid of ui2 = wi2 + v at

history h(i), while bidder i bids h−1(wi2) at history h(−i).

Turn to the first period. If bidder i is the only one who paid the deposit,

she will be offered the first-period unit and the rebate. This offer is accepted

by all types wi1 such that wi1 + E(V ) + δS2 − r1 ≥ δS0
2 , or, equivalently,

wi1 ≥ δΔω − E(V ) = w∗.

When both bidders are active in the auction, the payoff to type wi1 of i

when she bids b and −i bids b′ is:

si1(b, b
′; wi1) = δS2+






0 b < b′ − 2δΔω

(
1
2

+ b−b′

4δΔω

) [
E(V ) + wi1 + δ

(
S2 − S2 + Δω

)
− b+b′

2

]
|b − b′| ≤ 2δΔω

E(V ) + wi1 + δ
(
S2 − S2

)
− b′ b > b′ + 2δΔω.

On the range [b′ − 2δΔω, b′ + 2δΔω], the payoff function is a strictly concave

function of bidder i’s bid, with first and second derivatives given by:

∂si1(b, b
′; wi1)

∂b
=

E(V ) + wi1 + δ
(
S2 − S2

)

4δΔω
−

b

4δΔω
,
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∂2si1(b, b
′; wi1)

∂b2
= −

1

4δΔω
.

If E(V )+wi1 + δ
(
S2 − S2

)
> b′ +2δΔω, si1(b, b

′; wi1) attains its maximum

on the range b > b′ + 2δΔω; by the usual argument for second-price auctions,

a weakly best response is for bidder i to bid exactly E(V )+wi1 + δ
(
S2 − S2

)
.

Now, if E(V )+wi1+δ
(
S2 − S2

)
< b′−2δΔω, then si1(b, b

′; wi1) is non-positive;

any bid below b′− 2δΔω, such as E(V )+wi1 + δ
(
S2 − S2

)
, is a best response.

Finally, if E(V )+wi1 + δ
(
S2 − S2

)
lies in [b′ − 2δΔω, b′ + 2δΔω], si1(b, b

′; wi1)

attains its unique maximizer at E(V ) + wi1 + δ
(
S2 − S2

)
. Hence, any type

wi1 finds bidding E(V ) + wi1 + δ
(
S2 − S2

)
a weakly dominant strategy.

Finally, consider the participation problem. Start with the case wi1 < w∗.

If w−i1 < w∗ and bidder i pays the deposit, she will be the only one to do so

and can get the first-period unit for a net payment of r1, her outside option

being δS0
2 . However, this is not profitable: wi1 + E(V ) + δS2 − r1 < δS0

2 .

An opponent of type w−i1 ≥ w∗ would pay the deposit and take the offer if

unopposed. Hence, i is better off not paying the deposit:

wi1 + E(V ) + δS2 − β1(w−i1) ≤ wi1 + E(V ) + δS2 − r0 < δS2.

In either case, type wi1 < w∗ cannot do better than not paying the deposit.

If wi1 ≥ w∗ and her opponent is of type w−i1 < w∗, she will be the only

bidder in the auction, should she choose to participate. She can get the first-

period unit for a net payment of r1, which yields a payoff of at least δS0
2 . This

payoff is exactly her outside option, so she cannot profit by withholding the

deposit. When her opponent’s type is also above w∗, her outside option is

δS2. If she participates in the auction, both bidders will be present and the

(interim) payoff to i will be max {wi1 − w−i1, 0} + δS2 ≥ δS2.
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