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Abstract

We conduct a geographically and temporally disaggregated empirical analysis
of civil conflict at the sub-national level in Africa over the period 1997-2011. Our
units of observation are cells of 1 degree of latitude by 1 degree of longitude. We
exploit within-year variation in the timing of weather shocks and in the growing
season of different crops, as well as spatial variation in crop cover, to construct an
original measure of shocks that are relevant for agricultural production. Employ-
ing a new drought index we show that negative climate shocks which occur during
the growing season of the main crop cultivated in the cell have a sizeable and per-
sistent effect on conflict incidence. We also use state-of-the-art spatial econometric
techniques to test for the presence of temporal and spatial spillovers in conflict,
and we find both to be sizeable and highly statistically significant. Exploiting
variation in the type of conflict episode, we find that the impact of climate shocks
on conflict is particularly significant when focusing on outcomes such as battles
and violence against civilians. Our estimates can be used to predict how future
warming scenarios affect the prevalence and diffusion of conflict.
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1 Introduction

Since the publication of the Fourth Assessment Report of the Intergovernmental Panel
on Climate Change in 2007, a vivid debate has emerged on the consequences that warm-
ing and the increased frequency of extreme weather events have on aggregate economic
and geopolitical scenarios. There is particular concern that the adverse impact of these
climatic changes may be more strongly felt in areas that have lower capacity for adap-
tation, typically poorer and politically unstable. Sub-Saharan Africa is one such area.
The vast majority of the population in this region is dependent on rainfed agriculture,
and estimates of aggregate yield changes for the �ve main rainfed crops in the region
range between -8% and -22% over the next �fty years in response to projected climate
change.1

Sub-Saharan Africa is also the region that has been most severely a¤ected by violent
con�ict in the past half century: of the 127 civil wars that occurred between 1945 and
1999, 74 were in Sub-Saharan Africa. The correlation between poverty and vulnerability
to weather shocks on one side, and propensity to con�ict on the other, has spurred a
growing amount of research trying to establish a causal link from the former to the
latter.2 This literature typically employs cross country panel data on precipitation and
temperature to estimate how they a¤ect the occurrence of civil war, de�ned according
to predetermined thresholds in the number of deaths per year due to con�ict.
In this paper we attempt to make a step further in understanding the relationship

between climate and civil con�ict by taking the analysis to a di¤erent scale. We conduct
a geographically disaggregated analysis which takes as units of observation 110 x 110
km subnational �cells�, and we estimate the incidence of con�ict in a cell as a function
of weather shocks and a number of other covariates both in the cell and in neighboring
areas, plus a �lag� in space and time of the endogenous variable. The disaggregation
thus concerns both the climate indicators, which are measured at the cell level, and
the con�ict outcomes, which include events of di¤erent intensity that can be located in
space. This is particularly important when studying the role of climate change, as it is
plausible that some of the e¤ects of the latter will be on localized, low intensity con�ict.
Our approach contributes to the existing literature in three directions. The �rst is

methodological. We disaggregate the level of analysis both in space and time, construct-
ing a cell-year panel with a rich set of georeferenced covariates. We model spatial and
temporal dependence thorough state-of-the-art spatial econometrics techniques which
have seldom been applied in economics. In particular, we estimate a model that in-

1Schlenker and Lobell (2010).
2Starting with the seminal contribution of Miguel et al. (2004), this litarature includes among others

Ciccone (2011), Burke et al. (2009), and Buhaug (2010).
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cludes spatially and temporally autoregressive terms to account for the fact that con�ict
may be persistent over time, and that both the covariates and the presence of con�ict
may be correlated across space. As we explain in the next section, this poses a number
of challenges for estimation and constitutes an original contribution to the empirical
con�ict literature, and one which is particularly crucial when dealing with highly disag-
gregated data. In terms of results, this disaggregated approach is useful for two reasons.
The �rst is the assessment of how persistent the e¤ects are in space and time: persis-
tence will imply that even temporary shocks may have long lasting e¤ects on political
instability. The second is the ability to better detect the presence of con�ict spillovers
across locations compared to the existing cross country literature.3 In fact it is arguably
more di¢ cult for a civil war to �spill over� to a di¤erent country than for a riot or a
localized episode of violence to spill over to a neighboring village or town. The disaggre-
gated level of observation also allows us to take a closer look at a number of geographic
covariates, which have been claimed to be predictors of con�ict but which have so far
been measured at a possibly wrong scale.
A second contribution of our paper is that we look at climate indexed within the

year. Because the main channel linking weather shocks and con�ict operates through
shocks to agricultural incomes, we attempt to isolate the component of annual climate
variability which is relevant for agriculture. In other words, instead of using climate
indicators aggregated over the whole year (e.g., average yearly rainfall), we construct
speci�c indicators for climatic conditions during the growing season, which is when
crops are most sensitive to unfavorable conditions. This is a data intensive process as it
requires a number of steps: identifying the main crop cultivated in each cell; �nding the
growing season of this crop (which varies across cells); and matching this information
with high frequency weather data. In other words, we exploit both within-year variation
in the timing of weather shocks as well as spatial variation in crop cover to construct an
original measure of agriculture-relevant weather shocks. Once we isolate the impact of
the weather shock component which e¤ectively a¤ects local agriculture, we �nd evidence
that this is what drives the overall observed local negative relationship between con�ict
episodes and weather: shocks occurring outside the growing season have no impact.
This is important because it allows us to shed more light on the channel through which
climate change may operate, namely shocks to agricultural output and incomes and not
generic e¤ects on crime, health, or productivity in non-agricultural sectors.4

A third contribution relates to the climate indicator we employ. While most of
the con�ict literature so far has focused on precipitation (and to a lesser extent on

3See for example Buhaug and Gleditsch (2008).
4See for example Larrick et al. (2011).
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temperature), we use a multiscalar drought index that accounts for the fact that the
impact of rainfall on the growing cycle of a plant depends on the extent to which water
can be retained by the soil. This in turn depends on the characteristics of the soil and
on the extent to which sunshine induces evaporation. The climate indicator we use in
our benchmark speci�cation, the Standardized Precipitation-Evapotranspiration Index
(SPEI), has been recently developed by Vicente-Serrano et al. (2010) and considers the
joint e¤ects of precipitation, potential evaporation and temperature.

Our methodology and results can be summarized as follows. We assemble a panel
dataset covering about 2,700 cells in 46 African countries over the period 1997-2011.
We combine georeferenced con�ict data from the Armed Con�ict Location and Event
(ACLED) dataset with an originally constructed measure of SPEI plus a large set of
cell level covariates. Using maximum likelihood we estimate the probability that a given
cell experiences at least one con�ict event during the year as a function of cell level
covariates, contemporaneous and lagged shocks to SPEI, and spatial and temporal lags
of con�ict itself. We �nd that:
(i) There is a signi�cant local-level relationship between agriculture-relevant weather

shocks and civil con�ict. A spell of SPEI that is one standard deviation below the
mean throughout the growing season is associated with a 4 percentage point increase in
con�ict likelihood in the subsequent year and in the year following that; this is roughly
one fourth of the mean of dependent variable.
(ii) Con�ict exhibits high persistence both in time and across space. Cells experienc-

ing con�ict in a given year have a 33 percentage points higher probability of experiencing
it the following year. When a cell experiences con�ict, each of its neighboring cells has
a 4 percentage points higher probability of experiencing it during the same year. The
magnitude of the e¤ect of con�ict in another cell is found to decrease with the distance
of the cell from the one under consideration, as one would expect.
(iii) Weather shocks to neighboring cells do not seem to have an independent e¤ect

on a cell�s likelihood of con�ict, aside from the e¤ect that is mediated by con�ict in the
neighboring cells themselves. The impact of weather shocks seems thus to be strictly
local: negative shocks increase the probability of future con�ict in the cell where they
occur, but then this con�ict spills over to neighboring cells. This seems to suggest
that small, one-time shocks can have potential far-reaching e¤ects through con�ict�s
propensity to propagate.
(iv) Climatic conditions outside the months of the growing season have zero e¤ect

on con�ict. This suggests that the mechanisms operates through low agricultural yields.
(v) Drawing upon the rich disaggregation of con�ict events of the ACLED dataset,

we can also look at individual types of con�ict episodes. We �nd a signi�cant e¤ect
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of weather shocks on battles, violence against civilians and riots, while the e¤ect is not
signi�cant on activities such as rebel recruitment and the establishment of headquarters.
This may run counter the theories which emphasize �uctuations in the opportunity cost
of joining a civil con�ict, but it may also be driven by more pronounced measurement
error in recording this type of con�ict activities.
(vi) Finally, among time-invariant local characteristics, elevation, terrain rugged-

ness, road infrastructure, ethno-linguistic fractionalization and the presence of mineral
resources are all strong local con�ict predictors.
Before proceeding, two caveats are in order. The �rst is that by focusing on the role

of shocks at the local level our paper has very little to say about long term institutional
causes of con�ict, e.g. those related to the political system. This does not re�ect a
judgement on the relative importance of the two sets of causes, but is a consequence
of the scale at which we conduct our analysis: we believe that aggregate institutional
causes are better understood through country level analysis than at the high resolution
at which we operate.
The second caveat relates to the extent to which our results speak only to the e¤ects

of weather shocks or can say something about the e¤ects of climate change. It should
be noted that the main indicator we use in our analysis is not the deviation of SPEI one
year to the next, but rather the deviation of SPEI from its long term historical average
(or more precisely, the fraction of growing season months in which this deviation is
at least one standard deviation below the mean). This indicator can to some extent
capture global trends (and it is in fact more negative in more recent years). At the
same time, our regression analysis holds constant a number of economic and political
variables that may endogenously evolve over the long run: we would thus refrain from
extrapolating the results too far into the future, and more generally to contexts where
ample possibilities for adaptation exist.
With this caveat in mind, in the last part of the paper we use cell-level projections of

future temperature and precipitation for 2012-2030, drawn from the CORDEX Archive
(Hernández-Díaz et al., forthcoming), to construct a forecast of our SPEI based indicator.
We �nd that, other things equal, warming sharply increases the frequency of extreme
weather events like the ones on which our regression analysis is based. We predict
that shocks to SPEI occurring during the growing season, as per de�nition of our main
explanatory variable, will be roughly twice as frequent during the next 20 years. Based
on our parameter estimates, this implies that the marginal contribution of future SPEI
shocks to con�ict incidence in an average cell and year during 2012-2030 is 7 percentage
points. As a benchmark, average con�ict incidence in during 1997-2011 was :17; i.e. the
average cell had a :17 probability of experiencing a con�ict event during 1997-2011. The
predicted impacts of future warming on con�ict incidence is thus quite sizeable.
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Our work is related to three strands of literature. The �rst is the literature on climate
and violent con�ict. Miguel et al. (2004) were the �rst to highlight a relationship between
rainfall driven economic shocks and con�ict incidence in Sub Saharan Africa. Recently,
a number of papers (e.g., Ciccone, 2011) have reconsidered the link between rainfall
and con�ict, indicating that mean-reverting properties and the spatial correlation in
rainfall have not been taken into account. Our paper is indeed an attempt to take these
factors into consideration conducting the analysis at a more disaggregated level, as well
as isolating the component of weather variation that occurs during growing season. At
the same time, di¤erently from the above authors who adopt an instrumental variables
strategy, we estimate a reduced form relationship - there is no data on income or GDP
that varies at yearly frequency and is available at the level of disaggregation that we
employ.
Another contribution linking climate to con�ict is that of Burke et al. (2009), re-

cently revisited by Buhaug (2010). They estimate the historical relationship between
temperature changes and civil war across African countries and combine their estimates
with climate model projections of future temperature, predicting large increases in con-
�ict driven by global warming by 2030. Hsiang et al. (2011) also �nd that con�icts in
tropical regions are substantially more likely during hot and dry El Nieno years than
during the cooler La Niena years. We share with this literature the acknowledgement
that temperature increases are a crucial factor to consider, and indeed our SPEI measure
combines data on temperature (which a¤ects evapotranspiration) with data on precipi-
tation. Again, the focus of our work is di¤erent in that we employ a di¤erent scale and
we allow for con�ict spillovers in space and time, spillovers which possibly amplify the
e¤ects of climate shocks.
Our focus on within country variation is shared by two recent studies. Dell (2012)

�nds a strong relationship between drought severity and insurgency across municipali-
ties during the Mexican Revolution. Vanden Eynde (2011) uses district level data for
India during 2005-2010 and �nds that negative rainfall shocks lead to increased Naxalite
violence against civilians. We view our large-N, cross cell analysis as complementary to
these in depth quantitative case studies.
A second strand of the literature related to our work is that on climate and develop-

ment. Motivated by the debate on the economic consequences of global warming, recent
studies have looked at the impact of temperature on economic activity. Dell, Jones and
Olken (2012) �nd that higher temperatures substantially reduce economic growth in poor
countries. Burgess et al. (2011) study how weather shocks impact mortality in India by
looking at high frequency variations in rainfall and temperature and conclude that only
shocks occurring after the monsoon are relevant. Kudamatsu, Persson and Strömberg
(2012) explore a related question with African data and conclude that weather shocks
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had a signi�cant impact on child mortality through the channels of malaria and mal-
nutrition. Maccini and Yang (2009) examine the e¤ect of weather shocks around the
time of birth on adult age outcomes in Indonesia and �nd that higher early-life rainfall
leads to improved health, schooling, and socioeconomic status for women. In addition
to economic and health e¤ects, weather shocks have also been shown to have long last-
ing impact on countries�political institutions: Brückner and Ciccone (2011) show that
negative rainfall shocks increase democracy scores as well as the likelihood of democratic
transitions in Africa.
The third and last strand of literature related to our work is that on the determi-

nants of civil con�ict. This vast literature includes early cross country empirical work
by Collier and Hoe­ er (1998) and Fearon and Laitin (2003). Theoretical foundations
for the impact of economic shocks have been o¤ered by Dal Bo and Dal Bo (2011) and
Chassang and Padro-i-Miquel (2009), and nicely tested by Dube and Vargas (forthcom-
ing). More recently, increasing attention has been devoted to understanding long run
institutional determinants of con�ict, notably historical con�icts and ethnic partitions,
using georeferenced data similar to the ones we use, e.g. by Besley and Reynal-Querol
(2012) and Michalopoulos and Papaioannou (2012).

The remainder of the paper is organized as follows. In Section 2 we present our
conceptual framework and econometric methodology. In Section 3 we document our
data sources and dataset construction and we provide some descriptive statistics on the
variables of interest. In Section 4 we discuss the econometric evidence at the cross-
sectional (cross-cell) level; while in Section 5 we conduct the main analysis exploiting
both cross-sectional and time variation, and focusing on weather shocks. Section 6
concludes.

2 Conceptual framework and methodology

2.1 Conceptual framework

The economic literature on the e¤ects of economic shocks on con�ict has traditionally
stressed two channels working in opposite directions (see e.g., Collier and Hoe­ er, 1998).
On the one hand, there is an �opportunity cost� e¤ect: a negative shock to the local
economy decreases the returns from labor market participation and productive activity
relatively to the returns from �ghting, making it relatively more attractive for the local
population to join rebellion. On the other hand, the same negative shock implies that
the size of the �pie� to be appropriated is also lower, thus reducing the incentives to
�ght in the �rst place. The net e¤ect is theoretically ambiguous, and would depend
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among other things on whether control of the territory may yield long term economic
bene�ts (e.g., if it is mineral rich) aside from the short term gains appropriated. The
fact that the shock occurs to a labor intensive or capital intensive sector also matters.
In our case, because African agriculture is typically labor intensive, based on Dal Bo
and Dal Bo (2011) the opportunity cost e¤ect would be predicted to prevail compared
to the size of the disputable wealth e¤ect, so that negative shocks should lead to more
con�ict. Economic shocks may also have an additional e¤ect, namely worsening the
extent of poverty and exacerbating existing inequalities, thus fueling con�ict in response
to �grievances�.
A di¤erent channel has been proposed by Fearon and Laitin (2003), who stress the

role of state capacity and infrastructure. To the extent that economic shocks may
reduce the tax base from which the government gets its revenue, this would weaken the
government�s ability to �ght rebellion, leading to higher con�ict levels. Also, if economic
shocks a¤ect the quality of infrastructure (e.g., roads), the increase in con�ict may be
the result of government�s logistical di¢ culties in repressing insurgents.
As will be clear in the next section, the way in which we construct our shock variable

allows us to isolate e¤ects that are speci�c to agricultural yields. Weather shocks outside
the growing season should impact road quality, hence increase con�ict likelihood if the
main channel were infrastructure. But we �nd that only shocks that occur during the
growing season matter, thus reinforcing the �rst set of interpretations. As for the revenue
channel, the highly disaggregated scale at which we conduct our estimation makes it
di¢ cult to capture this type of e¤ect, as total state revenue would be dependent on
national economic conditions and not strictly local ones.

2.2 Empirical strategy

To implement our empirical exercise, we construct a dataset that has the structure
of a raster grid: the cross-sectional units of observation are subnational �cells� of 1
degree of latitude x 1 degree of longitude, whose sides are placed in correspondence of
integer values of latitude and longitude. At these latitudes, 1 degree corresponds on
average to approximately 110 km. This �grid�approach is followed, among others, by
Alesina, Giuliano and Nunn (2011) and Michalopoulos (2012). An alternative way to
conduct a subnational analysis would be to consider administrative units. However, the
way in which a country is split into administrative units is in itself the outcome of a
political decision: it may take into account both geographical and demographic features
of the territory which could all be arguably determinants of con�ict themselves, or
jointly determined with it. The supposed advantage of using administrative units is that
data on income, population or inequality are often available at the administrative level;
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however, such variables are almost inevitably endogenous to con�ict and incorporating
them in a con�ict regression is at least problematic. Our approach is one which takes as
unit of observation an entity whose borders are truly exogenous to con�ict, by ideally
superimposing a grid of equally-sized cells on the territory of interest.5

The bulk of our empirical analysis is conducted at the cell/year level. Our main
dependent variable is ANY EVENT, a binary measure of con�ict incidence indicating
whether the cell has experienced a con�ict-related episode - of any of the categories
included in the ACLED dataset - over the course of the year. In order to investigate the
local level relationship between climate and con�ict incidence we estimate three models.
The �rst is a model containing only exogenous regressors speci�c to the cell. The second
model includes a �spatial lag�of the exogenous regressors, to allow for the possibility
that local level variables may directly a¤ect con�ict in neighboring areas. The third
(preferred) model is one that includes lags of the endogenous variable in time and space,
to allow for persistence in time and con�ict spillovers across localities.

Model I
Consider a panel of N cells indexed by c, and T years indexed by t. Denote with C

a generic climate indicator (e.g., precipitation) and with GS_C the climate indicator
measured in the cell-speci�c growing season (see below). Let X be a vector of controls
with no time variation - such as terrain characteristics, and 
 and � denote year and
country �xed e¤ects, respectively. Model I takes the following form:

ANY EVENT c;i;t = �+
2X
k=0

�1kCc;t�k +
2X
k=0

�2kGS_Cc;t�k + �Xc + 
t + �i + "c;i;t (1)

where c denotes the cell, i the country and t the year. This speci�cation is essentially the

transposition of state-of-the-art cross country con�ict regression equations - à la Ciccone
(2011) - at a high spatial resolution.
Our dependent variable is binary and several con�ict regressions in the literature

using a binary dependent variable resort to logit estimators. However, we prefer to
conduct the estimation by OLS, thus �tting an unrestricted linear probability model.
The reason is twofold. On the one hand, this can be easily integrated with state-of-the-
art spatial econometrics techniques, which so far have not been explicitly developed for
limited dependent variables. On the other hand, it has been argued that when dealing

5One potential di¢ culty arising when such units of observations are used is the so-called �Modi�able
Aeral Unit Problem�(MAUP). We address this issue in section 5.2.
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with �rare events�, such as wars, logit and probit may yield biased estimates (King and
Zheng, 2001).
One key feature of our data is spatial correlation. Most empirical work in the con�ict

literature implicitly assumes that observations are independent across space, and thus
does not take spatial correlation nor spatial dependence into account. When dealing
with georeferenced, cross-sectional data with potential spatial dependence the majority
of the development literature performs OLS estimation with Conley (1999) standard
errors, which are robust to spatial dependence of unknown form in the error term. We
estimate Model I by OLS and we apply such a correction to our standard errors, following
the procedure of Hsiang (2010) and adjusting standard errors for both spatial and serial
correlation.
This is appropriate in cases in which spatial correlation is present in the error term

(�spatial error model�), however it does not address the issue of how to explicitly model
spatial dependence in the process itself. We expect spatial correlation to be present both
in the georeferenced covariates �for example, mineral deposit presence or climatological
events �and in con�ict itself, through direct cross-cell spillovers.

Model II
A simple way of controlling for spatial correlation in the covariates is to include

spatial lags of the variables of interest, just as in time series it is common to include
temporal lags. In spatial econometrics the structure of spatial dependence between
observations is de�ned through a symmetric weighting matrix W , and the spatial lag
of a given variable is obtained multiplying the matrix W by the vector of observations.
Let Ct and GS_Ct be N-dimensional vectors of climate observations in year t, and let
X be the matrix of cell-level controls. We estimate Model II:

ANY EVENT c;i;t = �+
2X
k=0

�1kCc;t�k +
2X
k=0

�2kGS_Cc;t�k + �Xc + �i+ (2)

+
2X
k=0

�1kW � Ct�k +
2X
k=0

�2kW �GS_Ct�k + �W �X +W � �+ 
t + "c;i;t

This is a spatial Durbin model (Anselin, 1998) in which we let con�ict in one cell depend

on covariates observed not only in the cell itself, but also in the neighboring cells. Since
the structure of spatial dependence is not directly estimated but assumed, the choice
of the weighting matrix is important. A popular choice is that of a binary contiguity
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matrix in which a weight of 1 is assigned to cells surrounding the cell of interest - within
a given distance cuto¤ -, and a weight of 0 to other cells. Our benchmark connectivity
matrix is a binary matrix with distance cuto¤ set to 180 km. Because 180 km is the
radius of the circle drawn around the cell�s center, and each cell is a square with sides
of approximately 110 km, this connectivity matrix implies that we e¤ectively consider
as neighbors of a given cell the 8 bordering cells. In Section 5 we discuss our choice of
the weighting matrix and we conduct a sensitivity analysis to di¤erent spatial matrices.
For ease of interpretation we do not row standardize the matrixW; so the coe¢ cients

on the spatial lags, �1k; �2k and �; should be interpreted as the e¤ect of a marginal change
in the given variable in one of the neighbors of each cell. This model has the advantage
of simplicity, since including spatial lags of the independent variables is straightforward
and poses no particular econometric concerns. Standard errors are corrected for spatial
and temporal correlation à la Hsiang (2010).

Model III
We expect spatial correlation to be present not only in the covariates, but also in

con�ict itself. Allowing for spatial autocorrelation in the dependent variable, in order to
capture direct con�ict spillovers, is more problematic than allowing for spatial correlation
in the controls due to an obvious simultaneity problem. Part of the observed spatial
correlation in con�ict location is to be attributed to the fact that con�ict determinants
are spatially correlated themselves; part of it, on the other hand, is to be attributed to
direct contagion e¤ects. Disentangling these two e¤ects is in general di¢ cult, as it is a
version of the well-known re�ection problem (Manski, 1993). Models allowing for spatial
dependence in the dependent variable are known as spatial autoregressive models. They
have been mostly developed for cross-sectional analysis, and have only recently been
extended to panel data (LeSage & Pace, 2009; Elhorst, 2009 among others). These
models are estimated with maximum likelihood or GMM techniques and tend to be
computationally intensive.
A further complication arises in our context, since in addition to spatial autocorre-

lation we expect the process of con�ict to be autocorrelated in time as well. To fully
incorporate both sources of autocorrelation we estimate Model III:

ANY EVENT c;i;t = �ANY EVENT c;i;t�1 + �W �ANY EVENT t+ (3)

�+

2X
k=0

�1kCc;t�k +

2X
k=0

�2kGS_Cc;t�k + �Xc + �i+
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+
2X
k=0

�1kW � Ct�k +
2X
k=0

�2kW �GS_Ct�k + �W �X +W � �

+
t + "c;i;t:

This is a dynamic, spatially autoregressive Durbin model (Elhorst, 2009) in which we
let con�ict in one cell depend on lagged con�ict in the cell itself, on contemporaneous
con�ict in the neighboring cells, on covariates in the cell itself and on covariates in the
neighboring cells. To our knowledge, this is the �rst time a spatio-temporal autoregres-
sive model is applied in the empirical con�ict literature.
An obvious identi�cation challenge is posed by the endogeneity of the �rst two regres-

sors, which requires these models to be estimated either by GMMor maximum likelihood.
We use the routines developed by Hughes (2012), which are based on quasi-maximum
likelihood techniques described in Elhorst (2009) and Parent and LeSage (2009). In par-
ticular, we �t a random e¤ects model estimated applying the full maximum likelihood
method described in Parent and Le Sage (2009), which treats the value of the dependent
variable for the initial time period as exogenous and uses the data for t = 2; : : : T in the
estimation (see the Appendix for details). Standard errors are clustered by cell.
The explicit inclusion of spatially and temporally autoregressive terms represents an

innovation of our paper in the empirical literature on con�ict, and one which is partic-
ularly crucial when dealing with highly disaggregated data. Neglecting spatial patterns
has the potential of introducing a serious bias in one�s estimates. One possibility is
to simply ignore the explicit spatial autoregressive component and estimate the model
via plain, non-spatial OLS. This leads to omitted variable bias: the impact of location-
speci�c factors tends to be overestimated as interdependency e¤ects are neglected. Thus,
if we limited our analysis to Model I, we might worry that the local impact of climate
is driven simply by the fact that con�ict is clustered in space and so are climate shocks.
A possibility is to explicitly include the spatial autoregressive component and estimate
the model via OLS: estimates will su¤er simultaneity bias, as the spatial lag will be
endogenous. The analyses will be biased in the opposite direction: in the typical case
of positive interdependence and positive covariance of spatial lag and exogenous regres-
sors, one would overestimate the interdependence e¤ects and underestimate contextual
(cell-speci�c) e¤ects. This discussion suggests that inference from studies which do not
address spatial dependence at all should be taken with caution, especially when consid-
ering data at higher geographic resolutions.
Since our focus is on within-country variation in the incidence of con�ict, our speci-
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�cation of choice includes country �xed e¤ects6, so as to account for long-run aspects of
the political, economic or social structure of the states in our sample, as well as for state-
level geographic features (e.g. country size). According to Besley and Persson (2008)
�this gets around one of the key worries in the literature, namely that it is unobserved
characteristics of institutions, culture and economic structure that are primarily respon-
sible for civil war� and ensures that estimation results are not driven by unmeasured
features of states. Through the inclusion of year �xed e¤ects we control for global trends
in con�ict incidence as well as climate.

Cross sectional models
As a preliminary step to our panel analysis, we collapse our cell-year panel to cre-

ate a time-invariant measure of con�ict prevalence in a given cell. Our aim is that of
investigating cross-sectional relationships with various local terrain characteristics. Our
dependent variable capturing average con�ict incidence over time is the fraction of years
in the sample in which the cell has experienced at least one con�ict event. The aim of
the cross-sectional analysis is to highlight geographic correlates of con�ict exploiting the
high spatial resolution of the dataset to detect these patterns at the appropriate scale.
Again, we estimate three models:

ANY EV ENT c;i = �+ �Xc + �i + "c;i (4)

ANY EV ENT c;i = �+ �Xc + �W �X +W � �+ "c;i (5)

which are estimated by OLS with Conley errors, and

ANY EV ENT c;i = �+ 'W � ANY EV ENT + �Xc + �W �X +W � �+ "c;i (6)

estimated by maximum likelihood with errors clustered by cell.

6For the purposes of de�ning country �xed e¤ects, each cell in the dataset is uniquely assigned to a
country. Cells shared among more than one country are assigned to the country which has the largest
share of the cell�s territory; a "shared" dummy for those cells is also included among the controls.
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3 Data

3.1 Sources and dataset construction

We bring together high-frequency, georeferenced data from a variety of sources and con-
struct a dataset which covers 46 African countries over the period 1997-20117, including
information on individual con�ict episodes and on a large number of geo-climatic charac-
teristics. In particular, we collect detailed data on agricultural land cover, ethnic groups
distribution, terrain characteristics and the location of mineral resources, and match it
with data on crop calendars as well as climate indicators like precipitation and temper-
ature. The structure of the dataset is that of a raster grid: the cross-sectional units
of observations are subnational �cells�of 1 degree of latitude x 1 degree of longitude,
whose sides are placed in correspondence of integer values of latitude and longitude.

Con�ict events
Data on civil con�ict episodes over the period 1997-2011 are drawn from the PRIO/

Uppsala Armed Con�ict Location and Event (ACLED) dataset in its Fall 2012 version.
This is the most recent and detailed con�ict dataset developed by PRIO/Uppsala. It
codes exact location, in terms of latitude and longitude, date, and additional charac-
teristics of a wide range of con�ict-related events in states a¤ected by civil war. Civil
con�ict episodes are de�ned broadly, to include not only battles with more than 25 ca-
sualties (the standard PRIO threshold) but all kinds of activity involving rebels, such as
recruitment or the establishment of headquarters. Event data are derived from a variety
of sources, mainly concentrating on reports from war zones, humanitarian agencies, and
research publications. Information from local, regional, national and continental media
is reviewed daily; consistent NGO reports are used to supplement media reporting in
hard to access cases; and �nally Africa-focused news reports are integrated to supple-
ment daily media reporting (Raleigh et al., 2012). The result is the most comprehensive
and wide-reaching source material presently used in disaggregated con�ict event coding.
While this is considered a high quality dataset, and is starting to be employed in the

economics literature (e.g., Michalopoulos and Papaioannou, 2012; Besley and Reynal-
Querol, 2012) we must acknowledge one potential, yet unavoidable concern: selection
in reporting. For instance, we cannot rule out that areas experiencing intense con�ict

7The countries in our dataset are: Algeria, Angola, Benin, Botswana, Burkina Faso, Burundi, Cen-
tral African Republic, Cameroon, Chad, Congo, Democratic Republic of the Congo, Cote d�Ivoire,
Egypt, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Ghana, Guinea, Guinea Bissau, Kenya, Lesotho,
Liberia, Libya, Madagascar, Malawi, Mali, Mauritania, Morocco, Mozambique, Namibia, Niger, Nige-
ria, Rwanda, Senegal, Sierra Leone, Somalia, South Africa, Sudan, Swaziland, Tanzania, Togo, Tunisia,
Uganda, Zambia, Zimbabwe.
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might have a poorer media coverage, possibly leading to under-reporting of con�ict.
Unfortunately we have no alternative data source of comparable scope and level of
disaggregation allowing us to evaluate this concern. At the same time, it is unclear that
such a reporting bias would be systematically correlated with our measure of weather
shocks, which is speci�c to the crops grown in di¤erent cells and to the growing season
months of those crops.
In most of our analysis we use a broad indicator of con�ict incidence, that is, a

dummy equal to one if at least one con�ict event of any type occurred in a given cell
in a given year (ANY EVENT ). We also consider a breakdown of con�ict events into
di¤erent types, i.e. battles, violence against civilians, riots and rebel recruitment, to test
if our explanatory variables have a di¤erential impact on these di¤erent outcomes.

Crop cover data
Data on the geographical distribution of agricultural crops is drawn from the M3-

Crops Data by Monfreda et al. (2008), a detailed raster dataset at the 5 arc minutes x
5 arc minutes resolution (about 9.2 km by 9.2 km at the equator) including 137 crops.
For each 5�x5� cell in the raster and each of the 137 crops included, Monfreda et al.
report harvested area in hectares. We aggregate the harvested area variable at the lower
resolution of our dataset, i.e. 1 degree x 1 degree, and we employ it to rank the crops
cultivated in each cell. We identify the main crop for each cell of our dataset as the crop
with the largest harvested area in the cell; we thus obtain 30 di¤erent �main crops�in
our full sample.

Natural resources
In an e¤ort to collect georeferenced data on as many natural resources as possible,

data on the location of mineral resources are drawn from a combination of the Min-
eral Resource Data System (MRDS) prepared by the United States Geological Survey
(USGS) and of the PRIO/Uppsala datasets Gemdata, Petrodata and Diadata. We have
identi�ed 85 types of mineral commodities present in the countries of our dataset, in-
cluding precious metals, industrial metals, oil and gems.
PRIO natural resources datasets were compiled through an intensive literature search

of academic databases and journals, national geological survey reports and industry
databases and reports, and as a result they tend to be more comprehensive and reliable
than USGS. However, although likely to underreport mineral occurrences, USGS data
are the only comprehensive, georeferenced data source for mineral commodities available
to the general public.
In the present analysis we employ a coarse indicator for the presence of any mineral

in the cell. In ongoing work we are exploring the di¤erential impact of gemstones, oil
and other types of minerals, as well as the time-varying impact of these resources in
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relation to changes in their prices.

Ethnic groups
Data on ethnic groups are drawn from the new University of Zurich �Geo-referencing

of Ethnic Groups� (GREG) dataset. The latter relies on maps and data drawn from
the classical Soviet Atlas Narodov Mira and employs geographic information systems
to represent group territories as polygons. We used the maps available in the GREG
data and combined them with our raster grid to measure the extent of ethnic diversity
in each cell. As a proxy for ethnic grievances, we compute a cell-level Ethno-Linguistic
Fractionalization (ELF) index, based on the shares of inhabited territory attributed to
di¤erent ethnic groups in each cell.

Infrastructure and geography
Data on the location of roads are drawn from the Global GIS Atlas Developed by

the U.S. Geological Survey, a digital atlas of the world at a nominal scale of 1:1 million.
These data have no time variation and report only the roads known in year 2000. To
mitigate measurement error and selection concerns, we use as a proxy for road density
a dummy for the presence in the cell of at least one road of primary use.
The remaining cross-sectional geographic information are coded from the Yale G-

Econ Gridded Output dataset (Nordhaus et al., 2006), from which our dataset inherits
the �grid�structure and the 1 degree by 1 degree resolution.
To investigate at the disaggregated scale the relationship between mountainous ter-

rain and con�ict, we include two di¤erent measures: one is the average elevation in the
cell and one is the standard deviation of elevation, denoted as �roughness�; both are
measured in meters. In the con�ict literature terrain ruggedness has received consid-
erable attention, starting from Fearon and Laitin (2003); their proxy for elevation is
the share of mountainous terrain over a country�s surface. This is a less than perfect
measure for various reasons: �rst, it is a measure of elevation, and not of slope: as
a result, according to this measure, a plateau would count as �rugged�terrain due to
its elevation, even though it does not display characteristics favorable to rebel warfare.
Secondly, being expressed as a proportion of the country�s territory, it is arguably mea-
sured at the wrong scale: unless the rebels indeed operate on the mountainous share of
the country, the magnitude of this share should not matter. Our measure should be an
improvement on both grounds.
We also include the distance from the closest navigable river - measured in km from

the cell�s midpoint - to capture the strategic importance of the location.

Climate data
Our main climate indicator is the Standardized Precipitation-Evapotranspiration

Index (SPEI), a recently developed multiscalar drought index (Vicente-Serrano et al.,
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2010). This is a departure from most of the con�ict literature, which so far has focused
on precipitation as the main climate indicator. One of the concerns with precipitation
as such is that it might not be an accurate measure of climate shocks impacting agri-
culture, since the impact of rainfall on the growing cycle of a plant depends also on the
extent to which water can be retained by the soil. This in turn depends on a variety
of factors, including most notably temperature, but also latitude, sunshine exposure,
wind speed. This information is incorporated in Potential Evapotranspiration (PET),
which is de�ned as the amount of water that could be evaporated and transpired if there
were su¢ cient water available. A way to take into account the di¤erent soil�s ability to
retain rainfall moisture is to consider a measure of precipitation corrected by PET. The
Standardized Precipitation-Evapotranspiration Index (SPEI) is such an index, which
considers the joint e¤ects of precipitation and temperature. Given its multiscalar nature
and its ability to incorporate the joint e¤ects of precipitation and PET, it represents
an improved alternative to more widely used indexes such as the Palmer Drought Index
or Standardized Precipitation. Details on the calculation of SPEI are provided in the
Appendix.
Vicente-Serrano et al. (2010) use data on temperature and precipitation from CRU

TS3.0 as inputs into SPEI. However, CRU TS3.0 relies on gauge data and this has
some shortcomings in the context of our analysis. The �rst is that given the limited
number of stations present in Africa, a signi�cant amount of interpolation needs to be
done in order to produce the data at the �ne level of disaggregation we are using. This
interpolation may arti�cially generate patterns of spatial correlation in weather shocks,
thus hampering our ability to estimate the �true�extent of interdependency. The second
potential problem is that the availability of gauge data may itself be endogenous to
con�ict.
To deal with the above problems we chose to manually re-calculate the SPEI in-

dex feeding in the formula data on temperature, precipitation, and other atmospheric
variables during 1979-2011 all drawn from the ECMWF ERA-Interim dataset (Dee et
al., 2011).8 The ECMWF ERA Interim archive provides re-analysis data available at a
variety of grid resolutions, and with temporal resolution of up to 6 hours, for the period
1979-2011. Data are elaborated starting from high-frequency observations from a variety
of sources, including weather stations, satellites and sondes. ERA Interim is considered
a very high quality dataset, and represents a signi�cant improvement over gauge data
in areas with sparse weather stations like Africa.
SPEI will be our main explanatory variable of interest for what concerns climate,

8A previous version of the paper featured the SPEI series as originally proposed by Vicente Serrano
et al. (2010). Results are available upon request.
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because it encompasses all the above mentioned features of climate and of the terrain
which are relevant for agricultural production. The SPEI index is expressed in units
of standard deviation from the average based on the available period (1979-2011). The
data is �tted to a Log-logistic distribution and normalized to a �exible multiple time
scale such as 1, 4, 6, 12, 24, 48 months, etc. A short (say, 4 months) time scale re�ects
short- and medium-term moisture conditions and thus provides a seasonal estimation of
precipitation as it is relevant for agriculture. For this reason we use SPEI at a 4 months
time scale.9

We also consider precipitation and temperature individually, both drawn from ECMWF
ERA-Interim. In particular, in order to capture the relevance of the most extreme tem-
perature values (see e.g. Burgess et al., 2011), we construct a �temperature deviation�
variable as follows. For each cell we compute the historic average over the sample 1979-
2011 of the monthly daily mean temperature; then for each month we take the absolute
deviation of the monthly daily mean temperature from this historic average; �nally we
average this monthly measure over the year.
For our exercise using future climate projections, we draw monthly projected values

of precipitation and temperature during 2012-2030 under a medium emissions scenario
from the CORDEX Archive, which provides gridded climate projections at a 0.44 de-
gree resolution. In particular we use monthly total precipitation, monthly maximum
and minimum daily temperatures under the CAN-ESM2 model, developed within the
framework of CMIP5, under a midrange-mitigation emissions scenario (RCP4.5).

Crop calendars and crop-speci�c climate shocks
A key feature of our analysis is that we do not con�ne our measurement of climate

indicators to aggregates over the year, but we try to identify periods within the year
during which climatic conditions impact agricultural production the most. In particular,
we construct speci�c indicators for climatic conditions during the growing season, which
is when crops are most sensitive to unfavorable conditions. To retrieve the growing
season of the main crop (ranked by harvested area) cultivated in each cell we rely on
crop calendars drawn from a variety of sources.
As a primary source we use the Global Monthly Irrigated and Rainfed Crop Areas

around the year 2000 (MIRCA 2000), prepared by the Physical Geography Department
of the Goethe Universität Frankfurt am Main. This is a dataset of monthly growing
seasons of 26 irrigated and rainfed crops at di¤erent latitudes and longitudes, with a
spatial resolution of 5 arc-minutes by 5 arc-minutes. It is our preferred source given
that it disaggregates by irrigated and rainfed crops - which we focus on - , and given its
high spatial resolution.

9Our results are robust to di¤erent time scales. Results available upon request.
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For the crops and cells not covered by MIRCA, we turn to two complementary
sources, which both report crop calendars at the country level. The �rst are those
generated with the FAO Food security and Early warning Network for Information
eXchange Workstation (FENIX) Crop Calendar tool. The FENIX tool indicates for
various crops and countries the planting and harvesting season. We de�ne the growing
season as the months comprised between planting and harvesting. Our second source
are the FAO Seeds and Plant Genetic Resources Crop Calendars.
We construct measures of crop-speci�c climate shocks by matching our monthly

climate data with the calendars of the main crops cultivated in each cell, thus creating
cell-speci�c measures of �relevant�climatic conditions.
Our benchmark indicator of climate shock, denoted as SPEI Shock Growing Season,

captures low SPEI episodes occurring during the growing season of the main crop of a
given cell. It is de�ned at the cell-year level as follows: in a given year, consider the
growing season months of the main crop; take the number of consecutive growing season
months in which SPEI was below its mean by more than one standard deviation; express
this measure as a fraction of the number of growing season months.10 The value of SPEI
Shock Growing Season thus ranges between 0 and 1, with 0 denoting a �good� year
in which never during the growing season of the main crop SPEI assumed abnormally
low values, and 1 denoting a �bad�year in which the entire growing season witnessed
abnormally low values of SPEI.
For di¤erent climate indicators - rainfall and temperature absolute deviation - we

also de�ne �Growing Season-adjusted indicators� constructed as follows: we compute
monthly interactions between a growing season dummy and the monthly climate in-
dicator, and we average these monthly interactions over the year. This amounts to
computing a weighted average of monthly rainfall or temperature absolute deviation
assigning a weight 0 to months outside the growing season of the main crop.

3.2 Descriptive statistics

Descriptive statistics are reported in Table 1. Panel A reports statistics at the cell level
for the cross-sectional estimates we will perform in Table 2; Panel B instead reports
statistics at the cell/year level for the balanced panel used in the rest of the analysis.

[Insert Table 1]
10In case there are more than one consecutive spell of low SPEI during the growing season in a given

year, we consider the longest spell. Our results are robust to considering instead the �rst spell in the
year. Note that SPEI is already expressed as standard deviations form the cell�s historic mean over the
whole available period 1979-2011. For the purpose of de�ning our variable, we re-normalize it based on
the mean over our sample period, which is slightly lower than the historic mean.
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Cell level incidence of con�ict is very high: the average cell in our sample has expe-
rienced con�ict episodes for 17% of the years in our full panel, which means 2:5 years.
The territory in our sample appears to be mineral rich, as 21% of the cells have at least
one mineral deposit, and on average moderately elevated, with an average elevation of
315 meters. Ethnic fractionalization also appears to be high, with an average cell-level
ELF index of 20%. We include among our cross-sectional controls a �shared�dummy
for cells which do not belong entirely to one country, but contain a country border; these
cells are about 25% of our sample. The dummy �border�, on the other hand, identi�es
cells whose edge coincides with a state border (about 5% of our sample).

[Insert Figures 1 to 5]

In Figures 1-5 we map some of our key variables, to have a sense of the within-country
variation in our covariates. Figure 1 shows cell-level con�ict prevalence, reporting the
fraction of years during 1997-2011 in which the cell experienced at least one con�ict
event. Con�ict appears to be clustered in space, and in particular the con�ict clusters
in the Great Lakes region and in West Africa are very apparent. Overall, areas in the
tropical belt appear to have experienced more con�ict, which could induce a positive
spurious correlation between rainfall levels and con�ict incidence. Our climate shock
indicator, which considers deviations from the cell historical mean, helps address this
problem.
Figure 2 plots average rainfall levels, which as expected are higher at the tropics and

display a strong spatial correlation. Figure 3 plots the average SPEI index. Although
it also appears to be spatially clustered, it displays much more local variation than
rainfall, suggesting it might be a better explanatory variable. The plot substantiates
the claim that SPEI incorporates distinct information from rainfall. Figure 4 shows the
historic mean of the absolute temperature deviation. Again, considerable within-country
variability appears in temperature deviations from the cells�historical mean.11

Finally, in Figure 5 each cell is associated with a color corresponding to the main crop
cultivated in the cell. The map shows that a wide range of crops are cultivated in our
sample, and there is considerable variation in their spatial distribution. This suggests
that focusing on the growing season of one crop �representative� of the whole Sub-
Saharan African continent would provide a very limited picture of the true cultivation
pattern. Indeed we can derive signi�cant variation across cells and across months in
climate measures thanks to variation in the growing seasons of di¤erent crops.

11In the Appendix we report, for comparison, �gures 2, 3, and 4 constructed considering climate
indicators in a given year (2000) rather than their sample average.
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4 Empirical results: cross section

In this section we explore the empirical determinants of civil con�ict starting with time
invariant characteristics such as geography and location of mineral deposits. Our interest
in conducting this type of analysis hinges on two factors. First, despite the limitations
of cross-sectional inference, the high level of spatial resolution of our data limits the
concerns related to state-wide unobservable determinants of con�ict and allow us to
pin down the relationship between each factor and the location in which con�ict occurs
with more con�dence. Second, the data exhibits spatial dependence, in the sense that
geographic features in a given cell may a¤ect not only the cell itself but also neighboring
cells. This is something that we can test and that potentially yields interesting insights
on the interdependence among neighboring locations in the di¤usion of con�ict.

[Insert Table 2]

Our cross-sectional evidence is presented in Table 2. The table reports OLS coef-
�cients and standard errors in parentheses corrected for spatial dependence following
Conley (1999). The dependent variable captures average con�ict incidence and is the
fraction of years during the sample period in which the cell has experienced at least one
con�ict event. The mean and standard deviation of this variable are, respectively, :17
and :25.
In columns 1 and 2 we consider �own�characteristics of the cell (Model I), in columns

3 and 4 we also include characteristics of the neighboring cells (Model II) and in columns
5 and 6 (Model III) we estimate a spatial lag model in which we further include a spatially
autoregressive component to capture direct con�ict spillovers across neighbors. Neigh-
bors are de�ned according to our benchmark weight matrix as cells whose midpoints lie
within 180 km from the midpoint of the own cell. Columns 1, 3 and 5 report the coef-
�cients of a purely cross-sectional regression without area �xed e¤ects. In columns 2, 4
and 6 we instead include country �xed e¤ects (and their spatial lags, for columns 4 and
6). The speci�cations that include country �xed e¤ects are our preferred ones because
our focus is on within-country variation in the incidence of con�ict, and by including
country �xed e¤ects we account for time-invariant aspects of the political, economic or
social structure of the states in our sample, as well as for state-level geographic features,
e.g. country size.
Let us consider �rst own characteristics of the cell. The �rst set of controls we include

measure geo-administrative characteristics: Shared is a dummy for whether a cell belongs
to more than one country, and Border is a dummy for whether a cell�s side is tangent to
a country border (the two are mutually exclusive). The idea is that cells which are at the
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border with other countries may be more likely to experience con�ict. The coe¢ cient for
Shared is positive and signi�cant in all speci�cations, consistent with this hypothesis.
The Border coe¢ cient, on the other hand, is statistically indistinguishable from 0. The
third control listed in the table, Area, measures the area of the cell corresponding to
land, to account for coastal cells which correspond mostly to sea. The coe¢ cient of this
variable is virtually zero in all speci�cations. We next move to geographic characteristics
of the terrain. The �rst, Elevation, measures the average altitude of the cell (in mt.). Its
coe¢ cient is always negative and signi�cant, indicating that locations at higher altitudes
are on average less prone to con�ict. Our second proxy for geography, the variable Rough,
is the standard deviation of elevation in the cell, and thus captures the roughness of the
terrain. This variable is strongly and signi�cantly correlated with con�ict incidence.
A one-standard deviation increase in roughness increases con�ict incidence by :043 in
column 6 - our preferred speci�cation, that is one fourth of the mean of the dependent
variable. This con�rms a relationship which has been previously highlighted in cross
country studies, starting with Fearon and Laitin (2003), and which is usually attributed
to the fact that impervious areas provide safe havens for rebels.
We next consider the variable Distance to river. This is the minimum distance (in

km) of the centroid of the cell from a navigable river. The negative coe¢ cient of this
variable in columns 1-2 and 5-6 suggests that areas further away from navigable rivers
tend to experience less con�ict. This could depend on the fact that these areas are
more controlled by local governments or simply less prosperous in the long run, so that
they are less appealing for predation purposes. This is also consistent with �ndings by
Gleditsch et al. (2006), who note that the presence of a shared river basin is associated
to higher con�ict risk.
Transport infrastructure plays a signi�cant role, as con�rmed by the coe¢ cient of

the variable Road, which is a dummy equal to one if the cell contains at least one road
of �primary use�(as de�ned by the Global GIS Atlas). The coe¢ cient of this variable
is around :10 across the various speci�cations, remaining highly signi�cant in all cases.
The magnitude of the e¤ect suggests that the presence of a road in the cell increases the
fraction of years with con�ict by :4 standard deviations. One possible interpretation is
that areas served by main roads are easier to reach for the purpose of attacks. Another
interpretation is again that the long terms bene�ts of capturing those areas are higher
compared to areas not covered by main roads.
We next turn to some of the channels more widely explored in the cross country

literature. The �rst is linked to the literature on ethnic fractionalization. We compute
an equivalent of the ELF index in which we use, rather than population shares of di¤erent
ethnic groups, the relative territory shares occupied by each group as reported by the
GREG dataset, after having normalized these shares by the total inhabited land in
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each cell. This is a proxy for the degree of ethnic diversity in the cell, which may be
associated with �grievance�motives for con�ict. The average cell in our sample has
2 ethnic groups, with an ELF of 0:2. The coe¢ cient of this variable is positive and
signi�cant in virtually all regressions, with a magnitude ranging from :04 to :08: This
implies that a one standard deviation increase in ELF on average is associated with a 1
to 2 percentage points higher fraction of years with con�ict, a 5 to 10 percent e¤ect.
The second channel is linked to the natural resource curse. The variable Minerals

is a dummy equal to one if the cell contains at least one mineral deposit (21 percent of
the cells in our sample have at least one such deposit). Ceteris paribus, the presence
of minerals in the cell is associated with a signi�cantly higher incidence of con�ict, in
the order of about one fourth of a standard deviation of the dependent variable. This
coe¢ cient is very stable in terms of size and signi�cance across speci�cations. The e¤ect
of this variable can be explained in two (non-mutually exclusive) ways. On the one
hand, there can be �greed�motives, as competing forces may try to capture territory
that promises high revenue from mineral extraction. On the other hand, control over
mineral resources yields a �ow of cash revenue that rebels and government can use to
�nance their military activities.12

Let us now turn to neighbors�characteristics, represented by the spatial lags of the co-
variates considered above. Most neighbors�characteristics are statistically insigni�cant,
suggesting, in general, that the impact of the geographic characteristics discussed above
is a strictly local one. Having a neighbor that is bordering another state is associated
with more con�ict in columns 5 and 6, possibly due to separatist con�icts.
Finally, let us consider con�ict spillovers. The autoregressive term in columns 5 and 6

appears highly signi�cant and goes from :047 when we do not include country �xed e¤ects
to :024 when we do. Based on the latter (more conservative) estimate, a cell that had
one of its neighbors experiencing con�ict for the entire sample period experiences con�ict
for 2:4 percent more of the years, which is 1=10 of a standard deviation. Considering
that the average number of neighboring cells in our sample is 7:4, a cell surrounded
by neighbors all of which had con�ict throughout the period would be in con�ict 18
percent more of the time, that is :7 of a standard deviation, and would imply doubling
the fraction of years in con�ict compared to the mean. Note that, however, this analysis
employs a de�nition of con�ict prevalence with no time variation: this should only be
taken as suggestive evidence that con�ict spillovers in space are relevant, as only the

12According to the theoretical literature there is a third, indirect channel through which mineral
wealth can fuel con�ict, i.e., by increasing rent-seeking and corruption phenomena, which weaken states
and their ability to e¤ectively govern and maintain security. This third e¤ect, though, is not captured
at the scale of our study, as it is mediated through a country�s institutions (which in our study are
partly controlled for by the inclusion of country dummies).
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panel analysis can provide adequate estimates of both temporal and spatial spillovers.
Overall, our cross-sectional analysis suggests that geographic characteristics have a

strictly local e¤ect, especially terrain ruggedness and presence of mineral endowments,
and that cross-cells con�ict spillovers are potentially very relevant.

5 Empirical results: panel

We next turn to the analysis of climatic factors as determinants of con�ict. For this
purpose we exploit the rich temporal dimension of the data and conduct the analysis
at the cell/year level. Our dependent variable becomes ANY EVENT t, a dummy equal
to one if the cell experienced at least one con�ict event during year t. We consider
three models: a non-spatial, static model (Model I), in which we include climate shocks
in the own cell only; a non-autoregressive, spatial static model (Model II), in which
we consider climate shocks both in the own and neighboring cells; and a fully spatial,
dynamic Durbin model (Model III) in which we also include two autoregressive terms:
a spatial lag of the dependent variable, to capture contemporaneous con�ict spillovers
over space, and a temporal lag, capturing temporal con�ict persistence in the own cell.
The �rst two models are estimated by OLS, with standard errors corrected for spatial
and temporal correlation, while the third model is estimated by MLE. All regressions
include country and year �xed e¤ects, plus the controls listed in Table 2; Models II and
III include the spatial lags of controls and country �xed e¤ects; these coe¢ cients are not
reported for ease of exposition.
We will �rst present our benchmark speci�cation, in which we highlight the relation-

ship between cell-speci�c weather shocks and con�ict, accounting for spatial dependence.
We then consider two important issues arising in spatial econometrics: the choice of the
weighting matrix and the choice of scale. We then turn to alternative climate indicators,
and �nally we attempt an analysis disaggregated by type of con�ict event.

5.1 Benchmark estimates

[Insert Table 3]

Table 3 contains our main results. The regressor of interest is SPEI Shock Growing
Season, de�ned as the fraction of the main crop�s growing season during which SPEI was
below its cell-level mean by one standard deviation or more. As explained in Section 4,
the SPEI index considers the joint e¤ects of precipitation, potential evapotranspiration
and temperature, higher values of this index corresponding to higher levels of �e¤ective�
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rainfall. In our speci�cations we also control for standalone SPEI, which in this speci�-
cation captures the impact of SPEI in months outside the growing season of the main
crop. The �rst and second temporal lag are included for all climate indicators.
In column 1 SPEI Shock Growing Season displays a strong, highly signi�cant corre-

lation with con�ict, both contemporaneous and in its two temporal lags, indicating that
spells of low SPEI during the growing season are associated with more con�ict. The
impact of the standalone SPEI variable is not signi�cantly di¤erent from zero, with the
exception of the �rst lag which is marginally signi�cant at the 10 percent level (but this
does not survive the inclusion of spatial and temporal lags of the endogenous variable in
column 3). This is consistent with the idea that climatic conditions during the growing
season are those which matter the most for agriculture. The speci�cation in column 1,
however, fails to take into account spatial and temporal correlation; this could create
omitted variable bias.
We then turn to Model II (column 2), which addresses the issue of spatial correlation

in the covariates by including spatial lags of all the independent variables. In this
speci�cation, the contemporaneous SPEI Shock Growing Season remains positive but
loses statistical signi�cance, while the �rst and second lags are una¤ected both in size and
in signi�cance. The fact that con�ict responds with a one and two year lag is consistent
with the kind of temporal persistence highlighted in cross country studies (e.g., Ciccone,
2011). Interestingly, shocks to neighboring cells have a precisely estimated zero e¤ect
on own cell con�ict, pointing to a strictly local direct e¤ect of weather shocks.
Although Model II controls for climatic conditions in the surrounding cells, it may

still su¤er omitted variable bias from not including autoregressive components of the
dependent variable. We address this issue in column 3 (Model III). First note that
including autoregressive components tends to reduce the magnitude of the coe¢ cients
estimated in Model II, but only to a minor extent: the coe¢ cients of the �rst and
second lag of SPEI Shock Growing Season in the own cell go from �:05 to �:04 and
retain signi�cance at the 5 percent level. A spell of SPEI below one standard deviation
throughout the whole growing season is associated to a 4 percentage point increase in
con�ict likelihood in the subsequent year, and a further 4 percentage point increase in
the year following that; this is roughly one fourth of the mean of the dependent variable
each year. The combined direct e¤ect of a shock over three years is :09; that is over half
of the mean. The e¤ects are thus quite sizeable.
Con�ict spillovers, both in time and space, appear to be very signi�cant. Con�ict in

the own cell is associated to a 33 percentage point increase in the probability of experi-
encing con�ict the following year. Contemporaneous con�ict in one of the neighboring
cells induces a 4:5 percentage point increase in the probability of experiencing con�ict
in the cell itself. Given that according to our de�nition of contiguity matrix the average
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cell in our sample has 7:4 neighbors, this means that con�ict in all of the neighbors
induces a 33 percentage point increase in the probability of con�ict in the average cell
itself. Overall it seems that temporal persistence within cells is more relevant than con-
temporaneous spatial spillovers across cells, although the spatial spillovers are sizeable
and signi�cant.
In Section 5.6 we discuss how the total impact of climate shocks, including the

feedback e¤ects through con�ict in neighboring cells, can be quanti�ed. In the next
section we explore the sensitivity of our estimates to di¤erent choices of spatial weighting
matrix.

5.2 Sensitivity to distance and spatial resolution

[Insert Table 4]

Just as in time series the structure of temporal dependence is assumed by the re-
searcher and is not estimated, so is the structure of spatial dependence - encompassed
by the spatial weighting matrix - in spatial econometrics. The most popular choices for
spatial weighting matrix are binary contiguity matrices, like the one we employ in our
benchmark, or matrices based on the inverse geographic distance, linear or squared. In
our case binary matrices seem the most appropriate given the structure of the grid, as
we do not have a continuous measure of distance from the centroid of the cell but rather
a step-wise distance function that changes when we move from one cell to the next. In
Table 4 we thus re-estimate the speci�cation of column 3 in table 3 using di¤erent binary
contiguity matrices.
Column 1 reports our benchmark estimates for the sake of comparison. In columns

2, to 4 we estimate our model using binary contiguity matrices with di¤erent distance
cuto¤s: 290, 450 and 600 km. A 290 km distance cuto¤ implies that we are potentially
considering as a cell�s neighbors not only the 8 adjacent cells but also the next immediate
circle of adjacent cells, and increasing it further to 450 we add yet another circle. Finally,
with a cuto¤ of 600 km, we are considering a large, approximately circular area around
the reference cell. With distance cuto¤s of 290, 450 and 600 km the average number of
neighbors for each cell is respectively 18, 44 and 81.
When we increase the radius of our distance matrix the coe¢ cient on the �rst tem-

poral lag of SPEI Growing Season Main Crop becomes increasingly smaller and loses
signi�cance; on the other hand the coe¢ cient on the second lag appears remarkably
stable in size and signi�cance. The temporal autoregressive coe¢ cient is also very stable
around the value of :33; and signi�cant at the 1 percent level in all speci�cations.
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On the other hand, as expected, the choice of weighting matrix does a¤ect the coe¢ -
cients of the spatially lagged variables. In particular, the spatial autoregressive coe¢ cient
(the coe¢ cient on W � X) is most signi�cantly a¤ected by changes in the de�nition of
neighborhood, decreasing in magnitude as we increase the distance cuto¤. This reveals
that as we broaden the de�nition of neighbors, the contribution of each individual neigh-
bor becomes smaller, which is intuitive: as we add neighbors further away from the cell,
and presumably with a smaller absolute impact on con�ict in the reference cell, the
impact of the average neighbor is driven down.
Overall this analysis seems to suggest that own e¤ects are quite stable as we change

the de�nition of weighting matrix. Since our focus is on the local dimensions of con-
�ict, we choose as our benchmark matrix one with a relatively restrictive de�nition of
neighbors, i.e. the 180 km radius which corresponds to the adjacent cells.

Another critical speci�cation issue arising when dealing with spatial data is the so-
called Modi�able Areal Unit Problem (MAUP), a well-know phenomenon in spatial
analysis. It is de�ned as �a problem arising from the imposition of arti�cial units of
spatial reporting on continuous geographical phenomenon resulting in the generation of
arti�cial spatial patterns� (Heywood et al., 1998). The MAUP consists of two com-
ponents: one is a scale problem, which is the variation in numerical results occurring
due to number of zones used in analysis, and hence the possibility of obtaining di¤erent
results for di¤erent resolutions; the other is an aggregation problem or zonation e¤ect,
which refers to which zoning scheme is used at a given level of aggregation. Although
not eliminable, this problem is mitigated when the units of observation are equal-sized
cells rather than administrative units of di¤erent sizes: at that point, the zonation ef-
fect will be minimal, even though a scale e¤ect nevertheless exists. Despite the lack
of general solutions, a simple strategy to deal with the problem, is to undertake the
analysis at multiple scales or zones. In Table 5 we repeat our analysis for larger scales
of aggregation: 2 by 2 and 3 by 3 degrees cells.

[Insert Table 5]

First we construct �macro-cells�of 2 by 2 degrees composed by aggregating 4 of our
1 by 1 original cells. This new, lower-resolution grid can be constructed in 4 di¤erent
ways depending on where the �macro-cells�are centered. We run our benchmark Table
3 speci�cation in each of these four possible grids. We use a binary contiguity matrix
with a 390 km cuto¤, so that each macro-cell�s neighborhood is formed by the 8 adjacent
macro-cells. In Panel A of Table 5 we report the average coe¢ cients and average standard
errors obtained from running our Model I and Model III benchmark in the four di¤erent
grids. We also report the standard deviation of each estimated coe¢ cient across the four
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grids, to have a sense of how sensitive the results are to the centering of the macro-cells.
We repeat this kind of analysis for an even lower resolution, by constructing a panel of
3 by 3 degrees cells. In this case the new grid can be centered in 9 possible ways. Panel
B of Table 5 reports the results of the analysis in those 9 panels. The binary contiguity
matrix in this case has a cuto¤ of 490 km, so that each macro-cell�s neighborhood is
formed by the 8 adjacent macro-cells.
The analysis highlights the following patters. First, the centering of the grid does

not seem to a¤ect the results in a very signi�cant way, as shown by the low standard de-
viation of the estimated coe¢ cients across grids. This indicates that the zonation e¤ect
is limited when using the �grid�approach. This is an important robustness check which
we can conduct at these lower resolutions and not with our original 1 by 1 cells - in that
case the grid cannot be re-centered due to constraints in data availability. Secondly,
changing the resolution does not a¤ect the sign of the relevant parameter estimates, but
a¤ects the magnitude: the coe¢ cients of own cell covariates appear to increase in mag-
nitude as the resolution decreases. This e¤ect is documented in the MAUP literature
(Fotheringham and Wong, 1991): the correlation coe¢ cient for variables of absolute
measurement typically increases when areal units are aggregated contiguously. The rea-
son is that the aggregation process involves a smoothing e¤ect, by averaging the relevant
variables, so that the variation of a variable tends to decrease as aggregation increases.
When the variances of X and Y variables decrease, the correlation coe¢ cient will in-
crease if the covariance between X and Y is relatively stable. Finally, the statistical
signi�cance of the relevant covariates tends to decrease at intermediate resolutions - this
is especially apparent in Model III estimates. This possibly re�ects a trade-o¤ between
estimating the �true�model (which we hypothesize is at higher resolution) and the fact
that aggregation implies smoothing, hence less noise.

5.3 Other climate indicators

We next turn to other potential climate indicators that have been employed in the cross
country literature. The �rst is a crude measure of rainfall, measured in logs of yearly
values (in millimeters), and the second is Temperature Absolute Deviation, which is the
absolute deviation of the temperature from the historical mean for the cell. For each
of these two climate indicators, we compute a �Growing Season Indicator�obtained by
averaging the monthly values of the variable only over the growing season of the main
crop. Table 6 reports Model I, II and III speci�cations in which we include both the
standalone climate measure and the corresponding growing season indicator for rainfall
(cols. 1 to 3) and temperature (cols. 4 to 6).
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[Insert Table 6]

In columns 1 to 3 the coe¢ cients on rainfall are typically insigni�cant, which runs
against the �ndings in the cross country literature. While apparently surprising, this
result is easily understood when considering the patterns of rainfall in Figure 2 and
con�ict in Figure 1. Average rainfall is in fact high at the tropics and exhibits relatively
less within country variation compared to SPEI (see, e.g. Figure 3). This generates a
positive correlation between rainfall and con�ict that may counterbalance the negative
relationship implied by some of the theories. Furthermore, simply measuring rainfall
fails to take into account di¤erences in temperature, soil, and other conditions that may
be crucial in terms of e¤ects of climate on agricultural production.
Turning to temperature, there is some evidence from columns 1 and 2 that (lags

of) temperature shocks during the growing season increase the likelihood of con�ict,
consistent with Burke et al. (2009). However this e¤ect appears non-signi�cant once we
account for intertemporal persistence and spillovers in Model III (col. 6).
The above results seem to suggest that neither rainfall alone nor temperature alone

adequately capture the local level relationship between con�ict and climate. For this
reason we prefer the SPEI index, which captures the combined e¤ects of precipitation and
potential evapotranspiration, which in turn depends on temperature as well as latitude,
month of the year, number of sun hours, etc.
In Appendix Table A1 we show two alternative SPEI-based indicators: standalone

SPEI and a continuous measure of SPEI during the growing season. In column 1 stand-
alone SPEI has the expected negative sign, but it is no longer a signi�cant con�ict
predictor once spatial lags are included (columns 2 and 3), suggesting that indeed what
matters are climatic conditions during the relevant growing season. In columns 4, 5
and 6 we show an alternative indicator of SPEI over the growing season, computed by
averaging monthly SPEI over growing season months for the main crop. Unlike our
benchmark indicator, this measure is not con�ned to severe SPEI negative shocks. Our
estimation results indicate that low SPEI over the growing season is associated with
more con�ict, but the predictive power of this indicator is inferior to our benchmark one
(only the �rst lag is statistically signi�cant).

5.4 Di¤erent types of con�ict events

We now turn to a disaggregation of con�ict events into four di¤erent types, based on
the ACLED classi�cation. The dummy BATTLE is equal to 1 when a cell/year has
experienced a battle of any kind, either one where control of the contested location
does not change, or one where the government or the rebels take control of a location
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previously occupied by the other contestant. The dummy CIVILIAN captures violence
against civilians, de�ned in ACLED as instances where �any armed group attacks un-
armed civilians within a larger con�ict�. This is the type of event most closely related to
possible predation motives. A third type of event is riots and protests (dummy RIOT ),
i.e. instances in which �a group is involved in a public meeting against a government
institution.�Finally, ACLED also codes rebel activities such as the establishment of a
base or headquarter (which can be non-violent) as well as recruitment drives and in-
cursions (dummy REBEL). This is the variable where we should expect to �nd e¤ects
according to theories that stress rebel recruitment and the opportunity cost of �ghting
as an underlying rationale for the link between rainfall shocks and con�ict. Summary
statistics for these dependent variables, reported in Table 1, indicate that the average
frequency of these events in the cell/years in our sample is :10 for battles, :10 for vio-
lence against civilians, :06 for riots and :03 for rebel recruitment. The last class of events
is thus relatively rare, which limits the power of the speci�cations we estimate in this
section, yielding relatively noisier estimates.

[Insert Table 7]

In Table 7 we estimate a series of cross-sectional regressions (Models I, II and III)
along the lines of what we did in Table 2, but the dependent variable is now disaggregated
according to the type of con�ict event: battles in columns 1-3, violence against civilians
in columns 4-6, riots in columns 7-9 and rebel recruitment in columns 10-12. The
following patterns can be detected.
First, the coe¢ cient of spatial autoregressive term (Model III) is positive and highly

signi�cant for all dependent variables except riots, suggesting that spatial spillovers exist
for most types of events. Second, characteristics such as rough terrain, the presence of
roads and mineral endowments positively correlate with all types of events. Third,
other characteristics impact di¤erentially the di¤erent types of events. One example is
the variable Shared, which identi�es cells that contain a country border. This variable
has a positive and signi�cant impact on rebel recruitment, on the occurrence of battles
(likely for the control of territory) and on violence against civilians, but no impact on
riots.

[Insert Table 8]

We next turn to the e¤ect of climate shocks on di¤erent con�ict events using panel
data. In Table 8 the coe¢ cients of the autoregressive terms, both in space and time, ap-
pear to be remarkably similar for battles, violence against civilians and rebel recruitment.

30



The coe¢ cients in the riots regression display relatively more persistence in time than in
space, suggesting that violent episodes are more likely to spill over in space compared to
non-violent ones. The coe¢ cients on own climate shocks point in the same direction as
the results we obtained for the aggregate dependent variable, i.e. years with long spells
of low SPEI during the growing season are associated with more battles, more violence
against civilians and more riots. The estimates are not signi�cant for rebel recruitment
(columns 10-12). This is to some extent surprising if one considers prominent theories
based on the low opportunity cost of rebel recruitment during economic downturns. At
the same time this dependent variable may be particularly prone to measurement error,
e.g. because recruitment activities more easily go undetected compared to battles or
violent events � and indeed according to ACLED rebel recruitment only occurs in 3
percent of the cell/years in our sample.

5.5 Impact magnitude and projections

One of the features of our benchmark speci�cation (Model III) is that a one-time shock
propagates in time and space feeding back into the process through autoregressive terms.
For this reason, the impact of a covariate X in a given cell on the dependent variable
Y in that same cell is not entirely captured by the parameter estimates from equation
(3). For instance, the coe¢ cient 0:04 from Table 3 should be interpreted as the direct
impact of a SPEI growing season shock on next period�s con�ict incidence in the own
cell. However, a shock in the own cell a¤ects also con�ict in neighboring cells, which in
turn a¤ect contemporaneous con�ict in the own cell through the spatial lag term. As a
result, current con�ict in the own cell is ampli�ed. Moreover, the e¤ects of a one-time
shock to our main explanatory variable will persist in time, due both to the temporal
autoregressive term in time and to the fact that two lags of the explanatory variables
are included in the speci�cation. Finally, all these impacts will propagate in space, due
to the spatial lag terms. With such a speci�cation it is therefore not immediate to see
what the total e¤ects of a one time shock can be both in the own cell as well as the
neighboring cells.
In order to get a more precise quantitative assessment of the overall impact of the

shock on con�ict we conduct an exercise similar in spirit to the evaluation of an impulse
response: we consider Model III and start with a setting in which all explanatory vari-
ables and prior con�ict are set to 0; we then provide a hypothetical cell with a one-time
SPEI Shock Growing Season equal to 1 - corresponding to a year with an entire growing
season a¤ected by drought -, while leaving to 0 all other covariates both in the own and
the neighboring cells; �nally, we use the coe¢ cients estimated in Table 3 to track the
estimated marginal impact of this one-time shock on the dependent variable in subse-
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quent periods, leaving all other covariates to 0, in the own as well as the neighboring
cells. In Figures 6 and 7 we report the results of this exercise.

[Insert Figures 6 and 7 ]

Figure 6 plots the marginal impacts of the one-time increase in SPEI Shock Growing
Season on con�ict incidence in the 9 subsequent periods, in a hypothetical cell as well
as in its average neighbor, according to the 180 km cuto¤ de�nition. The blue line
represents the dynamic response of the own cell, whereas the red line represents the
dynamic response of an average neighboring cell. At t = 1 the one-time shock occurs
in the own cell. Con�ict in the own cell increases due to the direct e¤ect of coe¢ cient
�21 of equation (3), but this is ampli�ed by the fact that neighbors are a¤ected by the
current shock: their con�ict increases too - as can be seen from the neighbor�s impulse
response - and this feeds back into the con�ict of the own cell. These feedback e¤ects,
however, seem to be small: the total contemporaneous marginal impact is very close
to the 0:01 coe¢ cient estimated in Table 3. In the second and third period, although
no additional shocks occur, con�ict in the own cell still increases - indeed, the largest
marginal increase occurs in the third period. At time 3 the total marginal impact is
0:06, 2 percentage points higher than the estimated coe¢ cient of the variable SPEI Shock
Growing Seasont�2in Table 3. This ampli�cation results both from the the autoregressive
term in time and from the indirect feedback e¤ects through the neighbors. After period
3 the marginal e¤ects start fading away. As expected, the e¤ect of a SPEI shock on
neighboring cells is small: neighbors are a¤ected by the shock only through the spatial
lags of SPEI Shock Growing Season- whose estimated coe¢ cients are however close to
0 - and, more importantly, through the spatially autoregressive term. The response
of neighbors roughly mirrors that of the own cell at a much smaller scale. However,it
appears to be more persistent in time. The reason is that neighbors are adjacent to the
own, high-con�ict cell, which feeds in their own con�ict at each period.
Figure 7 reports the results of the same exercise, but focusing on space instead of

time. For time periods 1, 4, 7 and 10 we map on a grid of cells the di¤erent marginal
impacts of the one-time shock on di¤erent cells, depicting larger impacts with darker
shades. The cell which receives the one-time shock is at the center of the grid and is
marked by an x. In period 1 the own cell experiences the largest increase in con�ict
incidence, but the neighboring cells are a¤ected as well, although to a smaller extent.
The de�nition of neighbors allows only the 8 adjacent cells to be directly a¤ected by cell
x through their spatial lag terms. However, con�ict induced by the one-time shock to
cell x does propagate also to cells beyond those immediately adjacent, due to spillovers
from the immediately adjacent cells. Figure 7 shows how this propagation mechanism
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resembles that of a concentric wave: the closer a cell is to cell x, the sooner the cell is
contaminated, and the sooner the e¤ect will start fading away.

The exercise above illustrates how a one-time, arti�cial shock of magnitude 1 a¤ects
our dependent variable of interest over time. The same method can be used to feed in
the process actual shocks, which naturally occur at repeated time periods and locations,
and need not be of size 1. We apply this method to forecast marginal con�ict changes
induced by projected future shocks in SPEI. We repeat the procedure outlined above
feeding into the process forecasted values of SPEI Shock Growing Season, based on cell-
level climate projections for 2012-2030 from the CORDEX Archive. This allows us to
have a sense of how climate change will a¤ect con�ict likelihood, all else being equal
and under the assumption that the responsiveness of con�ict to SPEI shocks remains
constant in the future.
The �rst step in this exercise entails predicting future SPEI shocks. Given that

SPEI is by construction a standardized measure, with mean 0 and standard deviation
1 in the reference sample, simply recalculating the SPEI index with projected climate
data would yield an index which is not comparable with the one used in our 1997-2011
analysis. However, we can still use climate projections to construct an equivalent of our
SPEI Shock Growing Season measure for years 2012-2030. We do so by exploiting the
mapping between SPEI (which is standardized) and climatic water balance - the input of
SPEI, which is de�ned in absolute terms as precipitation minus PET (see the Appendix
for details). Recall that our SPEI Shock Growing Season variable is based on whether a
cell in a given growing season month experienced a level of SPEI less than one standard
deviation below its average 1997-2011. The threshold is the same for all cells in terms
of SPEI (i.e., one standard deviation), but this corresponds to di¤erent, cell-speci�c
thresholds in terms of water balance (say, threshold wc for each cell). Using projections
for future precipitation and temperature under a medium emission scenario, we compute
future projected water balance. In the 2012-2030 sample we then de�ne a SPEI shock
as occurring in months when projected water balance falls below the absolute threshold
wc estimated above. This is then aggregated over growing season months to construct
a measure equivalent to the one used in our 1997-2011 analyses.

[Insert Figures 8 and 9 ]

We �nd that, other things equal, shocks to SPEI occurring during the growing season,
as per de�nition of our main explanatory variable, should become more than twice as
frequent during the next 20 years. The average of SPEI Shock Growing Season - which is
0:10 in our 1997-2011 sample - becomes 0:25 in the 2012-2030 projected sample. Average
projected values of SPEI Shock Growing Season 2012-2030 are reported in Figure 8.
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From our exercise we obtain for each cell and year the marginal change in con�ict
incidence induced by SPEI growing season shocks. At a given point in time this marginal
change will re�ect both current and past shocks, both among neighbors and in the
own cell, due to the mechanisms we have discussed when commenting Figures 6 and
7. In Figure 9 we show these marginal changes in each cell, averaged over 2012-2030.
The shade in each cell represents the marginal increase in con�ict resulting from SPEI
Growing Season shocks, in an average year 2012-2030. The pattern clearly overlaps
with that in Figure 8, but there appears to be more smoothing over space - this is
expected and results from the propagation mechanism described above. The estimated
magnitudes are sizeable: in an average year, con�ict increases by 7 percentage points
due to SPEI shocks, with peaks in some cells above 20 percentage points. These large
magnitudes are found in cells which have a history of repeated SPEI shocks over the
years. Overall this suggests that future climate condition should have signi�cant e¤ects
on local con�ict incidence, all else being equal.

6 Conclusions

In this paper we conduct a spatially disaggregated analysis of the empirical determinants
of con�ict in Africa over the period 1997-2011. We exploit within-year variation in the
timing of weather shocks and in the growing season of di¤erent crops, as well as spatial
variation in crop cover, to construct an original measure of shocks that are relevant for
agricultural production. We �nd that negative weather shocks which occur during the
growing season of the main crops cultivated in the cell have a sizeable e¤ect on con�ict
incidence. We also use state of the art spatial econometric techniques to test for the
presence of temporal and spatial spillovers in con�ict, and we �nd both to be sizeable
and highly statistically signi�cant. These results indicate that caution should be exerted
when interpreting results of studies which do not incorporate spatial dynamics at all.
Finally, we use our estimates to predict potential future con�ict scenarios induced by
climate change, under the assumption that the responsiveness of con�ict to weather
shocks remains constant in the next two decades. We predict that under a midrange
emissions scenario severe shocks occurring during the growing season, as per de�nition of
our main explanatory variable, should become 2:5 times as frequent during the next two
decades. This in turn leads to an increase in average con�ict incidence of 7 percentage
points, according to our benchmark estimates.
Our �ndings indicate that con�ict risk does not a¤ect all the territory of a state in

the same way: the correlates of civil con�ict have a strong local dimension, and the
likelihood of con�ict likelihood is not constant in time nor in space, even within the
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same country. This seems to suggest that policy interventions, be them in the form of
monitoring, prevention or peacekeeping e¤orts, could be and should be targeted both
in space and time. Our �ndings may be especially relevant when assessing appropriate
policy responses to global warming scenarios. Given the link we trace between shocks
a¤ecting agricultural yields and con�ict risk, policies aimed at mitigating the e¤ects of
climate change on African agriculture may be particularly desirable. These include the
development of drought resistant crop varieties, as well as investment in irrigation and
schemes to improve soil water retention. On the other hand, complementary measures
to reduce the adverse impacts on incomes, such as weather-indexed crop insurance, also
constitute a valuable policy option.
Finally, given the increasing availability of high resolution data (e.g., gridded datasets)

and the growing number of research contributions that employ this data to address im-
portant development questions, our study can hopefully provide a number of insights
and methodological indications that are useful for future work.
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7 Appendix

7.1 Derivation of the likelihood for dynamic spatial panels13

Consider the following dynamic, spatial, random e¤ects model with N cross-sectional
units and T time periods:

yt = �yt�1 + �Wyt + iN�+ xt� + �t (1)

with �t = �t + "t, where yt = (y1t; ..., yNt)
0 is the N � 1 vector of observations for the

t-th time period, � is the intercept, iN is an N � 1 column vector of ones, xt is the
N � k matrix of non-stochastic regressors and � is an N � 1 vector of random e¤ects,
with �i � N(0; �2�). The random terms "t are i.i.d. with zero mean and a variance �2"IN ,
and � is assumed to be uncorrelated with "t: W is a row-normalized, symmetric N �N
spatial weighting matrix with zeros on the diagonal, whose eigenvalues are denoted as
$i; i = 1; :::; N . For simplicity spatial lags of the covariates are not explicitly included
in (1), but they could be part of matrix xt .
The basic idea is to remove the two sources of autocorrelation by combining two

transformations: a space �lter to remove the spatially autoregressive term and a time
�lter à la Prais-Winsten to remove the temporal autoregressive one.
De�ne �rst the space �lter as the N �N matrix

B = IN � �W (2)

To see how this transformation removes the spatial autoregressive term, suppose that
� = 0 and apply this �lter to equation (1):

Byt = iN�+ xt� + �t (3)

Now de�ne the time �lter as the T � (T + 1) matrix

C =

264 �� 1 0 ::: 0
...

. . . . . . . . .
...

0 ::: ::: �� 1

375 (4)

To see how this transformation removes the temporal autoregressive term, consider the
(T + 1) � 1 vector of observations for the i-th cross-sectional unit yi = (yi0; ..., yiT )0.
Similarly, let xi = (xi1; ..., xiT )0 be the T � k vector of covariates observed in the i-th
13This subsection draws upon Parent and Le Sage (2009).
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cross-sectional unit and �i = (�i0; ..., �iT )
0 a vector of errors. Further assume that � = 0.

Applying the �lter to yi one obtains:

Cyi = iT�+ xi� + �i (5)

Note that we are assuming that y0 is given. This considerably simpli�es the compu-
tational complexity of the estimation and has been shown to have little e¤ect on the
estimates when T is not too small.
The space-time �lter proposed by Parent and LeSage is given by the Kronecker

product of matrices C and B. Set Y = (y00; :::; y
0
T )
0 and X = (x01; :::; x

0
T )
0 and apply the

�lter to the entire vector of observations. One obtains:

(C 
B)Y = X� + iNT�+ � (6)

with � � N(0;
):
Since the random e¤ects are integrated out, the NT�NT variance-covariance matrix

can be shown to be equivalent to


 = �2�(JT 
 IN) + �2"[IT 
 IN ] (7)

with JT+1 = iT+1i0T+1:
This allows to write down the log-likelihood for the complete sample size of T for

the model de�ned in (1) as

lnLT (�) = �
NT

2
ln(2�)� 1

2
ln j
j+ T

NP
i=1

ln[(1� �$i)]�
1

2
�0
�1� (8)

where � = (�0; �; �2"; �
2
�; �; �):

7.2 The Standardized Precipitation-Evapotranspiration Index
(SPEI)

Most studies related to drought analysis and monitoring systems have resorted to the
Palmer Drought Severity Index (PDSI), based on a soil water balance equation, or the
Standardized Precipitation Index (SPI), based on precipitation. One of the limitations
of the PSDI index is its �xed temporal scale (between 9 and 12 months), and an autore-
gressive property by which PSDI values are a¤ected by the conditions up to four years in
the past (Vicente Serrano et al., 2010). Precipitation-based drought indices like SPI, on
the other hand, assume that temperature and potential evapotranspiration (PET) have
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negligible variability compared to precipitation. This makes such indexes unsuitable to
identify the role of global warming in future drought conditions.
Our manual recalculation of SPEI uses the R routines developed by Vicente Serrano

et al. (2010). Due to the probabilistic nature of the SPEI index, it is recommended
to use the longest sample possible in its computation. We thus consider use the entire
ERA-Interim available sample 1979-2011. The computation involves the following steps.

1) Compute climatic water balance, de�ned at the monthly level as the di¤erence D
between precipitation and potential evapotranspiration (PET).
Since no direct data on PET is usually available, SPEI is based on an approximation.

A number of equations exist to model PET based on available data. In our 1979-2011
sample we make use of the FAO-56 Penman-Monteith equation described in Allen et
al. (1998), which is recommended by FAO as the best method for determining reference
evapotranspiration. The original parameterization is used, corresponding to a short
reference crop of 0.12 m height:

PET=
0:408(Rn �G) + 
 900

T+273
u2(es � ea)

� + 
(1 + 0:34u2)

where Rn is the net radiation at crop surface, G is the soil heat �ux density, T is the
mean daily air temperature at 2m height, eS is saturation water pressure, ea is actual
vapor pressure, � is the slope of the vapor pressure curve and 
 is the psychometric
constant. Given that many of these inputs are seldom available, chap. 3 of Allen et
al. (1998) provides methods to compute the missing variables based on available data.
For instance, incoming solar radiation can be estimated based on sunshine duration
or percent cloud cover. Similarly, saturation water pressure can be estimated from
the dewpoint temperature. If unavailable, the atmospheric surface pressure required for
computing the psychrometric constant can be assumed to be constant. The inputs we use
to approximate the Penman equation in our 1979-2011 sample are: average temperature,
average maximum and minimum daily temperatures, dewpoint temperature, cloud cover,
sunshine duration and wind speed.
In our exercise with future climate projections, due to more limited data availability,

PET is approximated with the less demanding Hargreaves equation (Hargreaves, 1994).
For consistency, the water balance threshold for the de�nition of SPEI Shock Growing
Season in the 1997-2011 sample is obtained with a Hargreaves-based PET too. The
Hargreaves equation is

PET = 0:00203 �Ra � (
(Tmax + Tmin)

2
+ 17:8) � (Tmax � Tmin)0:5
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where Ra is mean external radiation, Tmax and Tmin are the mean daily maximum and
minimum temperature at 2m height. Mean external radiation is estimated from the
latitude and the month of the year.

2) The calculated di¤erenceD between precipitation and PET is aggregated at di¤er-
ent time scales, as done for the SPI. This is achieved by applying a kernel function to the
data, which allows incorporating information of previous time steps into the calculation
of the current step. We use a Gaussian kernel, allowing data from the past to have a
decreasing in�uence in the current step as the temporal lag between current and past
steps increases.

3) Finally, the time series is standardized according to a Log Logistic distribution,
whose parameters are estimated by the L-moment procedure. The probability distribu-
tion function of D according to the Log-logistic is

F (x) =

"
1 +

�
�

x� 


��#�1
SPEI is calculated as the standardized values of F (x): By construction it has mean 0
and standard deviation 1 in a given location over the entire sample period - in our case
1979-2011.
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Table 1: Summary statistics

A: Cross sectional sample
No. Obs. Mean Std Dev

Fraction of years with conflict 2669 0.171 0.252

Shared 2669 0.252 0.434

Border 2669 0.050 0.218

Area, in km
2

2669 10926.7 2577.3

Elevation, in m 2669 314.861 269.567

Rough 2669 0.093 0.102

Distance to river, in km 2669 628.0 476.1

Road 2669 0.241 0.428

Minerals 2669 0.210 0.408

ELF 2669 0.203 0.240

B: Panel sample

ANY EVENT 37425 0.170 0.376

BATTLE 37425 0.098 0.297

CIVILIAN 37425 0.098 0.297

RIOT 37425 0.056 0.231

REBEL 37425 0.029 0.168

SPEI 37425 -0.089 0.575

SPEI Shock, Growing Season 37425 0.105 0.188

SPEI Growing Season, Main Crop 37425 -0.022 0.362

Rain 37425 65.11 69.13

Rain Growing Season, Main Crop 37425 51.58 63.86

Temperature, abs dev 37425 0.782 0.203

Temperature abs dev, Growing Season, Main Crop 37425 0.332 0.320
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(1) (2) (3) (4) (5) (6)

W · Y 0.0467*** 0.0237***

(0.0039) (0.0045)

Shared 0.0463** 0.0379*** 0.0348*** 0.0273** 0.0492*** 0.0340***

(0.0180) (0.0128) (0.0129) (0.0118) (0.0116) (0.0099)

Border 0.002 0.0021 -0.0126 -0.0173 -0.0119 -0.0070

(0.0229) (0.0181) (0.0161) (0.0160) (0.0181) (0.0162)

Area
(a)

0.005 0.000 0.0037 0.0028 0.0033 -0.0008

(0.0031) (0.0025) (0.0047) (0.0049) (0.0020) (0.0023)

Elevation
(a)

-0.102*** -0.0705* -0.280** -0.337*** -0.0681*** -0.0759***

(0.0362) (0.0397) (0.125) (0.128) (0.0181) (0.0241)

Rough 0.480*** 0.377*** 0.235** 0.279*** 0.462*** 0.430***

(0.113) (0.106) (0.098) (0.0833) (0.0597) (0.0652)

Distance to river
(b)

-0.0068*** -0.0058** 0.0058 -0.0017 -0.0089*** -0.005**

(0.0025) (0.0027) (0.0046) (0.0043) (0.0013) (0.0019)

Road 0.101*** 0.0932*** 0.112*** 0.106*** 0.117*** 0.0949***

(0.0210) (0.0164) (0.0160) (0.0152) (0.0130) (0.0127)

ELF 0.0793** 0.0514* 0.0337 0.0393* 0.0735*** 0.0422**

(0.0325) (0.0265) (0.0233) (0.0225) (0.0216) (0.0201)

Minerals 0.0649*** 0.0616*** 0.0499*** 0.0486*** 0.0616*** 0.0560***

(0.0160) (0.0138) (0.0110) (0.0117) (0.0126) (0.0113)

W·Shared 0.00231 -0.0009 -0.0067* -0.0005

(0.0045) (0.0033) (0.0035) (0.0033)

W·Border 0.0117 0.0099 0.0132** 0.0122**

(0.0098) (0.0072) (0.0063) (0.0055)

W·Area
(a)

0.0005 -0.0008 0.0000 0.0001

(0.0011) (0.0011) (0.0004) (0.0005)

W·Elevation
(a)

0.0262 0.0401** -0.0040 0.0010

(0.0193) (0.0183) (0.0053) (0.0074)

W·Rough 0.0462*** 0.0145 -0.0260** -0.0236

(0.0169) (0.0205) (0.0125) (0.0165)

W·Distance to river
(b)

-0.0018*** -0.0006 0.0007** 0.0000

(0.0007) (0.0007) (0.0003) (0.0005)

W·Road -0.0039 -0.0064 -0.0142*** 0.0029

(0.0038) (0.0041) (0.0034) (0.0039)

W·ELF 0.0100 0.0047 0.0013 0.0022

(0.0087) (0.0072) (0.0057) (0.006)

W·Minerals 0.0091* 0.0111** 0.0032 0.0056

(0.005) (0.0045) (0.0040) (0.0038)

Country FE X X X

Observations 2,669 2,669 2,669 2,669 2,669 2,669

R-squared 0.436 0.587 0.446 0.630 0.184 0.421

Dependent variable: fraction of years 1997-2011 with at least one conflict event

Model III

MLE

(a) Coefficient and std error multiplied by 10^3 (b) Coefficient and std error multiplied by 10^2

Standard errors in parenthesis corrected for spatial dependence, following Conley (1999).                       

* p<0.01, ** p<0.05, * p<0.1. W = binary contiguity matrix, cutoff 180 km.

Table 2: Conflict incidence, cross section

Model I Model II 

OLS OLS
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Table 3: Conflict incidence and climate, panel

Dependent variable (Y) = 1 if conflict event in year t (ANY EVENT)

(1) (2) (3)

Model I Model II Model III

OLS OLS MLE

Y, t-1 0.332***

(0.0049)

W · Y 0.0451***

(0.0010)

SPEI 0.0077 0.0263* 0.0103

-0.0054 (0.0136) (0.0123)

SPEI, t-1 -0.0102* 0.0124 -0.0005

-0.0057 (0.0138) (0.0122)

SPEI, t-2 0.0032 0.0056 0.0043

-0.0056 (0.0140) (0.0117)

SPEI Shock Growing Season 0.0469*** 0.0272 0.0103

(0.0179) (0.0195) (0.0190)

SPEI Shock Growing Season, t-1 0.0550*** 0.0499** 0.0401**

(0.0180) (0.0212) (0.0196)

SPEI Shock Growing Season, t-2 0.0594*** 0.0458** 0.0407**

(0.0180) (0.0213) (0.0194)

W · SPEI -0.0024 0.000

(0.0021) (0.0018)

W · SPEI, t-1 -0.0034 -0.0010

(0.0021) (0.0018)

W · SPEI, t-2 -0.0001 -0.0005

(0.0022) (0.0018)

W · SPEI Shock Growing Season 0.0060 0.0025

(0.0041) (0.0033)

W · SPEI Shock Growing Season, t-1 0.0022 -0.0029

(0.0042) (0.0034)

W · SPEI Shock Growing Season, t-2 0.0047 -0.0031

(0.0043) (0.0034)

Observations 37,425 37,425 37,425

R-squared 0.327 0.353 0.347

Notes:  Each observation is a cell/year.  All regressions include controls listed in table 2, 

country and year fixed effects. W = binary contiguity matrix, cutoff 180 km.

Standard errors in parenthesis. Cols. 1, 2 corrected for spatial and serial correlation. Col. 3 

corrected for clustering at the cell level. *** p<0.01, ** p<0.05, * p<0.1
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Dependent variable (Y) = 1 if conflict event in year t (ANY EVENT)

(1) (2) (3) (4)

180 km 290 km 450 km 600 km

Y, t-1 0.332*** 0.330*** 0.339*** 0.350***

(0.0049) (0.00493) (0.00495) (0.00496)

W · Y 0.0451*** 0.0248*** 0.0122*** 0.00707***

(0.0010) (0.000543) (0.000298) (0.000201)

SPEI 0.0103 0.00875 0.00581 0.00658

(0.0123) (0.00957) (0.00754) (0.00645)

SPEI, t-1 -0.0005 -0.00110 -0.00648 -0.00960

(0.0122) (0.00972) (0.00761) (0.00662)

SPEI, t-2 0.0043 0.00448 0.00404 0.00800

(0.0117) (0.00907) (0.00716) (0.00616)

SPEI Shock Growing Season 0.0103 0.0142 0.0177 0.0215

(0.0190) (0.0172) (0.0158) (0.0150)

SPEI Shock Growing Season, t-1 0.0401** 0.0266 0.0119 0.00384

(0.0196) (0.0183) (0.0170) (0.0160)

SPEI Shock Growing Season, t-2 0.0407** 0.0306* 0.0400** 0.0383**

(0.0194) (0.0181) (0.0166) (0.0156)

W · SPEI 0.000 -2.57e-05 2.46e-05 -1.56e-05

(0.0018) (0.000623) (0.000221) (0.000118)

W · SPEI, t-1 -0.0010 -0.000337 6.03e-05 0.000131

(0.0018) (0.000643) (0.000227) (0.000121)

W · SPEI, t-2 -0.0005 -0.000234 -0.000140 -0.000166

(0.0018) (0.000598) (0.000214) (0.000115)

W · SPEI Shock Growing Season 0.0025 0.000555 1.37e-05 -0.000170

(0.0033) (0.00140) (0.000610) (0.000364)

W · SPEI Shock Growing Season, t-1 -0.0029 -0.000513 0.000390 0.000490

(0.0034) (0.00143) (0.000634) (0.000388)

W · SPEI Shock Growing Season, t-2 -0.0031 -0.00100 -0.00116* -0.000884**

(0.0034) (0.00146) (0.000653) (0.000392)

Observations 37,425 37,425 37,425 37,425

R-squared 0.347 0.347 0.343 0.341

Table 4: Sensitivity to different spatial matrices

Notes:  Each observation is a cell/year.  All regressions include controls listed in table 2, country 

and year fixed effects. Estimation by MLE. Standard errors corrected for clustering at the cell level. 

*** p<0.01, ** p<0.05, * p<0.1

Binary contiguity matrix
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Table 5: Sensitivity to different spatial resolutions

Panel A: 2x2 cells 

avg. 

coefficient

coefficient 

std. dev.

avg. std. 

error

no. panels 

10% 

significant

avg. 

coefficient

coefficient 

std. dev.

avg. std. 

error

no. panels 

10% 

significant

Y, t-1 0.3825 0.0150 0.0100 4

W · Y 0.0585 0.0013 0.0021 4

SPEI 0.0081 0.0016 0.0082 0 0.0041 0.0081 0.0100 0

SPEI, t-1 -0.0094 0.0012 0.0090 0 -0.0025 0.0037 0.0105 0

SPEI, t-2 -0.0029 0.0019 0.0086 0 0.0055 0.0026 0.0103 0

SPEI Shock Growing Season 0.0597 0.0055 0.0282 4 0.0218 0.0128 0.0267 0

SPEI Shock Growing Season, t-1 0.0643 0.0056 0.0270 4 -0.0014 0.0155 0.0276 0

SPEI Shock Growing Season, t-2 0.0588 0.0075 0.0272 4 0.0460 0.0167 0.0282 2

W · SPEI 0.0008 0.0015 0.0018 0

W · SPEI, t-1 -0.0013 0.0007 0.0019 0

W · SPEI, t-2 -0.0010 0.0005 0.0018 0

W · SPEI Shock Growing Season 0.0005 0.0022 0.0051 0

W · SPEI Shock Growing Season, t-1 0.0022 0.0024 0.0055 0

W · SPEI Shock Growing Season, t-1 -0.0070 0.0024 0.0056 0

Average nr of obs 8051 8033

Average R squared 0.559 0.559

avg. 

coefficient

coefficient 

std. dev.

avg. std. 

error

no. of panels 

in which 

10% 

significant

avg. 

coefficient

coefficient 

std. dev.

avg. std. 

error

no. of 

panels in 

which 10% 

significant

Y, t-1 0.4550 0.0230 0.0134 9

W · Y 0.0598 0.0023 0.0030 9

SPEI 0.0103 0.0042 0.0089 1 0.0144 0.0065 0.0094 4

SPEI, t-1 -0.0066 0.0040 0.0096 0 -0.0153 0.0095 0.0107 5

SPEI, t-2 -0.0011 0.0024 0.0094 0 0.0176 0.0007 0.0098 5

SPEI Shock Growing Season 0.0609 0.0132 0.0332 4 0.0412 0.0083 0.0309 2

SPEI Shock Growing Season, t-1 0.0787 0.0107 0.0321 9 -0.0157 0.0236 0.0295 1

SPEI Shock Growing Season, t-2 0.0655 0.0154 0.0314 7 0.0624 0.0329 0.0296 6

W · SPEI -0.0019 0.0010 0.0018 1

W · SPEI, t-1 0.0022 0.0019 0.0021 3

W · SPEI, t-2 -0.0040 0.0010 0.0019 7

W · SPEI Shock Growing Season -0.0059 0.0024 0.0060 2

W · SPEI Shock Growing Season, t-1 0.0100 0.0057 0.0064 4

W · SPEI Shock Growing Season, t-2 -0.0159 0.0056 0.0078 8

Average nr of obs 4158 4158

Average R squared 0.635 0.664

Notes:

Regressions include controls listed in table 2, country and year fixed effects. OLS standard errors corrected for spatial and serial correlation.

Dependent variable (Y) = 1 if conflict event in year t (ANY EVENT). 

Model I - OLS Model III - MLE

Panel B: Results of the estimation of models I and III in 9 possible panels of 3x3 cells. effects. W = binary contiguity matrix, cutoff 490 km.

MLE standard errors corrected for clustering at the cell level. *** p<0.01, ** p<0.05, * p<0.1

Panel A: Results of the estimation of models I and III in 4 possible panels of 2x2 cells. W = binary contiguity matrix, cutoff 390 km.

Panel B: 3x3 cells 

Dependent variable (Y) = 1 if conflict event in year t (ANY EVENT). 

Model I - OLS Model III - MLE
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Table 6: Conflict incidence and other climate indicators

Dependent variable (Y) = 1 if conflict event in year t (ANY EVENT)

(1) (2) (3) (4) (5) (6)

Model I Model II Model III Model I Model II Model III

Y, t-1 0.331*** 0.330***
(0.0049) (0.0049)

W · Y 0.0450*** 0.0449***
(0.0010) (0.0010)

Climate 0.0007 0.0003 0.000 -0.01 0.0026 0.0206
(0.0004) (0.0006) (0.0005) (0.0167) (0.0291) (0.0250)

Climate, t-1 -0.0005 0.0006 0.0005 0.0127 0.0039 0.0161
(0.0004) (0.0006) (0.0006) (0.0168) (0.0309) (0.0272)

Climate, t-2 0.0005 -0.0001 -0.0003 -0.0523*** -0.0270 -0.0097
(0.0004) (0.0006) (0.0005) (0.0169) (0.0299) (0.0267)

Climate, Growing Season Indicator 0.000 0.0005 0.0004 0.0533** 0.009 0.0063

(0.0005) (0.0005) (0.0005) (0.0208) (0.0251) (0.0234)

Climate, Growing Season Indicator, t-1 0.0008 -0.0002 -0.0004 0.0225 0.0400 0.0287

(0.0005) (0.0005) (0.0005) (0.0212) (0.0257) (0.0267)

Climate, Growing Season Indicator, t-2 -0.0001 0.0002 0.0003 0.0669*** 0.0525** 0.0300
(0.0005) (0.0005) (0.0005) (0.0217) (0.0267) (0.0251)

W · Climate 0.000 0.000 -0.0042 -0.0047
(0.0001) (0.000) (0.0049) (0.0040)

W · Climate, t-1 -0.0002** -0.0002** 0.0007 -0.00175
(0.0001) (0.0001) (0.0051) (0.0044)

W · Climate, t-2 0.0001 0.0002* -0.0057 -0.0045
(0.0001) (0.000) (0.0050) (0.0041)

W · Climate, Growing Season Indicator -0.0001 0.000 0.0121** 0.0037

(0.0001) (0.000) (0.0048) (0.004)

W · Climate, Growing Season Indicator, t-1 0.0002* 0.0002** -0.0012 -0.0025

(0.0001) (0.0001) (0.0049) (0.0045)

W · Climate, Growing Season Indicator, t-2 -0.0001 -0.0001* 0.0062 0.0010
(0.0001) (0.000) (0.0051) (0.0042)

Observations 37,425 37,425 37,425 37,425 37,425 37,425

R squared 0.307 0.344 0.348 0.331 0.358 0.348

Notes:  Each observation is a cell/year.  All regressions include controls listed in table 2, country and year fixed effects.       

W = binary contiguity matrix, cutoff 180 km.

Standard errors in parenthesis. Cols. 1-2-4-5 corrected for spatial and serial correlation. Cols. 3-6 corrected for clustering 

at the cell level. *** p<0.01, ** p<0.05, * p<0.1

Log rain Temperature absolute deviation
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Table 7: Different types of conflict events, cross section

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Model I Model II Model III Model I Model II Model III Model I Model II Model III Model I Model II Model III

W · Y 0.0233*** 0.0280*** 0.0008 0.0190***

(0.00450) (0.0044) (0.0050) (0.0045)

Shared 0.0268*** 0.0207** 0.0237*** 0.0220** 0.0139 0.0184** -0.00389 -0.00486 -0.0050 0.0138*** 0.00916** 0.0101***

(0.00952) (0.00893) (0.00722) (0.00993) (0.00913) (0.0076) (0.00786) (0.00839) (0.0066) (0.00452) (0.00401) (0.0037)

Border 0.00525 -0.00747 -0.00361 0.00794 -0.00631 0.0001 -0.000239 -0.00494 -0.0011 -0.00168 -0.00657 -0.0034

(0.0123) (0.0110) (0.0108) (0.0135) (0.0133) (0.0117) (0.0109) (0.0115) (0.0111) (0.00547) (0.00559) (0.0052)

Area
(a)

0.00344** 0.00413 0.00342** 0.00103 0.00385 0.0008 -0.00418** 0.00151 -0.0046*** -0.000623 -0.000785 -0.0006

(0.00154) (0.00353) (0.00140) (0.00168) (0.00388) (0.0016) (0.00178) (0.00353) (0.0017) (0.000863) (0.00196) (0.0009)

Elevation
(a)

-0.0356 -0.138 -0.0388** -0.0353 -0.186* -0.0342** -0.0214 -0.257*** -0.0210 -0.00281 -0.0606 -0.0026

(0.0287) (0.0919) (0.0167) (0.0273) (0.0963) (0.0164) (0.0214) (0.0844) (0.0159) (0.00991) (0.0438) (0.0073)

Rough 0.234** 0.203*** 0.300*** 0.322*** 0.246*** 0.364*** 0.164*** 0.0851 0.165*** 0.0741 0.0712 0.0875***

(0.0938) (0.0682) (0.0521) (0.0886) (0.0741) (0.0535) (0.0532) (0.0598) (0.0419) (0.0541) (0.0449) (0.0310)

Distance to river
(b)

-0.00211 -0.00184 -0.0016 -0.00368** -0.00151 -0.0026* -0.00312* 0.000452 -0.003** -0.000168 -0.00249 0.0006

(0.00178) (0.00204) (0.0012) (0.00179) (0.00282) (0.0013) (0.00185) (0.00378) (0.0014) (0.000690) (0.00167) (0.0006)

Road 0.0446*** 0.0584*** 0.0479*** 0.0571*** 0.0671*** 0.0610*** 0.0693*** 0.0756*** 0.0676*** 0.0169*** 0.0171*** 0.0174***

(0.0108) (0.0104) (0.0083) (0.0126) (0.0123) (0.0096) (0.0120) (0.0121) (0.0100) (0.00502) (0.00493) (0.0043)

ELF 0.0446** 0.0298* 0.0337** 0.0424** 0.0393** 0.0397*** 0.0140 0.0250 0.0144 0.0124 0.0103 0.0104

(0.0184) (0.0153) (0.0139) (0.0202) (0.0171) (0.0145) (0.0159) (0.0165) (0.0133) (0.00864) (0.00761) (0.0066)

Minerals 0.0333*** 0.0281*** 0.0304*** 0.0331*** 0.0260*** 0.0287*** 0.0345*** 0.0232*** 0.0324*** 0.0101** 0.00657 0.0089**

(0.00865) (0.00740) (0.0077) (0.00978) (0.00859) (0.0084) (0.0101) (0.00882) (0.0084) (0.00461) (0.00400) (0.0038)

W·Shared -0.000346 -0.0014 -0.000395 -0.0007 -0.00171 0.0014 0.00114 0.0029**

(0.00229) (0.0025) (0.00252) (0.0025) (0.00223) (0.0021) (0.000965) (0.0014)

W·Border 0.00515 0.0084** 0.00475 0.0101** 0.00426 0.0050 -0.00281 0.0040**

(0.00564) (0.0039) (0.00528) (0.0041) (0.00362) (0.0037) (0.00208) (0.0018)

W·Area
(a)

-3.02e-05 -0.0001 -0.00102 -0.0002 -0.00149* 0.0001 -0.000552 -0.0001

(0.000787) (0.0004) (0.000893) (0.0004) (0.000802) (0.0004) (0.000435) (0.0002)

W·Elevation
(a)

0.0132 0.0024 0.0239* -0.0018 0.0350*** -0.0054 0.0101* -0.001

(0.0131) (0.0049) (0.0140) (0.0055) (0.0118) (0.0052) (0.00575) (0.0023)

W·Rough 0.00558 -0.0272** 0.0128 -0.0237* 0.00984 -0.0003 -0.00373 -0.0042

(0.0180) (0.0117) (0.0159) (0.0125) (0.0103) (0.0095) (0.00590) (0.0056)
W·Distance to 

river
(b)

4.83e-05 0.000 -0.000353 -0.0001 -0.000629 0.0001 0.000345 -0.0002

(0.000414) (0.0004) (0.000474) (0.0004) (0.000581) (0.0004) (0.000256) (0.0002)

W·Road -0.00583** 0.0032 -0.00578* 0.0007 -0.00450 0.0037 -0.00145 0.0028**

(0.00273) (0.0026) (0.00306) (0.0029) (0.00277) (0.0028) (0.00119) (0.0014)

W·ELF 0.00650 0.0030 0.00298 0.0016 -0.00557 -0.0031 0.000653 -0.0007

(0.00495) (0.0041) (0.00536) (0.0043) (0.00381) (0.00385) (0.00197) (0.0018)

W·Minerals 0.00559** 0.0024 0.00616** 0.0029 0.00949*** 0.0066** 0.00316** 0.0014

(0.00278) (0.0027) (0.00310) (0.0028) (0.00349) (0.0026) (0.00152) (0.0012)

Observations 2,669 2,669 2,669 2,669 2,669 2,669 2,669 2,669 2,669 2,669 2,669 2,669

R-squared 0.538 0.600 0.433 0.531 0.585 0.431 0.329 0.364 0.245 0.408 0.483 0.374

Y = BATTLE Y = CIVILIAN Y = RIOT Y = REBEL

(a) Coefficient and std error multiplied by 10^3 (b) Coefficient and std error multiplied by 10^2. Standard errors in parenthesis corrected for spatial dependence, following Conley 

(1999). 

Notes:  Each observation is a cell.  All regressions include country fixed effects.   W = binary contiguity matrix, cutoff 180 km.
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Table 8: Different types of conflict events, panel

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Model I Model II Model III Model I Model II Model III Model I Model II Model III Model I Model II Model III

Y, t-1 0.274*** 0.289*** 0.335*** 0.246***

(0.0050) (0.0050) (0.0051) (0.0054)

W · Y 0.0487*** 0.0432*** 0.0305*** 0.0402***

(0.0010) (0.0011) (0.0011) (0.0011)

SPEI 0.0038 0.0194* 0.0096 0.0002 0.0042 -0.0047 0.0075** 0.0180* 0.0099 0.000 -0.0048 -0.0103

(0.0044) (0.0111) (0.01) (0.0042) (0.0112) (0.0099) (0.0033) (0.0100) (0.0092) (0.0023) (0.0060) (0.0066)

SPEI, t-1 -0.0135*** 0.0022 -0.0061 -0.0036 -0.0055 -0.0076 -0.0001 0.0169* 0.0098 -0.0045* -0.0066 -0.0012

(0.0045) (0.0111) (0.0104) (0.0044) (0.0113) (0.0104) (0.0033) (0.0102) (0.0090) (0.0024) (0.0067) (0.0067)

SPEI, t-2 -0.0052 0.0011 -0.0002 0.0006 0.0066 0.0097 0.004 0.0029 0.0023 -0.0017 -0.0104 -0.0061

(0.0044) (0.0113) (0.0097) (0.0045) (0.0115) (0.0097) (0.0033) (0.0100) (0.0085) (0.0026) (0.0068) (0.0067)

SPEI Shock Growing Season 0.0277* -0.0038 -0.0106 0.0234* -0.0040 -0.0082 -0.0014 0.0262** 0.0219* 0.0101 0.0149 0.0071

(0.0148) (0.0157) (0.0163) (0.0142) (0.0156) (0.0154) (0.0098) (0.0132) (0.0122) (0.0083) (0.0102) (0.0094)

SPEI Shock Growing Season, t-1 0.0404*** 0.0500*** 0.0456*** 0.0253* 0.0192 0.0173 0.0008 0.005 -0.0050 0.0017 0.0104 0.0070

(0.0151) (0.0173) (0.0174) (0.0136) (0.0175) (0.0164) (0.0097) (0.0139) (0.0135) (0.0076) (0.0107) (0.0111)

SPEI Shock Growing Season, t-2 0.0365** 0.0148 0.0098 0.0203 0.0408** 0.0362** 0.0167 0.0246* 0.0311** 0.0025 0.0063 0.0023

(0.0148) (0.0183) (0.0160) (0.0138) (0.0165) (0.0161) (0.0104) (0.0147) (0.0134) (0.0072) (0.0096) (0.0100)

W · SPEI -0.0020 -0.0007 -0.0001 0.0015 -0.0018 -0.0006 0.0008 0.0020**

(0.0017) (0.0014) (0.0017) (0.0015) (0.0014) (0.0013) (0.001) (0.001)

W · SPEI, t-1 -0.0026 0.000 0.0004 0.0007 -0.0026* -0.0016 0.0002 -0.0004

(0.0017) (0.0015) (0.0018) (0.0015) (0.0015) (0.0013) (0.0010) (0.001)

W · SPEI, t-2 -0.0007 -0.0005 -0.0017 -0.0016 0.0001 0.000 0.0013 0.0004

(0.0017) (0.0014) (0.0018) (0.0014) (0.0015) (0.0012) (0.0011) (0.001)

W · SPEI Shock Growing Season 0.0077** 0.0042 0.0076** 0.0051* -0.0046** -0.0042** -0.0001 0.0003

(0.0034) (0.0028) (0.0031) (0.0027) (0.0023) (0.0020) (0.0018) (0.0016)

W · SPEI Shock Growing Season, t-1 -0.0017 -0.0037 0.0026 -0.0019 0.000 0.0019 -0.0012 -0.0012

(0.0034) (0.0029) (0.0033) (0.0028) (0.0025) (0.0022) (0.0018) (0.0019)

W · SPEI Shock Growing Season, t-2 0.0058* 0.000 -0.0028 -0.004 -0.0007 -0.0021 0.0002 -0.0005

(0.0035) (0.0028) (0.0033) (0.0029) (0.0025) (0.0022) (0.0018) (0.0017)

Observations 37,425 37,425 37,425 37,425 37,425 37,425 37,425 37,425 37425 37,425 37,425 37,425

R-squared 0.234 0.263 0.286 0.255 0.283 0.308 0.153 0.174 0.232 0.131 0.156 0.205

Notes:  Each observation is a cell/year.  All regressions include controls listed in table 2, country and year fixed effects. 

Cols. 1-2-4-5 corrected for spatial and serial correlation. Cols. 3-6 corrected for clustering at the cell level. *** p<0.01, ** p<0.05, * p<0.1

Y = RIOT Y = REBELY = BATTLE Y = CIVILIAN

W = binary contiguity matrix, cutoff 180 km. Standard errors in parenthesis. 
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Figure 1:  

Fraction of years with at least one conflict event (1997-2011)  



53 
 

 

 

Figure 2: 

Average yearly rainfall (in mm), 1997-2011  
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Figure 3: 

Average SPEI, 1997 - 2011  
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Figure 4: 

Temperature, absolute deviation from cell mean, 1997 - 2011  
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Figure 5: 

Main crop  
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Figure 6: 

Dynamic impact of a one-time SPEI shock on conflict incidence 

 

 

Figure 7: 

Spatial impact of a one-time SPEI shock on conflict incidence  
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Figure 8: 

Average projected SPEI Shock, 2012 – 2030 
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Figure 9: 

Average marginal effects of SPEI Shock , projected 2012-2030 

 



(1) (2) (3) (4) (5) (6)

Model I Model II Model III Model I Model II Model III
Y, t-1 0.334*** 0.334***

(0.0049) (0.0049)
W · Y 0.0456*** 0.0455***

(0.0010) (0.0010)
SPEI 0.0028 0.0235* 0.0117 0.0087 0.0223 0.0100

(0.0056) (0.0136) (0.0120) (0.0066) (0.0142) (0.0131)
SPEI, t-1 -0.0157*** 0.0092 -0.0079 -0.0087 0.0255* 0.0107

(0.0058) (0.0138) (0.0119) (0.0071) (0.0149) (0.0136)
SPEI, t-2 -0.0099* 0.0038 -0.0019 -0.0019 0.0123 0.0021

(0.0057) (0.0138) (0.0114) (0.007) (0.0152) (0.0130)
SPEI, Growing Season 

Indicator -0.0115 -0.0003 0.0009
(0.0119) (0.0144) (0.0133)

SPEI, Growing Season 

Indicator, t-1 -0.0147 -0.0343** -0.0384**
(0.0123) (0.0161) (0.0151)

SPEI, Growing Season 

Indicator, t-2 -0.0168 -0.0203 -0.0106
(0.0123) (0.0163) (0.0146)

W · SPEI -0.0033 -0.0008 -0.0013 0.0005
(0.0021) (0.0018) (0.0023) (0.002)

W · SPEI, t-1 -0.004* -0.0003 -0.0057** -0.003
(0.0021) (0.0018) (0.0024) (0.0021)

W · SPEI, t-2 -0.0023 0.000 -0.0020 -0.0003
(0.0020) (0.0017) (0.0024) (0.002)

W · SPEI, Growing 

Season Indicator -0.0036 -0.0023
(0.0027) (0.0023)

W · SPEI, Growing 

Season Indicator, t-1 0.0035 0.0057**
(0.0029) (0.0025)

W · SPEI, Growing 

Season Indicator, t-2 -0.0002 0.0009
(0.003) (0.0024)

Observations 37,425 37,425 37,425 37,425 37,425 37,425

R squared 0.327 0.353 0.346 0.327 0.354 0.346

Notes:  

Each observation is a cell/year.  All regressions include controls listed in table 2, country and year fixed effects

W = binary contiguity matrix, cutoff 180 km.

Cols. 3 and 6 corrected for clustering at the cell level. *** p<0.01, ** p<0.05, * p<0.1

Standard errors in parenthesis. Cols. 1, 2, 4 and 5 corrected for spatial and serial correlation. 

Appendix Table A1: Conflict incidence and other SPEI based climate indicators, panel

Standalone Growing Season Maincrop

Dependent variable (Y) = 1 if conflict event in year t (ANY EVENT)
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Figure A1: 

Average yearly rainfall (in mm), year 2000  
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Figure A2: 

SPEI, year 2000 
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Figure A3: 

Temperature, absolute deviation from cell mean, year 2000 
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